
M A N N I N G

Arnaud Cogoluègnes
Thierry Templier
Gary Gregory
Olivier Bazoud

IN ACTION

Spring Batch in Action

Spring Batch in Action

ARNAUD COGOLUEGNES
THIERRY TEMPLIER

GARY GREGORY
OLIVIER BAZOUD

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Linda Kern
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781935182955
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.manning.com

brief contents
PART 1 BACKGROUND ..1

1 ■ Introducing Spring Batch 3
2 ■ Spring Batch concepts 32

PART 2 CORE SPRING BATCH..51
3 ■ Batch configuration 53
4 ■ Running batch jobs 87
5 ■ Reading data 117
6 ■ Writing data 157
7 ■ Processing data 193
8 ■ Implementing bulletproof jobs 223
9 ■ Transaction management 251

PART 3 ADVANCED SPRING BATCH ...275
10 ■ Controlling execution 277
11 ■ Enterprise integration 306
12 ■ Monitoring jobs 345
13 ■ Scaling and parallel processing 373
14 ■ Testing batch applications 407
v

contents
foreword xv
preface xvii
acknowledgments xviii
about this book xx
about the cover illustration xxvi

PART 1 BACKGROUND..1

1 Introducing Spring Batch 3
1.1 What are batch applications? 4
1.2 Meet Spring Batch 5

Robustness and reliability 6 ■ Scaling strategies 7

1.3 Introducing the case study 8
The online store application 8 ■ Why build an online store with
batch jobs? 9 ■ Why use batch processes? 9 ■ The import product
use case 10

1.4 Reading and writing the product data 11
Anatomy of the read-write step 11 ■ Reading a flat file 14
Implementing a database item writer 17 ■ Configuring a database
item writer 18 ■ Configuring the read-write step 18
vii

CONTENTSviii
1.5 Decompressing the input file with a tasklet 20
Why compress the file? 20 ■ Implementing the decompression
tasklet 20 ■ Configuring the tasklet 22

1.6 Testing the batch process 23
Setting up the test infrastructure 23 ■ Leveraging SpEL for
configuration 25 ■ Writing the test for the job 26

1.7 Skipping incorrect lines instead of failing 28
1.8 Summary 31

2 Spring Batch concepts 32
2.1 The batch domain language 33

Why use a domain language? 33 ■ Main components of the
domain language 34 ■ How Spring Batch interacts with the
outside world 35

2.2 The Spring Batch infrastructure 36
Launching jobs and storing job metadata 36 ■ Configuring the
Spring Batch infrastructure in a database 37

2.3 Anatomy of a job 41
Modeling jobs with steps 42 ■ Running job instances and job
executions 46

2.4 Summary 50

PART 2 CORE SPRING BATCH ...51

3 Batch configuration 53
3.1 The Spring Batch XML vocabulary 54

Using the Spring Batch XML namespace 54 ■ Spring Batch XML
features 56

3.2 Configuring jobs and steps 57
Job entities hierarchy 57 ■ Configuring jobs 58 ■ Configuring
steps 60 ■ Configuring tasklets and chunks 61 ■ Configuring
transactions 69

3.3 Configuring the job repository 72
Choosing a job repository 72 ■ Specifying job repository parameters 73

3.4 Advanced configuration topics 75
Using step scope 75 ■ Leveraging SpEL 76 ■ Using listeners to
provide additional processing 78 ■ Configuration inheritance 83

3.5 Summary 86

CONTENTS ix
4 Running batch jobs 87
4.1 Launching concepts 88

Introducing the Spring Batch launcher API 88 ■ Synchronous vs.
asynchronous launches 89 ■ Overview of launching solutions 90

4.2 Launching from the command line 92
Using Spring Batch’s command-line job runner 92

4.3 Job schedulers 97
Using cron 98 ■ Using the Spring scheduler 99

4.4 Launching from a web application 103
Embedding Spring Batch in a web application 104 ■ Launching a
job with an HTTP request 105

4.5 Stopping jobs gracefully 109
Stopping a job for the operator 110 ■ Stopping a job for the
application developer 113

4.6 Summary 116

5 Reading data 117
5.1 Data reading concepts 118
5.2 Reading flat files 119

Configuring the FlatFileItemReader class 121 ■ Introducing the
DefaultLineMapper class 125 ■ Using the DefaultLineMapper
class 126 ■ Extracting character-separated fields 126
Creating objects from fields 128 ■ Reading JSON 130
Multiline records 132 ■ Reading heterogonous records 133

5.3 Reading XML files 135
5.4 Reading file sets 138
5.5 Reading from relational databases 139

Using JDBC item readers 139 ■ Using ORM item readers 148

5.6 Using other input sources 151
Services as input 151 ■ Reading from JMS 154

5.7 Implementing custom readers 155
5.8 Summary 156

6 Writing data 157
6.1 Data-writing concepts 158
6.2 Writing files 159

Writing flat files 159 ■ Writing XML files 173 ■ Writing file
sets 178

CONTENTSx
6.3 Writing to databases 179
Writing with JDBC 179 ■ Writing with ORM 182

6.4 Adapting existing services for reuse 183
6.5 Writing to JMS 185
6.6 Sending email messages 186
6.7 Implementing custom item writers 187
6.8 Advanced writing techniques 188

Composing item writers 189 ■ Routing items to specific item writers 189

6.9 Summary 192

7 Processing data 193
7.1 Processing items 194

Processing items in a chunk-oriented step 194 ■ Use cases for item
processing 195 ■ Configuring an item processor 195 ■ Item
processor implementations 197

7.2 Transforming items 197
Changing the state of read items 198 ■ Producing new objects from
read items 201 ■ Implementing the driving query pattern with an
item processor 204

7.3 Filtering and validating items 208
Filtering in the item-processing phase 208 ■ Implementing a
filtering item processor 209 ■ Validating items 211

7.4 Chaining item processors 219
7.5 Summary 221

8 Implementing bulletproof jobs 223
8.1 What is a bulletproof job? 224

What makes a job bulletproof? 224 ■ Designing a bulletproof
job 224 ■ Techniques for bulletproofing jobs 225 ■ Skip, retry,
and restart in action 226

8.2 Skipping instead of failing 227
Configuring exceptions to be skipped 227 ■ Configuring a SkipPolicy for
complete control 229 ■ Listening and logging skipped items 231

8.3 Retrying on error 234
Configuring retryable exceptions 234 ■ Controlling retry with a
retry policy 236 ■ Listening to retries 238 ■ Retrying in
application code with the RetryTemplate 239 ■ Retrying
transparently with the RetryTemplate and AOP 240

CONTENTS xi
8.4 Restart on error 242
How to enable restart between job executions 243 ■ No restart
please! 244 ■ Whether or not to restart already completed
steps 245 ■ Limiting the number of restarts 246 ■ Restarting in
the middle of a chunk-oriented step 247

8.5 Summary 250

9 Transaction management 251
9.1 A transaction primer 252
9.2 Transaction management in Spring Batch

components 253
Transaction management in tasklets 253 ■ Transaction
management in chunk-oriented steps 254 ■ Transaction
management in listeners 254

9.3 Transaction configuration 255
Transaction attributes 255 ■ Common pitfalls with declarative
transactions 256 ■ Transactional reader and processor 257
To roll back or not to roll back 258

9.4 Transaction management patterns 259
Transactions spanning multiple resources: global transactions 259
The shared resource transaction pattern 262 ■ The best effort pattern
with JMS 263 ■ Handling duplicate messages with manual
detection 267 ■ Handling duplicate messages with idempotency 272

9.5 Summary 274

PART 3 ADVANCED SPRING BATCH.................................275

10 Controlling execution 277
10.1 A complex flow in the online store application 278
10.2 Driving the flow of a job 280

Choosing one path over another 280 ■ Batch status vs. exit status:
what’s the deal? 282 ■ Choosing the exit status 282

10.3 Sharing data between steps 287
Using the execution context to share data 289 ■ Sharing data
using Spring holder beans 296

10.4 Externalizing flow definitions 300
10.5 Stopping a job execution 302
10.6 Summary 304

CONTENTSxii
11 Enterprise integration 306
11.1 What is enterprise integration? 307

Enterprise integration challenges 307 ■ Styles of enterprise
integration 309

11.2 Spring Batch and enterprise integration 310
An enterprise integration use case 310

11.3 Spring Integration, a toolbox for enterprise
integration 312
The Spring Integration project 312 ■ Combining Spring
Integration and Spring Batch 313 ■ Spring Integration quick-
start: launching a Spring Batch job 313

11.4 RESTful job submission with Spring MVC 320
Deploying Spring in a web application 321 ■ Writing the REST
web controller 323 ■ Writing the import file in a directory with
Spring Integration 329

11.5 Triggering jobs from file system events 332
Scanning the input directory with Spring Integration 332
Converting a file into a job launch request 333 ■ Implementing
the import job 334

11.6 RESTful job monitoring with Spring MVC 338
Getting access to the job metadata in the repository 338
Communicating job status from a web controller 341

11.7 Summary 344

12 Monitoring jobs 345
12.1 Introducing monitoring 346

Monitoring overview 346 ■ Batch jobs and monitoring 347

12.2 Accessing batch execution data 348
Job database schema 348 ■ Accessing data from the job
repository 352

12.3 Monitoring with listeners 358
Implementing a monitoring listener 358 ■ Notifying using
emails 360 ■ Notifying using Spring messaging 361

12.4 Web monitoring with Spring Batch Admin 362
Feature overview 363 ■ Detecting problems encountered during
batch executions 365

CONTENTS xiii
12.5 Monitoring with JMX 366
Configuring JMX for Spring Batch 368 ■ Monitoring with JMX
consoles 369

12.6 Summary 372

13 Scaling and parallel processing 373
13.1 Scaling concepts 374

Enhancing performance by scaling 374 ■ The Spring Batch
scaling model 375

13.2 Multithreaded steps 378
Configuring a multithreaded step 379 ■ Multithreading
issues 381

13.3 Parallelizing processing (single machine) 385
Configuring parallel steps 386

13.4 Remote chunking (multiple machines) 387
What is remote chunking? 387 ■ Remote chunking with Spring
Integration 389

13.5 Fine-grained scaling with partitioning 394
Configuring partitioning 395 ■ The partitioning SPI 397

13.6 Comparing patterns 404
13.7 Summary 405

14 Testing batch applications 407
14.1 The what and why of testing 408

What is testing? 408 ■ Different types of testing 409 ■ Why
test? 410

14.2 Unit testing 410
Introducing JUnit 411 ■ Using mock objects with Mockito 415
Mocking Spring Batch domain objects 423

14.3 Integration testing 425
Introducing the Spring TestContext Framework 426 ■ Using the
Spring Batch StepScopeTestExecutionListener 427

14.4 Functional testing 432
Introducing JobLauncherTestUtils 433 ■ Testing a step 433
Testing a job 436

14.5 Summary 437

CONTENTSxiv
appendix A Setting up the development environment 439
appendix B Managing Spring Batch Admin 450

index 459

foreword
The origin of Spring Batch as an open source project goes back to the time when I
joined a relatively new and small company called Interface21.1 Many existing clients,
and one big partner (Accenture), had repeatedly run into problems because the open
source community lacked such a framework. Every IT project that needed offline pro-
cessing found that they had to reinvent the basic features of deployment, processing
patterns, and reliability. Then, and to this day, these are the unavoidable but necessary
features of many environments across a wide range of industries.

 Who should read this book? For sure anyone who wants to learn how to use Spring
Batch from the ground up. Some knowledge of the Spring Framework and familiarity
with Spring programming models and common practices are more or less mandatory,
but these are common skills and easily obtained elsewhere. Spring Batch isn’t all that
difficult to get started with once you have basic Spring knowledge. But the more you
use a complex tool, the more you’ll find that it pays to understand its inner workings,
and even seasoned practitioners of Spring Batch applications will find much of the
book rewarding reading.

 The content of the book is laid out in a way that’s very accessible for readers: get
started in part 1; learn the basics with handy references for later in part 2; and then
the rubber meets the road with more advanced topics in part 3. The highlights for me
are the chapters on transactions and reliability in part 2 and the chapter on scalability

1 Interface21 went on to rebrand itself as SpringSource (http://www.springsource.org) before becoming
a division of VMware (http://www.vmware.com) in 2009.
xv

http://www.springsource.org
http://www.vmware.com

FOREWORDxvi
and parallel processing in part 3. These are two topics that come up again and again
with clients and on the online open community forum.

 I’m very glad for two reasons that someone else decided to write this book. The
first is selfish: it’s a lot of work. The second is on behalf of the readers: when the
author of a framework writes a handbook for users, the temptation is to reveal all the
secrets and inner workings of the implementation, which isn’t necessarily the best
practical starting point for users. The authors of this book are well qualified and pres-
ent Spring Batch from the point of view of an expert user, which is the optimum point
of view for readers because the authors have come to this knowledge by solving the
problems that readers also experience while learning to use the framework.

 The authors of this book are good community citizens and can often be found
educating or supporting other users and participating in discussions on the Spring
Batch community forum2 and issue tracker.3 In fact, I warmly recommend these activi-
ties as learning tools and as companions to this book—there’s no better way to learn
than to get your hands dirty, and to share your questions, problems, and experiences
with others.

 DAVE SYER

 SPRING BATCH LEAD

2 http://forum.springsource.org/forumdisplay.php?41-Batch
3 http://jira.springsource.org/browse/BATCH

http://forum.springsource.org/forumdisplay.php?41-Batch
http://jira.springsource.org/browse/BATCH

preface
Gosh, batch processes are hard to write—especially when using a general language like
Java. In spite of this, they’re exciting to write, when you consider the large amount of
data they process. Batch jobs run every night, making it easy for millions of people to
do things like banking, online shopping, querying billing information, and so on.
This ought to turn any (geeky) developer on.

 That was the case with Thierry, who was the first to work on the proposal for a Spring
Batch book with Manning. Arnaud joined soon afterwards. The funny thing is that we
were still working on Manning’s Spring Dynamic Modules in Action book at the time. Writ-
ing a book is a challenge, but you could consider writing two books at the same time a
sign of madness. Gary joined after we wrote a couple of chapters. Although Gary didn’t
write any of the original material, he handled what is undoubtedly the more difficult
task: editing and sometimes rewriting the source material of three French authors. He
always put us back on the right track with the benefit of hindsight (which isn’t an out-
standing quality of hectic technical authors). Gary is French, but don’t worry, he’s also
American and has been living in the U.S. for decades. The book doesn’t contain any
trace of our French accents! Olivier was the last to join the team. Fourteen chapters is
a lot and another pair of hands was welcome.

 We did our best to make this book as comprehensive and accessible as possible. We
hope you’ll benefit from our experience with Spring Batch and that our book will
help you write fast, robust, and reliable batch jobs with this framework.
xvii

acknowledgments
We thank the team at Manning for their hard work during the process of writing this
book. Michael Stephens first contacted us and helped us with the book proposal. Pub-
lisher Marjan Bace gave us the opportunity to write the book and provided us with
valuable advice about its structure. Karen Tegtmeyer organized the reviews, which
resulted in further improvements. Last, but not least, we thank our development edi-
tor, Cynthia Kane, who helped us polish our writing and sharpen the book’s focus.

 This book is about an open source project, so it would not exist were it not for the
efforts of the people who spent their time creating and maintaining Spring Batch.
Thanks to the Spring Batch team: Ben Hale, Lucas Ward, Robert Kasanicky, Thomas
Risberg, Dan Garrette, Rob Harrop, and, of course, Dave Syer, the project lead, who
kindly contributed the foreword to our book. An open source project is also a commu-
nity project, so thanks to everyone who contributed to the project by answering ques-
tions on the forum or by participating in the bug-tracking process. This also helped us
to learn more about how people use Spring Batch.

 Special thanks to the reviewers who took the time to read the manuscript and
make constructive remarks about its content. Their feedback was essential in keeping
us on the right track: Cédric Exbrayat, John Ryan, David Sinclair, Deepak Vohra, Antti
Koivisto, Doug Warren, John Guthrie, Clarence E. Scates, Rick Wagner, Willhelm Leh-
man, Ileana Lehman, Benjamin Muschko, Guillaume Perone, Micha Minicki, and
Joshua A. White.
xviii

ACKNOWLEDGMENTS xix
 Our technical proofreader, Gordon Dickens, helped us produce a more accurate
and polished book by carefully reviewing the manuscript one last time shortly before
it went to press. Thank you for your contribution, Gordon.

ARNAUD COGOLUÈGNES

I would like to give many thanks to all the people around me for their patience and
understanding while I was absorbed in this project. Thank you to my colleagues at
Zenika, Carl Azoury and Pierre Queinnec, who supported me. Thanks to all the peo-
ple who provided input on Spring Batch: Dave Syer, Joris Kuipers, the people on the
Spring Batch forum, and everyone with whom I had the pleasure to train on this tech-
nology. Thanks to Leonard Cohen: I find your music perfect accompaniment to hours
spent working on a book. In addition, thank you, Claire, for your patience putting up
with all the long hours I spent on this book.

THIERRY TEMPLIER

I would like to thank my wife Séverine and our lovely little boy Maël for being by my
side in life. I also want to thank all the people who made this project possible and who
trusted me, especially my coauthors for their excellent work and advice and the Man-
ning team for their confidence, support, and professionalism. Thanks finally to all
people that help me move forward in life and be the best I can be.

GARY GREGORY

I’d like to thank my parents for getting me started on my journey, providing me with
the opportunity for a great education, and giving me the freedom to choose my path.
I’m eternally grateful to my wife Lori and my son Alexander for giving me the time to
pursue a project like this one. Along the way, I’ve studied and worked with truly excep-
tional individuals too numerous to name. My father-in-law, Buddy Martin, deserves a
special mention for providing wisdom and insights through great conversations and
storytelling born of decades spent writing about sports (Go Gators!). I also found
inspiration in the music of Wilco, Donald Fagen, Tom Waits, David Lindley, and Bach.
Finally, I thank my coauthors and all of the people at Manning for their support, pro-
fessionalism, and great feedback.

OLIVIER BAZOUD

Many thanks to Manning’s publisher Marjan Bace and to my coauthors who encour-
aged me to write this book. Thanks to my mother, my father, and my sister for their love
and support over the years. And I would like to thank my wonderful girlfriend Maria for
her patience and for giving me a chance to participate in this great adventure.

about this book
Spring Batch is Java framework that makes it easy to write batch applications. Batch
applications involve reliably and efficiently processing large volumes of data to and
from various data sources (files, databases, and so on). Spring Batch is great at doing
this and provides the necessary foundation to meet the stringent requirements of
batch applications. Sir Isaac Newton said, “If I have seen further it is only by standing
on the shoulders of giants.” Spring Batch builds on the shoulders of one giant in par-
ticular: the Spring Framework. Spring is the framework of choice for a significant seg-
ment of the Enterprise Java development market. Spring Batch makes the Spring
programming model—based on simplicity and efficiency—easier to apply for batch
applications. Spring Batch leverages all the well-worn Spring techniques and compo-
nents, like dependency injection, data access support, and transaction management.

 Batch processing is a large topic and Spring Batch has a wide range of features. We
don’t claim this book to be exhaustive. Instead, we provide the reader with the most
useful information, based on our own experience with real-world projects, feedback
from Spring Batch users, and…our own mistakes! The excellent reference documen-
tation4 of the framework should be a useful complement to this book. We obviously
focus on Spring Batch, but we also cover different, yet related, topics like schedulers.
Batch jobs aren’t islands, they’re integrated in the middle of complex systems, and we
cover this aspect too. That’s why chapter 11 discusses how Spring Batch can cohabit
with technologies like REST and Spring Integration. Again, we want to stick as close as
possible to the reality of batch systems, and this is (one part of) our vision.

4 http://static.springsource.org/spring-batch/reference/index.html
xx

http://static.springsource.org/spring-batch/reference/index.html

ABOUT THIS BOOK xxi
 We use the latest release of the latest branch of the framework available at the time
of this writing, Spring Batch 2.1.

 Because this is an In Action book, we provide code and configuration examples
throughout, both to illustrate the concepts and to provide a template for successful
operation.

Who should read this book?
Our primary target audience for this book is Java developers and architects who want
to write batch applications. Experience with Spring is a plus, but not a requirement.
We strive to give the necessary pointers and reminders in dedicated sidebars. Read
this book even if you don’t know Spring—you can grab a copy of Manning’s Spring in
Action, Third Edition, by Craig Walls to discover this wonderful technology. For those
familiar with Spring, basic knowledge of dependency injection, data access support,
and transaction management is enough. With this Spring background and this book,
you’ll be Spring Batch-ing in a matter of minutes.

 What if you don’t know Java and want to write batch applications? Well, think
about learning Java to make your batch writing life easier. Spring Batch is great for
batch applications!

Roadmap
The book is divided into three parts. The first part introduces the challenges pre-
sented by batch applications and how to use Spring Batch to addresses them. The sec-
ond part forms the core of the presentation of the Spring Batch feature set. It
exhaustively covers all of the scenarios you’ll meet writing real-life batch applications.
The third and final part covers advanced topics, including monitoring, scaling, and
testing. We also include appendixes covering the installation of a typical development
environment for Spring Batch and the configuration of the Spring Batch Admin web-
based administration console.

 Chapter 1 discusses batch applications and gives an overview of Spring Batch fea-
tures. It also introduces Spring Batch using a hands-on approach, based on a real-
world use case. It’s a great place to start if you want to discover how to implement com-
mon batch scenarios with Spring Batch.

 Chapter 2 covers the way Spring Batch structures the world of batch jobs. We name
and define each batch applications concept, using the domain language of batch appli-
cations. With a term for each concept forming the vocabulary of batch jobs, you’ll be
able to communicate clearly and easily with your team about your batch applications.

 Chapter 3 covers the configuration of Spring Batch jobs. It explains in detail all the
XML elements and annotations available to configure every aspect of your jobs.

 Chapter 4 discusses launching batch jobs under different scenarios: from the com-
mand line, using a scheduler like cron, or from an HTTP request. It also covers how to
stop a job properly.

 Chapter 5 covers reading data efficiently from different sources, using Spring
Batch components.

ABOUT THIS BOOKxxii
 Chapter 6 is the mirror image of chapter 5 where we cover writing to various data
targets. It lists all the available components to write to databases and files, send emails,
and so on.

 Chapter 7 discusses an optional step between reading and writing: processing. This
is where you can embed business logic to transform or filter items.

 Chapter 8 covers the Spring Batch built-in features that make jobs more robust:
skipping incorrectly formatted lines from a flat file by using a couple of XML lines in
your configuration, retrying operations transparently after a transient failure, and
restarting a job exactly where it left off.

 Chapter 9 discusses the tricky topic of transactions. It explains how Spring Batch
handles transactions, the how, when, and why of tweaking transactions, and useful
transaction management patterns for batch applications.

 Chapter 10 covers the way Spring Batch handles the flow of steps inside a job: lin-
ear versus nonlinear flows, sharing data between steps of a job, and interacting with
the execution context.

 Chapter 11 explores how a Spring Batch job can end up being in the middle of a
complex enterprise integration application. In this chapter, you’ll see how Spring
Batch, Spring Integration, and Spring REST cohabit happily to meet real-world enter-
prise integration scenarios.

 Chapter 12 discusses the monitoring of Spring Batch jobs. Because Spring Batch
maintains execution metadata, this chapter covers how—JMX, web application—to
access this metadata to query the state of your jobs.

 Chapter 13 tackles the complex topic of scaling. It covers the different strategies
Spring Batch provides to parallelize the execution of your jobs on multiple threads or
even multiple physical nodes.

 Chapter 14 is about testing Spring Batch jobs. Unit testing isolated components
and testing a whole job execution are covered.

Code convention and downloads
We’ve licensed the source code for the example applications in this book under the
Apache Software Foundation License, version 2.0. This source code is available at
http://code.google.com/p/springbatch-in-action/ and is freely available from Man-
ning’s website at www.manning.com/SpringBatchinAction.

 Much of the source code shown in this book consists of fragments designed to
illustrate the text. When a complete segment of code is presented, it appears as a
numbered listing; code annotations accompany some of the listings where further
explanations of the code are needed. When we present source code, we sometimes
use a bold font to draw attention to specific elements.

 In the text, we use Courier typeface to denote code (Java and XML) as well as Java
methods, XML element names, and other source code identifiers:

■ A reference to a method in the text will generally not include the signature.
Note that there may be more than one form of the method call.

■ A reference to an XML element in the text can include the braces but not the
attributes or closing tag, for example, <action>.

http://code.google.com/p/springbatch-in-action/
http://www.manning.com/SpringBatchinAction

ABOUT THIS BOOK xxiii
Author Online
The purchase of Spring Batch in Action includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/
SpringBatchinAction. This page provides information on registering, getting on the
forum, the kind of help available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking them some challenging questions lest their inter-
est stray! The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the authors
ARNAUD COGOLUÈGNES is a software developer, Java EE architect, and author with deep
expertise in middleware, software engineering, and Spring technologies. Arnaud
spent a number of years developing complex business applications and integrating
Java-based products. A SpringSource certified trainer, Arnaud has trained hundreds
of people around the world on Spring technologies and the Java platform.

THIERRY TEMPLIER is a Java EE, Web2, and modeling architect and expert with more
than 10 years of experience. He’s a Spring addict and enthusiast and enjoys imple-
menting any kind of applications and tools using it. He is also the coauthor of some
French books on these subjects and Spring Dynamic Modules in Action. He recently
joined Noelios Technologies, the company behind the Restlet framework, and lives in
Brittany (France).

GARY GREGORY is the coauthor of JUnit in Action, Second Edition. He has more than 20 years
of experience in building object-oriented systems, C/C++, Smalltalk, Java, and the
whole soup of XML and database technologies. Gary has held positions at Ashton-Tate,
ParcPlace-Digitalk, and several other software companies, including Seagull Software,
where he currently develops application servers for legacy integration. He’s an active
member of the Apache Software Foundation and the Apache Commons Project Man-
agement Committee, and contributes regularly to various Apache Commons projects.
Born and raised in Paris, France, Gary received a BA in Linguistics and Computer Sci-
ence from the University of California at Los Angeles. He lives in Florida with his wife,
their son, and assorted golf clubs. You can find him at http://www.garygregory.com.

OLIVIER BAZOUD is a software architect at Ekino, the IT branch of FullSIX Group. He’s also
a Spring technologies expert. With over 12 years of experience, he develops complex
business applications and high-traffic websites based on Java and web technologies.

http://www.garygregory.com
www.manning.com/SpringBatchinAction
www.manning.com/SpringBatchinAction

about the cover illustration
The figure on the cover of Spring Batch in Action is captioned “A Janisary in his Common
Dress in 1700” and is taken from the four-volume Collection of the Dresses of Different Nations
by Thomas Jefferys, published in London between 1757 and 1772. The collection, which
includes beautifully hand-colored copperplate engravings of costumes from around the
world, has influenced theatrical costume design ever since it was published.

 The diversity of the drawings in the Collection of the Dresses of Different Nations speaks
vividly of the richness of the costumes presented on the London stage over 200 years
ago. The costumes, both historical and contemporaneous, offered a glimpse into the
dress customs of people living in different times and in different countries, bringing
them to life for London theater audiences.

 Dress codes have changed in the last century and the diversity by region, so rich in
the past, has faded away. It’s now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and
visual diversity for a more varied personal life—or a more varied and interesting intel-
lectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional and historical
costumes brought back to life by pictures from collections such as this one.
xxiv

Part 1

Background

What is Spring Batch? What is it good for? Is it the right tool for you?
You’ll find the answers to these questions in the next two chapters. Of course,
you won’t be a Spring Batch expert by the end of this first part, but you’ll have a
good foundation and understanding of all the features in Spring Batch.

 Chapter 1 provides an overview of batch applications and Spring Batch. To
follow the In Action tradition, we also show you how to implement a real-world
batch job with Spring Batch. This introduction not only covers how Spring Batch
handles the classical read-process-write pattern for large amounts of data but
also shows you the techniques used to make a job more robust, like skipping
invalid lines in a flat file.

 Chapter 2 clearly defines the domain language used in batch applications
and explains how Spring Batch captures the essence of batch applications. What
are a job, a step, and a job execution? Chapter 2 covers all of this and introduces
how Spring Batch tracks the execution of jobs to enable monitoring and restart
on failure.

Introducing Spring Batch
Batch applications are a challenge to write, and that’s why Spring Batch was cre-
ated: to make them easier to write but also faster, more robust, and reliable. What
are batch applications? Batch applications process large amounts of data without
human intervention. You’d opt to use batch applications to compute data for gen-
erating monthly financial statements, calculating statistics, and indexing files.
You’re about to discover more about batch applications in this chapter. You’ll see
why their requirements—large volumes of data, performance, and robustness—
make them a challenge to implement correctly and efficiently. Once you under-
stand the big picture, you’ll be ready to meet Spring Batch and its main features:
helping to efficiently process data with various types of technologies—databases,

This chapter covers
■ Understanding batch applications in today’s

architectures
■ Describing Spring Batch’s main features
■ Efficiently reading and writing data
■ Implementing processing inside a job with

Spring Batch
■ Testing a Spring Batch job
3

4 CHAPTER 1 Introducing Spring Batch
files, and queues. We also honor the In Action series by implementing a real-world
Spring Batch job. By the end of this first chapter, you’ll have an overview of what
Spring Batch does, and you’ll be ready to implement your first job with Spring Batch.
Let’s get started with batch applications!

1.1 What are batch applications?
The most common scenario for a
batch application is exporting data to
files from one system and processing
them in another. Imagine you want to
exchange data between two systems:
you export data as files from system A
and then import the data into a data-
base on system B. Figure 1.1 illustrates
this example.

 A batch application processes data automatically, so it must be robust and reliable
because there is no human interaction to recover from an error. The greater the vol-
ume of data a batch application must process, the longer it takes to complete. This
means you must also consider performance in your batch application because it’s
often restricted to execute within a specific time window. Based on this description,
the requirements of a batch application are as follows:

■ Large data volume—Batch applications must be able to handle large volumes of
data to import, export, or compute.

■ Automation—Batch applications must run without user interaction except for
serious problem resolution.

■ Robustness—Batch applications must handle invalid data without crashing or
aborting prematurely.

■ Reliability—Batch applications must keep track of what goes wrong and when
(logging, notification).

■ Performance—Batch applications must perform well to finish processing in a
dedicated time window or to avoid disturbing any other applications running
simultaneously.

How batch applications fit in today’s software architectures
Performing computations and exchanging data between applications are good exam-
ples of batch applications. But are these types of processes relevant today? Compu-
tation-based processes are obviously relevant: every day, large and complex
calculations take place to index billions of documents, using cutting-edge algorithms
like MapReduce. For data exchange, message-based solutions are also popular, hav-
ing the advantage over batch applications of being (close to) real time. Although mes-
saging is a powerful design pattern, it imposes its own particular set of requirements
in terms of application design and implementation.

System A System BExports Reads

Writes

Figure 1.1 A typical batch application: system A
exports data to flat files, and system B uses a batch
process to read the files into a database.

5Meet Spring Batch
How does Spring Batch fit in the landscape of batch applications? The next section
introduces the Spring Batch framework and its main features. You’ll see how Spring
Batch helps meet the requirements of batch applications by providing ready-to-use
components and processing large amounts of data in an efficient manner.

1.2 Meet Spring Batch
The goal of the Spring Batch project is to provide an open source batch-oriented
framework that effectively addresses the most common needs of batch applications.
The Spring Batch project was born in 2007 out of the collaboration of Accenture and
SpringSource. Accenture brought its experience gained from years of working on pro-
prietary batch frameworks and SpringSource brought its technical expertise and the
proven Spring programming model. Table 1.1 lists the main features of Spring Batch.

By using Spring Batch, you directly benefit from the best practices the framework
enforces and implements. You also benefit from the many off-the-shelf components
for the most popular formats and technologies used in the software industry. Table 1.2
lists the storage technologies that Spring Batch supports out of the box.

Table 1.1 Main features of Spring Batch

Feature Description

Spring Framework foundations Benefits from enterprise support, dependency injection, and aspect-
oriented programming

Batch-oriented processing Enforces best practices when reading and writing data

Ready-to-use components Provides components to address common batch scenarios (read and
write data to and from databases and files)

Robustness and reliability Allows for declarative skipping and retry; enables restart after failure

Table 1.2 Read-write technologies supported by Spring Batch

Data source type Technology Description

Database JDBC Leverages paging, cursors, and batch updates

Database Hibernate Leverages paging and cursors

Database JPA (Java Persistence API) Leverages paging

(continued)
Clearly, messaging isn’t a silver bullet, and you should apply it thoughtfully. Note that
batch jobs and messaging aren’t mutually exclusive solutions: you can use messag-
ing to exchange data and still need batch applications to process the data with the
same reliability and robustness requirements as the rest of your application stack.
Even in our event- and notification-driven world, batch applications are still relevant!

6 CHAPTER 1 Introducing Spring Batch
As you can see in table 1.2, Spring Batch supports many technologies out of the box,
making the framework quite versatile. We study this support thoroughly in chapters 5
and 6.

How does Spring Batch meet the requirements of robustness and reliability of batch
applications?

1.2.1 Robustness and reliability

Should a whole batch fail because of one badly formatted line? Not always. The deci-
sion to skip an incorrect line or an incorrect item is declarative in Spring Batch. It’s all
about configuration.

 What happens if you restart a failed batch job? Should it start from the begin-
ning—potentially processing items again and corrupting data—or should it be able to
restart exactly where it left off? Spring Batch makes the latter easy: components can
track everything they do, and the framework provides them with the execution data
on restart. The components then know where they left off and can restart processing
at the right place.

 Spring Batch also addresses the robustness and reliability requirements. Chapter 2
provides an overview of restart, and chapter 8 covers robustness thoroughly.

Database iBATIS Leverages paging

File Flat file Supports delimited and fixed-length flat files

File XML Uses StAX (Streaming API for XML) for parsing; builds
on top of Spring OXM; supports JAXB (Java Architecture
for XML Binding), XStream, and Castor

Table 1.2 Read-write technologies supported by Spring Batch (continued)

Data source type Technology Description

Spring Batch isn’t a scheduler!
Spring Batch drives batch jobs (we use the terms job, batch, and process inter-
changeably) but doesn’t provide advanced support to launch them according to a
schedule. Spring Batch leaves this task to dedicated schedulers like Quartz and
cron. A scheduler triggers the launching of Spring Batch jobs by accessing the
Spring Batch runtime (like Quartz because it’s a Java solution) or by launching a
dedicated JVM process (in the case of cron). Sometimes a scheduler launches
batch jobs in sequence: first job A, and then job B if A succeeded, or job C if A
failed. The scheduler can use the files generated by the jobs or exit codes to or-
chestrate the sequence. Spring Batch can also orchestrate such sequences itself:
Spring Batch jobs are made of steps, and you can easily configure the sequence by
using Spring Batch XML (covered in chapter 10). This is an area where Spring Batch
and schedulers overlap.

7Meet Spring Batch
 Another requirement of batch applications is performance. How does Spring
Batch meet the performance requirement?

1.2.2 Scaling strategies

Spring Batch processes items in chunks. We cover chunk processing later in this chap-
ter, but here is the idea: a job reads and writes items in small chunks. Chunk process-
ing allows streaming data instead of loading all the data in memory. By default, chunk
processing is single threaded and usually performs well. But some batch jobs need to
execute faster, so Spring Batch provides ways to make chunk processing multi-
threaded and to distribute processing on multiple physical nodes.

 Chapter 13 thoroughly discusses the scaling strategies in Spring Batch. Let’s take a
look at one of these strategies: partitioning.

 Partitioning splits a step into substeps, each of which handles a specific portion of
the data. This implies that you know the structure of the input data and that you know
in advance how to distribute data between substeps. Distribution can take place by
ranges of primary key values for database records or by directories for files. The sub-
steps can execute locally or remotely, and Spring Batch provides support for multi-
threaded substeps. Figure 1.2 illustrates partitioning based on filenames: A through
D, E through H, and so on, up to Y through Z.

Spring
Batch

Spring
Batch

Reader

Writer

Partitioned
step

A to D

...

Spring
Batch

Reader

Writer
Y to Z

Figure 1.2 Scaling
by partitioning: a
single step partitions
records and autono-
mous substeps handle
processing.

Spring Batch and grid computing
When dealing with large amounts of data—petabytes (1015)—a popular solution to
scaling is to divide the enormous amounts of computations into smaller chunks, com-
pute them in parallel (usually on different nodes), and then gather the results. Some
open source frameworks (Hadoop, GridGain, and Hazelcast, for example) have ap-
peared in the last few years to deal with the burden of distributing units of work so
that developers can focus on developing the computations themselves. How does
Spring Batch compare to these grid-computing frameworks? Spring Batch is a light-
weight solution: all it needs is the Java runtime installed, whereas grid-computing
frameworks need a more advanced infrastructure. As an example, Hadoop usually
works on top of its own distributed file system, HDFS (Hadoop Distributed File Sys-
tem). In terms of features, Spring Batch provides a lot of support to work with flat
files, XML files, and relational databases.

8 CHAPTER 1 Introducing Spring Batch
This ends our tour of the Spring Batch framework. You now have a good overview of
the most important features of Spring Batch and the benefits it brings to your applica-
tions. Let’s move on to the more practical part of this chapter with the implementa-
tion of a real-world batch job using Spring Batch.

1.3 Introducing the case study
This section introduces a real application that we use throughout this book to illus-
trate the use of Spring Batch: an online store application. This use case starts out
small and simple but remains realistic in terms of technical requirements. It not only
demonstrates Spring Batch features but also illustrates how this use case fits into the
enterprise landscape.

 By implementing this use case using Spring Batch, you gain a practical understand-
ing of the framework: how it implements efficient reading and writing of large vol-
umes of data, when to use built-in components, when to implement your own
components, how to configure a batch job with the Spring lightweight container, and
much more. By the end of this chapter, you’ll have a good overview of how Spring
Batch works, and you’ll know exactly where to go in this book to find what you need
for your batch applications.

1.3.1 The online store application

The ACME Corporation wants to expand its business by selling its products on the
web. To do so, ACME chooses to build a dedicated online store application. ACME will
use batch jobs to populate the online store database with the catalog from its internal
proprietary system, as shown in figure 1.3. The system will process data every night to
insert new products in the catalog or update existing products.

(continued)

Grid-computing frameworks usually don’t provide such high-level processing support.

Spring Batch and grid-computing frameworks aren’t incompatible: at the time of this
writing, projects integrating both technologies are appearing (Spring Hadoop, at
https://github.com/SpringSource/spring-hadoop, is an example).

Batch
process

Catalog
system

ReadsWrites

Online store
applicationNetwork

Figure 1.3 Thanks to this new application, anyone can buy ACME’s products online. The system
sends catalogs to a server where a batch process reads them and writes product records into the
online store database.

https://github.com/SpringSource/spring-hadoop

9Introducing the case study
That’s it for the big picture, but you should understand why ACME decided to build an
online store in the first place and populate it using batch processes.

1.3.2 Why build an online store with batch jobs?

Why did ACME choose to build an online, web-based application to sell its products?
As we mentioned, this is the best way for ACME to expand its business and to serve
more customers. Web applications are easy to deploy, easy to access, and can provide a
great user experience. ACME plans to deploy the online store application to a local
web hosting provider rather than hosting it on its own network. The first version of
the online store will provide a simple but efficient UI; ACME focuses on the catalog
and transactions first, before providing more features and a more elaborate UI.

 Next, why did ACME choose to shuttle data from one system to the other instead of
making its onsite catalog and the online store communicate directly? The software that
powers the catalog has an API, so why not use it? The main reason is security: as illus-
trated in figure 1.4, ACME’s own network hosts the catalog system, and the company
doesn’t want to expose the catalog system to the outside world directly, even via another
application. This precaution is rather drastic, but that’s how things are done at ACME.

Another reason for this architecture is that the catalog system’s API and data format
don’t suit the needs of the online store application: ACME wants to show a summa-
rized view of the catalog data to customers without overwhelming them with a com-
plex catalog structure and supplying too many details. You could get this summarized
catalog view by using the catalog system’s API, but you’d need to make many calls,
which would cause performance to suffer in the catalog system.

 To summarize, a mismatch exists between the view of the data provided by the cat-
alog system and the view of the data required by the online store application. There-
fore, an application needs to process the data before exposing it to customers through
the online store.

1.3.3 Why use batch processes?

The online store application scenario is a good example of two systems communicat-
ing to exchange data. ACME updates the catalog system throughout the day, adding
new products and updating existing products. The online store application doesn’t
need to expose live data because buyers can live with day-old catalog information.

Online store
applicationInternet

Web hosting provider

Catalog
system

ACME

Figure 1.4 Because ACME doesn’t want its internal catalog system to be directly accessible from
the outside world, it doesn’t allow the two applications to communicate directly and exchange data.

10 CHAPTER 1 Introducing Spring Batch
Therefore, a nightly batch process updates the online store database, using flat files,
as shown in figure 1.5.

In figure 1.5, an ETL process creates the flat file to populate the online store database.
It extracts data from the catalog system and transforms it to produce the view
expected by the online store application. For the purpose of our discussion, this ETL
process is a black box: it could be implemented with an ETL tool (like Talend) or even
with another Spring Batch job. We focus next on how the online store application
reads and writes the catalog’s product information.

1.3.4 The import product use case

The online store application sells products out of a catalog, making the product a
main domain concept. The import product batch reads the product records from a
flat file created by ACME and updates the online store application database accord-
ingly. Figure 1.6 illustrates that reading and writing products is at the core of this
batch job, but it contains other steps as well.

 The read-write step forms the core of the batch job, but as figure 1.6 shows, this
isn’t the only step. This batch job consists of the following steps:

Batch
process

ETL
process

ReadsWrites

Online store
applicationNetworkCatalog

system Extracts

Figure 1.5 An extract, transform, and load (ETL) process extracts and transforms the catalog system
data into a flat file, which ACME sends every night to a Spring Batch process. This Spring Batch
process is in charge of reading the flat file and importing the data into the online store database.

Extract, transform, and load (ETL)
Briefly stated, ETL is a process in the database and data-warehousing world that per-
forms the following steps:

1 Extracts data from an external data source
2 Transforms the extracted data to match a specific purpose
3 Loads the transformed data into a data target: a database or data warehouse

Many products, both free and commercial, can help create ETL processes. This is a
bigger topic than we can address here, but it isn’t always as simple as these three
steps. Writing an ETL process can present its own set of challenges involving parallel
processing, rerunnability, and recoverability. The ETL community has developed its
own set of best practices to meet these and other requirements.

11Reading and writing the product data
1 Decompression—Decompresses the archive flat file received from the ACME net-
work. The file is compressed to speed up transfer over the internet.

2 Reading and writing—The flat file is read line by line and then inserted into the
database.

This batch process allows us to introduce the Spring Batch features displayed in table 1.3.

Rather than describe each of Spring Batch’s features in the order in which they
appear as batch job steps, we start with the core of the process: reading and writing
the products. Then we see how to decompress the incoming file before making the
process more robust by validating the input parameters and choosing to skip invalid
records to avoid the whole job failing on a single error.

1.4 Reading and writing the product data
Reading and writing the product catalog is at the core of the Spring Batch job. ACME
provides the product catalog as a flat file, which the job needs to import into the
online store database. Reading and writing is Spring Batch’s sweet spot: for the import
product job, you only have to configure one Spring Batch component to read the con-
tent of the flat file, implement a simple interface for the writing component, and cre-
ate a configuration file to handle the batch execution flow. Table 1.3 lists the Spring
Batch features introduced by the import catalog job. Let’s start by using Spring Batch
to implement the read-write use case.

1.4.1 Anatomy of the read-write step

Because read-write (and copy) scenarios are common in batch applications, Spring
Batch provides specific support for this use case. Spring Batch includes many ready-to-
use components to read from and write to data stores like files and databases. Spring

Table 1.3 Spring Batch features introduced by the import catalog job

Batch process step Spring Batch feature

Decompression Custom processing in a job (but not reading from a data store and writing to
another)

Read-write Reading a flat file

Implementing a custom database writing component

Skipping invalid records instead of failing the whole process

Configuration Leveraging Spring’s lightweight container and Spring Batch’s namespace to wire
up batch components

Using the Spring Expression Language to make the configuration more flexible

Decompressing Reading and
writingCompressed

file
Flat file Database

updated

Figure 1.6 The Spring
Batch job consists of the
following steps: decom-
pression and read-write.

12 CHAPTER 1 Introducing Spring Batch
Batch also includes a batch-oriented algorithm to handle the execution flow, called
chunk processing. Figure 1.7 illustrates the principle of chunk processing.

 Spring Batch handles read-write scenarios by managing an ItemReader and an
ItemWriter. Using chunk processing, Spring Batch collects items one at a time from
the item reader into a configurable-sized chunk. Spring Batch then sends the chunk
to the item writer and goes back to using the item reader to create another chunk,
and so on, until the input is exhausted.

CHUNK PROCESSING Chunk processing is particularly well suited to handle
large data operations because a job handles items in small chunks instead of
processing them all at once. Practically speaking, a large file won’t be loaded
in memory; instead it’s streamed, which is more efficient in terms of mem-
ory consumption. Chunk processing allows more flexibility to manage the
data flow in a job. Spring Batch also handles transactions and errors around
read and write operations.

Spring Batch provides an optional processing step in chunk processing: a job can pro-
cess (transform) read items before sending them to the ItemWriter. The ability to
process an item is useful when you don’t want to write an item as is. The component
that handles this transformation is an implementation of the ItemProcessor inter-
face. Because item processing in Spring Batch is optional, the illustration of chunk
processing shown in figure 1.7 is still valid. Figure 1.8 illustrates chunk processing
combined with item processing.

 What can you do in an ItemProcessor? You can perform any transformations you
need on an item before Spring Batch sends it to the ItemWriter. This is where you
implement the logic to transform the data from the input format into the format
expected by the target system. Spring Batch also lets you validate and filter input
items. If you return null from the ItemProcessor method process, processing for
that item stops and Spring Batch won’t insert the item in the database.

NOTE Our read-write use case doesn’t have an item-processing step.

The following listing shows the definition of the chunk-processing interfaces Item-
Reader, ItemProcessor, and ItemWriter.

Spring Batch ItemReader ItemWriter

read()

item

read()

item

write(items)

Figure 1.7 In read-write scenarios,
Spring Batch uses chunk process-
ing. Spring Batch reads items one
by one from an ItemReader, col-
lects the items in a chunk of a given
size, and sends that chunk to an
ItemWriter.

13Reading and writing the product data
package org.springframework.batch.item;

public interface ItemReader<T> {

 T read() throws Exception, UnexpectedInputException,
 ParseException,
 NonTransientResourceException;

}

package org.springframework.batch.item;

public interface ItemProcessor<I, O> {

 O process(I item) throws Exception;

}

package org.springframework.batch.item;

import java.util.List;

public interface ItemWriter<T> {

 void write(List<? extends T> items) throws Exception;

}

In chapters 5 and 6, we respectively cover all implementations of ItemReader and
ItemWriter provided by Spring Batch. Chapter 7 covers the processing phase used to
transform and filter items.

 The next two subsections show how to configure the Spring Batch flat file ItemReader
and how to write your own ItemWriter to handle writing products to the database.

Listing 1.1 Spring Batch interfaces for chunk processing

Spring Batch ItemReader ItemProcessor

read()

item

write(transformed items)

ItemWriter

process()

transformed item

read()

item
process()

transformed item

Figure 1.8 Chunk processing combined with item processing: an item processor can transform
input items before calling the item writer.

Reads
item

Transforms item
(optional)

Writes a chunk
of items

14 CHAPTER 1 Introducing Spring Batch
1.4.2 Reading a flat file

Spring Batch provides the FlatFileItemReader class to read records from a flat file.
To use a FlatFileItemReader, you need to configure some Spring beans and imple-
ment a component that creates domain objects from what the FlatFileItemReader
reads; Spring Batch will handle the rest. You can kiss all your old boilerplate I/O code
goodbye and focus on your data.
THE FLAT FILE FORMAT

The input flat file format consists of a header line and one line per product record.
Here’s an excerpt:

PRODUCT_ID,NAME,DESCRIPTION,PRICE
PR....210,BlackBerry 8100 Pearl,A cell phone,124.60
PR....211,Sony Ericsson W810i,Yet another cell phone!,139.45
PR....212,Samsung MM-A900M Ace,A cell phone,97.80
PR....213,Toshiba M285-E 14,A cell phone,166.20
PR....214,Nokia 2610 Phone,A cell phone,145.50

You may recognize this as the classic comma-separated value (CSV) format. There’s
nothing out of the ordinary in this flat file: for a given row, the format separates each
column value from the next with a comma. Spring Batch maps each row in the flat file
to a Product domain object.
THE PRODUCT DOMAIN CLASS

The Product class maps the different columns of the flat file. Note the instance vari-
able declarations for product attributes like id, name, price, and so on, in this snippet;
the getter and setter methods are excluded for brevity:

package com.manning.sbia.ch01.domain;

import java.math.BigDecimal;

public class Product {

 private String id;
 private String name;
 private String description;
 private BigDecimal price;

 (...)

}

NOTE We use a BigDecimal for the product price because the Java float and
double primitive types aren’t well suited for monetary calculations. For
example, it’s impossible to exactly represent 0.1.

Let’s now use the FlatFileItemReader to create Product objects out of the flat file.
CREATING DOMAIN OBJECTS WITH A FLATFILEITEMREADER

The FlatFileItemReader class handles all the I/O for you: opening the file, stream-
ing it by reading each line, and closing it. The FlatFileItemReader class delegates
the mapping between an input line and a domain object to an implementation of the
LineMapper interface. Spring Batch provides a handy LineMapper implementation

15Reading and writing the product data
called DefaultLineMapper, which delegates the mapping to other strategy interfaces.
Figure 1.9 shows all of this delegation work.

 That’s a lot of delegation, and it means you’ll have more to configure, but such is the
price of reusability and flexibility. You’ll be able to configure and use built-in Spring
Batch components or provide your own implementations for more specific tasks.

 The DefaultLineMapper is a typical example; it needs

■ A LineTokenizer to split a line into fields.
You’ll use a stock Spring Batch implementation for this.

■ A FieldSetMapper to transform the split line into a domain object.
You’ll write your own implementation for this.

You’ll soon see the whole Spring configuration in listing 1.2 (LineTokenizer is of par-
ticular interest), but next we focus on the FieldSetMapper implementation to create
Product domain objects.
IMPLEMENTING A FIELDSETMAPPER FOR PRODUCT OBJECTS

You use a FieldSetMapper to convert the line split by the LineTokenizer into a
domain object. The FieldSetMapper interface is straightforward:

public interface FieldSetMapper<T> {
 T mapFieldSet(FieldSet fieldSet) throws BindException;
}

The FieldSet parameter comes from the LineTokenizer. Think of it as an equivalent
to the JDBC ResultSet: it retrieves field values and performs conversions between
String objects and richer objects like BigDecimal. The following snippet shows the
ProductFieldSetMapper implementation:

package com.manning.sbia.ch01.batch;

import org.springframework.batch.item.file.mapping.FieldSetMapper;
import org.springframework.batch.item.file.transform.FieldSet;
import org.springframework.validation.BindException;
import com.manning.sbia.ch01.domain.Product;

FlatFileItemReader

DefaultLineMapper DelimitedLineTokenizer

ProductFieldSetMapper

Reads

Delegates line reading

Splits line

Transforms split line in domain object

Figure 1.9 The FlatFile-
ItemReader reads the flat file
and delegates the mapping
between a line and a domain
object to a LineMapper. The
LineMapper implementation
delegates the splitting of lines
and the mapping between split
lines and domain objects.

16 CHAPTER 1 Introducing Spring Batch
public class ProductFieldSetMapper implements FieldSetMapper<Product> {

 public Product mapFieldSet(FieldSet fieldSet) throws BindException {
 Product product = new Product();
 product.setId(fieldSet.readString("PRODUCT_ID"));
 product.setName(fieldSet.readString("NAME"));
 product.setDescription(fieldSet.readString("DESCRIPTION"));
 product.setPrice(fieldSet.readBigDecimal("PRICE"));
 return product;
 }
}

The ProductFieldSetMapper implementation isn’t rocket science, and that’s exactly
the point: it focuses on retrieving the data from the flat file and converts values into
Product domain objects. We leave Spring Batch to deal with all of the I/O plumbing
and efficiently reading the flat file. Notice in the mapFieldSet method the String lit-
erals PRODUCT_ID, NAME, DESCRIPTION, and PRICE. Where do these references come
from? They’re part of the LineTokenizer configuration, so let’s study the Spring con-
figuration for FlatFileItemReader.
CONFIGURATION OF THE FLATFILEITEMREADER

The FlatFileItemReader can be configured like any Spring bean using an XML con-
figuration file, as shown in the following listing.

<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource"
 value="file:./work/output/output.txt" />
 <property name="linesToSkip" value="1" />
 <property name="lineMapper">
 <bean
 class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ DelimitedLineTokenizer">
 <property name="names" value="PRODUCT_ID,

 ➥ NAME,DESCRIPTION,PRICE" />
 </bean>
 </property>
 <property name="fieldSetMapper">
 <bean class="com.manning.sbia.ch01.batch.

 ➥ ProductFieldSetMapper" />
 </property>
 </bean>
 </property>
</bean>

In this example, the resource property defines the input file. Because the first line of
the input file contains headers, you ask Spring Batch to skip this line by setting the
property linesToSkip B to 1. You use a DelimitedLineTokenizer C to split each
input line into fields; Spring Batch uses a comma as the default separator. Then you

Listing 1.2 Spring configuration of the FlatFileItemReader

Skips first
line

B

Configures
tokenization C

17Reading and writing the product data
define the name of each field. These are the names used in the ProductFieldSet-
Mapper class to retrieve values from the FieldSet. Finally, you inject an instance of
ProductFieldSetMapper into the DefaultLineMapper.

 That’s it; your flat file reader is ready! Don’t feel overwhelmed because flat file sup-
port in Spring Batch uses many components—that’s what makes it powerful and flexi-
ble. Next up, to implement the database item writer, you need to do less configuration
work but more Java coding. Let’s dig in.

1.4.3 Implementing a database item writer

To update the database with product data, you have to implement your own Item-
Writer. Each line of the flat file represents either a new product record or an existing
one, so you must decide whether to send the database an insert or an update SQL
statement. Nevertheless, the implementation of the ProductJdbcItemWriter is
straightforward, as shown in the following listing.

package com.manning.sbia.ch01.batch;

import java.util.List;
import javax.sql.DataSource;
import org.springframework.batch.item.ItemWriter;
import org.springframework.jdbc.core.JdbcTemplate;
import com.manning.sbia.ch01.domain.Product;

public class ProductJdbcItemWriter implements ItemWriter<Product> {

 private static final String INSERT_PRODUCT = "insert into product "+
 "(id,name,description,price) values(?,?,?,?)";

 private static final String UPDATE_PRODUCT = "update product set "+
 "name=?, description=?, price=? where id=?";

 private JdbcTemplate jdbcTemplate;

 public ProductJdbcItemWriter(DataSource ds) {
 this.jdbcTemplate = new JdbcTemplate(ds);
 }

 public void write(List<? extends Product> items) throws Exception {
 for (Product item : items) {
 int updated = jdbcTemplate.update(
 UPDATE_PRODUCT,
 item.getName(),item.getDescription(),
 item.getPrice(),item.getId()
);
 if (updated == 0) {
 jdbcTemplate.update(
 INSERT_PRODUCT,
 item.getId(),item.getName(),
 item.getDescription(),item.getPrice()
);
 }

Listing 1.3 Implementing the ProductJdbcItemWriter

Uses JDBC template
for data access

B

Tries to update
a product

C

Inserts new
product

D

18 CHAPTER 1 Introducing Spring Batch
 }
 }
}

The ProductJdbcItemWriter uses Spring’s JdbcTemplate to interact with the data-
base. Spring Batch creates the JdbcTemplate with a DataSource injected in the con-
structor B. In the write method, you iterate over a chunk of products and first try to
update an existing record C. If the database tells you the update statement didn’t
update any record, you know this record doesn’t exist, and you can insert it D.

 That’s it for the implementation! Notice how simple it was to implement this
ItemWriter because Spring Batch handles getting records from the ItemReader, cre-
ating chunks, managing transactions, and so on. Next, let’s configure the database
item writer.

1.4.4 Configuring a database item writer

For the item writer to be configured as a Spring bean, it needs a DataSource, as shown
in the following XML fragment:

<bean id="writer"
 class="com.manning.sbia.ch01.batch.ProductJdbcItemWriter">
 <constructor-arg ref="dataSource" />
</bean>

You’ll configure the DataSource later, in a separate configuration file. You use a sepa-
rate file because it decouples the application configuration—the item writer—from
the infrastructure configuration—the DataSource. By doing so, you can use the same
application configuration across different environments—production and testing, for
example—and switch the infrastructure configuration file.

 Now that you’ve created the two parts of the read-write step, you can assemble
them in a Spring Batch job.

1.4.5 Configuring the read-write step

Configuring the read-write step is done through Spring. The step configuration can sit
next to the declaration of the reader and writer beans, as shown in the following listing.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/batch
 http://www.springframework.org/schema/batch/spring-batch-2.1.xsd">

 <job id="importProducts"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="readWriteProducts">
 <tasklet>

Listing 1.4 Spring configuration of the read-write step

Starts job
configuration

B

19Reading and writing the product data
 <chunk reader="reader" writer="writer"
 commit-interval="100" />
 </tasklet>
 </step>
 </job>

 <bean id="reader" (...)
 </bean>
 <bean id="writer" (...)
 </bean>

</beans>

The configuration file starts with the usual declaration of the namespaces and associ-
ated prefixes: the Spring namespace and Spring Batch namespace with the batch pre-
fix. The Spring namespace is declared as the default namespace, so you don’t need to
use a prefix to use its elements. Unfortunately, this is inconvenient for the overall con-
figuration because you must use the batch prefix for the batch job elements. To make
the configuration more readable, you can use a workaround in XML: when you start
the job configuration XML element B, you specify a default XML namespace as an
attribute of the job element. The scope of this new default namespace is the job ele-
ment and its child elements.

 The chunk element C configures the chunk-processing step, in a step element,
which is itself in a tasklet element. In the chunk element, you refer to the reader and
writer beans with the reader and writer attributes. The values of these two attributes
are the IDs previously defined in the reader and writer configuration. Finally, D the
commit-interval attribute is set to a chunk size of 100.

You’re done with the copy portion of the batch process. Spring Batch performs a lot
of the work for you: it reads the products from the flat file and imports them into the
database. You didn’t write any code for reading the data. For the write operation, you
only created the logic to insert and update products in the database. Putting these
components together is straightforward thanks to Spring’s lightweight container and
the Spring Batch XML vocabulary.

Configures chunk
processing

C

Sets commit
intervalD

Choosing a chunk size and commit interval
First, the size of a chunk and the commit interval are the same thing! Second, there’s
no definitive value to choose. Our recommendation is a value between 10 and 200.
Too small a chunk size creates too many transactions, which is costly and makes the
job run slowly. Too large a chunk size makes transactional resources—like databas-
es—run slowly too, because a database must be able to roll back operations. The
best value for the commit interval depends on many factors: data, processing, nature
of the resources, and so on. The commit interval is a parameter in Spring Batch, so
don’t hesitate to change it to find the most appropriate value for your jobs.

20 CHAPTER 1 Introducing Spring Batch
 So far, you’ve implemented the box labeled “Reading and writing” from figure 1.6.
As you’ve seen, Spring Batch provides a lot of help for this common use case. The
framework is even richer and more flexible because a batch process can contain any
type of write operation. You’ll see an example of this next, when you decompress the
input file for your job, as shown in figure 1.6 in the box labeled “Decompressing.”

1.5 Decompressing the input file with a tasklet
Remember that the flat file is uploaded to the online store as a compressed archive.
You need to decompress this file before starting to read and write products. Decom-
pressing a file isn’t a read-write step, but Spring Batch is flexible enough to implement
such a task as part of a job. Before showing you how to decompress the input file, let’s
explain why you must compress the products flat file.

1.5.1 Why compress the file?

The flat file containing the product data is compressed so you can upload it faster
from ACME’s network to the provider that hosts the online store application. Textual
data, as used in the flat file, can be highly compressed, with ratios of 10 to 1 commonly
achieved. A 1-GB flat file can compress to 100 MB, which is a more reasonable size for
file transfers over the internet.

 Note that you could encrypt the file as well, ensuring that no one could read the
product data if the file were intercepted during transfer. The encryption could be
done before the compression or as part of it. In this case, assume that ACME and the
hosting provider agreed on a secure transfer protocol, like Secure Copy (SCP is built
on top of Secure Shell [SSH]).

 Now that you know why you compress the file, let’s see how to implement the
decompression tasklet.

1.5.2 Implementing the decompression tasklet

Spring Batch provides an extension point to handle processing in a batch process
step: the Tasklet. You implement a Tasklet that decompresses a ZIP archive into its
source flat file. The following listing shows the implementation of the Decompress-
Tasklet class.

package com.manning.sbia.ch01.batch;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.util.zip.ZipInputStream;
import org.apache.commons.io.FileUtils;
import org.apache.commons.io.IOUtils;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;

Listing 1.5 Implementation of decompression tasklet

21Decompressing the input file with a tasklet
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.core.io.Resource;

public class DecompressTasklet implements Tasklet {

 private Resource inputResource;
 private String targetDirectory;
 private String targetFile;

 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 ZipInputStream zis = new ZipInputStream(
 new BufferedInputStream(
 inputResource.getInputStream()));

 File targetDirectoryAsFile = new File(
 targetDirectory);
 if(!targetDirectoryAsFile.exists()) {
 FileUtils.forceMkdir(targetDirectoryAsFile);
 }
 File target = new File(targetDirectory,targetFile);
 BufferedOutputStream dest = null;
 while(zis.getNextEntry() != null) {
 if(!target.exists()) {
 target.createNewFile();
 }
 FileOutputStream fos = new FileOutputStream(
 target
);
 dest = new BufferedOutputStream(fos);
 IOUtils.copy(zis,dest);
 dest.flush();
 dest.close();
 }
 zis.close();
 if(!target.exists()) {
 throw new IllegalStateException(
 "Could not decompress anything from the archive!");
 }
 return RepeatStatus.FINISHED;
 }
 /* setters */
 (...)

}

The DecompressTasklet class implements the Tasklet interface B, which has only
one method, called execute. The tasklet has three fields C, which represent the
archive file, the name of the directory to which the file is decompressed, and the
name of the output file. These fields are set when you configure the tasklet with
Spring. In the execute method, you open a stream to the archive file D, create the
target directory if it doesn’t exist E, and use the Java API to decompress the ZIP
archive F. Note that the FileUtils and IOUtils classes from the Apache Commons
IO project are used to create the target directory and copy the ZIP entry content to the

Implements
Tasklet interface

B

Declares Tasklet
parameters

C

Opens
archive

D

Creates target
directory if absent

E

Decompresses
archive

F

Tasklet
finishesG

22 CHAPTER 1 Introducing Spring Batch
target file (Apache Commons IO provides handy utilities to deal with files and directo-
ries). At G, you return the FINISHED constant from the RepeatStatus enumeration to
notify Spring Batch that the tasklet finished.

Although the Tasklet interface is straightforward, its implementation includes a lot
of code to deal with decompressing the file. Let’s now see how to configure this tasklet
with Spring.

1.5.3 Configuring the tasklet

The tasklet is configured as part of the job and consists of two changes in Spring:
declare the tasklet as a Spring bean and inject it as a step in the job. To do this, you
must modify the configuration you wrote for reading and writing products, as shown
in the following listing.

<job id="importProducts"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="decompress" next="readWriteProducts">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="readWriteProducts">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100" />
 </tasklet>
 </step>
</job>

<bean id="decompressTasklet"
 class="com.manning.sbia.ch01.batch.

 ➥ DecompressTasklet">
 <property name="inputResource"
 value="file:./input/input.zip" />
 <property name="targetDirectory"
 value="./work/output/" />
 <property name="targetFile"
 value="products.txt" />
</bean>

The configuration of a plain Tasklet is simpler than for a read-write step because you
only need to point the Tasklet to the (decompression) bean B. Note that you control

Listing 1.6 Spring configuration of the decompress tasklet

Only a data file and no metadata file in the ZIP archive?
It’s common practice to have two files in a ZIP archive used for a batch job. One file
contains the data to import, and the other contains information about the data to im-
port (date, identifier, and so on). We wanted to keep things simple in our Spring Batch
introduction, especially the tedious unzipping code, so our ZIP archive contains only
a data file. Let’s say the name of the unzipped file is made up of meaningful informa-
tion such as the date and an identifier for the import.

Sets tasklet
in job

B

Declares
tasklet bean

C

23Testing the batch process
the job flow through the next attribute of the step element, which refers to the read-
WriteProducts step by ID. Chapter 10 thoroughly covers how to control the flow of
Spring Batch jobs and how to take different paths, depending on how a step ends, for
example. The tasklet element B refers to the decompressTasklet bean, declared
at C. If you find that the Tasklet bean is configured too rigidly in the Spring file
(because the values are hardcoded), don’t worry: we’ll show you later in this chapter
how to make these settings more dynamic.

 You now have all the parts of the job implemented and configured: you can
decompress the input archive, read the products from the decompressed flat file, and
write them to the database. You’re now about to see how to launch the job inside an
integration test.

1.6 Testing the batch process
Batch applications are like any other applications: you should test them using a
framework like JUnit. Testing makes maintenance easier and detects regressions after
refactoring. Let’s test, then! This section covers how to write an integration test for a
Spring Batch job. You’ll also learn about the launching API in Spring Batch. But
don’t be too impatient—we need a couple of intermediary steps before writing the
test: configuring a test infrastructure and showing you a trick to make the job config-
uration more flexible.

The next section is about setting up the test infrastructure: the ACME job needs a data-
base to write to, and Spring Batch itself needs a couple of infrastructure components
to launch jobs and maintain execution metadata. Let’s see how to configure a light-
weight test infrastructure to launch the test from an IDE.

1.6.1 Setting up the test infrastructure

Spring Batch needs infrastructure components configured in a Spring lightweight
container. These infrastructure components act as a lightweight runtime environment
to run the batch process. Setting up the batch infrastructure is a mandatory step for a
batch application, which you need to do only once for all jobs living in the same
Spring application context. The jobs will use the same infrastructure components to
run and to store their state. These infrastructure components are the key to managing
and monitoring jobs (chapter 12 covers how to monitor your Spring Batch jobs).

Spring Batch and test-driven development
Good news: Spring Batch and test-driven development are fully compatible! We intro-
duce here some techniques to test a Spring Batch job, and chapter 14 is dedicated
to testing. We don’t show tests systematically in this book; otherwise, half of the
book would contain testing code! We truly believe in test-driven development, so we
test all the source code with automated tests. Download the source code, browse it,
and read chapter 14 to discover more about testing techniques.

24 CHAPTER 1 Introducing Spring Batch
 Spring Batch needs two infrastructure components:

■ Job repository—To store the state of jobs (finished or currently running)
■ Job launcher—To create the state of a job before launching it

For this test, you use the volatile job repository implementation. It’s perfect for testing
and prototyping because it stores execution metadata in memory. Chapter 2 covers
how to set up a job repository that uses a database. The following listing shows how to
configure the test infrastructure.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="/create-tables.sql"/>
 </jdbc:embedded-database>

 <bean id="transactionManager"
 class="org.springframework.jdbc.datasource.

 ➥ DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
 </bean>

 <bean id="jobRepository"
 class="org.springframework.batch.core.

 ➥ repository.support.MapJobRepositoryFactoryBean">
 <property name="transactionManager"
 ref="transactionManager" />
 </bean>

 <bean id="jobLauncher"
 class="org.springframework.batch.core.launch.

 ➥ support.SimpleJobLauncher">
 <property name="jobRepository"
 ref="jobRepository" />
 </bean>

 <bean class="org.springframework.jdbc.core.JdbcTemplate">
 <constructor-arg ref="dataSource" />
 </bean>

</beans>

This listing uses an open source in-memory database called H2; although it may look
odd for an online application, it’s easy to deploy and you won’t have to install any
database engine to work with the code samples in this chapter. And remember, this is
the testing configuration; the application can use a full-blown, persistent database in

Listing 1.7 Spring configuration for the batch infrastructure

Declares and populates
data source

Declares transaction
manager

Declares job
repository

Declares job
launcher

25Testing the batch process
production. For a more traditional relational database management system (RDBMS)
setup, you could change the data source configuration to use a database like Postgre-
SQL or Oracle. Listing 1.7 also runs a SQL script on the database to create the prod-
uct table and configures a JdbcTemplate to check the state of the database during
the test.

This leads us to the following best practice: when configuring a Spring Batch applica-
tion, the infrastructure and job configuration should be in separate files.

SPLITTING INFRASTRUCTURE AND APPLICATION CONFIGURATION FILES You should
always split infrastructure and application configuration files (test-context.xml
and import-products-job-context.xml in our example). This allows you to swap
out the infrastructure for different environments (test, development, staging,
production) and still reuse the application (job, in our case) configuration files.

In a split application configuration, the infrastructure configuration file defines the
job repository and data source beans; the job configuration file defines the job and
depends on the job repository and data source beans. For Spring to resolve the whole
configuration properly, you must bootstrap the application context from both files.

 You completed the infrastructure and job configuration in a flexible manner by
splitting the configuration into an infrastructure file and a job file. Next, you make
the configuration more flexible by leveraging the Spring Expression Language
(SpEL) to avoid hardcoding certain settings in Spring configuration files.

1.6.2 Leveraging SpEL for configuration

Remember that part of your job configuration is hardcoded in the Spring configura-
tion files, such as all file location settings (in bold):

<bean id="decompressTasklet"
 class="com.manning.sbia.ch01.batch.DecompressTasklet">
 <property name="inputResource" value="file:./input/input.zip" />
 <property name="targetDirectory" value="./work/output/" />
 <property name="targetFile" value="products.txt" />
</bean>

These settings aren’t flexible because they can change between environments (testing
and production, for example) and because rolling files might be used for the incoming
archive (meaning the filename would depend on the date). An improvement is to turn

How does a job refer to the job repository?
You may have noticed that we say a job needs the job repository to run but we don’t
make any reference to the job repository bean in the job configuration. The XML step
element can have its job-repository attribute refer to a job repository bean. This
attribute isn’t mandatory, because by default the job uses a jobRepository bean.
As long as you declare a jobRepository bean of type JobRepository, you don’t
need to explicitly refer to it in your job configuration.

26 CHAPTER 1 Introducing Spring Batch
these settings into parameters specified at launch time. When launching a Spring Batch
job, you can provide parameters, as in the following:

jobLauncher.run(job, new JobParametersBuilder()
 .addString("parameter1", "value1")
 .addString("parameter2", "value2")
 .toJobParameters());

The good news is that you can refer to these parameters in your job configuration,
which comes in handy for the DecompressTasklet and FlatFileItemReader beans, as
shown in the following listing.

<bean id="decompressTasklet"
 class="com.manning.sbia.ch01.batch.DecompressTasklet"
 scope="step">
 <property name="inputResource"
 value="#{jobParameters['inputResource']}" />
 <property name="targetDirectory"
 value="#{jobParameters['targetDirectory']}" />
 <property name="targetFile"
 value="#{jobParameters['targetFile']}" />
</bean>

<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader"
 scope="step">
 <property name="resource"
 value="file:#{jobParameters['targetDirectory']

 ➥ +jobParameters['targetFile']}" />

To be able to refer to job parameters, a bean must use the Spring Batch step scope B.
The step scope means that Spring will create the bean only when the step asks for it
and that values will be resolved then (this is the lazy instantiation pattern; the bean
isn’t created during the Spring application context’s bootstrapping). To trigger the
dynamic evaluation of a value, you must use the #{expression} syntax. The expres-
sion must be in SpEL, which is available as of Spring 3.0 (Spring Batch falls back to a
less powerful language if you don’t have Spring 3.0 on your class path). The job-
Parameters variable behaves like a Map. That’s how you refer to the inputResource,
targetDirectory, and targetFile job parameters C. Note that you’re not limited to
plain references; you can also use more complex expressions; for example, notice how
the target directory and file are concatenated for the resource property.

 You’re done with the configuration: the job and infrastructure are ready, and part
of the configuration can come from job parameters, which are set when you launch
the job. It’s time to write the test for your batch process.

1.6.3 Writing the test for the job

You use good old JUnit to write the test, with some help from the Spring testing sup-
port. The following listing shows the integration test for the job.

Listing 1.8 Referring to job parameters in the Spring configuration

Uses step
scope

B

Refers to job
parameters

C

Uses step
scopeB

27Testing the batch process
package com.manning.sbia.ch01.batch;

(...)

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations={
 "/import-products-job-context.xml",
 "/test-context.xml"
})
public class ImportProductsIntegrationTest {

 @Autowired
 private JobLauncher jobLauncher;

 @Autowired
 private Job job;

 @Autowired
 private JdbcTemplate jdbcTemplate;

 @Before
 public void setUp() throws Exception {
 jdbcTemplate.update("delete from product");
 jdbcTemplate.update("insert into product "+
 "(id,name,description,price) values(?,?,?,?)",
 "PR....214","Nokia 2610 Phone","",102.23
);
 }

 @Test
 public void importProducts() throws Exception {
 int initial = jdbcTemplate.queryForInt("select count(1) from product");
 jobLauncher.run(
 job, new JobParametersBuilder()
 .addString("inputResource",
 "classpath:/input/products.zip")
 .addString("targetDirectory",
 "./target/importproductsbatch/")
 .addString("targetFile",
 "products.txt")
 .addLong("timestamp",
 System.currentTimeMillis())
 .toJobParameters()
);
 int nbOfNewProducts = 7;
 Assert.assertEquals(
 initial+nbOfNewProducts,
 jdbcTemplate.queryForInt(
 "select count(1) from product")
);
 }
}

The test uses the Spring TestContext Framework, which creates a Spring application
context during the test and lets you inject some Spring beans into the test (with the
@Autowired annotation). The @RunWith and @ContextConfiguration trigger the

Listing 1.9 Integration test for the import product test

Cleans and
populates
database

B

Launches job
with parameters

C

Checks
correct item
insertion

D

28 CHAPTER 1 Introducing Spring Batch
Spring TestContext Framework. Chapter 14 is all about testing, so give it a read if you
want to learn more about this topic. At B, you clean and populate the database. This
creates a consistent database environment for each @Test method. At C, you launch
the job with its parameters and check at D that the job correctly inserted the products
from the test ZIP archive. The test ZIP archive doesn’t have to contain thousands of
records: it can be small so the test runs quickly.

 You can now run the test with your favorite IDE (Eclipse, IDEA) or build tool
(Maven, Ant). Figure 1.10 shows the result of the test execution in Eclipse.

 That’s it! You have a reliable integration test for your batch job. Wasn’t it easy?
Even if the job handles hundreds of thousands of records daily, you can test in an IDE
in a couple of seconds.

NOTE A common requirement is launching jobs from the command line.
Chapter 4 covers this topic.

The job works, great, but batch applications aren’t common pieces of software: they
must be bulletproof. What happens if the input file contains a badly formatted line?
Could you live with your job crashing because of an extra comma? The next section
covers how Spring Batch lets you skip incorrect lines instead of failing.

1.7 Skipping incorrect lines instead of failing
We listed the requirements for batch applications, including robustness. The import
product job isn’t robust yet: for example, it crashes abruptly if only a single line of the
flat file is formatted incorrectly. The good news is that Spring Batch can help make the
job more robust by changing the configuration or by implementing simple interfaces.

Figure 1.10 Launching the test in Eclipse. Despite all its features, Spring Batch remains lightweight,
making jobs easy to test.

29Skipping incorrect lines instead of failing
 Spring Batch’s features related to robustness are thoroughly covered in chapter 8.
For now, we show you how to handle unexpected entries when you’re reading data. By
the end of this section, the import product job will be more robust and you’ll have a
better understanding of how Spring Batch can help improve robustness in general.

 On a good day, the import product job will decompress the input archive, read each
line of the extracted flat file, send data to the database, and then exit successfully. As
you know, if something can go wrong, it will. For instance, if the FlatFileItemReader
fails to read a single line of the flat file—because it’s incorrectly formatted, for exam-
ple—the job immediately stops. Perhaps this is acceptable behavior, but what if you can
live with some invalid records? In this case, you could skip an invalid line and keep on
chugging. Spring Batch allows you to choose declaratively a skip policy when some-
thing goes wrong. Let’s apply a skip policy to your job’s import step.

 Suppose a line of the flat file hasn’t been generated correctly, like the price (in
bold) of the third product in the following snippet:

PRODUCT_ID,NAME,DESCRIPTION,PRICE
PR....210,BlackBerry 8100 Pearl,,124.60
PR....211,Sony Ericsson W810i,,139.45
PR....212,Samsung MM-A900M Ace,,97,80
PR....213,Toshiba M285-E 14,,166.20

The format of the price field of the third record is incorrect: is uses a comma instead
of a period as the decimal separator. Note that the comma is the field separator
Spring Batch uses to tokenize input lines: the framework would see five fields where it
expects only four. The FlatFileItemReader throws a FlatFileParseException and,
in the default configuration, Spring Batch immediately stops the process.

 Assuming you can live with skipping some records instead of failing the whole job,
you can change the job configuration to keep on reading when the reader throws a
FlatFileParseException, as shown in the following listing.

<job id="importProducts"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="decompress" next="readWriteProducts">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="readWriteProducts">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100"
 skip-limit="5">
 <skippable-exception-classes>
 <include class="org.springframework.batch.

 ➥ item.file.FlatFileParseException" />
 </skippable-exception-classes>
 </chunk>
 </tasklet>
 </step>
</job>

Listing 1.10 Setting the skip policy when reading records from the flat file

Fails job if Spring
Batch skips five

records

B

Skips flat file
parse exceptions

C

30 CHAPTER 1 Introducing Spring Batch
The skip policy is set in the chunk element. The skip-limit attribute B is set to tell
Spring Batch to stop the job when the number of skipped records in the step
exceeds this limit. Your application can be tolerant, but not too tolerant! Then, the
exception classes that trigger a skip are stated C. Chapter 8 details all the options of
the skippable-exception-classes element. Here, we want to skip the offending
line when the item reader throws a FlatFileParseException.

 You can now launch the job with an input file containing incorrectly formatted lines,
and you’ll see that Spring Batch keeps on running the job as long as the number of
skipped items doesn’t exceed the skip limit. Assuming the ZIP archive contains incorrect
lines, you can add a test method to your test, as shown in the following listing.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations={"/import-products-job-context.xml","/test-

context.xml"})
public class ImportProductsIntegrationTest {
 (...)
 @Test
 public void importProductsWithErrors() throws Exception {
 int initial = jdbcTemplate.queryForInt("select count(1) from product");

 jobLauncher.run(job, new JobParametersBuilder()
 .addString("inputResource",
 "classpath:/input/products_with_errors.zip")
 .addString("targetDirectory", "./target/importproductsbatch/")
 .addString("targetFile","products.txt")
 .addLong("timestamp", System.currentTimeMillis())
 .toJobParameters()
);
 int nbOfNewProducts = 6;
 Assert.assertEquals(
 initial+nbOfNewProducts,
 jdbcTemplate.queryForInt("select count(1) from product")
);
 }

}

Note that this code doesn’t do any processing when something goes wrong, but you
could choose to log that a line was incorrectly formatted. Spring Batch also provides
hooks to handle errors (see chapter 8).

 This completes the bullet-proofing of the product import job. The job executes
quickly and efficiently, and it’s more robust and reacts accordingly to unexpected
events such as invalid input records.

 That’s it—you’ve implemented a full-blown job with Spring Batch! This shows how
Spring Batch provides a powerful framework to create batch jobs and handles the
heavy lifting like file I/O. Your main tasks were to write a couple of Java classes and do
some XML configuration. That’s the philosophy: focus on the business logic and
Spring Batch handles the rest.

Listing 1.11 Testing the job correctly skips incorrect lines with a new test method

31Summary
1.8 Summary
This chapter started with an overview of batch applications: handling large amounts
of data automatically. The immediate requirements are performance, reliability, and
robustness. Meeting these requirements is tricky, and this is where Spring Batch
comes in, by processing data efficiently thanks to its chunk-oriented approach and
providing ready-to-use components for the most popular technologies and formats.

 After the introduction of batch applications and Spring Batch, the import product
job gave you a good overview of what the framework can do. You discovered Spring
Batch’s sweet spot—chunk processing—by reading records from a flat file and writing
them to a database. You used built-in components like the FlatFileItemReader class
and implemented a database ItemWriter for business domain code. Remember that
Spring Batch handles the plumbing and lets you focus on the business code. You also
saw that Spring Batch isn’t limited to chunk processing when you implemented a
Tasklet to decompress a ZIP file.

 Configuring the job ended up being quite simple thanks to the Spring lightweight
container and Spring Batch XML. You even saw how to write an automated integration
test. Finally, you learned how to make the job more robust by dealing with invalid data.

 You’re now ready to implement your first Spring Batch job. With this chapter
under your belt, you can jump to any other chapter in this book when you need infor-
mation to use a specific Spring Batch feature: reading and writing components, writ-
ing bulletproof jobs with skip and restart, or making your jobs scale. You can also
continue on to chapter 2, where we present the Spring Batch vocabulary and the ben-
efits it brings to your applications.

Spring Batch concepts
Chapter 1 introduced Spring Batch with some hands-on examples. You saw how to
implement a batch process from soup to nuts: from business requirements to the
batch implementation and finally to running the process. This introduction got
you started with Spring Batch and gave you a good overview of the framework’s fea-
tures. It’s time to strengthen this newly acquired knowledge by diving into batch
applications concepts and their associated vocabulary, or domain language.

 Batch applications are complex entities that refer to many components, so in
this chapter we use the Spring Batch domain language to analyze, model, and
define the components of batch applications. This vocabulary is a great communi-
cation tool for us in this book but also for you, your team, and your own batch
applications. We first explore Spring Batch’s services and built-in infrastructure
components for batch applications: the job launcher and job repository. Then, we

This chapter covers
■ Defining the domain language
■ Surveying infrastructure components
■ Modeling jobs
■ Understanding job execution
32

33The batch domain language
dive into the heart of the batch process: the job. Finally, we study how to model a
Spring Batch job and how the framework handles job execution.

 By the end of this chapter, you’ll know how Spring Batch models batch applica-
tions and what services the framework provides to implement and execute jobs. All
these concepts lay the foundation for efficient configuration and runtime behavior as
well as for features like job restart. These concepts form the starting point for you to
unleash the power of Spring Batch.

2.1 The batch domain language
In chapter 1, we used many technical terms without proper definitions. We wrote this
book with a gentle introduction and without overwhelming you with a large first help-
ing of concepts and definitions. We introduced Spring Batch from a practical point of
view. Now it’s time to step back and take a more formal approach. Don’t worry: we’ll
make this short and sweet.

 In this section, we define the batch domain language: we pick apart the batch
application ecosystem and define each of its elements. Naming can be hard, but we
use some analysis already provided by the Spring Batch project itself. Let’s start by
looking at the benefits of using a domain language for our batch applications.

2.1.1 Why use a domain language?

Using well-defined terminology in your batch applications helps you model, enforce
best practices, and communicate with others. If there’s a word for something, it means
the corresponding concept matters and is part of the world of batch applications. By
analyzing your business requirements and all the elements of the batch ecosystem,
you find matches, which help you design your batch applications.

 In our introduction to chunk processing in chapter 1, we identified the main com-
ponents of a typical batch process: the reader, the processor, and the writer. By using
the chunk-processing pattern in your applications, you also structure your code with
readers, processors, and writers. The good news about chunk processing is that it’s a
pattern well suited for batch applications, and it’s a best practice in terms of memory
consumption and performance.

 Another benefit of using the domain language is that by following the model it
promotes, you’re more likely to enforce best practices. That doesn’t mean you’ll end
up with perfect batch applications, but at least you should avoid the most common pit-
falls and benefit from years of experience in batch processing.

 At the very least, you’ll have a common vocabulary to use with other people work-
ing on batch applications. This greatly improves communication and avoids confu-
sion. You’ll be able to switch projects or companies without having to learn a brand
new vocabulary for the same concepts.

 Now that you’re aware of the benefits of using a domain language to work with
batch applications, let’s define some Spring Batch concepts.

34 CHAPTER 2 Spring Batch concepts
2.1.2 Main components of the domain language

In this subsection, we focus on the core
components of Spring Batch applica-
tions, and the next subsection covers
external components that communi-
cate with Spring Batch applications. Fig-
ure 2.1 shows the main Spring Batch
components. The figure shows two
kinds of Spring Batch components:
infrastructure components and applica-
tion components. The infrastructure
components are the job repository and
the job launcher. Spring Batch provides
implementations for both—and you do
need to configure these components—
but there’s little chance you’ll have to
create your own implementations.

 The application components in
Spring Batch are the job and its constituent parts. From the previous chapter you know
that Spring Batch provides components like item readers and item writers you only need
to configure and that it’s common to implement your own logic. Writing batch jobs with
Spring Batch is a combination of Spring configuration and Java programming.

 Figure 2.1 painted the big picture; table 2.1 gives a more comprehensive list of the
components of a Spring Batch application and their interactions.

Table 2.1 The main components of a Spring Batch application

Component Description

Job repository An infrastructure component that persists job execution metadata

Job launcher An infrastructure component that starts job executions

Job An application component that represents a batch process

Step A phase in a job; a job is a sequence of steps

Tasklet A transactional, potentially repeatable process occurring in a step

Item A record read from or written to a data source

Chunk A list of items of a given size

Item reader A component responsible for reading items from a data source

Item processor A component responsible for processing (transforming, validating,
or filtering) a read item before it’s written

Item writer A component responsible for writing a chunk to a data source

Job repository

Job launcher

Job
Step

Step

Step Step

Updates
Updates

Launches

Figure 2.1 The main Spring Batch components.
The framework provides a job repository to store job
metadata and a job launcher to launch jobs, and the
application developer configures and implements
jobs. The infrastructure components—provided by
Spring Batch—are in gray, and application compo-
nents—implemented by the developer—are in white.

35The batch domain language
Going forward from this point, we use the terms listed in table 2.1. The remainder of
this chapter describes the concepts behind these terms, but first we see how the com-
ponents of a Spring Batch application interact with the outside world.

2.1.3 How Spring Batch interacts with the outside world

A batch application isn’t an island: it needs to interact with the outside world just like
any enterprise application. Figure 2.2 shows how a Spring Batch application interacts
with the outside world.

 A job starts in response to an event. You’ll always use the JobLauncher interface
and JobParameters class, but the event can come from anywhere: a system scheduler
like cron that runs periodically, a script that launches a Spring Batch process, an HTTP
request to a web controller that launches the job, and so on. Chapter 4 covers differ-
ent scenarios to trigger the launch of your Spring Batch jobs.

 Batch jobs are about processing data, and that’s why figure 2.2 shows Spring Batch
communicating with data sources. These data sources can be of any kind, the file sys-
tem and a database being the most common, but a job can read and write messages to
Java Message Service (JMS) queues as well.

NOTE Jobs can communicate with data sources, but so does the job reposi-
tory. In fact, the job repository stores job execution metadata in a database
to provide Spring Batch reliable monitoring and restart features.

Note that figure 2.2 doesn’t show whether Spring Batch needs to run in a specific con-
tainer. Chapter 4 says more about this topic, but for now, you just need to know that
Spring Batch can run anywhere the Spring Framework can run: in its own Java pro-
cess, in a web container, in an application, or even in an Open Services Gateway initia-
tive (OSGi) container. The container depends on your requirements, and Spring
Batch is flexible in this regard.

 Now that you know more about Spring Batch’s core components and how they
interact with each other and the outside world, let’s focus on the framework’s infra-
structure components: the job launcher and the job repository.

Job repository

Job launcher JobExternal
event

File system

JMS queue

Database

Triggers Reads and
writes

Reads and
writes

Spring Batch Data sourcesTriggering system
(e.g., scheduler)

Figure 2.2 A Spring Batch application interacts with systems like schedulers and data sources
(databases, files, or JMS queues).

36 CHAPTER 2 Spring Batch concepts
2.2 The Spring Batch infrastructure
The Spring Batch infrastructure includes components that launch your batch jobs
and store job execution metadata. As a batch application developer, you don’t have
to deal directly with these components, as they provide supporting roles to your
applications, but you need to configure this infrastructure at least once in your
Spring Batch application.

 This section gives an overview of the job launcher, job repository, and their interac-
tions, and then shows how to configure persistence of the job repository.

2.2.1 Launching jobs and storing job metadata

The Spring Batch infrastructure is complex, but you need to deal mainly with two
components: the job launcher and the job repository. These concepts match two
straightforward Java interfaces: JobLauncher and JobRepository.
THE JOB LAUNCHER

As figure 2.2 shows, the job launcher is the entry point to launch Spring Batch jobs:
this is where the external world meets Spring Batch. The JobLauncher interface is
simple:

package org.springframework.batch.core.launch;

(...)

public interface JobLauncher {

 public JobExecution run(Job job, JobParameters jobParameters)
 throws JobExecutionAlreadyRunningException,
 JobRestartException, JobInstanceAlreadyCompleteException,
 JobParametersInvalidException;

}

The run method accepts two parameters: Job, which is typically a Spring bean config-
ured in Spring Batch XML, and JobParameters, which is usually created on the fly by
the launching mechanism.

 Who calls the job launcher? Your own Java program can use the job launcher to
launch a job, but so can command-line programs or schedulers (like cron or the Java-
based Quartz scheduler).

 The job launcher encapsulates launching strategies such as executing a job syn-
chronously or asynchronously. Spring Batch provides one implementation of the Job-
Launcher interface: SimpleJobLauncher. We look at configuring SimpleJobLauncher
in chapter 3 and at fine-tuning in chapter 4. For now, it’s sufficient to know that the
SimpleJobLauncher class only launches a job—it doesn’t create it but delegates this
work to the job repository.
THE JOB REPOSITORY

The job repository maintains all metadata related to job executions. Here’s the defini-
tion of the JobRepository interface:

37The Spring Batch infrastructure
package org.springframework.batch.core.repository;

(...)

public interface JobRepository {

 boolean isJobInstanceExists(String jobName, JobParameters jobParameters);

 JobExecution createJobExecution(
 String jobName, JobParameters jobParameters)
 throws JobExecutionAlreadyRunningException, JobRestartException,
 JobInstanceAlreadyCompleteException;

 void update(JobExecution jobExecution);

 void add(StepExecution stepExecution);

 void update(StepExecution stepExecution);

 void updateExecutionContext(StepExecution stepExecution);

 void updateExecutionContext(JobExecution jobExecution);

 StepExecution getLastStepExecution(JobInstance jobInstance,
 String stepName);

 int getStepExecutionCount(JobInstance jobInstance, String stepName);

 JobExecution getLastJobExecution(String jobName,
 JobParameters jobParameters);

}

The JobRepository interface provides all the services to manage the batch job lifecy-
cle: creation, update, and so on. This explains the interactions in figure 2.2: the job
launcher delegates job creation to the job repository, and a job calls the job repository
during execution to store its current state. This is useful to monitor how your job exe-
cutions proceed and to restart a job exactly where it failed. Note that the Spring Batch
runtime handles all calls to the job repository, meaning that persistence of the job
execution metadata is transparent to the application code.

 What constitutes runtime metadata? It includes the list of executed steps; how
many items Spring Batch read, wrote, or skipped; the duration of each step; and so
forth. We won’t list all metadata here; you’ll learn more when we study the anatomy of
a job in section 2.3.

 Spring Batch provides two implementations of the JobRepository interface: one
stores metadata in memory, which is useful for testing or when you don’t want moni-
toring or restart capabilities; the other stores metadata in a relational database. Next,
we see how to configure the Spring Batch infrastructure in a database.

2.2.2 Configuring the Spring Batch infrastructure in a database

Spring Batch provides a job repository implementation to store your job metadata in a
database. This allows you to monitor the execution of your batch processes and their
results (success or failure). Persistent metadata also makes it possible to restart a job
exactly where it failed.

38 CHAPTER 2 Spring Batch concepts
 Configuring this persistent job repository helps illustrate the other concepts in this
chapter, which are detailed in chapter 3.

 Spring Batch delivers the following to support persistent job repositories:

■ SQL scripts to create the necessary database tables for the most popular data-
base engines

■ A database implementation of JobRepository (SimpleJobRepository) that
executes all necessary SQL statements to insert, update, and query the job
repository tables

Let’s now see how to configure the database job repository.

CREATING THE DATABASE TABLES FOR A JOB REPOSITORY

The SQL scripts to create the database tables are located in the core Spring Batch JAR
file (for example, spring-batch-core-2.1.x.jar, depending on the minor version of the
framework you’re using) in the org.springframework.batch.core package. The SQL
scripts use the following naming convention: schema-[database].sql for creating tables
and schema-drop-[database].sql for dropping tables, where [database] is the name of
a database engine. To initialize H2 for Spring Batch, we use the file schema-h2.sql.

All you have to do is create a database for Spring Batch and then execute the corre-
sponding SQL script for your database engine.
CONFIGURING THE JOB REPOSITORY WITH SPRING

We already configured a job repository bean in chapter 1, but it was in an in-memory
implementation (H2). The following listing shows how to configure a job repository
in a database.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/batch
 http://www.springframework.org/schema/batch/spring-batch-2.1.xsd">

 <batch:job-repository id="jobRepository"
 data-source="dataSource"
 transaction-manager="transactionManager" />

 <bean id="jobLauncher"
 class="org.springframework.batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository" />

Listing 2.1 Configuration of a persistent job repository

Spring Batch database support
Spring Batch supports the following database engines: DB2, Derby, H2, HSQLDB,
MySQL, Oracle, PostgreSQL, SQLServer, and Sybase.

Declares persistent
job repository

B

39The Spring Batch infrastructure
 </bean>

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.

➥ SingleConnectionDataSource">
 <property name="driverClassName"
 value="org.h2.Driver" />
 <property name="url" value="

 ➥ jdbc:h2:mem:sbia_ch02;DB_CLOSE_DELAY=-1" />
 <property name="username" value="sa" />
 <property name="password" value="" />
 <property name="suppressClose" value="true" />
 </bean>

 <bean id="transactionManager" class="org.springframework.jdbc.datasource.

 ➥ DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
 </bean>

</beans>

The job-repository XML element in the batch namespace creates a persistent job
repository B. To work properly, the persistent job repository needs a data source and
a transaction manager. A data source implementation C that holds a single JDBC con-
nection and reuses it for each query is used because it’s convenient and good enough
for a single-threaded application (like a batch process). If you plan to use the data
source in a concurrent application, then use a connection pool, like Apache Com-
mons DBCP or c3p0. Using a persistent job repository doesn’t change much in the
Spring Batch infrastructure configuration: you use the same job launcher implemen-
tation as in the in-memory configuration.

 Now that the persistent job repository is ready, let’s take a closer look at it.

ACCESSING JOB METADATA

If you look at the job repository database, you see that the SQL script created six
tables. If you want to see how Spring Batch populates these tables, launch the Launch-
DatabaseAndConsole class and then the GeneratesJobMetaData class (in the source
code from this book). The latter class launches a job several times to populate the
batch metadata tables. (Don’t worry if you see an exception in the console: we pur-
posely fail one job execution.) We analyze the content of the job repository later in
this chapter because it helps to explain how Spring Batch manages job execution, but
if you’re impatient to see the content of the batch tables, read the next note.

NOTE The LaunchDatabaseAndConsole class provided with the source code
of this book starts an in-memory H2 database and the HTTP-based H2 Con-
sole Server. You can access the Console Server at http://127.0.1.1:8082/ and
provide the URL of the database: jdbc:h2:tcp://localhost/mem:sbia_ch02.
The Console Server then provides the default username and password to log
in. You can see that Spring Batch created all the necessary tables in the data-
base (take a look at the root-database-context.xml file to discover how).
Keep in mind that this is an in-memory database, so stopping the program
will cause all data to be lost!

Declares data
source

C

40 CHAPTER 2 Spring Batch concepts
Figure 2.3 shows how you can use the Spring Batch Admin web application to view job
executions. Spring Batch Admin accesses the job repository tables to provide this
functionality.

We now have a persistent job repository, which we use to illustrate forthcoming run-
time concepts. You have enough knowledge of the in-memory and persistent
implementations of the job repository to compare them and see which best suits
your needs.
CONSIDERATIONS ON JOB REPOSITORY IMPLEMENTATIONS

Spring Batch users sometimes see the persistent job repository as a constraint
because it means creating dedicated Spring Batch tables in a database. They prefer
to fall back on the in-memory job repository implementation, which is more flexi-
ble. These users don’t always realize the consequences of using the in-memory
implementation. Let’s answer some frequently asked questions about the various job
repository implementations.

What is Spring Batch Admin?
Spring Batch Admin is an open source project from SpringSource that provides a web-
based UI for Spring Batch applications. We cover Spring Batch Admin in chapter 12,
where we discuss Spring Batch application monitoring. Appendix B covers the instal-
lation of Spring Batch Admin. You’ll also see more of Spring Batch Admin in this chap-
ter when you use it to browse batch execution metadata.

Figure 2.3 The Spring Batch Admin web application lists all job instances for a given job, in this case,
import products. Spring Batch Admin uses job metadata stored in a database to monitor job executions.

41Anatomy of a job
■ Can I use the in-memory job repository in production? You should avoid doing that;
the in-memory job repository is meant for development and testing. Some peo-
ple run the in-memory job repository successfully in production because it
works correctly under specific conditions (it isn’t designed for concurrent
access, when multiple jobs can run at the same time). If you get errors with the
in-memory job repository and if you really don’t want to create batch tables in
your database, use the persistent job repository with an in-memory database (like
H2 or Derby).

■ What are the benefits of the persistent job repository? The benefits are monitoring,
restart, and clustering. You can browse the batch execution metadata to moni-
tor your batch executions. When a job fails, the execution metadata is still avail-
able, and you can use it to restart the job where it left off. The persistent job
repository, thanks to the isolation the database provides, prevents launching the
exact same job from multiple nodes at the same time. Consider the persistent
job repository as a safeguard against concurrency issues when creating batch
entities in the database.

■ Does the persistent job repository add overhead? Compared to the in-memory job
repository, yes. Communicating with a potentially remote database is always
more costly than speaking to local in-memory objects. But the overhead is usu-
ally small compared to the actual business processing. The benefits the persis-
tent job repository brings to batch applications are worth the limited overhead!

■ Can I use a different database for the persistent job repository and my business data? Yes,
but be careful with transaction management. You can use the Java Transaction API
(JTA) to make transactions span both databases: the batch tables and the business
tables will always be synchronized, but you’ll add overhead because managing
multiple transactional resources is more expensive than managing just one. If
transactions don’t span the two databases, batch execution metadata and busi-
ness data can get unsynchronized on failure. Data such as skipped items could
then become inaccurate, or you could see problems on restart. To make your life
easier (and your jobs faster and reliable), store the batch metadata in the same
database as the business data.

This completes our coverage of the job repository. Let’s dive into the structural and
runtime aspects of the core Spring Batch concept: the job.

2.3 Anatomy of a job
The job is the central concept in a batch application: it’s the batch process itself. A
job has two aspects that we examine in this section: a static aspect used for job mod-
eling and a dynamic aspect used for runtime job management. Spring Batch pro-
vides a well-defined model for jobs and includes tools—such as Spring Batch XML—
to configure this model. Spring Batch also provides a strong runtime foundation to
execute and dynamically manage jobs. This foundation provides a reliable way to
control which instance of a job Spring Batch executes and the ability to restart a job

42 CHAPTER 2 Spring Batch concepts
where it failed. This section explains these two job aspects: static modeling and
dynamic runtime.

2.3.1 Modeling jobs with steps

A Spring Batch job is a sequence of steps configured in Spring Batch XML. Let’s delve
into these concepts and see what they bring to your batch applications.
MODELING A JOB

Recall from chapter 1 that the import products job
consists of two steps: decompress the incoming
archive and import the records from the expanded
file into the database. We could also add a cleanup
step to delete the expanded file. Figure 2.4 depicts
this job and its three successive steps.

 Decomposing a job into steps is cleaner from
both a modeling and a pragmatic perspective
because steps are easier to test and maintain than is
one monolithic job. Jobs can also reuse steps; for
example, you can reuse the decompress step from
the import products job in any job that needs to
decompress an archive—you only need to change
the configuration.

 Figure 2.4 shows a job built of three successive linear steps, but the sequence of
steps doesn’t have to be linear, as in figure 2.5, which shows a more advanced version
of the import products job. This version generates and sends a report to an adminis-
trator if the read-write step skipped records.

 To decide which path a job takes, Spring Batch allows for control flow decisions
based on the status of the previous step (completed, failed) or based on custom logic

Import products job

Decompress

Read-write

Cleanup

Send report

Generate report

Skipped
records?

Yes No

Figure 2.5 A Spring Batch job
can be a nonlinear sequence of
steps, like this version of the
import products job, which
sends a report if some records
were skipped.

Decompress

Read-write

Cleanup

Import products job

Figure 2.4 A Spring Batch job is
a sequence of steps, such as this
import products job, which includes
three steps: decompress, read-
write, and cleanup.

43Anatomy of a job
(by checking the content of a database table, for example). You can then create jobs
with complex control flows that react appropriately to any kind of condition (missing
files, skipped records, and so on). Control flow brings flexibility and robustness to
your jobs because you can choose the level of control complexity that best suits any
given job.

 The unpleasant alternative would be to split a big, monolithic job into a set of
smaller jobs and try to orchestrate them with a scheduler using exit codes, files, or
some other means.

 You also benefit from a clear separation of concerns between processing (imple-
mented in steps) and execution flow, configured declaratively or implemented in ded-
icated decision components. You have less temptation to implement transition logic
in steps and thus tightly couple steps with each other.

 Let’s see some job configuration examples.
CONFIGURING A JOB

Spring Batch provides an XML vocabulary to configure steps within a job. The follow-
ing listing shows the code for the linear version of the import products job.

<job id="importProductsJob">
 <step id="decompress" next="readWrite">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="readWrite" next="clean">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="100" />
 </tasklet>
 </step>
 <step id="clean">
 <tasklet ref="cleanTasklet" />
 </step>
</job>

The next attribute of the step tag sets the execution flow, by pointing to the next step
to execute. Tags like tasklet or chunk can refer to Spring beans with appropriate
attributes.

 When a job is made of a linear sequence of steps, using the next attribute of the
step elements is enough to connect the job steps. The next listing shows the configu-
ration for the nonlinear version of the import products job from figure 2.5.

<job id="importProductsJob"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="decompress" next="readWrite">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="readWrite" next="skippedDecision">

Listing 2.2 Configuring a job with linear flow

Listing 2.3 Configuring a job with nonlinear flow

Refers to flow decision logic

44 CHAPTER 2 Spring Batch concepts
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100" />
 </tasklet>
 </step>
 <decision id="skippedDecision"
 decider="skippedDecider">
 <next on="SKIPPED" to="generateReport"/>
 <next on="*" to="clean" />
 </decision>
 <step id="generateReport" next="sendReport">
 <tasklet ref="generateReportTasklet" />
 </step>
 <step id="sendReport" next="clean">
 <tasklet ref="sendReportTasklet" />
 </step>
 <step id="clean">
 <tasklet ref="cleanTasklet" />
 </step>
</job>

<bean id="skippedDecider"
 class="com.manning.sbia.ch02.structure.

 ➥ SkippedDecider" />

NOTE Chapter 10 covers the decider XML element, the corresponding
JobExecutionDecider interface, and the job execution flow. We introduce
these concepts here only to illustrate the structure of a Spring Batch job.

Notice from the previous XML fragment that Spring Batch XML is expressive enough
to allow job configuration to be human readable. If your editor supports XML, you
also benefit from code completion and code validation when editing your XML job
configuration. An integrated development environment like the Eclipse-based Spring-
Source Tool Suite also provides a graphical view of a job configuration, as shown in
figure 2.6. To get this graph, open the corresponding XML file and select the Batch-
Graph tab at the bottom of the editor.

NOTE The SpringSource Tool Suite is a free Eclipse-based product that pro-
vides tooling for Spring applications (code completion for Spring XML files,
bean graphs, and much more). It also provides support for projects in the
Spring portfolio like Spring Batch. Appendix A covers how to install and use
the SpringSource Tool Suite for Spring Batch applications.

We won’t go into further details here of configuration and execution flow, as chap-
ters 3 and 10 respectively cover these topics thoroughly. Now that you know that a
Spring Batch job is a sequence of steps and that you can control job flow, let’s see
what makes up a step.
PROCESSING WITH TASKLETSTEP

Spring Batch defines the Step interface to embody the concept of a step and provides
implementations like FlowStep, JobStep, PartitionStep, and TaskletStep. The only
implementation you care about as an application developer is TaskletStep, which
delegates processing to a Tasklet object. As you discovered in chapter 1, the Tasklet

Defines decision
logic

45Anatomy of a job
Java interface contains only one method, execute, to process some unit of work. Cre-
ating a step consists of either writing a Tasklet implementation or using one pro-
vided by Spring Batch.

 You implement your own Tasklet when you need to perform processing, such as
decompressing files, calling a stored procedure, or deleting temporary files at the end
of a job.

 If your step follows the classic read-process-write batch pattern, use the Spring
Batch XML chunk element to configure it as a chunk-processing step. The chunk ele-
ment allows your step to use chunks to efficiently read, process, and write data.

NOTE The Spring Batch chunk element is mapped to a Tasklet imple-
mented by the ChunkOrientedTasklet class.

You now know that a job is a sequence of steps and that you can easily define this
sequence in Spring Batch XML. You implement steps with Tasklets, which are either
chunk oriented or completely customized. Let’s move on to the runtime.

Figure 2.6 A job flow in the SpringSource Tool Suite. The tool displays a graph based on the job model
defined in Spring Batch XML.

46 CHAPTER 2 Spring Batch concepts
2.3.2 Running job instances and job executions

Because batch processes handle data automatically, being able to monitor what they’re
doing or what they’ve done is a must. When something goes wrong, you need to decide
whether to restart a job from the beginning or from where it failed. To do this, you
need to strictly define the identity of a job run and reliably store everything the job
does during its run. This is a difficult task, but Spring Batch handles it all for you.
THE JOB, JOB INSTANCE, AND JOB EXECUTION

We defined a job as a batch process composed of a sequence of steps. Spring Batch also
includes the concepts of job instance and job execution, both related to the way the frame-
work handles jobs at runtime. Table 2.2 defines these concepts and provides examples.

Figure 2.7 illustrates the correspon-
dence between a job, its instances, and
their executions for two days of execu-
tions of the import products job.

 Now that we’ve defined the rela-
tionship between job, job instance,
and job execution, let’s see how to
define a job instance in Spring Batch.

DEFINING A JOB INSTANCE

In Spring Batch, a job instance consists
of a job and job parameters. When we
speak about the June 27, 2010,
instance of our import products job,
the date is the parameter that defines
the job instance (along with the job
itself). This is a simple yet powerful
way to define a job instance, because
you have full control over the job parameters, as shown in the following snippet:

jobLauncher.run(job, new JobParametersBuilder()
 .addString("date", "2010-06-27")
 .toJobParameters()
);

As a Spring Batch developer, you must keep in mind how to uniquely define a job
instance.

Table 2.2 Definitions for job, job instance, and job execution

Term Description Example

Job A batch process, or sequence of steps The import products job

Job instance A specific run of a job The import products job run on June 27, 2010

Job execution The execution of a job instance (with
success or failure)

The first run of the import products job on
June 27, 2010

Job
import products job

Job execution
completed

Job execution
failed

Job execution
completed

Job instance
2010-06-27

Job instance
2010-06-28

Figure 2.7 A job can have several job instances,
which can have several job executions. The import
products job executes daily, so it should have one
instance per day and one or more corresponding
executions, depending on success or failure.

47Anatomy of a job
JOB INSTANCE A job instance consists of a job and job parameters. We
define this contract with the following equation: JobInstance = Job + Job-
Parameters.

The previous equation is important to remember. In our example, a job instance is
temporal, as it refers to the day it was launched. But you’re free to choose what param-
eters constitute your job instances thanks to job parameters: date, time, input files, or
simple sequence counter.

 What happens if you try to run the same job several times with the same parame-
ters? It depends on the lifecycle of job instances and job executions.

THE LIFECYCLE OF A JOB INSTANCE AND JOB EXECUTION

Several rules apply to the lifecycle of a job instance and job execution:

■ When you launch a job for the first time, Spring Batch creates the correspond-
ing job instance and a first job execution.

■ You can’t launch the execution of a job instance if a previous execution of the
same instance has already completed successfully.

■ You can’t launch multiple executions of the same instance at the same time.

We hope that by now all these concepts are clear. As an illustration, let’s perform runs
of the import products job and analyze the job metadata that Spring Batch stores in
the database.

MULTIPLE RUNS OF THE IMPORT PRODUCTS JOB

The import products job introduced in chapter 1 is supposed to run once a day to
import all the new and updated products from the catalog system. To see how Spring
Batch updates the job metadata in the persistent job repository previously configured,
make the following sequence of runs:

■ Run the job for June 27, 2010. The run will succeed.
■ Run the job a second time for June 27, 2010. Spring Batch shouldn’t launch the

job again because it’s already completed for this date.
■ Run the job for June 28, 2010, with a corrupted archive. The run will fail.
■ Run the job for June 28, 2010, with a valid archive. The run will succeed.

Starting the database:

Step 1 Launch the LaunchDatabaseAndConsole program.

Running the job for June 27, 2010:

Step 1 Copy the products.zip file from the input directory into the root directory
of the ch02 project.

Step 2 Run the LaunchImportProductsJob class: this launches the job for
June 27, 2010.

Step 3 Run the LaunchSpringBatchAdmin program from the code samples to start
an embedded web container with the Spring Batch Admin application
running.

48 CHAPTER 2 Spring Batch concepts
Step 4 View instances of the import products job at the following URL: http://
localhost:8080/springbatchadmin/jobs/importProducts. Figure 2.8 shows
the graphical interface with the job instances and the job repository cre-
ated for this run.

Step 3 Follow the links from the Job Instances view to get to the details of the cor-
responding execution, as shown in figure 2.9.

NOTE You must check the job parameters to be sure of the execution
identity. For example, the date job parameter tells you that this is an
execution of the June 27, 2010, instance. The Start Date attribute indi-
cates exactly when the job ran.

Figure 2.8 After the run for June 27, 2010, Spring Batch created a job instance in the job
repository. The instance is marked as COMPLETED and is the first and only execution to complete
successfully.

Figure 2.9 Details (duration, number of steps executed, and so on) of the first and only job
execution for June 27, 2010. You can also learn about the job instance because the job
parameters appear in the table.

49Anatomy of a job
Running the job a second time for June 27, 2010:

Step 1 Run the LaunchImportProductsJob class. You get an exception because an
execution already completed successfully, so you can’t launch another exe-
cution of the same instance.

Running the job for June 28, 2010, with a corrupted archive:

Step 1 Delete the products.zip file and the importproductsbatch directory cre-
ated to decompress the archive.

Step 2 Copy the products_corrupted.zip from the input directory into the root of
the project and rename it products.zip.

Step 3 Simulate launching the job for June 28, 2010, by changing the job parame-
ters in LaunchImportProductsJob; for example:

jobLauncher.run(job, new JobParametersBuilder()
 .addString("inputResource", "file:./products.zip")
 .addString("targetDirectory", "./importproductsbatch/")
 .addString("targetFile","products.txt")
 .addString("date", "2010-06-28")
 .toJobParameters()
);

Step 4 Run the LaunchImportProductsJob class. You get an exception saying that
nothing can be extracted from the archive (the archive is corrupted).

Step 5 Go to http://localhost:8080/springbatchadmin/jobs/importProducts,
and you’ll see that the import products job has another instance, but this
time the execution failed.

Running the job for June 28, 2010 with a valid archive:

Step 1 Replace the corrupted archive with the correct file (the same as for the
first run).

Step 2 Launch the job again.

Step 3 Check in Spring Batch Admin that the instance for June 28, 2010, has com-
pleted. Figure 2.10 shows the two executions of the June 28, 2010, instance.

Figure 2.10 The two June 28, 2010, executions. The first failed because of a corrupted
archive, but the second completed successfully, thereby completing the job instance.

50 CHAPTER 2 Spring Batch concepts
NOTE To run the tests from scratch after you run the job several times,
stop and restart the LaunchDatabaseAndConsole class.

You just put into practice the concepts of job instance and job execution. To do so,
you used a persistent job repository, which allowed you to visualize job instances and
executions. In this example, job metadata illustrated the concepts, but you can also
use this metadata for monitoring a production system. The metadata is also essential
to restart a failed job—a topic covered in depth in chapter 8.

2.4 Summary
This chapter is rich in Spring Batch concepts and terminology! Using a now well-
defined vocabulary, you can paint a clear picture of your batch applications. You
learned how the Spring Batch framework models these concepts, an important
requirement to understanding how to implement batch solutions. You saw the static
and dynamic aspects of jobs: static by modeling and configuring jobs with steps,
dynamic through the job runtime handling of job instances and executions. Restart-
ing failed jobs is an important requirement for some batch applications, and you saw
how Spring Batch implements this feature by storing job execution metadata; you also
saw the possibilities and limitations of this mechanism.

 With this picture of the Spring Batch model in mind, let’s move on to the next
chapter and see how to configure our batch applications with the Spring lightweight
container and Spring Batch XML.

Part 2

Core Spring Batch

Part 2 starts where part 1 left off. By now, you have a good understanding of
what Spring Batch is capable of, so it’s time to exhaustively cover the framework.

 Chapter 3 is about configuration: how to configure jobs, steps in jobs, listen-
ers, and infrastructure components like the job repository. You can use this
chapter as a reference for the XML syntax and the annotations you can use to
configure Spring Batch. You can also use this chapter to discover every single
piece of Spring Batch configuration.

 Chapter 4 covers how to launch batch jobs. There are myriads of ways to
launch batch jobs, depending on your requirements and the systems you’re
working on. Chapter 4 shows how to launch Spring Batch jobs from the com-
mand line and from HTTP requests. It also shows you how to schedule the execu-
tion of jobs with the system scheduler cron and with a Java-based scheduler like
Spring Scheduling. You’ll also see how to stop jobs properly.

 Do you remember chunk-oriented processing? This is the way Spring Batch
efficiently handles the classical read-process-write pattern in batch applications.
Chapters 5, 6, and 7 thoroughly cover each phase of chunk-oriented processing.

 Chapter 5 is about reading. You’ll learn how to configure ready-to-use com-
ponents to read from different data sources: JDBC, JPA, and Hibernate; flat and
XML files; and JMS queues.

 Chapter 6 covers writing. Again, Spring Batch provides off-the-shelf compo-
nents to write data to the most popular resources. Read this chapter to learn
how to leverage batch updates to write to a database efficiently, send emails, and
write to flat and XML files.

 Chapter 7 covers the processing phase of a chunk-oriented step. This is where you
can embed business logic to transform read items before they’re written and where
you can avoid sending an item to the writing phase through validation and filtering.

 Chapters 8 and 9 are about making your jobs more robust and reliable. Chapter 8
covers Spring Batch built-in features for bulletproofing jobs, like skip, retry, and
restart on failure. Chapter 9 provides an in-depth presentation of transaction manage-
ment in Spring Batch, as well as some transaction patterns you’ll definitely use in
batch applications.

Batch configuration
In chapter 2, we explored Spring Batch foundations, described all Spring Batch
concepts and entities, and looked at their interactions. The chapter introduced
configuring and implementing the structure of batch jobs and related entities with
Spring Batch XML.

 In this chapter, we continue the online store case study: reading products from
files, processing products, and integrating products in the database. Configuring
this process serves as the backdrop for describing all of Spring Batch’s configura-
tion capabilities.

 After describing Spring Batch XML capabilities, we show how to configure
batch jobs and related entities with this dedicated XML vocabulary. We also look
at configuring a repository for batch execution metadata. In the last part of this
chapter, we focus on advanced configuration topics and describe how to make
configuration easier.

This chapter covers
■ Configuring batch processes using Spring

Batch XML
■ Configuring batch jobs and related entities
■ Using advanced techniques to improve

configuration
53

54 CHAPTER 3 Batch configuration
 How should you read this chapter? You can use it as a reference for configuring
Spring Batch jobs and either skip it or come back to it for a specific configuration
need. Or, you can read it in its entirety to get an overview of nearly all the features
available in Spring Batch. We say an “overview” because when you learn about config-
uring a skipping policy, for example, you won’t learn all the subtleties of this topic.
That’s why you’ll find information in dedicated sections in other chapters to drill
down into difficult topics.

3.1 The Spring Batch XML vocabulary
Like all projects in the Spring portfolio and the Spring framework itself, Spring Batch
provides a dedicated XML vocabulary and namespace to configure its entities. This fea-
ture leverages the Spring XML schema–based configuration introduced in Spring 2 and
simplifies bean configuration, enabling configurations to operate at a high level by hid-
ing complexity when configuring entities and related Spring-based mechanisms.

 In this section, we describe how to use Spring Batch XML and the facilities it offers
for batch configuration. Without this vocabulary, we’d need intimate knowledge of
Spring Batch internals and entities that make up the batch infrastructure, which can
be tedious and complex to configure.

3.1.1 Using the Spring Batch XML namespace

Like most components in the Spring portfolio, Spring Batch configuration is based on
a dedicated Spring XML vocabulary and namespace. By hiding internal Spring Batch
implementation details, this vocabulary provides a simple way to configure core com-
ponents like jobs and steps as well as the job repository used for job metadata (all
described in chapter 2). The vocabulary also provides simple ways to define and cus-
tomize batch behaviors.

 Before we get into the XML vocabulary and component capabilities, you need to
know how use Spring Batch XML in Spring configuration files. In the following list-
ing, the batch namespace prefix is declared and used in child XML elements mixed
with other namespace prefixes, such as the Spring namespace mapped to the default
XML namespace.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/batch
 http://www.springframework.org/schema/batch/spring-batch.xsd">

 <batch:job id="importProductsJob">
 (...)
 </batch:job>

</beans>

Listing 3.1 Spring Batch XML namespace and prefix

55The Spring Batch XML vocabulary
Spring Batch uses the Spring standard mechanism to configure a custom XML
namespace: the Spring Batch XML vocabulary is implemented in Spring Batch jars,
automatically discovered, and handled by Spring. In listing 3.1, because Spring XML
Beans uses the default namespace, each Spring Batch XML element is qualified with
the batch namespace prefix.

 Note that a namespace prefix can be whatever you want; in our examples, we use
the batch and beans prefixes by convention.

Listing 3.2 declares the Spring Batch namespace as the default namespace in the root
XML element. In this case, the elements without a prefix correspond to Spring Batch
elements. Using this configuration style, you don’t need to repeat using the Spring
Batch namespace prefix for each Spring Batch XML element.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans
 xmlns="http://www.springframework.org/schema/batch"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="http://www.springframework.org/schema/batch
 http://www.springframework.org/schema/batch/spring-batch.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <job id="importProductsJob">

Listing 3.2 Using the Spring Batch namespace as the default namespace

Spring XML schema–based configuration
As of version 2.0, Spring uses an XML schema–based configuration system. XML
schemas replace the previous Document Type Definition (DTD)-driven configuration
system that mainly used two tags: bean for declaring a bean and property for inject-
ing dependencies (with our apologies to Spring for this quick-and-dirty summary).
While this approach works for creating beans and injecting dependencies, it’s insuf-
ficient to define complex tasks. The DTD bean and property mechanism can’t hide
complex bean creation, which is a shortcoming in configuring advanced features like
aspect-oriented programming (AOP) and security. Before version 2.0, XML configura-
tion was non-intuitive and verbose.

Spring 2.0 introduced a new, extensible, schema-based XML configuration system.
On the XML side, XML schemas describe the syntax, and on the Java side, corre-
sponding namespace handlers encapsulate the bean creation logic. The Spring
framework provides namespaces for its modules (AOP, transaction, Java Message
Service [JMS], and so on), and other Spring-based projects can benefit from the
namespace extension mechanism to provide their own namespaces. Each Spring
portfolio project comes with one or more dedicated vocabularies and namespaces to
provide the most natural and appropriate way to configure objects using module-
specific tags.

56 CHAPTER 3 Batch configuration
 (...)
 </job>

</beans:beans>

With a configuration defined using Spring Batch XML, you can now leverage all the
facilities it provides. In the next section, we focus on Spring Batch XML features and
describe how to configure and use those capabilities.

3.1.2 Spring Batch XML features

Spring Batch XML is the central feature in Spring Batch configurations. You use this
XML vocabulary to configure all batch entities described in chapter 2. Table 3.1 lists
and describes the main tags in Spring Batch XML.

Spring Batch XML configures the structure of batches, but specific entities need to be
configured using Spring features. Spring Batch XML provides the ability to interact
easily with standard Spring XML. You can configure other entities like item readers
and writers as simple beans and then reference them from entities configured with
Spring Batch XML. Figure 3.1 describes the possible interactions between the Spring
Batch namespace and the Spring default namespace.

Table 3.1 Main tags in Spring Batch XML

Tag name Description

job Configures a batch job

step Configures a batch step

tasklet Configures a tasklet in a step

chunk Configures a chunk in a step

job-repository Configures a job repository for metadata

Spring default namespace

Entity

Entity

Bean

Bean

Configures

Spring Batch namespace

Spring Batch configuration

Bean
Configures

Figure 3.1 Interactions
between Spring Batch and
Spring XML vocabularies.
The batch vocabulary
defines the structure of
batches. Some batch
entities, such as a job, can
refer to Spring beans
defined with the beans
vocabulary, such as item
readers and writers.

57Configuring jobs and steps
Now that you’ve seen the capabilities provided for Spring Batch configuration, it’s
time to dive into details. In our case study, these capabilities let you configure a batch
job and its steps.

3.2 Configuring jobs and steps
As described in chapter 2, the central entities in Spring Batch are jobs and steps,
which describe the details of batch processing. The use case entails defining what the
batch must do and how to organize its processing. For our examples, we use the
online store case study. After defining the job, we progressively extend it by adding
internal processing.

 We focus here on how to configure the core entities of batch processes; we also
examine their relationships at the configuration level. Let’s first look at the big picture.

3.2.1 Job entities hierarchy

Spring Batch XML makes the configuration of jobs and related entities easier. You don’t
need to configure Spring beans corresponding to internal Spring Batch objects;
instead you can work at a higher level of abstraction, specific to Spring Batch. Spring
Batch XML configures batch components such as job, step, tasklet, and chunk, as well
as their relationships. Together, all these elements make up batch processes. Figure 3.2
depicts this hierarchy.

 Within Spring Batch XML, this hierarchy corresponds to nested XML elements
with the ability to specify parameters at each level, as shown in the following listing.
For example, a job defined with the job element can contain one or more steps,
which you define with step elements within the job element. Similar types of configu-
rations can be used for steps, tasklets, and chunks.

Job configuration

Step configuration

Spring Batch configuration

Tasklet configuration

Chunk configuration
Figure 3.2 The entity configuration
hierarchy for batch processing. The
Spring configuration contains the job
configuration, which contains the
step configuration, which contains
the tasklet configuration, which con-
tains the chunk configuration.

58 CHAPTER 3 Batch configuration
<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWriteStep">
 <batch:tasklet transaction-manager="transactionManager">
 <batch:chunk
 reader="productItemReader"
 processor="productItemProcessor"
 writer="productItemWriter"
 commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

For our case study, these nested elements are used to define each job, particularly the
reading, processing, and writing logic.

 Now that we’ve described high-level configuration concepts for Spring Batch enti-
ties, let’s examine configuration details using Spring Batch XML.

3.2.2 Configuring jobs

When implementing a batch application with Spring Batch, the top-level entity is the
job, and it’s the first entity you configure when defining a batch process. In the con-
text of our case study, the job is a processing flow that imports and handles products
for the web store. (The job concept is described in chapter 2, section 2.3.)

 To configure a job, you use the Spring Batch XML job element and the attributes
listed in Table 3.2.

The attributes parent and abstract deal with configuration inheritance in Spring
Batch; for details, see section 3.4.4. Let’s focus here on the restartable, incre-
menter, and job-repository attributes.

Listing 3.3 Nested configuration of a job

Table 3.2 Job attributes

Job attribute name Description

id Identifies the job.

restartable Specifies whether Spring Batch can restart the job. The default is true.

incrementer Refers to an entity used to set job parameter values. This entity is required when
trying to launch a batch job through the startNextInstance method of the
JobOperator interface.

abstract Specifies whether the job definition is abstract. If true, this job is a parent job
configuration for other jobs. It doesn’t correspond to a concrete job configuration.

parent Defines the parent of this job.

job-repository Specifies the job repository bean used for the job. Defaults to a
jobRepository bean if none specified.

59Configuring jobs and steps
 The restartable attribute specifies whether Spring Batch can restart a job. If
false, Spring Batch can’t start the job more than once; if you try, Spring Batch throws
the exception JobRestartException. The following snippet describes how to config-
ure this behavior for a job:

<batch:job id="importProductsJob" restartable="false">
 (...)
</batch:job>

The job-repository attribute is a bean identifier that specifies which job repository
to use for the job. Section 3.3 describes this task.

 The incrementer attribute provides a convenient way to create new job parameter
values. Note that the JobLauncher doesn’t need this feature because you must provide
all parameter values explicitly. When the startNextInstance method of the JobOper-
ator class launches a job, though, the method needs to determine new parameter val-
ues and use an instance of the JobParametersIncrementer interface:

public interface JobParametersIncrementer {
 JobParameters getNext(JobParameters parameters);
}

The getNext method can use the parameters from the previous job instance to create
new values.

 You specify an incrementer object in the job configuration using the incrementer
attribute of the job element, for example:

<batch:job id="importProductsJob" incrementer="customIncrementer">
 (...)
</batch:job>

<bean id="customIncrementer" class="com.manning.sbia

 ➥ .configuration.job.CustomIncrementer"/>

Chapter 4, section 4.5.1, describes the use of the JobOperator class in more detail.
 Besides these attributes, the job element supports nested elements to configure lis-

teners and validators. We describe listeners in section 3.4.3.
 You can configure Spring Batch to validate job parameters and check that all

required parameters are present before starting a job. To validate job parameters, you
implement the JobParametersValidator interface:

public interface JobParametersValidator {
 void validate(JobParameters parameters)
 throws JobParametersInvalidException;
}

The validate method throws a JobParametersInvalidException if a parameter is
invalid. Spring Batch provides a default implementation of this interface with the
DefaultJobParametersValidator class that suits most use cases. This class allows you
to specify which parameters are required and which are optional. The following list-
ing describes how to configure and use this class in a job.

60 CHAPTER 3 Batch configuration
<batch:job id="importProductsJob">
 (...)
 <batch:validator ref="validator"/>
</batch:job>

<bean id="validator" class="org.springframework.batch

 ➥ .core.job.DefaultJobParametersValidator">
 <property name="requiredKeys">
 <set>
 <value>date</value>
 </set>
 </property>
 <property name="optionalKeys">
 <set>
 <value>productId</value>
 </set>
 </property>
</bean>

The validator element’s ref attribute references the validator bean. This configura-
tion uses a bean of type DefaultJobParametersValidator to specify the required and
optional parameter keys. The requiredKeys and optionalKeys properties of the val-
idator class are used to set these values.

 Now let’s look at configuring job steps to define exactly what processing takes
place in that job.

3.2.3 Configuring steps

Here, we go down a level in the job configuration and describe what makes up a job:
steps. Don’t hesitate to refer back to figure 3.2 to view the relationships between all
the batch entities. A step is a phase in a job; chapter 2, section 2.3.1, describes these
concepts. Steps define the sequence of actions a job will take, one at a time. In the
online store use case, you receive products in a compressed file; the job decom-
presses the file before importing and saving the products in the database, as illus-
trated in figure 3.3.

 You configure a job step using the step element and the attributes listed in table 3.3.

Listing 3.4 Configuring a job parameter validator

Zipped data
file

Step
(decompress)

Step
(readWrite)

Next

Unzipped
data file

Reads Writes
Reads and

handles

importProductsJob
Figure 3.3 The steps
of the import products
job: decompress
and readWrite. The
decompress step
first reads a zip file
and decompresses it
to another file. The
readWrite step reads
the decompressed file.

61Configuring jobs and steps
The attributes parent and abstract deal with configuration inheritance in Spring
Batch; for details, see section 3.4.4.

 Configuring a step is simple because a step is a container for a tasklet, executed at
a specific point in the flow of a batch process. For our use case, you define what steps
take place and in what order. Product files come in as compressed data files to opti-
mize file uploads. A first step decompresses the data file, and a second step processes
the data. The following fragment describes how to configure this flow:

<job id="importProductsJob">
 <step id="decompress" next="readWrite">
 (...)
 </step>
 <step id="readWrite">
 (...)
 </step>
</job>

You always define the step element as a child element of the job element. Spring Batch
uses the id attribute to identify objects in a configuration. This aspect is particularly
important to use steps in a flow. The next attribute
of the step element is set to define which step to
execute next. In the preceding fragment, the step
identified as decompress is executed before the
step identified as readWrite.

 Now that we’ve described the job and step ele-
ments, let’s continue our tour of Spring Batch core
objects with tasklets and chunks, which define what
happens in a step.

3.2.4 Configuring tasklets and chunks

The tasklet and chunk are step elements used to
specify processing. Chapter 2, section 2.3.1,
describes these concepts. To import products, you
successively configure how to import product data,
how to process products, and where to put prod-
ucts in the database, as illustrated in figure 3.4.

Table 3.3 Step attributes

Step attribute name Description

next The next step to execute in a sequence of steps.

parent The parent of the step configuration.

abstract Specifies whether the step definition is abstract. If true, this step is a par-
ent step configuration for other steps. It doesn’t correspond to a concrete
step configuration.

readWrite step

Tasklet

Chunk

Imports products

Processes products

Stores products

Figure 3.4 The import product tasklet
configuration and chunk configuration
define three steps: import, process,
and store products.

62 CHAPTER 3 Batch configuration
TASKLET

A tasklet corresponds to a transactional, potentially repeatable process occurring in a
step. You can write your own tasklet class by implementing the Tasklet interface or
use the tasklet implementations provided by Spring Batch. Implementing your own
tasklets is useful for specific tasks, such as decompressing an archive or cleaning a
directory. Spring Batch provides more generic tasklet implementations, such as to call
system commands or to do chunk-oriented processing.

 To configure a tasklet, you define a tasklet element within a step element.
Table 3.4 lists the attributes of the tasklet element.

Listing 3.5 shows how to use the last three attributes of the tasklet element, whatever
the tasklet type. Because you want to write the products from the compressed import
file to a database, you must specify a transaction manager to handle transactions asso-
ciated with inserting products in the database. This listing also specifies additional
parameters to define restart behavior.

<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWriteStep">
 <batch:tasklet
 transaction-manager="transactionManager"
 start-limit="3"
 allow-start-if-complete="true">
 (...)
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="transactionManager" class="(...)">
 (...)
</bean>

Table 3.4 Tasklet attributes

Tasklet attribute name Description

ref A Spring bean identifier whose class implements the Tasklet
interface. You must use this attribute when implementing a custom
tasklet.

transaction-manager The Spring transaction manager to use for tasklet transactions. By
default, a tasklet is transactional, and the default value of the attri-
bute is transactionManager.

start-limit The number of times Spring Batch can restart a tasklet for a retry.

allow-start-if-complete Specifies whether Spring Batch can restart a tasklet even if it com-
pleted for a retry.

Listing 3.5 Configuring tasklet attributes

63Configuring jobs and steps
The transaction-manager attribute contains the bean identifier corresponding to
the Spring transaction manager to use during the tasklet’s processing. The bean must
implement the Spring PlatformTransactionManager interface. The attributes start-
limit and allow-start-if-complete specify that Spring Batch can restart the tasklet
three times in the context of a retry even if the tasklet has completed. We describe in
section 3.2.5 how to control rollback for a step.

 In the case of a custom tasklet, you can reference the Spring bean implementing
the Tasklet interface with the ref attribute. Spring Batch delegates processing to this
class when executing the step. In our use case, decompressing import files doesn’t cor-
respond to processing that Spring Batch natively supports, so you need a custom task-
let to implement decompression. The following snippet describes how to configure
this tasklet:

<job id="importProductsJob">
 <step id="decompress" next="readWrite">
 <tasklet ref="decompressTasklet" />
 </step>
</job>

Listing 1.5 in chapter 1 shows the code for the DecompressTasklet tasklet and list-
ing 1.6 shows its configuration.

 Spring Batch also supports using chunks in tasklets. The chunk child element of
the tasklet element configures chunk processing. Note that you don’t need to use
the ref attribute of the tasklet element. On the Java side, the ChunkOrientedTask-
let class implements chunk processing.

 Configuring a tasklet can be simple, but to implement chunk processing, the con-
figuration gets more complex because more objects are involved.

CHUNK-ORIENTED TASKLET

Spring Batch provides a tasklet class to process data in chunks: the ChunkOriented-
Tasklet. You typically use chunk-oriented tasklets for read-write processing. In chunk
processing, Spring Batch reads data chunks from a source and transforms, validates,
and then writes data chunks to a destination. In the online store case study, this corre-
sponds to importing products into the database.

 To configure chunk objects, you use an additional level of configuration using the
chunk element with the attributes listed in table 3.5.

Table 3.5 Chunk attributes

Chunk attribute name Description

reader Bean identifier used to read data from a chunk. The bean must
implement the Spring Batch ItemReader interface.

processor Bean identifier used to process data from a chunk. The bean
must implement the Spring Batch ItemProcessor interface.

writer Bean identifier used to write data from a chunk. The bean must
implement the Spring Batch ItemWriter interface.

64 CHAPTER 3 Batch configuration
The first four attributes (reader, processor, writer, commit-interval) in table 3.5
are the most commonly used in chunk configuration. These attributes define which
entities are involved in processing chunks and the number of items to process before
committing.

<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWrite">
 <batch:tasklet>
 <batch:chunk
 reader="productItemReader"
 processor="productItemProcessor"
 writer="productItemWriter"
 commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="productItemReader" class="(...)">
 (...)
</bean>

<bean id="productItemProcessor" class="(...)">
 (...)
</bean>

commit-interval Number of items to process before issuing a commit. When
the number of items read reaches the commit interval number,
the entire corresponding chunk is written out through the item
writer and the transaction is committed.

skip-limit Maximum number of skips during processing of the step. If pro-
cessing reaches the skip limit, the next exception thrown on
item processing (read, process, or write) causes the step to fail.

skip-policy Skip policy bean that implements the SkipPolicy interface.

retry-policy Retry policy bean that implements the RetryPolicy interface.

retry-limit Maximum number of retries.

cache-capacity Cache capacity of the retry policy.

reader-transactional-queue When reading an item from a JMS queue, whether reading is
transactional.

processor-transactional Whether the processor used includes transactional processing.

chunk-completion-policy Completion policy bean for the chunk that implements the
CompletionPolicy interface.

Listing 3.6 Using tasklet configuration attributes

Table 3.5 Chunk attributes (continued)

Chunk attribute name Description

Specifies entities
used by the chunk

B

Specifies
commit intervalC

65Configuring jobs and steps
<bean id="productItemWriter" class="(...)">
 (...)
</bean>

The attributes reader, processor, and writer B correspond to Spring bean identifi-
ers defined in the configuration. For more information on these topics, see chapter 5
for configuring item readers; chapter 6 for configuring item writers; and chapter 7 for
configuring item processors. The commit-interval attribute C defines that Spring
Batch will execute a database commit after processing each 100 elements.

 Other attributes deal with configuring the skip limit, retry limit, and completion
policy aspects of a chunk. The following listing shows how to use these attributes.

<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWrite">
 <batch:tasklet>
 <batch:chunk
 (...)
 skip-limit="20"
 retry-limit="3"
 cache-capacity="100"
 chunk-completion-policy="timeoutCompletionPolicy"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="timeoutCompletionPolicy"
 class="org.springframework.batch.repeat

 ➥ .policy.TimeoutTerminationPolicy">
 <constructor-arg value="60"/>

</bean>

In listing 3.7, the skip-limit attribute configures the maximum number of items that
Spring Batch can skip. The retry-limit attribute sets the maximum number of
retries. The cache-capacity attribute sets the cache capacity for retries, meaning the
maximum number of items that can fail without being skipped or recovered. If the
number is exceeded, an exception is thrown. The chunk-completion-policy attri-
bute configures the completion policy to define a chunk-processing timeout.

 We’ve described rather briefly how to configure skip, retry, and completion in
steps. We look at this topic in more detail in chapter 8, where we aim for batch robust-
ness and define error handlers.

 The last attributes correspond to more advanced configurations regarding transac-
tions. We describe these in section 3.2.5.

 Most of the attributes described in table 3.5 have equivalent child elements to
allow embedding beans in the chunk configuration. These beans are anonymous and
specially defined for the chunk. Table 3.6 describes chunk children elements usable in
this context.

Listing 3.7 Configuring chunk retry, skip, and completion

66 CHAPTER 3 Batch configuration
The following listing describes how to rewrite listing 3.6 using child elements instead
of attributes for the reader, processor, and writer.

<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWrite">
 <batch:tasklet>
 <batch:chunk commit-interval="100">
 <batch:reader>
 <bean class="(...)">
 (...)
 </bean>
 </batch:reader>
 <batch:processor>
 <bean class="(...)">
 (...)
 </bean>
 </batch:processor>
 <batch:writer>
 <bean class="(...)">
 (...)
 </bean>
 </batch:writer>
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

You can configure other objects with child elements in chunks. Table 3.7 lists these
additional elements.

Table 3.6 Chunk child elements

Chunk child element Description

reader Corresponds to the reader attribute

processor Corresponds to the processor attribute

writer Corresponds to the writer attribute

skip-policy Corresponds to the skip-policy attribute

retry-policy Corresponds to the retry-policy attribute

Listing 3.8 Using child elements in the tasklet configuration

Table 3.7 Additional chunk child elements

Chunk child element name Description

retry-listeners See section 3.4.3.

skippable-exception-classes A list of exceptions triggering skips.

Uses child
element
instead of
attribute

67Configuring jobs and steps
The chunk element can configure which exceptions trigger skips and retries using,
respectively, the elements skippable-exception-classes and retryable-

exception-classes. The following listing shows these elements specifying which
exceptions will trigger an event (include child element) and which ones won’t
(exclude child element).

<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWrite">
 <batch:tasklet>
 <batch:chunk commit-interval="100"
 skip-limit="10">
 <skippable-exception-classes>
 <include class="org.springframework.batch

 ➥ .item.file.FlatFileParseException"/>
 <exclude class="java.io.FileNotFoundException"/>
 </skippable-exception-classes>
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

You can use the same mechanism for the retryable-exception-classes element as
used for the skippable-exception-classes element to configure retries. The follow-
ing fragment configures retries when DeadlockLoserDataAccessExceptions are
caught:

<batch:chunk commit-interval="100" retry-limit="3">
 <retryable-exception-classes>
 <include
 class="org.springframework.dao.DeadlockLoserDataAccessException"/>
 </retryable-exception-classes>
</batch:chunk>

The last item in table 3.7 deals with streams. We provide a short description of the fea-
ture and show how to configure it. Chapter 8 provides more details on this topic.
Streams provide the ability to save state between executions for step restarts. The step
needs to know which instance is a stream (by implementing the ItemStream inter-
face). Spring Batch automatically registers as streams everything specified in the

retryable-exception-classes A list of exceptions triggering retries.

streams Each stream element involved in the step. By default, objects
referenced using a reader, processor, and writer are
automatically registered. You don’t need to specify them
again here.

Listing 3.9 Configuring skippable exceptions

Table 3.7 Additional chunk child elements (continued)

Chunk child element name Description

68 CHAPTER 3 Batch configuration
reader, processor, and writer attributes. Note that it’s not the case when the step
doesn’t directly reference entities. That’s why these entities must be explicitly regis-
tered as streams, as illustrated in figure 3.5.

 Let’s look at an example. If you use a composite item writer that isn’t a stream and
that internally uses stream writers, the step doesn’t have references to those writers. In
this case, you must define explicitly the writers as streams for the step in order to avoid
problems on restarts when errors occur. The following listing describes how to config-
ure this aspect using the streams child element of the chunk element.

<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWrite">
 <batch:tasklet>
 <batch:chunk reader="productItemReader" writer="compositeWriter"/>
 <streams>
 <stream ref="productItemWriter1"/>
 <stream ref="productItemWriter2"/>
 </streams>
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="compositeWriter"
 class="org.springframework.batch.item.support.CompositeItemWriter">
 <property name="delegates">
 <list>
 <ref bean="productItemWriter1"/>
 <ref bean="productItemWriter2"/>
 </list>
 </property>
</bean>

Listing 3.10 Configuring streams in a chunk

Tasklet > Chunk

reader

writer

streams

Reader

A
ut

om
at

ic
al

ly

re
gi

st
er

ed

Composite writer

WriterWriter
Explicit registration

necessary

Figure 3.5 Registration of entities as streams. Spring Batch automatically registers
readers, processors, and writers if they implement the ItemStream interface.
Explicit registration is necessary if Spring Batch doesn’t know about the streams
to register, such as the writers in the figure used through a composite writer.

References writers
as stream

B

References writers in
composite writer

C

69Configuring jobs and steps
In listing 3.10, you must register as streams B the item writers C involved in the com-
posite item writer for the step using the streams element as a child of the chunk ele-
ment. The streams element then defines one or more stream elements—in this
example, two stream elements B.

 In this section, we described how to configure a batch job with Spring Batch. We
detailed the configuration of each related core object. We saw that transactions guar-
antee batch robustness and are involved at several levels in the configuration. Because
this is an important issue, we gather all configuration aspects related to transactions in
the next section.

3.2.5 Configuring transactions

Transactions in Spring Batch are an important topic: transactions contribute to the
robustness of batch processes and work in combination with chunk processing. You
configure transactions at different levels because transactions involve several types of
objects. In the online store use case, you validate a set of products during processing.

 The first thing to configure is the Spring transaction manager because Spring
Batch is based on the Spring framework and uses Spring’s transaction support. Spring
provides built-in transaction managers for common persistent technologies and
frameworks. For JDBC, you use the DataSourceTransactionManager class as config-
ured in the following snippet:

<bean id="transactionManager">
 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="batchDataSource"/>
</bean>

Every Spring transaction manager must be configured using the factory provided by
the framework to create connections and sessions. In the case of JDBC, the factory is
an instance of the DataSource interface.

 Once you configure the transaction manager, other configuration elements can
refer to it from different levels in the batch configuration, such as from the tasklet
level. The next snippet configures the transaction manager using the transaction-
manager attribute:

<batch:job id="importProductsJob">
 (...)
 <batch:step id="readWrite">
 <batch:tasklet transaction-manager="transactionManager" (...)>
 (...)
 </batch:tasklet>
 </batch:step>
</batch:job>

Section 3.3 explains that you must also use a transaction manager to configure entities
to interact with a persistent job repository.

 Now that you know which Spring transaction manager to use, you can define how
transactions are handled during processing. As described in chapter 1, section 1.4.1,

70 CHAPTER 3 Batch configuration
Spring Batch uses chunk processing to handle items. That’s why Spring Batch pro-
vides a commit interval tied to the chunk size. The commit-interval attribute config-
ures this setting at the chunk level and ensures that Spring Batch executes a commit
after processing a given number of items. The following example sets the commit
interval to 100 items:

<batch:tasklet>
 <batch:chunk (...) commit-interval="100"/>
</batch:tasklet>

Transactions have several attributes defining transactional behaviour, isolation, and
timeout. These attributes specify how transactions behave and can affect perform-
ance. Because Spring Batch is based on Spring transactional support, configuring
these attributes is generic and applies to all persistent technologies supported by the
Spring framework. Spring Batch provides the transaction-attributes element in
the tasklet element for this purpose, as described in following snippet:

<batch:tasklet>
 <batch:chunk reader="productItemReader"
 writer="productItemReader"
 commit-interval="100"/>
 <batch:transaction-attributes isolation="DEFAULT"
 propagation="REQUIRED"
 timeout="30"/>
 </batch:chunk>
</batch:tasklet>

Transactional attributes are configured using the transaction-attributes element B
and its attributes. The isolation attribute specifies the isolation level used for the data-
base and what is visible from outside transactions. The READ_COMMITTED level prevents
dirty reads (reading data written by a noncommitted transaction); READ_UNCOMMITTED
specifies that dirty reads, nonrepeatable reads, and phantom reads can occur, meaning
that all intermediate states of transactions are visible for other transactions;

The Spring transaction manager
The Spring framework provides generic transactional support. Spring bases this
support on the PlatformTransactionManager interface that provides a contract
to handle transaction demarcations: beginning and ending transactions with a com-
mit or rollback. Spring provides implementations for a large range of persistent
technologies and frameworks like JDBC, Java Persistence API (JPA), and so on. For
JDBC, the implementing class is DataSourceTransactionManager, and for JPA
it’s JpaTransactionManager.

Spring builds on this interface to implement standard transactional behavior and al-
lows configuring transactions with Spring beans using AOP or annotations. This ge-
neric support doesn’t need to know which persistence technology is used and is
completely independent of it.

Sets commit interval

Configures
transaction
attributes

B

71Configuring jobs and steps
REPEATABLE_READ prevents dirty reads and nonrepeatable reads, but phantom reads can
still occur because intermediate data can disappear between two reads; and SERIALIZ-
ABLE prevents dirty reads, nonrepeatable reads, and phantom reads, meaning that a
transaction is completely isolated and no intermediate states can be seen. Choosing the
DEFAULT value leaves the choice of the isolation level to the database, which is a good
choice in almost all cases.

 The propagation attribute specifies the transactional behavior to use. Choosing
REQUIRED implies that processing will use the current transaction if it exists and create
a new one if it doesn’t. The Spring class TransactionDefinition declares all valid val-
ues for these two attributes. Finally, the timeout attribute defines the timeout in sec-
onds for the transaction. If the timeout attribute is absent, the default timeout of the
underlying system is used.

The Spring framework follows the conventions outlined in the sidebar “Rollback and
commit conventions in Spring and Java Enterprise Edition.” In addition, Spring Batch
lets you configure specific exception classes that don’t trigger rollbacks when thrown.
You configure this feature in a tasklet using the no-rollback-exception-classes ele-
ment, as described in the following snippet:

<batch:tasklet>
 (...)
 <batch:no-rollback-exception-classes>
 <batch:include
 class="org.springframework.batch.item.validator.ValidationException"/>
 </batch:no-rollback-exception-classes>
</batch:tasklet>

In this snippet, Spring issues a commit even if the unchecked Spring Batch exception
ValidationException is thrown during batch processing.

 Spring Batch also provides parameters for special cases. The first case is readers built
on a transactional resource like a JMS queue. For JMS, a step doesn’t need to buffer data

Rollback and commit conventions in Spring and Java Enterprise Edition
Java defines two types of exceptions: checked and unchecked. A checked exception
extends the Exception class, and a method must explicitly handle it in a try-catch
block or declare it in its signature’s throws clause. An unchecked exception extends
the RuntimeException class, and a method doesn’t need to catch or declare it. You
commonly see checked exceptions used as business exceptions (recoverable) and
unchecked exceptions as lower-level exceptions (unrecoverable by the business logic).

By default, in Java EE and Spring, commit and rollback are automatically triggered by
exceptions. If Spring catches a checked exception, a commit is executed. If Spring
catches an unchecked exception, a rollback is executed. You can configure Spring’s
transactional support to customize this behavior by setting which exceptions trigger
commits and rollbacks.

72 CHAPTER 3 Batch configuration
because JMS already provides this feature. For this type of resource, you need to specify
the reader-transactional-queue attribute on the corresponding chunk, as shown in
the following listing.

<batch:tasklet>
 <batch:chunk reader="productItemReader"
 reader-transactional-queue="true" (...)/>
</batch:tasklet>

<bean id="productItemReader"
 class="org.springframework.batch.item.jms.JmsItemReader">
 <property name="itemType"
 value="com.manning.sbia.reader.jms.ProductBean"/>
 <property name="jmsTemplate" ref="jmsTemplate"/>
 <property name="receiveTimeout" value="350"/>
</bean>

As described throughout this section, configuring batch processes can involve many
concepts and objects. Spring Batch eases the configuration of core entities like job,
step, tasklet, and chunk. Spring Batch also lets you configure transaction behavior and
define your own error handling. The next section covers configuring the Spring
Batch job repository to store batch execution data.

3.3 Configuring the job repository
Along with the batch feature, the job repository is a key feature of the Spring Batch
infrastructure because it provides information about batch processing. Chapter 2, sec-
tion 2.2, describes the job repository: it saves information about the details of job exe-
cutions. In this section, we focus on configuring the job repository in Spring Batch
XML. The job repository is part of the more general topic concerning batch process
monitoring. Chapter 12 is dedicated to this topic.

3.3.1 Choosing a job repository

Spring Batch provides the JobRepository interface for the batch infrastructure and
job repository to interact with each other. Chapter 2, section 2.2.1, shows this inter-
face. The interface provides all the methods required to interact with the repository.
We describe the job repository in detail in chapter 12.

 For the JobRepository interface, Spring Batch provides only one implementation:
the SimpleJobRepository class. Spring Batch bases this class on a set of Data Access
Objects (DAOs) used for dedicated interactions and data management. Spring Batch
provides two kinds of DAOs at this level:

■ In-memory with no persistence
■ Persistent with metadata using JDBC

You can use the in-memory DAO for tests, but you shouldn’t use it in production envi-
ronments. In fact, batch data is lost between job executions. You should prefer the

Listing 3.11 Configuring a transactional JMS item reader

73Configuring the job repository
persistent DAO when you want to have robust batch processing with checks on startup.
Because the persistent DAO uses a database, you need additional information in the
job configuration. Database access configuration includes data source and transac-
tional behavior.

3.3.2 Specifying job repository parameters

In this section, we configure the in-memory and persistent job repositories.
CONFIGURING AN IN-MEMORY JOB REPOSITORY

The first kind of job repository is the in-memory repository. Spring Batch provides the
MapJobRepositoryFactoryBean class to make its configuration easier. The persistent
repository uses a Spring bean for configuration and requires a transaction manager.
Spring Batch provides the ResourcelessTransactionManager class as a NOOP (NO
OPeration) implementation of the PlatformTransactionManager interface.

 The following listing describes how to use the Spring Batch MapJobRepository-
FactoryBean and ResourcelessTransactionManager classes to configure an in-
memory job repository.

<bean id="jobRepository"
 class="org.springframework.batch.core.repository

 ➥ .support.MapJobRepositoryFactoryBean"
 <property name="transactionManager-ref" ref="transactionManager"/>
</bean>

<bean id="transactionManager"
 class="org.springframework.batch.support

 ➥ .transaction.ResourcelessTransactionManager"/>

<batch:job id="importInvoicesJob"
 job-repository="jobRepository">
 (...)
</batch:job>

The in-memory job repository is first defined using the MapJobRepositoryFactory
class provided by Spring Batch. The transactionManager-ref attribute is specified to
reference a configured transaction manager. This particular transaction manager is a
ResourcelessTransactionManager because the job repository is in-memory. Finally,
the job repository is referenced from the job using the job-repository attribute of
the job element. The value of this attribute is the identifier of the job repository bean.
CONFIGURING A PERSISTENT JOB REPOSITORY

Configuring a persistent job repository isn’t too complicated, thanks to Spring Batch
XML, which hides all the bean configuration details that would otherwise be required
with Spring XML. Our configuration uses the job-repository element and specifies
the attributes listed in table 3.8.

 The following listing shows how to use the job-repository element and its attri-
butes to configure a persistent job repository for a relational database.

Listing 3.12 Configuring an in-memory job repository

74 CHAPTER 3 Batch configuration
<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName" value="${batch.jdbc.driver}" />
 <property name="url" value="${batch.jdbc.url}" />
 <property name="username" value="${batch.jdbc.user}" />
 <property name="password" value="${batch.jdbc.password}" />
</bean>

<bean id="transactionManager" lazy-init="true"
 class="org.springframework.jdbc.datasource

 ➥ .DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource" />
</bean>

<batch:job-repository id="jobRepository"
 data-source="dataSource"
 transaction-manager="transactionManager"
 isolation-level-for-create="SERIALIZABLE"
 table-prefix="BATCH_"
/>

<batch:job id="importInvoicesJob"
 job-repository="jobRepository">
 (...)
</batch:job>

The configuration in listing 3.13 uses a data source named dataSource and the Apache
DBCP library for connection pooling B. The listing also configures a transaction

Table 3.8 job-repository attributes

Repository attribute name Description

data-source Bean identifier for the repository data source used to access
the database. This attribute is mandatory, and its default value
is dataSource.

transaction-manager Bean identifier for the Spring transaction manager used to han-
dle transactions for the job repository. This attribute is manda-
tory, and its default value is transactionManager.

isolation-level-for-create Isolation level used to create job executions. This attribute is
mandatory, and its default value is SERIALIZABLE, which pre-
vents accidental concurrent creation of the same job instance
multiple times (REPEATABLE_READ would work as well).

max-varchar-length Maximum length for VARCHAR columns in the database.

table-prefix Table prefix used by the job repository in the database. This pre-
fix allows identifying the tables used by the job repository from
the tables used by the batch. The default value is BATCH_.

lob-handler Handler for large object (LOB)-type columns. Use this attribute
only with Oracle or if Spring Batch doesn’t detect the database
type. This attribute is optional.

Listing 3.13 Configuring a persistent job repository

Configures data
source and
transaction

manager

B

Configures persistent
job repository

C

Links job
repository in job

D

75Advanced configuration topics
manager named transactionManager as a Spring DataSourceTransactionManager B,
which uses JDBC for database access.

 The job-repository element can then configure the persistent job repos-
itory C. This element references the data source and transaction manager previ-
ously configured. It also uses additional parameters to force the use of the SERIAL-
IZABLE isolation level when creating new job executions and to identify Spring Batch
tables with the BATCH_ prefix. This job repository is then referenced from the
job configuration D.

3.4 Advanced configuration topics
The job repository is an important part of the Spring Batch infrastructure because it
records batch-processing information to track which jobs succeed and fail. Although
Spring Batch provides an in-memory job repository, you should use it only for tests.
Use the persistent job repository in production. In chapter 12, we monitor batch
applications using the job repository. This section focuses on advanced Spring Batch
configurations that leverage the Spring Expression Language (SpEL), modularize
configurations with inheritance, and use listeners. Our goal is to simplify batch-
processing configuration. Let’s begin with the Spring Batch step scope feature.

3.4.1 Using step scope

Spring Batch provides a special bean scope class—StepScope—implemented as a cus-
tom Spring bean scope. The goal of the step scope is to link beans with steps within
batches. This mechanism allows instantiation of beans configured in Spring only
when steps begin and allows you to specify configuration and parameters for a step.

 If you use Spring Batch XML, the step scope is automatically registered for the cur-
rent Spring container and is usable without additional configuration. If you don’t use

How does the job repository act as a synchronizer?
What happens if you launch the same Spring Batch job from different physical nodes?
There’s a small risk that you create the same job instance twice. This is bad for the
batch metadata: Spring Batch would have a hard time restarting a failed execution of
the instance—which instance should it choose? That’s where the job repository and
the isolation-level-for-create attribute of the job-repository element come in. The job
repository maintains batch metadata such as job instances and executions. When
creating these entities, the job repository also acts as a centralized safeguard: it pre-
vents the creation of identical job instances when jobs launch concurrently. The job
repository relies on the transactional capabilities of the underlying database to
achieve this synchronization. With an aggressive value for the isolation-level-for-cre-
ate attribute—SERIALIZABLE is the default—you can avoid concurrency issues when
creating entities like job instances. Thanks to this safeguard, you can distribute
Spring Batch on multiple nodes and be sure not to start the same instance twice due
to a race condition.

76 CHAPTER 3 Batch configuration
Spring Batch XML, you must define the step scope with its StepScope class, as
described in the following snippet:

<bean class="org.springframework.batch.core.scope.StepScope"/>

Developers using custom Spring scopes may be surprised by this configuration. In
fact, the StepScope class implements the Spring BeanFactoryPostProcessor inter-
face, which automatically applies the step scope to beans.

 The step scope is particularly useful and convenient when combined with SpEL to
implement late binding of properties. Let’s describe this feature next.

3.4.2 Leveraging SpEL

To configure Spring Batch entities, SpEL offers interesting possibilities. It handles
cases when values can’t be known during development and configuration because
they depend on the runtime execution context.

Spring Batch leverages SpEL to access entities associated with jobs and steps and to
provide late binding in configurations. The typical use case of late binding is to use

What is a bean scope?
Starting in version 2, Spring supports custom bean scopes. A bean scope specifies
how to create instances of the class for a given bean definition. Spring provides
scopes like singleton, prototype, request, and session but also allows custom
scopes to be plugged in. You must register a custom scope in the container using
the CustomScopeConfigurer Spring class.

A custom scope implementation handles how an instance is served in a given Spring
container. For example, with the singleton scope, the same instance is always pro-
vided by Spring. With the prototype scope, Spring always creates a new instance.

The scope attribute of the bean element defines the bean scope; for example:

<bean id="myBean" class="(...)" scope="prototype">

Spring Expression Language (SpEL)
Spring version 3 introduced the Spring Expression Language to facilitate configura-
tion. SpEL was created to provide a single language for use across the whole Spring
portfolio, but it’s not directly tied to Spring and can be used independently. SpEL sup-
ports a large set of expression types, such as literal, class, property access, collec-
tion, assignment, and method invocation.

The power of this language is in its ability to use expressions to reference bean prop-
erties present in a particular context. You can view this feature as a more advanced
and generic Spring PropertyPlaceholderConfigurer. SpEL can resolve expressions not
only in a properties file but also in beans managed in Spring application contexts.

77Advanced configuration topics
batch parameters specified at launch time in the batch configuration. The values are
unknown at development time when configuring batch processes. Spring evaluates
these values at runtime during the batch process execution.

 Table 3.9 describes all entities available from the step scope.

With this approach, it’s now possible to specify property values filled in at launch time,
as shown in the following listing.

<bean id="decompressTasklet"
 class="com.manning.sbia.ch01.batch.DecompressTasklet"
 scope="step">
 <property name="inputResource"
 value="#{jobParameters['inputResource']}" />
 <property name="targetDirectory"
 value="#{jobParameters['targetDirectory']}" />
 <property name="targetFile"
 value="#{jobParameters['targetFile']}" />
</bean>

You configure the decompressTasklet bean using the Spring Batch step scope. Spec-
ifying this scope allows you to use SpEL’s late binding feature for job parameters
within values of bean properties. The jobParameters object acts as a map for a set of
parameters and elements and is accessed using notation delimited by #{ and }. You
also use this format in the example with the objects jobExecutionContext and step-
ExecutionContext.

 In the context of the case study, this mechanism makes it possible to specify at
batch startup the file to use to import product data. You don’t need to hardcode the
filename in the batch configuration, as illustrated in figure 3.6.

Table 3.9 Entities available from the step scope

Entity name Description

jobParameters Parameters specified for the job

jobExecutionContext Execution context of the current job

stepExecutionContext Execution context of the current step

Listing 3.14 Configuring batch parameters with SpEL

Products job launch

Products job configuration

Job parameters

Gets and uses the actual
file name

Figure 3.6 Using the filename to
import from the job configuration

78 CHAPTER 3 Batch configuration
3.4.3 Using listeners to provide additional processing

Spring Batch provides the ability to specify and use listeners at the job and step levels
within batches. This feature is particularly useful and powerful because Spring Batch
can notify each level of batch processing, where you can plug in additional processing.
For example, in the online store case study, you can add a listener that Spring Batch
calls when a batch fails, or you can use a listener to record which products Spring
Batch skips because of errors, as shown in figure 3.7.

 We provide concrete examples of this feature in chapter 8. Table 3.10 describes the
listener types provided by Spring Batch.

JOB LISTENERS

The job listener intercepts job execution and supports the before and after job execu-
tion events. These events add processing before a job and after a job according to the
completion type of a batch process. They’re particularly useful to notify external sys-
tems of batch failures. Such listeners are implementations of the JobExecutionLis-
tener interface:

public interface JobExecutionListener {
 void beforeJob(JobExecution jobExecution);
 void afterJob(JobExecution jobExecution);
}

You configure a listener in a job configuration with the listeners element as a child
of the job element. The listeners element can configure several listeners by refer-
encing Spring beans. The following snippet describes how to register the Import-
ProductsJobListener class as a listener for the importProductsJob job:

Table 3.10 Listener types

Listener type Description

Job listener Listens to processing at the job level

Step listeners Listens to processing at the step level

Item listeners Listens to item repeat or retry

Products job execution

Products job configuration

Notifies when an error occurs
on a product import

Products job
listener

Products skip
listener

Notifies when the job ends
(success or failure)

Figure 3.7
Notifications of
lifecycle events
and errors during
job execution

79Advanced configuration topics
<batch:job id="importProductsJob">
 <batch:listeners>
 <batch:listener ref="importProductsJobListener"/>
 </batch:listeners>
</batch:job>

<bean id="importProductsJobListener" class="ImportProductsJobListener"/>

The ImportProductsJobListener class receives notifications when Spring Batch starts
and stops a job regardless of whether the job succeeds or fails. A JobExecution
instance provides information regarding job execution status with BatchStatus con-
stants. The following listing shows the ImportProductsJobListener class.

public class ImportProductsJobListener
 implements JobExecutionListener {
 public void beforeJob(JobExecution jobExecution) {
 // Called when job starts
 }

 public void afterJob(JobExecution jobExecution) {
 if (jobExecution.getStatus()==BatchStatus.COMPLETED) {
 // Called when job ends successfully
 } else if (jobExecution.getStatus()==BatchStatus.FAILED) {
 // Called when job ends in failure
 }
 }
}

The listener class must implement the JobExecutionListener interface and define
the beforeJob method that Spring Batch calls before the job starts and the afterJob
method called after the job ends.

 Spring Batch can also use annotated classes as listeners. In this case, you don’t
implement the JobExecutionListener interface. To specify which methods do the lis-
tening, you use the BeforeJob and AfterJob annotations. The following listing shows
the annotated class (AnnotatedImportProductsJobListener) corresponding to the
standard listener class (ImportProductsJobListener).

public class AnnotatedImportProductsJobListener {
 @BeforeJob
 public void executeBeforeJob(JobExecution jobExecution) {
 //Notifying when job starts
 }

 @AfterJob
 public void executeAfterJob(JobExecution jobExecution) {
 if (jobExecution.getStatus()==BatchStatus.COMPLETED) {
 //Notifying when job successfully ends
 } else if (jobExecution.getStatus()==BatchStatus.FAILED) {
 //Notifying when job ends with failure

Listing 3.15 Listening to job execution with a listener

Listing 3.16 Listening to job execution with annotations

80 CHAPTER 3 Batch configuration
 }
 }
}

This listener class is a plain old Java object (POJO) and defines which methods to exe-
cute before the job starts with the BeforeJob annotation and after the job ends with
the AfterJob annotation.
STEP LISTENERS

Steps also have a matching set of listeners to track processing during step execution.
You use step listeners to track item processing and to define error-handling logic. All
step listeners extend the StepListener marker interface. StepListener acts as a par-
ent to all step domain listeners. Table 3.11 describes the step listeners provided by
Spring Batch.

The StepExecutionListener and ChunkListener interfaces relate to lifecycle.
They’re respectively associated to the step and chunk and provide methods for before
and after events. The StepExecutionListener interface uses a StepExecution param-
eter for each listener method to access current step execution data. The afterStep
method triggered after step completion must return the status of the current step with
an ExistStatus instance. The following snippet describes the StepExecution-
Listener interface:

public interface StepExecutionListener extends StepListener {
 void beforeStep(StepExecution stepExecution);
 ExitStatus afterStep(StepExecution stepExecution);
}

The ChunkListener interface provides methods called before and after the current
chunk. These methods have no parameter and return void, as described in the follow-
ing snippet:

Table 3.11 Step listeners provided by Spring Batch

Listener interface Description

ChunkListener Called before and after chunk execution

ItemProcessListener Called before and after an ItemProcessor gets an
item and when that processor throws an exception

ItemReadListener Called before and after an item is read and when an
exception occurs reading an item

ItemWriteListener Called before and after an item is written and when an
exception occurs writing an item

SkipListener Called when a skip occurs while reading, processing, or
writing an item

StepExecutionListener Called before and after a step

81Advanced configuration topics
public interface ChunkListener extends StepListener {
 void beforeChunk();
 void afterChunk();
}

The item listener interfaces (read, process, and write) listed in table 3.11 each deal
with a single item and support Java 5 generics to specify item types. Each interface
provides three methods triggered before, after, and on error. Each interface accepts
as a parameter a single item from a list of handled entities for before and after
methods. For error-handling methods, Spring Batch passes the thrown exception
as a parameter.

 For item processing, these methods are beforeProcess, afterProcess, and
onProcessError. The following snippet lists the ItemProcessListener interface:

public interface ItemProcessListener<T, S> extends StepListener {
 void beforeProcess(T item);
 void afterProcess(T item, S result);
 void onProcessError(T item, Exception e);
}

For the ItemReadListener interface, these methods are beforeRead, afterRead, and
onReadError, as shown in the following snippet:

public interface ItemReadListener<T> extends StepListener {
 void beforeRead();
 void afterRead(T item);
 void onReadError(Exception ex);
}

For the ItemWriteListener interface, these methods are beforeWrite, afterWrite,
and onWriteError, as shown in the following snippet:

public interface ItemWriteListener<S> extends StepListener {
 void beforeWrite(List<? extends S> items);
 void afterWrite(List<? extends S> items);
 void onWriteError(Exception exception, List<? extends S> items);
}

The last kind of interface in table 3.11 listens for skip events. Spring Batch calls the
SkipListener interface when processing skips an item. The interface provides three
methods corresponding to when the skip occurs: onSkipInRead during reading,
onSkipInProcess during processing, and onSkipInWrite during writing. The follow-
ing snippet lists the SkipListener interface:

public interface SkipListener<T,S> extends StepListener {
 void onSkipInRead(Throwable t);
 void onSkipInProcess(T item, Throwable t);
 void onSkipInWrite(S item, Throwable t);
}

You can also define listeners for all these events as annotated POJOs. Spring Batch leaves
the choice up to you. Spring Batch provides annotations corresponding to each method
defined by the interfaces in table 3.11. For example, for the ExecutionListener

82 CHAPTER 3 Batch configuration
interface, the BeforeStep annotation corresponds to the beforeStep method and the
AfterStep annotation to the afterStep method. Configuring listeners using annota-
tions follows the same rules as the interface-based configurations described in the next
section. The following listing shows how to implement an annotation-based listener for
step execution.

public class ImportProductsExecutionListener {
 @BeforeStep
 public void handlingBeforeStep(StepExecution stepExecution) {
 (...)
 }

 @AfterStep
 public ExitStatus afterStep(StepExecution stepExecution) {
 (...)
 return ExitStatus.FINISHED;
 }
}

As is done for a job, configuring a step listener is done using a listeners element as a
child of the tasklet element. You can configure all kinds of step listeners at this level
in the same manner. For example:

<batch:job id="importProductsJob">
 <batch:step id="decompress" next="readWrite">
 <batch:tasklet ref="decompressTasklet">
 <batch:listeners>
 <batch:listener ref="stepListener"/>
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
</ batch:job>

Note that you can also specify several listeners at the same time.
REPEAT AND RETRY LISTENERS

Another type of listener provided by Spring Batch deals with robustness and provides
notification when repeats and retries occur. These listeners support the methods
listed in table 3.12 and allow processing during repeat or retry.

Listing 3.17 Implementing an annotation-based step listener

Table 3.12 Methods for retry and repeat listeners

Method Description

after (repeat listener only) Called after each try or repeat

before (repeat listener only) Called before each try or repeat

close Called after the last try or repeat on an item, whether successful or not
in the case of a retry

83Advanced configuration topics
The following snippet lists the RepeatListener interface called when repeating an
item:

public interface RepeatListener {
 void before(RepeatContext context);
 void after(RepeatContext context, RepeatStatus result);
 void open(RepeatContext context);
 void onError(RepeatContext context, Throwable e);
 void close(RepeatContext context);
}

The following snippet lists the content of the RetryListener interface called when
retrying an item:

public interface RetryListener {
 <T> void open(RetryContext context, RetryCallback<T> callback);
 <T> void onError(RetryContext context,
 RetryCallback<T> callback, Throwable e);
 <T> void close(RetryContext context,
 RetryCallback<T> callback, Throwable e);
}

Such listeners must be configured like step listeners using the listeners child ele-
ment of the tasklet element, as described at the end of the previous section.

 The next and last feature in our advanced configuration discussion is the Spring
Batch inheritance feature used to modularize entity configurations.

3.4.4 Configuration inheritance

As emphasized in section 3.2.2, Spring Batch XML provides facilities to ease configura-
tion of batch jobs. While this XML vocabulary improves Spring Batch configuration,
duplication can remain, and that’s why the vocabulary supports configuration inheri-
tance like Spring XML.

 This feature is particularly useful when configuring similar jobs and steps. Rather
than duplicating XML fragments, Spring Batch allows you to define abstract entities to
modularize configuration data. In the online store case study, you define several jobs
with their own steps. As a best practice, you want to apply default values of the batch
processes. To implement this, you define abstract jobs and steps. The default configu-
ration parameters then apply to all child jobs and steps. Modifying one parameter
affects all children automatically, as shown in figure 3.8.

onError Called after every unsuccessful attempt at a retry or every repeat fail-
ure with a thrown exception

open Called before the first try or repeat on an item

Table 3.12 Methods for retry and repeat listeners (continued)

Method Description

84 CHAPTER 3 Batch configuration
You can use Spring Batch configuration inheritance at both the job and step levels.
Spring Batch also supports configuration merging. Table 3.13 describes the abstract
and parent configuration inheritance attributes.

 As we’ve seen, configuration inheritance in Spring Batch is inspired by Spring and
is based on the abstract and parent attributes. Configuration inheritance allows you

Abstract job

Products job Other job

readWriter step Other step

Abstract step

Figure 3.8 Using configu-
ration inheritance lets jobs
inherit from an abstract job
and steps inherit from an
abstract step.

Configuration inheritance in Spring
Configuration inheritance is a built-in feature of the default Spring XML vocabulary
since version 2.0. Its aim is to allow modularizing configuration and to prevent con-
figuration duplication. It targets the same issue that Spring XML addresses: making
configuration less complex.

Spring allows defining abstract bean definitions that don’t correspond to instances.
Such bean definitions are useful to modularize common bean properties and avoid
duplication in Spring configurations. Spring provides the abstract and parent attri-
butes on the bean element. A bean with the attribute abstract set to true defines
a virtual bean, and using the parent attribute allows linking two beans in a parent-
child relationship.

Inheriting from a parent bean means the child bean can use all attributes and prop-
erties from the parent bean. You can also use overriding from a child bean.

The following fragment describes how to use the abstract and parent attributes:

<bean id="parentBean" abstract="true">
 <property name="propertyOne" value="(...)"/>
</bean>
<bean id="childBean" parent="parentBean">
 <property name="propertyOne" value="(...)"/>
 <property name="propertyTwo" value="(...)"/>
</bean>

85Advanced configuration topics
to define abstract batch entities that aren’t instantiated but are present in the configu-
ration only to modularize other configuration elements.

 Let’s look at an example that uses steps. A common use case is to define a parent
step that modularizes common and default step parameters. The following listing
shows how to use configuration inheritance to configure step elements.

<step id="parentStep">
 <tasklet allow-start-if-complete="true">
 <chunk commit-interval="100"/>
 </tasklet>
</step>

<step id="productStep" parent="parentStep">
 <tasklet start-limit="5">
 <chunk reader="productItemReader"
 writer="productItemWriter"
 processor="productItemProcessor"
 commit-interval="15"/>
 </tasklet>
</step>

The parent step named parentStep includes a tasklet element, which also includes
a chunk element. Each element includes several attributes for its configuration,
allow-start-if-complete for tasklet and commit-interval for chunk. You name
the second step productStep and reference the previous step as its parent. The prod-
uctStep step has the same element hierarchy as its parent, which includes all ele-
ments and attributes. In some cases, a parent defines attributes but children don’t, so
Spring Batch adds the attributes to the child configurations. In other cases, attributes
are present in both parent and child steps, and the values of child elements override
the values of parent elements.

 An interesting feature of Spring Batch related to configuration inheritance is the
ability to merge lists. By default, Spring Batch doesn’t enable this feature; lists in the
child element override lists in the parent element. You can change this behavior by
setting the merge attribute to true. The following listing combines the list of listeners
present in a parent job with the list in the child job.

Table 3.13 Configuration inheritance attributes

Attribute Description

abstract When true, specifies that the job or step element isn’t a concrete element
but an abstract one used only for configuration. Abstract configuration enti-
ties aren’t instantiated.

parent The parent element used to configure a given element. The child element has
all properties of its parent and can override them.

Listing 3.18 Listing 3.18 Using configuration inheritance for steps

86 CHAPTER 3 Batch configuration
<job id="parentJob" abstract="true">
 <listeners>
 <listener ref="globalListener"/>
 <listeners>
</job>

<job id="importProductsJob" parent="parentJob">
 (...)
 <listeners merge="true">
 <listener ref="specificListener"/>
 <listeners>
</job>

We specify the merge attribute B for the listeners element in the configuration of the
child job. In this case, Spring Batch merges the listeners of the parent and child jobs,
and the resulting list contains listeners named globalListener and specificListener.

 With configuration inheritance in Spring Batch, we close our advanced configura-
tion section. These features allow easier and more concise configurations of Spring
Batch jobs.

3.5 Summary
Spring Batch provides facilities to ease configuration of batch processes. These facili-
ties are based on Spring Batch XML—an XML vocabulary dedicated to the batch
domain—which leverages Spring XML. This vocabulary can configure all batch enti-
ties described in chapter 2, such as jobs, tasklets, and chunks. Spring Batch supports
entity hierarchies in its XML configuration and closely interacts with Spring XML to
use Spring beans.

XML configuration of batch processes is built in and allows plug-in strategies to
handle errors and transactions. All these features contribute to making batches more
robust by providing support for commit intervals, skip handling, and retry, among
other tasks. We focus on batch robustness in chapter 8.

 Spring Batch provides support to configure access to the job repository used to
store job execution data. This feature relates to the more general topic of batch mon-
itoring, and chapter 12 addresses it in detail.

 Spring Batch XML also includes advanced features that make configuration flexi-
ble and convenient. Features include the step scope and the ability to interact with the
batch execution context using SpEL late binding of parameter values at runtime. You
can implement job, step, and chunk listeners with interfaces or by using annotations
on POJOs. Finally, we saw that Spring Batch provides modularization at the configura-
tion level with the ability to use inheritance to eliminate configuration duplication.

 Chapter 4 focuses on execution and describes the different ways to launch batch
processes in real systems.

Listing 3.19 Merging two lists with configuration inheritance

Enables
merging

B

Running batch jobs
If you’ve been reading this book from page one, you know the basics of Spring
Batch, and you know about jobs, steps, and chunks. You must be eager to get your
jobs up and running. Launching a Spring Batch job is easy because the framework
provides a Java-based API for this purpose. However, how you call this API is another
matter and depends on your system. Perhaps you’ll use something simple like the
cron scheduler to launch a Java program. Alternatively, you may want to trigger
your jobs manually from a web application. Either way, we have you covered
because this chapter discusses both scenarios.

 This chapter covers many launching scenarios, so you may not want to read it
from beginning to end, especially if you’re in a hurry. You may read this chapter à
la carte: think about your scenario and read only what you need. Nevertheless, you
should read section 4.1 covering the concepts of launching Spring Batch jobs, and

This chapter covers
■ Running jobs from the command line
■ Scheduling jobs
■ Embedding Spring Batch in a web application
■ Stopping job executions
87

88 CHAPTER 4 Running batch jobs
especially section 4.1.3 that guides you through the chapter to pick up the launching
solution that best suits your needs.

4.1 Launching concepts
It’s time to launch your Spring Batch job! You’re about to see that launching a Spring
Batch job is quite simple thanks to the Spring Batch launcher API. But how you end
up launching your batch jobs depends on many parameters, so we provide you with
basic concepts and some guidelines. By the end of this section, you’ll know where to
look in this chapter to set up a launching environment for your jobs.

4.1.1 Introducing the Spring Batch launcher API

The heart of the Spring Batch launcher API is the JobLauncher interface. Here’s a
shortened version of this interface (we removed the exceptions for brevity):

public interface JobLauncher {
 public JobExecution run(Job job, JobParameters jobParameters) throws (…);
}

The JobLauncher and the Job you pass to the run method are Spring beans. The call
site typically builds the JobParameters argument on the fly. The following snippet
shows how to use the job launcher to start a job execution with two parameters:

ApplicationContext context = (...)
JobLauncher jobLauncher = context.getBean(JobLauncher.class);
Job job = context.getBean(Job.class);
jobLauncher.run(
 job,
 new JobParametersBuilder()
 .addString("inputFile", "file:./products.txt")
 .addDate("date", new Date())
 .toJobParameters()
);

Note the use of a JobParametersBuilder to create a JobParameters instance. The
JobParametersBuilder class provides a fluent-style API to construct job parameters. A
job parameter consists of a key and a value. Spring Batch supports four types for job
parameters: string, long, double, and date.

JOB PARAMETERS AND JOB INSTANCE Remember that job parameters define
the instance of a job and that a job instance can have one or more corre-
sponding executions. You can view an execution as an attempt to run a batch
process. If the notions of job, job instance, and job execution aren’t clear to
you, please refer to chapter 2, which covers these concepts.

Spring Batch provides an implementation of JobLauncher, whose only mandatory
dependency is a job repository. The following snippet shows how to declare a job
launcher with a persistent job repository:

89Launching concepts
<batch:job-repository id="jobRepository" />

<bean id="jobLauncher" class="org.springframework.

 ➥ batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository" />
</bean>

That’s it; you know everything about the Spring Batch launcher API! Okay, not every-
thing—we didn’t describe the JobExecution object returned by the run method. As you
can guess, this object represents the execution coming out of the run method. The
JobExecution interface provides the API to query the status of an execution: if it’s run-
ning, if it has finished, or if it has failed. Because batch processes are often quite long
to execute, Spring Batch offers both synchronous and asynchronous ways to launch jobs.

4.1.2 Synchronous vs. asynchronous launches

By default, the JobLauncher run method is synchronous: the caller waits until the job
execution ends (successfully or not). Figure 4.1 illustrates a synchronous launch.

 Synchronous launching is good in some cases: if you write a Java main program
that a system scheduler like cron launches periodically, you want to exit the program
only when the execution ends. But imagine that an HTTP request triggers the launch-
ing of a job. Writing a web controller that uses the job launcher to start Spring Batch
jobs on HTTP requests is a handy way to integrate with external triggering systems.
What happens if the launch is synchronous? The batch process executes in the calling
thread, monopolizing web container resources. Submit many batch processes in this
way and they’ll use up all the threads of the web container, making it unable to pro-
cess any other requests.

 The solution is to make the job launcher asynchronous. Figure 4.2 shows how
launching behaves when the job launcher is asynchronous.

Client Job launcher Spring Batch

Run
Execute

Job execution

(COMPLETED)

Client is
waiting

Figure 4.1 The job launcher is synchronous by default. The client waits until the job
execution ends (successfully or not) before the job launcher returns the corresponding
job execution object. Synchronous execution can be problematic, for example, when
the client is a controller from a web application.

90 CHAPTER 4 Running batch jobs
To make the job launcher asynchronous, just provide it with an appropriate Task-
Executor, as shown in the following snippet:

<task:executor id="executor" pool-size="10" />

<bean id="jobLauncher" class="org.springframework.

 ➥ batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository" />
 <property name="taskExecutor" ref="executor" />
</bean>

In this example, we use a task executor with a thread pool of size 10. The executor
reuses threads from its pool to launch job executions asynchronously. Note the use of
the executor XML element from the task namespace. This is a shortcut provided in
Spring 3.0, but you can also define a task executor like any other bean (by using an
implementation like ThreadPoolTaskExecutor).

 It’s now time to guide you through the launching solutions that this chapter covers.

4.1.3 Overview of launching solutions

This chapter covers many solutions to launch your Spring Batch jobs, and you’re
unlikely to use them all in one project. Many factors can lead you to choose a specific
launching solution: launching frequency, number of jobs to launch, nature of the trig-
gering event, type of job, duration of the job execution, and so on. Let’s explore some
cases and present some guidelines.
LAUNCHING FROM THE COMMAND LINE

A straightforward way to launch a Spring Batch job is to use the command line, which
spawns a new Java Virtual Machine (JVM) process for the execution, as figure 4.3
illustrates.

 The triggering event can be a system scheduler like cron or even a human opera-
tor who knows when to launch the job. If you’re interested in launching jobs this way,

Client Job launcher Spring Batch

Run
Submit execution

Job execution
(STARTED)Client doesn’t

wait

Figure 4.2 The job launcher can use a task executor to launch job executions
asynchronously. The task executor handles the threading strategy, and the client
has immediate access to the job execution object.

91Launching concepts
read section 4.2 on command-line launching. You’ll see that Spring Batch provides a
generic command-line launcher that you can use to launch any job from the com-
mand line. If you choose the scheduler option, you should also look at section 4.3.1,
which covers cron.
EMBEDDING SPRING BATCH AND A SCHEDULER IN A CONTAINER

Spawning a JVM process for each execution can be
costly, especially if it opens new connections to a
database or creates object-relational mapping con-
texts. Such initializations are resource intensive,
and you probably don’t want the associated costs if
your jobs run every minute. Another option is to
embed Spring Batch into a container such that your
Spring Batch environment is ready to run at any
time and there’s no need to set up Spring Batch for
each job execution. You can also choose to embed a
Java-based scheduler to start your jobs. Figure 4.4
illustrates this solution.

 A web container is a popular way to embed a
Spring Batch environment. Remember that Spring Batch runs everywhere the
Spring Framework runs. If you want to learn how to deploy Spring Batch in a web
application, read section 4.4.1. Java-based schedulers also run in Spring, so read sec-
tion 4.3.2 to learn about Spring scheduling support.
EMBEDDING SPRING BATCH AND TRIGGERING JOBS BY AN EXTERNAL EVENT

You can also have a mix of solutions: use cron because it’s a popular solution in your
company and embed Spring Batch in a web application because it avoids costly recur-
ring initializations. The challenge here is to give cron access to the Spring Batch envi-
ronment. Figure 4.5 illustrates this deployment.

Triggering system Spring Batch job
Creates JVM process

Figure 4.3 You can launch a Spring Batch job as a plain JVM
process. The triggering system can be a scheduler or a human
operator. This solution is simple but implies initializing the batch
environment for each run.

Spring Batch

Container

Spring application context

Triggering system
Submits

job request

Figure 4.5 An external system sub-
mits a job request to the container
where the Spring Batch environment
is deployed. An example is a cron
scheduler submitting an HTTP re-
quest to a web controller. The web
controller would use the job launcher
API to start the job execution.

Spring Batch

Container

Spring application context

Java scheduler

Figure 4.4 You can embed Spring
Batch in a container along with a Java
scheduler. A web container is a good
candidate because Spring integrates
easily in web applications.

92 CHAPTER 4 Running batch jobs
To see how the Spring Batch job launcher works with HTTP, please see section 4.4.2,
which covers Spring MVC (Model-View-Controller).

 The list of launching solutions this chapter covers is by no means exhaustive. The
Spring Batch launcher API is simple to use, so you can imagine building other types of
solutions—for example, event-driven with JMS or remote with Java Management
Extension (JMX). And don’t forget to read section 4.5 on stopping job executions
when you’re done launching all these jobs!

4.2 Launching from the command line
Using the command line is perhaps the most common way to launch a batch process.
Triggering the process can be done manually (by a human), but most of the time
you’ll be using a system scheduler (cron on UNIX systems, for example) to trigger the
launch. Why? Because batch processes are launched at specific times (at night, on the
last Sunday of the month, and so on). We cover schedulers later; in this section, we
focus on how to launch a batch process through the command line.

 Because Spring Batch is a Java-based framework, launching a Spring Batch process
means spawning a new JVM process for a class and using the Spring Batch launcher
API in that class’s main method.

 The Spring Batch launcher API is straightforward; the JobLauncher has one
method—run—that takes a Job and a JobParameters argument, so writing a main
method to launch a job is quick and easy. We won’t bother writing such a class because
Spring Batch already provides one: the CommandLineJobRunner!

4.2.1 Using Spring Batch’s command-line job runner

Spring Batch provides the CommandLineJobRunner class to launch jobs. This launcher
should remove any need for custom command-line launchers because of its flexibility.
Table 4.1 lists the CommandLineJobRunner settings.

To cover the different uses of the CommandLineJobRunner, imagine you have an
importProductsJob job defined in an import-products-job.xml file located at the root
of the classpath.

Table 4.1 Settings for the generic command-line launcher

Setting Description

Spring
configuration file

The file used to start the Spring application context; the file configures the Spring
Batch infrastructure, jobs, and necessary components (data source, readers, writ-
ers, and so forth)

Job The name of the job to execute (refers to a Spring bean name)

Job parameters The job parameters to pass to the job launcher

Exit code mapping A strategy to map the executed job exit status to a system exit status

93Launching from the command line
LAUNCHING WITHOUT JOB PARAMETERS

The simplest use of the CommandLineJobRunner is to launch a job that doesn’t require
any parameters. You launch the importProductsJob job this way:

java -classpath "./lib/*"

 ➥ org.springframework.batch.core.launch.support.CommandLineJobRunner
 ➥ import-products-job.xml importProductsJob

The first parameter to the CommandLineJobRunner is the location of the Spring config-
uration file, and the second parameter is the name of the Job (the name of the corre-
sponding Spring bean).

NOTE The CommandLineJobRunner uses a ClassPathXmlApplicationCon-
text, which means it locates the configuration file on the classpath by
default. You can use Spring’s resource abstraction prefixes to override this
default—for example, file:./import-products-job.xml, if your configuration
file is on the file system in the current directory.

There’s little chance that your jobs won’t need any job parameters, especially if
the job instance identity is relevant (to benefit from Spring Batch’s restart fea-
tures, for instance), so let’s see how to specify job parameters to the command line
job runner.

How to launch the command-line job runner as a Java process
The CommandLineJobRunner is a simple Java class with a main method. The first
step to use it is to package everything in a Java Archive (JAR) file: all application class-
es—the launcher class itself but also custom item readers, writers, processors, data
access objects, and so on—as well as resources, like the import-products-job.xml
file. We can do all of this with a tool like Maven to end up with an import-products.jar
file. The second step is to create a neat layout on the file system such that the JVM
can locate all the necessary Java classes and resources on the classpath. What
should be on the classpath? The import-products.jar file, of course, but also all the
dependencies of your batch: Spring Batch, the corresponding dependencies from the
Spring Framework, and any other dependencies for your application (XML, persis-
tence, and database connection pooling libraries, for example). We assume a lib di-
rectory contains all of these JAR files. We refer to this directory with the classpath
argument of the java program.

But how to gather these JAR files? The easiest way is to use a dependency manager,
like Maven. If you’re using Maven, the mvn package command packages your project
as a JAR file in the target directory of your project. To get all the dependencies, launch
the mvn dependency:copy-dependencies command. This command copies all the
dependencies you need in the target/dependency directory. You can then gather
all your JAR files in a common directory (the snippets of this chapter use a lib directory)
to launch the job from the command line.

94 CHAPTER 4 Running batch jobs
LAUNCHING WITH JOB PARAMETERS

Recall that the import products job needs two parameters: the location of the input
file and the current date. The following snippet shows how to specify those parame-
ters from the command line:

java -classpath "./lib/*"

 ➥ org.springframework.batch.core.launch.support.CommandLineJobRunner
 ➥ import-products-job.xml importProductsJob
 ➥ inputFile=file:./products.txt date=2010/12/08

The syntax is simple: you specify job parameters after the name of the job, using the
name=value syntax. Remember that a job parameter can have a data type in Spring
Batch. The way parameters are defined in the previous snippet creates String–typed
parameters. What if the parameter type is relevant? Spring Batch offers a way to spec-
ify the type of a parameter by using the syntax name(type)=value, where type can be
a string, date, long, or double (string is the default). Let’s now launch our job by
passing in the date parameter as a real Date object:

java -classpath "./lib/*"

 ➥ org.springframework.batch.core.launch.support.CommandLineJobRunner
 ➥ import-products-job.xml importProductsJob
 ➥ inputFile=file:./products.txt date(date)=2010/12/08

Note the format of the date: yyyy/mm/dd. Table 4.2 lists the different types of job
parameters along with examples.

This completes our tour of the CommandLineJobRunner class. This command-line
launcher is handy because it allows you to specify a Spring configuration file, the name
of the job you want to start, and job parameters (with some advanced type conversion).

 Let’s now see an advanced feature of the runner that you use when you need to set
the system exit code returned by the launcher. Use this feature if you want to run a
series of jobs and choose precisely which job should follow a previous job.

HANDLING EXIT CODES

The CommandLineJobRunner lets you set the exit code to return when the job execution
ends. The triggering system (a system scheduler, for example) can use this exit code to
decide what to do next (see the sidebar on the use of exit codes). For example, after
the execution of job A, you want to run either job B or job C. The scheduler decides on
the basis of the exit code returned by job A.

Table 4.2 Job parameters types for CommandLineJobRunner

Type Java type Example

String java.lang.String inputFile(string)=products.txt

Date java.util.Date date(date)=2010/12/08

Long Long timeout(long)=1000

Double Double delta(double)=20.1

95Launching from the command line
 If you use the CommandLineJobRunner but don’t care about exit codes, because you
don’t execute sequences of jobs or you organize all the sequencing of your batch pro-
cesses as Spring Batch steps, you can skip this subsection. But if your batch system
relies on exit codes to organize the sequencing of your jobs, you’ll learn here how
Spring Batch lets you easily choose which exit code to return from a job execution.

The CommandLineJobRunner uses an exit code mapper to map a job’s exit status (a string)
with a system exit code (an integer). Figure 4.6 illustrates this mapping.

What is the exit code for a Spring Batch job? A job’s exit code is a property of the job’s
exit status, which is itself part of the job execution returned by the job launcher.
Spring Batch provides an ExitStatus class, which includes an exit code typed as a
String. Don’t confuse BatchStatus (an enumeration) and ExitStatus (a simple
string)! These are different concepts, even if, in most cases, the exit status is directly
determined from the batch status. Chapter 10 provides in-depth coverage of the batch
status and exit status. For now, just remember that, by default, Spring Batch gets the
exit status from the batch status (either COMPLETED or FAILED) and that you can
override this default behavior if you want to return a specific exit status.

 Table 4.3 explains the CommandLineJobRunner default behavior for exit code map-
pings (the SimpleJvmExitCodeMapper class implements this behavior).

System exit code Job’s exit status

0 The job completed successfully (COMPLETED).

1 The job failed (FAILED).

2 Used for errors from the command-line job runner—for example,
the runner couldn’t find the job in the Spring application context.

What’s the deal with exit codes?
A system process always returns an integer exit code when it terminates. As previously
mentioned, system schedulers commonly trigger batch processes launched from the
command line, and these schedulers can be interested in the exit code of the batch
process. Why? To determine the course of action. An exit code of 0 could mean that
everything went okay, 1 could mean that a fatal error occurred, and 2 could mean that
the job must be restarted. That’s why the Spring Batch command-line launcher provides
advanced support to map job exit statuses (string) with system exit codes (integer).

Spring Batch’s
job Exit code mapper Scheduler

Exit status

(e.g., COMPLETED)

Exit code

(e.g., 0)

Figure 4.6 The command-line job runner uses an exit code mapper to translate the string exit status of
a Spring Batch job into an integer system exit code. The triggering system—a system scheduler here—
can then use this system exit code to decide what to do next.

Table 4.3
Default
exit code
mappings

96 CHAPTER 4 Running batch jobs
You can override the defaults listed in table 4.3 if they don’t suit your needs. How do
you do that? Write an implementation of the ExitCodeMapper interface and declare a
Spring bean of the corresponding type in the job’s Spring application context.
There’s nothing more to do, because the CommandLineJobRunner automatically uses
the ExitCodeMapper.

 Let’s look at an example to illustrate overriding the default exit code mapper.
Remember, the goal is to use the exit code returned by a job to decide what to do
next. Imagine that this job (call it job A) deals with importing items from a file into a
database. The system scheduler you’re using runs job A and behaves as follows
depending on the exit code returned by job A:

■ 0—Starts job B (job A completed)
■ 1—Does nothing (job A failed)
■ 2—Does nothing (job A exited with an unknown job exit status)
■ 3—Starts job C (job A completed but skipped some items during processing)

Your job as the developer of job A is to return the correct exit code such that the
system scheduler uses it to decide what to do next. To do so, you write an imple-
mentation of ExitCodeMapper to handle the exit code strategy and install it in job A.
The following listing shows the implementation of an ExitCodeMapper that honors
this contract.

package com.manning.sbia.ch04;

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.launch.support.ExitCodeMapper;

public class SkippedAwareExitCodeMapper implements ExitCodeMapper {

 @Override
 public int intValue(String exitCode) {
 if(ExitStatus.COMPLETED.getExitCode().equals(exitCode)) {
 return 0;
 } else if(ExitStatus.FAILED.getExitCode().equals(exitCode)) {
 return 1;
 } else if("COMPLETED WITH SKIPS".equals(exitCode)) {
 return 3;
 } else {
 return 2;
 }
 }

}

Note that the exitCode argument of the intValue method comes from the ExitStatus
object of the job, which has a getExitCode() method. Implementing an exit code map-
per is straightforward: you get a String and return a matching integer. But how can the
job’s exit code (the String argument of the exitCode method) get values like COM-
PLETED WITH SKIPS? This isn’t magic: you set the value at the step level (chapter 10

Listing 4.1 Writing an ExitCodeMapper to map job and system exit codes

97Job schedulers
teaches you how to do that). Let’s assume here that you configured your job correctly
to receive the appropriate exit status if the job skipped some items.

 Now that the exit code mapper is implemented, you must declare it in the Spring
configuration, as shown in the following snippet:

<bean class="com.manning.sbia.ch04.SkippedAwareExitCodeMapper" />

<job id="importProductsJob"
 xmlns="http://www.springframework.org/schema/batch">
 (...)
</job>
(...)

That’s it; you map exactly what Spring Batch exit code maps to what system exit code!
All you do is declare an exit code mapper bean alongside your job configuration, and
the CommandLineJobRunner detects and uses the mapper automatically.

 You now know how to launch Spring Batch jobs from the command line. When
using the command line to launch a batch job, you need someone or something to
trigger this command line. There are many ways to trigger batch jobs, and job sched-
ulers are great tools to trigger jobs at specific times or periodically. This is the topic of
our next section.

4.3 Job schedulers
A job scheduler is a program in charge of periodically launching other programs, in
our case, batch processes. Imagine that you have a time frame between 2 a.m. and 4
a.m. to re-index your product catalog (because there are few users connected to the
online application at that time) or that you want to scan a directory every minute
between 6 a.m. and 8 p.m. for new files to import. How would you do that? You can
implement a solution yourself using a programming language like Java, but this is
time consuming and error prone, and system utilities probably aren’t the focus of
your business. Alternatively, job schedulers are perfect for this work: triggering a pro-
gram at a specific time, periodically or not.

WARNING Don’t confuse job scheduling with process scheduling, which is
about assigning processes to CPUs at the operating system level.

Our goal here is to use several job schedulers to launch Spring Batch jobs. We don’t
cover these job schedulers just for fun. We picked popular, mainstream, and free job
schedulers to provide you with guidelines for choosing one over another, depending
on the context of your applications. Before we dive into the descriptions of each solu-
tion, table 4.4 lists the job schedulers we cover and their main characteristics.

 The descriptions in table 4.4 might already have helped you make up your mind:
if your application doesn’t run on a UNIX-like system, you won’t be using cron!
Note that you can use cron expressions outside of cron: Spring supports cron
expressions.

98 CHAPTER 4 Running batch jobs
4.3.1 Using cron

The cron program is the de facto job scheduler on UNIX-like systems. The name cron
comes from the Greek chronos (time). Cron enables launching commands or shell
scripts periodically, using cron expressions. Configuring cron is simple: you set up com-
mands to launch and when to launch them in the crontab file.
CONFIGURING CRON WITH CRONTAB

The systemwide crontab file is stored in the /etc/ directory. Figure 4.7 shows the
structure of a line of the crontab file.

 The command can be anything; in our case, it can be something we covered in sec-
tion 4.2. The following snippet shows an entry to launch a job with Spring Batch’s
command-line job launcher with the acogoluegnes user:

0 4 * * ? acogoluegnes java -classpath "/usr/local/bin/sb/lib/*"

 ➥ org.springframework.batch.core.launch.support.CommandLineJobRunner
 ➥ import-products-job.xml importProductsJob
 ➥ inputFile=file:/home/sb/import/products.txt date=2010/12/08

From the preceding snippet, you should recognize the structure of a cron entry (cron
expression, user, and command). The command is long: it must set the classpath, the
Java class to launch, the Spring configuration file to use, the name of the job to
launch, and the job parameters. You can use any command in a crontab entry: Spring
Batch’s command-line launcher or any other command to launch a job process. Next
is choosing when to trigger the command, which is where you use a cron expression.

 If you’re new to cron, the start of the entry in the previous snippet must be puz-
zling: this is a cron expression, which says to launch the job every day at 4 a.m. Cron
expressions are to scheduling what regular expressions are to string matching.
Depending on your background with regular expressions, this assertion can be
appealing or scary!

Table 4.4 Overview of the job schedulers covered in this section

Job scheduler Description

Cron A job scheduler available on UNIX-like systems; uses cron expressions
to periodically launch commands or shell scripts

Spring scheduler The Spring framework scheduler; configurable with XML or annotations,
it supports cron expressions; available in Spring 3.0 and later

Command to execute

30 23 * * * df >>/tmp/log_df.txtacogoluegnes

User

Cron expression

Figure 4.7 An entry in the crontab file has three parts: (1) the cron expression, which schedules the job
execution; (2) the user who runs the command; and (3) the command to execute. Some cron implemen-
tations don’t have the user option.

99Job schedulers
NOTE Cron expressions are beyond the scope of this book. If you want a
good introduction to cron expressions, take a look at this web page:
www.quartz-scheduler.org/docs/tutorials/crontrigger.html.

Now that you know how to trigger Spring Batch jobs periodically with cron, let’s see
some recommendations about the use of cron.

CRON FOR MY SPRING BATCH JOBS?

Is cron suited to launch your Spring Batch job? Remember, cron is a system scheduler:
it spawns a new JVM process for each Spring Batch command-line launcher. Imagine that
you need to launch a job every night. Cron triggers the command-line launcher, which
creates a Spring application context before launching the job itself. Everything is fine.
But imagine now that you need to launch another job that scans a directory for new files
to import. You set up cron to trigger this job every minute. If bootstrapping the Spring
application context is CPU intensive—because it initializes a Hibernate SessionFactory
or a Java Persistence API context, for example—the job execution will perhaps be faster
than the creation of the Spring application context! In this second case, you prefer to
have your Spring application context already running and then simply launch the job
from the existing JobLauncher. You can’t easily achieve this from the command line
(hence with cron), but a Java scheduler like the Spring scheduler will do the trick.

4.3.2 Using the Spring scheduler

Let’s now look at the second scheduling option from table 4.4: the Spring scheduler.
Do you want to schedule a job with a simple-to-deploy and yet powerful solution?
Good news: Spring includes such a feature. As of version 3.0, the Spring Framework
offers a declarative way to schedule jobs without requiring extra dependencies for
your Spring Batch jobs, because Spring Batch sits on top of Spring.

 Spring’s lightweight scheduling provides features like cron expressions, customiza-
tion of threading policy, and declarative configuration with XML or annotations. For
XML configuration, Spring provides the task XML vocabulary (under the namespace
www.springframework.org/schema/task), which comes in handy to configure and
schedule tasks. The Spring scheduler needs a running Spring application context to
work, so you typically embed it in a web application, but you can use any other man-
aged environment, like an Open Services Gateway initiative (OSGi) container. We
cover how to embed Spring Batch in a web application in section 4.4.1.

NOTE The cron system scheduler doesn’t support seconds in cron expres-
sion, but Spring’s scheduler does.

 Follow these steps to use the Spring scheduler:

■ Set up the scheduler. This is where you decide whether or not to use a thread pool.
This setup is optional, and Spring uses a single-threaded scheduler by default.

■ Set up the Java methods to launch periodically. You can use XML or annotations on
the target methods. In our case, those methods use the Spring Batch API to
launch jobs.

www.quartz-scheduler.org/docs/tutorials/crontrigger.html
www.springframework.org/schema/task

100 CHAPTER 4 Running batch jobs
The next sections cover these steps, but let’s first see what kind of scheduling configu-
ration Spring supports.
SCHEDULING OPTIONS

Your scheduling requirements can be as simple as “every minute” or as complex as
“the last weekday of the month at 23:00.” Section 4.3.1 shows that cron expressions
meet both requirements, but do you really need to unleash the big guns for “every
minute”? Could you use something simple for simple requirements and fall back to
cron expressions only when necessary? Spring allows you to do that by supporting
cron expressions—with its own engine—but also lets you trigger a job at a fixed rate
without resorting to cron expressions. Table 4.5 lists the scheduling options that
Spring offers.

The fixed-rate and fixed-delay options are the simple options, depending on whether
you want to launch job executions independently (fixed rate) or depending on the
completion time of the previous execution (fixed delay). For more complex cases, use
cron expressions. The next sections show you the use of the fixed-rate option with
both XML and annotations; remember that you can use the attributes in table 4.5 for
fixed rate or cron.
SCHEDULER SETUP

Spring uses a dedicated bean to schedule jobs. You can declare this bean using the
task namespace prefix:

<task:scheduler id="scheduler" />

NOTE Remember that declaring a scheduler is optional. Spring uses the
default single-threaded scheduler as soon as you declare scheduled tasks.

Even though Spring uses reasonable defaults, declaring a scheduler explicitly is good
practice because it reminds you that an infrastructure bean takes care of the actual
scheduling. It also serves as a reminder that you can tweak this scheduler to use a
thread pool:

<task:scheduler id="scheduler" pool-size="10" />

Table 4.5 Spring scheduling options

Scheduling
option

XML attribute
Annotation
attribute

Description

Fixed rate fixed-rate fixedRate Launches periodically, using the start time of the pre-
vious task to measure the interval

Fixed delay fixed-delay fixedDelay Launches periodically, using the completion time of
the previous task to measure the interval

Cron cron cron Launches using a cron expression

101Job schedulers
Multiple threads are useful when you need to schedule multiple jobs and their launch
times overlap. You don’t want some jobs to wait because the single thread of your
scheduler is busy launching another job.

 Now that the scheduler’s ready, let’s schedule a job using XML.
SCHEDULING WITH XML

Imagine you have the following Java code that launches your Spring Batch job, and
you want Spring to execute this code periodically:

package com.manning.sbia.ch04;

import java.util.Date;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParameters;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.launch.JobLauncher;

public class SpringSchedulingLauncher {

 private Job job;

 private JobLauncher jobLauncher;

 public void launch() throws Exception {
 JobParameters jobParams = createJobParameters();
 jobLauncher.run(job, jobParams);
 }

 private JobParameters createJobParameters() {
 (...)
 }
 (...)
}

This snippet elides setter methods for brevity. It also elides the creation of job param-
eters, as job parameters are job specific. Most of the time, you’ll be using a timestamp
or a sequence to change the job identity for each run. Finally, exception handling is
up to you: here, the launch method just propagates any exception that the job
launcher throws. You could also catch the exception and log it.

 You now need to tell Spring to call this code periodically. Fortunately, you inherit
from all of Spring’s configuration features: dependency injection and the task
namespace to configure the scheduling. The following listing shows a scheduling con-
figuration using XML.

<bean id="springSchedulingLauncher"
 class="com.manning.sbia.ch04.SpringSchedulingLauncher">
 <property name="job" ref="job" />
 <property name="jobLauncher" ref="jobLauncher" />
</bean>

<task:scheduler id="scheduler" />

<task:scheduled-tasks scheduler="scheduler">

Listing 4.2 Scheduling with Spring and XML

Launches
job

Creates job
parameters

102 CHAPTER 4 Running batch jobs
 <task:scheduled ref="springSchedulingLauncher"
 method="launch"
 fixed-rate="1000" />
</task:scheduled-tasks>

You first declare the bean that launches the Spring Batch job. The task:scheduled-
tasks element contains the tasks to schedule. For each task you schedule, you use the
task:scheduled element and refer to the bean and the method to call, using the ref
and method attributes, respectively. This listing uses a fixed rate, but remember that
you can also schedule with a fixed delay or a cron expression.

 An XML configuration has many advantages: it doesn’t affect your Java code—mak-
ing it easier to reuse—and it’s flexible because you can externalize part of your config-
uration in a property file, using a Spring property placeholder. This allows switching
the scheduling configuration between the development and production environ-
ments, for example. The XML configuration is external to your code: when you look
at your Java code, you have no idea a scheduler launches it periodically. If you change
the name of the Java method to launch periodically, you need to reflect this change in
the XML configuration. If you want the scheduling configuration to be closer to your
code than in a separate XML file, then annotations are the way to go.
SCHEDULING WITH ANNOTATIONS

Spring lets you schedule your jobs by annotating Java methods. The following snippet
shows how to schedule a job with the Spring @Scheduled annotation:

package com.manning.sbia.ch04;

import java.util.Date;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParameters;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.scheduling.annotation.Scheduled;

public class SpringSchedulingAnnotatedLauncher {

 private Job job;

 private JobLauncher jobLauncher;

 @Scheduled(fixedRate=1000)
 public void launch() throws Exception {
 JobParameters jobParams = createJobParameters();
 jobLauncher.run(job, jobParams);
 }

 private JobParameters createJobParameters() {
 (...)
 }
 (...)
}

NOTE Don’t forget: you can use the fixedDelay or cron annotation attri-
butes instead of fixedRate.

Schedules job
with fixed rate

103Launching from a web application
When using the @Scheduled annotation, the Java class does part of the configuration
itself. The XML configuration is shorter, but you need to tell Spring to look for
@Scheduled annotations with the task:annotation-driven element, as shown in the
following snippet:

<bean id="springSchedulingAnnotatedLauncher"
 class="com.manning.sbia.ch04.SpringSchedulingAnnotatedLauncher">
 <property name="job" ref="job" />
 <property name="jobLauncher" ref="jobLauncher" />
</bean>

<task:scheduler id="scheduler" />

<task:annotation-driven scheduler="scheduler" />

Using the @Scheduled annotation is straightforward: you activate its support with the
task:annotation-driven element, and you add new tasks directly in Java without
going back to the XML configuration. The annotation solution is less flexible, though:
the scheduling configuration is hardcoded and it works only on that code (you can’t
annotate code you don’t control).

This ends the coverage of schedulers used to launch Spring Batch jobs. You can use a
system scheduler like cron to launch Spring Batch jobs, which spawns a plain Java pro-
cess for each job. But cron isn’t suited for all cases, especially if bootstrapping the
Spring application context is resource intensive and the job is triggered every second,
for example. In such cases, use a Java-based scheduler, like Spring scheduler.

 Remember, when using a Java scheduler, you already have a Spring Batch environ-
ment ready; you don’t need to spawn a new JVM process for every job (as you do with
cron, for example). You now have everything ready, assuming you found a container to
run your application. A popular way to embed a Spring Batch environment and a sched-
uler is to use a web application. This is the second scenario presented in section 4.1.3.
In the next section, we see how to embed Spring Batch in a web application.

4.4 Launching from a web application
Spring Batch is a lightweight framework that can live in a simple Spring application con-
text. Here, we look at configuring a Spring Batch environment in a web application. This
makes Spring Batch available at any time; there’s no need to spawn a dedicated Java pro-
cess to launch a job. We can also embed a Java scheduler in the same web application

Detects @Scheduled
annotations

What about Quartz?
Quartz is a Java-based job scheduler that you can integrate in any Java environment
(standalone or Java Enterprise Edition). We chose not to cover Quartz here because
you can do pretty much the same thing with the built-in scheduling support in Spring.
Spring provides some support to integrate with Quartz. You can refer to Spring reference
documentation for more information.

104 CHAPTER 4 Running batch jobs
context and become independent of
any system schedulers. Figure 4.8 illus-
trates that a Spring application con-
text can be contained in a web
application. Note that the job beans
can also use any available services, like
data sources, data access objects, and
business services.

 Hosting Spring Batch in a web
application is convenient, but what
about pushing this architecture fur-
ther and triggering jobs through
HTTP requests? This is useful when
an external system triggers jobs and
that system cannot easily communi-
cate with the Spring Batch environment. But before we study how to use HTTP to trig-
ger jobs, let’s see how to configure Spring Batch in a web application.

4.4.1 Embedding Spring Batch in a web application

The Spring Framework provides a servlet listener class, the ContextLoaderListener,
that manages the application context’s lifecycle according to the web application life-
cycle. The application context is called the root application context of the web applica-
tion. You configure the servlet listener in the web.xml file of the web application, as
shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">
 <display-name>Spring Batch in a web application</display-name>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

</web-app>

By default, the ContextLoaderListener class uses an applicationContext.xml file in
the WEB-INF directory of the web application to create the application context. This
file should contain the configuration of the Spring Batch infrastructure, the jobs, the
scheduler (if any), and application services. A best practice is to split up this configura-
tion into multiple files. This avoids having a large and monolithic configuration file

Listing 4.3 Configuring Spring in a web application

Web application

Spring application context

Contains Spring Batch’s
infrastructure and jobs, a Java-
based scheduler, and Spring
beans for the web application

Figure 4.8 A web application can contain a Spring
application context. This Spring application context
can host Spring Batch’s infrastructure (job launcher,
job repository) and jobs. The context can also host a
Java-based scheduler (like Spring scheduler or
Quartz) and any Spring beans related to the web
application (data access objects, business services).

105Launching from a web application
and encourages reuse of configuration files. Should you redefine all your jobs for inte-
gration testing? No, so define the jobs in a dedicated file and import this file from a
master Spring file. The following snippet shows how the default applicationCon-
text.xml imports other files to create a more maintainable and reusable configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <import resource="batch-infrastructure.xml"/>
 <import resource="batch-jobs.xml"/>
 <import resource="scheduling.xml"/>

</beans>

If you follow the configuration of the previous snippet, the structure of the web appli-
cation on disk should be as follows:

web application root directory/
 WEB-INF/
 applicationContext.xml
 batch-infrastructure.xml
 batch-jobs.xml
 scheduling.xml
 web.xml

What’s next? If you use the Spring sched-
uler to start your jobs, the scheduling.xml
file contains the corresponding configura-
tion, and you’re done! You can deploy the
web application in your favorite web con-
tainer, and the embedded Java scheduler
will trigger jobs according to the configu-
ration. Figure 4.9 shows this configuration.

 In many cases, this configuration is
fine. In others, the triggering event
doesn’t come from an embedded sched-
uler but from an external system. Next, we
use HTTP to let this external system get
access to our Spring Batch environment.

4.4.2 Launching a job with an HTTP request

Imagine that you deployed your Spring Batch environment in a web application, but a
system scheduler is in charge of triggering your Spring Batch jobs. A system scheduler
like cron is easy to configure, and that might be what your administration team pre-
fers to use. But how can cron get access to Spring Batch, which is now in a web appli-
cation? You can use a command that performs an HTTP request and schedule that

Web application

Spring application context

Java scheduler

Spring Batch jobs
Spring Batch jobs
Spring Batch jobs

Launches

Figure 4.9 Once Spring Batch is in a web
application, you can use an embedded Java
scheduler such as Spring scheduler to launch
jobs periodically.

106 CHAPTER 4 Running batch jobs
command in the crontab! Here’s how to perform an HTTP request with a command-
line tool like wget:

wget "http://localhost:8080/sbia/joblauncher?job=importProductsJob&

 ➥ date=20101218"

Figure 4.10 illustrates launching a Spring Batch job with an HTTP request.
 To implement this architecture, you need a web controller that analyzes the HTTP

parameters and triggers the corresponding job with its parameters. We use Spring MVC
to do that, but we could have used any other web framework. We chose Spring MVC
because it’s part of the Spring Framework, so it’s free to our Spring Batch application.
IMPLEMENTING A SPRING MVC CONTROLLER TO LAUNCH JOBS

Spring MVC is part of the Spring Framework and provides a simple yet powerful way to
write web applications or Representational State Transfer (REST) web services. In
Spring MVC, controllers are plain Java classes with some annotations. The following
listing shows the job launcher controller.

package com.manning.sbia.ch04.web;

import java.util.Enumeration;
import javax.servlet.http.HttpServletRequest;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.configuration.JobRegistry;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.ResponseStatus;

@Controller
public class JobLauncherController {

 private static final String JOB_PARAM = "job";

 private JobLauncher jobLauncher;

Listing 4.4 A Spring MVC controller job launcher

Web application

Spring application context

Spring Batch jobs
Spring Batch jobs
Spring Batch jobs

HTTP request

Web layer

External system
(like cron)

Figure 4.10 Once
Spring Batch is in a web
application, you can add a
web layer to launch Spring
Batch jobs on incoming
HTTP requests. This
solution is convenient
when the triggering
system is external to
Spring Batch (like cron).

107Launching from a web application
 private JobRegistry jobRegistry;

 public JobLauncherController(JobLauncher jobLauncher,
 JobRegistry jobRegistry) {
 super();
 this.jobLauncher = jobLauncher;
 this.jobRegistry = jobRegistry;
 }

 @RequestMapping(value="joblauncher",method=RequestMethod.GET)
 @ResponseStatus(HttpStatus.ACCEPTED)
 public void launch(@RequestParam String job,
 HttpServletRequest request) throws Exception {
 JobParametersBuilder builder = extractParameters(
 request
);
 jobLauncher.run(
 jobRegistry.getJob(request.getParameter(JOB_PARAM)),
 builder.toJobParameters()
);
 }

 private JobParametersBuilder extractParameters(
 HttpServletRequest request) {
 JobParametersBuilder builder = new JobParametersBuilder();
 Enumeration<String> paramNames = request.getParameterNames();
 while(paramNames.hasMoreElements()) {
 String paramName = paramNames.nextElement();
 if(!JOB_PARAM.equals(paramName)) {
 builder.addString(paramName,request.getParameter(paramName));
 }
 }
 return builder;
 }

}

The @RequestMapping annotation tells Spring MVC which URL and which HTTP oper-
ation to bind to the launch method. With the @RequestParam annotation on the job
parameter B, you tell Spring MVC to pass the value of the job HTTP parameter to the
method. As you probably guessed, this parameter is the name of the job you want to
launch. At C, you extract HTTP parameters and convert them to job parameters. At D,
you use the job launcher to launch the job. You use the @ResponseStatus annotation
to return an empty HTTP response, with a 202 (ACCEPTED) status code.

NOTE When using an HTTP request to start jobs, you should consider mak-
ing the Spring Batch job launcher asynchronous; otherwise, the job execu-
tion will monopolize the web container’s thread.

The launching request URL path should follow this syntax:

/launcher?job=importProductsJob¶m1=value1¶m2=value2

Finally, you may have noticed the jobRegistry property in the web controller in list-
ing 4.4. The JobRegistry is a Spring Batch interface used to look up Job beans

Gets job name
from HTTP
parameter

B

Converts HTTP
parameters to
job parameters

C

Launches
job

D

108 CHAPTER 4 Running batch jobs
configured in the Spring application context. This is exactly what the launching con-
troller does: from the job name passed in the request, it retrieves the corresponding
Job bean. You need to declare the job registry in the Spring application context, typi-
cally where you declare the Spring Batch infrastructure. Following the structure pre-
viously listed, you add the following code in the /WEB-INF/batch-infrastructure.xml
file to declare the job registry:

<bean id="jobRegistry"
 class="org.springframework.batch.core.configuration.support.

 ➥ MapJobRegistry" />
<bean class="org.springframework.batch.core.configuration.support.

 ➥ JobRegistryBeanPostProcessor">
 <property name="jobRegistry" ref="jobRegistry" />
</bean>

Now the controller is ready—let’s configure Spring MVC!
CONFIGURING SPRING MVC

At the heart of Spring MVC is a servlet class, DispatcherServlet, which you declare in
the web.xml file of your web application, as shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">
 <display-name>Spring Batch in a web application</display-name>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>sbia</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>sbia</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

A Spring MVC servlet creates its own Spring application context. By default, its config-
uration file is [servlet-name]-servlet.xml. In this case, you create an sbia-servlet.xml
file in the WEB-INF directory of the web application. You must declare the web control-
ler in this file, as shown in the following snippet:

Listing 4.5 Declaring Spring MVC’s servlet in web.xml

Declares Spring
MVC servlet

Maps servlet
to URLs

109Stopping jobs gracefully
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean class="com.manning.sbia.ch04.web.

 ➥ JobLauncherController">
 <constructor-arg ref="jobLauncher" />
 <constructor-arg ref="jobRegistry" />
 </bean>

</beans>

In this configuration, you declare the
controller and inject some dependen-
cies, but where do these dependencies
come from? From the root application
context configured with the Context-
LoaderListener. The Spring applica-
tion context of the Spring MVC servlet
can see the beans from the root applica-
tion context because they share a parent-
child relationship, as figure 4.11 shows.

 You can now launch your Spring
Batch jobs with a simple HTTP request!
You should use this launching mecha-
nism when an external system triggers
your jobs and that system doesn’t have
direct access to your Spring Batch envi-
ronment. Otherwise, you can just
deploy your Spring Batch environment in a web application and use an embedded
Java-based scheduler to trigger your jobs. Remember, you can use Spring Batch wher-
ever you can use the Spring Framework, and web applications are no exception.

 We covered a lot of information on triggering and launching Spring Batch jobs. By
now, you should know which solution to adopt for your batch system. Next, we learn
how to stop all of these jobs.

4.5 Stopping jobs gracefully
We started many jobs in this chapter, but how do we stop them? Stopping a job is
unfortunate because it means that something went wrong. If everything is okay, a job
execution ends by itself without any external intervention. When it comes to stopping
job executions, we distinguish two points of view. The first is the operator’s point of
view. The operator monitors batch processes but doesn’t know much about Spring
Batch. When something goes wrong, the operator receives an alert and stops a job
execution, by using a JMX console, for example.

Declares job launcher
web controller

Root application context

DispatcherServlet application context

Job launcher Job registry

Web controller

Sees beans from

Figure 4.11 The web controller is defined in the
servlet’s application context. The root application
context defines the job registry and the job
launcher. Because the two application contexts
share a parent-child relationship, you can inject
beans from the root application context into the
web controller.

110 CHAPTER 4 Running batch jobs
 The second is the developer’s point of view. The developer writes Spring Batch
jobs and knows that under certain circumstances, a job should be stopped. What are
these certain circumstances? They are any business decision that should prevent the
job from going any further: for example, the job shouldn’t import more than 1000
products a day, so the code should count the imported items and stop the execution
just after the 1000th item.

 Spring Batch provides techniques to stop a job for both the operator and the
developer.

4.5.1 Stopping a job for the operator

Imagine that the import job has been running for two hours when you receive the fol-
lowing phone call: “The import file contains bad data—there’s no use letting the
import run!” Obviously, you want the import to stop as soon as possible to avoid wast-
ing system resources on your server. Spring Batch provides the JobOperator interface
to perform such an operation. The following snippet shows how to stop a job execu-
tion through a JobOperator:

Set<Long> runningExecs = jobOperator.getRunningExecutions("importJob");
Long executionId = runningExecs.iterator().next();
boolean stopMessageSent = jobOperator.stop(executionId);

NOTE Chapter 12 covers the JobOperator thoroughly. We focus here on
the way to use JobOperator for stopping job executions.

The steps are simple: the job operator returns the identifiers of the running job exe-
cutions for a given job name. You then ask the job operator to send a stop message to
an execution using an execution ID. We discuss the notion of sending a stop message
in the section, “Understanding the stop message.”
INVOKING THE JOB OPERATOR

The next question is, how do you invoke this code? The most common way is to
expose the job operator to JMX and call its method from a JMX console, as figure 4.12
illustrates using JConsole.

 Another way to call job operator methods is to provide a user interface in your
application that lets an administrator stop any job execution. You can create this user
interface yourself, or you can use Spring Batch Admin, the web administration appli-
cation introduced in chapter 2.

NOTE Chapter 12 covers how to expose a Spring bean to JMX as well as how
to monitor Spring Batch with the Spring Batch Admin application.

Now that you know how to use the job operator, let’s see how to configure it.
CONFIGURING THE JOB OPERATOR

The job operator isn’t automatically available; you need to declare it in your Spring
configuration. The following listing shows the Spring configuration required to
declare the job operator.

111Stopping jobs gracefully
<bean id="jobOperator" class="org.springframework.

 ➥ batch.core.launch.support.SimpleJobOperator">
 <property name="jobRepository" ref="jobRepository"/>
 <property name="jobLauncher" ref="jobLauncher" />
 <property name="jobRegistry" ref="jobRegistry" />
 <property name="jobExplorer" ref="jobExplorer" />
</bean>

<batch:job-repository id="jobRepository" data-source="dataSource" />

<bean id="jobLauncher" class="org.springframework.batch.core.launch.

 ➥ support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository" />
</bean>

<bean class="org.springframework.batch.core.configuration.

 ➥ support.JobRegistryBeanPostProcessor">
 <property name="jobRegistry" ref="jobRegistry" />
</bean>

Listing 4.6 Configuring the job operator in Spring

Figure 4.12 You can expose the job operator bean to JMX and then call its methods remotely from a
JMX client like JConsole. An operator can learn about the Spring Batch runtime and stop or restart jobs.

Declares job
operator bean

112 CHAPTER 4 Running batch jobs
<bean id="jobRegistry"class="org.springframework.batch.core.

 ➥ configuration.support.MapJobRegistry" />

<bean id="jobExplorer" class="org.springframework.batch.core.explore.

 ➥ support.JobExplorerFactoryBean">
 <property name="dataSource" ref="dataSource" />
</bean>

The job operator has four dependencies: the job repository, job launcher, job registry,
and job explorer. By now, you’re used to seeing the job repository and the job
launcher, as they’re essential parts of the Spring Batch infrastructure. You need to
declare the job registry and the job explorer only for specific tasks, and configuring
the job operator is one.

 As a bonus, the following configuration exposes the job operator to JMX. This saves
you a round trip to chapter 12.

<bean class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="com.manning.sbia:name=jobOperator"
 value-ref="jobOperator" />
 </map>
 </property>
</bean>

You can now explain to your administration team how to stop a job execution. But a
member of the administration team might tell you that a job execution doesn’t stop.
The next subsection explains what happens when you request to stop a job execution.
UNDERSTANDING THE STOP MESSAGE

When we showed the job operator in action, you may have found this line intriguing:

boolean stopMessageSent = jobOperator.stop(executionId);

The job operator returns a Boolean when you request to stop a job execution. This
Boolean value tells you whether the stop message was sent successfully. A stop message?
When you call the stop method on a job operator, there’s no guarantee that the exe-
cution immediately stops after the call. Why? In Java, you can’t stop code from execut-
ing immediately.

 When does job execution stop after you request it? Let’s imagine some business
code is executing when you send the stop message. There are two possibilities:

1 The business code takes into account that the thread can be interrupted by check-
ing Thread.currentThread().isInterrupted(). If the code detects the thread
interruption, it can choose to end processing by throwing an exception or return-
ing immediately. This means that the execution will stop almost immediately.

2 The business code doesn’t deal with thread interruption. As soon as the busi-
ness code finishes and Spring Batch gets control again, the framework stops the
job execution. This means that the execution will stop only after the code fin-
ishes. If the code is in the middle of a long processing sequence, the execution
can take a long time to stop.

113Stopping jobs gracefully
Stopping in the middle of a chunk-oriented step shouldn’t be a problem: Spring
Batch drives all the processing in this case, so the execution should stop quickly
(unless some custom reader, processor, or writer takes a long time to execute). But if
you write a custom tasklet whose processing is long, you should consider checking for
thread interruption.

 Understanding the stop message is a first step toward the developer’s point of view,
so let’s now see how to stop a job execution from application code.

4.5.2 Stopping a job for the application developer

We saw that an administrator can use the job operator to stop a job execution, but
sometimes stopping the execution from within the job itself is necessary. Imagine
you’re indexing your product catalog with a Spring Batch job. The online store appli-
cation can work with some unindexed products, but the job execution shouldn’t over-
lap with periods of high activity, so it shouldn’t run after 8 a.m. You can check the time
in various places in the job and decide to stop the execution after 8 a.m.

 The first way to stop execution is to throw an exception. This works all the time,
unless you configured the job to skip some exceptions in a chunk-oriented step!

 The second and preferred way to stop execution is to set a stop flag in the step exe-
cution object. To set this stop flag, call the method StepExecution.setTerminate-
Only(), which is equivalent to sending a stop message. As soon as Spring Batch gets
control of the processing, it stops the job execution. The next topic to cover is how to
get access to the StepExecution object from a job. Getting access to the StepExecution
depends on whether you’re working directly with a tasklet or in a chunk-oriented step.
Let’s study both cases now.
STOPPING FROM A TASKLET

A tasklet has direct access to the StepExecution through the step context, itself in the
chunk context. The following listing shows a tasklet that processes items, checks a stop
condition, and sets the stop flag accordingly. The stop condition could be any busi-
ness decision, such as the time restriction mentioned previously.

package com.manning.sbia.ch04.stop;

import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;

public class ProcessItemsTasklet implements Tasklet {

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 if(shouldStop()) {
 chunkContext.getStepContext()
 .getStepExecution().setTerminateOnly();

Listing 4.7 Setting the stop flag from a tasklet

Sets stop flag

114 CHAPTER 4 Running batch jobs
 }
 processItem();
 if(moreItemsToProcess()) {
 return RepeatStatus.CONTINUABLE;
 } else {
 return RepeatStatus.FINISHED;
 }

 }

 (...)

}

Setting the stop flag in a tasklet is straightforward; let’s now see how to do this in a
chunk-oriented step.
STOPPING FROM A CHUNK-ORIENTED STEP

Remember how a chunk-oriented step works: Spring Batch drives the flow and lets
you plug in your business logic or reuse off-the-shelf components to read, process, or
write items. If you look at the ItemReader, ItemProcessor, and ItemWriter interfaces,
you won’t see a StepExecution. You access the StepExecution to stop the execution
using listeners.

NOTE Not dealing with stopping a job in item readers, processors, and writ-
ers is a good thing. These components should focus on their processing to
enforce separation of concerns.

Chapter 3 covers the configuration of listeners, but we give you enough background
here to use them for stopping jobs. The idea of a listener is to react to the lifecycle
events of a step. You register a listener on a step by using annotations or implementing
interfaces, and Spring Batch calls corresponding methods throughout the lifecycle of
that step. What lifecycle events can you listen for? A lot of them: step start; after each
read, processed, or written item; step end, and so on. The following listing shows a lis-
tener that keeps a reference to the StepExecution and checks a stopping condition
after each read item. This listener uses annotations.

package com.manning.sbia.ch04.stop;

import org.springframework.batch.core.StepExecution;
import org.springframework.batch.core.annotation.AfterRead;
import org.springframework.batch.core.annotation.BeforeStep;

public class StopListener {

 private StepExecution stepExecution;

 @BeforeStep
 public void beforeStep(
 StepExecution stepExecution) {
 this.stepExecution = stepExecution;
 }

Listing 4.8 An annotated listener to stop a job execution

Registers step
execution

115Stopping jobs gracefully
 @AfterRead
 public void afterRead() {
 if(stopConditionsMet()) {
 stepExecution.setTerminateOnly();
 }
 }

 (...)

}

The real work is to implement the stopping condition, which is a business decision
(the body of the stopConditionsMet method in our example). The following listing
shows how to register the listener on the chunk-oriented step.

<bean id="stopListener" class="com.manning.sbia.ch04.stop.StopListener" />

<batch:job id="importProductsJob">
 <batch:step id="importProductsStep">
 <batch:tasklet>
 <batch:chunk reader="reader" writer="writer" commit-interval="100"/>
 <batch:listeners>
 <batch:listener ref="stopListener" />
 </batch:listeners>
 </batch:tasklet>
 </batch:step>
</batch:job>

Note how the listener mechanism makes the stopping decision a crosscutting con-
cern: no component in the step—only the dedicated listener—knows about stopping.

This concludes the coverage of stopping a Spring Batch job. You saw how to stop a job
execution from the operator’s point of view. You configure a job operator bean that
you can expose to JMX and call the appropriate sequence of methods to stop a specific
job execution. Don’t forget that stopping an execution is only a request message: your
code must be aware of this message if you want the execution to stop quickly. As soon
as Spring Batch gets control of the processing, it does its best to stop the execution
gracefully. Finally, remember that you can choose to stop the execution from within
your business code.

Listing 4.9 Registering the stop listener on the step

Sets stop flag
if necessary

Registers
listener

Combining scheduling and stopping jobs
Scheduling isn’t only for starting jobs; you can also schedule stopping your jobs. If a
job runs at night but must stop at 6 a.m., you can schedule a task to send a stop
signal. By doing so, you won’t embed the stop logic in your job.

116 CHAPTER 4 Running batch jobs
4.6 Summary
Launching Spring Batch jobs is easy, and we covered the most common scenarios
you’re likely to encounter in batch systems. With Spring Batch, you can stick to the
popular cron-plus-command-line scenario by using either your own Java program or
Spring Batch’s generic command-line runner. You can also choose to embed Spring
Batch in a web application combined with a Java scheduler. Spring provides light-
weight support for scheduling.

 We provided you with the following guidelines:

■ The generic command-line launcher-plus-cron solution is good for jobs that
don’t run with a high frequency. For example, you shouldn’t use this solution
when the batch environment initialization is costly and the batch job runs
every 30 seconds.

■ If you want your batch environment ready all the time, embed your Spring
Batch environment in a web application.

■ Once your batch environment is in a web application, also embed a Java sched-
uler to start your jobs. If the triggering event comes from an external system
that doesn’t have direct access to Spring Batch, use an HTTP request to trigger
the execution.

■ Imagine any launching system that suits your needs—the Spring Batch launching
API is in Java, so you’re limited only by the Java language and your imagination!

■ Stopping a job execution uses a stop message. You should take this message into
account in your code, but you can also count on Spring Batch to stop gracefully
when it retakes control of the flow.

It’s now time to go back to the heart of Spring Batch: chunk-oriented processing. The
next three chapters cover the three corresponding phases of chunk processing: read-
ing, writing, and processing.

Reading data
In the previous two chapters, we concentrated on configuring and launching batch
jobs. It’s now time to dig into the features at the heart of batch processes. As
described in chapter 2, Spring Batch provides types for batch processes based on
the concepts of job and step. A job uses a tasklet to implement chunk processing.
Chunk-oriented processing allows jobs to implement efficiently the most common
batch processing tasks: reading, processing, and writing.

 We focus here on the first step of this process, reading. We describe general con-
cepts and types implemented by Spring Batch. These built-in types are the founda-
tion used to support the most common use cases. Spring Batch can use different
data sources as input to batch processes. Data sources correspond to flat files, XML,
and JavaScript Serialized Object Notation (JSON). Spring Batch also supports other

This chapter covers
■ Reading input data
■ Reading from files
■ Reading from databases
■ Reading from Java Message Service and

other sources
■ Implementing custom readers
117

118 CHAPTER 5 Reading data
types of data sources, such as Java Message Service (JMS), in the message-oriented
middleware world.

 In some cases, the Spring Batch built-in implementations aren’t enough, and it’s
necessary to create custom implementations. Because Spring Batch is open source,
implementing and extending core types for reading is easily achievable.

 Another thing to keep in mind is that reading data is part of the general process-
ing performed by the chunk tasklet. Spring Batch guarantees robustness when execut-
ing such processing. That’s why built-in implementations implicitly provide
integration with the execution context to store current state. The stored data is partic-
ularly useful to handle errors and restart batch processes. We concentrate here on the
data-reading capabilities of Spring Batch and leave chapter 8 to cover in detail these
other aspects.

 We use our case study to describe concrete use cases taken from the real world. We
explain how to import product data from different kinds of input, with different for-
mats, and how to create data objects.

5.1 Data reading concepts
In this section, we introduce key concepts and types related to reading data in Spring
Batch. These concepts are the foundation for the Spring Batch reading feature. This
feature and its related types operate within the chunk tasklet, as illustrated in figure 5.1.

 This chapter focuses on the first part of chunk processing. At this level, the first
key type is the ItemReader interface that provides a contract for reading data. This
interface supports generics and contains a read method that returns the next ele-
ment read:

public interface ItemReader<T> {
 T read() throws Exception, UnexpectedInputException,
 ParseException, NonTransientResourceException;
}

If you’ve toured the Spring Batch documentation, you’ve noticed that readers imple-
ment another key interface: ItemStream. The ItemStream interface is important
because it allows interaction with the execution context of the batch process to store
and restore state. It’s also useful when errors occur. In this chapter, we concentrate on
the ItemReader, and we discuss state management in chapter 8. At this point, it’s only
necessary to know that readers can save state to properly handle errors and restart.

Reading
data

Input data

Processing
data Writing data

Output data

Chunk tasklet

Reads Writes
Figure 5.1 A chunk
tasklet reads, processes,
and writes data.

119Reading flat files
The following snippet describes the content of the ItemStream interface. The open
and close methods open and close the stream. The update method allows updating
the state of the batch process:

public interface ItemStream {
 void open(ExecutionContext executionContext)
 throws ItemStreamException;
 void update(ExecutionContext executionContext)
 throws ItemStreamException;
 void close() throws ItemStreamException;
}

You can create your own implementations of the ItemReader and ItemStream
interfaces, but Spring Batch provides implementations for common data sources to
batch processes. Throughout this chapter, we use our case study as the background
story and describe how to import product data into the online store using different
data sources.

5.2 Reading flat files
The first data source we describe to input data in batch processes is files. A file con-
tains a set of data to integrate into an information system. Each type of file has its own
syntax and data structure. Each structure in the file identifies a different data element.
To configure a file type in Spring Batch, we must define its format.

 Figure 5.2 illustrates the batch process inputs in our case study. Look at each box
in figure 5.2 and see how Spring Batch handles that format.

 Flat files are pure data files and contain little or no metadata information. Some
flat file formats, such as comma-separate value (CSV), may contain one header line as
the first line that names columns. In general, though, the file provider defines the file
format. This information can consist of field lengths or correspond to a separator
splitting data fields. Configuring Spring Batch to handle flat files corresponds to
defining the file format to map file records to data objects.

 The item reader for flat files is responsible for identifying records in the file and
then creating data objects from these records, as shown in figure 5.3.

ProductItemtReader

Separator-based
text format

Fixed length-based
text format

JSON format

Supported
formats

Figure 5.2 The supported file formats in the case study are separator-based
text, fixed length-based text, and JSON.

120 CHAPTER 5 Reading data
The ItemReader implementation for flat files is the FlatFileItemReader class. Sev-
eral other types work in conjunction with the FlatFileItemReader to identify data
fields from file lines and to create data objects, as pictured in figure 5.4.

 Three interfaces work closely with the FlatFileItemReader class. The Record-
SeparatorPolicy interface identifies data records in a file. The LineMapper interface
is responsible for extracting data from lines. The LineCallbackHandler interface
handles data lines in special cases.

 The DefaultLineMapper class is the default and most commonly used implementa-
tion of the LineMapper interface. Two additional interfaces related to the DefaultLine-
Mapper class come into play. The DefaultLineMapper class holds a LineTokenizer
responsible for splitting data lines into tokens and a FieldSetMapper to create data
objects from tokens.

ItemReader for flat files

Identifying data records Creating data objects
from records

Data file Data objects

Extracts data
records

Creates data
objects

Next

Second processingFirst processing

Figure 5.3 ItemReader processing for flat files. The item reader first identifies
records, and then creates data objects.

FlatFileItemReader

<<interface>>
LineMapper

<<interface>>
RecordSeparatorPolicy

<<interface>>
LineCallbackHandler

<<interface>>
LineTokenizer

<<interface>>
FieldSetMapper

DefaultLineMapper

Uses

Uses

Uses

Figure 5.4 Classes and interfaces involved in reading and parsing flat files

121Reading flat files
Table 5.1 summarizes the interfaces from figure 5.4.

These interfaces are all involved when configuring the FlatFileItemReader class for
a file format. You’ll use these interfaces and their corresponding implementations to
handle various file formats in this chapter.

 This section on flat files introduced all concepts and types related to the item
reader for flat files to import data files as objects. In the next section, we describe the
general configuration of a FlatFileItemReader bean in Spring Batch as well as imple-
mentations for record-separator policies and line mappers. We then explain how to
handle delimited, fixed-length, and JSON file formats and describe advanced concepts
to support records split over several lines and heterogonous records.

5.2.1 Configuring the FlatFileItemReader class

The FlatFileItemReader class is configured as a Spring bean and accepts the proper-
ties described in table 5.2.

Table 5.1 Interfaces for flat file processing with the FlatFileItemReader class

Entity Description

LineMapper Maps a data line to a data object

FieldSetMapper Creates a data object from tokens; invoked by the DefaultLine-
Mapper class, the default implementation of the LineMapper
interface

LineTokenizer Splits a data line into tokens; invoked by the DefaultLineMapper
class, the default implementation of the LineMapper interface

RecordSeparatorPolicy Identifies beginning and end of data records

LineCallbackHandler Provides data lines in special cases; the common usage is for lines
skipped by the FlatFileItemReader class during processing

Table 5.2 FlatFileItemReader properties

Property Type Description

bufferedReaderFactory BufferedReaderFactory Creates BufferReader instances
for the input file. The default factory
(DefaultBufferedReader-
Factory) provides a suitable
instance for text files. Specifying
another factory is useful for binary files.

comments String[] Specifies comment prefixes in the
input file. When a line begins with one
of these prefixes, Spring Batch
ignores that line.

122 CHAPTER 5 Reading data
The following listing describes how to configure an instance of the FlatFileItem-
Reader class in Spring Batch using the properties linesToSkip, recordSeparator-
Policy, and lineMapper. You use this type of configuration for the online store use
case with flat files.

<bean id="productItemReader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="datafile.txt"/>
 <property name="linesToSkip" value="1"/>
 <property name="recordSeparatorPolicy"
 ref="productRecordSeparatorPolicy"/>
 <property name="lineMapper" ref="productLineMapper"/>
</bean>

<bean id="productRecordSeparatorPolicy" class="(...)">
 (...)
</bean>

encoding String The input file’s encoding. The default
value is the class’s
DEFAULT_CHARSET constant.

lineMapper LineMapper<T> Creates objects from file data
records.

linesToSkip int The number of lines to skip at the
beginning of the file. This feature is
particularly useful to handle file head-
ers. If the skippedLines-
Callback property is present, the
item reader provides each line to
the callback.

recordSeparatorPolicy RecordSeparatorPolicy How the input file delimits records.
The provided class can detect single
or multiline records.

resource Resource The input resource. You can use stan-
dard Spring facilities to locate the
resource.

skippedLinesCallback LineCallbackHandler The callback for lines skipped in the
input file. Used jointly with the
linesToSkip property.

strict boolean Whether item reader throws an excep-
tion if the resource doesn’t exist. The
default value is true.

Listing 5.1 Configuring a FlatFileItemReader

Table 5.2 FlatFileItemReader properties (continued)

Property Type Description

123Reading flat files
<bean id="productLineMapper" class="(...)">
 (...)
</bean>

Specifying the value 1 for the linesToSkip property means that the reader doesn’t
consider the first line as a data line and that the line will be skipped. In the context of
the use case, this line corresponds to the file header describing the record fields. The
recordSeparatorPolicy property determines how to delimit product records in the
file. Finally, the code specifies how to create a product object from a data record using
the lineMapper property. To lighten the listing, we elided the beans corresponding to
the two last entities but we detail them next.

 The first type, the RecordSeparatorPolicy interface, delimits data records with
the following methods:

public interface RecordSeparatorPolicy {
 boolean isEndOfRecord(String line);
 String postProcess(String record);
 String preProcess(String record);
}

The RecordSeparatorPolicy interface detects the end of a record and can preprocess
and postprocess lines. Implementations can support continuation markers and unbal-
anced quotes at line ends. The FlatFileItemReader class uses a RecordSeparator-
Policy to build data records when parsing the data file. Spring Batch provides several
implementations of this interface, described in table 5.3.

Configuring record separation policy classes can be simple because their default con-
structors cover the most common cases. The following XML fragment is an example:

<bean id="productRecordSeparatorPolicy"
 class="org.springframework.batch.item.file

 ➥ .separator.DefaultRecordSeparatorPolicy">

Another important interface present as a property of the FlatFileItemReader class is
the LineMapper interface. The LineMapper interface provides data objects from

Table 5.3 RecordSeparatorPolicy built-in implementations

Implementation Description

SimpleRecordSeparatorPolicy Separates input as one record per line; the simplest imple-
mentation and root class for all other implementations.

DefaultRecordSeparatorPolicy Supports unbalanced quotes at line end and a continuation
string.

JsonRecordSeparatorPolicy Uses JSON as the record format and can detect JSON
objects over multiple lines, based on numbers of tokens
delimited by characters { and }.

SuffixRecordSeparatorPolicy Expects a specific string at line end to mark the end of a
record. By default, this string is a semicolon.

124 CHAPTER 5 Reading data
record lines without knowing how Spring Batch obtained the lines. The LineMapper
interface contains one method called mapLine:

public interface LineMapper<T> {
 T mapLine(String line, int lineNumber) throws Exception;
}

Spring Batch provides several implementations of this interface for different use cases
and file formats, as described in table 5.4.

We describe in detail the DefaultLineMapper, JsonLineMapper, and PatternMatch-
ingCompositeLineMapper implementations in the next sections. First, we take a quick
look at the PassThroughLineMapper class.

 The PassThroughLineMapper class performs no parsing or data extraction. It’s sim-
ple to configure because it doesn’t define properties. The configuration of this class is
shown in the following XML fragment:

<bean id="lineMapper" class="org.springframework.batch.item

 ➥ .file.mapping.PassThroughLineMapper"/>

Table 5.4 LineMapper built-in implementations

Class Description

DefaultLineMapper The default implementation tokenizes lines and
maps items to objects.

JsonLineMapper Supports the JSON format for records and extracts
data to a map for each record. This implementation
is based on the jackson-mapper-asl.jar file that can
be reached at the website http://jackson
.codehaus.org/.

PassThroughLineMapper Provides the original record string instead of a
mapped object.

PatternMatchingCompositeLineMapper Parses heterogeneous record lines. For each line
type, a line tokenizer and a field-set mapper must
be configured.

JavaScript Object Notation (JSON)
JSON is an open and lightweight text-based standard designed for human-readable
data interchange. It provides a way to structure text data using braces and brackets.
This technology is similar to XML but requires about 30% fewer characters.

The JSON format is commonly associated with JavaScript because the language uses
it to perform I/O for data structures and objects. The JSON format is language inde-
pendent, but you usually see it used in Asynchronous JavaScript + XML (AJAX)-styled
web applications.

http://jackson.codehaus.org/
http://jackson.codehaus.org/

125Reading flat files
The DefaultLineMapper class is the most commonly used implementation because it
handles files with implicit structures using separators or fixed-length fields. In our use
case, we accept several data formats for incoming data. We describe next how to
configure Spring Batch to handle data structures based on separators and fixed-
length fields.

5.2.2 Introducing the DefaultLineMapper class

The most commonly used implementation of the LineMapper interface is the
DefaultLineMapper class. It implements line processing in two phases:

■ Parses a line to extract fields using an implementation of the LineTokenizer
interface

■ Creates data objects from fields using an implementation of the FieldSet-
Mapper interface

Figure 5.5 illustrates how the LineTokenizer and FieldSetMapper interfaces described
in the preceding list interact within the DefaultLineMapper.

 The lineTokenizer and fieldSetMapper properties configure the DefaultLine-
Mapper class’s LineTokenizer and FieldSetMapper. For example:

<bean id="productLineMapper"
 class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer" ref="productLineTokenizer"/>
 <property name="fieldSetMapper" ref="productFieldSetMapper"/>
</bean>

<bean id="productLineTokenizer" class="(...)"> (...) </bean>
<bean id="productFieldSetMapper" class="(...)"> (...) </bean>

This example uses bean references (using the ref attribute), but you could also use
an inner bean. The lineTokenizer property is set to an instance of LineTokenizer.
The fieldSetMapper property is set to an instance of FieldSetMapper.

DefaultLineMapper

Parses the
record line

Creates data
objects from

field set

Record Data objects

LineTokenizer FieldSetMapper
Next

Figure 5.5 Interactions between LineTokenizer and FieldSetMapper
in a DefaultLineMapper. The LineTokenizer parses record lines, and
the FieldSetMapper creates objects from field sets.

126 CHAPTER 5 Reading data
5.2.3 Using the DefaultLineMapper class

It’s now time to use DefaultLineMapper in our case study. The FieldSetMapper
implementation remains the same; it creates objects from a FieldSet. The LineTo-
kenizer implementation depends on the record format and provides the contract to
create a field set from lines in a data file, as defined here:

public interface LineTokenizer {
 FieldSet tokenize(String line);
}

A FieldSet is returned by the tokenize method, which parses the record. A Field-
Set contains all extracted record fields and offers several methods to manage them.
Table 5.5 lists the Spring Batch implementations of the LineTokenizer interface for
different ways to delimit fields in data lines.

5.2.4 Extracting character-separated fields

Let’s take concrete examples from our case study. The first example contains product
records that use the comma character to separate fields, as shown in the following
example:

PR....210,BlackBerry 8100 Pearl,,124.60
PR....211,Sony Ericsson W810i,,139.45
PR....212,Samsung MM-A900M Ace,,97.80
PR....213,Toshiba M285-E 14,,166.20
PR....214,Nokia 2610 Phone,,145.50
PR....215,CN Clogs Beach/Garden Clog,,190.70
PR....216,AT&T 8525 PDA,,289.20

For this example, configuring a LineTokenizer consists of defining a Delimited-
LineTokenizer with the names and delimiter properties. The names property defines
the names of the fields, and the delimiter property defines the field delimiter; for
example:

<bean id=" productLineTokenizer"
 class="org.springframework.batch.item.file

 ➥ .transform.DelimitedLineTokenizer">
 <property name="delimiter" value=","/>
 <property name="names"
 value="id,name,description,price"/>
</bean>

Table 5.5 LineTokenizer built-in implementations

Implementation Description

DelimitedLineTokenizer Uses a delimiter to split a data line into fields. Defaults
correspond to comma-separated values.

FixedLengthTokenizer Uses field lengths to split a data line into fields.

127Reading flat files
The delimiter property specifies the character used to separate fields in a data file—
in this case, the comma: ",". The names property defines the field names as an
ordered list separated by commas: "id,name,description,price". When the token-
izer extracts a field from the data line, the corresponding name is associated with it so
it’s possible to get the field value by name.
EXTRACTING FIXED-LENGTH FIELDS

Another supported data structure in the case study is fixed-length fields. Note that
such a data structure is potentially larger because all fields must have the same length.
Here’s an example of this structure:

PR....210BlackBerry 8100 Pearl 124.60
PR....211Sony Ericsson W810i 139.45
PR....212Samsung MM-A900M Ace 97.80
PR....213Toshiba M285-E 14 166.20
PR....214Nokia 2610 Phone 145.50
PR....215CN Clogs Beach/Garden Clog 190.70
PR....216AT&T 8525 PDA 289.20

For this example, table 5.6 describes the lengths of each field. This format doesn’t use
a separator character.

To configure the LineTokenizer for this type of example, you define a FixedLength-
Tokenizer with names and columns properties. The properties respectively define the
names of fields and the column ranges used to identify them:

<bean id=" productLineTokenizer"
 class="org.springframework.batch.item.file

 ➥ .transform.FixedLengthTokenizer">
 <property name="columns" value="1-9,10-35,36-50,51-56"/>
 <property name="names"
 value="id,name,description,price"/>
</bean>

The columns property configures column ranges for each field. This property accepts
a list of Range instances, but you can also configure it using a comma-separated string
of ranges. You can see that this property numbers from 1 and not 0 because Spring’s
RangeArrayPropertyEditor class is internally used to configure the specified value
into the value to set. The names property sets field names, as with the DelimitedLine-
Tokenizer class.

Field name Length in characters

id 9

name 26

description 15

price 6 Table 5.6 Fixed record
field names and lengths

128 CHAPTER 5 Reading data
5.2.5 Creating objects from fields

Now that you’ve configured extracting fields from data lines, it’s time to specify how to
create data objects from these fields. This process isn’t specific to a particular Line-
Mapper but relates to the field set structure.

 The FieldSetMapper interface defines this process and uses generics to type imple-
mentations to application-specific types. Spring Batch defines the FieldSetMapper
interface as

public interface FieldSetMapper<T> {
 T mapFieldSet(FieldSet fieldSet) throws BindException;
}

The mapFieldSet method implements the mapping where a LineTokenizer imple-
mentation has created the FieldSet instance. Table 5.7 lists the Spring Batch imple-
mentations of this interface for different ways to handle fields and create data objects.

Before using a FieldSetMapper, you must implement the bean to receive the data. In
the case study, as you import product data, the bean is a plain old Java object (POJO)
that contains the id, name, description, and price properties, as shown in the follow-
ing listing.

public class Product {
 private String id;
 private String name;

Table 5.7 FieldSetMapper built-in implementations

Class Description

BeanWrapperFieldSetMapper Uses field names to set data in properties of data beans.

PassThroughFieldSetMapper Provides the FieldSet without doing any mappings to
objects. Useful if you need to work directly with the field set.

Listing 5.2 The Product bean

Spring built-in PropertyEditor support
Spring provides support to configure properties as strings. The PropertyEditor in-
terface describes how to convert strings to beans, and vice versa. For nonstring type
properties, Spring automatically tries to convert to the appropriate type using the reg-
istered property editors. They come from the JavaBean specification and can be seen
as a to/from string conversion service.

This support is extensible: you can register your own property editors to convert
strings to custom objects with the CustomEditorConfigurer class. Spring Batch
uses this mechanism to register its own property editors to make some types easier
to configure. For example, the Range class is configured with the RangeArrayProp-
ertyEditor class.

129Reading flat files
 private String description;
 price float price;

 public String getId() { return id; }
public void setId(String id) { this.id = id; }

 (...)
 public float getPrice() { return price; }
 public void setPrice(float price) { this. price = price; }
}

To map the FieldSet instance to the Product data bean, you implement a FieldSet-
Mapper to populate Product instances from a FieldSet instance. The following listing
shows the FieldSetMapper implementation that creates Product instances.

public class ProductFieldSetMapper implements FieldSetMapper<Product> {
 public Product mapFieldSet(FieldSet fieldSet) {
 Product product = new Product();
 product.setId(fieldSet.readString("id"));
 product.setName(fieldSet.readString("name"));
 product.setDescription(fieldSet.readString("description"));
 product.setPrice(fieldSet.readFloat("price"));
 return product;
 }
}

In the mapFieldSet method implementation, an uninitialized instance of a Product is
first created. The mapFieldSet method then uses the FieldSet instance and its vari-
ous read methods. The FieldSet class provides multiple read methods, one for each
primitive Java type, plus String, Date, and BigDecimal. Each read method takes a
field name or field index as a parameter; some methods also provide an argument for
a default value.

 You configure ProductFieldSetMapper as follows:

<bean id="productFieldSetMapper"
 class="com.manning.sbia.reading.ProductFieldSetMapper"/>

As described in table 5.7, Spring Batch provides a bean-based implementation of the
FieldSetMapper interface: the BeanWrapperFieldSetMapper class. This class makes
working with field sets easier because you don’t have to write a custom FieldSetMapper.

 You specify a data template for the bean using the prototypeBeanName property,
where the value is the bean name for this template. You must configure the correspond-
ing bean with the prototype scope. When a Product is instantiated, its properties are set
using field set data. The bean property names and field names must match exactly for
the mapping to take place. The following XML fragment shows this configuration:

<bean id="productFieldSetMapper"
 class="org.springframework.batch.item.file

 ➥ .mapping.BeanWrapperFieldSetMapper">
 <property name="prototypeBeanName" value="product"/>
</bean>

Listing 5.3 Custom FieldSetMapper for creating Product objects

130 CHAPTER 5 Reading data
<bean id="product"
 class="com.manning.sbia.reading.Product"
 scope="prototype"/>

After defining a bean of type BeanWrapperFieldSetMapper, you set its prototype-
BeanName property to the identifier of the bean used to create data instances. For our
case study, the bean type is Product.

 Another interesting data format that Spring Batch supports is JSON. We intro-
duced this format in tables 5.3 and 5.4 with dedicated Spring Batch types. In the next
section, we describe how to implement and configure processing to support JSON-
formatted data in our case study.

5.2.6 Reading JSON

Spring Batch provides support for JSON with a LineMapper implementation called
JsonLineMapper. The following listing shows the JSON content of a data file corre-
sponding to the data presented in the previous section. This is the last format for flat
files in our case study.

{ "id": "PR....210",
 "name": "BlackBerry 8100 Pearl",
 "description": "",
 "price": 124.60 }
{ "id": "PR....211",
 "name": "Sony Ericsson W810i",
 "description": "",
 "price": 139.45 }
{ "id": "PR....212",
 "name": "Samsung MM-A900M Ace",
 "description": "",
 "price": 97.80 }
(...)

Configuring the JsonLineMapper class is simple because line parsing is built into the
class, and each FieldSet maps to a java.util.Map. No additional types are required
to configure the class, as shown in the following XML fragment:

<bean id="productsLineMapper"
 class="org.springframework.batch.item.file.mapping.JsonLineMapper"/>

Using a JsonLineMapper, you get a list of Map instances containing all data from the
JSON structure. If you were to convert this processing to code, you’d have a listing sim-
ilar to the following.

List<Map<String,Object>> products = new ArrayList<Map<String,Object>>();

Map<String,Object> product210 = new HashMap<String,Object>();
product210.put("id", "PR....210");
product210.put("name", "BlackBerry 8100 Pearl");

Listing 5.4 Product data file using JSON

Listing 5.5 JSON data processing as Java code

131Reading flat files
product210.put("description", "");
product210.put("price", 124.60);
products.add(product210);

Map<String,Object> product211 = new HashMap<String,Object>();
product211.put("id", "PR....211");
product211.put("name", "Sony Ericsson W810i");
product211.put("description", "");
product211.put("price", 139.45);
products.add(product211);

Map<String,Object> product212 = new HashMap<String,Object>();
product212.put("id", "PR....212");
product212.put("name", "Samsung MM-A900M Ace");
product212.put("description", "");
product212.put("price", 97.80);
products.add(product212);

Using the JsonLineMapper class is convenient to get data as Map objects, but it’s per-
haps not exactly what you need. At this point in the case study, you want to support
several input data formats homogenously. For every type of format, data must come
through as Product instances.

 For this reason, your work isn’t finished. You need to create an additional class
implementing the LineMapper interface to wrap a JsonLineMapper. The purpose of
this class, called WrappedJsonLineMapper, is to delegate processing to the target Json-
LineMapper instance and then to create Product instances from Map objects. The fol-
lowing listing shows the JsonLineMapperWrapper class.

public class JsonLineMapperWrapper implements LineMapper<Product> {
 private JsonLineMapper delegate;

 public Product mapLine(String line, int lineNumber) {
 Map<String,Object> productAsMap
 = delegate.mapLine(line, lineNumber);

 Product product = new Product();
 product.setId((String)productAsMap.get("id"));
 product.setName(
 (String)productAsMap.get("name"));
 product.setDescription(
 (String)productAsMap.get("description"));
 product.setPrice(
 new Float((Double)productAsMap.get("price")));

 return product;
 }
}

The WrappedJsonLineMapper class is a wrapper for a target JsonLineMapper instance
defined with the delegate property. This makes it possible to delegate processing B
within the mapLine method and to get the corresponding result as a Map. The mapLine
method then converts the Map to a Product object C.

Listing 5.6 A JsonLineMapper wrapper to create data objects

Delegates to target
JsonLineMapper

B

Populates
product
from map

C

132 CHAPTER 5 Reading data
 We’ve described all the supported formats for flat files in Spring Batch. Before
moving on to XML data input support in Spring Batch, we explain how to handle
records spread over multiple lines and how to support several record types within the
same data file.

5.2.7 Multiline records

The RecordSeparatorPolicy interface identifies record boundaries using its isEnd-
OfRecord method. For files using only one line per record, unbalanced quotes, or
continuation markers exceptions, you can use the default implementation of this
interface, the DefaultRecordSeparatorPolicy class.

 When an input source spreads records over several lines, a custom implementation
is required to specify the conditions that delimit records. Imagine that each product
record extends over two lines. The first line provides general data such as product
identifier and name, and the second line includes additional information like the
description and price. Here’s an example of this format:

PR....210,BlackBerry 8100 Pearl,
,124.60
PR....211,Sony Ericsson W810i,
,139.45
PR....212,Samsung MM-A900M Ace,
,97.80
PR....213,Toshiba M285-E 14,
,166.20
(...)

In this case, the implementation of the isEndOfRecord method needs to detect if the
line starts with a product identifier. If true, this isn’t the end of the record. The follow-
ing listing implements this format and assumes that no unbalanced quotes and con-
tinuation markers are present.

public class TwoLineProductRecordSeparatorPolicy
 implements RecordSeparatorPolicy {

 public String postProcess(String record) {
 return record;
 }

 public String preProcess(String line) {
 return line;
 }

 private int getCommaCount(String s) {
 String tmp = s;
 int index = -1;
 int count = 0;
 while ((index=tmp.indexOf(","))!=-1) {
 tmp = tmp.substring(index+1);
 count++;

Listing 5.7 Reading multiline records with a custom RecordSeparatorPolicy

133Reading flat files
 }
 return count;
 }

 public boolean isEndOfRecord(String line) {
 return getCommaCount(line)==3;
 }
}

To determine if the current line is the end of the product record, you check if the
string contains three commas B because a valid product must have four properties
separated by commas (if a valid product required five properties, getCommaCount
would be set to check for four commas). The remaining task is to set the implementa-
tion on the FlatFileItemReader bean using its recordSeparatorPolicy property, as
described in listing 5.2.

 To close the topic of reading from flat files, the following section describes het-
erogonous record handling within the same file.

5.2.8 Reading heterogonous records

Records present in flat files may not always be uniform. Each record still corresponds
to one line, including support for unbalanced quotes and a continuation character,
but can correspond to different data records. In our case study, this corresponds to
having several product types with different data in the same file. The following file
example contains mobile phone records as before and new book records:

PRM....210,BlackBerry 8100 Pearl,,BlackBerry,124.60
PRM....211,Sony Ericsson W810i,,Sony Ericson,139.45
PRB....734,Spring Batch in action,,Manning,34.95
PRM....212,Samsung MM-A900M Ace,,Samsung,97.80
PRB....735,Spring Roo in action,,Manning,34.95
PRM....213,Toshiba M285-E 14,,Toshiba,166.20
PRB....736,Spring in action,,Manning,44.95
PRM....214,Nokia 2610 Phone,,Nokia,145.50

In this data file example, lines beginning with PRM correspond to mobile phones
(product-mobile), and lines beginning with PRB to books (product-book). In this case,
you use polymorphism to create a basic product class and subclasses for specific types
of products, mobile phones and books, as illustrated in figure 5.6.

 Because the data file mixes different types of products, you must define rules to
detect the product type for a given line. The prefix of the product identifier is used
here: an identifier beginning with PRM is a mobile phone, and one with PRB is a book.
To associate a line mapper for each line type, you use a LineMapper implementation
called PatternMatchingCompositeLineMapper.

 The PatternMatchingCompositeLineMapper class detects different records, parses
them, and extracts data objects. The following listing describes how to configure the
class as a bean to handle a multiproduct data file.

Checks
comma count

B

134 CHAPTER 5 Reading data
<bean id="productLineMapper"
 class="org.springframework.batch.item.file

 ➥ .mapping.PatternMatchingCompositeLineMapper">
 <property name="tokenizers">
 <map>
 <entry key="PRM*" value-ref="mobileProductLineTokenizer"/>
 <entry key="PRB*" value-ref="bookProductLineTokenizer"/>
 </map>
 </property>
 <property name="fieldSetMappers">
 <map>
 <entry key="PRM*" value-ref="mobileProductFieldSetMapper"/>
 <entry key="PRB*" value-ref="bookProductFieldSetMapper"/>
 </map>
 </property>
</bean>

<bean id="mobileProductLineTokenizer" class="(...)"> (...) </bean>
<bean id="mobileProductFieldSetMapper" class="(...)"> (...) </bean>

<bean id="bookProductLineTokenizer" class="(...)"> (...) </bean>
<bean id="bookProductFieldSetMapper" class="(...)"> (...) </bean>

The first property, tokenizers B, registers all LineTokenizers in a map. The map
keys contain patterns that select a tokenizer for a given line. The wildcard “*” can be
used as a map key. The fieldSetMappers property C configures field set mappers.

 This section ends our description of flat file support in Spring Batch. This support
is powerful, flexible, and can handle varied data formats. To complete our presenta-
tion of using files as input, we look at XML. The main difference between XML and flat
files is that Java provides support for XML, which Spring Batch can use.

Listing 5.8 Configuring a composite LineMapper

Product

id
description

price

MobilePhoneProduct

name
manufacturer

(…)

BookProduct

title
publisher

(…)

Figure 5.6 Inheritance relationships between different kinds of products. The
MobilePhoneProduct and BookProduct classes inherit from the Product class.

Sets line tokenizers B

Sets field set
mappers

C

135Reading XML files
5.3 Reading XML files
As opposed to flat files, the Java runtime provides supports for XML. Java can process
XML input using different techniques, including using a Streaming API for XML
(StAX) parser. StAX is a standard XML-processing API that streams XML data to your
application. StAX is particularly suitable to batch processing because streaming is a
principal Spring Batch feature used to provide the best possible performance and
memory consumption profile.

Using XML alone in Java applications (and object-oriented applications) has limita-
tions because of a mismatch between the XML and object-oriented models. To address
this limitation and provide efficient conversion between XML and objects, the Spring
framework includes the Object/XML Mapping framework (aka OXM or O/X Map-
per). Spring OXM provides generic components called marshaller and unmarshaller to
convert, respectively, objects to XML, and vice versa, as shown in figure 5.7.

 In addition to the Marshaller and Unmarshaller interfaces, Spring OXM supports
the object-to-XML mapping libraries listed in table 5.8.

 Before diving into Spring Batch support for XML files, let’s describe the XML
vocabulary used for products in our case study. The following listing shows the con-
tents of the file after conversion, as described in the section 5.2.3. This file format is
the last supported import format in our case study.

Batch performance and XML
Not all XML parsing approaches are suitable for obtaining the best performance for
batch processes. For example, DOM (Document Object Model) loads all content in
memory, and SAX (Simple API for XML) implements event-driven parsing. These two
approaches aren’t suitable and efficient in the context of batch processing because
they don’t support streaming.

Object XML

Marshaller

Unmarshaller

Built-in implementations

Reads Creates

ReadsCreates

Figure 5.7 Spring OXM components

136 CHAPTER 5 Reading data
<products>
 <product>
 <id>PR....210</id>
 <name>BlackBerry 8100 Pearl</name>
 <description/>
 <price>124.60</price>
 </product>
 <product>
 <id>PR....211</id>
 <name>Sony Ericsson W810i</name>
 <description/>
 <price>139.45</price>
 </product>
 (...)
</products>

Each product corresponds to a product XML element B under the root products ele-
ment. Every product has four XML children elements for identifier, name, descrip-
tion, and price.

 The StaxEventItemReader class implements the Spring Batch ItemReader inter-
face using StAX to read XML documents. Because of its reliance on Spring OXM, it’s
independent of a parser implementation. Table 5.9 lists the StaxEventItemReader
properties.

Library Spring OXM Marshaller class

JAXB 1 and 2 Jaxb1Marshaller and Jaxb2Marshaller

Castor XML CastorMarshaller

XMLBeans XmlBeansMarshaller

JiBX JibxMarshaller

XStream XStreamMarshaller

Listing 5.9 XML product data converted from JSON

Table 5.9 StaxEventItemReader properties

Property Description

fragmentRootElementName The XML element name to import for each object.

maxItemCount The maximum number of items to retrieve. The default value is
Integer.MAX_VALUE.

resource The resource to use as input. Because the property is of type
Resource, you can use Spring to load the resource. See table 5.10.

strict Whether the item reader throws an exception if the resource
doesn’t exist. The default is false.

unmarshaller The Spring OXM Unmarshaller implementation used to convert
XML to objects.

product
element

B

Table 5.8 Built-in Spring OXM
marshallers

137Reading XML files
The key properties of the StaxEventItemReader class are fragmentRootElementName,
used to identify the XML element to import, and unmarshaller to define XML-to-
object conversions.

 Table 5.10 lists most common built-in implementations of the Resource interface.

The following listing describes how to configure a StaxEventItemReader bean to
import product data from an XML file.

<bean id="productItemReader"
 class="org.springframework.batch.item.xml.StaxEventItemReader">
 <property name="resource" value="datafile.xml"/>
 <property name="fragmentRootElementName" value="product"/>
 <property name="unmarshaller" ref="productMarshaller"/>
</bean>

<bean id="productMarshaller"
 class="org.springframework.oxm.castor.CastorMarshaller">
 <property name="mappingLocation"
 value="classpath:/com/manning/sbia/reading/xml/mapping.xml"/>
</bean>

You configure the StaxEventItemReader class by setting the value of the fragment-
RootElementName property to product, which is the XML element name for a product.
The unmarshaller property points to the bean definition used to convert XML to
objects. You define this bean with the ID productMarshaller. This marshaller uses
Castor through the Spring OXM class CastorMarshaller, which implements both the
Marshaller and Unmarshaller interfaces.

 Before tackling databases as input sources, we describe how to handle a file set
with item readers. This approach is particularly useful for handling files in a directory.
In our case study, this corresponds to product data files sent using FTP or Secure Copy
(SCP) to an input directory.

Table 5.10 Spring Resource implementations

Class Description

UrlResource Gets java.net.URL resources

ClassPathResource Gets classpath resources

FileSystemResource Gets java.io.File resources

ServletContextResource Gets ServletContext resources from a web application

InputStreamResource Gets java.io.InputStream resources

ByteArrayResource Gets byte[] resources

Listing 5.10 Configuring a StaxEventItemReader

138 CHAPTER 5 Reading data
5.4 Reading file sets
Input can enter an application as a set of
files, not only as a single file or resource. For
example, files can periodically arrive via FTP
or SCP in a dedicated input directory. In this
case, the application doesn’t know in
advance the exact filename, but the names
will follow a pattern that you can express as
a regular expression. Figure 5.8 shows this
architecture with Spring Batch. A dedicated
multiresource reader accepts several
resources as input and delegates processing
to individual resource readers.

 The MultiResourceReader class is the
resource reader used for this input scenario.
It handles multiple resources (Resource[])
and a delegate, ResourceAwareItemReader-
ItemStream. The MultiResourceReader

handles one resource at a time, sequentially,
by iterating over all configured resources,
and delegates processing to a resource-aware
item reader.

 This class is powerful because it leverages Spring resource support to easily config-
ure multiple resources with simple patterns from different sources such as the file sys-
tem or class path. A MultiResourceReader has two properties:

■ resources configures resources with a list or patterns.
■ delegate specifies the target ResourceAwareItemReaderItemStream to dele-

gate processing for each resource.

The following XML fragment configures a MultiResourceItemReader to handle sev-
eral files with an item reader. A file expression defines which files the reader uses as
input:

<bean id="multiResourceReader"
 class="org.springframework.batch.item.file.MultiResourceItemReader">
 <property name="resources" value="file:/var/data/input/file-*.txt"/>
 <property name="delegate" ref="flatFileItemReader"/>
</bean>

<bean id="flatFileItemReader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 (...)
</bean>

The resources property configures the resource reader with files that match the pat-
tern /var/data/input/file-*.txt. The delegate property references the identifier of

Input directory

Batch job

Multi resource
reader

Resource
reader

File FileFile

Delegates

Processor and
writer

Reads

Handles
data

Figure 5.8 How Spring Batch reads data from
multiple files. A multiresource reader delegates
to a resource reader that reads files from an
input directory.

139Reading from relational databases
the item reader used to process data. This item reader is configured as a bean in the
Spring configuration and must be designed to handle resources. In Spring Batch,
these item readers implement the ResourceAwareItemReaderItemStream interface.

Spring Batch provides broad, flexible, and extensible support for flat files and XML.
You can configure Spring Batch with the most common data file formats and inte-
grate custom types. Next, we look at another input source for batch processes, rela-
tional databases.

5.5 Reading from relational databases
Another standard data input source is the relational database. In this case, data to
import come from database tables. Spring Batch provides two approaches for batch
processing to stream data from databases: JDBC and Object-Relational Mapping
(ORM). We first see how Spring Batch leverages JDBC to read data from rela-
tional databases.

5.5.1 Using JDBC item readers

JDBC is the Java platform component providing the interface to relational databases in
Java. JDBC is a Java technology that makes it possible to interact with relational data-
bases using the SQL language for both querying and updating data. JDBC, in principle
at least, keeps things simple and independent from databases’ implementations. JDBC
provides an abstraction over the specifics of different databases by using the concept
of a driver, which is responsible for implementing communication with a specific data-
base, as shown in figure 5.9. But it doesn’t provide a complete solution to handle the
specifics of each SQL dialect. The client application must deal with these issues.
Spring uses JDBC but hides the JDBC plumbing and error-prone code and leaves the
application to contain business-specific code.

 Spring Batch bases its database support on the Spring JDBC layer and hides its use
by managing request calls and transactions. In a batch job, you need to configure how
to set request parameters and handle results. Spring Batch also bases its database sup-
port on the Spring RowMapper interface and JDBC PreparedStatement interface. In
the next sections, we look at different reading techniques based on JDBC and sup-
ported by Spring Batch.

Going beyond the multiresource item reader with partitioning
When using the MultiResourceItemReader, Spring Batch reads files one after the
other. The processing is, by default, single threaded. If you face performance issues
when dealing with multiple input files, Spring Batch has built-in support to parallelize
processing. Spring Batch can process each file on its own thread and calls this tech-
nique partitioning. Chapter 13 covers scaling strategies like partitioning.

140 CHAPTER 5 Reading data
READING WITH DATABASE CURSORS AND JDBC RESULT SETS

In this approach, Spring Batch leaves the responsibility of reading data to the JDBC
ResultSet interface. This interface is the object representation of a database cursor,
which allows browsing result data of a SELECT statement. In this case, the result set
integrates mechanisms to stream data. With this approach, Spring Batch executes only
one request and retrieves result data progressively using JDBC with data batches, as
shown in figure 5.10. Spring Batch relies on JDBC configuration and optimizations to
perform efficiently.

 The Spring Batch JdbcCursorItemReader class implements this technique and has
the properties listed in table 5.11.

 The minimal set of properties to use a JdbcCursorItemReader is dataSource, sql,
and rowMapper. The properties specify the data source to access the database (data-
Source), the SQL SELECT statement to execute to get data (sql), and the class to map

Java
application JDBC API JDBC driver

JDBC technology

Relational
database

Calls

Calls

Communicates

Results

Results

Results

Implements

Figure 5.9 High-level JDBC architecture. An application uses the vendor-neutral JDBC API. A database-
specific JDBC driver implements communication with the database system.

Cursor JDBC ItemReader Database

Executes SQL query

Iterates through data
JDBC batch-based

fetching using ResultSet

Table

View

Stored
procedure

Database
engineExecutes only one

request using JDBC
Uses

Figure 5.10 Getting input data from a JDBC ResultSet corresponding to result of a SQL request
within the JdbcCursorItemReader class

141Reading from relational databases
data into objects (rowMapper). If a statement has parameters, use the preparedState-
mentSetter property to set SQL statement parameters. In our use case, the SQL
SELECT returns all the products to import from the product table and uses the Pro-
ductRowMapper class to convert data in the ResultSet to instances of the Product
class. The following listing describes how to configure the JdbcCursorItemReader for
this case.

<bean id="productItemReader"
 class="org.springframework.batch.item.database.JdbcCursorItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="sql"

Table 5.11 JdbcCursorItemReader properties

Property Description

dataSource The data source used to access the database.

driverSupportsAbsolute Whether the JDBC driver supports using absolute row posi-
tioning on ResultSet using the absolute method. The
default value is false.

fetchSize The number of rows to fetch to transparently retrieve data by
group. The default value is -1.

ignoreWarnings Whether Spring Batch ignores SQL warnings. If true, Spring
Batch logs warnings. If false, it throws exceptions when
detecting warnings. The default value is true.

maxRows The maximum number of rows that can be retrieved from SQL
SELECT statements. The default value is -1.

preparedStatementSetter The PreparedStatementSetter instance to set param-
eters for SQL statements.

queryTimeout The maximum amount of time to wait for a response. If the
timeout is exceeded, a SQLException is thrown. The
default value is -1.

rowMapper The RowMapper instance to build objects from
ResultSet objects.

sql The SQL SELECT to execute to get data.

useSharedExtendedConnection Whether the connection is shared by the cursor and all other
processing, therefore sharing the same transaction. If
false, the cursor operates on its own connection and won’t
participate in any transactions started for the rest of the step
processing. The default value is false.

verifyCursorPosition Verifies the cursor position after processing the current row
with RowMapper or RowCallbackHandler. The default
value is true.

Listing 5.11 Configuring a JdbcCursorItemReader

142 CHAPTER 5 Reading data
 value="select id, name, description, price from product"/>
 <property name="rowMapper"
 ref="productRowMapper"/>
</bean>

<bean id="productRowMapper"
 class="com.manning.sbia.reading.jdbc.ProductRowMapper"/>

You set the SQL SELECT statement to get product data from the product table using
the sql property of a JdbcCursorItemReader instance. Next, you set the RowMapper
implementation for the product mapper to a bean reference. Finally, you declare the
product row mapper to use the ProductRowMapper class.

 The following listing defines a RowMapper implementation called ProductRow-
Mapper, which is used in all our JDBC examples.

public class ProductRowMapper implements RowMapper<Product> {
 public Product mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 Product product = new Product();
 product.setId(rs.getString("id"));
 product.setName(rs.getString("name"));
 product.setDescription(rs.getString("description"));
 product.setPrice(rs.getFloat("price"));
 return product;
 }
}

The mapRow method B is a factory method that creates Product instances based on a
given JDBC ResultSet and row number.

 You use the preparedStatementSetter property if the SQL statement includes
parameters. The property value is a class that works directly on the Prepared-
Statement instance managed internally by Spring to set the parameters. The following
listing describes how to configure this feature in a JdbcCursorItemReader instance. In
this listing, you get the subset of products for the names that start with “Samsung.”

<bean id="productItemReader"
 class="org.springframework.batch.item.database.JdbcCursorItemReader">
 <property name="dataSource" ref="datasource"/>
 <property name="sql"
 value="select id, name, description, price from product
 where name like ?"/>
 <property name="preparedStatementSetter"
 ref="samsungStatementSetter"/>
 <property name="rowMapper" ref="productRowMapper"/>
</bean>

<bean id="samsungStatementSetter"
 class=" com.manning.sbia.reading.jdbc.SamsungStatementSetter"/>

Listing 5.12 RowMapper implementation for Product

Listing 5.13 Setting SQL statement parameters in a JdbcCursorItemReader

Maps result set
to domain object

B

143Reading from relational databases
You set the property preparedStatementSetter to reference the bean samsungState-
mentSetter. Then, you define the bean samsungStatementSetter as a SamsungState-
mentSetter that implements the PreparedStatementSetter interface. The
SamsungStatementSetter class is

public class SamsungStatementSetter implements PreparedStatementSetter {
 void setValues(PreparedStatement ps) throws SQLException {
 ps.setString(1, "Samsung%");
 }
}

The JdbcCursorItemReader class provides advanced configuration for tuning batch
processes. You can specify the maximum number of rows to retrieve through the
maxRows property. The fetchSize property allows a reader to transparently retrieve
data in fixed-sized groups. The following XML fragment describes how to configure
these two properties:

<bean id="productItemReader"
 class="org.springframework.batch.item.database.JdbcCursorItemReader">
 <property name="dataSource" ref="datasource"/>
 <property name="sql"
 value="select id, name, description, price from product"/>
 <property name="rowMapper" ref="productRowMapper"/>
 <property name="maxRows" value="3000"/>
 <property name="fetchSize" value="100"/>
</bean>

In this example, you set the maximum number of rows to read to 3000 rows and the
fetch group size to 100.

 You don’t always define SQL statements (here, a SELECT) outside the database
in a configuration file; instead, a stored procedure can define the SQL to execute.
This feature is supported by JDBC and Spring, and Spring Batch provides an Item-
Reader implementation for stored procedures using the cursor-based approach. This
item reader class is called StoredProcedureItemReader and accepts the properties
listed in table 5.12 in addition to the properties for JdbcCursorItemReader listed in
table 5.11.

Table 5.12 StoredProcedureItemReader properties

Property Description

function Whether the stored procedure is a function. A function returns a value; a
stored procedure doesn’t.

parameters Parameter types for the stored procedure.

procedureName Name of the stored procedure.

refCursorPosition When results of the stored procedure are returned using a ref cursor in an
out parameter, this value specifies the position of this parameter in the
parameter list. This index is 0-based, and its default value is 0.

144 CHAPTER 5 Reading data
Using the StoredProcedureItemReader class is similar to using the JdbcCursorItem-
Reader class. For common cases, replace the sql property with procedureName. In our
case study, we have a stored procedure called sp_product that returns a product result
set. The following XML fragment configures a StoredProcedureItemReader:

<bean id="reader"
 class="org.springframework.batch.item.database.StoredProcedureItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="procedureName" value="sp_product"/>
 <property name="rowMapper" ref="productRowMapper"/>
</bean>

By default, the procedureName property configures a stored procedure that returns a
ResultSet instance.

 Databases also provide another way to obtain results, reflected in Spring Batch
with the function and refCursorPosition properties of the StoredProcedureItem-
Reader class. When the SQL code executed in the database is a stored function call,
the function property must be set to true. If a ref cursor in an out parameter returns
data, then the cursorRefPosition property must be set to the position of the cursor
in the output parameter list, as described in the following XML fragment:

<bean id="reader"
 class="org.springframework.batch.item.database.StoredProcedureItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="procedureName" value="sp_product"/>
 <property name="parameters">
 <list>
 <bean class="org.springframework.jdbc.core.SqlOutParameter">
 <constructor-arg index="0" value="products"/>
 <constructor-arg index="1">
 <util:constant static-field="oracle.jdbc.OracleTypes.CURSOR"/>
 </constructor-arg>
 </bean>
 </list>
 </property>
 <property name="cursorRefPosition" value="1"/>
 <property name="rowMapper" ref="productRowMapper"/>
</bean>

In this example, you define parameters for a stored procedure. The procedure has
one output parameter that corresponds to a cursor B. Because only one parameter is
involved, the cursor ref position is 1 and is set in the StoredProcedureItemReader
using the cursorRefPosition property C.

 The Spring Batch cursor-based technique relies on JDBC and leverages streaming
results using JDBC’s own ResultSet. This mechanism allows retrieving data in batches
and is useful with large data sets, as is often the case in batch processing. Spring Batch
also allows you to control data set retrieval using data pages, which we see next.
USING PAGING TO MANAGE JDBC DATA RETRIEVAL

Instead of leaving JDBC to manage the data retrieval, Spring Batch allows you to handle
this process using paging. In this case, retrieving data consists in successively executing

Sets stored
procedure name

Sets out
parameters

B

Sets cursor
ref position

C

145Reading from relational databases
several requests with criteria. Spring Batch dynamically builds requests to execute
based on a sort key to delimit data for a page. To retrieve each page, Spring Batch exe-
cutes one request to retrieve the corresponding data. Figure 5.11 shows JDBC paging
with an item reader.

The JdbcPagingItemReader class is the new component we present here to imple-
ment JDBC paging with Spring Batch. The JdbcPagingItemReader class defines the
properties listed in table 5.13.

Table 5.13 JdbcPagingItemReader properties

Property Description

dataSource Data source used to access the database

fetchSize Number of rows to fetch to retrieve data in groups

parameterValues Parameter values for the query

Paging-based JDBC
ItemReader

Executes SQL
request

Iterates through
data JDBC batch-based

fetching using ResultSet

Executes paging request
using JDBC

Iterates
over

pages

Database

Table

View

Stored
procedure

Database
engine Uses

Figure 5.11 Using JDBC batch-based fetching to provide input data to an ItemReader by pages with
fixed size

Choosing between cursor-based and page-based item readers
Why does Spring Batch provide two ways to read from a database? The reason is that
there’s no one-size-fits-all solution. Cursor-based readers issue one query to the da-
tabase and stream the data to avoid consuming too much memory. Cursor-based
readers rely on the cursor implementation of the database and of the JDBC driver.
Depending on your database engine and on the driver, cursor-based readers can work
well . . . or not. Page-based readers work well with an appropriate page size (see the
sidebar on page size). The trick is to find the best page size for your use case. With
Spring Batch, switching from cursor- to page-based item readers is a matter of con-
figuration and doesn’t affect your application code. Don’t hesitate to test both!

146 CHAPTER 5 Reading data
The following listing describes how to configure a JdbcPagingItemReader to retrieve
product data using paging.

<bean id="productItemReader"
 class="org.springframework.batch.item.database.JdbcPagingItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="queryProvider" ref="productQueryProvider"/>
 <property name="pageSize" value="1500"/>
 <property name="rowMapper" ref="productRowMapper"/>
</bean>

<bean id="productRowMapper" class=" (...) "/>
<bean id="productQueryProvider" class=" (...) "/>

The queryProvider property configures an instance of PagingQueryProvider respon-
sible for creating SQL queries to retrieve paged data. The generated SQL query limits
the number of retrieved rows to the page size specified by the pageSize property.
Finally, you set the RowMapper that creates business domain objects from ResultSet
objects. For this example, the product RowMapper from listing 5.12 is reused.

Spring Batch provides a dedicated factory class called SqlPagingQueryProvider-
FactoryBean used to configure a SQL paging query provider.

 Table 5.14 lists the SqlPagingQueryProviderFactoryBean properties.
 In our use case, we always need to have a SQL query returning products for cursor-

based data retrieval. This query uses the product table and returns the id, name,

queryProvider PagingQueryProvider responsible for creating SQL requests used to
retrieve data for pages

rowMapper RowMapper instance used to build data object from the returned result set

pageSize Number of rows per page

Listing 5.14 Configuring a JdbcPagingItemReader

Table 5.13 JdbcPagingItemReader properties (continued)

Property Description

Choosing a page size
There’s no definitive value for the page-size setting. Let’s venture a hint though: the
size of a page should be around 1,000 items—this is a rule of thumb. The page size
is usually higher than the commit interval (whose reasonable values range from 10
to 200 items). Remember, the point of paging is to avoid consuming too much mem-
ory, so large pages aren’t good. Small pages aren’t good either. If you read 1 million
items in pages of 10 items (a small page size), you’ll send 100,000 queries to the
database. The good news is that the page size is a parameter in Spring Batch, so you
can test multiple values and see which works best for your job.

147Reading from relational databases
description, and price columns. The following XML fragment describes how to config-
ure this query for page-based data retrieval using the SqlPagingQueryProvider-
FactoryBean class:

<bean id=" productQueryProvider"
 class="org.springframework.batch.item.database

 ➥ .support.SqlPagingQueryProviderFactoryBean">
 <property name="dataSource" ref="dataSource"/>
 <property name="selectClause"
 value="select id, name, description, price"/>
 <property name="fromClause" value="from product"/>
 <property name="sortKey" value="id"/>
</bean>

After configuring the SqlPagingQueryProviderFactoryBean as a bean in the Spring
configuration, you specify the SQL SELECT and FROM clauses followed by the sort key
set to the id column. With this configuration, the SqlPagingQueryProviderFactory-
Bean configures and returns the appropriate class according to the database type in
use. For example, for PostgreSQL, the PostgresPagingQueryProvider class is instanti-
ated, configured, and returned. The returned class is then responsible for generating
SQL paging queries. The query pattern is as follows: the first query is simple, using

Table 5.14 SqlPagingQueryProviderFactoryBean properties

Property Description

ascending Whether sorting is ascending (or descending). The default value is true
(ascending).

databaseType The underlying database type. If you omit this property, the value is deter-
mined directly using the database through the specified data source.

dataSource The data source to obtain connections to the database. Note that it’s
unnecessary to specify this field if the database type is set.

fromClause The FROM clause of the SQL statement.

selectClause The SELECT clause of the SQL statement.

sortKey The sort column to identify data pages.

whereClause Specifies the WHERE clause of the SQL statement.

The Spring FactoryBean classes
When using a constructor (with the new keyword) to create beans doesn’t fit your
needs, use a Spring FactoryBean. A FactoryBean provides a level of indirection
from the target bean by acting as a factory. After the Spring BeanFactory (be careful,
the names are similar) initializes the factory bean, the target bean instances are ob-
tained through the getObject method.

148 CHAPTER 5 Reading data
configured SELECT, FROM, and WHERE clauses with a hint limit for the number of
returned rows:

SELECT id, name, description, price FROM product LIMIT 1500

For the next pages, queries include additional clauses to specify the beginning of the
page using the specified sort key:

SELECT id, name, description, price FROM product where id>? LIMIT 1500

As we’ve seen in this section, Spring Batch provides sophisticated integration with
JDBC to support batch processes. As for nonbatch Java applications, we must explicitly
define SQL queries to execute.

ORM tools provide interesting solutions to address this issue but don’t account for
batch processes in their design. Next, we see the solutions Spring Batch provides for
using ORM with batch applications.

5.5.2 Using ORM item readers

In traditional Java and Java EE applications, ORM is commonly used to interact with
relational databases. The goal of ORM is to handle the mismatch between the rela-
tional database model and the object-oriented model. ORM tools efficiently manage
conversions between these models. ORM tools also remove the need to explicitly spec-
ify SQL statements by automatically generating SQL on your behalf.

As it does for JDBC, Spring provides supports for ORM. We don’t describe here how
Spring provides this support because Spring Batch does a good job of hiding it. Next,
we focus on solutions (which are similar to JDBC) that Spring Batch provides to use
ORM with batch processes efficiently.
READING WITH ORM CURSORS

Reading with ORM cursors implies that code responsible for managing domain classes
doesn’t use a first-level cache. Only Hibernate supports this feature through an interface

Is ORM the right tool for batch applications?
ORM works great for online applications but can be difficult to deal with in batch ap-
plications. It’s not that ORM is a bad match for batch applications, but the high-level
features ORM tools provide—such as lazy loading—don’t always work well in batch
scenarios. In Spring Batch, reading takes place in a separate transaction from pro-
cessing and writing (this is a constraint of cursor- and page-based readers). This
works well in normal cases, but when Murphy’s law kicks in, the combination of a
failure, the separate transaction, and lazy loading is explosive. Failure scenarios are
numerous and tricky to solve. A solution is to apply the driving query pattern: the read-
er reads only item identifiers (using JDBC cursors or paging), and the processor uses
the ORM tool to load the corresponding objects. In this case, a second-level cache
can help performance. The goal is to have the ORM tool use the same transaction as
the writer. Chapter 7 covers the driving query pattern.

149Reading from relational databases
called StatelessSession that provides the same methods as the classic Session but
without caching and checking dirty state.

 You first define a model class mapping to a relational database entity. For the
online store case study, you define a Product class to map the product database table
using Hibernate annotations, as shown in the following listing.

@Entity("product")
public class Product {
 @Id("id")
 private String id;
 @Column("label")
 private String label;
 @Column("description")
 private String description;
 @Column("price")
 private float price;
 (...)
}

The Entity annotation on the Product class specifies that the class maps to the prod-
uct table. The Id and Column annotations map class properties to table columns using
the name in the annotation values.

 Using ORM cursors is similar to JDBC, shown in figure 5.10. The only difference is
that ORM is an additional layer on top of JDBC. For ORM, Spring Batch only supports
Hibernate through the HibernateCursorItemReader class, which accepts the proper-
ties listed in table 5.15.

 The following listing shows how to configure a HibernateCursorItemReader bean
for our case study to retrieve products from the product table.

Listing 5.15 ORM mapping class

Table 5.15 HibernateCursorItemReader properties

Property Description

fetchSize Number of rows to fetch transparently when retrieving data in groups.

maxItemCount Maximum number of items to retrieve. The default value is
Integer.MAX_VALUE.

parameterValues Statement parameter values.

queryProvider HibernateQueryProvider for creating Hibernate Query Language
(HQL) queries to retrieve data pages.

queryString The HQL query to retrieve entities.

sessionFactory Hibernate SessionFactory for interacting with the database through
Hibernate.

useStatelessSession Whether the Hibernate session must be stateless. The default value
is true.

150 CHAPTER 5 Reading data
<bean id="productItemReader"
 class="org.springframework.batch.item.database.HibernateCursorItemReader">
 <property name="sessionFactory" ref="sessionFactory"/>
 <property name="queryString" value="from Product"/>
</bean>

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource" ref="dataSource"/>

 <property name="configurationClass"
 value="org.hibernate.cfg.AnnotationConfiguration"/>
 <property name="configLocation"
 value="classpath:/com/manning/sbia/reading/dao/hibernate.cfg.xml"/>
 <property name="hibernateProperties">
 <value>
 hibernate.dialect=org.hibernate.dialect.HSQLDialect
 hibernate.show_sql=true
 </value>
 </property>
</bean>

After configuring the SessionFactory using facilities provided by Spring Hibernate,
this entity is configured with a HibernateCursorItemReader bean using the session-
Factory property. The queryString property sets the query to retrieve products.

 The following XML fragment describes the content of hibernate.cfg.xml, which
specifies that Hibernate must manage the Product class:

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <mapping class="com.manning.sbmia.reading.model.Product"/>
 </session-factory>
</hibernate-configuration>

As emphasized at the beginning of this section, only Hibernate supports this
approach. For other ORM providers, Spring Batch provides a paging mechanism simi-
lar to the one described for JDBC.
USING PAGING TO MANAGE ORM DATA RETRIEVAL

ORM frameworks don’t usually support the approach described in the previous sec-
tion regarding Hibernate. For example, the Java Persistence API (JPA) technology
doesn’t provide cacheless support. In this case, paging is the natural solution because
ORM caches only a page of objects in memory.

 As with JDBC, ORM paging retrieves data in batches. Spring Batch performs data
retrieval by successively executing several queries, as shown in figure 5.11. The only
difference is that ORM is an additional layer on top of JDBC. For Hibernate, Spring
Batch provides the HibernatePagingItemReader and JpaPagingReader classes for

Listing 5.16 Configuring a HibernateCursorItemReader

Defines Product as
managed class

151Using other input sources
JPA. Properties are almost the same as those described in table 5.15 with the addition
of the pageSize property to specify the number of items per data page. Note that for
the JpaPagingReader class, the useStateless property doesn’t apply and the query-
Provider property is of type JpaQueryProvider.

 The following XML fragment describes how to configure a HibernatePagingItem-
Reader bean to retrieve products from the product table:

<bean id="productItemReader"
 class="org.springframework.batch.item.database.HibernatePagingItemReader">
 <property name="sessionFactory" ref="sessionFactory"/>
 <property name="queryString" value="from Product"/>
</bean>

<bean id="sessionFactory" class="(...)"> (...) </bean>

As you can see, configuring paging is similar to configuring cursors, and properties
are generally the same; here you set the factory for the ORM and the query.

 This section closes the description of relational databases as input sources using JDBC
directly and through ORM with cursors and paging. Spring Batch integrates mechanisms
to guarantee performance and memory consumption when using ORM for batch pro-
cesses. In the next section, we focus on other input sources for importing data.

5.6 Using other input sources
Files and databases are the main data sources used as input for batch processes, but
they aren’t the only ones. You may want to reuse services provided by existing applica-
tions or integrate with an information system with asynchronous and event-driven fea-
tures. Spring Batch provides implementations of the ItemReader interface for such
cases, which this section examines.

5.6.1 Services as input

Reusability of existing services is a key concept of modern applications. This avoids
reinventing the wheel, provides robustness, and saves time. Batch processes can inte-
grate in existing systems that already provide entities to read data. These sources can

Java Persistence API
The Java EE 5 specification includes ORM support defined as the JPA in Java Speci-
fication Request 220: Enterprise JavaBeans 3. Its aim is to provide a standardized
layer so that ORM tools are implementations of this specification. The specification
describes how to map managed entities to database tables and an API to interact
with databases. New features are the ability to use this technology outside an Enter-
prise JavaBeans (EJB) container and to use local transactions instead of global trans-
actions with JTA.

The main JPA implementations are Hibernate JPA, Apache OpenJPA, and EclipseLink
JPA (based on TopLink).

152 CHAPTER 5 Reading data
be POJOs that implement business services; data access objects; or more complex enti-
ties managed by a container, such as EJB3 or by services accessible with lightweight
protocols provided by Caucho, such as Hessian and Burlap. Figure 5.12 describes dif-
ferent patterns for batch processes to read data from existing entities.

 To implement these patterns, Spring Batch provides the ItemReaderAdapter class,
which makes it possible to see an existing entity as an ItemReader. The ItemReader-
Adapter class holds the bean and method to delegate data retrieval. The only con-
straints at this level are that the delegated method must not have parameters and that
it returns the same type as the read method of the ItemReader interface.

 For this reason, it isn’t possible to use the target service directly, and you must
implement an adapter class for the service. The ItemReader adapter retrieves ele-
ments one by one, which isn’t the case for services because they usually return a set of
elements. The following listing shows the ProductServiceAdapter class, which imple-
ments this technique.

public class ProductServiceAdapter implements InitializingBean {
 private ProductService productService;
 private List<Product> products;

 public void afterPropertiesSet() throws Exception {
 this.products = productService.getProducts();
 }

 public Product nextProduct() {
 if (products.size()>0) {
 return products.remove(0);
 } else {
 return null;
 }
 }

Listing 5.17 Service adapter for the ProductService service

Service adapter

Spring Batch configuration

Business Service

Data Access Object

Remote Service Proxy
(Spring Remoting)

Remote Services

EJB3 Service

Web Service

Hessian or
Burlap Service

ItemReader
adapter

Uses

Uses

Adapts

Figure 5.12 Reusing methods of existing entities and services to get data to provide as input for batch
processes

Initializes products
from serviceB

Gets products
one by oneC

153Using other input sources
 public void setProductService(ProductService productService) {
 this.productService = productService;
 }
}

The ProductServiceAdapter class initializes the product list at startup using the
afterPropertiesSet method B from the Spring InitializingBean callback inter-
face. Products are then retrieved one by one with the getProduct method C using
the product list initially loaded.

 The next listing shows how to configure this mechanism for a POJO configured in
Spring to reuse the ProductService entity managing products.

<bean id="productItemReader"
 class="org.springframework.batch.item.adapter.ItemReaderAdapter">
 <property name="targetObject"
 ref="productServiceAdapter"/>
 <property name="targetMethod" value="nextProduct"/>
</bean>

<bean id="productServiceAdapter"
 class="com.manning.sbia.reading.service.ProductServiceAdapter">
 <property name="productService" ref="productService"/>
</bean>

<bean id="productService"
 class="com.manning.sbia.reading.service.ProductServiceImpl">
 (...)
</bean>

Having configured the ProductService as a bean in the Spring configuration, you
can reference it as the target object for the ItemReader adapter through the target-
Object property B. The ItemReaderAdapter delegates import processing to the
productService bean. You then specify which method to use to get product data with
the targetMethod property C. In this case, the method is getProducts.

 You adapted listing 5.18 to remotely access an EJB3 rather than a POJO using the
http://www.springframework.org/schema/jee Spring XML namespace and jee name-
space prefix. This vocabulary provides facilities for Java EE–related configuration for
JNDI and EJB. The remote-slsb XML element configures a remote EJB3 proxy as a
bean, which transparently provides a delegated business implementation. For our case
study, the EJB3 corresponds to a remote service that manages products. The following
snippet shows how to use a remote EJB3 with an ItemReader adapter:

<bean id="productItemReader"
 class="org.springframework.batch.item.adapter.ItemReaderAdapter">
 <property name="targetObject" ref="productService"/>
 <property name="targetMethod" value="nextProduct"/>
</bean>

<jee:remote-slsb id="productService"
 jndi-name="ejb/remoteProductService">

Listing 5.18 Configuring the ProductService as an ItemReader

Sets target method C B

Sets
product
service
object

http://www.springframework.org/schema/jee

154 CHAPTER 5 Reading data
For a remote EJB3 service, the configuration of the ItemReader adapter remains the
same. For the productService bean, the configuration changes and the remote-slsb
element’s jndi-name property is set to the name in the JNDI entry for the EJB3 session.

 Be aware that the target entity is entirely responsible for importing data in this
case, and there’s no possible interaction with the Spring Batch execution context. In
fact, existing entities aren’t linked to Spring Batch mechanisms and objects. The con-
sequence is that state can’t be stored. You also need to check that the use of the target
entity in a batch process performs efficiently.

 Before describing advanced issues regarding importing data with Spring Batch, we
see how to implement and configure importing data using message-oriented middle-
ware (MOM) and JMS.

5.6.2 Reading from JMS

The JMS API is to MOM what JDBC is to databases. JMS defines a vendor-neutral API and
wrapper classes for MOM vendors to implement. MOM systems guarantee message deliv-
ery to applications and integrate fault tolerance, load scaling, and loosely coupled dis-
tributed communication and transaction support. JMS uses communication channels
named destinations (like a queue or topic) to implement asynchronous communication.

 The JMS specification tackles application messaging by providing a generic frame-
work to send and receive messages synchronously and asynchronously. JMS provides a
standard abstraction level for MOM providers to implement. In the context of batch
processes, this makes it possible to handle incoming data automatically.

Spring Batch bases its JMS support on Spring’s JMS support. The Spring Batch class
JmsItemReader implements the ItemReader interface and internally uses the Spring
JmsTemplate class. The JmsItemReader class reads data directly from a JMS destina-
tion (queue or topic). In the case study, the import job receives products as payload
from JMS messages read from a JMS queue. The following listing shows how to config-
ure reading from a JMS destination using a JmsItemReader.

If JMS is event driven, why use it in batch applications?
One benefit of JMS is notification of new messages queued on destinations. Java ob-
jects wait to be called by containers like Spring’s MessageListenerContainers.
These Java objects are message-driven objects. Sometimes, you don’t want to pro-
cess messages as soon as they arrive because their processing is costly and you
want to postpone this processing to reduce load on the server (which is busy doing
something else at the moment). A batch job can consume JMS messages while throt-
tling processing. You can choose to trigger the job when appropriate (every 10 min-
utes or at night, for example). The message-driven and batch approaches can work
together: you can enable JMS listeners when your servers aren’t too busy and disable
them when there’s too much load. You’re also free to launch a dequeuing batch job
whenever you want. This approach helps optimize usage of your hardware resources.

155Implementing custom readers
<bean id="productItemReader"
 class="org.springframework.batch.item.jms.JmsItemReader">
 <property name="itemType"
 value="com.manning.sbia.reading.Product"/>
 <property name="jmsTemplate" ref="jmsTemplate"/>
</bean>

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" bean="jmsFactory"/>
 <property name="defaultDestination" ref="productDestination"/>
 <property name="receiveTimeout" value="500"/>
 <property name="sessionTransacted" value="true" />
</bean>

<bean id="jmsFactory" class="(...)"> (...) </bean>
<bean id="productDestination" class="(...)"> (...) </bean>

You first define the data object type contained in JMS messages B. For our case study,
this type is Product. You then configure how to interact with the JMS provider through
Spring’s JMS support and its JmsTemplate class. To configure a JmsTemplate, you spec-
ify the JMS connection factory and destination. This template must then be set in the
item reader using the jmsTemplate property C.

In this chapter, we described all built-in capabilities of Spring Batch used to import
data from different input sources. Spring Batch supports several file formats, rela-
tional databases, MOM, and reusing existing services. In some cases, the ItemReader
implementations provided by Spring Batch aren’t enough, and you must implement
custom readers, which we discuss next.

5.7 Implementing custom readers
If Spring Batch ItemReader implementations don’t suit your needs, you can provide
your own implementations. We don’t describe interacting with the execution context
here because it’s covered in chapter 8.

 Imagine that you want to handle all files present in a directory at batch startup.
The list of files in the directory is loaded when the item reader is instantiated. For
each read, you return the first list element after removing it from the list. The follow-
ing listing shows the implementation of the ListDirectoryItemReader class.

public class ListDirectoryItemReader
 implements ItemReader<File> {
 private List<File> files;

Listing 5.19 Configuring a JmsItemReader class

Listing 5.20 Custom ItemReader implementation

Defines
item type

B

Sets JMS
templateC

JMS and transactions
JMS provides transactional features for consuming messages. Chapter 9 includes
guidelines to properly deal with JMS transactions.

156 CHAPTER 5 Reading data
 public ListDirectoryItemReader(File directory) {
 if (directory==null) {
 throw new IllegalArgumentException("The directory can be null.");
 }
 if (!directory.isDirectory()) {
 throw new IllegalArgumentException(
 "The specified file must be a directory.");
 }
 files = Arrays.asList(directory.listFiles());
 }

 public File read() throws Exception, UnexpectedInputException,
 ParseException, NonTransientResourceException {
 if (!files.isEmpty()) {
 return files.remove(0);
 }
 return null;
 }
}

As a custom item reader, this class implements the ItemReader interface. Because the
ItemReader interface supports generics, you specify the associated type for the class
(File). In the constructor, you initialize the list of files in the given directory. Imple-
menting the ItemReader interface requires defining the read method. Spring Batch
calls this method until it returns null, indicating that the method returned all files in
the list, one at a time.

 When you create a custom reader in Spring Batch, you implement the ItemReader
interface. The read method performs all read processing, which returns elements one
by one.

5.8 Summary
Reading data from batch processes is the first step of a chunk-based tasklet. Spring
Batch provides support for this step with the generic ItemReader and ItemStream
interfaces. Spring Batch implements these interfaces for common technologies used
in batch processes to import data. Using our case study as an example, we described
how to read data from various types of flat files and XML files. We also described how
to get data from a database, how to integrate with existing services, and how to inter-
act with a MOM like JMS.

 We briefly mentioned that reading is involved in the complete batch process exe-
cution. This aspect is fundamental to restart batch processes and avoid reading data
again when things go wrong later in processing and writing. We didn’t go into details
about reading, but we deal with this issue in chapter 8.

 In chapter 6, we describe the other side of reading data—writing data—where
Spring Batch supports the same technologies we saw in this chapter.

Writing data
In chapter 5, we learned how to read data with Spring Batch. In this chapter, we
focus on another core feature of the batch process: writing.

 Reading input items takes place at the beginning of a chunk-oriented step and
writing items takes place at the end. In Spring Batch, a writer is responsible for data
persistence.

 We start by looking at data-writing concepts. We use our case study to illustrate
how to write data into flat files, XML files, and relational databases using both JDBC
and ORM (Object Relational Mapping). Spring Batch provides various implementa-
tions out of the box for these targets, but it may be necessary to create your own
writer implementations, which we demonstrate. If you already have legacy services
that produce or save data, Spring Batch can delegate to and reuse these services.

This chapter covers
■ Introducing item-writing concepts
■ Writing to files, databases, and JMS
■ Sending emails
■ Implementing custom writers
■ Implementing advanced writers
157

158 CHAPTER 6 Writing data
We also learn how to write to a Java Message Service (JMS) queue and send emails.
Finally, we discuss some advanced writing techniques.

6.1 Data-writing concepts
Here we look at core concepts of writing with Spring Batch, particularly writing in a
chunk-oriented tasklet. Figure 6.1 shows what we already know from chapter 5, but we
focus now on writing data.

 In a chunk-oriented tasklet, an ItemReader reads input data, an ItemProcessor
(optionally) processes it, and an ItemWriter writes it. Spring Batch provides the
plumbing to aggregate reading and passing the data to the writer. The interface Item-
Writer represents the writer, which is the counterpart to the ItemReader interface.
The following snippet lists the ItemWriter interface:

public interface ItemWriter<T> {
 void write(List<? extends T> items) throws Exception;
}

The ItemWriter interface defines a single method called write, which saves output
data. Most writers have the ability to write a set of items all at once, which is why the
writer takes a list of items as a parameter. After writing items, the writer can flush
before the process continues. For files, writers flush the underlying stream to guaran-
tee that it passes all bytes to the operating system. It’s the same with Hibernate: the
HibernateItemWriter flushes the Hibernate session after saving or updating objects
at the end of a chunk, by default. It’s the responsibility of each writer implementation
to deal with flushing if applicable. After all items are processed, Spring Batch commits
the current transaction. With built-in JDBC writers, Spring Batch uses batch updates to
send all SQL statements in one operation to get the best performance. The following
snippet shows you how to configure the number of items to write for a transaction;
Spring Batch commits the transaction for each chunk:

<tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="100"/>
</tasklet>

The commit-interval attribute on the chunk element defines the chunk size. Spring
Batch is smart enough to avoid loading all data in memory. It treats items in chunks to
lower memory consumption.

 As you’ll see later, you can also create your own ItemWriter implementations. Now
that the concepts are clear, let’s start writing.

Chunk-oriented tasklet

Reading
data

Processing
data

Writing
data

Input
data

Output
data

Figure 6.1 A chunk-oriented tasklet implements the chunk-oriented processing
pattern in Spring Batch. This chapter focuses on the writing phase.

159Writing files
6.2 Writing files
Spring Batch provides item writers that
write files in various formats: delimited
text, fixed-field widths, and XML. We
discuss these formats using our case
study as an example. Figure 6.2 displays
these formats.

 In our application, an item reader
first reads Products from a flat file. We
can then use different writers to produce
output files in different formats. Spring
Batch supports flat files and XML files.
Let’s start with flat files.

6.2.1 Writing flat files

The flat file format is one of the earliest formats used to store information. A flat file is
a plain text file that holds records, usually one per line. Fields compose a record, and
a separator, usually a comma or tab character, may delimit each field. Alternatively,
each field can be of a predetermined fixed length, where spaces pad values to get
each field to its desired length. Additionally, a flat file may include an optional header
and footer line, which can define additional metadata or add comments.

 The following snippet shows a comma-delimited flat file for two product records
with fields for ID, name, description, and price:

PR....210,BlackBerry 8100 Pearl,RIM phone,124.60
PR....211,Sony Ericsson W810i,Sony phone,139.45

In the next fixed-length flat file example, each field has a fixed length with no separa-
tor; it also has footer and header lines. The field lengths are 9 characters for the ID, 26
for the name, 15 for the description, and 6 for the price.

My header
PR....210BlackBerry 8100 Pearl RIM phone 124.60
PR....211Sony Ericsson W810i Sony phone 139.45
My footer

What are batch updates?
Batch updates are good: they make insert and update statements execute efficiently.
Instead of sending SQL statements one after another—and making a round-trip to the
database each time—batch updates send SQL statements in groups. The database
can even perform optimizations of its own. By providing a list of items to the item writer,
Spring Batch facilitates batch updates, but that’s not enough: you need to send the
batch updates correctly. How do you do that? The Spring Framework provides every-
thing you need: look at the batchUpdate method in the JdbcTemplate and the Batch-
SqlUpdate class.

Delimited
text format

XML
format

Fixed
text formatProductItemWriter

Writes

Writes

Writes

Figure 6.2 Spring Batch supports writing to
multiple file formats thanks to the various item
writer implementations it provides.

160 CHAPTER 6 Writing data
Spring Batch writes a flat file in the following steps:

1 Writes the header (optional)
2 Extracts fields for each item and aggregates them to produce a line
3 Writes the footer (optional)

Figure 6.3 shows the process of writing a flat file.
 We use the FlatFileItemWriter class to write flat files. The FlatFileItemWriter

implements the ItemWriter interface and additional interfaces to do its job. Figure 6.4
shows the interfaces and classes involved to support the features in figure 6.3.

 A FlatFileItemWriter implements the ItemStream interface and follows the stream
lifecycle. When Spring Batch calls the open stream method, the FlatFileItemWriter
writes the header through a FlatFileHeaderCallback. When Spring Batch calls the
close stream method, the FlatFileItemWriter writes the footer through a FlatFile-
FooterCallback. Both the header and footer are optional in flat files.

 A FlatFileItemWriter uses a LineAggregator to transform each item into a
String. The most basic implementation of the LineAggregator interface is the
PassThroughLineAggregator class, which calls toString() on each item object. If you
use domain-specific classes, you may need to convert each object into a more complex

Writing process for flat files

Extracts
fields

Aggregates
fields

Creates
header

Item Writes
to file

Creates
footer

Figure 6.3 Spring Batch extracts and aggregates fields for each item when writing
to a flat file. The framework also handles writing a header and footer to the file (both
are optional).

FlatFileItemWriter LineAggregator

FlatFileHeader
Callback

FlatFileFooter
Callback

ExtractorLineAggregator FieldExtractor

Uses for
header

Uses for
footer

Uses to aggregate
item’s fields

Implements

Uses to split item’s

fields into array

Figure 6.4 The interfaces and classes involved in writing items to a flat file with the
FlatFileItemReader. The FlatFileItemWriter also provides optional callbacks for the
header and the footer of a flat file. The LineAggregator transforms an item into a string. The
ExtractorLineAggregator implementation uses a FieldExtractor to “split” an item into
an array of objects and calls business logic to render the array as a string.

161Writing files
String. For this case, Spring Batch defines an abstract class called ExtractorLine-
Aggregator, where subclasses extract fields from a given item into an array using a
FieldExtractor and then aggregate them for the given file format.

 Table 6.1 describes the classes and interfaces from figure 6.4.

These interfaces and classes all play a part in writing flat files, whatever the format.
But how does Spring Batch know how and what to write in a flat file? We start to
answer this question next, with the configuration of a FlatFileItemWriter.
CONFIGURING A FLATFILEITEMWRITER

The FlatFileItemWriter class is the starting point for writing flat files. You define a
FlatFileItemWriter as a bean in an XML Spring context. Table 6.2 describes the
FlatFileItemWriter properties.

Table 6.1 Interfaces and classes used with a FlatFileItemWriter

Type Description

LineAggregator Creates a String representation of an object

ExtractorLineAggregator Implements LineAggregator to extract field
data from a domain object

FieldExtractor Creates an array containing item parts

FlatFileHeaderCallback Callback interface to write a header

FlatFileFooterCallback Callback interface to write a footer

Table 6.2 FlatFileItemWriter properties

Property Type Description

appendAllowed boolean Whether to append to the target file if it
exists; default is false

encoding String Character encoding for writing to a file;
defaults to UTF-8

footerCallback FlatFileFooterCallback Callback class used to write a footer

headerCallback FlatFileHeaderCallback Callback class used to write a header

lineAggregator LineAggregator<T> Convert an item into a line; required
property

lineSeparator String Line separator; defaults to the system
property line.separator

resource Resource Location of resource to write

saveState boolean Whether to save the state in the execu-
tion context; defaults to true

162 CHAPTER 6 Writing data
The following listing shows a minimal FlatFileItemWriter configuration with line-
Aggregator and resource properties.

<bean id="productItemWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
 <property name="resource"
 value="file:target/outputs/passthrough.txt"/>
 <property name="lineAggregator">
 <bean
 class="org.springframework.batch.item.file.transform.

 ➥ PassThroughLineAggregator" />
 </property>
</bean>

The resource property contains a URL pointing to the file to write. The FlatFile-
ItemWriter class inherits the setResource method from its superclass, Resource-
AwareItemWriterItemStream, which implements the ItemStream and ItemWriter
interfaces. The FlatFileItemWriter class also has a required property named Line-
Aggregator. The purpose of the LineAggregator interface is to create the String rep-
resentation of an item.

 Spring Batch provides the LineAggregator implementations listed in table 6.3.

shouldDeleteIfEmpty boolean Whether to delete the target file if the
writer doesn’t write any lines; defaults
to false

shoudDeleteIfExists boolean Whether to delete the target file if it
already exists; default is true

transactional boolean Whether an active transaction delays
writing to the file buffer; default is true

Listing 6.1 A minimal FlatFileItemWriter configuration

Table 6.3 Spring Batch LineAggregator implementations

Class Description

PassThroughLineAggregator A simple implementation that calls toString().

ExtractorLineAggregator An abstract implementation that uses a FieldExtractor to
extracts item fields as an array. Subclasses decide how to
aggregate the array elements.

DelimitedLineAggregator An ExtractorLineAggregator subclass that produces a
delimited string. The default delimiter is the comma character.

FormatterLineAggregator An ExtractorLineAggregator subclass that formats
each element with a java.util.Formatter.

Table 6.2 FlatFileItemWriter properties (continued)

Property Type Description

163Writing files
In more advanced use cases, the FlatFileItemWriter class uses an ExtractorLine-
Aggregator and a FieldExtractor to format data and write the file.
INTRODUCING THE LINEAGGREGATOR INTERFACE

We introduced the LineAggregator interface in the previous section, but here we
look at it in more detail:

public interface LineAggregator<T> {
 String aggregate(T item);
}

The interface is simple and focuses on converting an object to a String. The
PassThroughLineAggregator implementation calls toString() on each item. The
ExtractorLineAggregator implementation is more interesting because it serves as a
base class for more elaborate aggregation algorithms. The aggregate method extracts
fields from the given item using a FieldExtractor and then aggregates them into a
String. The FieldExtractor’s only job is to convert an object into an array of its
parts. Finally, the FlatFileItemWriter writes the String to a file. Let’s see how a
FieldExtractor works. To see an illustration of these objects, see figure 6.4.
INTRODUCING THE FIELDEXTRACTOR CLASS

An ExtractorLineAggregator uses a FieldExtractor to create an array of item val-
ues that an item writer writes to a file. Implementers of the FieldExtractor interface
extract the bean information you want to write to a file:

public interface FieldExtractor<T> {
 Object[] extract(T item);
}

Listing 6.2 writes to a delimited file to demonstrate the use of a FieldExtractor, but
don’t worry about the details; we get to that in the next section. The PassThrough-
FieldExtractor class implements the FieldExtractor interface to return an array of
fields as close as possible to the input item. The extractor returns the input if it’s a
FieldSet, the result of toArray() on a Collection, or the result (as an array) of val-
ues()on a Map, and wraps other types of objects in a one-element array.

<bean id="productItemWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
 <property name="resource"
 value="file:target/outputs/delimited-passthroughextractor.txt"/>
 <property name="lineAggregator">
 <bean
 class="org.springframework.batch.item.file.transform.

 ➥ DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean
 class="org.springframework.batch.item.file.transform.

 ➥ PassThroughFieldExtractor" />
 </property>

Listing 6.2 A delimited pass-through field extractor

164 CHAPTER 6 Writing data
 </bean>
 </property>
</bean>

This listing configures a flat file item writer with a LineAggregator, which contains a
PassThroughFieldExtractor. All classes in this example are stock Spring Batch.

 The following snippet shows the result of running this example:

Product [id=PR....210, name=BlackBerry 8100 Pearl]
Product [id=PR....211, name=Sony Ericsson W810i]
Product [id=PR....212, name=Samsung MM-A900M Ace]
Product [id=PR....213, name=Toshiba M285-E 14]

The output file contains one line per product and is the result of calling toString()
on each Product object. It’s not sexy, but it’s efficient, even if you don’t have access to
all the object properties or if you can’t control the column order or formatting.

 For more control over the output, you can select which properties to write with the
BeanWrapperFieldExtractor class. This extractor takes an array of property names,
reflectively calls the getters on a source item object, and returns an array of values.
The following listing configures a BeanWrapperFieldExtractor for our use case.

<bean
 id="productItemWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
 <property name="resource" value="file:target/outputs/delimited-

beanwrapperhextractor.txt"/>
 <property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ BeanWrapperFieldExtractor">
 <property name="names"

 ➥ value="id,price,name" />
 </bean>
 </property>
 </bean>
 </property>
</bean>

You configure a BeanWrapperFieldExtractor with the list of property names that you
want to output. For each product, the field extractor calls the getter (via reflection) of
each property in the list and creates a new value array. A DelimitedLineAggregator
aggregates this array, which we see in the next section.

 The following snippet shows that you control the properties and their order:

PR....210,124.60,BlackBerry 8100 Pearl
PR....211,139.45,Sony Ericsson W810i
PR....212,97.80,Samsung MM-A900M Ace
PR....213,166.20,Toshiba M285-E 14

Listing 6.3 Configuring a BeanWrapperFieldExtractor

165Writing files
Next, you get even more control over the output by adding computed fields.
WRITING COMPUTED FIELDS

To add computed fields to the output, you create a FieldExtractor implementation
named ProductFieldExtractor to add and compute additional fields. Here, you add
BEGIN and END at the beginning and the end of each array and compute a tax field.
Because you configure the ProductFieldExtractor in a Spring context, you can also
inject/wire existing beans to create other FieldExtractors. The following listing
implements the ProductFieldExtractor.

public class ProductFieldExtractor implements FieldExtractor<Product> {
 public Object[] extract(Product item) {
 return new Object [] {
 "BEGIN",
 item.getId(),
 item.getPrice(),
 item.getPrice().multiply(new BigDecimal("0.15")),
 item.getName(),
 "END"};
 }
}

The next listing configures the ProductFieldExtractor as a property of the item
writer’s LineAggregator.

<bean id="productItemWriter"
class="org.springframework.batch.item.file.FlatFileItemWriter">

 <property name="resource" value="file:target/outputs/delimited-
productextractor.txt"/>

 <property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean class="com.manning.sbia.ch06.file

 ➥.ProductFieldExtractor" />
 </property>
 </bean>
 </property>
</bean>

The following snippet shows the result of using the product field extractor:

BEGIN,PR....210,124.60,18.6900,BlackBerry 8100 Pearl,END
BEGIN,PR....211,139.45,20.9175,Sony Ericsson W810i,END
BEGIN,PR....212,97.80,14.6700,Samsung MM-A900M Ace,END
BEGIN,PR....213,166.20,24.9300,Toshiba M285-E 14,END

Remember to use a FieldExtractor to control exactly what you want to write to a file.
The following sections explore how to write delimited and fixed-length fields and how
to add headers and footers.

Listing 6.4 Computing fields in a FieldExtractor

Listing 6.5 Configuring a FieldExtractor

Sets
ProductFieldExtractor

166 CHAPTER 6 Writing data
WRITING DELIMITED FILES

The DelimitedLineAggregator class implements the LineAggregator interface to
create delimited files. A character, typically a comma or a tab, separates each field
value from the next. The DelimitedLineAggregator class is responsible for trans-
forming an item into a String. The following listing configures a DelimitedLine-
Aggregator bean in a Spring context. Note that the default delimiter is a comma.

<bean id="productItemWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
 (...)
 <property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ DelimitedLineAggregator">
 <property name="delimiter" value="|">
 <property name="fieldExtractor">
 (...)
 </property>
 </bean>
 </property>
</bean>

You set a DelimitedLineAggregator as the LineAggregator to indicate that you want
a delimited file as the output format. You also set the delimiter attribute to separate
each field with the given string, which by default is the comma character.

 The following snippet shows the result of running this example:

PR....210|124.60|BlackBerry 8100 Pearl
PR....211|139.45|Sony Ericsson W810i
PR....212|97.80|Samsung MM-A900M Ace
PR....213|166.20|Toshiba M285-E 14

Now that you know how to use Spring Batch to write a delimited file, let’s see how to
write a fixed-width file.
WRITING FIXED-WIDTH FILES

In a fixed-width file, fixed-length fields make up each record. Spaces may pad each
field value to get to the desired field length. The FormatterLineAggregator class
implements the LineAggregator interface to format fields and uses the format syntax
of the java.util.Formatter class. The Formatter class, inspired by C’s printf func-
tion, allows developers to specify text representations of data for strings, numbers,
dates, and time. This formatter is used by PrintStream’s printf(String format,
Object ... args), and String.format(String format, Object ... args). The first
parameter is the format string, and the other values are data to format with
java.util.Locale support.

 In brief, a FormatterLineAggregator produces Strings by aggregating fields with
a Formatter. The following listing configures a FormatterLineAggregator in a
Spring context.

Listing 6.6 Configuring writing to a delimited file

167Writing files
<bean id="productItemWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
 <property name="resource"
 value="file:target/outputs/fixedwidth-beanwrapperextractor.txt"/>
 <property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ FormatterLineAggregator">
 <property name="fieldExtractor">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ BeanWrapperFieldExtractor">
 <property name="names" value="id,price,name" />
 </bean>
 </property>
 <property name="format" value="%-9s%6.2f%-30s" />
 </bean>
 </property>
</bean>

You configure a FormatterLineAggregator with a fieldExtractor to build arrays of
fields from items. You use a BeanWrapperFieldExtractor to extract the id, price, and
name fields from Product objects. To format these fields, you set the format property to
%-9s%6.2f%-30s. The format string looks complicated, so let’s take a closer look:

■ id output is 9 characters and padded to the left
■ price output is 6 characters as a float with 2 precision characters
■ name output is 30 characters and padded to the left

Figure 6.5 shows the mapping between bean
property, format expression, and output line.

 The following snippet shows the result of
running this example:

PR....210124.60BlackBerry 8100 Pearl
PR....211139.45Sony Ericsson W810i
PR....212 97.80Samsung MM-A900M Ace
PR....213166.20Toshiba M285-E 14

The Javadoc for the Formatter class tells us that the general form of a format string is
%[argument_index$][flags][width][.precision]conversion. Let’s pick this one
apart too:

■ The optional argument_index field is a decimal integer indicating the position
of the argument in the argument list.

■ The optional flags field is a set of characters that modify the output format.
The set of valid flags depends on the conversion. For example, the dash (-) flag
creates left-justified output.

■ The optional width field is a nonnegative decimal integer indicating the mini-
mum number of characters to write.

Listing 6.7 Configuring a FormatterLineAggregator

PR....210124.60BlackBerry 8100 Pearl

id
%-9s

price
%6.2f

name
%-30s

Figure 6.5 Mapping between bean property,
format expression, and output line

168 CHAPTER 6 Writing data
■ The optional precision field is a nonnegative decimal integer normally used to
restrict the number of characters.

■ The required conversion field is a character indicating how to format the argu-
ment. The set of valid conversions for a given argument depends on the argu-
ment’s data type.

Table 6.4 shows the different conversion values.

Table 6.5 lists examples of using a Formatter through System.printf().

Table 6.4 Formatter conversions

Character Description

b Converts a boolean to the String true or false

h A hexadecimal hash code string, the result of
Integer.toHexString(arg.hashCode())

s The result of arg.toString() or, if arg implements
Formattable, arg.formatTo()

c A Unicode character

d A decimal integer

c An octal integer

x A hexadecimal integer

e A decimal integer in scientific notation

f A decimal number

g A decimal integer in scientific notation or decimal format, depending on
the precision and the value after rounding

a A hexadecimal floating-point number with a significant and an exponent

t Prefix for date and time conversion characters

% The % character

n The platform line separator

Table 6.5 Examples of using a Formatter through System.printf()

Code Output

System.printf("Spring Batch in Action
has %d co-authors", 4)

Spring Batch in Action has 4
co-authors

System.printf("Chapter %d is \"%s\"",
6, "Writing data")

Chapter 6 is "Writing data"

169Writing files
Spring Batch lets you easily create files with fixed-length columns by using the
java.util.Formatter class. You only need to think about the format pattern.

 Next, let’s see how to deal with heterogeneous items before moving on to adding
headers and footers.
MATCHING CLASSES TO LINEAGGREGATORS

In chapter 5, you saw how to read a flat
file containing a mix of different prod-
uct types. Here, you learn how to do
the same thing for writing. First, you
write a flat file with a LineAggregator
based on the product type. Figure 6.6
shows the product hierarchy.

 When the import job reads a product
file, you create a MobilePhoneProduct
or a BookProduct depending on the pre-
fix of the product ID. If a product ID
begins with PRM, you create a Mobile-
PhoneProduct; if it begins with PRB, you
create a BookProduct.

 To write products to a file, the
writer receives these same two types of

System.printf("Chapter %d is
\"%15s\"", 6, "Writing data")

Chapter 6 is " Writing data"

System.printf("Chapter %d is \"%-
15s\"", 6, "Writing data");

Chapter 6 is "Writing data "

System.printf("MEAP + Ebook only:
\$%f", 44.99)

MEAP + Ebook only: $44.990000

System.printf("MEAP + Ebook only:
\$%5.2f", 44.99)

MEAP + Ebook only: $44.99

System.printf("MEAP + Ebook only:
\$%6.2f", 44.99)

MEAP + Ebook only: $ 44.99

System.printf("%s !", "MEAP is
available");

MEAP is available !

System.printf("%20s !", "MEAP is
available")

 MEAP is available !

System.printf("%-20s !", "MEAP is
available");

MEAP is available !

Table 6.5 Examples of using a Formatter through System.printf() (continued)

Code Output

Product

Extends

id
description
price
name

MobilePhoneProduct BookProduct

manufacturer publisher

Figure 6.6 The domain model of the batch appli-
cation uses several classes. The flat file item
writer can use a custom LineAggregator to
delegate aggregation to dedicated Line-
Aggregators (one for each product subclass).

170 CHAPTER 6 Writing data
products. A FlatFileItemWriter uses a LineAggregator to get a String representa-
tion of each item. The following listing shows the ProductsLineAggregator class,
which chooses the right LineAggregator depending on the Class of the Product.

public class ProductsLineAggregator implements LineAggregator<Product> {
 private Map<Class<LineAggregator<Product>>,
 LineAggregator<Object>> aggregators;

 @Override
 public String aggregate(Product product) {
 return aggregators.get(product.getClass()).aggregate(product);
 }

 public void setAggregators(Map<Class<LineAggregator<Product>>,
 LineAggregator<Object>> aggregators) {
 this.aggregators = aggregators;
 }
}

To configure multiple LineAggregators, you inject a Map whose key is the Product’s
Class and the value an instance of LineAggregator. The aggregate method uses this
Map to find the right LineAggregator and then calls its aggregate method. The fol-
lowing listing shows how to configure multiple LineAggregators with a Map.

<bean id="productItemWriter"
class="org.springframework.batch.item.file.FlatFileItemWriter">

 <property name="resource"
 value="file:target/outputs/fixedwidth-lineaggregator.txt" />
 <property name="lineAggregator">
 <bean class="com.manning.sbia.ch06.file.

 ➥ ProductsLineAggregator">
 <property name="aggregators">
 <map>
 <entry key="com.manning.sbia.ch06.BookProduct"
 value-ref="bookProductLineAggregator" />
 <entry key="com.manning.sbia.ch06.

 ➥ MobilePhoneProduct"

 ➥ value-ref="mobileProductLineAggregator" />
 </map>
 </property>
 </bean>
 </property>
</bean>

<bean id="bookProductLineAggregator"
 class="org.springframework.batch.item.file.transform.

 ➥ FormatterLineAggregator">
 <property name="fieldExtractor">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ BeanWrapperFieldExtractor">

Listing 6.8 Choosing a LineAggregator

Listing 6.9 Configuring multiple LineAggregators with a Map

Sets product
aggregator

B

Sets aggregator
map

C

Sets book line
aggregator

D

171Writing files
 <property name="names" value="id,price,name,publisher" />
 </bean>
 </property>
 <property name="format" value="%-9s%6.2f%-30s%-12s" />
</bean>

<bean id="mobileProductLineAggregator"
 class="org.springframework.batch.item.file.transform.

 ➥ FormatterLineAggregator">
 <property name="fieldExtractor">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ BeanWrapperFieldExtractor">
 <property name="names" value="id,price,name,manufacturer" />
 </bean>
 </property>
 <property name="format" value="%-9s%6.2f%-30s%-12s" />
</bean>

You start by configuring a FlatFileItemWriter with the ProductLineAggregator as
its line aggregator B. You inject your ProductLineAggregator with a Map of Line-
Aggregators C. The Map keys are Product subclass names, and the values are Line-
Aggregator references to bean configurations of bookProductLineAggregator D
and mobileProductLineAggregator E.

 The following snippet shows the result of running this example:

PRM....210124.60BlackBerry 8100 Pearl BlackBerry
PRM....211139.45Sony Ericsson W810i Sony Ericson
PRB....734 34.95Spring Batch in action Manning
PRB....736 44.95Spring in action Manning
PRM....214145.50Nokia 2610 Phone Nokia

Depending of the type of Product, the last column is either a publisher or manufac-
turer, each using a dedicated formatter.

 You can see how Spring Batch gives you the ability to customize a writer’s output.
Another common feature is to add a footer and a header to a flat file, which is what
you do in the next section.
ADDING A FOOTER AND A HEADER

A header is a text record that Spring Batch inserts before item processing. A footer is
a text record added at the end of the file after item processing. Spring Batch provides
the single method interfaces FlatFileHeaderCallback and FlatFileFooterCall-
back to implement these features, shown in the following listing. In this example, you
write a simple description in the header, and you write the item count and the Step
execution time in the footer.

public class ProductHeaderCallback implements FlatFileHeaderCallback {

 @Override
 public void writeHeader(Writer writer) throws IOException {
 writer.write(
 "# Generated by FlatFileHeaderCallback");

Listing 6.10 Implementing a flat file footer and header

Sets mobile
line aggregator

E

Writes
header

B

172 CHAPTER 6 Writing data
 }

}

public class ProductFooterCallback
 extends StepExecutionListenerSupport
 implements FlatFileFooterCallback {
 private StepExecution stepExecution;

 @Override
 public void writeFooter(Writer writer) throws IOException {
 writer.write("# Write count: "
 + stepExecution.getWriteCount());
 writer.write(
 System.getProperty("line.separator"));
 long delta = stepExecution.getEndTime().getTime()
 - stepExecution.getStartTime().getTime();
 writer.write("# Done in: " + delta + " ms");
 }

 @Override
 public void beforeStep(StepExecution stepExecution) {
 this.stepExecution = stepExecution;
 }
}

Spring Batch passes a Writer to the writeHeader method B to output the header, in
this case, a simple description. The ProductFooterCallback class extends StepExecu-
tionListenerSupport to get access to the item count and start and end times from
the writeFooter method C.

 In the next listing, you configure the header and footer of a FlatFileItemWriter.

<bean id="headerCallback" class="com.manning.sbia.

 ➥ ch06.file.ProductHeaderCallback" />
<bean id="footerCallback" class="com.manning.sbia.

 ➥ ch06.file.ProductFooterCallback" />

<job id="writeProductsJob" xmlns="http://www.springframework.org/schema/
batch">

 <step id="readWrite">
 <tasklet>
 <chunk reader="productItemReader"
 writer="productItemWriter"
 commit-interval="100" />
 <listeners>
 <listener ref="footerCallback" />
 </listeners>
 </tasklet>
 </step>
</job>

<bean id="productItemWriter"
class="org.springframework.batch.item.file.FlatFileItemWriter">

 <property name="resource"

Listing 6.11 Configuring header and footer callbacks for a flat file

Writes
footer

C

Creates
header
and footer
callbacks

B

Registers
listener

C

173Writing files
 value="file:target/outputs/fixedwidth-headerfooter.txt" />
 <property name="headerCallback"
 ref="headerCallback" />
 <property name="footerCallback"
 ref="footerCallback" />
 <property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ FormatterLineAggregator">
 <property name="fieldExtractor">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ BeanWrapperFieldExtractor">
 <property name="names" value="id,price,name" />
 </bean>
 </property>
 <property name="format" value="%-9s%6.2f%-30s" />
 </bean>
 </property>
</bean>

To configure your footer and header, you create header and footer callback beans B.
The important point here is to configure the footer as a step listener C, which imple-
ments StepExecutionListenerSupport in order to access the StepExecution. You set
the footer D and the header E as properties of the FlatFileItemWriter.

 The following snippet shows the result of running this example:

Generated by FlatFileHeaderCallback
PR....210124.60BlackBerry 8100 Pearl
PR....211139.45Sony Ericsson W810i
 (...)
PR....217 13.70Canon Digital Rebel XT 8MP
Write count: 8
Done in: 12 ms

The first line is the header, which tells who generated the file. The last two lines make
up the footer, which includes the number of items written and how long the operation
took.

 This section ends our discussion on writing flat files. We saw Spring Batch write dif-
ferent types of flat file formats: delimited and fixed width. Next, we work with a differ-
ent type of file, XML.

6.2.2 Writing XML files

Spring Batch includes an implementation of ItemWriter for XML files called Stax-
EventItemWriter. This writer uses a marshaller to write XML files. A Marshaller is a
generic interface provided by the Spring Object/XML Mapping1 module to convert
objects to XML, and vice versa. Spring OXM supports Java Architecture for XML Bind-
ing (JAXB) 1.0 and 2.0, Castor XML, XMLBeans, JiBX, and XStream.

 The following listing shows the XML output for our case study.

1 Spring OXM: http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
oxm.html

Sets header
callback

D

Sets footer
callback

E

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

174 CHAPTER 6 Writing data
<?xml version="1.0" encoding="UTF-8"?>
<products>
 <header>(...)</header>
 <product>
 <id>PR....210</id>
 <name>BlackBerry 8100 Pearl</name>
 <description></description>
 <price>124.60</price>
 </product>
 <product>
 (...)
 </product>
 (...)
 <footer>(...)</footer>
</products>

This XML document has a root element named products followed by a header child
element. A sequence of product elements defines each product. After all the prod-
ucts, the document has a footer and ends by closing the root element.

 The StaxEventItemWriter class implements the ItemWriter interface. This writer
uses a Marshaller to convert each item to XML and then writes them to an XML file using
StAX (Streaming API for XML). In this example, you use the XStreamMarshaller class
because it’s simple to configure. Table 6.6 lists the StaxEventItemWriter properties.

Listing 6.12 Example of XML file output

Table 6.6 StaxEventItemWriter properties

Property Type Description

encoding String Encoding for writing the file; defaults to
UTF-8

footerCallback StaxWriterCallback Callback class used to write the footer

headerCallback StaxWriterCallback Callback class used to write the header

marshaller Marshaller Spring OXM marshaller used to convert
objects to XML

overwriteOutput boolean Whether to overwrite the output file;
defaults to true

resource Resource Output resource

rootElementAttributes Map<String,String> Adds root element attributes; if a key
name begins with xmlns, it’s an XML
namespace declaration

rootTagName String Tag name of root element; defaults to
root

saveState Boolean Whether to save state in the execution
context; defaults to true

175Writing files
You now know all you need to implement this use case. You’ve already chosen a Mar-
shaller class, and you know how to set the root tag element with the rootTagName
property.

 To write the header and footer, you implement the StaxWriterCallback interface
and its write method. For the header element, you want to create an attribute called
generated, as illustrated by the following snippet:

(...)
<header generated="Jan 27, 2011 5:30:16 PM"></header>
(...)

Because you’re now in the StAX world, you create an XMLEvent object using the
XMLEventFactory class. The following listing shows the ProductHeaderStaxCallback
implementation.

public class ProductHeaderStaxCallback implements StaxWriterCallback {

 @Override
 public void write(XMLEventWriter writer) throws IOException {
 try {
 XMLEventFactory eventFactory = XMLEventFactory.newInstance();
 XMLEvent event = eventFactory.createStartElement("", "", "header");
 writer.add(event);
 event = eventFactory.createAttribute(
 "generated",
 DateFormat.getInstance().format(new Date()));
 writer.add(event);
 event = eventFactory.createEndElement("", "", "header");
 writer.add(event);
 } catch (XMLStreamException e) {
 }
 }
}

The write method starts by creating an instance of XMLEventFactory to help you cre-
ate an element and an attribute with the current date.

 The footer is like the header, and you implement the same interface. Here, you
want to create an element named writeCount. The following listing shows the Pro-
ductFooterStaxCallback class that implements StaxWriterCallback and extends
StepExecutionListenerSupport to access the StepExecution.

transactional Boolean Whether to delay writing to the buffer if a
transaction is active; default value is
true

version String XML version; default value is 1.0

Listing 6.13 Implementing an XML header callback

Table 6.6 StaxEventItemWriter properties (continued)

Property Type Description

176 CHAPTER 6 Writing data
public class ProductFooterStaxCallback
 extends StepExecutionListenerSupport
 implements StaxWriterCallback {
 private StepExecution stepExecution;

 @Override
 public void write(XMLEventWriter writer) throws IOException {
 try {
 XMLEventFactory eventFactory = XMLEventFactory.newInstance();
 XMLEvent event = eventFactory.createStartElement("", "", "footer");
 writer.add(event);
 event = eventFactory.createStartElement("", "", "writeCount");
 writer.add(event);
 event = eventFactory.createCharacters(
 String.valueOf(stepExecution.getWriteCount())
);
 writer.add(event);
 event = eventFactory.createEndElement("", "", "writeCount");
 writer.add(event);
 event = eventFactory.createEndElement("", "", "footer");
 writer.add(event);
 } catch (XMLStreamException e) {
 }
 }

 @Override
 public void beforeStep(StepExecution
 stepExecution) {
 this.stepExecution = stepExecution;
 }
}

With the XMLEventFactory class, you create an XML character for the writeCount ele-
ment B. Spring Batch injects the StepExecution C to give you access to the write-
Count value.

 This configuration is almost complete; your last task is to configure a StaxEvent-
ItemWriter to write the XML file, as shown in the following listing.

<job id="writeProductsJob" xmlns="http://www.springframework.org/schema/
batch">

 <step id="readWrite">
 <tasklet>
 <chunk reader="productItemReader"
 writer="productItemWriter"
 commit-interval="100" />
 <listeners>
 <listener ref="footerCallback"/>
 </listeners>
 </tasklet>
 </step>
</job>

Listing 6.14 Implementing an XML footer callback

Listing 6.15 Configuring a StaxEventItemWriter

Creates writeCount
element

B

Injects
stepExecution

C

177Writing files
<bean id="productItemWriter"
 class="org.springframework.batch.item.xml.StaxEventItemWriter">
 <property name="resource"
 value="file:target/outputs/

 ➥ products-headerfooter.xml" />
 <property name="marshaller" ref="productMarshaller" />
 <property name="rootTagName" value="products" />
 <property name="overwriteOutput" value="true" />
 <property name="headerCallback"
 ref="headerCallback" />
 <property name="footerCallback"
 ref="footerCallback" />
</bean>

<bean id="productMarshaller" class="org.

 ➥ springframework.oxm.xstream.XStreamMarshaller">
 <property name="aliases">
 <map>
 <entry key="product" value="com.manning.sbia.

 ➥ ch06.Product" />
 </map>
 </property>
</bean>

<bean id="headerCallback"
 class="com.manning.sbia.ch06.file.ProductHeaderStaxCallback" />
<bean id="footerCallback"
 class="com.manning.sbia.ch06.file.ProductFooterStaxCallback" />

This Spring context contains a job definition with a special listener, the footer call-
back, which Spring Batch injects with a StepExecution. You configure a StaxEvent-
ItemWriter with an output resource B and footer and header callbacks. Finally, you
define an XStream Marshaller C with an alias map to serialize Product objects to
XML product elements.

 The following listing shows the XML output of this StaxEventItemWriter example.

<?xml version="1.0" encoding="UTF-8"?>
<products>
 <header generated="Jan 28, 2011 5:30:16 PM"></header>
 <product>
 <id>PR....210</id>
 <name>BlackBerry 8100 Pearl</name>
 <description></description>
 <price>124.60</price>
 </product>
 <product>
 (...)
 </product>
 <footer>
 <writeCount>8</writeCount>
 </footer>
</products>

Listing 6.16 StaxEventItemWriter output

Sets
resource

B

Sets
marshaller

C

178 CHAPTER 6 Writing data
This XML products document contains elements for a footer, a header, and for each
product.

 In the next section, you discover how to “roll over” XML files depending on the
number of items you want in a file, creating a set of files instead of a single file.

6.2.3 Writing file sets

Spring Batch provides a mechanism to write file sets instead of a single file (see fig-
ure 6.7). It’s useful if you want to create files with a maximum number of items.

 The MultiResourceItemWriter class is an ItemWriter implementation for multi-
ple output files. The following listing shows how to configure this writer.

<job id="writeProductsJob" xmlns="http://www.springframework.org/schema/
batch">

 <step id="readWrite">
 <tasklet>
 <chunk reader="productItemReader"
 writer="productItemWriter"
 commit-interval="100" />
 </tasklet>
 </step>
</job>

<bean id="productItemWriter"
 class="org.springframework.batch.item.file.MultiResourceItemWriter"
 scope="step">
 <property name="resource"
 value="file:target/outputs/products-multi.xml" />
 <property name="itemCountLimitPerResource"
 value="10000" />
 <property name="delegate" ref="delegateWriter" />
</bean>

<bean id="delegateWriter" class="org.springframework.

 ➥ batch.item.xml.StaxEventItemWriter">
(...)
</bean>

We set the commit interval to 100 B (the commit interval can impact the number of
items in a file; more on this later!). If you have 40,100 products and an itemCountLim-
itPerResource of 10,000 C, the MultiResourceItemWriter will create five files, the

Listing 6.17 Configuring multiple output files

Item reader Multiresource
item writer

Flat file
Item 1 to 10000

Item 10001
to 20000

…

Figure 6.7 The
multiresource item
writer rolls over files
after writing a given
number of items. This
creates multiple small
files instead a single
large file.

Sets commit
interval

B

Sets max item
count per resource

C

Configures
writer

179Writing to databases
first four with 10,000 records, and the last with 100. The MultiResourceItemWriter also
sets the resource for the writer. In this case, the writer is a StaxEventItemWriter, work-
ing with the file writer. By default, a multiresource writer suffixes the output filenames
with an index. For example:

products-multi.xml.1
products-multi.xml.2
products-multi.xml.3

You can create your own suffix policy by implementing the ResourceSuffixCreator
interface:

public interface ResourceSuffixCreator {
 String getSuffix(int index);
}

Be aware that the MultiResourceItemWriter creates a new resource after the commit
interval if it reaches the count specified in the itemCountLimitPerResource property.
Otherwise, the MultiResourceItemWriter creates a new resource the next time around.

NOTE The MultiResourceItemWriter works also for flat files, not only for
XML files. It can roll over any writer that implements ResourceAwareItem-
WriterItemStream.

This section ends our discussion on writing flat files and XML files. We saw how to
write delimited and fixed-width flat files. We also discussed how to write XML files
using the Spring OXM Marshaller interface. The next section focuses on how to
write items into a relational database.

6.3 Writing to databases
In the Java world, you access relational databases with JDBC or an ORM tool. Spring
Batch provides writers for both. Our use case for this section is to write Product
objects into a relational database. We first look at the JDBC item writer.

6.3.1 Writing with JDBC

The JdbcBatchItemWriter class is an implementation of the ItemWriter interface for
JDBC that sits on top of the Spring JDBC layer, which itself hides the complexities of using
the JDBC API directly. The JdbcBatchItemWriter class uses JDBC’s batch features to exe-
cute a group of SQL statements all at once for an item set, as illustrated in figure 6.8.

JdbcBatchItemWriter

Database

2. Sends a batch of
queries Query 1

Query 2
Query 3

...

Building query 1
Building query 2
Building query 3

...

1. Builds a batch of queries
Figure 6.8 Sending a
batch of SQL statements
to a relational database is
more efficient than sending
one query at a time.

180 CHAPTER 6 Writing data
The SQL batch size is equal to the commit interval configured in the chunk-
oriented tasklet. Sending SQL statements to a database in a SQL batch is faster than
sending them one at a time. Table 6.7 lists the properties of the JdbcBatchItem-
Writer class.

The main JdbcBatchItemWriter properties are sql and your choice of itemPrepared-
StatementSetter or itemSqlParameterSourceProvider. The ItemPreparedState-
mentSetter class executes SQL with ? parameter markers. The ItemSqlParameter-
SourceProvider class executes SQL statements with named parameters.

 The following listing configures a JdbcBatchItemWriter to use a SQL statement
with named parameters.

<bean id="productItemWriter"
 class="org.springframework.batch.item.database.

 ➥ JdbcBatchItemWriter">
 <property name="assertUpdates" value="true" />
 <property name="itemSqlParameterSourceProvider">
 <bean class="org.springframework.batch.item.database.

 ➥ BeanPropertyItemSqlParameterSourceProvider" />
 </property>
 <property name="sql"
 value="INSERT INTO PRODUCT (ID, NAME, PRICE)
 VALUES(:id, :name, :price)" />
 <property name="dataSource" ref="dataSource" />
</bean>

You configure the JdbcBatchItemWriter with assertUpdates set to true, such that if
a statement execution doesn’t update a row, Spring Batch throws an EmptyResult-
DataAccessException. The key point in a JdbcBatchItemWriter configuration is to
set itemSqlParameterSourceProvider to a BeanPropertySqlParameterSource to
bind item properties to SQL parameter names from JavaBeans properties. At runtime,
the SQL parameter name called name (defined with :name in the SQL statement) is set

Table 6.7 JdbcBatchItemWriter properties

Property Type Description

assertUpdates boolean Whether to throw an exception if at
least one item doesn’t update or
delete a row; defaults to true

itemPreparedState-
mentSetter

ItemPreparedStatement-
Setter<T>

SQL statement parameter values from
? positional parameter markers

itemSqlParameter-
SourceProvider

ItemSqlParameterSource-
Provider<T>

SQL statement parameter values from
named parameters

sql String SQL statement to execute

Listing 6.18 Configuring a JdbcBatchItemWriter with named parameters

181Writing to databases
to the Product name property. This is the best and fastest way to insert data in a rela-
tional database.

 Another way to execute a SQL statement in Spring Batch is to use a JdbcBatch-
ItemWriter with an ItemPreparedStatementSetter. The ItemPreparedStatement-
Setter interface lets you implement how a JDBC PreparedStatement matches your
bean to tables and columns.

 The following listing shows you how to implement an ItemPreparedStatement-
Setter.

public class ProductItemPreparedStatementSetter
 implements ItemPreparedStatementSetter<Product> {
 @Override
 public void setValues(Product item,
 PreparedStatement ps) throws SQLException {
 ps.setString(1, item.getId());
 ps.setString(2, item.getName());
 ps.setBigDecimal(3, item.getPrice());
 }
}

In this listing, you set a value for each SQL parameter B from bean properties. Here,
you use the JDBC API directly to set each SQL statement parameter. JDBC provides dif-
ferent methods for different data types and can perform some conversions between
data types on your behalf.

 Finally, you configure a JdbcBatchItemWriter with SQL ? positional parameter
markers, as in the following listing.

<bean id="productItemWriter" class="org.springframework.batch.item.

 ➥ database.JdbcBatchItemWriter">
 <property name="assertUpdates" value="true" />
 <property name="itemPreparedStatementSetter">
 <bean class="com.manning.sbia.ch06.database.

 ➥ ProductItemPreparedStatementSetter" />
 </property>
 <property name="sql"
 value="INSERT INTO PRODUCT (ID, NAME, PRICE)

 ➥ VALUES(?, ?, ?)" />
 <property name="dataSource" ref="dataSource" />
</bean>

You set your ItemPreparedStatementSetter implementation, which binds SQL
parameters with your custom code. Note that this statement uses ? positional parame-
ter markers instead of named parameters.

 You can configure a JdbcBatchItemWriter in two ways: with named and positional
parameters, depending on your beans and database tables. The next section explores
ORM tools, another way to interact with a relational database.

Listing 6.19 Implementing an ItemPreparedStatementSetter

Listing 6.20 Configuring a SQL statement with ? parameter markers

Sets SQL
parameter string

B

182 CHAPTER 6 Writing data
6.3.2 Writing with ORM

ORM provides a data persistence bridge between an object-oriented system and a data-
base. ORM manages data I/O between objects and a database, and in Spring Batch,
hides the data access layer, in this case, the JDBC layer. Spring Batch supports several
ORMs with ItemWriter implementations: Hibernate, the Java Persistence API (JPA),
and iBATIS.

 In our case study, you use Hibernate to persist the Product objects to a table in the
database. You first annotate the Product domain class with database mapping annota-
tions, as described in the following listing.

@Entity("product")
public class Product {
 @Id("id")
 private String id;
 @Column("label")
 private String label;
 @Column("description")
 private String description;
 @Column("price")
 private float price;
 (...)
}

The Entity annotation on the Product class specifies that the class maps to the prod-
uct table in the database. The Id and Column annotations map instance variables to
table columns using the database column name in the annotation values.

 You must configure a HibernateItemWriter with a HibernateTemplate or a Ses-
sionFactory, as shown the following fragment:

<bean id="productItemWriter"
 class="org.springframework.batch.item.database.HibernateItemWriter">
 <property name="hibernateTemplate" ref="hibernateTemplate" />
</bean>

The following Spring Batch code fragment shows the core of the HibernateItem-
Writer class, which uses a Spring HibernateTemplate.

(...)
protected void doWrite(HibernateOperations hibernateTemplate,
 List<? extends T> items) {
 if (!items.isEmpty()) {
 for (T item : items) {
 if (!hibernateTemplate.contains(item)) {
 hibernateTemplate.saveOrUpdate(item);
 }
 }
}

Listing 6.21 Annotating a domain class for ORM

Listing 6.22 HibernateItemWriter implementation

183Adapting existing services for reuse
@Override
public final void write(List<? extends T> items) {
 doWrite(hibernateTemplate, items);
 hibernateTemplate.flush();
}
(...)

In this implementation, Spring Batch checks if each item is a Hibernate entity and
calls saveOrUpdate. The writer flushes the Hibernate session to synchronize the object
model with the database.

 If a Hibernate entity calls saveOrUpdate and isn’t already in the session, Hibernate
executes a SQL SELECT to find the object in the database. If Hibernate finds the
object, it executes a SQL UPDATE; if not, it executes a SQL INSERT.

 Hibernate uses fetch strategies to determine how and when to retrieve objects. It
uses fetch modes to fetch associations with an outer join, a SELECT or sub-SELECT, and
for lazy or eager loading. This may create overhead compared to JDBC where you can
control SQL statements directly.

 Spring Batch also provides a JPA writer named JpaItemWriter that takes an
EntityManagerFactory as a parameter, as described in the following configuration
fragment:

<bean id="productItemWriter"
 class="org.springframework.batch.item.database.JpaItemWriter">
 <property name="entityManagerFactory" ref="entityManagerFactory" />
</bean>

You also need to configure the entity managed by JPA in META-INF/persistence.xml:

<persistence-unit name="product" transaction-type="RESOURCE_LOCAL">
 <class>com.manning.sbia.ch06.Product</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
</persistence-unit>

Spring Batch provides another ItemWriter based on iBATIS, the IbatisBatchItem-
Writer.

 This section covered database item writers. We saw the Spring Batch implementa-
tions for JDBC, the JdbcBatchItemWriter, and one ORM implementation, the Hiber-
nateItemWriter. In the next sections, we focus on other targets like JMS and email
senders.

6.4 Adapting existing services for reuse
Spring Batch supports other writers for other targets such as existing business services
and JMS and email senders. To avoid reinventing the wheel, it’s a good idea to reuse
existing business services. After discussing reuse, we see how to send an item in a JMS
message and via email.

 If you want to reuse existing services to implement an ItemWriter, Spring Batch
provides helper classes.

184 CHAPTER 6 Writing data
 The first helper class is the ItemWriterAdapter class used to delegate writing to
another service. Let’s say you have an existing ProductService bean, which has a
write(Product) method:

public class ProductService {
 public void write(Product product) {
 (...)
 }
}

You can reuse this class from an ItemWriterAdapter. The first step is to wire the exist-
ing bean to the adapter:

<bean id="productItemWriter"
 class="org.springframework.batch.item.

 ➥ adapter.ItemWriterAdapter">
 <property name="targetObject" ref="productService" />
 <property name="targetMethod" value="write" />
</bean>
<bean id="productService"
 class="com.manning.sbia.ch06.service.

 ➥ ProductService" />

You configure an ItemWriterAdapter with a targetObject, the service, and a target-
Method, the target method of the service.

 If the service method is more complex, Spring Batch provides another ItemWriter
to extract properties from an item bean. Let’s imagine another ProductService class
with a write method that takes multiple arguments:

public class ProductService {
 public void write(String id, String name,
 String description, BigDecimal price) {
(...)
 }
}

The PropertyExtractingDelegatingItemWriter class extracts data from an item and
calls the target method with the extracted values. The following listing shows how to
configure a PropertyExtractingDelegatingItemWriter.

<bean id="productItemWriter" class="org.

 ➥ springframework.batch.item.adapter.

 ➥ PropertyExtractingDelegatingItemWriter">
 <property name="targetObject" ref="productService" />
 <property name="targetMethod" value="write" />
 <property name="fieldsUsedAsTargetMethodArguments">
 <list>
 <value>id</value>
 <value>name</value>
 <value>description</value>
 <value>price</value>

Listing 6.23 Configuring a PropertyExtractingDelegatingItemWriter

Declares
ItemWriter

B

Extracts data
for argumentsC

185Writing to JMS
 </list>
 </property>
</bean>

<bean id="productService"
 class="com.manning.sbia.ch06.service.

 ➥ ProductService" />

You first define a productWriter bean B using a PropertyExtractingDelegating-
ItemWriter. The property fieldsUsedAsTargetMethodArguments defines the item
properties to use as arguments when calling the target method C.

 The ItemWriterAdapter and PropertyExtractingDelegatingItemWriter help
reuse existing services. If this isn’t enough for your use cases, you can create more
solutions by reusing existing services, as discussed in section 5.6.1, “Services as input.”

 Before describing custom writer implementations, we implement and configure
writing data using a message-oriented middleware (MOM) broker like JMS. We also see
how to send emails for items.

6.5 Writing to JMS
A MOM broker allows you to send messages asynchronously to other applications (see
figure 6.9). For example, a writer can send products to a billing information system.

 Spring Batch includes the JmsItemWriter class, which you can use without writing
any Java code, only XML configuration, as shown in the following listing.

<amq:connectionFactory id="jmsFactory"
 brokerURL="tcp://localhost:61616"/>
<amq:queue id="productDestination"
 physicalName="destination.product" />

<bean id="jmsTemplate" class="org.springframework.jms.

 ➥ core.JmsTemplate">
 <property name="connectionFactory" ref="jmsFactory" />
 <property name="defaultDestination" ref="productDestination" />
 <property name="receiveTimeout" value="500" />
 <property name="sessionTransacted" value="true" />
</bean>

<bean id="productItemWriter" class="org.

 ➥ springframework.batch.item.jms.JmsItemWriter">
 <property name="jmsTemplate" ref="jmsTemplate" />
</bean>

Listing 6.24 Configuring a JmsItemWriter

Extracts data
for arguments

C

Item
reader

JMS item
writer

Flat file

Item
processor

JMS
queue

Figure 6.9 An application puts messages on a JMS queue with a JMS item writer.
Applications often use JMS to communicate with each other in a decoupled and
asynchronous way.

186 CHAPTER 6 Writing data
You first configure the connection parameters to the JMS Server and set the JMS queue
name where the application will send JMS messages. You also create a Spring JmsTem-
plate to create JMS messages more easily. Finally, you configure an ItemJmsWriter
with the JmsTemplate.

 Spring Batch makes it easy to send items to other applications through a MOM broker.
Before implementing a custom writer, we see how an item writer sends email messages.

6.6 Sending email messages
Spring Batch provides an ItemWriter to send emails, the SimpleMailMessageItem-
Writer. For this use case, you have a file (it could also be a database table) containing
information about new users, and you want to send each a welcome email message.
The following snippet lists the content of the customer flat file:

CLIENT_ID,NAME,EMAIL
1,Mr. White,white@nowhere.com
2,Mr. Orange,orange@nowhere.com
3,Mr. Pink,pink@nowhere.com
4,Mr. Blue,blue@nowhere.com
5,Mr. Brown,brown@nowhere.com

Figure 6.10 illustrates a Spring Batch application that sends an email message for each
customer in the input file.

 The job reads the flat file and creates a Customer object for each input line. After
that, you use an ItemProcessor to convert each Customer to a SimpleMailMessage (a
Spring support class,) as described in the following listing.

public class CustomerItemProcessor implements
 ItemProcessor<Customer, SimpleMailMessage> {
 @Override
 public SimpleMailMessage process(Customer item)
 throws Exception {
 SimpleMailMessage msg = new SimpleMailMessage();
 msg.setFrom("springbatchinaction@test.com");
 msg.setTo(item.getEmail());
 msg.setSubject("Welcome message !!");
 msg.setText("Hello " + item.getName());
 return msg;
 }
}

Listing 6.25 Converting a Customer to SimpleMailMessage

Item
reader

Email item
writer

Customers file

Item
processor

Transforms to mail

Sends mails

Figure 6.10 Sending an email message for each customer in an input file. Because Spring Batch’s
email item writer only takes care of sending email, it’s common practice to use an item processor
to convert read items into ready-to-be-sent SimpleMailMessage or MimeMessage objects.

Converts customer
to email message

B

187Implementing custom item writers
You implement an ItemProcessor to create new SimpleMailMessage objects from
Customer objects B. The process method takes a Customer item, creates a new email
message, and sets the message fields From, To, Subject, and Body.

 The following listing configures a SimpleMailMessageItemWriter.

<bean id="javaMailSender" class="org.springframework.

 ➥ mail.javamail.JavaMailSenderImpl">
 <property name="host" value="127.0.0.1" />
 <property name="port" value="3025" />
 <property name="defaultEncoding" value="UTF-8" />
</bean>

(...)
 <step id="readWrite">
 <tasklet>
 <chunk reader="customerItemReader"
 writer="mailMessageItemWriter"
 processor="customerProcessor"
 commit-interval="100" />
 </tasklet>
 </step>
(...)

<bean id="mailMessageItemWriter"
 class="org.springframework.batch.

 ➥ item.mail.SimpleMailMessageItemWriter">
 <property name="mailSender" ref="javaMailSender" />
</bean>

<bean id="customerProcessor"
 class="com.manning.sbia.ch06.mail.CustomerItemProcessor" />

First, you create a JavaMailSenderImpl B, a bean to send mail required for the
writer. You configure a chunk with a processor to convert Customer items to Simple-
MailMessage objects C. Finally, you configure the SimpleMailMessageItemWriter
and its mailSender property D.

 In this section, we saw how to send messages to a mail server. The next section
focuses on implementing your own item writers.

6.7 Implementing custom item writers
If none of the built-in Spring Batch ItemWriters matches your requirements, you can
create your own. For example, you may want to create your own JDBC item writer. The
following listing shows an example implementation.

public class JdbcProductItemWriter implements ItemWriter<Product> {
 String INSERT_PRODUCT =
 "INSERT INTO PRODUCT (ID,NAME,DESCRIPTION,PRICE) VALUES(?,?,?,?)";
 String UPDATE_PRODUCT =

Listing 6.26 Configuring a SimpleMailMessageItemWriter

Listing 6.27 Creating a custom JDBC ItemWriter

Creates
JavaMailSender

B

Configures
chunk

C

Creates mail
item writer

D

188 CHAPTER 6 Writing data
 "UPDATE PRODUCT SET NAME=?, DESCRIPTION=?, PRICE=? WHERE ID = ?";
 private JdbcTemplate jdbcTemplate;

 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Override
 public void write(List<? extends Product> items) throws Exception {
 for (Product item : items) {
 int updated = jdbcTemplate.update(
 UPDATE_PRODUCT,
 item.getName(),
 item.getDescription(),
 item.getPrice(),
 item.getId());
 if (updated == 0) {
 jdbcTemplate.update(
 INSERT_PRODUCT,
 item.getId(),
 item.getName(),
 item.getDescription(),
 item.getPrice());
 }
 }
 }
}

This JDBC example class implements the ItemWriter interface. The configuration
injects a JdbcTemplate to take advantage of Spring JDBC. The write method updates
or inserts a row in the product table. If the UPDATE statement returns zero rows
affected, then you insert a new row in the table.

 To be complete, the item writer should be restartable. Imagine the system crashes
when a job is writing to a file. On a restart, if the reader can start reading where it left
off, the writer should also be able to resume its writing exactly where it was inter-
rupted. You should care about restartability on the writer side mainly for file-based
writers (good news: the implementations Spring Batch provides are restartable). Data-
base-based writers are usually automatically restartable: they just write the items the
reader pushes. So restartability is a reader concern in this case.

 This section completes our presentation of custom writers. The next section dis-
cusses advanced writing techniques.

6.8 Advanced writing techniques
You’ve seen how to use the item writers provided by Spring Batch and how to imple-
ment your own item writer. In this section, you learn more about Spring Batch item
writers. To implement a complex job, it may be necessary to create something more
complex than a custom item writer. You may need to chain writers to write to different
targets. You may also need to choose between several writers, depending on the item.

189Advanced writing techniques
6.8.1 Composing item writers

Spring Batch can configure only a single item
writer for a chunk-oriented tasklet, and some-
times you need multiple writers for the same
chunk. The classic Composite pattern pro-
vides this functionality. A composite wraps a
set of objects and presents them as a single
object. Figure 6.11 illustrates a Composite-
ItemWriter containing a set of item writers.

 The following listing configures a CompositeItemWriter with two delegate item
writers.

<bean id="productItemWriter"
 class="org.springframework.

 ➥ batch.item.support.CompositeItemWriter">
 <property name="delegates">
 <list>
 <ref local="delimitedProductItemWriter"/>
 <ref local="fixedWidthProductItemWriter"/>
 </list>
 </property>
</bean>

<bean id="delimitedProductItemWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
(...)
</bean>

<bean id="fixedWidthProductItemWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter">
(...)
</bean>

You first create a CompositeItemWriter B with its delegates property set to a list of a
item writers C. This composite calls each item writer in the configured order. This
technique allows the job to write items to multiple files in different formats. This tech-
nique also allows the job to write items in both files and relational databases, all from
one composite item writer. The next section discusses a more complex topic: how to
route an item to a specific item writer.

6.8.2 Routing items to specific item writers

In this section, we discuss a more complex use case: how to route items to specific
item writers on the basis of some criteria. In the following input file, the column
called OPERATION represents an operation to execute: C to create, U to update, and D
to delete:

Listing 6.28 Configuring a CompositeItemWriter

Declares
CompositeItemWriter

B

Adds item writer
references

C

Composite
item writer Item writerItem writerItem writer

Figure 6.11 A composite item writer
delegates writing to a list of item writers.
Use this pattern to send items to several
targets, like a database and a file.

190 CHAPTER 6 Writing data
PRODUCT_ID,NAME,DESCRIPTION,PRICE,OPERATION
PR....210,BlackBerry 8100 Pearl,,124.60,C
PR....211,Sony Ericsson W810i,,139.45,D
PR....212,Samsung MM-A900M Ace,,97.80,U
PR....213,Toshiba M285-E 14,,166.20,C

For this use case, you want to route each product item to an item writer, depending on
the value of a Product’s operation. The operation determines whether to create,
update, or delete a product in a relational database. Figure 6.12 shows this use case.

 One of the building blocks Spring Batch provides to implement this type of use
case is an interface called Classifier. You implement a Classifier to map an input
object of type C to another object of type T:

public interface Classifier<C, T> {
 T classify(C classifiable);
}

The ClassifierCompositeItemWriter class is an ItemWriter implementation that
wraps a Classifier. This Classifier takes an object and returns an ItemWriter for
objects of the same type.

 The BackToBackPatternClassifier class is a Classifier implementation for
mapping arbitrary objects to other objects using pattern matchers. We call this type of
classifier a router.

 Now that you have some good building blocks, let’s see how to use these types for
our use case. First, you create the router, which is a Classifier, to return the opera-
tion value for a given Product:

public class ProductRouterClassifier {
 @Classifier
 public String classify(Product classifiable) {
 return classifiable.getOperation();
 }
}

You can create a class that implements the Classifier interface or use the @Classi-
fier annotation to return the product operation value. This example uses the @Class-
ifier annotation.

 You now have all the pieces needed to configure a BackToBackPatternClassifier
to get an item writer for a given product operation:

ItemWrite

ItemDelete

ItemUpdateProduct

Writes

Writes

Writes

Router
operation

Figure 6.12 Routing a Product
item to a specific writer

191Advanced writing techniques
<bean class="org.springframework.batch.classify.

 ➥ BackToBackPatternClassifier">
 <property name="routerDelegate">
 <bean class="com.manning.sbia.ch06.advanced.

 ➥ ProductRouterClassifier" />
 </property>
 <property name="matcherMap">
 <map>
 <entry key="C"
 value-ref="insertJdbcBatchItemWriter" />
 <entry key="U"
 value-ref="updateJdbcBatchItemWriter" />
 <entry key="D"
 value-ref="deleteJdbcBatchItemWriter" />
 </map>
 </property>
</bean>

The BackToBackPatternClassifier uses a router to get a key value to get the match-
ing item writer.

 The following listing shows the complete configuration for your BackToBack-
PatternClassifier routing use case.

<bean id="productItemWriter"
 class="org.springframework.batch.item.support.

 ➥ ClassifierCompositeItemWriter">
 <property name="classifier">
 <bean class="org.springframework.batch.classify.

 ➥ BackToBackPatternClassifier">
 <property name="routerDelegate">
 <bean class="com.manning.sbia.ch06.advanced.

 ➥ ProductRouterClassifier" />
 </property>
 <property name="matcherMap">
 <map>
 <entry key="C"
 value-ref="insertJdbcBatchItemWriter" />
 <entry key="U"
 value-ref="updateJdbcBatchItemWriter" />
 <entry key="D"
 value-ref="deleteJdbcBatchItemWriter" />
 </map>
 </property>
 </bean>
 </property>
</bean>

<bean id="insertJdbcBatchItemWriter">
 (...)
 <property name="sql"
 value="INSERT INTO PRODUCT(ID,NAME,PRICE) VALUES(:id,:name,:price)" />
</bean>

Listing 6.29 Configuring a routing BackToBackPatternClassifier

Creates Classifier-
CompositeItemWriter

B

Creates
router

C

Creates
writer map

D

192 CHAPTER 6 Writing data
This configuration defines a productItemWriter bean as a ClassifierComposite-
ItemWriter B. This item writer sets its classifier property to a BackToBack-
PatternClassifier, which delegates to the router in the routerDelegate property
defined as a custom ProductRouterClassifier C. This router maps Product opera-
tions to an item writer that does the work D. Phew!

 This section completes our presentation of advanced writing techniques. You can
now use and implement your own ItemWriters. You can also route domain objects to
specific item writers. Spring Batch can indeed deal with some complex writing use cases.

6.9 Summary
Writing data is the last step in a chunk-oriented tasklet. Spring Batch offers a simple
interface, the ItemWriter, to implement this task and provides implementations for
different delimited and fixed-width flat files, XML files, JDBC, and ORM. For ORM, we
saw how to write to Hibernate.

 We studied how to write items reusing legacy services, how to write items to a JMS
queue, and how to send emails for items. We also saw how to implement a custom item
writer. Finally, we discussed advanced writing techniques, the use of the composite pat-
tern, and how to route a domain object to an item writer on the basis of various criteria.

 In chapter 7, you learn how to process data, the middle section of a chunk-
oriented step.

Processing data
Chapters 5 and 6 focused heavily on Spring Batch input and output: how to read
and write data from various types of data stores. You learned that Spring Batch
enforces best practices to optimize I/O and provides many ready-to-use compo-
nents. This is important for batch applications because exchanging data between
systems is common. Batch applications aren’t limited to I/O; they also have busi-
ness logic to carry on: enforcing business rules before sending items to a database,
transforming data from a source representation to one expected by a target data
store, and so on.

 In Spring Batch applications, you embed this business logic in the processing
phase: after you read an item but before you write it. Thanks to its chunk-oriented
architecture, Spring Batch provides first-class support for this type of processing in
a dedicated component—the item processor—that you insert between the item

This chapter covers
■ Writing business logic in a chunk-oriented step
■ Processing items in a chunk-oriented step
■ Transforming items
■ Filtering items
■ Validating items
193

194 CHAPTER 7 Processing data
reader and the item writer. After explaining item processing and its configuration in
Spring Batch, we show you how to use item processors to modify, filter, and validate
items. For validation, we examine two techniques: programmatic validation in Java
and validation through configuration files using a validation language and validation
annotations. Finally, we cover how to chain item processors following the composite
design pattern. By the end of this chapter, you’ll know exactly where and how to write
the business logic for your batch application. You’ll also learn about advanced topics,
such as the distinction between filtering and skipping items. Let’s start with processing
items in Spring Batch.

7.1 Processing items
Spring Batch provides a convenient way to handle a large number of records: the
chunk-oriented step. So far, we’ve covered the read and write phases of the chunk-
oriented step; this section explains how to add a processing phase. This processing
phase is the perfect place to embed your application-specific business logic. It also
avoids tangling your business code in the reading and writing phases (input and out-
put). We’ll see what kind of business logic the processing phase can handle, how to
configure an item processor in a chunk-oriented step, and the item processor imple-
mentations delivered with Spring Batch.

7.1.1 Processing items in a chunk-oriented step

Recall that a chunk-oriented step includes a reading component (to read items one by
one) and a writing component (to handle writing several items in one chunk). The
two previous chapters covered how to read and write items from different kinds of
data stores and in various formats. Spring Batch can insert an optional processing
component between the reading and writing phases. This component—the item pro-
cessor—embeds some business logic, such as transforming or filtering items, between
reading and writing. Figure 7.1 illustrates where item processing takes place in a
chunk-oriented step.

 When a chunk-oriented step contains no processing phase, items read are sent as-
is to the writer, and Spring Batch takes care of aggregating items in chunks. Now,
imagine that an application can’t allow writing items as-is because some kind of pro-
cessing must be applied to the items first. Let’s add a new business requirement to the
online store example: you want to apply discounts to products before the job imports

Chunk-oriented step

Item processorItem reader Item writer

Figure 7.1 Spring Batch allows insertion of an optional processing phase be-
tween the reading and writing phases of a chunk-oriented step. The processing
phase usually contains some business logic implemented as an item processor.

195Processing items
them in the online store database. To do so, you must modify the products imported
from the flat file in the item-processing phase.

7.1.2 Use cases for item processing

The processing phase is a good place for business logic. A common use case
in Spring Batch is to use built-in readers and writers to deal with data stores—like
flat files and databases—and to add an item processor to hold any custom business
logic. Table 7.1 lists the categories of business logic that can take place in the item-
processing phase.

The processing phase is an interesting link between the reading and writing phase. It
allows you to go beyond the simple “read an item–write that item” pattern. The rest of
this chapter examines the subtleties of item processing—with realistic use cases—to
illustrate the many possibilities of this pattern. Let’s start with the basic configuration
of an item processor in Spring Batch.

7.1.3 Configuring an item processor

Spring Batch defines the item-processing contract with the ItemProcessor interface
as follows:

package org.springframework.batch.item;

public interface ItemProcessor<I, O> {

 O process(I item) throws Exception;

}

The ItemProcessor interface uses two type arguments, I and O:

■ Spring Batch passes a read item of type I to the process method. The type I
must be compatible with the item reader type.

■ The process method returns an item of type O, which Spring Batch in turn
sends to the item writer, also of a type compatible with O.

You define the concrete types I and O in your ItemProcessor implementation. If the
process method returns null, Spring Batch won’t send the item to the writer, as
defined by the filtering contract (filtering is different from skipping; more on this
later). The following listing shows how to implement a filtering ItemProcessor.

Table 7.1 Categories of business logic in the item-processing phase

Category Description

Transformation The item processor transforms read items before sending them to the writer. The item
processor can change the state of the read item or create a new object. In the latter
case, written items may not be of the same type as read items.

Filtering The item processor decides whether to send each read item to the writer.

196 CHAPTER 7 Processing data
package com.manning.sbia.ch07;

import org.apache.commons.lang.math.NumberUtils;
import org.springframework.batch.item.ItemProcessor;
import com.manning.sbia.ch01.domain.Product;

public class FilteringProductItemProcessor implements
 ItemProcessor<Product, Product> {

 @Override
 public Product process(Product item) throws Exception {
 return needsToBeFiltered(item) ? null : item;
 }

 private boolean needsToBeFiltered(Product item) {
 String id = item.getId();
 String lastDigit = id.substring(
 id.length()-1, id.length());
 if(NumberUtils.isDigits(lastDigit)) {
 return NumberUtils.toInt(lastDigit) % 2 == 1;
 } else {
 return false;
 }
 }

}

This ItemProcessor implementation has the following characteristics:

■ No transformation—The processor receives a Product object and returns a Prod-
uct object. Therefore, the I and O type arguments of the FilteringProduct-
ItemProcessor class both use the Product class.

■ Filtering—Depending on the result of the needsToBeFiltered method, Spring
Batch sends the item to the writer or discards it. The filtering logic is simple: if
an item ID’s last character is an even digit, the filter accepts the item.

Our ItemProcessor example isn’t useful beyond showing you how to configure item
processing in a chunk-oriented step. The following listing shows how to configure this
item processor.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk
 reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

Listing 7.1 Implementation of a filtering item processor

Listing 7.2 Configuring an item processor in a chunk-oriented step

Receives and returns
objects of same type

Implements
filtering logic

Adds item processor to
chunk-oriented step

197Transforming items
<bean id="processor"
 class="com.manning.sbia.ch07.

 ➥ FilteringProductItemProcessor" />

<bean id="reader" (...) >
 (...)
</bean>

<bean id="writer" (...)>
 (...)
</bean>

Adding an item processor is straightforward with the Spring Framework and Spring
Batch XML: you write a Spring bean that implements the ItemProcessor interface
and then refer to it in your chunk-oriented step configuration with the processor
attribute of a chunk element.

 Now that you know the basics of item processing in Spring Batch, let’s see what the
framework offers in terms of ready-to-use ItemProcessor implementations.

7.1.4 Item processor implementations

As you saw in the previous section, implementing an ItemProcessor is simple, and it’s
usually what you end up doing to implement business logic. Nevertheless, Spring
Batch provides implementations of ItemProcessors that can come in handy; table 7.2
lists these implementations.

You’ll have opportunities to use these ItemProcessor implementations later in the
chapter. For now, let’s dive into the details of transforming items.

7.2 Transforming items
Transforming read items and then writing them out is the typical use case for an item
processor. In Spring Batch, we distinguish two kinds of transformation: changing the
state of the read item, and producing a new object based on the read item. In the latter
case, the object the processor returns can be of a different type than the incoming item.

 We illustrate both kinds of transformation with our online store application. Imag-
ine that the application is successful and that other companies ask ACME to add their
products to the online catalog; for this service, ACME takes a percentage of each part-
ner’s product sold. For the application, this means importing products from different

Table 7.2 Spring Batch implementations of ItemProcessor

Implementation class Description

ItemProcessorAdapter Invokes a custom method on a delegate POJO, which isn’t
required to implement ItemProcessor

ValidatingItemProcessor Delegates filtering logic to a Validator object

CompositeItemProcessor Delegates processing to a chain of ItemProcessors

Defines item
processor bean

198 CHAPTER 7 Processing data
files: a file for its own catalog and a file for each partner catalog. With this use case in
mind, let’s first explore transforming the state of read items.

7.2.1 Changing the state of read items

ACME needs to import a flat file for each partner’s product catalog. In our scenario,
the model of the ACME product and of each partner product is similar, but some mod-
ifications must be made to all partners’ imported products before they’re written to
the database. These modifications require some custom business logic, so you embed
this logic in a dedicated application component. You then use this component from
an item processor.
INTRODUCING THE USE CASE

The model of the ACME
product and of each partner
product is similar, but each
partner maintains its own
product IDs. ACME needs to
map partner product IDs to
its own IDs to avoid colli-
sions. Figure 7.2 shows that the item reader, processor, and writer of the chunk-oriented
step all use the same type of object.

 The custom mapping between partner IDs and online store IDs takes place in the
PartnerIdMapper class, as shown in the following listing.

package com.manning.sbia.ch07;

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;
import com.manning.sbia.ch01.domain.Product;

public class PartnerIdMapper {

 private static final String SQL_SELECT_STORE_PRODUCT_ID =
 "select store_product_id from partner_mapping " +
 "where partner_id = ? and partner_product_id = ?";

 private String partnerId;

 private JdbcTemplate jdbcTemplate;

 public Product map(Product partnerProduct) {
 String storeProductId=jdbcTemplate.queryForObject(
 SQL_SELECT_STORE_PRODUCT_ID,
 String.class,
 partnerId, partnerProduct.getId()
);
 partnerProduct.setId(storeProductId);
 return partnerProduct;
 }

Listing 7.3 Mapping partner IDs with store IDs in a business component

Finds product ID
in mapping table

Modifies
incoming product

Item
reader

Item
writer

Item
processor

Figure 7.2 In the processing phase of a chunk-oriented step, you
can choose to only change the state of read items. In this case,
the item reader, processor, and writer all use the same type of
object (illustrated by the small squares).

199Transforming items
 public void setPartnerId(String partnerId) {
 this.partnerId = partnerId;
 }

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

}

To perform the product ID mapping, you search the product ID for the online store in
a mapping database table, using the partner ID and product ID in the partner
namespace as the criteria. In an alternative implementation, the PartnerIdMapper class
could generate the ID on the fly and store it if it didn’t find it in the mapping table.

NOTE The PartnerIdMapper class is a POJO (plain old Java object): it
doesn’t depend on the Spring Batch API, but it does use the JdbcTemplate
class from the Spring JDBC Core package. This is important because this
class implements the business logic, and you don’t want to couple it tightly
to the Spring Batch infrastructure.

Let’s now plug the business component into Spring Batch.
IMPLEMENTING A CUSTOM ITEM PROCESSOR

You implement a dedicated ItemProcessor with a plug-in slot for a PartnerIdMapper,
as shown in the following snippet:

package com.manning.sbia.ch07;

import org.springframework.batch.item.ItemProcessor;
import com.manning.sbia.ch01.domain.Product;

public class PartnerIdItemProcessor implements
 ItemProcessor<Product, Product> {

 private PartnerIdMapper mapper;

 @Override
 public Product process(Product item) throws Exception {
 return mapper.map(item);
 }

 public void setMapper(PartnerIdMapper mapper) {
 this.mapper = mapper;
 }

}

Now you need to wire these components together in the configuration of a chunk-
oriented step, as shown in the following listing.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>

Listing 7.4 Configuring the dedicated item processor to map product IDs

Delegates
processing
to business
component

200 CHAPTER 7 Processing data
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="processor"
 class="com.manning.sbia.ch07.PartnerIdItemProcessor">
 <property name="mapper" ref="partnerIdMapper" />
</bean>

<bean id="partnerIdMapper"
 class="com.manning.sbia.ch07.PartnerIdMapper">
 <property name="partnerId" value="PARTNER1" />
 <property name="dataSource" ref="dataSource" />
</bean>

<bean id="reader" (...)>
 (...)
</bean>

<bean id="writer" (...)>
 (...)
</bean>

That’s it! You configured processing that converts the IDs of the incoming products into
the IDs that the online store uses. You isolated the business logic from Spring Batch—
separation of concerns—but you had to implement a custom ItemProcessor to call
your business logic. You can achieve the same goal without this extra custom class.
PLUGGING IN AN EXISTING COMPONENT WITH THE ITEMPROCESSORADAPTER

Sometimes an existing business component is similar to a Spring Batch interface like
ItemProcessor, but because it doesn’t implement the interface, the framework can’t
call it directly. That’s why the PartnerIdItemProcessor class was implemented in the
previous section: to be able to call business code from Spring Batch. It worked nicely,
but isn’t it a shame to implement a dedicated class to delegate a call? Fortunately,
Spring Batch provides the ItemProcessorAdapter class that you can configure to call
any method on a POJO. Using the ItemProcessorAdapter class eliminates the need to
implement a class like PartnerIdItemProcessor. All you end up doing is a bit of
Spring configuration. The following listing shows how to use the ItemProcessor-
Adapter to call the PartnerIdMapper without a custom ItemProcessor.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />

Listing 7.5 Using the ItemProcessorAdapter to plug in an existing Spring bean

Sets item
processor in step

Injects ID
mapper
in item
processor

Declares ID
mapper bean

201Transforming items
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="processor"
 class="org.springframework.batch.item.adapter.ItemProcessorAdapter">
 <property name="targetObject" ref="partnerIdMapper" />
 <property name="targetMethod" value="map" />
</bean>

<bean id="partnerIdMapper"
 class="com.manning.sbia.ch07.PartnerIdMapper">
 <property name="partnerId" value="PARTNER1" />
 <property name="dataSource" ref="dataSource" />
</bean>

<bean id="reader" (...)>
 (...)
</bean>

<bean id="writer" (...)>
 (...)
</bean>

Using an ItemProcessorAdapter should eliminate the need to implement a dedi-
cated ItemProcessor. This reminds us that it’s a best practice to have your business
logic implemented in POJOs. The ItemProcessorAdapter class helps in reducing the
proliferation of classes if you often need to use a processing phase.

 The ItemProcessorAdapter class has a couple of drawbacks, though: it’s not as
type-safe as a dedicated ItemProcessor class, and you can make typos on the target
method name when configuring it in XML. The good news is that the ItemProcessor-
Adapter checks its configuration when it’s created; you get an exception when the
Spring application context starts and also at runtime.

 We’re done looking at a processing phase that changes the state of read items. We
use such processing when read items are of the same type as written items but need
some sort modification, such as the ID conversion for imported products. The next
section covers a processing phase that produces a different type of object from the
read item.

7.2.2 Producing new objects from read items

As ACME finds more partners, it must deal with different product lines as well as with
mismatches between the partners’ product models and its own product model. These
model differences make the importing job more complex. You still base the import on
an input flat file, but ACME needs a processing phase to transform the partners’ prod-
ucts into products that fit in the online store database.

INTRODUCING THE USE CASE

The processing phase of your chunk-oriented step transforms PartnerProduct objects
read by the ItemReader into Product objects that the ItemWriter writes into the
online store database. This is a case where the reader, the processor, and the writer
don’t manipulate the same kind of objects at every step, as shown in figure 7.3.

Sets target bean
and method to call

202 CHAPTER 7 Processing data
The logic to transform a PartnerProduct object into an ACME Product object takes
place in a dedicated business component—the PartnerProductMapper class—that
implements the PartnerProductMapper interface:

package com.manning.sbia.ch07;

import com.manning.sbia.ch01.domain.Product;

public interface PartnerProductMapper {

 Product map(PartnerProduct partnerProduct);

}

We don’t show an implementation of the PartnerProductMapper interface because
it’s all business logic not directly related to Spring Batch and therefore not relevant to
our presentation of Spring Batch. You can find a simple implementation in the source
code for this book. What we need to do now is to plug this business logic into a Spring
Batch job.

Let’s plug our PartnerProductMapper into an item processor.
IMPLEMENTING A CUSTOM ITEM PROCESSOR

Listing 7.6 shows a custom ItemProcessor called PartnerProductItemProcessor that
calls the PartnerProductMapper class. This item processor is Spring Batch–specific
because it implements ItemProcessor and delegates processing to its Partner-
ProductMapper, itself a business POJO.

Item
reader

Item
processor

Item
writer

Figure 7.3 The item processor of a chunk-oriented step can produce objects of a different type
(represented by circles) than the read items (squares). The item writer then receives and handles
these new objects.

What could the partner product mapper do?
Here’s an example of what a PartnerProductMapper implementation could do in a
real-world online store application. Up to now—for simplicity’s sake—we’ve used a
static structure for the products of our online store application. Most of the time, on-
line store applications don’t have a static structure for the products in their catalog:
they use a metamodel configured with the structure of the products and a generic
engine that uses this metamodel to display products dynamically. For example, a
metamodel for products in a book category could have fields for author, title, publi-
cation date, and so on. We could imagine that the ACME online application uses such
a metamodel but that the partners don’t. The goal of the PartnerProductMapper
would be to map statically structured partner products (from input flat files) to the
online store’s products model. Such a mapper would rely heavily on the metamodel
to do its job.

203Transforming items
package com.manning.sbia.ch07;

import org.springframework.batch.item.ItemProcessor;
import com.manning.sbia.ch01.domain.Product;

public class PartnerProductItemProcessor implements
 ItemProcessor<PartnerProduct, Product> {

 private PartnerProductMapper mapper;

 @Override
 public Product process(PartnerProduct item) throws Exception {
 return mapper.map(item);
 }

 public void setMapper(PartnerProductMapper mapper) {
 this.mapper = mapper;
 }

}

Note that the actual argument types of the generic ItemProcessor interface now take
two different types: PartnerProduct (for the input type) and Product (for the output
type). Now that we have our ItemProcessor, let’s see its configuration in the follow-
ing listing.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="processor"
 class="com.manning.sbia.ch07.PartnerProductItemProcessor">
 <property name="mapper" ref="partnerProductMapper" />
</bean>

<bean id="partnerProductMapper"
 class="com.manning.sbia.ch07.

 ➥ SimplePartnerProductMapper" />

<bean id="reader" (...)>
 (...)
</bean>

<bean id="writer" (...)>
 (...)
</bean>

Listing 7.6 A dedicated item processor to call the partner product mapper

Listing 7.7 Configuring an item processor to map partner products to store products

Delegates processing to
business component

Injects product
mapper in item
processor

204 CHAPTER 7 Processing data
Thanks to the product mapping that takes place during the processing phase of this
step, you can transform the partner product representation to the product represen-
tation expected by the online store application. If you need to perform a different
conversion for another partner, you only need to implement another item processor
and reuse the item reader and writer.

NOTE As you did in the previous section, you can use the ItemProcessor-
Adapter class to plug in the business component (PartnerProductMapper)
in the processing phase, eliminating the need for the PartnerProductItem-
Processor class.

Before ending this section on using the item-processing phase to modify or transform
read items, let’s see how to use an ItemProcessor to implement a common pattern in
batch applications: the driving query pattern.

7.2.3 Implementing the driving query pattern with an item processor

The driving query pattern is an optimization pattern used with databases. The pattern
consists of two parts:

■ Execute one query to load the IDs of the items you want to work with. This first
query—the driving query—returns N IDs.

■ Execute queries to retrieve a database row for each item. In total, N additional
queries load the corresponding objects.

This seems counterintuitive, but using this pattern can end up being faster than load-
ing the whole content of each object in one single query. How is that possible?

 Some database engines tend to use pessimistic locking strategies on large, cursor-
based result sets. This can lead to poor performance or even deadlocks if applications
other than the batch application access the same tables. The trick is to use a driving
query to select the IDs and then load complete objects one by one. A single query can
prevent the database from handling large datasets.

Spring Batch can easily match and implement the driving query pattern in a chunk-
oriented step:

■ An ItemReader executes the driving query.
■ An ItemProcessor receives the IDs and loads the objects.
■ The loaded objects go to the ItemWriter.

The driving query pattern and ORM tools
The driving query pattern works nicely with object-relational mapping (ORM) tools. A
simple JDBC item reader reads IDs, and a custom item processor uses an ORM tool
to load the objects. ORM tools like Hibernate use a built-in second-level cache to im-
prove performance.

205Transforming items
Figure 7.4 illustrates the driving query pattern in Spring Batch.
 Let’s use the driving query pattern in our online application. Imagine the applica-

tion features a search engine whose index needs to be updated from time to time (a
complete re-indexing is rare because it takes too long). The indexing batch job con-
sists of selecting recently updated products and updating the index accordingly.
Because the online store is running during the indexing, you want to avoid locking
overhead, so you shouldn’t load large datasets; therefore, the driving query pattern is
a good match. Let’s see how to implement this with Spring Batch!
EXECUTING THE DRIVING QUERY WITH A JDBC ITEM READER

You use a Spring Batch cursor-based JDBC item reader to retrieve the product IDs. The
product table contains an update_timestamp column updated each time a product
row changes. Who performs the update? The application, a database trigger, or a per-
sistence layer like Hibernate can perform the update. We use the update_timestamp
column to select the products that the database must index. Listing 7.8 shows how to
configure a JdbcCursorItemReader to execute the driving query for our use case.

<bean id="reader"
 class="org.springframework.batch.item.database.JdbcCursorItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="sql"
 value="select id from product where update_timestamp > ?" />
 <property name="preparedStatementSetter">
 <bean class="org.springframework.jdbc.core.

 ➥ ArgPreparedStatementSetter"
 scope="step">
 <constructor-arg
 value="#{jobParameters['updateTimestampBound']}"
 />
 </bean>
 </property>
 <property name="rowMapper">
 <bean class="org.springframework.jdbc.core.

 ➥ SingleColumnRowMapper">

Listing 7.8 Configuring an item reader to execute the driving query

Product(4)
Product(3)4

3

Chunk-oriented step

Item processor
Loads objects

Item reader
Selects identifiers

Item writer
Writes objects

2 Product(2)

Figure 7.4 The driving query pattern implemented in Spring Batch. The item reader executes
the driving query. The item processor receives the IDs and loads the objects. The item writer
then receives these objects to, for example, write a file or update the database or an index.

Assigns
parameter to
SQL query

B

Returns a String
for each row

C

206 CHAPTER 7 Processing data
 <constructor-arg value="java.lang.String" />
 </bean>
 </property>
</bean>

If you’re unfamiliar with the JdbcCursorItemReader class, please see chapter 5. You
use the JdbcCursorItemReader sql property to set the SQL query to execute. This
query selects the IDs of the products that were updated after a given date (by using the
where > ? clause). To pass a parameter to the query, you set the preparedStatement-
Setter property B with an ArgPreparedStatementSetter (this is a class from the
Spring Framework). You use the Spring Expression Language to get the date query
parameter from the job parameters. To retrieve the IDs from the JDBC result set, you
use the Spring class SingleColumnRowMapper C.

 That’s it! You configured your item reader to execute the driving query. Note that
you didn’t write any Java code: you configured only existing components provided by
Spring Batch and the Spring Framework. Next, let’s see how to load the products
from their IDs within an item processor.
LOADING ITEMS IN AN ITEM PROCESSOR

You need to load a product based on its ID. This is a simple operation, and a data
access object (DAO) used in the online store application already implements this fea-
ture. The following listing shows the implementation of this DAO.

package com.manning.sbia.ch07;

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import com.manning.sbia.ch01.domain.Product;

public class JdbcProductDao implements ProductDao {

 private static final String SQL_SELECT_PRODUCT =
 "select id,name,description,price " +
 "from product where id = ?";

 private JdbcTemplate jdbcTemplate;

 private RowMapper<Product> rowMapper = new ProductRowMapper();

 @Override
 public Product load(String productId) {
 return jdbcTemplate.queryForObject(
 SQL_SELECT_PRODUCT, rowMapper, productId
);
 }

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

}

Listing 7.9 Implementing a DAO to load a product from its ID

Returns a String
for each row

C

Loads entire object
from database

207Transforming items
You use a ProductRowMapper to map a JDBC result set to Product objects. Remember
that the RowMapper is a Spring interface. You can use RowMapper implementations in a
JDBC-based data access layer for your online applications. You can also use a RowMapper
with a Spring Batch JDBC-based item reader.

 What you need to do now is connect your data access logic with Spring Batch. This
is what the item processor in the following listing does.

package com.manning.sbia.ch07;

import org.springframework.batch.item.ItemProcessor;
import com.manning.sbia.ch01.domain.Product;

public class IdToProductItemProcessor implements
 ItemProcessor<String, Product> {

 private ProductDao productDao;

 @Override
 public Product process(String productId) throws Exception {
 return productDao.load(productId);
 }

 public void setProductDao(ProductDao productDao) {
 this.productDao = productDao;
 }

}

The class IdToProductItemProcessor delegates product loading to the product DAO.
To avoid writing a dedicated class, you could have used an ItemProcessorAdapter,
but with the IdToProductItemProcessor class, the input and output types are easier
to picture: String for the IDs returned by the driving query (input), and Product
instances loaded by the item processor (output).
CONFIGURING A CHUNK-ORIENTED STEP FOR THE DRIVING QUERY PATTERN

The configuration of a chunk-oriented step using the driving query pattern is like any
other chunk-oriented step, except that it needs to have an item processor set. The fol-
lowing listing shows this configuration (we elided the reader and writer details).

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="reader"

Listing 7.10 Implementing an item processor to call the DAO

Listing 7.11 Configuring a driving query

208 CHAPTER 7 Processing data
 class="org.springframework.batch.item.database.JdbcCursorItemReader">
 (...)
</bean>

<bean id="processor"
 class="com.manning.sbia.ch07.IdToProductItemProcessor">
 <property name="productDao" ref="productDao" />
</bean>

<bean id="productDao"
 class="com.manning.sbia.ch07.JdbcProductDao">
 <property name="dataSource" ref="dataSource" />
</bean>

<bean id="writer" (...)>
 (...)
</bean>

The implementation of the driving query pattern with Spring Batch ends this section.
We covered how to use the processing phase of a chunk-oriented step as a way to mod-
ify read items and create new items. The next section covers how to use the processing
phase as a way to filter read items before sending them to an item writer.

7.3 Filtering and validating items
The processing phase of a chunk-oriented step not only can modify read items but
also can filter them. Imagine reading a flat file containing some products that belong
in the database and some that don’t. For example, some products don’t belong to any
of the categories of items sold in the store, some products are already in the database,
and so on. You can use an item processor to decide whether to send a read item to the
item writer, as shown in figure 7.5.

 We cover how to implement a typical filtering item processor and how to filter
using validation. We implement programmatic validation, but we also use declarative
validation using integration between Spring Batch and the Spring Modules project.
First, let’s learn more about the filtering contract in the item-processing phase.

7.3.1 Filtering in the item-processing phase

The basic contract for filtering in an item processor is simple: if the item processor’s
process method returns null, the read item won’t go to the item writer. This

Injects product DAO
in item processor

Declares product
DAO bean

Chunk-oriented step

Item processorItem reader Item writer

ItemItemItemItem ItemItem

Figure 7.5 An item processor filters read items. It implements logic to decide whether to send a
read item to the item writer.

209Filtering and validating items
defines the main contract, but there are subtleties; let’s look at the filtering rules for
item processors:

■ If the process method returns null, Spring Batch filters out the item and it
won’t go to the item writer.

■ Filtering is different from skipping.
■ An exception thrown by an item processor results in a skip (if you configured

the skip strategy accordingly).

The basic contract for filtering is clear, but we must point out the distinction between
filtering and skipping:

■ Filtering means that Spring Batch shouldn’t write a given record. For example,
the item writer can’t handle a record.

■ Skipping means that a given record is invalid. For example, the format of a
phone number is invalid.

NOTE The job repository stores the number of filtered items for each
chunk-oriented step execution. You can easily look up this information
using a tool like Spring Batch Admin or by consulting the corresponding
database table.

The last detail of the filtering contract we need to examine is that an item processor
can filter items by returning null for some items, but it can also modify read items, like
any other item processor. You shouldn’t mix filtering and transformation in a same-
item processor (separation of concerns), but it’s your right to do so!

Now that you know all about the filtering contract, let’s see how to implement a filter-
ing item processor.

7.3.2 Implementing a filtering item processor

Let’s look back at the import products job from chapter 1 and see in which circum-
stances it could use filtering. Remember that this job consists of reading a flat file con-
taining product records and creating or updating the database accordingly. You get
into trouble if you execute the import job while the online store application hits the
database: updating products from the job locks database rows and makes the online
store less responsive. Nevertheless, you want the database to be as up to date as possi-
ble. A good compromise is to read the flat file and create new product records, but
discard updating existing products. You can update existing products later, in a sepa-
rate job, when there’s less traffic in the online store.

Best practice: separate filtering and transformation
If your application needs to both filter items and transform items, then follow the sep-
aration of concerns pattern by using two item processors: one to filter and one to
transform.

210 CHAPTER 7 Processing data
You meet this requirement by inserting a filtering item processor between the reading
of the flat file and the writing to the database. This item processor checks the exis-
tence of the record in the database and discards it if it already exists. Figure 7.6 illus-
trates how the import products job works with a filtering phase.

 The following listing shows the implementation of the filtering item processor.

package com.manning.sbia.ch07;

import javax.sql.DataSource;
import org.springframework.batch.item.ItemProcessor;
import org.springframework.jdbc.core.JdbcTemplate;
import com.manning.sbia.ch01.domain.Product;

public class ExistingProductFilterItemProcessor implements
 ItemProcessor<Product, Product> {

 private static final String SQL_COUNT_PRODUCT =
 "select count(1) from product where id = ?";

 private JdbcTemplate jdbcTemplate;

 @Override
 public Product process(Product item) throws Exception {
 return needsToBeFiltered(item) ? null : item;
 }

 private boolean needsToBeFiltered(Product item) {
 return jdbcTemplate.queryForInt(
 SQL_COUNT_PRODUCT, item.getId()) != 0;
 }

 public void setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

}

Listing 7.12 Filtering existing products with an item processor

Chunk-oriented step

Item processorItem reader Item writer

ItemItemItemProduct ItemProduct

Exists? Inserts
Reads

Figure 7.6 The filtering item processor discards products that are already in the database. This item
writer only inserts new records and doesn’t interfere with the online application. A different job
updates existing records when there’s less traffic in the online store.

Filters existing
product records

Checks product
existence in database

211Filtering and validating items
NOTE A more advanced version of the filtering item processor could let
record updates pass through in a given time window, such as between 2 a.m.
and 4 a.m. when there isn’t much activity in the online store. This would
make the filtering more dynamic and could eliminate the need to have two
distinct jobs (one for inserts only and one for inserts and updates).

The following listing shows the configuration of the import products job with the fil-
tering item processor.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 (...)
</bean>

<bean id="processor" class="com.manning.sbia.ch07.

 ➥ ExistingProductFilterItemProcessor">
 <property name="dataSource" ref="dataSource" />
</bean>

<bean id="writer"
 class="com.manning.sbia.ch01.batch.ProductJdbcItemWriter">
 <constructor-arg ref="dataSource" />
</bean>

The item processor implemented here is a typical case of using the item processor
phase as a filter. The item processor receives valid items from the item reader and
decides which items to pass to the item writer. The item processor effectively filters out
the other items.

 Let’s now see another case where you can use item processing to prevent read
items from reaching the item writer: validation.

7.3.3 Validating items

Because validation is business logic, the standard location to enforce validation rules is
in the item-processing phase of a chunk-oriented step. A common practice in Spring
Batch is for an item processor to perform validation checks on read items and decide
whether to send the items to the item writer. As an example, let’s see how to validate the
price of imported products and check that prices aren’t negative numbers (products
with a negative price shouldn’t reach the database—you don’t want to credit your

Listing 7.13 Configuring the filtering item processor

Sets filtering item
processor in step

Declares filtering
item processor bean

212 CHAPTER 7 Processing data
customers!). Should you consider an item that fails the validation check filtered or
skipped? Skipping is semantically closer to a validation failure, but this remains ques-
tionable, and the business requirements usually lead to the correct answer.

 A validation failure should lead to a skipped or filtered item, but what you care
about is that the item writer doesn’t receive the item in question. Remember that the
corresponding step-execution metadata stored in the job repository is distinct (skip
and filter count), and this distinction can be relevant for some use cases. If you want
to enforce validation rules in your item processor, use the following semantics for vali-
dation failure in the item processor’s process method:

■ If validation means skip, throw a runtime exception
■ If validation means filter, return null

What kind of validation can an item processor perform? You can do almost anything:
state validation of the read object, consistency check with other data, and so forth. In
the import products job, for example, you can check that the price of products from
the flat file is positive. A well-formatted negative price would pass the reading phase
(no parsing exception), but you shouldn’t write the product to the database. The job
of the item processor is to enforce this check and discard invalid products.

 You can implement an item processor corresponding to this example and follow
the semantics outlined here, but Spring Batch already provides a class called Validat-
ingItemProcessor to handle this task.
VALIDATION WITH A VALIDATINGITEMPROCESSOR

The Spring Batch class ValidatingItemProcessor has two interesting characteristics:

■ It delegates validation to an implementation of the Spring Batch Validator
interface.

■ It has a filter flag that can be set to false to throw an exception (skip) or
true to return null (filter) if the validation fails. The default value is false
(skip).

By using the ValidatingItemProcessor class, you can embed your validation rules in
dedicated Validator implementations (which you can reuse) and choose your valida-
tion semantics by setting the filter property.

 The Spring Batch Validator interface is

package org.springframework.batch.item.validator;

public interface Validator<T> {

 void validate(T value) throws ValidationException;
}

When you decide to use the ValidatingItemProcessor class, you can either code
your validation logic in Validator implementations or create a Validator bridge to a
full-blown validation framework. We illustrate both next.

213Filtering and validating items
VALIDATION WITH A CUSTOM VALIDATOR

Let’s say you want to check that a product doesn’t have a negative price. The following
snippet shows how to implement this feature as a Validator:

package com.manning.sbia.ch07.validation;

import java.math.BigDecimal;
import org.springframework.batch.item.validator.ValidationException;
import org.springframework.batch.item.validator.Validator;
import com.manning.sbia.ch01.domain.Product;

public class ProductValidator implements Validator<Product> {

 @Override
 public void validate(Product product) throws ValidationException {
 if(BigDecimal.ZERO.compareTo(product.getPrice()) >= 0) {
 throw new ValidationException("Product price cannot be negative!");
 }
 }

}

This validator isn’t rocket science, but as you configure it with Spring, it benefits from
the ability to use dependency injection to, for example, access the database through a
Spring JDBC template. The configuration for this validating item processor example
has some interesting aspects, so let’s examine the following listing.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100"
 skip-limit="5">
 <batch:skippable-exception-classes>
 <batch:include
 class="org.springframework.batch.item.

 ➥ validator.ValidationException"/>
 </batch:skippable-exception-classes>
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="processor" class="org.springframework.batch.item.validator.

 ➥ ValidatingItemProcessor">
 <property name="filter" value="false" />
 <property name="validator">
 <bean class="com.manning.sbia.ch07.validation.ProductValidator" />
 </property>
</bean>

<bean id="reader" (...) >

Listing 7.14 Configuring a validating item processor

Skips validation
exceptions

Re-throws validation
exceptions to enforce

skipping

214 CHAPTER 7 Processing data
 (...)
</bean>

<bean id="writer" (...)>
 (...)
</bean>

Most of this configuration isn’t elaborate: an XML chunk element for a chunk-oriented
step, positioning of the item processor between the reader and the writer, and injec-
tion of the product validator in the ValidatingItemProcessor.

 Because you set the filter property of the validating item processor to false—
this is the default value, but we wanted to make this example explicit—the item pro-
cessor rethrows any ValidationException thrown by its validator.

 This implies the configuration of a skip strategy if you don’t want to fail the whole
job execution in case of a validation failure. The skip configuration consists of setting
a skip limit and skipping ValidationExceptions.

 If you were only to filter products that have a negative price, you would set the filter
property of the ValidatingItemProcessor to true and wouldn’t need any skip
configuration.

 Writing dedicated validator classes can be overkill and result in overall code bloat.
An alternative is to make the validation declarative: instead of coding the validation in
Java, you implement it with a dedicated validation language in the configuration file.
VALIDATION WITH THE VALANG VALIDATOR FROM SPRING MODULES

The Spring Modules project provides a simple yet powerful validation language:
Valang (for va-lidation lang-uage). You can easily integrate Valang with Spring Batch
to write your validation rules without Java code. For example, to verify that the prod-
uct price isn’t negative, you write the following rule in Valang (assuming the evalua-
tion context is a Product object):

{ price : ? >= 0 : 'Product price cannot be negative!' }

Valang has a rich syntax to create validation expressions. We don’t cover this syntax here;
our point is to show how to integrate Valang rules within a validating item processor.1

 Because Valang isn’t Java code, we use the Spring configuration to implement vali-
dating the product price, as shown in the following listing.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100"
 skip-limit="5">

1 You can learn more about the Valang syntax at https://springmodules.dev.java.net/docs/reference/0.9/
html/validation.html.

Listing 7.15 Embedding validation logic in the configuration with Valang

https://springmodules.dev.java.net/docs/reference/0.9/html/validation.html
https://springmodules.dev.java.net/docs/reference/0.9/html/validation.html

215Filtering and validating items
 <batch:skippable-exception-classes>
 <batch:include
 class="org.springframework.batch.item.

 ➥ validator.ValidationException"/>
 </batch:skippable-exception-classes>
 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="processor"class="org.springframework.batch.item.validator.

 ➥ ValidatingItemProcessor">
 <property name="filter" value="false" />
 <property name="validator" ref="validator" />
</bean>

<bean id="validator" class="org.springframework.batch.item.validator.

 ➥ SpringValidator">
 <property name="validator">
 <bean class="org.springmodules.validation.valang.ValangValidator">
 <property name="valang">
 <value><![CDATA[
{price : ? >= 0 : 'Product price cannot be negative!'}
]]></value>
 </property>
 </bean>
 </property>
</bean>

<bean id="reader" (...) >
 (...)
</bean>

<bean id="writer" (...)>
 (...)
</bean>

The key to this configuration is the link between the Spring Batch ValidatingItem-
Processor class and the Spring Modules ValangValidator class. The Spring Batch
ValidatingItemProcessor class needs a Spring Batch Validator, so you provide it a
Spring Batch SpringValidator class, which itself needs a Spring Validator—the inter-
face the ValangValidator class implements! In short, the Spring Batch Spring-
Validator class is the bridge between the Spring Batch and Spring validation systems,
and the ValangValidator builds on the Spring system (figure 7.7 illustrates the rela-
tionships between these interfaces and classes, and you can also read the note about val-
idator interfaces if you want the whole story). The valang property of ValangValidator
accepts one or more validation rules (we used only one in the example). We explicitly
set the validating item processor to skip mode (the filter property is false), so we
need to set up a skip strategy to avoid failing the job if the validation fails.

 Valang works great and allows you to embed validation rules directly in your Spring
configuration files. But what if you want to reuse your validation rules in different con-
texts, such as in your batch jobs and in a web application? You can do this with Valang,
but the Bean Validation standard also offers a widespread and effective solution.

Uses Valang
for validation

216 CHAPTER 7 Processing data
VALIDATION WITH THE BEAN VALIDATION STANDARD

It’s common to use the same validation constraints in multiple places: when an admin-
istrator updates the product catalog manually, they shouldn’t be able to enter a negative
price. In this case, the web framework enforces this constraint. Web frameworks like
Spring MVC (Model-View-Controller) or JavaServer Faces (JSF) have dedicated support
for validation. If you really want to avoid products with a negative price, you can also val-
idate the objects when they’re about to be persisted in the database. JPA—Java Persis-
tence API, the Java standard for object-relational mapping—has some support to

ValidatingItemProcessor
(from Spring Batch)

Validator
(from Spring Batch)

SpringValidator
(from Spring Batch)

Validator
(from Spring)

ValangValidator
(from Spring Modules)

Uses

Implements

Uses

Implements

Your implementation

Your implementation

Figure 7.7 The relationships between Spring Batch, Spring, and your validation logic. Spring Batch pro-
vides a level of abstraction with its Validator interface and an implementation (SpringValidator)
that uses the Spring Validator interface. The ValangValidator implementation, from Spring Mod-
ules, depends on the Spring Validator interface. Both Validator interfaces are potential extension
points for your own implementations.

Validator interfaces everywhere!
Spring Batch doesn’t intend for application-specific validators to be the only imple-
menters of the Spring Batch Validator interface. It can also provide a level of indi-
rection between Spring Batch and your favorite validation framework. Spring Batch
provides one implementation of Validator: SpringValidator, which plugs in the
Spring Framework’s validation mechanism. Spring bases its validation mechanism on
a Validator interface, but this one lies in the org.springframework.validation
package and is part of the Spring Framework. This can look confusing, but the Spring
Batch team didn’t want to directly tie Spring Batch’s validation system to Spring’s.
By using the Spring Batch SpringValidator class, you can use any Spring Valida-
tor implementation, like the one from Spring Modules for Valang.

217Filtering and validating items
execute code before storing an object in the database. Finally, you also want to avoid
negative prices when you import products with a Spring Batch job.

 What you want is multiple processes—web, batch—with the same validation con-
straints. Is it possible to define constraints in one place and enforce them with an API
from such different processes? Yes, thanks to the Bean Validation (JSR 303) standard!

 The idea behind Bean Validation is simple but powerful: embed validation con-
straints with annotations on the classes you want to validate and enforce them any-
where you need to. The good news is that many frameworks support Bean Validation
out of the box: they validate incoming objects transparently for you. That’s the case
with all the frameworks we just mentioned (Spring MVC, JSF, and JPA). Wouldn’t it be
nice to reuse all your Bean Validation constraints in your Spring Batch jobs? Let’s see
how to do this.

Let’s start with the Product class, which now contains the constraint for negative
prices. The following listing shows the Product class with the Bean Validation annota-
tions on the getter method for price.

package com.manning.sbia.ch01.domain;

import java.math.BigDecimal;
import javax.validation.constraints.Min;
import javax.validation.constraints.NotNull;

public class Product {

 private String id;
 private String name;
 private String description;
 private BigDecimal price;

 @NotNull
 @Min(0)
 public BigDecimal getPrice() {
 return price;
 }

 public void setPrice(BigDecimal price) {
 this.price = price;

Listing 7.16 Embedding validation constraint in the Product class

JSR 303: The Bean Validation standard
Bean Validation promotes a declarative and reusable way to validate Java objects.
The idea is to use Java classes as the definitive repository for validation constraints.
As soon as you have access to a Java object, you can validate it, because it contains
its own validation rules. You express Bean Validation constraints with Java annota-
tions, but you can also do so in XML. Bean Validation is becoming increasingly popular,
and many frameworks integrate support for it. The reference implementation for Bean
Validation is the Hibernate Validator project, which is at the origin of the standard.

Validation constraints
on the price property

218 CHAPTER 7 Processing data
 }

 (...)

}

The validation constraints specify that the price can’t be null or negative. These con-
straints are simple, but Bean Validation includes constraints that are more advanced
and lets you also define your own.

 To use Bean Validation in your Spring Batch jobs, you only have to define a custom
Validator that enforces the validation constraints on incoming items, as shown in the
following listing.

package com.manning.sbia.ch07.validation;

import java.util.Set;
import javax.validation.ConstraintViolation;
import javax.validation.Validation;
import javax.validation.ValidatorFactory;
import
 org.springframework.batch.item.validator.ValidationException;
import org.springframework.batch.item.validator.Validator;

public class BeanValidationValidator<T> implements Validator<T> {

 private ValidatorFactory factory =
 Validation.buildDefaultValidatorFactory();

 private javax.validation.Validator validator =
 factory.getValidator();

public void validate(T value) throws ValidationException {
 Set<ConstraintViolation<T>> violations =
 validator.validate(value);
 if(!violations.isEmpty()) {
 throw new ValidationException(
 "Validation failed for " + value + ": " +
 violationsToString(violations));
 }
 }

 private String violationsToString(
 Set<ConstraintViolation<T>> violations) {
 (...)
 }

}

The validator is straightforward to implement thanks to the Bean Validation API. You
can inject an instance of the validator in the validator item processor that Spring
Batch provides, as shown in the following snippet:

<bean id="validator"
 class="com.manning.sbia.ch07.validation.BeanValidationValidator" />

<bean id="processor"

Listing 7.17 A Spring Batch validator for Bean Validation

Initializes Bean
Validation validator

Enforces validation
constraints

Produces readable
String from violations

219Chaining item processors
 class="org.springframework.batch.item.validator.ValidatingItemProcessor">
 <property name="validator" ref="validator" />
</bean>

Using Bean Validation is particularly relevant if you use exactly the same classes in
your batch jobs and in other applications. Many frameworks support Bean Validation,
from the web layer to the persistence layer, and using it offers the best opportunity to
reuse your validation constraints.

 The integration between Spring Batch and the Bean Validation standard ends our
coverage of the use of the item-processing phase for validation. Remember that you
must follow strict rules if you don’t want to confuse skip with filter when validating
items. Spring Batch includes the ValidatingItemProcessor class that you can config-
ure to skip or filter when validation fails. Finally, you can implement your validation
rules programmatically—in Java—or choose a declarative approach with a validation
language like Valang or with Bean Validation. Let’s see now how to apply the compos-
ite pattern to chain item processors.

7.4 Chaining item processors
As we stated at the beginning of this chapter, the item-processing phase of a chunk-
oriented step is a good place to embed business logic. Assuming that each item pro-
cessor in your application implements one single business rule (this is simplistic but
enough to illustrate our point), how could you enforce several business rules in the
item-processing phase of a single step? Moreover, recall that you can insert only a sin-
gle item processor between an item reader and an item writer. The solution is to apply
the composite pattern by using a composite item processor that maintains a list of
item processors (the delegates). The composite item processor delegates the calls to
all the members in its list, one after the next. Figure 7.8 illustrates the model of a com-
posite item processor.

 When using a composite item processor, the delegates should form a type-
compatible chain: the type of object an item processor returns must be compatible
with the type of object the next item processor expects.

Chunk-oriented step

Item reader Item writer

Composite item
processor

Item processor 1

Item processor 2

Item processor 3

Figure 7.8 Using a composite item processor allows item processors to be
chained in order to apply a succession of business rules, transformations, or
validations.

220 CHAPTER 7 Processing data
Spring Batch provides the CompositeItemProcessor class, and we illustrate its use with
the import of partner products into the online store. In section 7.2, we covered the
transformation of read items, where we distinguished two types of transformations:

■ Changing the state of the read item—We mapped the product ID in the partner’s
namespace to the product ID in the ACME system.

■ Producing another object from the read item—We produced instances of the Product
class from PartnerProduct objects (created by the item reader).

What do you do if your import job needs to do both? You use two item processors: the
first item processor reads raw PartnerProduct objects from the flat file and trans-
forms them into Product objects, and then the second item processor maps partner
product IDs to ACME IDs. Figure 7.9 illustrates the sequence of the import step.

 You already implemented all the Java code in section 7.2, so you only need to con-
figure a Spring Batch CompositeItemProcessor with your two delegate item proces-
sors, as shown in the following listing.

<batch:job id="readWriteJob">
 <batch:step id="readWriteStep">
 <batch:tasklet>
 <batch:chunk reader="reader"
 processor="processor"
 writer="writer"
 commit-interval="100" />
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 (...)
</bean>

Listing 7.18 Chaining item processors with the composite item processor

Chunk-oriented step

Item reader
Loads partner products

Item writer
Updates database

Composite item
processor

Product mapper
processor

Product ID
mapper processor

Figure 7.9 Applying the composite item processor pattern to the import products
job. The first delegate item processor converts partner product objects into online
store product objects. The second delegate item processor maps partner IDs with
ACME IDs. You reuse and combine item processors without any modification.

221Summary
<bean id="processor"
 class="org.springframework.batch.item.support.

 ➥ CompositeItemProcessor">
 <property name="delegates">
 <list>
 <ref bean="productMapperProcessor" />
 <ref bean="productIdMapperProcessor" />
 </list>
 </property>
</bean>

<bean id="productMapperProcessor"
 class="com.manning.sbia.ch07.

 ➥ PartnerProductItemProcessor">
 <property name="mapper">
 <bean class="com.manning.sbia.ch07.

 ➥ SimplePartnerProductMapper" />
 </property>
</bean>

<bean id="productIdMapperProcessor"
 class="com.manning.sbia.ch07.

 ➥ PartnerIdItemProcessor">
 <property name="mapper">
 <bean id="partnerIdMapper"
 class="com.manning.sbia.ch07.

 ➥ PartnerIdMapper">
 <property name="partnerId" value="PARTNER1" />
 <property name="dataSource" ref="dataSource" />
 </bean>
 </property>
</bean>

<bean id="writer"
 class="com.manning.sbia.ch01.batch.ProductJdbcItemWriter">
 <constructor-arg ref="dataSource" />
</bean>

This example shows the power of the composite pattern applied to building a process-
ing chain: you didn’t modify your two existing item processors, you reused them as is.
Spring Batch encourages separation of concerns by isolating business logic in reusable
item processors.

7.5 Summary
Spring Batch isn’t only about reading and writing data: in a chunk-oriented step, you
can insert an item processor between the item reader and the item writer to perform
any kind of operation. The typical job of an item processor is to implement business
logic. For example, an item processor can convert read items into other kinds of
objects Spring Batch sends to the item writer. Because batch applications often
exchange data between two systems, going from one representation to another falls
into the domain of item processors.

 Spring Batch defines another contract in the processing phase: filtering. For exam-
ple, if items already exist in the target data store, the application shouldn’t insert

Sets two delegates
to compose item
processor

Converts partner
products to store
products

Maps partner
product IDs to
store product IDs

222 CHAPTER 7 Processing data
them again. You can filter items such that they’ll never get to the writing phase. We
made a clear distinction between filtering items and skipping items. Skipping denotes
that an item is invalid. This distinction became even more relevant when we covered
validation. Thanks to the Spring Batch ValidatingItemProcessor class, you can easily
switch from skipping to filtering semantics. We used the ValidatingItemProcessor
class to validate that the price of imported products isn’t negative before the job writes
the products to the database. We saw that we can isolate validation rules in dedicated
validator components, and we used this feature to plug in two declarative validation
frameworks, Valang and Bean Validation.

 This chapter about data processing ends our coverage of the three phases of a
chunk-oriented step: reading, processing, and writing. You now have all the informa-
tion necessary to write efficient batch applications with Spring Batch. Chapter 8 intro-
duces you to techniques used to make batch applications more robust, and you’ll see
that chunk-oriented processing plays an important role.

Implementing
 bulletproof jobs
Batch jobs manipulate large amounts of data automatically. Previous chapters
showed how Spring Batch helps to read, process, and write data efficiently and
without much Java code, thanks to ready-to-use I/O components. It’s time to deal
with the automatic aspect of batch jobs. Batch jobs operate over long periods, at
night, for example, and without human intervention. Even if a batch job can send
an email to an operator when something’s wrong, it’s on its own most of the time. A
batch job isn’t automatic if it fails each time something goes wrong; it needs to be
able to handle errors correctly and not crash abruptly. Perhaps you know how frus-
trating it is to sit at your desk in the morning and see that some nightly jobs have
crashed because of a missing comma in an input file.

This chapter covers
■ Handling errors with retry and skip
■ Logging errors with listeners
■ Restarting an execution after a failure
223

224 CHAPTER 8 Implementing bulletproof jobs
 This chapter explains techniques to make your batch jobs more robust and reli-
able when errors occur during processing. By the end of this chapter, you’ll know how
to build bulletproof batch jobs and be confident that your batch jobs will succeed.

 The first section of this chapter explains how a batch job should behave when
errors or edge cases emerge during processing. Spring Batch has built-in support, its
skip and retry features, to handle errors when a job is executing. Skip and retry are
about avoiding crashes, but crashes are inevitable, so Spring Batch also supports
restarting a job after a failed execution. Sections 8.2, 8.3, and 8.4 cover skip, retry, and
restart, respectively.

 By following the guidelines and the techniques in this chapter, you’ll go from “my
job failed miserably because of a missing comma” to “bring in your fancy-formatted
input file—nothing scares my job anymore.” Let’s get bulletproof!

8.1 What is a bulletproof job?
A bulletproof job is able to handle errors gracefully; it won’t fail miserably because of
a minor error like a missing comma. It won’t fail abruptly, either, for a major problem
like a constraint violation in the database. Before reviewing some guidelines on the
design of a robust job, let’s consider some requirements that a job must meet.

8.1.1 What makes a job bulletproof?

A bulletproof batch job should meet the following general requirements:

■ Robust—The job should fail only for fatal exceptions and should recover grace-
fully from any nonfatal exception. As software developers, we can’t do anything
about a power cut, but we can properly handle incorrectly formatted lines or a
missing input file.

■ Traceable—The job should record any abnormal behavior. A job can skip as
many incorrectly formatted lines as it wants, but it should log to record what
didn’t make it in the database and allow someone to do something about it.

■ Restartable—In case of an abrupt failure, the job should be able to restart prop-
erly. Depending on the use case, the job could restart exactly where it left off or
even forbid a restart because it would process the same data again.

Good news: Spring Batch provides all the features to meet these requirements! You
can activate these features through configuration or by plugging in your own code
through extension points (to log errors, for example). A tool like Spring Batch isn’t
enough to write a bulletproof job: you also need to design the job properly before
leveraging the tool.

8.1.2 Designing a bulletproof job

To make your batch jobs bulletproof, you first need to think about failure scenarios.
What can go wrong in this batch job? Anything can happen, but the nature of the
operations in a job helps to narrow the failure scenarios. The batch job we introduced

225What is a bulletproof job?
in chapter 1 starts by decompressing a ZIP archive to a working directory before read-
ing the lines of the extracted file and inserting them in the database. Many things can
go wrong: the archive can be corrupt (if it’s there!), the OS might not allow the pro-
cess to write in the working directory, some lines in the files may be incorrectly format-
ted, and the list goes on.

Once you’ve identified failure scenarios, you must think about how to deal with them.
If there’s no ZIP archive at the beginning of the execution, there’s not much the job can
do, but that’s no reason to fail abruptly. How should the job handle incorrectly format-
ted lines? Should it skip them or fail the whole execution as soon as it finds a bad line?
In our case, we could skip incorrect lines and ensure that we log them somewhere.

 Spring Batch has built-in support for error handling, but that doesn’t mean you can
make batch jobs bulletproof by setting some magical attribute in an XML configuration
file (even if sometimes that’s the case). Rather, it means that Spring Batch provides
infrastructure and deals with tedious plumbing, but you must always know what you’re
doing: when and why to use Spring Batch error handling. That’s what makes batch pro-
gramming interesting! Let’s now see how to deal with errors in Spring Batch.

8.1.3 Techniques for bulletproofing jobs

Unless you control your batch jobs as Neo controls the Matrix, you’ll always end up
getting errors in your batch applications. Spring Batch includes three features to deal
with errors: skip, retry, and restart. Table 8.1 describes these features.

Table 8.1 Error-handling support in Spring Batch

Feature When? What? Where?

Skip For nonfatal exceptions Keeps processing for an incor-
rect item

Chunk-oriented step

Retry For transient exceptions Makes new attempts on an
operation for a transient failure

Chunk-oriented step,
application code

Restart After an execution failure Restarts a job instance where
the last execution failed

On job launch

Testing failure scenarios
Remember that Spring Batch is a lightweight framework. It means you can easily test
failure scenarios in integration tests. You can simulate many failure scenarios thanks
to testing techniques like mock objects, for example. Chapter 14 covers how to test
batch applications. For JUnit testing techniques in general, you can also refer to JUnit
in Action by Peter Tahchiev, Filipe Leme, Vincent Massol, and Gary Gregory (Manning
Publications, 2011).

226 CHAPTER 8 Implementing bulletproof jobs
The features listed in table 8.1 are independent from each other: you can use one
without the others, or you can combine them. Remember that skip and retry are
about avoiding a crash on an error, whereas restart is useful, when a job has crashed,
to restart it where it left off.

 Skipping allows for moving processing along to the next line in an input file if the
current line is in an incorrect format. If the job doesn’t process a line, perhaps you
can live without it and the job can process the remaining lines in the file.

 Retry attempts an operation several times: the operation can fail at first, but
another attempt can succeed. Retry isn’t useful for errors like badly formatted input
lines; it’s useful for transient errors, such as concurrency errors. Skip and retry con-
tribute to making job executions more robust because they deal with error handling
during processing.

 Restart is useful after a failure, when the execution of a job crashes. Instead of starting
the job from scratch, Spring Batch allows for restarting it exactly where the failed exe-
cution left off. Restarting can avoid potential corruption of the data in case of repro-
cessing. Restarting can also save a lot of time if the failed execution was close to the end.

 Before covering each feature, let’s see how skip, retry, and restart can apply to our
import products job.

8.1.4 Skip, retry, and restart in action

Recall our import products job: the core of the job reads a flat file containing one
product description per line and updates the online store database accordingly. Here
is how skip, retry, and restart could apply to this job.

■ Skip—A line in the flat file is incorrectly formatted. You don’t want to stop the
job execution because of a couple of bad lines: this could mean losing an
unknown amount of updates and inserts. You can tell Spring Batch to skip the
line that caused the item reader to throw an exception on a formatting error.

■ Retry—Because some products are already in the database, the flat file data is
used to update the products (description, price, and so on). Even if the job
runs during periods of low activity in the online store, users sometimes access
the updated products, causing the database to lock the corresponding rows.
The database throws a concurrency exception when the job tries to update a
product in a locked row, but retrying the update again a few milliseconds later
works. You can configure Spring Batch to retry automatically.

■ Restart—If Spring Batch has to skip more than 10 products because of badly for-
matted lines, the input file is considered invalid and should go through a valida-
tion phase. The job fails as soon as you reach 10 skipped products, as defined in
the configuration. An operator will analyze the input file and correct it before
restarting the import. Spring Batch can restart the job on the line that caused
the failed execution. The work performed by the previous execution isn’t lost.

227Skipping instead of failing
The import products job is robust and reliable thanks to Spring Batch. Let’s study the
roles of skip, retry, and restart individually.

8.2 Skipping instead of failing
Sometimes errors aren’t fatal: a job execution shouldn’t stop when something goes
wrong. In the online store application, when importing products from a flat file,
should you stop the job execution because one line is in an incorrect format? You
could stop the whole execution, but the job wouldn’t insert the subsequent lines
from the file, which means fewer products in the catalog and less money coming
in! A better solution is to skip the incorrectly formatted line and move on to the
next line.

 Whether or not to skip items in a chunk-oriented step is a business decision. The
good news is that Spring Batch makes the decision of skipping a matter of configura-
tion; it has no impact on the application code. Let’s see how to tell Spring Batch to
skip items and then how to tune the skip policy.

8.2.1 Configuring exceptions to be skipped

Recall that the import products job reads products from a flat file and then inserts
them into the database. It would be a shame to stop the whole execution for a couple
of incorrect lines in a file containing thousands or even tens of thousands of lines. You
can tell Spring Batch to skip incorrect lines by specifying which exceptions it should
ignore. To do this, you use the skippable-exception-classes element, as shown in
the following listing.

<job id="importProductsJob">
 <step id="importProductsStep">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100"
 skip-limit="10">
 <skippable-exception-classes>
 <include class="org.springframework.batch

 ➥ .item.file.FlatFileParseException" />
 </skippable-exception-classes>
 </chunk>
 </tasklet>
 </step>
</job>

In the skippable-exception-classes element, you specify the exceptions to skip
with the include element. You can specify several exception classes (with several
include elements). When using the include element, you specify not only one class
of exception to skip but also all the subclasses of the exception. Listing 8.1 configures
Spring Batch to skip a FlatFileParseException and all its subclasses.

Listing 8.1 Configuring exceptions to skip in a chunk-oriented step

Sets exceptions
to skip

228 CHAPTER 8 Implementing bulletproof jobs
 Note also in listing 8.1 the use of the skip-limit attribute, which sets the maximum
number of items to skip in the step before failing the execution. Skipping is useful, but
skipping too many items can signify that the input file is corrupt. As soon as Spring
Batch exceeds the skip limit, it stops processing and fails the execution. When you
declare an exception to skip, you must specify a skip limit.

 The include element skips a whole exception hierarchy, but what if you don’t want
to skip all the subclasses of the specified exception? In this case, you use the exclude
element. The following snippet shows how to skip ItemReaderExceptions but
excludes NonTransientResourceException:

<skippable-exception-classes>
 <include
 class="org.springframework.batch.item.ItemReaderException"/>
 <exclude
 class="org.springframework.batch.item.NonTransientResourceException"/>
</skippable-exception-classes>

Figure 8.1 shows the relationship between ItemReaderException and NonTransient-
ResourceException. With the settings from the previous snippet, a FlatFileParse-
Exception triggers a skip, whereas a NonTransientFlatFileException doesn’t.
Expressing this requirement in English, we would say that we want to skip any error
due to bad formatting in the input file (ParseException) and that we don’t want to
skip errors due to I/O problems (NonTransientResourceException).

 Specifying exceptions to skip and a skip limit is straightforward and fits most cases.
Can you avoid using a skip limit and import as many items as possible? Yes. When
importing products in the online store, you could process the entire input file, no
matter how many lines are incorrect and skipped. As you log these skipped lines, you
can correct them and import them the next day. Spring Batch gives you full control
over the skip behavior by specifying a skip policy.

ParseException

RuntimeException

NonTransientResource
Exception

NonTransientFlatFile
ExceptionFlatFileParseException

ItemReaderException
<include />

<exclude />

Figure 8.1 The include element specifies an exception class and all its subclasses. If you
want to exclude part of the hierarchy, use the exclude element. The exclude element also
works transitively, as it excludes a class and its subclasses.

229Skipping instead of failing
8.2.2 Configuring a SkipPolicy for complete control

Who decides if an item should be skipped or not in a chunk-oriented step? Spring Batch
calls the skip policy when an item reader, processor, or writer throws an exception, as
figure 8.2 shows. When using the skippable-exception-classes element, Spring
Batch uses a default skip policy implementation (LimitCheckingItemSkipPolicy), but
you can declare your own skip policy as a Spring bean and plug it into your step. This
gives you more control if the skippable-exception-classes and skip-limit pair
isn’t enough.

NOTE The skip-limit attribute and the skippable-exception-classes
tag have no effect as soon as you plug your own skip policy into a step.

Let’s say you know exactly on which exceptions you want to skip items, but you don’t
care about the number of skipped items. You can implement your own skip policy, as
shown in the following listing.

package com.manning.sbia.ch08.skip;

import org.springframework.batch.core.step.skip.SkipLimitExceededException;
import org.springframework.batch.core.step.skip.SkipPolicy;

public class ExceptionSkipPolicy implements SkipPolicy {

 private Class<? extends Exception> exceptionClassToSkip;

 public ExceptionSkipPolicy(
 Class<? extends Exception> exceptionClassToSkip) {
 super();
 this.exceptionClassToSkip = exceptionClassToSkip;
 }

 @Override
 public boolean shouldSkip(Throwable t, int skipCount)
 throws SkipLimitExceededException {
 return exceptionClassToSkip.isAssignableFrom(
 t.getClass()
);
 }

}

Once you implement your own skip policy and you declare it as a Spring bean, you can
plug it into a step by using the skip-policy attribute, as shown in the following listing.

Listing 8.2 Implementing a skip policy with no skip limit

Item reader/
processor/writer

Throw skippable
exceptions

Calls

Spring Batch Skip policy
« Should I skip? »

Figure 8.2 When skip is on, Spring Batch asks a skip policy whether it should skip an exception thrown
by an item reader, processor, or writer. The skip policy’s decision can depend on the type of the
exception and on the number of skipped items so far in the step.

Skips on
Exception class
and subclasses

230 CHAPTER 8 Implementing bulletproof jobs
<bean id="skipPolicy" class="com.manning.sbia.ch08

 ➥ .skip.ExceptionSkipPolicy">
 <constructor-arg value="org.springframework.batch

 ➥ .item.file.FlatFileParseException" />
</bean>

<job id="importProductsJobWithSkipPolicy"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="importProductsStepWithSkipPolicy">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100"
 skip-policy="skipPolicy" />
 </tasklet>
 </step>
</job>

Table 8.2 lists the skip policy implementations Spring Batch provides. Don’t hesitate
to look them up before implementing your own.

When it comes to skipping, you can stick to the skippable-exception-classes and
skip-limit pair, which have convenient behavior and are easy to configure, with ded-
icated XML elements. You typically use the default skip policy if you care about the
total number of skipped items and you don’t want to exceed a given limit. If you don’t
care about the number of skipped items, you can implement your own skip policy and
easily plug it into a chunk-oriented step.

Listing 8.3 Plugging in a skip policy in a chunk-oriented step

Table 8.2 Skip policy implementations provided by Spring Batch

Skip policy class* Description

LimitCheckingItemSkipPolicy Skips items depending on the exception thrown and
the total number of skipped items; this is the default
implementation

ExceptionClassifierSkipPolicy Delegates skip decision to other skip policies depending
on the exception thrown

AlwaysSkipItemSkipPolicy Always skips, no matter the exception or the total number
of skipped items

NeverSkipItemSkipPolicy Never skips

* From the org.springframework.batch.core.step.skip package.

Sets skip
policy in step

How Spring Batch drives chunks with skipped items
We focused on skipping items during the reading phase, but the skip configuration
also applies to the processing and writing phases of a chunk-oriented step. Spring
Batch doesn’t drive a chunk-oriented step the same way when a skippable exception
is thrown in the reading, processing, or writing phase.

231Skipping instead of failing
Skipping incorrect items makes a job more robust, but you might want to keep track
of these items. Let’s see how Spring Batch lets you do that with a skip listener.

8.2.3 Listening and logging skipped items

Okay, your job doesn’t fail miserably anymore because of a single incorrect line in
your 500-megabyte input file, fine—but how do you easily spot these incorrect lines?
One solution is to log each skipped item with the skip callbacks provided by Spring
Batch. Once you have the skipped items in a file or in a database, you can deal with
them: correct the input file, do some manual processing to deal with the error, and so
on. The point is to have a record of what went wrong!

 Spring Batch provides the SkipListener interface to listen to skipped items:

public interface SkipListener<T,S> extends StepListener {
 void onSkipInRead(Throwable t);
 void onSkipInProcess(T item, Throwable t);
 void onSkipInWrite(S item, Throwable t);
}

You can implement a skip listener and plug it into a step, as figure 8.4 shows. Spring
Batch calls the appropriate method on the listener when it skips an item. To implement

(continued)
When an item reader throws a skippable exception, Spring Batch just calls the read
method again on the item reader to get the next item. There’s no rollback on the
transaction. When an item processor throws a skippable exception, Spring Batch
rolls back the transaction of the current chunk and resubmits the read items to the
item processor, except for the one that triggered the skippable exception in the pre-
vious run. Figure 8.3 shows what Spring Batch does when the item writer throws a
skippable exception. Because the framework doesn’t know which item threw the ex-
ception, it reprocesses each item in the chunk one by one, in its own transaction.

R R R PP P W WW

ERROR
Locates item to skip

R P W

R P W

R P W

R

P

W

RRead item

Processed item

Written item

Item read from cache

Transaction

Caption

Figure 8.3 When a writer throws a skippable exception, Spring Batch can’t know which item triggered
the exception. Spring Batch then rolls back the transaction and processes the chunk item by item. Note
that Spring Batch doesn’t read the items again, by default, because it maintains a chunk-scoped cache.

232 CHAPTER 8 Implementing bulletproof jobs
a skip listener, you can directly implement the SkipListener interface, but this implies
implementing three methods, even if you expect skipped items only during the reading
phase. To avoid implementing empty methods, you can inherit from the SkipListener-
Support adapter class, which provides no-op implementations: you override only the
method you need.

 There’s one more solution: using annotations on a simple class (no interface, no
abstract class). Spring Batch provides one annotation for each method of the Skip-
Listener interface: @OnSkipInRead, @OnSkipInProcess, and @OnSkipInWrite.

 Next, you use the annotation solution with @OnSkipInRead to skip items during the
reading phase. The following listing shows the skip listener, which logs the incorrect
line to a database.

package com.manning.sbia.ch08.skip;

import javax.sql.DataSource;
import org.springframework.batch.core.annotation.OnSkipInRead;
import org.springframework.batch.item.file.FlatFileParseException;
import org.springframework.jdbc.core.JdbcTemplate;

public class DatabaseSkipListener {

 private JdbcTemplate jdbcTemplate;

 public DatabaseSkipListener(DataSource ds) {
 this.jdbcTemplate = new JdbcTemplate(ds);
 }

 @OnSkipInRead
 public void log(Throwable t) {
 if(t instanceof FlatFileParseException) {
 FlatFileParseException ffpe = (FlatFileParseException) t;
 jdbcTemplate.update(
 "insert into skipped_product " +
 "(line,line_number) values (?,?)",
 ffpe.getInput(),ffpe.getLineNumber()
);
 }
 }

}

The skip listener logs the incorrect line in the database, but it could use any other log-
ging system, a logging framework like Java’s own java.util.logging, Apache Log4J,
or SLF4J, for example.

Listing 8.4 Logging skipped items with a skip listener

Item reader/
processor/writer

Throws skippable
exceptions

Calls

Spring Batch Skip listener
Calls

Figure 8.4 Spring Batch lets you register skip listeners. Whenever a chunk-oriented step throws a
skippable exception, Spring Batch calls the listener accordingly. A listener can then log the skipped
item for later processing.

Uses annotation to
trigger callback

Logs line information
in database

233Skipping instead of failing
 Once you implement the skip listener, you need to register it. The following listing
shows how to register the skip listener on a step, using the listeners element in the
tasklet element.

<bean id="skipListener" class="com.manning

 ➥ .sbia.ch08.skip.DatabaseSkipListener">
 <constructor-arg ref="dataSource" />
</bean>

<job id="importProductsJob"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="importProductsStep">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="100" skip-limit="10">
 <skippable-exception-classes>
 <include class="org.springframework.batch.item.file

 ➥ .FlatFileParseException" />
 </skippable-exception-classes>
 </chunk>
 <listeners>
 <listener ref="skipListener" />
 </listeners>
 </tasklet>
 </step>
</job>

A couple of details are worth mentioning in the skip listener configuration:

1 You can have several skip listeners. Only one skip listener was registered in the
example, but you can have as many as you want.

2 Spring Batch is smart enough to figure out the listener type. The example used the
generic listener element to register the skip listener. Spring Batch detects that
it is a skip listener (Spring Batch provides many different kinds of listeners).

When does Spring Batch call a skip listener method? Just after the item reader, proces-
sor, or writer throws the to-be-skipped exception, you may think. But no, not just after.
Spring Batch postpones the call to skip listeners until right before committing the
transaction for the chunk. Why is that? Because something wrong can happen after
Spring Batch skips an item, and Spring Batch could then roll back the transaction.
Imagine that the item reader throws a to-be-skipped exception. Later on, something
goes wrong during the writing phase of the same chunk, and Spring Batch rolls back
the transaction and could even fail the job execution. You wouldn’t want to log the
skipped item during the reading phase, because Spring Batch rolled back the whole
chunk! That’s why Spring Batch calls skip listeners just before the commit of the
chunk, when it’s almost certain nothing unexpected could happen.

 We’re done with skipping, a feature Spring Batch provides to make jobs more
robust when errors aren’t fatal. Do you want your jobs to be even more robust? Per-
haps skipping an item immediately is too pessimistic—what about making additional

Listing 8.5 Registering a skip listener

Declares skip
listener bean

Registers skip
listener

234 CHAPTER 8 Implementing bulletproof jobs
attempts before skipping? This is what we call retry, and Spring Batch offers first-class
support for this feature.

8.3 Retrying on error
By default, an exception in a chunk-oriented step causes the step to fail. You can skip
the exception if you don’t want to fail the whole step. Skipping works well for deter-
ministic exceptions, such as an incorrect line in a flat file. Exceptions aren’t always
deterministic; sometimes they can be transient. An exception is transient when an oper-
ation fails at first, but a new attempt—even immediately after the failure—is successful.

 Have you ever used your cell phone in a place where the connection would argu-
ably be bad? In a tunnel, for example, or on a ferry, sailing on the Baltic Sea on a Friday
night while watching a Finnish clown show?1 You start speaking on the cell phone, but
the line drops out. Do you give up and start watching the clown show, or do you try to
dial the number again? Maybe the connection will be better on the second attempt or
in a couple of minutes. Transient errors happen all the time in the real world when
using the phone or online conference tools like Skype. You usually retry several times
after a failure before giving up and trying later if the call doesn’t go through.

 What are transient exceptions in batch applications? Concurrency exceptions are a
typical example. If a batch job tries to update a row that another process holds a lock
on, the database can cause an error. Retrying the operation immediately can be suc-
cessful, because the other process may have released the lock in the meantime. Any
operation involving an unreliable network—like a web service call—can also throw tran-
sient exceptions, so a new attempt, with a new request (or connection), may succeed.

 You can configure Spring Batch to retry operations transparently when they throw
exceptions, without any impact on the application code. Because transient failures
cause these exceptions, we call them retryable exceptions.

8.3.1 Configuring retryable exceptions

You configure retryable exceptions inside the chunk element, using the retryable-
exception-classes element, as shown in the following listing.

<job id="importProducsJob">
 <step id="importProductsStep">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100"
 retry-limit="3">
 <retryable-exception-classes>
 <include class="org.springframework.dao

 ➥.OptimisticLockingFailureException" />
 </retryable-exception-classes>
 </chunk>
 </tasklet>
 </step>
</job>

1 It happened while one of the authors was working on this book!

Listing 8.6 Configuring retryable exceptions

Sets exceptions
to retry on

235Retrying on error
Notice the retry-limit attribute, used to specify how many times Spring Batch
should retry an operation. Just as for skipping, you can include a complete exception
hierarchy with the include element and exclude some specific exceptions with the
exclude element. You can use both XML elements several times. The following snip-
pet illustrates the use of the exclude element for retry:

<retryable-exception-classes>
 <include
 class="org.springframework.dao.TransientDataAccessException"/>
 <exclude
 class="org.springframework.dao.PessimisticLockingFailureException"/>
</retryable-exception-classes>

Figure 8.5 shows the relationship between the exceptions TransientDataAccess-
Exception and PessimisticLockingFailureException. In the preceding snippet,
you tell Spring Batch to retry when Spring throws transient exceptions unless the
exceptions are related to pessimistic locking.

 Spring Batch only retries the item processing and item writing phases. By default, a
retryable exception triggers a rollback, so you should be careful because retrying too
many times for too many items can degrade performance. You should use retryable
exception only for exceptions that are nondeterministic, not for exceptions related to
format or constraint violations, which are typically deterministic. Figure 8.6 summa-
rizes the retry behavior in Spring Batch.

TransientDataAccess
ResourceException

ConcurrencyFailure
Exception

TransientDataAccess
Exception

<include />

<exclude />

OptimisticLocking
FailureException

PessimisticLocking
FailureException

Figure 8.5 Spring Batch configured to retry exceptions: the include tag includes an exception class
and all its subclasses. By using the exclude tag, you specify a part of the hierarchy that Spring Batch
shouldn’t retry. Here, Spring Batch retries any transient exception except pessimistic locking exceptions.

R R R PP P W WW

ERROR

Retries

R

P

W

RRead item

Processed item

Written item

Item read from cache

Transaction

Caption

R R R PP P W WW

ERROR

Retries

R R R PP P W WW

OK

Figure 8.6 Spring Batch
retries only for exceptions
thrown during item pro-
cessing or item writing.
Retry triggers a rollback,
so retrying is costly: don’t
abuse it! Note that Spring
Batch doesn’t read the
items again, by default,
because it maintains a
chunk-scoped cache.

236 CHAPTER 8 Implementing bulletproof jobs
COMBINING RETRY AND SKIP

You can combine retry with skip: a job retries an unsuccessful operation several times
and then skips it. Remember that once Spring Batch reaches the retry limit, the
exception causes the step to exit and, by default, fail. Use combined retry and skip
when you don’t want a persisting transient error to fail a step. The following listing
shows how to combine retry and skip.

<job id="job">
 <step id="step">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100"
 retry-limit="3" skip-limit="10">
 <retryable-exception-classes>
 <include class="org.springframework.dao

 ➥ .DeadlockLoserDataAccessException" />
 </retryable-exception-classes>
 <skippable-exception-classes>
 <include class="org.springframework.dao

 ➥ .DeadlockLoserDataAccessException" />
 </skippable-exception-classes>
 </chunk>
 </tasklet>
 </step>
</job>

Automatic retry in a chunk-oriented step can make jobs more robust. It’s a shame to
fail a step because of an unstable network, when retrying a few milliseconds later
could have worked. You now know about the default retry configuration in Spring
Batch, and this should be enough for most cases. The next section explores how to
control retry by setting a retry policy.

8.3.2 Controlling retry with a retry policy

By default, Spring Batch lets you configure retryable exceptions and the retry count.
Sometimes, retry is more complex: some exceptions deserve more attempts than oth-
ers do, or you may want to keep retrying as long as the operation doesn’t exceed a

Listing 8.7 Combining retry and skip

Override equals() and hashCode() when using retry
In a chunk-oriented step, Spring Batch handles retry on the item processing and writing
phases. By default, a retry implies a rollback, so Spring Batch must restore the context
of retried operations across transactions. It needs to track items closely to know which
item could have triggered the retry. Remember that Spring Batch can’t always know
which item triggers an exception during the writing phase, because an item writer han-
dles a list of items. Spring Batch relies on the identity of items to track them, so for
Spring Batch retry to work correctly, you should override the equals and hashCode
methods of your items’ classes—by using a database identifier, for example.

Specifies retryable
and skippable
exceptions

237Retrying on error
given timeout. Spring Batch delegates the decision to retry or not to a retry policy.
When configuring retry in Spring Batch, you can use the retryable-exception-
classes element and retry-limit pair or provide a RetryPolicy bean instead.

 Table 8.3 lists the RetryPolicy implementations included in Spring Batch. You
can use these implementations or implement your own retry policy for specific needs.

Let’s see how to set a retry policy with an example. Imagine you want to use retry on
concurrent exceptions, but you have several kinds of concurrent exceptions to deal
with and you don’t want the same retry behavior for all of them. Spring Batch should
retry all generic concurrent exceptions three times, whereas it should retry the dead-
lock concurrent exceptions five times, which is more aggressive.

 The ExceptionClassifierRetryPolicy implementation is a perfect match: it del-
egates the retry decision to different policies depending on the class of the thrown
exception. The trick is to encapsulate two SimpleRetryPolicy beans in the Excep-
tionClassifierRetryPolicy, one for each kind of exception, as shown in the follow-
ing listing.

<job id="retryPolicyJob"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="retryPolicyStep">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100"
 retry-policy="retryPolicy" />
 </tasklet>
 </step>
</job>

<bean id="retryPolicy" class="org.springframework

 ➥.batch.retry.policy.ExceptionClassifierRetryPolicy">
 <property name="policyMap">
 <map>
 <entry key="org.springframework.dao.ConcurrencyFailureException">
 <bean class="org.springframework.batch.retry

 ➥.policy.SimpleRetryPolicy">
 <property name="maxAttempts" value="3" />

Table 8.3 RetryPolicy implementations provided by Spring Batch

Class Description

SimpleRetryPolicy Retries on given exception hierarchies, a given number of
times; this is the default implementation configured with
retryable-exception-classes/retry-limit

TimeoutRetryPolicy Stops retrying when an operation takes too long

ExceptionClassifierRetryPolicy Combines multiple retry policies depending on the excep-
tion thrown

Listing 8.8 Using a retry policy for different behavior with concurrent exceptions

Sets retry policy
on chunk

Sets max attempts for
concurrent exceptions

238 CHAPTER 8 Implementing bulletproof jobs
 </bean>
 </entry>
 <entry key="org.springframework.dao

 ➥ .DeadlockLoserDataAccessException">
 <bean class="org.springframework.batch.retry

 ➥ .policy.SimpleRetryPolicy">
 <property name="maxAttempts" value="5" />
 </bean>
 </entry>
 </map>
 </property>
</bean>

Listing 8.8 shows that setting a retry policy allows for flexible retry behavior: the num-
ber of retries can be different, depending on the kind of exceptions thrown during
processing.

 Transparent retries make jobs more robust. Listening to retries also helps you
learn about the causes of retries.

8.3.3 Listening to retries

Spring Batch provides the RetryListener interface to react to any retried operation.
A retry listener can be useful to log retried operations and to gather information.
Once you know more about transient failures, you’re more likely to change the system
to avoid them in subsequent executions (remember, retried operations always
degrade performance).

 You can directly implement the RetryListener interface; it defines two life-
cycle methods—open and close—that often remain empty, because you usually care
only about the error thrown in the operation. A better way is to extend the Retry-
ListenerSupport adapter class and override the onError method, as shown in the fol-
lowing listing.

package com.manning.sbia.ch08.retry;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.retry.RetryCallback;
import org.springframework.batch.retry.RetryContext;
import org.springframework.batch.retry.listener.RetryListenerSupport;

public class Slf4jRetryListener extends RetryListenerSupport {

 private static final Logger LOG =
LoggerFactory.getLogger(Slf4jRetryListener.class);

 @Override
 public <T> void onError(RetryContext context, RetryCallback<T> callback,
 Throwable throwable) {
 LOG.error("retried operation",throwable);
 }

}

Listing 8.9 Implementing a retry listener to log retried operations

Sets max attempts for
deadlock exceptions

239Retrying on error
The retry listener uses the SLF4J logging framework to log the exception the opera-
tion throws. It could also use JDBC to log the error to a database. The following listing
registers the listener in the step, using the retry-listeners XML element.

<bean id="retryListener" class="com.manning.sbia.ch08

 ➥ .retry.Slf4jRetryListener" />

<job id="job" xmlns="http://www.springframework.org/schema/batch">
 <step id="step">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="10" retry-limit="3">
 <retryable-exception-classes>
 <include class="org.springframework.dao

➥ .OptimisticLockingFailureException" />
 </retryable-exception-classes>
 <retry-listeners>
 <listener ref="retryListener" />
 </retry-listeners>
 </chunk
 </tasklet>
 </step>
</job>

Any time you need to know about retried operations—for example, to get rid of
them!—Spring Batch lets you register retry listeners to log errors.

 Retry is a built-in feature of chunk-oriented steps. What can you do if you need to
retry in your own code, for example, in a tasklet?

8.3.4 Retrying in application code with the RetryTemplate

Imagine you use a web service in a custom tasklet to retrieve data that a subsequent
step will then use. A call to a web service can cause transient failures, so being able to
retry this call would make the tasklet more robust. You can benefit from Spring
Batch’s retry feature in a tasklet, with the RetryOperations interface and its
RetryTemplate implementation. The RetryTemplate allows for programmatic retry
in application code.

 The online store uses a tasklet to retrieve the latest discounts from a web service.
The discount data is small enough to keep in memory for later use in the next step.
The DiscountService interface hides the call to the web service. The following listing
shows the tasklet that retrieves the discounts (the setter methods are omitted for brev-
ity). The tasklet uses a RetryTemplate to retry in case of failure.

package com.manning.sbia.ch08.retry;

import java.util.List;
import org.springframework.batch.core.StepContribution;

Listing 8.10 Registering a retry listener

Listing 8.11 Programmatic retry in a tasklet

Declares retry
listener bean

Registers retry
listener

240 CHAPTER 8 Implementing bulletproof jobs
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.batch.retry.RetryCallback;
import org.springframework.batch.retry.RetryContext;
import org.springframework.batch.retry.policy.SimpleRetryPolicy;
import org.springframework.batch.retry.support.RetryTemplate;

public class DiscountsWithRetryTemplateTasklet implements Tasklet {

 private DiscountService discountService;
 private DiscountsHolder discountsHolder;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 RetryTemplate retryTemplate = new RetryTemplate();
 SimpleRetryPolicy retryPolicy =
 new SimpleRetryPolicy();
 retryPolicy.setMaxAttempts(3);
 retryTemplate.setRetryPolicy(retryPolicy);
 List<Discount> discounts = retryTemplate.execute(
 new RetryCallback<List<Discount>>() {
 @Override
 public List<Discount> doWithRetry(
 RetryContext context)
 throws Exception {
 return discountService.getDiscounts();
 }
 });
 discountsHolder.setDiscounts(discounts);
 return RepeatStatus.FINISHED;
 }
 (...)
}

The use of the RetryTemplate is straightforward. Note how the RetryTemplate is con-
figured with a RetryPolicy directly in the tasklet. You could have also defined a
RetryOperations property in the tasklet and used Spring to inject a RetryTemplate
bean as a dependency. Thanks to the RetryTemplate, you shouldn’t fear transient fail-
ures on the web service call anymore.

 Use of the RetryTemplate is simple, but the retry logic is hardcoded in the tasklet.
Let’s go further to see how to remove the retry logic from the application code.

8.3.5 Retrying transparently with the RetryTemplate and AOP

Can you remove all the retry logic from the tasklet? It would make it easier to test,
because the tasklet would be free of any retry code and the tasklet could focus on its
core logic. Furthermore, a unit test wouldn’t necessarily deal with all retry cases.

 Spring Batch provides an AOP interceptor for retry called RetryOperationsInter-
ceptor. By using this interceptor, the tasklet can use a DiscountService object
directly. The interceptor delegates calls to the real DiscountService and handles the
retry logic. No more dependency on the RetryTemplate in the tasklet—the code

Configures
RetryTemplate

Calls web service
with retry

Stores result
for later use

241Retrying on error
becomes simpler! The following listing shows the new version of the tasklet, which
doesn’t handle retries anymore.

package com.manning.sbia.ch08.retry;

import java.util.List;
import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;

public class DiscountsTasklet implements Tasklet {

 private DiscountService discountService;
 private DiscountsHolder discountsHolder;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 List<Discount> discounts = discountService.getDiscounts();
 discountsHolder.setDiscounts(discounts);
 return RepeatStatus.FINISHED;
 }
 (...)
}

If you want to keep the tasklet this simple, you need the magic of AOP to handle the
retry transparently. Spring AOP wraps the target DiscountService—the one that
makes the web service call—in a proxy. This proxy handles the retry logic thanks to
the retry interceptor. The tasklet ends up using this proxy. The following listing shows
the Spring configuration for transparent, AOP-based retry.

<bean id="discountService" class="com.manning.sbia

 ➥ .ch08.retry.DiscountServiceImpl" />

<bean id="retryAdvice"
 class="org.springframework.batch.retry

 ➥ .interceptor.RetryOperationsInterceptor">

Listing 8.12 Calling the web service without retry logic

Listing 8.13 Configuring transparent retry with Spring AOP

Aspect-oriented programming (AOP)
Aspect-oriented programming is a programming paradigm that allows modularizing
crosscutting concerns. The idea of AOP is to remove crosscutting concerns from an
application’s main logic and implement them in dedicated units called aspects. Typ-
ical crosscutting concerns are transaction management, logging, security, and retry.
The Spring Framework provides first-class support for AOP with its interceptor-based
approach: Spring intercepts application code and calls aspect code to address cross-
cutting concerns. Thanks to AOP, boilerplate code doesn’t clutter the application
code, and code aspects address crosscutting concerns in their own units, which also
prevents code scattering.

Declares target
discount service

Declares retry
interceptor with
RetryTemplate

242 CHAPTER 8 Implementing bulletproof jobs
 <property name="retryOperations">
 <bean class="org.springframework.batch.retry.support.RetryTemplate">
 <property name="retryPolicy">
 <bean class="org.springframework.batch.retry.policy

 ➥ .SimpleRetryPolicy">
 <property name="maxAttempts" value="3" />
 </bean>
 </property>
 </bean>
 </property>
</bean>

<aop:config>
 <aop:pointcut id="retriedOperations"
 expression="execution(* com.manning.sbia.ch08

 ➥ .retry.DiscountService.*(..))" />
 <aop:advisor pointcut-ref="retriedOperations"
 advice-ref="retryAdvice" />
</aop:config>

<bean class="com.manning.sbia.ch08.retry.DiscountsTasklet">
 <property name="discountService" ref="discountService" />
 <property name="discountsHolder" ref="discountsHolder" />
</bean>

<bean id="discountsHolder"
 class="com.manning.sbia.ch08.retry.DiscountsHolder" />

That’s it! Not only should you no longer fear transient failures when calling the web
service, but the calling tasklet doesn’t even know that there’s some retry logic on the
DiscountService. In addition, retry support isn’t limited to batch applications: you
can use it in a web application whenever a call is subject to transient failures.

 This ends our coverage of retry. Spring Batch allows for transparent, configurable
retry, which lets you decouple the application code from any retry logic. Retry is use-
ful for transient, nondeterministic errors, like concurrency errors. The default behav-
ior is to retry on given exception classes until Spring Batch reaches the retry limit.
Note that you can also control the retry behavior by plugging in a retry policy.

 Skip and retry help prevent job failures; they make jobs more robust. Thanks to skip
and retry, you’ll have fewer red-light screens in the morning. But crashes are inevitable.
What do you do when a job runs all night and crashes two minutes before reaching the
end? If you answer, “I restart it and wait another day,” keep on reading; the next section
teaches you that you can answer, “I restart it and it’s going to take two minutes.”

8.4 Restart on error
Okay, your job is running, there are some transient errors, retry comes to the rescue,
but these errors aren’t that transient after all. The job ends up skipping the errors. Is
the job finished? Not yet. More errors come up, and the job finally reaches the skip
limit. Spring Batch must fail the job! Despite all of your bulletproofing techniques,
jobs can’t dodge bullets forever—they can fail. Can’t developers honor the exchange
format you spent weeks to establish?

Applies
interceptor on
target service

243Restart on error
There’s still hope, because Spring Batch lets you restart a job exactly where it left off.
This is useful if the job was running for hours and was getting close to the end when it
failed. Figure 8.7 illustrates a new execution of the import products job that continues
processing where the previous execution failed.

8.4.1 How to enable restart between job executions

How does Spring Batch know where to restart a job execution? It maintains metadata
for each job execution. If you want to benefit from restart with Spring Batch, you need
a persistent implementation for the job repository. This enables restart across job exe-
cutions, even if these executions aren’t part of the same Java process. Chapter 2 shows
how to configure a persistent job repository and illustrates a simple restart scenario. It
also discusses Spring Batch metadata and job executions, as figure 8.8 shows.

 Spring Batch has a default behavior for restart, but because there’s no one-size-fits-
all solution for batch jobs, it provides hooks to control exactly how a restarted job exe-
cution should behave. Let’s focus first on the default restart behavior.

Decompress

Read-write

Cleanup

FAILS

Decompress

Read-write

Cleanup

Restart

Figure 8.7 If a job fails in the middle of processing, Spring Batch can restart it exactly where
it left off.

Reads/writes

Restart

Job execution

Job execution

Job instance

FAILS

Batch
metadataReads/writes

Figure 8.8 Restart is possible thanks to batch metadata that Spring Batch maintains
during job executions.

244 CHAPTER 8 Implementing bulletproof jobs
DEFAULT RESTART BEHAVIOR

Spring Batch uses the following defaults to restart jobs:

■ You can only restart a failed job execution. This seems obvious but has the following
implications: you must provide the job launcher with the job and the exact
same job parameters as the failed execution you want to restart. Using Spring
Batch terminology: when using restart, you start a new job execution of an exist-
ing, uncompleted job instance.

■ You can restart any job. You can start a new execution for any failed job instance.
You can disable restart for a specific job, but you need to disable it explicitly.

■ A job restarts exactly where the last execution left off. This implies that the job skips
already completed steps.

■ You can restart a job as many times as you want. Well, almost—the limit is a couple
of billion restarts.

You can override the defaults, and Spring Batch lets you change the restart behavior.
Table 8.4 summarizes the restart settings available in the configuration of a job. The
defaults for these settings match the default behavior we described.

Let’s learn more about restart options in Spring Batch by covering some typical
scenarios.

8.4.2 No restart please!

The simplest restart option is no restart. When a job is sensitive and you want to exam-
ine each failed execution closely, preventing restarts is useful. After all, a command-
line mistake or an improperly configured scheduler can easily restart a job execution.
Forbid restart on jobs that are unable to restart with correct semantics. Forbidding an
accidental restart can prevent a job from processing data again, potentially corrupting
a database.

 To disable restart, set the attribute restartable to false on the job element:

<job id="importProductsJob"
 restartable="false">
 (...)
</job>

Table 8.4 Configuration of the restart behavior

Attribute XML element Possible values Description

restartable job true / false Whether the job can be restarted; default
is true

allow-start-if-
complete

tasklet true / false Whether a step should be started even if
it’s already completed; default is false

start-limit tasklet Integer value Number of times a step can be started;
default is Integer.MAX_VALUE

245Restart on error
Remember that jobs are restartable by default. If you’re worried that you’ll forget that,
set the restartable flag explicitly on all your jobs.

 Restart is a nice feature, so let’s assume now that our jobs are restartable and
explore more scenarios.

8.4.3 Whether or not to restart already completed steps

Remember that the import products job consists of two steps: the first decompresses a
ZIP archive, and the second reads products from the decompressed file and writes
into the database. Imagine the first step succeeds and the second step fails after sev-
eral chunks. When restarting the job instance, should you re-execute the first step or
not? Figure 8.9 illustrates both alternatives. There’s no definitive answer to such ques-
tions; this is a business decision, which determines how to handle failed executions.

When is skipping the first, already completed step a good choice? If you check the
Spring Batch logs and fix the decompressed input file after the failure, restarting
directly on the second step is the way to go. The chunk-oriented step should complete
correctly, or at least not fail for the same reason. If you stick to this scenario, you have
nothing to do: skipping already completed steps is the default restart behavior.

 Let’s consider now re-executing the first, already completed step on restart. When
the batch operator sees that the execution failed during the second step, their reac-
tion may be to send the log to the creator of the archive and tell them to provide a
correct one. In this case, you should restart the import for this specific job instance
with a new archive, so re-executing the first step to decompress the new archive makes
sense. The second step would then execute and restart exactly on the line where it left
off (as long as its item reader can do so and assuming the input has no lines removed,
moved, or added).

 To re-execute a completed step on a restart, set the allow-start-if-complete flag
to true on the tasklet element:

<job id="importProductsJob">
 <step id="decompressStep" next="readWriteProductsStep">
 <tasklet allow-start-if-complete="true">
 (...)
 </tasklet>
 </step>
 <step id="readWriteProductsStep" next="cleanStep">

Decompress

Read-write

Cleanup

FAILS

Decompress

Read-write

Cleanup

Restart

Decompress

Read-write

Cleanup

Or?

Figure 8.9 Spring Batch lets you choose if it should re-execute already completed steps on restart.
Spring Batch doesn’t re-execute already completed steps by default.

Sets step to
re-execute
on restart

246 CHAPTER 8 Implementing bulletproof jobs
 <tasklet>
 (...)
 </tasklet>
 </step>
 <step id="cleanStep">
 <tasklet>
 (...)
 </tasklet>
 </step>
</job>

Restarting a job is like many things: don’t do it too often. Let’s see how to avoid
restarting a job indefinitely.

8.4.4 Limiting the number of restarts

Repeatedly restarting the same job instance can mean there’s something wrong and
you should simply give up with this job instance. That’s where the restart limit comes
in: you can set the number of times a step can be started for the same job instance. If
you reach this limit, Spring Batch forbids any new execution of the step for the same
job instance.

 You set the start limit at the step level, using the start-limit attribute on the
tasklet element. The following snippet shows how to set a start limit on the second
step of the import products job:

<job id="importProductsJob">
 <step id="decompressStep" next="readWriteProductsStep">
 <tasklet>
 (...)
 </tasklet>
 </step>
 <step id="readWriteProductsStep">
 <tasklet start-limit="3">
 (...)
 </tasklet>
 </step>
</job>

Let’s see a scenario where the start limit is useful. You launch a first execution of the
import products job. The first decompression step succeeds, but the second step fails
after a while. You start the job again. This second execution starts directly where the
second step left off. (The first step completed, and you didn’t ask to execute it again
on restart.) The second execution also fails, and a third execution fails as well. On the
fourth execution—you’re stubborn—Spring Batch sees that you’ve reached the start
limit (3) for the step and doesn’t even try to execute the second step again. The whole
job execution fails and the job instance never completes. You need to move on and
create a new job instance.

 Spring Batch can restart a job exactly at the step where it left off. Can you push
restart further and restart a chunk-oriented step exactly on the item where it failed?

247Restart on error
8.4.5 Restarting in the middle of a chunk-oriented step

When a job execution fails in the middle of a chunk-oriented step and has already
processed a large amount of items, you probably don’t want to reprocess these items
again on restart. Reprocessing wastes time and can duplicate data or transactions,
which could have dramatic side effects. Spring Batch can restart a chunk-oriented step
exactly on the chunk where the step failed, as shown in figure 8.10, where the item
reader restarts on the same input line where the previous execution failed.

 The item reader drives a chunk-oriented step and provides the items to process
and write. The item reader is in charge when it comes to restarting a chunk-oriented
step. Again, the item reader knows where it failed in the previous execution thanks to
metadata stored in the step execution context. There’s no magic here: the item
reader must track what it’s doing and use this information in case of failure.

NOTE Item writers can also be restartable. Imagine a file item writer that
directly moves to the end of the written file on a restart.

A restartable item reader can increment a counter for each item it reads and store the
value of the counter each time a chunk is committed. In case of failure and on restart,
the item reader queries the step execution context for the value of the counter.
Spring Batch helps by storing the step execution context between executions, but the
item reader must implement the restart logic. After all, Spring Batch has no idea what
the item reader is doing: reading lines from a flat file, reading rows from a database,
and so on.

WARNING When using a counter-based approach for restart, you assume
that the list of items doesn’t change between executions (no new or deleted
items, and the order stays the same).

Most of the item readers that Spring Batch provides are restartable. You should always
carefully read the Javadoc of the item reader you’re using to know how it behaves on
restart. How the item reader implements its restart behavior can also have important

Chunk-oriented
step

FAILS Reads from Writes to

Chunk-oriented
step

Reads from Writes to

Restart

Figure 8.10 A chunk-oriented step can restart exactly where it left off. The figure shows an
item reader that restarts on the line where the previous execution failed (it assumes the line
has been corrected). To do so, the item reader uses batch metadata to store its state.

248 CHAPTER 8 Implementing bulletproof jobs
consequences. For example, an item reader may not be thread-safe because of its
restart behavior, which prevents multithreading in the reading phase. Chapter 13 cov-
ers how to scale Spring Batch jobs and the impacts of multithreading on a chunk-
oriented step.

 What if you write your own item reader and you want it to be restartable? You must
not only read the items but also access the step execution context to store the counter
and query it in case of failure. Spring Batch provides a convenient interface—Item-

Stream—that defines a contract to interact with the execution context in key points of
the step lifecycle.

 Let’s take an example where an item reader returns the files in a directory. The fol-
lowing listing shows the code of the FilesInDirectoryItemReader class. This item
reader implements the ItemStream interface to store its state periodically in the step
execution context.

package com.manning.sbia.ch08.restart;

import java.io.File;
import java.io.FileFilter;
import java.util.Arrays;
import org.apache.commons.io.comparator.NameFileComparator;
import org.apache.commons.io.filefilter.FileFilterUtils;
import org.springframework.batch.item.ExecutionContext;
import org.springframework.batch.item.ItemReader;
import org.springframework.batch.item.ItemStream;
import org.springframework.batch.item.ItemStreamException;
import org.springframework.batch.item.NonTransientResourceException;
import org.springframework.batch.item.ParseException;
import org.springframework.batch.item.UnexpectedInputException;

public class FilesInDirectoryItemReader
 implements ItemReader<File>, ItemStream {

 private File [] files;

 private int currentCount;

 private String key = "file.in.directory.count";

 public void setDirectory(String directory) {
 this.files = new File(directory).listFiles(
 (FileFilter) FileFilterUtils.fileFileFilter()
);
 Arrays.sort(files, new NameFileComparator());
 }

 @Override
 public void open(ExecutionContext executionContext)
 throws ItemStreamException {
 currentCount = executionContext.getInt(key, 0);
 }

 @Override

Listing 8.14 Implementing ItemStream to make an item reader restartable

Initializes file
array to read from

B

Initializes file
array counter

C

249Restart on error
 public File read() throws Exception, UnexpectedInputException,
 ParseException, NonTransientResourceException {
 int index = ++currentCount - 1;
 if(index == files.length) {
 return null;
 }
 return files[index];
 }

 @Override
 public void update(ExecutionContext executionContext)
 throws ItemStreamException {
 executionContext.putInt(key, currentCount);
 }

 @Override
 public void close() throws ItemStreamException { }

}

The reader implements both the ItemReader (read method) and ItemStream (open,
update, and close methods) interfaces. The code at B initializes the file array to read
files, where you would typically set it from a Spring configuration file. You sort the file
array because the order matters on a restart and the File.listFiles method doesn’t
guarantee any specific order in the resulting array. When the step begins, Spring
Batch calls the open method first, in which you initialize the counter C. You retrieve
the counter value from the execution context, with a defined key. On the first execu-
tion, there’s no value for this key, so the counter value is zero. On a restart, you get the
last value stored in the previous execution. This allows you to start exactly where you
left off. In the read method, you increment the counter D and return the corre-
sponding file from the file array. Spring Batch calls the update method just before sav-
ing the execution context. This typically happens before a chunk is committed. In
update, you have a chance to store the state of the reader, the value of the counter E.
ItemStream provides the close method to clean up any resources the reader has
opened (like a file stream if the reader reads from a file). You leave the method
empty, as you have nothing to close.

 Listing 8.14 shows you the secret to restarting in a chunk-oriented step. You can
achieve this thanks to the ItemStream interface. ItemStream is one kind of listener
that Spring Batch provides: you can use the interface for item processors, writers, and
on plain steps, not only chunk-oriented steps. To enable restart, ItemStream defines
a convenient contract to store the state of a reader at key points in a chunk-oriented
step. Note that Spring Batch automatically registers an item reader that implements
ItemStream.

NOTE You implement the FilesInDirectoryItemReader class mainly to
illustrate creating a custom, restartable item reader. If you want an item
reader to read files, look at the more powerful MultiResourceItemReader
provided by Spring Batch.

Increments
counter on readD

Stores counter
in step context

E

250 CHAPTER 8 Implementing bulletproof jobs
This ends our tour of restart in Spring Batch. Remember that Spring Batch can restart
a job instance where the last execution left off thanks to the metadata it stores in the
job repository. Spring Batch has reasonable defaults for restart, but you can override
them to re-execute an already completed step or limit the number of executions of a
step. Restarting in the middle of a chunk-oriented step is also possible if the item
reader stores its state periodically in the execution context. To use this feature, it’s
best to implement the ItemStream interface.

 Remember that restart makes sense only when a job execution fails. You can con-
figure restart to prevent reprocessing, potentially avoiding data corruption issues.
Restart also avoids wasting time and processes the remaining steps of a failed job exe-
cution. Skip and retry are techniques to use before relying on restart. Skip and retry
allow jobs to handle errors safely and prevent abrupt failures.

 Congratulations for getting through this chapter! You’re now ready to make your
Spring Batch jobs bulletproof.

8.5 Summary
Spring Batch has built-in support to make jobs more robust and reliable. Spring Batch
jobs can meet the requirements of reliability, robustness, and traceability, which are
essential for automatic processing of large amounts of data. This chapter covered a lot
of material, but we can summarize this material as follows:

■ Always think about failure scenarios. Don’t hesitate to write tests to simulate
these scenarios and check that your jobs behave correctly.

■ Use skip for deterministic, nonfatal exceptions.
■ Use retry for transient, nondeterministic errors, such as concurrency exceptions.
■ Use listeners to log errors.
■ Make a job restartable in case of failure if you’re sure it won’t corrupt data on

restart. Many Spring Batch components are already restartable, and you can
implement restartability by using the execution context.

■ Disable restart on a job that could corrupt data on a restart.

Another key point to consider when you want to implement bulletproof jobs is trans-
action management. Proper transaction management is essential to a batch applica-
tion because an error during processing can corrupt a database. In such cases, the
application can trigger a rollback to put the database back in a consistent state. The
next chapter covers transactions in Spring Batch applications and is the natural transi-
tion after the coverage of the bulletproofing techniques in this chapter. So keep on
reading for extra-bulletproof jobs!

Transaction management
Chapter 8 introduced techniques like skip and restart to make batch jobs robust
and reliable. This chapter complements the last one by covering another topic crit-
ical to batch jobs: transaction management. As batch jobs interact with transac-
tional resources like databases, proper transaction management is crucial to make
batch applications robust and reliable. Because an error can occur at any time dur-
ing batch processing, a job needs to know if it should roll back the current transac-
tion to avoid leaving data in an inconsistent state or if it can commit the transaction
to persist changes.

 This chapter starts with a quick transaction primer. Section 9.2 explains how
Spring Batch handles transactions. How does Spring Batch manage transactions in
a tasklet and in a chunk-oriented step? When and why does Spring Batch trigger a
rollback? Section 9.2 answers these questions. Once we show the transaction man-
agement defaults in Spring Batch, section 9.3 explains why and how to override
them. It also shows you how to avoid common pitfalls related to using declarative
transactions and transactional readers.

This chapter covers
■ Managing transactions in batch jobs
■ Overriding transaction management defaults
■ Using global transaction patterns
251

252 CHAPTER 9 Transaction management
 Section 9.4 covers patterns that help you tackle tricky transaction scenarios in
batch applications. You use these patterns to deal with global transactions—transac-
tions spanning multiple resources—and batch jobs that interact with JMS queues.

 Why should you read this chapter? Spring Batch has reasonable defaults for simple
jobs. To implement complex jobs, you need to know more about transaction manage-
ment. That’s what this chapter is about: explaining how Spring Batch handles transac-
tions and providing you with guidelines and ready-to-use solutions to deal with
challenging jobs.

9.1 A transaction primer
Transactions make the interactions between an application and a data store reliable.
When writing batch applications, you need to know exactly what you’re doing with
transactions, because they affect the robustness of your batch jobs and even their per-
formance. With a transaction, you can safely interact with a data store. An interaction
consists of one or more operations—SQL statements if the data store is a database.
“Safely” means that the transaction is atomic, consistent, isolated, and durable. We
commonly refer to these kinds of transactions as having ACID properties. Here is what
an ACID transaction requires:

■ Atomicity—All the operations in the transaction are successful, or none is.
■ Consistency—A transaction always leaves the data store in a consistent state.
■ Isolation—An ongoing transaction can’t see partial data of other ongoing trans-

actions.
■ Durability—A committed transaction survives any system failure.

A transaction often scopes to a business use case, and its ACID properties apply to the
affected data. For example, for the use case of a money transfer between two bank
accounts, we have the following operations: select both accounts, debit one account,
and credit the other. The debit and credit should both happen; otherwise, money dis-
appears (or appears, depending on the order of the operations); this illustrates the
atomicity property. The balance between the two accounts should be the same before
and at the end of the transfer (again, no money appears or disappears); this is the
consistency property. Isolation is about how other transactions can see or even update
the same data at the same time. Isolation deals with concurrent access and can affect
performance; a high isolation level translates to poor performance. As soon as a data
store tells you it committed a transaction, it should never lose the transacted data,
even in case of a severe failure; this is the durability property.

 In most applications, you choose how to drive transactions by using program-
matic transaction demarcations or declarative transaction management (as the
Spring Framework provides). It’s not the same in a Spring Batch job: Spring Batch
drives the flow and the transactions. Batch applications don’t follow the request-
response flow of typical web applications; this makes transaction management in
batch jobs more complicated. The next section explains the default Spring Batch
behavior that drives transactions.

253Transaction management in Spring Batch components
9.2 Transaction management in Spring Batch components
Spring Batch handles transactions at the step level. This means that Spring Batch will
never use only one transaction for a whole job (unless the job has a single step).
Remember that you’re likely to implement a Spring Batch job in one of two ways:
using a tasklet or using a chunk-oriented step. Let’s see how Spring Batch handles
transactions in both cases.

9.2.1 Transaction management in tasklets

You use a tasklet whenever you need custom processing. This differs from the usual
read-process-write behavior that Spring Batch’s chunk-oriented step handles well.
Here are cases where you can use a tasklet: launching a system command, compress-
ing files in a ZIP archive, decompressing a ZIP archive, digitally signing a file, upload-
ing a file to a remote FTP server, and so on. The Tasklet interface is

public interface Tasklet {
 RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception;
}

By default, the execute method of a tasklet is transactional. Each invocation of execute
takes place in its own transaction. Here’s a simple example implementation:

class MyTasklet implements Tasklet {

 @Override
 public RepeatStatus execute(
 StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 // your custom processing here
 return RepeatStatus.FINISHED;
 }

}

A tasklet is repeatable: Spring Batch calls the execute method of a tasklet as long as
the method returns RepeatStatus.CONTINUABLE. As we mentioned, each execute
invocation takes place in its own transaction. When the execute method returns
RepeatStatus.FINISHED or null, Spring Batch stops calling it and moves on to the
next step.

NOTE Be careful when implementing repeatable tasklets, because Spring
Batch creates a new transaction for each invocation to the execute method.
If a tasklet doesn’t use a transactional resource—like when decompressing a
ZIP archive—you can set the propagation level to PROPAGATION_NEVER. Sec-
tion 9.3.1 covers modifying transaction attributes.

To summarize, a tasklet is a potentially repeatable transactional operation. Let’s now
see how Spring Batch handles transactions in a chunk-oriented step.

Called in a
transaction

254 CHAPTER 9 Transaction management
9.2.2 Transaction management in chunk-oriented steps

A chunk-oriented step follows the common read-process-write behavior for a large
number of items. You know by now that you can set the chunk size. Transaction man-
agement depends on the chunk size: Spring Batch uses a transaction for each chunk.
Such transaction management is

■ Efficient—Spring Batch uses a single transaction for all items. One transaction
per item isn’t an appropriate solution because it doesn’t perform well for a
large number of items.

■ Robust—An error affects only the current chunk, not all items.

When does Spring Batch roll back a transaction in a chunk? Any exception thrown
from the item processor or the item writer triggers a rollback. This isn’t the case for an
exception thrown from the item reader. This behavior applies regardless of the retry
and skip configuration.

 You can have transaction management in a step; you can also have transaction
management around a step. Remember that you can plug in listeners to jobs and step
executions, to log skipped items, for example. If logging to a database, for example,
logging needs proper transaction management to avoid losing data or logging the
wrong information.

9.2.3 Transaction management in listeners

Spring Batch provides many types of listeners to respond to events in a batch job.
When Spring Batch skips items from an input file, you may want to log them. You can
plug in an ItemSkipListener to the step. How does Spring Batch handle transactions
in these listeners? Well, it depends (the worst answer a software developer can get).
There’s no strict rule on whether or not a listener method is transactional; you always
need to consider each specific case. Here’s one piece of advice: always check the Java-
doc (you’re in luck; the Spring Batch developers documented their source code well).

 If we take the ChunkListener as an example, its Javadoc states that Spring Batch
executes its beforeChunk method in the chunk transaction but its afterChunk method
out of the chunk transaction. Therefore, if you use a transaction resource such as a
database in a ChunkListener’s afterChunk method, you should handle the transac-
tion yourself, using the Spring Framework’s transaction support.

 Spring Batch also includes listeners to listen to phases for item reading, process-
ing, and writing. Spring Batch calls these listeners before and after each phase and
when an error occurs. The error callback is transactional, but it happens in a transac-
tion that Spring Batch is about to roll back. Therefore, if you want to log the error to a
database, you should handle the transaction yourself and use the REQUIRES_NEW prop-
agation level. This allows the logging transaction to be independent from the chunk
and the transaction to be rolled back.

 Now that we’ve completed this overview of transaction management in Spring Batch
jobs, let’s study how to tune transactions during job executions. Setting transaction

255Transaction configuration
attributes like the isolation level is common in batch applications because it can provide
better performance.

9.3 Transaction configuration
Spring Batch uses reasonable defaults for transaction management, but you can’t use
these defaults for all batch jobs. This section explains why and how to override these
defaults and how to avoid common pitfalls.

9.3.1 Transaction attributes

You learned in chapter 3 that you can use the transaction-attributes element in a
tasklet element to set a transaction’s attributes, such as the propagation level, isola-
tion level, and timeout. This allows you to have transaction attributes for a specific
chunk different from the default attributes provided by a data source (which are com-
monly REQUIRED for the propagation level and READ_COMMITED for the isolation level).

NOTE We don’t provide an in-depth explanation of transaction attributes. If
you want to learn more about this topic, please see Spring in Action by Craig
Walls (Manning Publications, 2011).

Most of the time, default transaction attributes are fine, so when would you need to
override these defaults? It depends on the use case. Some batch jobs can work concur-
rently with online applications, for example. The isolation level dictates the visibility
rules between ongoing, concurrent transactions. Table 9.1 lists isolation levels, from
the least isolated—READ_UNCOMMITTED—to the most isolated—SERIALIZABLE.

When a batch job works concurrently with an online application, increasing the isola-
tion level can ensure that the batch job and the online application properly read and
update data, but at the cost of lower performance.

 Alternatively, a batch job can be the only process working on the data, so decreasing
the isolation level can result in faster processing than with the default isolation level.
The following snippet shows how to set the isolation level to the lowest level,
READ_UNCOMMITED:

Table 9.1 Isolation levels for transactions

Isolation level Description

READ_UNCOMMITTED A transaction sees uncommitted changes from other transactions. Dirty
reads, nonrepeatable reads, and phantom reads may occur.

READ_COMMITTED A transaction sees only committed changes from other transactions. No dirty
reads are possible. Nonrepeatable reads and phantom reads may occur.

REPEATABLE_READ A transaction can read identical values from a field multiple times. Dirty reads
and nonrepeatable reads don’t occur. Phantom reads may occur.

SERIALIZABLE Dirty reads, nonrepeatable reads, and phantom reads don’t occur. Perfor-
mance can be poor.

256 CHAPTER 9 Transaction management
<job id="importProductsJob">
 <step id="importProductsStep">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="100" />
 <transaction-attributes
 isolation="READ_UNCOMMITTED" />
 </tasklet>
 </step>
</job>

In this snippet, you ask the database to provide the lowest isolation guarantee, but
because the batch job is the only one working on the data, you don’t care about con-
current access.

 That’s it for transaction attributes: override them only when you must. Let’s now
see how a powerful Spring feature—declarative transaction management—can have
catastrophic consequence when used in Spring Batch.

9.3.2 Common pitfalls with declarative transactions

Spring provides declarative transaction management: you say what you want to be
transactional and Spring demarcates transactions for you. You can configure transac-
tions using the @Transactional annotation or XML. This is convenient for online
applications, like web applications: application code doesn’t depend on transaction
management because Spring adds it transparently at runtime. Transactions become a
crosscutting concern.

 In a Spring Batch application, Spring Batch is in charge of transactions. If at any
time Spring Batch calls application code annotated with @Transactional, the transac-
tion for this code uses the transaction managed by Spring Batch. Because it’s using the
default propagation level—REQUIRED—the transaction that @Transactional uses is
the same as the Spring Batch transaction. Figure 9.1 illustrates how application code
annotated with @Transactional can interfere with the chunk transaction in a Spring
Batch job.

 The following are guidelines to avoid conflict between Spring Batch–managed and
Spring-managed transactions:

Spring Batch’s transactionApplication code with
@Transactional

Spring’s transaction

Same transaction context?

Figure 9.1 Be careful when using Spring’s declarative transaction in a Spring
Batch job. Depending on the transaction attributes, the Spring-managed
transaction can participate (or not) with the Spring Batch–managed transaction.

257Transaction configuration
■ Disable Spring’s declarative transactions for your batch application—Don’t use the
tx:annotation-driven element or any XML configuration related to declara-
tive transaction management.

■ Be careful using propagation levels if declarative transactions are on—If you call trans-
actional classes from a Spring Batch job, Spring’s transaction propagation can
interfere with the Spring Batch transaction because of the propagation level.
The REQUIRES_NEW propagation level could typically cause problems because
the application code runs in its own transaction, independent of the Spring
Batch transaction.

In short, be careful with declarative transactions. One of your best friends in online
applications can become your worst enemy in offline applications! Let’s now meet
another friend, the transactional reader.

9.3.3 Transactional reader and processor

Spring Batch can perform optimizations at any time. For example, Spring Batch buf-
fers read items for a chunk so that, in case of a retryable error during writing, it can
roll back the transaction and get the read items from its cache to submit to the writer
instead of reading them again from the item reader. This behavior works perfectly if
you read items from a data source like a database: Spring Batch reads a record, that’s
it. The transaction rollback has no effect on the record read by Spring Batch: the data-
base doesn’t care.

 The story isn’t the same with a Java Message Service (JMS) queue. You not only
read a message from a queue, you dequeue it: you read a message and remove it from
the queue at the same time. Reading and removing a message must be atomic. In mes-
sage-oriented middleware (MOM) and JMS terms, you also say that you consume a mes-
sage. When there’s a transaction rollback, JMS returns the read messages to the queue.
If the processing of the messages failed, the messages must stay on the queue. In the
case of a JMS reader, buffering the read items is a bad idea: if a rollback occurs, the
messages go back to the queue, Spring Batch then resubmits the items to the writer
using its cache, and the writing succeeds. This is a bad combination: the processing
succeeded but the messages are still on the queue, ready for Spring Batch to read and
to trigger the processing…again!

 Figure 9.2 illustrates the difference between a nontransactional and a transactional
reader. The nontransactional reader can read from a database (the database doesn’t
care about clients reading it). The transactional reader gets items from the data
source and puts them back in case of an error. The cache Spring Batch maintains for
read items prevents the transactional reader from getting items again after a failure,
so you should disable it when the reader is transactional.

 To avoid processing messages several times because of Spring Batch’s cache, set the
reader-transactional-queue attribute of the chunk element to true (the default is
false), as the following snippet demonstrates:

258 CHAPTER 9 Transaction management
<job id="importProductsJob">
 <step id=" importProductsStep">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="100" skip-limit="5"
 reader-transactional-queue="true">
 <skippable-exception-classes>
 <include class="org.springframework.dao

 ➥ .DeadlockLoserDataAccessException" />
 </skippable-exception-classes>
 </chunk>
 </tasklet>
 </step>
</job>

Setting the reader-transactional-queue attribute to true disables Spring Batch’s
chunk cache. Spring Batch sends messages back to the queue on a rollback and reads
them again if it attempts to process the chunk again.

NOTE The processor-transactional attribute allows for the same settings
as reader-transactional-queue, but for the processor. The default value is
true, which implies always re-executing the processor before sending items to
the writer.

The only known use case of a transactional reader is JMS, but if you come up with a
new one, don’t forget to set the reader-transactional-queue flag attribute to true!
Let’s now see how to avoid transaction rollbacks.

9.3.4 To roll back or not to roll back

In a chunk-oriented step, Spring Batch rolls back a chunk transaction if an error
occurs in the item processor or in the item writer. This seems safe because an error

Items cache for chunk

Reader Writer

Transactional
reader WriterJMS

queue

Figure 9.2 The difference between nontransactional and transactional readers. By default, Spring
Batch maintains a cache of read items for retries. You must disable this cache when the reader is
transactional, so Spring Batch can read the items again in case of a rollback. A JMS item reader is
an example of a transactional reader because reading a message from a JMS queue removes it from
the queue. A database reader is a nontransactional reader, because reading rows from a database
doesn’t modify the database.

Specifies reader
is transactional

259Transaction management patterns
could have corrupted the state of the transaction, so a rollback ensures data isn’t in an
inconsistent state. Sometimes you’re sure that a specific error didn’t corrupt the trans-
action, so Spring Batch can retry the operation or skip the item. This saves a rollback
and therefore a new transaction. Having fewer transactions is better because transac-
tions are costly.

 Use the no-rollback-exception-classes element in the tasklet element to
cause Spring Batch to avoid triggering a rollback on specific exceptions, as shown in
the following listing.

<job id="importProductsJob">
 <step id="importProductsStep">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="100" skip-limit="5">
 <skippable-exception-classes>
 <include class="org.springframework.batch

 ➥ .item.validator.ValidationException" />
 </skippable-exception-classes>
 </chunk>
 <no-rollback-exception-classes>
 <include class="org.springframework

 ➥ .batch.item.validator.ValidationException"/>
 </no-rollback-exception-classes>
 </tasklet>
 </step>
</job>

Use the no-rollback-exception-classes feature only when you’re sure that an
exception can’t corrupt a transaction; consider yourself warned!

 You now know a lot about transaction management in Spring Batch and related con-
figuration options. Robust batch applications sometimes need more than tuning. The
next section explores transaction management patterns for real-world batch scenarios.

9.4 Transaction management patterns
This section covers commons challenges related to transaction management in batch
applications. We look at guidelines and patterns using the Spring Framework and
Spring Batch to overcome these challenges. By the end of this section, you’ll have a
clear understanding of global transactions (transactions spanning multiple
resources). We also see how to deal with global transactions when a database and a JMS
queue are involved.

9.4.1 Transactions spanning multiple resources: global transactions

Applications sometimes need to perform transactional operations spanning multiple
resources. We call these types of transactions global or distributed transactions. For
example, such resources can be two databases, or a database and a JMS queue. Such
transactional operations must meet the ACID properties we previously listed.

Listing 9.1 Avoiding a rollback for an exception

Avoids rollbacks
on exception

260 CHAPTER 9 Transaction management
In the case of two databases and the classic money transfer example, imagine that the
credited account is in a first database and the debited account in a second database.
The consistent state—C in ACID—spans both databases.

 For a database and a JMS queue, the reception of the message and its processing
must be atomic. We don’t want to lose the message if the processing fails. Figure 9.3
shows an application that uses transactions over multiples resources.
LOCAL TRANSACTIONS

Global transactions are different from
local transactions, where only one
resource is involved and the application
directly communicates with the resource
to demarcate transactions, as shown in
figure 9.4.

 Local transactions are the most com-
mon case. You should strive to use local
transactions as much as possible because
they’re simple to set up, reliable, and
fast. Always consider if you need a JMS queue or a second database in your application.
The Spring Framework provides support for local transactions for various data access
technologies such as JDBC, Hibernate, Java Persistence API (JPA), and JMS. Spring
Batch benefits directly from this support.
TRANSACTION MANAGERS AND GLOBAL TRANSACTIONS

Support for global transactions is a different beast. Global transactions are too diffi-
cult for an application to deal with, so an application relies on a dedicated component
called a transaction manager. This transaction manager component implements a spe-
cial protocol called XA. In this case, a third-party component handles the transactions,
so we call such transactions managed transactions. In Java, to perform global transac-
tions using the XA protocol, we need the following:

JMS queue

Database 1

Database 2

Application Transactional
interactions

Figure 9.3 A global
transaction spanning multiple
resources. The system must
enforce ACID properties on all
participating resources.

Database

Begin / commit / rollbackApplication

Figure 9.4 Local transactions between an
application and a resource. The application
directly communicates with the resource to
demarcate transactions. Try to use local
transactions as much as possible: they’re
fast, simple, and reliable.

261Transaction management patterns
1 A JTA transaction manager—It implements the Java Transaction API (JTA) specifi-
cation, which requires the implementation of the XA protocol. Such a transac-
tion manager is included in a Java EE application server or is available as a
standalone component.

2 XA-aware drivers—The resources must provide XA-compliant drivers so the trans-
action manager can communicate with the resources using the XA protocol. Prac-
tically speaking, this implies the drivers provide implementations of interfaces like
javax.sql.XAConnection. Thanks to these interfaces, the JTA transaction man-
ager can enlist the resources in distributed transactions, as shown in figure 9.5.

All Java EE application servers include a JTA transaction manager (Glassfish, JBoss,
WebSphere, and so on; forgive us if we don’t list the others). Standalone JTA transac-
tion managers also exist: Atomikos, Java Open Transaction Manager (JOTM), and the
Bitronix Transaction Manager are some examples. You can plug in a standalone trans-
action manager in a web container like Tomcat and Jetty to provide JTA transactions.
You can also use a standalone JTA transaction manager in a standalone process, like a
batch application. Figure 9.5 shows an application using a JTA transaction manager to
demarcate transactions spanning multiple resources.

 If you want to use global transactions, the database or the JMS provider you’re
using must have an XA-compliant driver available. Most of the popular databases and
JMS providers have XA drivers.

 If an application wants to use global transactions, it doesn’t need to write any
global transaction–specific code: the transaction manager and the resources handle
all the heavy lifting. The application only needs to use the JTA, or it can use an abstrac-
tion, like the one provided by Spring with the PlatformTransactionManager inter-
face and the JtaTransactionManager implementation.

WARNING Spring doesn’t provide a JTA transaction manager. The Spring
JtaTransactionManager class is only a bridge between Spring’s transaction
management support and a full-blown JTA transaction manager.

JTA transaction
manager

JMS queue

Database 1

Database 2

Application

XA driver

XA driver

XA driver

Figure 9.5 An application can use a JTA transaction manager to handle global transactions.
The resources must provide XA drivers to communicate with the transaction manager using
the XA protocol.

262 CHAPTER 9 Transaction management
Make no mistake: global transactions are tricky. First, the configuration can be diffi-
cult. Second, some implementations (transaction managers and XA drivers) remain
buggy. Third, XA is inherently slower than local transactions because the strong trans-
actional guarantees it provides imply some overhead (the transaction manager and
the resources need to maintain precise logs of what they’re doing, for instance).

NOTE The source code for this chapter contains an example of using
Spring Batch with a standalone JTA transaction manager (the Bitronix
Transaction Manager). This is appropriate for integration tests. If your jobs
are running inside a Java EE application server, consider using that server’s
transaction manager.

We’re not saying that using JTA for global transactions is a bad solution. It provides
strong guarantees, but they come at a price. JTA has the advantage of working in all
cases, as long you meet its requirements: a transaction manager and XA drivers. XA
isn’t the only solution for global transactions. Depending on the context and
resources involved, other techniques are viable alternatives to XA; they involve coding
and usually perform better than XA.

 We examine the following two patterns: the shared resource transaction pattern when
two databases are involved, and the best effort pattern when a database and a JMS queue
are involved. You can use both in batch applications by leveraging the Spring Frame-
work and Spring Batch.

9.4.2 The shared resource transaction pattern

Sometimes, the same physical resource backs multiple logical resources. For example,
two JDBC DataSources can point to the same database instance. Using Oracle termi-
nology, we say that you refer to schema B from schema A by using the same connec-
tion. You also need to define synonyms in schema A for schema B’s tables. This
enables real global transactions using the
same mechanism as for local transactions.
The overhead is a little more than for true
local transactions but less than with XA.

 Figure 9.6 shows a use case of the shared
resource pattern, where a database schema
contains tables for a first application and
Spring Batch’s tables. Another database
schema contains tables for a second appli-
cation. A Spring Batch job executes against
both applications’ tables, but using only
one connection, with the use of synonyms.

 Applying the shared resource transac-
tion pattern can have some limitations,
depending on the database engine. For

Database instance

Application #1 tables
Spring Batch tables

Application #2 tables

Refers to
(through synonyms)

Batch job

Figure 9.6 Use the shared resource
transaction pattern when a common resource
hosts the transactional resources. In this
example, two Oracle database schemas exist
in the same database instance. The first
schema refers to the second schema’s tables
using synonyms. This allows the application
to use local transactions.

263Transaction management patterns
example, you may need to change some application or configuration code to add a
schema prefix to refer explicitly to the correct schema.

 Even when this pattern applies in a specific context, it generally provides better
throughput and needs less configuration than an XA solution. Let’s now see the best
effort pattern, which applies to a database and a JMS queue.

9.4.3 The best effort pattern with JMS

Reading messages from a JMS queue and processing them in a database is a common
scenario for a batch application. For example, our online store could accumulate
orders in a JMS queue and read them periodically to update its inventory. This solu-
tion allows for full control over the processing of messages, including postponing pro-
cessing to periods when the system isn’t under heavy load. Note that this example
solution doesn’t exclude processing the messages as they’re arriving by plugging in a
queue listener. Figure 9.7 illustrates a chunk-oriented step that reads from a queue
and updates a database during the writing phase.
WHAT CAN GO WRONG ON MESSAGE DELIVERY

This pattern requires two resources—a JMS queue and a database—and must be trans-
actional. What can go wrong? Let’s look at the two cases:

1 Losing the message—The application receives a message, acknowledges it, but
fails to process it. The message is no longer on the queue, and there’s been no
processing in the database: the message is lost.

2 Receiving and processing the same message twice—The application receives a message
and processes it, but the acknowledgment fails. The JMS broker delivers the mes-
sage again, and the application processes it again. We call this a duplicate message.

The shared resource transaction pattern for batch metadata
Here’s an example of the shared resource transaction pattern applied to Spring
Batch. People are sometimes reluctant to host the batch execution metadata in the
same database as the business data (they don’t want to mix infrastructure and busi-
ness concerns, which makes sense). Therefore, Spring Batch must span transac-
tions over two databases for the execution metadata and the business data to
ensure proper counts of skipped items, retries, and so on. You can use the shared
resource transaction pattern to host batch execution metadata and business data in
different databases. The pattern keeps your batch metadata and business data sep-
arate and properly synchronized, and you can stick to local transactions.

Writes to

Reads from

Chunk-oriented
step

Database writer

JMS reader

Figure 9.7 The best effort
pattern can apply when
reading from a JMS queue
and writing to a database.

264 CHAPTER 9 Transaction management
Back to the inventory update example: losing messages means that orders arrive but
the application doesn’t update the inventory. The inventory ends up with more prod-
ucts than it should. Perhaps the company won’t be able to provide customers with
their ordered items. Processing orders multiple times means that the inventory runs
out of products faster. Perhaps you’ll lose orders because customers won’t buy items
that aren’t virtually in stock. Perhaps the company will ask to resupply its stock when it
doesn’t need to. All these scenarios could put the company in a world of hurt. You
want to avoid that.

We could use XA to avoid both problems, but remember that we can do without XA
sometimes. Let’s see how Spring helps us avoid losing messages.
AVOIDING LOSING MESSAGES WITH TRANSACTION SYNCHRONIZATION

To avoid losing messages, Spring synchronizes the local JMS transaction with the data-
base transaction. Spring commits the JMS transaction immediately after the commit of
the database transaction. We call this the best effort pattern. Spring does the synchro-
nization transparently as long as you use the correct settings. This synchronization is a
Spring feature; you can use it in any kind of application, and Spring Batch jobs are no
exception. Figure 9.8 shows how Spring synchronizes a local JMS transaction with a
chunk transaction.

 To benefit from transaction synchronization, you need to tell Spring to use a
local JMS transaction with a JmsTemplate to receive messages. Listing 9.2 sets up a
JmsTemplate and a JMS item reader to use a local JMS transaction and so benefits
from the automatic transaction synchronization feature. Note that the session-
Transacted flag is set to true in the JmsTemplate, which instructs Spring to use a
local JMS transaction.

JMS message acknowledgment
Acknowledging a message means that you tell the JMS provider that you processed
the message you received. Once you acknowledge a message, the JMS provider re-
moves it from the queue. JMS has two techniques to acknowledge messages: one is
using JMS in acknowledgment mode, and the other is using a local JMS transaction.
The two techniques are exclusive. JMS has three acknowledgment modes: acknowl-
edge messages as soon as they’re received (AUTO_ACKNOWLEDGE), let the application
acknowledge messages explicitly (CLIENT_ACKNOWLEDGE), and lazily acknowledge
the delivery of messages (DUPS_OK_ACKNOWLEDGE). This last acknowledgment mode
is faster than the auto acknowledgment mode but can lead to duplicate messages.
When using a local JMS transaction for acknowledgment, you start a transaction in a
JMS session, receive one or more messages, process the messages, and commit
the transaction. The commit tells the JMS broker to remove the messages from
the queue.

265Transaction management patterns
<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="defaultDestination" ref="orderQueue" />
 <property name="receiveTimeout" value="100" />
 <property name="sessionTransacted" value="true" />
</bean>

<bean id="jmsReader" class="org.springframework.batch.item.jms

➥ .JmsItemReader">
 <property name="jmsTemplate" ref="jmsTemplate" />
</bean>

Remember that it’s not only thanks to local JMS transactions that you avoid losing mes-
sages; it’s also due to the transaction synchronization that Spring performs transparently.

 The JmsTemplate uses the AUTO_ACKNOWLEDGE mode by default, but don’t use this
default; set the sessionTransacted flag to true to use local JMS transactions. Remem-
ber that the acknowledgment mode and the use of a JMS transaction are exclusive: you
choose one or the other (JMS brokers usually ignore the acknowledgment mode when
you ask for a transacted JMS session).

NOTE When using a JMS item reader, remember to set the reader-trans-
actional-queue flag to true in the chunk XML element.

Synchronizing the commit of the local JMS transaction with the database transaction
commit ensures that the application acknowledges the message only if processing is
successful. No more lost messages, no more lost inventory updates!

Listing 9.2 Using transaction synchronization to avoid losing messages

Chunk transaction

Message reception

JMS local transaction

Transactions are synchronized

start

commit

start

commit Figure 9.8 The best effort pattern.
Spring automatically synchronizes
the local JMS transaction commit
with the commit of an ongoing
transaction (the chunk transaction
in the context of a Spring Batch job).

Does the best effort pattern apply only to JMS?
You can apply the best effort pattern to any resources that have transaction-like be-
havior. Spring Batch uses the best effort pattern when writing files. Do you remember
the transactional flag in the FlatFileItemWriter? It applies to the buffer Spring
Batch maintains for the output file.

266 CHAPTER 9 Transaction management
But the best effort pattern isn’t perfect, and the next subsection covers its shortcom-
ings. Don’t worry: we’ll see techniques to address these shortcomings.
AVOIDING DUPLICATE MESSAGES

Let’s consider the following vicious failure scenario. The JMS item reader reads mes-
sages, the item writer processes the chunk, and Spring Batch commits the chunk
transaction. The JMS transaction is then committed because it’s synchronized with the
chunk transaction commit. What happens if the JMS transaction commit fails because
of a network failure? Remember what a JMS transaction rollback means for the JMS
broker: the application says the processing of the messages failed. The JMS broker
then puts back the messages read during the transaction on the queue. The messages
are then ready to be read and processed again. Figure 9.9 illustrates this failure sce-
nario, where the best effort pattern shows its limitation.

 The best effort pattern isn’t bulletproof because of the small window it leaves open
between the commit of the two transactions. You won’t lose messages, thanks to the
best effort pattern, but you still need to deal with duplicate messages. Let’s now see
two solutions to deal with duplicate messages.

(continued)
If this flag is set to true (the default), Spring Batch flushes the buffer only after the
transaction commit (once it’s sure the chunk completed successfully). It does this by
synchronizing the flush with the database commit (it’s the same when synchronizing
a JMS commit with a database commit). The flush is the file equivalent of the trans-
action commit in a database. We resort to the best effort pattern for file writing be-
cause there’s no support—like JTA—for true distributed transactions over a
database and a file system.

Chunk transaction

Message reception

JMS local transaction

start

commit

start

commitFAILS

Figure 9.9 When the best effort pattern fails. The database commit works, but the JMS
commit fails. JMS puts the message back on the queue, and the batch job processes it
again. Even if such duplicate messages are rare, they can corrupt data because of
repeated processing.

267Transaction management patterns
9.4.4 Handling duplicate messages with manual detection

When you use the best effort pattern, you need to avoid processing duplicate mes-
sages. This is easily doable, but you need some extra code in your application. This
extra code has two parts:

1 Tracking messages during processing—The tracking mechanism can be a dedicated
database table that flags messages as processed. Tracking must be part of the
database transaction.

2 Detecting previously processed messages and filtering them out—The application must
perform this check before processing by using a tracking system.

You have everything you need to build such a tracking system in Spring Batch. In a
chunk-oriented step, the item writer processes messages by updating the database and
takes care of tracking by adding a row in the tracking table. An item processor is in
charge of filtering out duplicate, already-processed messages by checking the tracking
table. Remember that an item processor can transform read items before Spring
Batch passes them to an item writer, but it can also filter out items by returning null.
Figure 9.10 shows a chunk-oriented step that reads JMS messages, filters out duplicate
messages, and implements processing in the writing phase.

 Let’s get back to the inventory example to see how to implement the detection of
duplicate messages.
JMS MESSAGES AND DOMAIN OBJECTS

The online store accumulates orders in a JMS queue, and a batch job reads the mes-
sages to update the inventory table. A JMS message contains an Order, which itself con-
tains a list of OrderItems. The following listing shows the definition of the Order and
OrderItem classes.

f
Detects duplicates and

ilters them out if necessary

Chunk-oriented
step

Writer

Reader

Processor

Updates database and

tracks message

Reads from

Figure 9.10 Detecting duplicate messages and filtering them out with an item processor
in a chunk-oriented job. The item writer must track whether a processor processed each
message. The best effort pattern combined with this filtering technique prevents a
processor from processing duplicate messages.

268 CHAPTER 9 Transaction management
package com.manning.sbia.ch09.domain;

import java.io.Serializable;
import java.util.Collections;
import java.util.List;

public class Order implements Serializable {

 private String orderId;
 private List<OrderItem> items;

 public Order(String orderId, List<OrderItem> items) {
 this.orderId = orderId;
 this.items = Collections.unmodifiableList(items);
 }

 public String getOrderId() { return orderId; }

 public List<OrderItem> getItems() { return items; }

 (...)

}

package com.manning.sbia.ch09.domain;

import java.io.Serializable;

public class OrderItem implements Serializable {

 private String productId;
 private short quantity;

 public OrderItem(String productId, short quantity) {
 this.productId = productId;
 this.quantity = quantity;
 }

 public String getProductId() { return productId; }

 public short getQuantity() { return quantity; }

 (...)

}

You now know what kind of objects you’re dealing with. Let’s look at the processing by
implementing the corresponding item writer.

WRITING AND TRACKING ITEMS IN AN ITEM WRITER

The following listing shows how the InventoryOrderWriter processes and then tracks
orders.

package com.manning.sbia.ch09.batch;

import java.util.Date;
import java.util.List;
import javax.sql.DataSource;
import org.springframework.batch.item.ItemWriter;
import org.springframework.jdbc.core.JdbcTemplate;

Listing 9.3 A JMS message containing an Order object

Listing 9.4 Processing and tracking orders in an item writer

equals and
hashCode
methods
omitted for
brevity

269Transaction management patterns
import com.manning.sbia.ch09.domain.Order;
import com.manning.sbia.ch09.domain.OrderItem;

public class InventoryOrderWriter implements ItemWriter<Order> {

 private JdbcTemplate jdbcTemplate;

 public InventoryOrderWriter(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 @Override
 public void write(List<? extends Order> orders) throws Exception {
 for(Order order: orders) {
 updateInventory(order);
 track(order);
 }
 }

 private void updateInventory(Order order) {
 for(OrderItem item : order.getItems()) {
 jdbcTemplate.update(
 "update inventory set quantity = quantity - ? where product_id = ?",
 item.getQuantity(),item.getProductId()
);
 }
 }

 private void track(Order order) {
 jdbcTemplate.update(
 "insert into inventory_order "+
 "(order_id,processing_date) values (?,?)",
 order.getOrderId(),new Date()
);
 }

}

For each order, the InventoryOrderWriter first handles the processing B, which
consists of removing the items from the inventory. Then, the writer tracks that the
order has been processed C. To track the processing, the system uses a dedicated
database table to store the order ID D.

NOTE You’re lucky in this case to have a unique business ID. If you don’t have
access to a unique ID for your custom processing, use the JMS message ID.

You also store the timestamp of the processing. This can be useful to purge the table
from time to time.

 You now have the first part of your mechanism to detect duplicate messages. The
second part detects redelivered messages and checks to see if the job has already pro-
cessed a redelivered message.
DETECTING AND FILTERING OUT DUPLICATE MESSAGES WITH AN ITEM PROCESSOR

The following listing shows the item processor code that detects and filters out dupli-
cate messages.

Processes
orderBTracks

orderC

Uses dedicated
table for tracking

D

270 CHAPTER 9 Transaction management
package com.manning.sbia.ch09.batch;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.ObjectMessage;
import javax.sql.DataSource;
import org.springframework.batch.item.ItemProcessor;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jms.support.converter

 ➥ .MessageConversionException;
import com.manning.sbia.ch09.domain.Order;

public class DuplicateOrderItemProcessor implements
 ItemProcessor<Message, Order> {

 private JdbcTemplate jdbcTemplate;

 public DuplicateOrderItemProcessor(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 @Override
 public Order process(Message message) throws Exception {
 Order order = extractOrder(message);
 if(message.getJMSRedelivered()) {
 if(orderAlreadyProcessed(order)) {
 order = null;
 }
 }
 return order;
 }

 private Order extractOrder(Message message) {
 if(message instanceof ObjectMessage) {
 try {
 return (Order) ((ObjectMessage) message).getObject();
 } catch (JMSException e) {
 throw new MessageConversionException("couldn't extract order", e);
 }
 }
 return null;
 }

 private boolean orderAlreadyProcessed(Order order) {
 return jdbcTemplate.queryForInt("select count(1)"+
 " from inventory_order where order_id = ?",
 order.getOrderId()) > 0;
 }

}

When a JMS broker redelivers a message, it sets the message object’s redelivered flag
to true. You use this flag B to avoid querying the database, an optimization. If the
message isn’t a redelivery, you let it go to the writer. In the case of a redelivered mes-
sage, you check C whether you’ve already processed the message. The check consists

Listing 9.5 Detecting and filtering out duplicate messages with an item processor

Checks if JMS
redelivered a
message

B

Checks if
message
already
processedC

Queries
tracking table

D

271Transaction management patterns
of querying the tracking table to see if it contains the order ID D. The detection of a
duplicate is simple and cheap, and duplicate messages are rare. This solution also per-
forms better than the equivalent using XA.
CONFIGURING A JOB TO DETECT DUPLICATE MESSAGES

The following listing shows the relevant portion of the job configuration (we skipped
the infrastructure configuration for brevity).

<job id="updateInventoryJob"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="updateInventoryStep">
 <tasklet>
 <chunk reader="reader" processor="processor" writer="writer"
 commit-interval="100"
 reader-transactional-queue="true" />
 </tasklet>
 </step>
</job>

<bean id="reader" class="org.springframework.batch.item.jms.JmsItemReader">
 <property name="jmsTemplate" ref="jmsTemplate" />
 <property name="itemType"
 value="javax.jms.Message" />
</bean>

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="defaultDestination" ref="orderQueue" />
 <property name="receiveTimeout" value="100" />
 <property name="sessionTransacted" value="true" />
</bean>

<bean id="processor"
 class="com.manning.sbia.ch09.batch.DuplicateOrderItemProcessor">
 <constructor-arg ref="dataSource" />
</bean>

<bean id="writer" class="com.manning.sbia.ch09.batch.InventoryOrderWriter">
 <constructor-arg ref="dataSource" />
</bean>

This configuration is typical for a chunk-oriented step, but it contains a couple of sub-
tleties. Note the use of the reader-transactional-queue attribute B. This flag
should always be set to true for a JMS item reader. At C, you ask the JMS item reader
to pass the plain JMS message—no extraction of the body—to the item processor.
Remember that you need the JMS message in the item processor to check the redeliv-
ered flag. Because you want to use the best effort pattern, you use local JMS transac-
tions with the JMS template for message acknowledgment D.

 That’s it; you detect duplicate messages with your filtering item processor. By also
using the best effort pattern, you enforce atomicity in your global transaction without
using XA. This solution is straightforward to implement thanks to Spring Batch and

Listing 9.6 Configuring the duplicates detection job

Specifies reader
is transactionalB

Passes plain JMS message
to item processor

C

Uses local JMS
transactionD

272 CHAPTER 9 Transaction management
the Spring Framework, and it avoids the overhead of an XA solution. Your inventory is
now safe!

 Next, we see how to deal with duplicate messages without any extra code.

9.4.5 Handling duplicate messages with idempotency

In the inventory update example, you want to avoid duplicate messages because you
can’t afford to process messages multiple times. You need this functionality because
processing removes ordered items from the inventory. What if processing a message
multiple times is harmless? When an application can apply an operation multiple
times without changing the result, we say it’s idempotent.
WHAT IS IDEMPOTENCY?

Idempotency is an interesting property for message processing. It means that we don’t
care about duplicate messages! Always think about idempotency when designing a sys-
tem: idempotent operations can make a system much simpler and more robust.
IDEMPOTENT OPERATIONS IN A BATCH JOB

Let’s see an example of an idempotent operation in the online store application. The
shipping application—a separate application—sends a message on a JMS queue for
each shipped order. The online store keeps track of the state of orders to inform cus-
tomers of their orders. A batch job reads messages from the shipped order queue and
updates the online store database accordingly. Figure 9.11 illustrates this batch job.

The processing is simple: it consists only of setting the shipped flag to true. The fol-
lowing listing shows the item writer in charge of updating shipped orders.

package com.manning.sbia.ch09.batch;

import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.List;

Listing 9.7 Updating the shipped order (idempotent processing)

Updates

Reads from

Chunk-oriented
step

set shipped = 1

Orders shipped queue

Online store database

Writer

Reader

Figure 9.11 When performing an idempotent operation on the reception of a message,
there’s no need to detect duplicate messages. The best effort pattern combined with an
idempotent operation is an acceptable solution.

273Transaction management patterns
import javax.sql.DataSource;
import org.springframework.batch.item.ItemWriter;
import org.springframework.jdbc.core.BatchPreparedStatementSetter;
import org.springframework.jdbc.core.JdbcTemplate;
import com.manning.sbia.ch09.domain.Order;

public class ShippedOrderWriter implements ItemWriter<Order> {

 private JdbcTemplate jdbcTemplate;

 public ShippedOrderWriter(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 @Override
 public void write(final List<? extends Order> items) throws Exception {
 jdbcTemplate.batchUpdate(
 "update orders set shipped = ?",
 new BatchPreparedStatementSetter() {

 @Override
 public void setValues(PreparedStatement ps,
 int i)
 throws SQLException {
 ps.setBoolean(1, true);
 }

 @Override
 public int getBatchSize() {
 return items.size();
 }
 }
);
 }
}

Because the message processing is idempotent—setting the shipped flag to true in
the database—you don’t need to handle duplicate messages. You can kiss good-
bye any tracking system and filtering item processors. This only works for idempo-
tent operations!

 This completes our coverage of transaction management patterns. You now know
how to implement global transactions in Spring Batch. A use case must meet specific
conditions to apply these patterns successfully, and it’s up to you to design your system
in a manner suitable to apply these patterns. We saw how the shared transaction
resource pattern applies when a transaction spans two schemas that belong to the
same database instance. Spring implements the best effort pattern—synchronizing
the local JMS transaction with the database transaction commit—but you need to be
careful using it. You must detect duplicate messages by using a tracking system if the
message processing isn’t idempotent. You don’t have to worry if the processing
is idempotent.

 Transaction management in batch application holds no secrets for you anymore!

Performs
idempotent
update

274 CHAPTER 9 Transaction management
9.5 Summary
Transaction management is a key part of job robustness and reliability. Because errors
happen, you need to know how Spring Batch handles transactions, figure out when a
failure can corrupt data, and learn to use appropriate settings. Remember the follow-
ing about transaction management in batch applications, and don’t hesitate to go
back to the corresponding sections for more details:

■ Spring Batch handles transactions at the step level. A tasklet is transactional;
Spring Batch creates and commits a transaction for each chunk in a chunk-
oriented step.

■ Be careful with declarative transaction management (with XML or the Transac-
tional annotation); it can interfere with Spring Batch and produce unex-
pected results.

■ When a batch application interacts with more than one transactional resource
and these interactions must be globally coordinated, use JTA or one of the pat-
terns we’ve discussed.

■ JTA is a bulletproof solution for global transactions, but it can be complex to set
up and adds overhead.

■ The alternative techniques for handling global transactions without JTA work
only in specific contexts and can add extra logic to the application.

With the previous chapter on bulletproofing jobs and this chapter on transaction
management, you now know the techniques to write truly bulletproof jobs.

 Remember an interesting feature Spring Batch provides: skipping. In a chunk-
oriented step, Spring Batch can skip exceptions to avoid failing a whole step. When
the step reaches the skip limit, Spring Batch fails the step. Does Spring Batch cause
the failure of the whole job? By default, yes, but you can override this behavior.
Instead of failing the whole job immediately, for example, you can execute a tasklet to
create and email a report on the execution of the job to an operator. If you’re inter-
ested in discovering how you can choose between different paths for steps in a Spring
Batch job, please continue on to the next chapter, which covers how Spring Batch
handles the execution of steps inside a job.

Part 3

Advanced Spring Batch

The previous chapters provide enough information to write complete batch
applications using Spring Batch. This final part guides you through advanced
techniques and scenarios to make your batch architecture even more powerful.

 If your batch jobs are made of complex, nonlinear flows of steps, chapter 10
is definitely for you. It shows you how to decide which step to execute next when
a step ends. It also explains how to transmit data between steps and interact with
a Spring Batch execution context.

 Chapter 11 takes a Spring Batch job on a tour around the world of enterprise
integration. Don’t think batch jobs are isolated pieces of software running alone
at night. In this chapter, a batch job meets exciting technologies like REST and
Spring Integration to cover a real-world enterprise integration scenario with
Spring technologies.

 Is there a more beautiful sight than green lights saying that all your job exe-
cutions are successful? Chapter 12 guides you through different techniques to
monitor your Spring Batch architecture: building your own interface from
Spring Batch monitoring components, using JMX, and using the Spring Batch
Admin web console.

 Chapter 13 presents techniques to make your job execution scale. You’ll dis-
cover which strategies Spring Batch provides to parallelize job executions on mul-
tiple threads and even on multiple nodes, thanks to JMS and Spring Integration.

 Chapter 14 covers testing. You can test pretty much everything in a Spring
Batch job: readers, writers, converters, listeners, and so on. This chapter shows
you why and how to test your Spring Batch jobs using unit and integration tests.

 Following part 3 are two appendixes: one to set up your development with
the SpringSource Tool Suite and Maven, and another to configure the Spring
Batch Admin web console.

Controlling execution
Writing batch applications isn’t an easy task. Previous chapters covered how to read
and write data efficiently with Spring Batch. These chapters also covered error han-
dling during processing by skipping errors or retrying operations transparently.
This chapter covers mastering job execution with Spring Batch. What do we mean
by job execution?

 A job consists of steps, and execution refers to the sequence of steps that run when
a job starts. In simple jobs, the sequence of steps is linear. In complex jobs, execution
can take multiple paths, and the sequence is no longer linear. Figure 10.1 shows the
structure of a simple, linear job and a more complex, nonlinear job.

 Because batch jobs must run automatically, without human intervention, we need
a way to configure a step sequence so that a job knows which step to execute next.

 In an ideal world, steps are independent of each other: they don’t need to share
data at runtime. This happens when the execution of a first step has no impact on

This chapter covers
■ Controlling a job’s execution path
■ Sharing data between job steps at runtime
■ Externalizing job definitions for reuse
■ Choosing how to stop a job after executing a step
277

278 CHAPTER 10 Controlling execution
the execution of a second step. A job is simpler to implement when it’s made of inde-
pendent steps. You can easily test the steps independently, and you can even think
about reusing them in another job. Having only independent steps isn’t always possi-
ble: a time will come when a step needs data computed in a previous step.

 If your jobs require complex flows or the need to share data between steps, this
chapter helps you to fulfill these requirements. You’re on your way to learning how to
master complex execution scenarios in your batch applications. The next section gives
a detailed overview of the features covered in this chapter. We base this overview on a
real-world scenario: an advanced version of the import products job for our online
store application.

10.1 A complex flow in the online store application
The flow of a job isn’t always simple. In chapter 1, we introduced our online store
example application, whose main job is to import products into a database. The job is
simple: a first step decompresses a ZIP archive, and a chunk-oriented step reads the
extracted file in order to import it in the database. Even though the job is simple, it’s
realistic; but not all jobs are that simple. Figure 10.2 shows an advanced version of our
import products job.

 This new version of the job is more demanding in terms of features: it has a more
complex flow, one step requires data computed in a previous step, and the job execu-
tion can end after the first step if there’s no ZIP to download (whereas a job usually
completes with the end of the last step). Table 10.1 gives a detailed view of this new
version of the import products job and lists the corresponding Spring Batch features
used to fulfill its requirements.

Step

Step

Step

Step

Decision
Choice 1 Choice 2

Step

Step

Step

Step

Job A Job B

Figure 10.1 Jobs with linear and nonlinear flows. Job A, on the left, has a simple linear flow. Job B, on
the right, isn’t linear because there are multiple execution paths.

279A complex flow in the online store application
That’s many new requirements! Now, those are common requirements in batch appli-
cations, and, good news, Spring Batch has everything in its toolbox to fulfill them.

NOTE We cover these features separately for clarity, but you can combine
them. This chapter focuses on job execution, so don’t be surprised if you don’t
find details on step implementations (tasklets, readers, writers, and so on).

Now that you have an overview of the new features of our advanced version of the
import products jobs, let’s start with creating nonlinear flows.

Table 10.1 Requirements and features of the new version of the import products job

Requirement Description Spring Batch feature

Nonlinear flow If the job skips lines in the read or write
step or if the step fails, a report must be
generated by a dedicated step.

Use conditional flow and custom
exit statuses.

Sharing data A step extracts metadata, and another
step needs it to track the import.

Use execution context and data
holder.

Reuse of configuration Part of the job configuration should be
reusable as-is by other jobs.

Use externalized flows and jobs.

Early completion If the job didn’t download an archive, the
job should complete immediately.

Use XML elements end, stop,
and fail.

Verify

Read-write

Track import

Generate report

Failure or
skipped items?

Yes No

Decompress

Download

Cleanup

ZIP archive
downloaded?

Yes

No

M
akes data available for

Reusable
configuration

Figure 10.2 In this advanced version of the
import products job, the flow of steps isn’t
linear anymore and requires more complex
features: job execution can end
immediately after the first step, steps need
to share data, and part of the configuration
must be reusable by other jobs.

280 CHAPTER 10 Controlling execution
10.2 Driving the flow of a job
Not all jobs are linear: their steps don’t always execute one after the other in a simple
sequence. Jobs can take multiple paths: depending on the result of a step, you can
choose to execute one step or another. In our new version of the import products job,
the job executes an optional step to generate a report if something goes wrong in the
read-write step.

 This section covers how Spring Batch lets you configure such nonlinear jobs. By
the end of this section, you’ll know how to escape the simple linear job scenario and
create complex flows for your jobs.

10.2.1 Choosing one path over another

Until now, we’ve focused on jobs with linear flows: the steps execute one after another
in a linear fashion. For linear flows, only the next attribute in the step element needs
to be set and must indicate which step is next, as shown in the following snippet:

<job id="importProducts">
 <step id="decompress" next="readWriteProducts">
 <tasklet>(...)</tasklet>
 </step>
 <step id="readWriteProducts" next="clean">
 <tasklet>(...)</tasklet>
 </step>
 <step id="clean">
 <tasklet>(...)</tasklet>
 </step>
</job>

Note that the last step in a job doesn’t
need a next attribute: step completion
indicates the end of the job execution.
How would we define a nonlinear flow?
Imagine that you don’t want the job to fail
when the read-write step fails; instead,
you want to generate a report and then
execute a cleanup step. Figure 10.3 illus-
trates this flow.

 To configure a nonlinear flow like the
one in figure 10.3, use the nested next
element in the step. The condition of the
transition is set with the attribute on. The
to attribute points to the next step to exe-
cute, as shown in the following listing.

<job id="importProducts">
 <step id="decompress" next="readWriteProducts">

Listing 10.1 Configuring a nonlinear flow

Uses next attribute
for transition

Read-write

Cleanup

Generate report

Exit code =
FAILED

Exit code =
*

Figure 10.3 A nonlinear flow. If the read-write step
fails, the execution shouldn’t end; instead, the job
should generate a report. For all other cases, the
execution proceeds directly to the cleanup step.

281Driving the flow of a job
 <tasklet>(...)</tasklet>
 </step>
 <step id="readWriteProducts" next="clean">
 <tasklet>(...)</tasklet>
 <next on="*" to="clean" />
 <next on="FAILED" to="generateReport"/>
 </step>
 <step id="generateReport" next="clean">
 <tasklet>(...)</tasklet>
 </step>
 <step id="clean">
 <tasklet>(...)</tasklet>
 </step>
</job>

What is the value of the on attribute in this example? It matches the exit status of the
step (we’ll see more on the exit status concept in the upcoming subsection). You can
use exact values in the on attribute and special characters to define patterns. Table 10.2
shows examples of exact values and the special characters Spring Batch accepts.

Note that Spring Batch is smart enough to order transitions from the most to the least
specific automatically. This means the order of the next tags in the configuration
doesn’t matter; you can define transitions with wildcards first (less specific) and transi-
tions with exact values last (more specific).

WARNING Be careful when transitioning to a step using the * special charac-
ter. If the * matches the FAILED exit status (because there’s no more spe-
cific match), the next step is executed even if the current step fails. Perhaps
this isn’t what you want; you may want to fail the job execution when a step
fails. When using conditional transitions, you must handle failed steps your-
self. Refer to section 10.5 to see how to cause a job execution to fail in a
transition decision.

You can now configure conditional execution by matching the exit status of a step
with the next step to execute. What exactly is the exit status, and what kind of value
can it take?

Table 10.2 Syntax for the step attribute on

Value/special character Description Examples

String Exact value of the step exit sta-
tus

COMPLETED

FAILED

* Matches 0 or more characters * (matches any value)

COMPLETED* (matches COMPLETED
and COMPLETED WITH SKIPS)

? Matches exactly one character C?T (matches CAT but not COUNT)

Generates report
in case of failure

282 CHAPTER 10 Controlling execution
10.2.2 Batch status vs. exit status: what’s the deal?

Spring Batch uses two concepts to represent the status of an execution: the batch sta-
tus and the exit status. Both step execution and job execution have their own batch
and exit statuses property. The batch status describes the status of the execution of a
job or a step. The exit status represents the status of the job/step once the execution
is finished. The difference between both statuses isn’t obvious, mainly because Spring
Batch defines both as a status.

BATCH STATUS VS. EXIT STATUS The batch status represents the status of an
execution, whereas the exit status is more like a literal exit status.

Table 10.3 lists other differences between the batch status and exit status.

To see the values a batch status can take, look at the BatchStatus enumeration; exam-
ple values are COMPLETED, STARTED, FAILED, and STOPPED. The ExitStatus class has
predefined values defined as constants. ExitStatus values roughly match those of the
BatchStatus, but because it’s a class, you can define your own instances. What’s the
point of defining your own ExitStatus? You can define your own exit statuses to cre-
ate a set of options to manage your job flows. Remember that a transition bases its
decision on the value of an exit status. For complex conditional flows, you can use
your own exit status instances to choose where to go next. You aren’t limited to pre-
defined values, and you can use exit statuses like COMPLETED WITH SKIPS, which carry
more semantics than COMPLETED.

 If you’re now asking, “How can I choose the exit status returned by a step?” and
“How can I use this exit status to decide which step to execute next?” then read the
next section.

10.2.3 Choosing the exit status

Let’s go back to the import products job and imagine you want to generate a report if
the read-write step skips input lines. Figure 10.4 illustrates this conditional flow.

 You configure the transition decision using the next element and the on/to attri-
butes, but there’s no ready-to-use exit status to express that the step skipped some
items. Wouldn’t it be nice to configure the transition as follows?

Table 10.3 Differences between batch status and exit status

Status Type Description

Batch BatchStatus*
(enumeration)

Enumerates a finite set of statuses. A batch status is persisted in the
batch metadata as the overall status of a job or step execution.

Exit ExitStatus*
(class)

Defines constants values. Also defines custom values and descriptions.
An exit status is persisted in the batch metadata as the exit status of a
job or step execution. Used for transition between steps.

* Defined in the org.springframework.batch.core package

283Driving the flow of a job
<step id="readWrite">
 <tasklet>(...)</tasklet>
 <next on="COMPLETED WITH SKIPS" to="generateReport" />
 <next on="*" to="clean" />
</step>

How can you get a COMPLETED WITH SKIPS exit status at the end of this step? The solu-
tion is to execute code immediately after the execution of the step. This code checks
the number of skipped items and returns the appropriate custom exit status. You have
two ways to do this; the first is by using a step execution listener.

EMBEDDING THE DECISION LOGIC IN A STEP EXECUTION LISTENER

Spring Batch lets the developer plug in listeners to react to events during job execu-
tion. One of these listeners is the step execution listener: Spring Batch calls it before
and after the execution of a step. The after-execution callback is interesting in our
case because it has access to the step execution object and can decide which exit status
to return. By using this after-execution callback, you see the step execution—skipped
items or not—and return a custom exit status. The job then uses this custom exit sta-
tus to decide which step to execute next. Figure 10.5 illustrates this mechanism.

You have your solution using a custom exit status—COMPLETED WITH SKIPS—to decide
whether or not to generate a report. The following listing shows the step execution lis-
tener that chooses which exit status to return.

package com.manning.sbia.ch10.listener;

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.StepExecution;

Listing 10.2 Choosing the exit status for a step with a step execution listener

Read-write

Cleanup

Generate report

Exit status =
COMPLETED WITH SKIPS

Exit status =
*

Figure 10.4 A nonlinear flow using a custom
exit status. Custom exit statuses carry more
semantics than standard exit statuses
(COMPLETED, FAILED, and so on), which is
helpful in making complex flow decisions.

Read-write

COMPLETED WITH SKIPS *

Changes exit status
Step execution listener

Figure 10.5 A step execution listener can change
the exit status of a step. The job can then use the exit
status for the transition decision to the next step.

284 CHAPTER 10 Controlling execution
import org.springframework.batch.core.StepExecutionListener;

public class SkippedItemsStepListener implements StepExecutionListener {

 @Override
 public void beforeStep(StepExecution stepExecution) { }

 @Override
 public ExitStatus afterStep(StepExecution stepExecution) {
 if(!ExitStatus.FAILED.equals(
 stepExecution.getExitStatus()) &&
 stepExecution.getSkipCount() > 0) {
 return new ExitStatus("COMPLETED WITH SKIPS");
 } else {
 return stepExecution.getExitStatus();
 }
 }

}

Because the listener has access to the StepExecution, it knows if Spring Batch skipped
items during processing and decides which exit status to return. Note that the listener
returns the default exit status if there are no skipped items.

 The following listing shows the corresponding XML configuration that plugs in the
listener and specifies the transitions.

<bean id="skippedItemsStepListener"
 class="com.manning.sbia.ch10.listener

 ➥ .SkippedItemsStepListener" />

<job id="importProductsJob"
 xmlns="http://www.springframework.org/schema/batch">
 (...)
 <step id="readWriteStep">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="100" skip-limit="5">
 <skippable-exception-classes>
 <include class="org.springframework.batch.item.file

 ➥ .FlatFileParseException" />
 </skippable-exception-classes>
 </chunk>
 <listeners>
 <listener ref="skippedItemsStepListener" />
 </listeners>
 </tasklet>
 <next on="COMPLETED WITH SKIPS"
 to="generateReportStep" />
 <next on="*" to="cleanStep" />
 </step>
 <step id="generateReportStep" next="cleanStep">
 <tasklet>(...)</tasklet>
 </step>
 <step id="cleanStep">

Listing 10.3 Conditional flow with custom exit status using a step execution listener

Returns custom
status for skipped
items

Returns default
status

Declares
listener bean

Registers
listener

Defines transition
decisions

285Driving the flow of a job
 <tasklet>(...)</tasklet>
 </step>
</job>

That’s it! With a step execution listener, you can cause a step execution to return a
custom exit status. Using this exit status, you can configure which step the job should
execute next. This allows for nonlinear job flows.

 Using a step execution listener is one solution to using custom exit statuses to con-
trol job flow, but Spring Batch also provides a dedicated component to determine the
flow of a job: the job execution decider.
EMBEDDING THE DECISION LOGIC IN A JOB EXECUTION DECIDER

Spring Batch defines the JobExecutionDecider interface to control the flow of a job.
Whereas a step execution listener is a generic-purpose component—among others—
that you can use to set the exit status of a step, the only goal in the life of a job execu-
tion decider is to return an exit status. Contrary to a step execution listener, a job exe-
cution decider isn’t part of a step; it’s a dedicated component in the job flow, as
illustrated in figure 10.6.

Let’s look at our flow requirement to illustrate the use of a job execution decider: you
want the job to transition to generate a report step if the read-write step skipped items.

 The following listing shows a JobExecutionDecider implementation that checks if
the read-write step skipped items and returns an appropriate exit status.

package com.manning.sbia.ch10.decider;

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.StepExecution;
import org.springframework.batch.core.job.flow.FlowExecutionStatus;
import org.springframework.batch.core.job.flow.JobExecutionDecider;

public class SkippedItemsDecider implements JobExecutionDecider {

 @Override
 public FlowExecutionStatus decide(JobExecution jobExecution,
 StepExecution stepExecution) {

Listing 10.4 Controlling job flow with a job execution decider

Read-write

COMPLETED WITH SKIPS *

Changes exit status

Job execution decider

Figure 10.6 A job execution decider is registered after
a step to modify the step’s exit status. The job then
uses the exit status in its transition decision.

286 CHAPTER 10 Controlling execution
 if(!ExitStatus.FAILED.equals(
 stepExecution.getExitStatus()) &&
 stepExecution.getSkipCount() > 0) {
 return new FlowExecutionStatus(
 "COMPLETED WITH SKIPS"
);
 } else {
 return new FlowExecutionStatus(
 jobExecution.getExitStatus().toString()
);
 }
 }

}

A JobExecutionDecider returns a FlowExecutionStatus. This data structure is
roughly equivalent to a plain ExitStatus. The job bases its transition decision on the
string value used to create the FlowExecutionStatus.

 You register a job execution decider as a standalone component, in the flow of the
job, as shown in the following listing.

<bean id="skippedItemsDecider"
 class="com.manning.sbia.ch10.decider

 ➥ .SkippedItemsDecider" />

<job id="importProductsJob"
 xmlns="http://www.springframework.org/schema/batch">
 (...)
 <step id="readWriteStep" next="skippedItemsDecision">
 <tasklet>
 <chunk reader="reader" writer="writer"
 commit-interval="100" skip-limit="5">
 <skippable-exception-classes>
 <include class="org.springframework.batch.item.file

 ➥ .FlatFileParseException" />
 </skippable-exception-classes>
 </chunk>
 </tasklet>
 </step>
 <decision id="skippedItemsDecision"
 decider="skippedItemsDecider">
 <next on="COMPLETED WITH SKIPS"
 to="generateReportStep" />
 <next on="*" to="cleanStep" />
 </decision>
 <step id="generateReportStep" next="cleanStep">
 <tasklet>(...)</tasklet>
 </step>
 <step id="cleanStep">
 <tasklet>(...)</tasklet>
 </step>
</job>

Listing 10.5 Configuring a conditional flow with a job execution listener

Returns custom
status for
skipped items

Returns
default status

Declares
decider bean

Transitions
to decider

Defines
transition
decisions

287Sharing data between steps
Listing 10.5 shows that a job execution decider has its own place in the definition of
the flow. The decider has an ID, and the step transitions to it by using this ID in its
next attribute.

 You achieve the same goal with a job execution decider as with a step execution lis-
tener: you set the exit status by querying the execution of the previous step. By using
transition decisions in the XML configuration, you can define which step to execute
next. Because you have two ways of achieving the same goal, let’s define some guide-
lines to help you decide when to use each solution.
STEP EXECUTION LISTENER OR JOB EXECUTION DECIDER?

Let’s be frank: the choice you’re about to make between a step execution listener and
a job execution decider for your conditional flow won’t change your life. The solu-
tions are quite similar. Here are some considerations to help you choose the appropri-
ate solution depending on your context:

■ Using the step execution listener affects the batch metadata of the step execution. If you
return a custom exit status in the step execution listener, Spring Batch persists it
in the batch metadata. This can be helpful for monitoring. Spring Batch
doesn’t track anything about a job execution decider in the batch metadata.

■ Late binding isn’t available with a job execution decider. You can’t refer to job param-
eters in the XML configuration when using a job execution decider (by using
the #{jobParameters['someKey']} Spring Expression Language [SpEL] syn-
tax). Because a step execution listener is part of the step execution, this feature
is available for its configuration.

■ The usefulness of a job execution decider is obvious and makes the configuration more
readable. As soon as you see a job execution decider in a job configuration, you
know that there’s logic defining a conditional flow. This isn’t as obvious with a
step execution listener, which you can use for other purposes. By using a job
execution decider over a step execution listener, you follow the principle of
least astonishment.

You know now how to control the flow of steps inside a job. A job can base its transi-
tion decisions on the current execution, like skipped items in the previous step, or on
anything available in the execution context. The next section expands on job execu-
tions by exploring how steps can share data, so that a step can access and use data
computed in any previous step.

10.3 Sharing data between steps
In a Spring Batch job, each step has its own task to fulfill. To know what it must do, a step
can use job parameters. For example, the decompress step uses a ZIP archive location
parameter to know which file to decompress. In this case, you know the required input
for the step when you launch the job. Sometimes, you can’t know the inputs for a step
when the job starts because a previous step must compute these inputs. In such circum-
stances, the calculating step and the receiving step must find a way to share data.

288 CHAPTER 10 Controlling execution
Let’s use the import products job as an example. Imagine that the ZIP archive pro-
cessed by the job contains not only a flat file with the products to import but also a
text file that provides information about the import: the ID and date of the import, a
list of input files in the archive, and a digest for each archived file used to validate it.
Let’s call this information the import metadata. Figure 10.7 shows the job flow and the
information that the two steps need to share.

 The job starts with the decompress step. The second step checks the integrity
of the decompressed files using the import metadata. Notice the track import step
after the read-write step: it stores in the database confirmation that the job pro-
cessed this particular import. To do so, the track import step needs the import ID,
which is read previously by the verify step. This import ID is the data you want to
share between steps.

 We cover different techniques to share this import ID between the two steps. This
example is simple, but the principles remain identical with more complex data
structures.

WARNING As soon as steps share data, that data couples the steps to each
other. Strive to make steps as independent as possible. If you can’t make them
independent, use the techniques presented here. You should consider data
sharing as a fallback pattern when you can’t build independent steps.

You can share data in batch applications in many ways, and you can implement them
all using Spring Batch. For example, you can use a database as a shared repository
between steps: a step stores shared data in the database, and the receiving step reads
them from the database. Such a solution is straightforward to implement with Spring
Batch using custom tasklets or chunk-oriented steps, but that’s not what we show here.
This section covers techniques that leverage special features of Spring Batch and of
the Spring Framework. Table 10.4 lists these techniques.

Verify

Read-write

Track import

Decompress

Download

Cleanup

Import ID

Extracts and exposes

Reads
Figure 10.7 The verify step checks the
integrity of the extracted files and
extracts import metadata needed by the
track import step. These steps need a
way to communicate this information.

289Sharing data between steps
Let’s start with using the Spring Batch execution context to share data.

10.3.1 Using the execution context to share data

You must know by now that Spring Batch maintains metadata on job executions. This
batch metadata allows for features like restart because the data is stored permanently
in a database. The batch developer can also use part of this batch metadata to store a
job’s own data. The data is then available across executions—for restart—as well as in
the same execution, and that’s exactly what you need. As soon as your application
gains access to the execution context from a job artifact (tasklet, reader, processor,
writer, or listener), you can use it to share data.

 What exactly is the execution context? The class ExecutionContext represents the
execution context, which acts as a map (of key-value pairs) but with an API better
suited to batch applications. Here’s an example of writing and reading data to and
from ExecutionContext:

executionContext.putString("importId", importId);
String importId = jobExecutionContext.getString("importId");

An execution context exists only as part of a job execution, and there are different
kinds of execution contexts.
JOBS AND STEPS HAVE THEIR OWN EXECUTION CONTEXT

Spring Batch provides two kinds of execution contexts: the job execution context and
the step execution context. They’re both of the same type—ExecutionContext—but
they don’t have the same scope. Figure 10.8 illustrates both kinds of execution con-
texts in a job execution. Note the visibility rules between execution contexts.

Table 10.4 Techniques for sharing data between steps

Technique Principle

Execution
context

Use a Spring Batch execution context as a container for user data. A step writes to the exe-
cution context; then another step reads from the execution context.

Holder Use a Spring bean and dependency injection. Spring injects a holder bean in the communi-
cating beans. A first step sets values in the holder; another step reads values from the holder.

Step
Step execution context

Step
Step execution context

Step
Step execution context

Job execution

Job execution context

Visibility
No visibility

Figure 10.8 A job execution has its own
execution context. Within a job execution,
each step also has its own execution
context. Spring Batch stores execution
contexts across executions.

290 CHAPTER 10 Controlling execution
How do you gain access to an execution context? You need a reference to the corre-
sponding execution: a JobExecution if you want to access a job execution context, or
a StepExecution if want to access a step execution context. Nearly all Spring Batch
artifacts can easily access either a JobExecution or a StepExecution. The unlucky arti-
facts without this access are the item reader, processor, and writer. If you need access
to an execution context from an item reader, processor, or writer, you can implement
a listener interface that provides more insight into the execution, such as an Item-
Stream. The following listing shows an ItemReader that implements the ItemStream
interface to gain access to the execution context.

public class FilesInDirectoryItemReader implements
 ItemReader<File>, ItemStream {

 @Override
 public void open(ExecutionContext executionContext)
 throws ItemStreamException { }

 @Override
 public void update(ExecutionContext executionContext)
 throws ItemStreamException { }

 @Override
 public void close() throws ItemStreamException { }

 @Override
 public File read() throws Exception, UnexpectedInputException,
 ParseException, NonTransientResourceException { (...) }

}

Now that you have enough background information on execution contexts, let’s see
the first technique used to exchange data between steps by using an execution
context.
USING THE JOB EXECUTION CONTEXT TO SHARE DATA BETWEEN STEPS

You can use the job execution context to share data between steps. A first step writes
data to the job execution context, and another step reads the data from the execution
context. Figure 10.9 illustrates this technique.

 In our example, the verify tasklet not only verifies the integrity of the decom-
pressed files but also extracts the import metadata and stores the import ID in the job

Listing 10.6 Implementing a listener interface to access the execution context

Verify

Track

Job execution context

Writes to

Reads from

Figure 10.9 Sharing data through the job
execution context. A first step writes data in
the job execution context for a subsequent
step to read.

291Sharing data between steps
execution context. The following listing shows the verify tasklet code (setter methods
are omitted for brevity).

package com.manning.sbia.ch10.tasklet;

import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.item.ExecutionContext;
import org.springframework.batch.repeat.RepeatStatus;
import com.manning.sbia.ch10.batch.BatchService;
import com.manning.sbia.ch10.batch.ImportMetadata;

public class VerifyStoreInJobContextTasklet implements Tasklet {

 private String outputDirectory;
 private BatchService batchService;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 batchService.verify(outputDirectory);
 ImportMetadata importMetadata = batchService
 .extractMetadata(outputDirectory);
 ExecutionContext jobExecutionContext =
 chunkContext.getStepContext()
 .getStepExecution().getJobExecution()
 .getExecutionContext();
 jobExecutionContext.putString("importId",
 importMetadata.getImportId());
 return RepeatStatus.FINISHED;
 }
 (...)
}

You can see in listing 10.7 that the job execution context is accessible through the
ChunkContext parameter of the tasklet’s execute method. We’ll admit the code path
isn’t obvious! Figure 10.10 helps you visualize the succession of calls.

NOTE The tasklet delegates the business logic to a BatchService. Try to use
this kind of delegation in your tasklets because it avoids embedding too
much business logic in the tasklet (a batch artifact) and promotes reusabil-
ity of your business services. This delegation also makes the tasklet easier to
test because you can use a mock object for the BatchService in integration
tests. Figure 10.11 illustrates business delegation in a batch artifact.

Listing 10.7 Writing data in the job execution context from a tasklet

Gets job execution
context

Writes import ID in
execution context

Chunk context Step context Step execution Job execution Job execution
context

Figure 10.10 The succession of calls needed to access the job execution context from a tasklet

292 CHAPTER 10 Controlling execution
Once the import ID is available in the job execution context, the track import tasklet
can read and use it, as shown in the following listing.

package com.manning.sbia.ch10.tasklet;

import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.item.ExecutionContext;
import org.springframework.batch.repeat.RepeatStatus;
import com.manning.sbia.ch10.batch.BatchService;

public class TrackImportFromJobContextTasklet implements Tasklet {

 private BatchService batchService;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 ExecutionContext jobExecutionContext =
 chunkContext.getStepContext()
 .getStepExecution().getJobExecution()
 .getExecutionContext();
 String importId = jobExecutionContext.getString(
 "importId");
 batchService.track(importId);
 return RepeatStatus.FINISHED;
 }
 (...)
}

When using the job execution context as a container to share data, the writing and
reading components must agree on a key used to access the context map. In our
example, the key is the hardcoded String "importId", used mainly to make the code
more readable and easier to understand. The key could be configurable as a String
property in both tasklets and set in the XML configuration.

Listing 10.8 Reading data from the job execution context in a tasklet

Batch artifact
(tasklet, reader, writer)

Batch artifact
(tasklet, reader, writer)

Business component
Uses

Business logic

Bad Good

Figure 10.11 A batch artifact such as a tasklet shouldn’t embed too much business logic.
Instead, it should use a dedicated business component. Such delegation allows for better
reusability of business logic and makes business components easier to test because they
don’t depend on the batch environment.

Gets job execution
context

Reads import ID from
execution context

293Sharing data between steps
 Whatever way the job configures the key, be careful that another component using
the same key for another purpose doesn’t erase the value. Remember that the job exe-
cution context is global to the job: all batch artifacts can access it. Don’t hesitate to use
prefixes in your keys. In our case, we could have used importMetadata.importId
instead of importId. The reverse domain name notation is also a good choice to avoid
collisions: we could have also used com.acme.onlinestore.importId.

 Giving steps access to the job execution context directly couples them quite tightly.
Nevertheless, it’s a straightforward solution for many use cases. The next section cov-
ers a technique also based on the job execution context but provides more flexibility
at the price of being more complex to configure.
USING THE STEP EXECUTION CONTEXT AND PROMOTING THE DATA TO THE JOB EXECUTION CONTEXT

The technique we show next is less straightforward than writing to and reading from
the job execution context. It requires that a step writes data in its own execution con-
text and that a listener promotes the data to the job execution context, such that the
data can be accessible to anyone. Figure 10.12 illustrates this process; notice that a
step listener promotes the data transparently.

 The solution used to promote data from a step’s scope to a job’s scope consists of
two parts: you programmatically make the data available in the step execution context
and promote this data to the job execution context through configuration. This solu-
tion looks complex, but it confines the data exposure to the step and makes the
choice of exposing the data a configuration choice. The communicating steps aren’t
as tightly coupled with each other as in the pure job execution context solution. Imag-
ine that you write jobs by assembling existing tasklets. In some cases, you need to
share data between steps, and in other cases, you don’t need to share data. By using

Verify

Track

Job execution context

Promotes data to

Reads from

Step execution context

Promotion listener

Reads data from

Figure 10.12 Sharing data by writing into the step execution context and promoting data to the
job execution context. The receiving step then has access to the data.

294 CHAPTER 10 Controlling execution
the promotion approach, you can choose to conceal data from the step execution
context or to expose the data transparently only when you need to.

 Going back to our example, the writing tasklet now writes in its own execution con-
text, as shown in the following listing.

public class VerifyStoreInStepContextTasklet implements Tasklet {

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 batchService.verify(outputDirectory);
 ImportMetadata importMetadata = batchService
 .extractMetadata(outputDirectory);
 ExecutionContext stepExecutionContext =
 chunkContext.getStepContext().getStepExecution()
 .getExecutionContext();
 stepExecutionContext.putString("importId",
 importMetadata.getImportId());
 return RepeatStatus.FINISHED;
 }
 (...)
}

How does the data end up in the job execution context? Spring Batch provides a
ready-to-use step listener for that, the ExecutionContextPromotionListener. All you
need to do is register the step listener on the writing step and set which key(s) you
want to promote. The following shows how to use the promotion step listener.

<bean id="promotionListener"
 class="org.springframework.batch.core.listener

 ➥ .ExecutionContextPromotionListener">
 <property name="keys" value="importId" />
</bean>

<job id="importProductsJob"
 xmlns="http://www.springframework.org/schema/batch">
 (...)
 <step id="verifyStep" next="readWriteStep">
 <tasklet ref="verifyTasklet">
 <listeners>
 <listener ref="promotionListener" />
 </listeners>
 </tasklet>
 </step>
 (...)
 <step id="trackImportStep" next="cleanStep">
 <tasklet ref="trackImportTasklet" />
 </step>
 (...)
</job>

Listing 10.9 Writing data in the step execution context from a tasklet

Listing 10.10 Promoting data from the step to the job execution context

Gets step
execution context

Writes import ID in
execution context

Declares promotion
step listener

Registers listener
on writing step

295Sharing data between steps
What happens in the receiving step? The code of its tasklet doesn’t change; it remains
the same as in listing 10.8. The receiving tasklet reads data from the job execution
context, so it sees the data that the listener promoted.

 Configuration drives the promotion approach more than the solution relying on
purely using a job execution context. Promotion provides more flexibility but needs
the configuration of a listener. The next solution is even more configuration driven
and leaves the code less dependent on the execution context.
WRITING IN THE JOB EXECUTION CONTEXT AND READING USING LATE BINDING

This approach consists of writing in the job execution context and then referring to
the data from the XML configuration, using late binding. The writing tasklet writes in
the job execution context, so it remains the same as in listing 10.7. The receiving task-
let doesn’t read from any execution context: it reads its own property, as shown in the
following listing.

public class TrackImportTasklet implements Tasklet {

 private BatchService batchService;
 private String importId;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 batchService.track(importId);
 return RepeatStatus.FINISHED;
 }

 public void setImportId(String importId) {
 this.importId = importId;
 }

 public void setBatchService(BatchService batchService) {
 this.batchService = batchService;
 }
}

The good news about this new version of the receiving tasklet is that it doesn’t depend
on the Spring Batch runtime anymore. This makes the tasklet easier to test: you don’t
have to recreate the execution context; all you need to do is set the tasklet property.
This is a benefit of using dependency injection over a lookup mechanism. Speaking of
dependency injection, the responsibility of setting the property correctly now belongs
to Spring, with help from the step scope and SpEL:

<bean id="trackImportTasklet"
 class="com.manning.sbia.ch10.tasklet.TrackImportTasklet"
 scope="step">
 <property name="batchService" ref="batchService" />
 <property name="importId"
 value="#{jobExecutionContext['importId']}" />
</bean>

Listing 10.11 A tasklet reading data from its own property

Tracks
import ID

Declares setter for
dependency injection

296 CHAPTER 10 Controlling execution
The # character triggers the evaluation of an expression. Our expression refers to the
importId key in the jobExecutionContext variable. This implicit variable is available
only for a step-scoped Spring bean running in a step! Spring Batch creates the
instance at the last moment, when the step is about to run. That’s why we call it
late binding.

 This solution, combining the job execution context to store data and SpEL, is ele-
gant and frees part of the application code from a reference to the runtime environ-
ment. As long as you can use late binding in a step scope, you should prefer this
solution to the previous two. But the step scope isn’t always available: imagine you
want to share data between a step and a job execution decider (for a conditional
flow). The step scope isn’t available in the decider because it’s not part of a step. You
would need to use the job execution context in the decider code.

 Okay, we’re not done yet with sharing data techniques, but we’re getting close to
the end. The next section covers yet another category of techniques to share data in a
job. If the previous category was Spring Batch–oriented—using the Spring Batch run-
time—this new category is more Spring-oriented. It’s based on the definition of
holder classes whose instances are used as Spring beans. These techniques are more
type-safe than the ones using execution contexts, but they require writing dedicated
classes and rely on Spring for dependency injection.

10.3.2 Sharing data using Spring holder beans

The concept of a holder bean in a job
is simple: the data that a step creates
and wants to share is set inside a
Spring bean—a holder for this data—
and the step that wants to read the
data is injected with the holder bean.
Figure 10.13 illustrates the concept of
a holder bean shared between steps.

 The holder is empty when the
Spring application context is created,
a step writes data to the holder, and
another step reads the data.

WARNING When using the holder technique, beware of conflicts on the
same holder between different job instances or even different jobs. If job
instances run in the same process—because you embedded Spring Batch in
a web container—don’t let a job instance use the values from any previous
job instance. A job should clean the holder it uses once it’s done using it.
This warning doesn’t apply if you launch jobs from the command line,
because you’ll have a different instance of the holder for each execution.

Remember the use case on sharing data: you extract some metadata from the verify
step, and the job must make this metadata available to the track step. In our example,

Verify

Track

Holder bean

Writes data to

Reads data from

Figure 10.13 Using a Spring bean as a holder to
share data. Spring injects the holder as a dependency
into the batch artifacts that want to share data. An
artifact then writes data in the holder, and the
receiving artifact reads the data from the holder.

297Sharing data between steps
the ImportMetadata class represents the metadata. The ImportMetadata class con-
tains only properties and corresponding getter and setter methods. One of these
properties is the one you’re interested in: the import ID. You define an ImportMeta-
dataHolder class whose only goal in life is to hold on to and provide access to an
ImportMetadata object. You then configure an ImportMetadataHolder Spring bean
that Spring injects into the interested batch components (tasklets in this case). The
following snippet shows the holder code for the import metadata:

package com.manning.sbia.ch10.batch;

public class ImportMetadataHolder {

 private ImportMetadata importMetadata;

 public ImportMetadata get() {
 return importMetadata;
 }

 public void set(ImportMetadata importMetadata) {
 this.importMetadata = importMetadata;
 }

}

You now know enough to learn a first technique based on the use of a holder to share
data between steps. The second technique uses advanced features like SpEL and late
binding.
WRITING AND READING WITH HOLDERS

When using a holder, the writing and reading components both refer to the holder.
The following listing shows the new version of the tasklets that now depend on the
ImportMetadataHolder. Note that the listing includes the normally omitted setter
methods to highlight their importance: Spring uses injection to set their values.

public class VerifyTasklet implements Tasklet {

 private String outputDirectory;
 private BatchService batchService;
 private ImportMetadataHolder importMetadataHolder;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 batchService.verify(outputDirectory);
 importMetadataHolder.set(
 batchService.extractMetadata(outputDirectory)
);
 return RepeatStatus.FINISHED;
 }

 public void setBatchService(BatchService batchService) {
 this.batchService = batchService;
 }

 public void setOutputDirectory(String outputDirectory) {

Listing 10.12 Tasklets communicating through a holder

Writes data
in holder

298 CHAPTER 10 Controlling execution
 this.outputDirectory = outputDirectory;
 }

 public void setImportMetadataHolder(
 ImportMetadataHolder importMetadataHolder) {
 this.importMetadataHolder = importMetadataHolder;
 }

}

public class TrackImportWithHolderTasklet implements Tasklet {

 private BatchService batchService;
 private ImportMetadataHolder importMetadataHolder;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 batchService.track(
 importMetadataHolder.get().getImportId()
);
 return RepeatStatus.FINISHED;
 }

 public void setBatchService(BatchService batchService) {
 this.batchService = batchService;
 }

 public void setImportMetadataHolder(
 ImportMetadataHolder importMetadataHolder) {
 this.importMetadataHolder = importMetadataHolder;
 }

}

Now both tasklets depend only on the holder and no longer on the Spring Batch run-
time. The following listing shows the straightforward required configuration: it
declares the beans and wires them together.

<bean id="importMetadataHolder"
 class="com.manning.sbia.ch10.batch

 ➥ .ImportMetadataHolder" />

<bean id="verifyTasklet"
 class="com.manning.sbia.ch10.tasklet.VerifyTasklet">
 <property name="batchService" ref="batchService" />
 <property name="outputDirectory" value="/tmp/batch" />
 <property name="importMetadataHolder"
 ref="importMetadataHolder" />
</bean>

<bean id="trackImportTasklet"
 class="com.manning.sbia.ch10.tasklet.TrackImportWithHolderTasklet">
 <property name="batchService" ref="batchService" />
 <property name="importMetadataHolder"
 ref="importMetadataHolder" />
</bean>

Listing 10.13 Configuring tasklets to use a holder

Reads data
from holder

Declares
holder bean

Injects holder
into tasklet

Injects holder
into tasklet

299Sharing data between steps
The holder technique is simple and type-safe. It has a couple of disadvantages: you
need to create an extra holder class, and the batch artifacts depend on it. The holder
technique also introduces the risk of concurrent access to the holder (an execution
could see the values from the previous execution).

 Let’s see a variation on the holder technique, which gets rid of the dependency on
the holder in the receiving tasklet.
WRITING TO THE HOLDER AND USING LATE BINDING TO READ FROM THE HOLDER

Using this pattern, the writing tasklet fills in the holder as usual, but Spring creates
and injects the receiving tasklet using late binding and SpEL. By doing so, the receiv-
ing tasklet no longer depends on the holder: it depends on a String property, which
is set by Spring when the tasklet is created, before its execution. The tasklet is less
tightly coupled to the sharing data pattern than it is using the previous technique
because it depends only on a primitive type, not on a holder class. The writing tasklet
remains the same as in listing 10.12; it depends only on the holder. The receiving task-
let reads the import ID from a property, like in listing 10.11. The following listing
shows the corresponding configuration.

<bean id="importMetadataHolder"
 class="com.manning.sbia.ch10.batch.ImportMetadataHolder" />

<bean id="verifyTasklet"
 class="com.manning.sbia.ch10.tasklet.VerifyTasklet">
 <property name="batchService" ref="batchService" />
 <property name="outputDirectory" value="/tmp/batch" />
 <property name="importMetadataHolder" ref="importMetadataHolder" />
</bean>

<bean id="trackImportTasklet"
 class="com.manning.sbia.ch10.tasklet.TrackImportTasklet"
 scope="step">
 <property name="batchService" ref="batchService" />
 <property name="importId" value="

 ➥ #{importMetadataHolder.get().getImportId()}" />
</bean>

This one is tricky, so let’s study what is happening:

1 Spring creates beans, but the creation of the verify tasklet is deferred because
it’s a step-scoped bean.

2 The verify tasklet is called and writes the import ID to the holder.
3 Once the job gets to the track step, the track tasklet is created and initialized

with the value returned by the call on the holder.
4 The job calls the track tasklet, and it uses the value of the importId property.

The key part of this technique is the creation of the step-scoped track tasklet: Spring
initializes it at the last moment, once the holder already contains the import ID. This
last technique frees the receiving tasklet from any dependency on the holder. The

Listing 10.14 Referring to the holder using late binding

Uses step
scope

Refers to holder
bean with SpEL

300 CHAPTER 10 Controlling execution
price you pay is a more complex configuration and—let’s admit it—an initialization
mechanism more difficult to understand.

 This ends our coverage of patterns used to share data in a job. We distinguish two
main pattern categories: the first relies on Spring Batch’s notion of the execution con-
text. This works great but couples your batch components with the runtime environ-
ment. The second group of patterns introduces data holder objects that batch
artifacts use to share data. This technique is more type-safe but requires the creation
of dedicated holder classes. Both techniques are roughly equivalent; choosing one
over the other is a matter of preference.

 Our preference goes to holders when we have enough energy to write holder
classes and configure Spring beans. We tend to use execution contexts when we’re
tired or feel lazy.

 We’re done with sharing data; the next section still deals with job execution but
takes a more configuration-oriented point of view. It covers how to reuse parts of your
flow configuration across jobs. This feature comes in handy when some of your jobs
share the same sequence of steps. You can configure these common steps once and
reuse the configuration across other jobs. If your job configuration contains a lot of
duplicate code, you should definitely read the next section to find ways to get rid of it!

10.4 Externalizing flow definitions
Reusability is the Holy Grail of software engineering. Spring Batch is part of this quest
when it comes to reusing batch components and job configurations. Indeed, portions
of a job configuration can be generic and reused across jobs. In the advanced version
of our import products job, before reading and writing products from a flat file, pre-
liminary steps prepare the ground for the import: a first step downloads the ZIP
archive, a second step decompresses the archive, and a third step checks the integrity
of the decompressed files. These preliminary steps are generic and could be useful to
other jobs: it’s common for a batch job to import data from a file it has downloaded.
Why not externalize this flow and reuse it in other jobs? Figure 10.14 illustrates the
process of reusing a flow in multiple jobs.

 The following listing shows how to define a standalone flow—also called an exter-
nalized flow—and how to reuse this definition in a job.

Verify

Decompress

Download

Standalone and
reusable

configuration

Import products job Import invoices job

Uses Uses

Figure 10.14 A flow
of steps can be defined
as a standalone entity
so that other jobs can
reuse it. This promotes
reusability of code and
configuration.

301Externalizing flow definitions
<flow id="prepareInputFileFlow">
 <step id="downloadStep" next="decompressStep">
 <tasklet ref="downloadTasklet" />
 </step>
 <step id="decompressStep" next="verifyStep">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="verifyStep">
 <tasklet ref="verifyTasklet" />
 </step>
</flow>

<job id="importProductsJob">
 <flow parent="prepareInputFileFlow"
 id="importProducts.prepareInputFileFlow"
 next="readWriteStep" />
 <step id="readWriteStep" next="trackImportStep">
 <tasklet>(...)</tasklet>
 </step>
 (...)
</job>

Because the prepareInputFileFlow is generic, we define it as a standalone entity. Jobs
can then use it if they need to download, decompress, and verify an input file. Think
about another scenario: testing. You want to test the import products job, but the test
effort should be on the core part of the job—the import—not on the preparation of
the input file. You can define a dummy, empty prepareInputFileFlow bean and set
up the test fixture—an input flat file copied in some working directory—and you’ll be
able to test the core part of the import products job. You don’t need to bother prepar-
ing a ZIP archive for the test!

 You can push further the idea of externalized flow by reusing a whole job. The fol-
lowing listing shows the preliminary steps of our advanced import job set up in a
standalone job. The core import job then refers to this job definition.

<job id="prepareInputFileJob">
 <step id="downloadStep" next="decompressStep">
 <tasklet ref="downloadTasklet" />
 </step>
 <step id="decompressStep" next="verifyStep">
 <tasklet ref="decompressTasklet" />
 </step>
 <step id="verifyStep">
 <tasklet ref="verifyTasklet" />
 </step>
</job>

<job id="importProductsJob">
 <step id="importProducts.prepareInputFileJob" next="readWriteStep">
 <job ref="prepareInputFileJob" />

Listing 10.15 Externalizing a flow definition for reuse

Listing 10.16 Reusing a job definition in another job

Defines
externalized flow

Uses flow
definition in job

Defines
job

Uses job definition
in other job

302 CHAPTER 10 Controlling execution
 </step>
 <step id="readWriteStep" next="trackImportStep">
 <tasklet>(...)</tasklet>
 </step>
 (...)
</job>

NOTE By default, Spring Batch passes all job parameters of the surround-
ing job to the externalized job. You can have control over these job parame-
ters by registering a JobParametersExtractor bean. A job parameters
extractor implements a translation strategy between the owning step execu-
tion and the job parameters to pass to the subjob. Spring Batch provides a
DefaultJobParametersExtractor implementation, which pulls all the job
parameters from the surrounding job to the subjob.

The externalization of flows and jobs promotes the reusability of flow code and con-
figurations. It’s also a nice feature to simplify integration tests.

NOTE Some batch systems use a scheduler to orchestrate the execution of
jobs one after another. Jobs return exit statuses, and the scheduler knows
which job to execute next by using a mapping between exit statuses and
jobs. When using externalized jobs in a Spring Batch system, you orches-
trate jobs by reusing job configurations. If you choose to orchestrate your
job executions with a scheduler and exit statuses, see section 4.2.1 on using
Spring Batch’s CommandLineJobRunner to customize exit statuses.

With the externalization of flows and jobs, you now have a new way to orchestrate job
executions. The next section shows how to get even more control over a job execution
by allowing the job execution to stop after a step. If you want to learn how to control
your jobs and to decide if a job should fail, stop, or complete, keep on reading!

10.5 Stopping a job execution
Until now, our jobs end when you reach the last step, the processing throws an excep-
tion, or we stop the execution by sending an interrupt signal. Table 10.5 summarizes
these three alternatives, which are the default mechanisms to end a job execution.

 The defaults shown in table 10.5 make sense, but a job flow isn’t always that simple.
An exception thrown in a step doesn’t always mean that the whole job execution must

Table 10.5 Default behaviors that end a job execution

Behavior Batch status Description

Last step
reached

COMPLETED The last step completes successfully, which ends the job execution.

Error FAILED Processing throws an unexpected exception.

Interrupt signal STOPPED Interrupt signal sent from an admin console like Spring Batch Admin
or programmatically.

303Stopping a job execution
fail. Perhaps the job should take another path (section 10.2 shows how to do that with
conditional flows). Perhaps the step failure isn’t critical, so the application can con-
sider the job execution complete.

 In the advanced version of the import products job, the first step consists of down-
loading a ZIP archive. If there’s no ZIP archive, what should you do? Should you end the
job execution because there’s nothing to import today? Should you stop the execution
and try to work out the situation by finding the ZIP archive somewhere else? Should you
fail the execution because you’re supposed to
have new products every day? This is more of a
business decision, and Spring Batch lets you
define the job behavior declaratively. Figure
10.15 illustrates the “what will be the status of
my job execution after this step” problem.

 To decide on the status of a job execution
after the end of a step, Spring Batch provides
three XML elements. You use them, along
with transition decisions, inside a step or
decision element. Table 10.6 describes these
three elements.

The end, fail, and stop elements have some special attributes of their own, but they
all require an on attribute. The value of the on attribute matches the value of the step
exit status. The following listing shows how to use the stop and fail elements after
the download step in the import products job.

<job id="importProductsJob" xmlns="http://www.springframework.org/schema/
batch">

 <step id="downloadStep">
 <tasklet ref="downloadTasklet">

Table 10.6 The end, fail, and stop elements

XML element Batch status Description

end COMPLETED Spring Batch completes the job after the step execution. Spring
Batch can’t restart the job instance. You can use an optional
exit-code attribute to customize the ExitCode.

fail FAILED Spring Batch fails the job after the step execution. Spring Batch
can restart the job instance. You can use an optional exit-code
attribute to customize the ExitCode.

stop STOPPED Spring Batch stops the job after the step execution. Spring Batch
can restart the job instance after a manual operation, for instance.
Requires a restart attribute to specify on which step the execu-
tion should resume.

Listing 10.17 Choosing how to end a job after a step execution

Download

?

NO FILE

??

COMPLETED

STOP

FAILED STOPPED

Figure 10.15 When a step ends, Spring
Batch lets you choose if you want to com-
plete, fail, or stop the job execution. In the
case of the import products job, if the job
didn’t download a ZIP archive, it makes sense
to consider the job execution complete.

304 CHAPTER 10 Controlling execution
 <listeners>
 <listener ref="fileExistsStepListener" />
 </listeners>
 </tasklet>
 <end on="NO FILE" />
 <next on="FILE EXISTS" to="decompressStep"/>
 <fail on="*" />
 </step>
 <step id="decompressStep" next="verifyStep">
 <tasklet ref="decompressTasklet" />
 </step>
 (...)
</job>

Listing 10.17 shows that you choose to complete the job if there’s no archive, move on
to the next step if the archive exists, and fail the job in all other cases. These decisions
are based on custom exit statuses set by a step listener after the end of the step. You
can use the end, fail, and stop elements for any exit statuses, and you could have
stuck to exit statuses like COMPLETED and FAILED. In this case, you need more seman-
tics—you have an archive file or you don’t—which is why you use custom exit statuses.

 The end, fail, and stop elements bring a lot of flexibility to job flows. With them,
you can escape from the simple “the last step completed successfully completes the
job” scenario. Combined with conditional flows, which help you go beyond linear
jobs, you can create job scenarios with complex step sequences.

 You now know everything you need to create, control, and configure job execution
flows; let’s wrap everything up.

10.6 Summary
This chapter covered patterns and techniques used to control precisely the execution
of the steps inside your jobs. Always keep things simple, but follow these guidelines
when facing complex execution scenarios:

■ Control the sequence of steps using conditional flows—Spring Batch lets you
choose declaratively which step to execute next on the basis of the exit status of
the previous step.

■ Define custom exit statuses for complex flow decisions when you reach the limit
of default exit statuses (COMPLETED, FAILED, and so on). Use your own exit sta-
tuses with a step execution listener or a job execution decider.

■ Use the execution context or holder beans to exchange data between steps—
when a step needs data computed by a previous step, use the execution con-
text to make the data accessible between steps. If you don’t want to depend on
the batch runtime, inject holder beans inside the batch artifacts that need to
share data.

■ Reuse configuration. You can externalize definitions of flows or of whole jobs
and reuse them across jobs.

■ End the execution of a job declaratively after any step—use the end, fail, and
stop elements to end a job with an appropriate batch status at the end of a step.

Ends, fails, or moves
on to next step

305Summary
With all this new knowledge, you’re now ready to start one of the most exciting parts
of this book. Chapter 11 shows how Spring Batch fits in a real-world integration sce-
nario. Be prepared to leverage your Spring Batch skills but also to discover new con-
tent on enterprise integration styles, REST, and technologies like Spring Integration.

Enterprise integration
IT systems are complex beasts: they can consist of hundreds of applications that
don’t work in isolation and need to communicate with each other. An example of
Spring Batch helping applications communicate is a batch job processing files from
one application and writing data into the database of another application. The term
enterprise integration refers to such communication techniques between applications.
Because batch processes are often central to enterprise integration projects, this
chapter is dedicated to explaining how to use Spring Batch and other Spring-related
technologies in such projects. The online store application we use in this book is a
typical enterprise integration project: the application imports product data from var-
ious systems (ACME and its partners) so that customers can browse and purchase
products through the online store web interface. Figure 11.1 illustrates how enter-
prise integration fits between the online store application and other systems.

This chapter covers
■ Exploring enterprise integration challenges
■ Using Spring Batch in enterprise integration

projects
■ Combining Spring technologies: Batch,

Integration, and MVC
306

307What is enterprise integration?
Enterprise integration is a broad topic, and trying to cover all of it would require a
whole book, much less one chapter. Instead of thinly covering as much as possible,
this chapter uses a practical approach and implements a realistic enterprise integra-
tion scenario for the online store application. By the end of this chapter, you’ll have
an overview of enterprise integration and techniques used to tackle its challenges.
These techniques rely on technologies like Representational State Transfer (REST),
messaging, and batch processes, and use frameworks like Spring MVC, Spring Integra-
tion, and Spring Batch.

 All of the chapters in this book focus on Spring Batch, but this chapter isn’t only
about Spring Batch: it covers other Spring frameworks. The point is to show you how
Spring Batch combines with other frameworks as a key component in real-world
enterprise projects. Let’s start by learning more about enterprise integration.

11.1 What is enterprise integration?
Even if we know that enterprise integration includes making applications communi-
cate with each other, the term is vague. This section gives a more comprehensive and
practical definition of enterprise integration, along with some use case examples. This
section also covers integration styles that deal with enterprise integration challenges
and we’ll see what roles Spring Batch can play in this world.

11.1.1 Enterprise integration challenges

Enterprise integration is a set of techniques and practices for connecting enterprise
applications. Most of the time, these applications don’t share the same data, don’t use
the same technologies internally, or don’t even run on the same network. Despite these
differences, these applications need to communicate to fulfill business requirements.

 Is there always a need to make applications work together? Can’t a company use a
single application? The answer is often, if not always, no. A company—even small—
doesn’t run its whole business on a single, monolithic application. It chooses a distinct
application for each of its business functions and allows picking a best-of-breed solu-
tion for each situation (homemade applications and ready-to-use products). We’re

Online storeEnterprise
integration

ACME’s system

Partner 1's system

Partner 2's system

Sends

Sends

Sends

Reads

Figure 11.1 The online store application uses enterprise integration techniques to import
product data from other systems.

308 CHAPTER 11 Enterprise integration
describing applications within the same company; what about applications in different
companies? To work with partners, a company must open parts of its IT system, and
when a company doesn’t control the applications of its business partners, it needs to
integrate with them.

 Enterprise integration should be clearer now. Let’s look at a couple of typical
enterprise integration projects.
INFORMATION PORTAL

The first type of integration project we consider is the information portal (as named in
the EIP book). Imagine a user wants to check the status of an order. This request can
access data from multiple applications:
the order management application, the
customer directory, and the inventory
application. An information portal
gathers all this information in one
place so that the end user doesn’t have
to access each application and track
the necessary data spread over each
application. Figure 11.2 illustrates an
information portal.
DATA REPLICATION

Another example of enterprise integration is data replication. Applications often use
the same data (like customers) but use their own data stores because they need a spe-
cific representation of the data. For example, a shipping application doesn’t need the
same customer data as a billing application. One application holds the reference data
(“the truth”), and the system propagates any update to this reference data to the
other applications. Figure 11.3 illustrates data replication in an enterprise.

The Enterprise Integration Patterns book
We consider Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf (Addi-
son-Wesley, 2004) one of the canons of enterprise integration. The book focuses on
solutions based on messaging and describes message-oriented patterns for enter-
prise integration. We strongly recommend reading this book for anyone involved in en-
terprise integration projects. We refer to it as the EIP book in this chapter.

Customer
directoryShipping Billing

Replicated Replicated

Figure 11.3 Data replication in an
enterprise integration project. In this
example, the customer directory holds
the reference data for anything related
to customers. The billing and shipping
applications need this information.
The system replicates data from the
customer directory to the shipping
and billing data stores.

Gathers data from

Information portal

Billing CustomerShipping

Figure 11.2 An information portal is a typical
enterprise integration project. It gathers data from
several applications and makes it available in one
place to the end user.

309What is enterprise integration?
Considering these two typical enterprise integration patterns, the information portal
and data replication, presents us with the following challenges:

■ Enforcing complex business rules that emerge from combining services
■ Replicating large amounts of data
■ Working with different technologies, such as programming languages

The list could go on; no two enterprise integration projects are the same, and you
don’t know what applications you’ll need to integrate with your system.

 Now that you have a better understanding of enterprise integration and the chal-
lenges it presents, let’s see some ways to deal with these issues.

11.1.2 Styles of enterprise integration

We use four main approaches to solve enterprise integration challenges. Per the EIP
book, we refer to these as styles:

■ File transfer—One application writes a file, and another application reads the file.
■ Shared database—Applications share the same database: there is no transfer.
■ Remote procedure invocation—An application exposes part of its functionality so

that other applications can invoke it remotely.
■ Messaging—An application publishes messages on a channel, and other applica-

tions can read these messages at their convenience.

Each integration style has its advantages, disadvantages, and limitations. No one inte-
gration style is better than another. Each specific situation dictates which one to
choose or even which combination of styles to use. Table 11.1 lists some of the pros and
cons of each integration style. Note that these tables are by no means exhaustive!

Spring offers support for each integration style. Table 11.2 lists the Spring technolo-
gies to use for each integration style.

Table 11.1 Advantages and disadvantages of integration styles

Integration style Advantages Disadvantages

File transfer Simple, interoperable Not transactional, not real-time

Shared database Simple, transactional Can be slow, schema hard to evolve

Remote procedure invocation Simple, can be fast Not interoperable, synchronous, tightly coupled

Messaging Asynchronous, scalable Complex

Table 11.2 Integration styles and corresponding Spring technologies

Integration style Spring technologies

File transfer Spring resource abstraction, Spring Batch

Shared database Spring data access (JDBC, Object-Relational Mapping, transaction)

310 CHAPTER 11 Enterprise integration
Table 11.2 shows that Spring Batch matches the file transfer style. Since this is a book
about Spring Batch, let’s talk a bit more about this so we can understand how Spring
Batch fits in enterprise integration.

11.2 Spring Batch and enterprise integration
By now, you know that Spring Batch is good at reading and writing large amounts of
data in an efficient and reliable way. You also know that Spring Batch has sophisticated
support for files of any kind (text files, XML files). This makes Spring Batch a perfect
tool for file transfer integration. Because Spring Batch provides support for databases,
an application can read data from its database and write to files, and another applica-
tion can do the mirror operation—all of this using Spring Batch!

 Spring Batch can integrate applications using file transfer, database access, and
much more. You can also combine Spring Batch with other technologies—especially
Spring technologies—to implement advanced enterprise integration solutions.

11.2.1 An enterprise integration use case

In chapter 1, we introduced the online store application. This web application sells
products from the ACME Corporation and its partners. ACME and its partners (the cli-
ents of the application) send files every day that a Spring Batch job imports every night
into the online store database. This is a typical example of file transfer integration,
illustrated by figure 11.4.

 Unfortunately, the pace of imports isn’t fast enough for some partners: they would
like to see their products available for sale as quickly as possible. One solution is to
accept small-to-midsized imports from clients and import them as quickly as possible
(an hour between the submission and import is acceptable).

Remote procedure invocation Spring remoting (Remote Method Invocation, HttpInvoker, Hessian, Burlap)

Messaging Spring JmsTemplate, Spring message container listeners, Spring
Integration

Table 11.2 Integration styles and corresponding Spring technologies (continued)

Integration style Spring technologies

Batch
process

Catalog
system

ReadsWrites

Online store
applicationNetwork

Figure 11.4 The online store application uses transfer file integration to synchronize
its catalog with partner catalogs. The corresponding batch process is the basis of
our enterprise integration scenario.

311Spring Batch and enterprise integration
ACME has decided to improve the online store backend to meet these requirements
with the following architecture:

■ Clients submit imports as XML documents over HTTP.
■ The application stores the XML documents on the file system.
■ A Spring Batch job is triggered to import the files in the store catalog.

Figure 11.5 illustrates this architecture. This figure shows Spring Batch as one of many
components in ACME’s enterprise integration scenario. A single framework couldn’t
fulfill all the tasks in this scenario by itself. You need components other than Spring
Batch to implement this scenario. The Spring MVC web framework will help you
receive import requests, and you’ll use techniques related to messaging integration to
interact with the file system using Spring Integration. Table 11.3 matches the use case
tasks with Spring technologies.

As you can see from table 11.3, Spring Integration plays an important role in our sce-
nario. Spring Integration deals with messaging enterprise integration and deserves its
own section, as described next.

Task Technology

Receiving import submissions Spring MVC

Copying imports to the file system Spring Integration

Polling file system to trigger jobs Spring Integration

Triggering jobs Spring Integration

Importing products Spring Batch

File systemClient

Online store system

Web
controller

Triggering
system

Spring Batch
import job

HTTP

<products />
Copies to

Polls

Triggers

Import files from

1
2

5
3

4

Figure 11.5 A client submits products to import over HTTP. The system copies the import data into a
file. A triggering system—like a scheduler—can then launch a Spring Batch job to read the file and
update the database accordingly. Clients update the store catalog more frequently, but the application
controls the frequency.

Table 11.3 Use case tasks and
matching Spring technologies

312 CHAPTER 11 Enterprise integration
11.3 Spring Integration, a toolbox for enterprise integration
Spring Integration is a framework to facilitate messaging enterprise integration. Like
Spring Batch, it’s part of the Spring portfolio. Spring Integration provides support for
the enterprise integration patterns described in the EIP book and makes using these
patterns easier for any Spring-based application.

TIP To learn everything there is to know about Spring Integration, read Spring
Integration in Action by Mark Fisher, Jonas Partner, Marius Bogoevici, and Iwein
Fuld (Manning Publications, 2011).

Message-based integration is difficult, so let’s see how Spring Integration helps.

11.3.1 The Spring Integration project

The Spring Integration framework aims at applying the Spring programming model
to message-based enterprise integration applications. It enables messaging within
Spring applications and provides adapters to integrate with external systems, using
various technologies (file system, Java Message Service [JMS], HTTP, Remote Method
Invocation [RMI], and so forth). Applications that communicate with messages are
more decoupled and therefore easier to integrate. For example, an ordering applica-
tion doesn’t directly communicate with a billing application: it sends a message for an
order, and the billing application handles the message when it sees fit.

 Don’t confuse Spring Integration with an enterprise service bus (ESB). Spring Inte-
gration is a framework that you embed in your applications, not a container that runs
your application code. Figure 11.6 illustrates how you can use Spring Integration in
your applications.

 Spring Integration provides support for enterprise integration patterns and simpli-
fies message handling: routing, transforming, splitting, and aggregating are all opera-
tions you can easily perform on messages with Spring Integration. Note that the
Spring Integration messaging infrastructure is agnostic to any backing technology:
messages can come from any source (a file dropped on the file system or a JMS queue,

Spring application

Spring Integration

Spring application

Spring Integration

Spring application

Spring Integration

File system
Enterprise
service bus JMS provider

Writes to
Reads fro

m

Notifies
Sends messages toExchanges messages

Figure 11.6 Spring Integration enables messaging within Spring applications. It can be
embedded in any Spring application and can integrate with external systems using built-in
adapters for various technologies, such as HTTP, JMS, file systems, and RMI.

313Spring Integration, a toolbox for enterprise integration
for example), be routed through the application thanks to the messaging bus, and
then be sent to any target. This makes applications that use Spring Integration decou-
pled from their surrounding environment.

 If the usefulness of Spring Integration is still in doubt, don’t worry: we’ll dive into
some examples soon. First, let’s examine the relationship between Spring Integration
and Spring Batch.

11.3.2 Combining Spring Integration and Spring Batch

Because enterprise integration patterns are mainly message driven and Spring Inte-
gration supports messaging, you might think Spring Integration and Spring Batch
wouldn’t need each other. After all, the Spring Batch integration style is file transfer,
not messaging. But these two frameworks are complementary, and Spring developers
who deal with enterprise integration should have both in their toolbox. If frameworks
had astrological signs, Spring Integration and Spring Batch would be compatible!

NOTE Dave Syer—the Spring Batch project lead—posted an article on his
blog on the practical use of Spring Batch and Spring Integration.1 This post
inspired the Spring Integration quick-start section in this chapter.

Spring Integration is complementary to Spring Batch: it adds the messaging inte-
gration style to the Spring Batch file transfer style. An enterprise integration
solution can use multiple integration styles, making Spring Integration and Spring
Batch appealing solutions for the two most popular integration styles: messaging and
file transfer.

 Developers can implement solutions using these two frameworks, but Spring Batch
can also use Spring Integration for internal tasks like retry and distributing chunks (in
a step) on multiple nodes. See chapter 13 to learn how to scale batch processes using
these techniques.

 The remainder of this chapter addresses the integration use case introduced in
section 11.2.1, with Spring Integration playing an important role in creating a solu-
tion. Because Spring Integration is a newcomer to this book, we give you a quick-start
guide next. You’ll learn the basics of Spring Integration, and you’ll see Spring Integra-
tion and Spring Batch working together. Let’s see how to use the Spring Integration
messaging system to launch Spring Batch jobs.

11.3.3 Spring Integration quick-start: launching a Spring Batch job

We introduce Spring Integration by implementing a generic Spring Batch job
launcher. The goal of this quick-start is twofold: discovering Spring Integration and
implementing a component to use in our use case. The principle of the job launcher
is simple: allow wrapping job launch requests in Spring Integration messages. Such
messages then trigger the launch of Spring Batch jobs, as shown in figure 11.7.

1 http://blog.springsource.com/2010/02/15/practical-use-of-spring-batch-and-spring-integration/

http://blog.springsource.com/2010/02/15/practical-use-of-spring-batch-and-spring-integration/

314 CHAPTER 11 Enterprise integration
Because Spring Integration provides adapters for many message sources (HTTP, file
system, JMS, and so on), you can launch jobs using various technologies. Let’s start by
defining a job launch request with a Java class.
JAVA REPRESENTATION OF A JOB LAUNCH REQUEST

To launch a Spring Batch job, you need the name of the job and some (optional) job
parameters. Let’s gather this information in a Java class. The following listing shows
our custom Java representation of a job launch request.

package com.manning.sbia.ch11.integration;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class JobLaunchRequest {

 private String jobName;

 private Map<String,String> jobParameters;

 public JobLaunchRequest(String jobName) {
 this(jobName,Collections.EMPTY_MAP);
 }

 public JobLaunchRequest(String jobName, Map<String,String> jobParams) {
 super();
 this.jobName = jobName;
 this.jobParameters = jobParams;
 }

 public String getJobName() {
 return jobName;
 }

 public Map<String,String> getJobParameters() {
 return jobParameters == null ? Collections.EMPTY_MAP :
 Collections.unmodifiableMap(jobParameters);
 }

}

The JobLaunchRequest class is a wrapper. It doesn’t depend on the Spring Batch API:
no one using the JobLaunchRequest class will know that you’re using Spring Batch at
the end of the processing chain.

Listing 11.1 Java representation of a job launch request

Spring Integration’s
messaging infrastructure

Job launch request message Spring Batch’s
job launcher

Commands

Figure 11.7 The Spring Integration quick-start uses Spring Integration messages to trigger Spring
Batch jobs.

315Spring Integration, a toolbox for enterprise integration
 You now need to write the code to launch a Spring Batch job from a JobLaunchRe-
quest. The following listing shows the Java class in charge of adapting a JobLaunchRe-
quest instance to the Spring Batch launching API (we elided Java imports for brevity).

package com.manning.sbia.ch11.integration;

(...)

public class JobLaunchingMessageHandler {

 private JobRegistry jobRegistry;

 private JobLauncher jobLauncher;

 public JobLaunchingMessageHandler(JobRegistry jobRegistry,
 JobLauncher jobLauncher) {
 super();
 this.jobRegistry = jobRegistry;
 this.jobLauncher = jobLauncher;
 }

 public JobExecution launch(JobLaunchRequest request)
 throws JobExecutionAlreadyRunningException, JobRestartException,
 JobInstanceAlreadyCompleteException, JobParametersInvalidException,
 NoSuchJobException {
 Job job = jobRegistry.getJob(
 request.getJobName()
);
 JobParametersBuilder builder = new JobParametersBuilder();
 for(Map.Entry<String,String> entry :
 request.getJobParameters().entrySet()) {
 builder.addString(
 entry.getKey(), entry.getValue()
);
 }
 return jobLauncher.run(job, builder.toJobParameters());
 }

}

The JobLaunchingMessageHandler class works with JobParameters and JobLauncher
objects, familiar Spring Batch classes by now. It also uses a less commonly used Spring
Batch type that deserves some explanation: the JobRegistry interface. A job registry
allows looking up a Job object by name. It’s used here because the JobLaunchRequest
class contains only the name of the job, and you want to keep this class independent
from the Spring Batch API. The following snippet declares a jobRegistry in Spring:

<bean id="jobRegistry"
 class="org.springframework.batch.core.configuration.support.

 ➥ MapJobRegistry" />
<bean class="org.springframework.batch.core.configuration.support.

 ➥ JobRegistryBeanPostProcessor">
 <property name="jobRegistry" ref="jobRegistry" />
</bean>

Listing 11.2 Launching a Spring Batch job from a JobLaunchRequest object

Looks up
job object

Converts job
parameters

Launches
job

316 CHAPTER 11 Enterprise integration
Figure 11.8 illustrates the interaction of the job launching message handler with
Spring Batch’s job registry and job launcher.

 Whereas the JobLaunchRequest is a plain old Java object (POJO), the JobLaunch-
ingMessageHandler class relies on Spring Batch components. This makes sense: the
JobLaunchingMessageHandler is a bridge between the POJO-based messaging world
and the Spring Batch launch API. Note that you use a JobLaunchingMessageHandler
with Spring Integration, but it doesn’t depend on the Spring Integration API. The
Spring Integration framework uses the JobLaunchingMessageHandler on its message
bus, but the class remains independent from any messaging infrastructure. Later, we’ll
send messages containing JobLaunchRequest objects and see Spring Integration han-
dle routing, extracting JobLaunchRequests, and calling the JobLaunchingMessage-
Handler launch method.

 You now have the necessary classes to launch Spring Batch jobs in a generic man-
ner. Let’s create a simple job to illustrate our quick-start with Spring Integration.

A SIMPLE JOB TO DISPLAY JOB PARAMETERS

Our sample job contains only a Tasklet that echoes its parameters to the console.
This job is simple but enough to make our Spring Integration quick-start complete.
The following listing shows the Tasklet code.

package com.manning.sbia.ch11;

import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;

public class EchoJobParametersTasklet implements Tasklet {

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 System.out.println(chunkContext.getStepContext().getJobParameters());
 return RepeatStatus.FINISHED;
 }

}

Listing 11.3 The echo Tasklet

Job launching
message handler

Job launch request Spring Batch’s
job launcher

Launches job with

Retrieves jobs from

Job registry

Figure 11.8 The job launching message handler receives job launch request messages and uses
Spring Batch’s job launcher to effectively launch jobs. It retrieves job beans from the job registry—
an infrastructure bean that Spring Batch provides.

317Spring Integration, a toolbox for enterprise integration
The EchoJobParametersTasklet lets you check (on the console) that Spring Batch
received the job parameters you passed through a JobLaunchRequest. Let’s now see
the configuration of Spring Integration for this Tasklet.
CONFIGURING SPRING INTEGRATION TO LAUNCH A JOB

Spring Integration relies on Spring for its configuration. Listing 11.4 shows the config-
uration to connect an input channel for job requests to the JobLaunchingMessage-
Handler and echo the JobExecution returned on the console. For brevity’s sake, we
elided the configuration of the batch infrastructure: the job launcher, job repository,
and job registry.

<int:channel id="job-requests" />

<int:service-activator
 input-channel="job-requests"
 output-channel="job-executions">
 <bean class="com.manning.sbia.ch11.integration.

 ➥ JobLaunchingMessageHandler">
 <constructor-arg ref="jobRegistry" />
 <constructor-arg ref="jobLauncher" />
 </bean>
</int:service-activator>

<int-stream:stdout-channel-adapter
 id="job-executions" />

<batch:job id="echoJob">
 <batch:step id="echoStep">
 <batch:tasklet>
 <bean class="com.manning.sbia.ch11.EchoJobParametersTasklet" />
 </batch:tasklet>
 </batch:step>
</batch:job>

In listing 11.4, you first define a job-requests message channel. You use this channel
to send messages containing JobLaunchRequest objects. Spring Integration takes care
of routing these messages to the service activator you defined. A service activator connects
the messaging infrastructure with an application service (a JobLaunchingMessage-
Handler bean in this case). Note that the Spring Integration service activator is two-way:
it passes incoming messages to the application service and sends the object returned by
the application service to an output channel. Because the JobLaunchingMessage-
Handler returns JobExecution objects, Spring Integration wraps them into messages
and sends them to the job-executions channel. You connect this channel to a console
output adapter, with the stdout-channel-adapter XML element. You can then monitor
JobExecution objects on the console.

 In figure 11.9, we use enterprise integration pattern icons to represent the flow of
messages configured in listing 11.4.

Listing 11.4 Spring Integration configuration to launch jobs

Defines input
message channel

Launches job on
incoming message

Outputs job
execution on console

318 CHAPTER 11 Enterprise integration
NOTE You can find descriptions of each icon in the EIP book and on the
Enterprise Integration Patterns website: www.enterpriseintegrationpatterns
.com. SpringSource Tool Suite uses these icons for its Spring Integration
graphical editor.

Figure 11.9 depicts your complete message flow. but one component doesn’t appear
in the Spring configuration: the sender. This is because you use Java code to send mes-
sages. Next, you write and run this program.
SENDING A JOB LAUNCH REQUEST WITH SPRING INTEGRATION

The Spring Integration message bus runs in a plain Spring application context. You
only need to bootstrap a Spring application context, get the inbound message chan-
nel bean, and send messages using it, as shown in the following listing

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "spring-integration-quick-start.xml"
);
JobLaunchRequest jobLaunchRequest =
 new JobLaunchRequest(
 "echoJob",
 Collections.singletonMap("param1", "value1")
);
Message<JobLaunchRequest> msg = MessageBuilder

Listing 11.5 Launching a job with Spring Integration

Sender Job launch
request

Job request
channel

Service
activator

Job launching
message handler

Job
execution

Job execution
channel

Stdout channel
adapter

Figure 11.9 The flow of messages represented with enterprise integration pattern icons. Job launch
requests are sent and received by the service activator, which unwraps them from messages and calls
the job launching message handler. The service activator retrieves the job executions and sends them
on a dedicated channel, where Spring Batch outputs them to the console.

Spring Integration XML namespaces
Spring Integration relies on XML namespaces for configuration. The framework in-
cludes a namespace to define generic messaging components (channel, service ac-
tivator, and so on) and namespaces for the different kinds of adapters (file system,
JMS, RMI, and so forth). Because namespace declarations are verbose (but easy to
achieve with tools like SpringSource Tool Suite), we elide them in the listings and
snippets for this chapter.

www.enterpriseintegrationpatterns.com
www.enterpriseintegrationpatterns.com

319Spring Integration, a toolbox for enterprise integration
 .withPayload(jobLaunchRequest).build();
MessageChannel jobRequestsChannel = ctx.getBean(
 "job-requests",MessageChannel.class);
jobRequestsChannel.send(msg);

In listing 11.5, you create a JobLaunchRequest (to launch your echoJob job) and wrap
the request object in a Spring Integration message. Spring Integration provides the
MessageBuilder class to create the message. You use it to set the payload (or body) of
the message with the job launch request. Once you create the message, you can look
up the job-requests channel from the application context and send the request. If
you execute the code from listing 11.5, you’ll see output like the following on the con-
sole:

{param1=value1}
JobExecution: id=1, startTime=Tue Jul 27 11:07:33 CEST 2010,

 ➥ endTime=Tue Jul 27 11:07:33 CEST 2010,

 ➥ lastUpdated=Tue Jul 27 11:07:33 CEST 2010, status=COMPLETED,

 ➥ exitStatus=exitCode=COMPLETED;exitDescription=,

 ➥ job=[JobInstance: id=1,JobParameters=[{param1=value1}],Job=[echoJob]]

The first line of output on the console comes from the EchoJobParametersTasklet.
The second line is the job execution displayed by the console channel adapter. This
means that your job launch with Spring Integration is a success!

NOTE Application code should remain agnostic to the messaging infrastruc-
ture. This isn’t the case in listing 11.5 where you refer directly to the Spring
Integration API. But thanks to Spring Integration features (wrapping/
unwrapping, gateways), application components can work directly with
application classes. Spring Integration adapts the messaging infrastructure
behavior to the application code.

This completes our quick-start guide to Spring Integration. You know the framework
basics and saw the construction of a component you’ll reuse in the use case: a message
handler to launch Spring Batch jobs. Any Spring Integration message containing a
JobLaunchRequest as its payload can trigger a job launch. Spring Integration provides

Wrapping and unwrapping messages with Spring Integration
When you send the job launch request, you wrap it in a Spring Integration message,
even though the JobLaunchingMessageHandler uses a JobLaunchRequest object.
You do this because Spring Integration automatically unwraps the payload from the
message. The framework analyzes the signature of the message handler and is
smart enough to call the handler’s method with the payload as the parameter. You
didn’t even specify a method to call in the service-activator XML element! You
can also use annotations on the message handler to help Spring Integration extract
information from the message: @ServiceActivator specifies which method to call
on an incoming message, and @Header extracts a header from the message. With
Spring Integration, message handlers can have flexible method signatures.

320 CHAPTER 11 Enterprise integration
many ready-to-use message adapters for varied message sources (JMS, HTTP, file sys-
tem, and so on) and all the features required to route and transform messages. You
now have many options to launch Spring Batch jobs.

You made two Spring-based projects work together—and how seamlessly! Our horo-
scope metaphor makes more sense now, and this is only the beginning: the Spring
Integration–based job launcher is a reusable tool, and you can now start the imple-
mentation of your use case. Fasten your seat belt and get ready to receive import job
submissions thanks to Spring MVC.

11.4 RESTful job submission with Spring MVC
In figure 11.8, the first step in our use case is to receive job submissions for the import
products job through HTTP. A submission will contain a client-defined import identi-
fier (to track the status of the import) and the products to import, all as an XML docu-
ment such as this:

<?xml version="1.0" encoding="UTF-8"?>
<products import-id="partner1-1">
 <product>
 <id>216</id>
 <name>CN Clogs Beach/Garden Clog</name>
 <description>CN Clogs Beach/Garden Clog</description>
 <price>190.70</price>
 </product>
 <product>
 <id>217</id>
 <name>ATT 8525 PDA</name>
 <description>ATT 8525 PDA</description>
 <price>289.20</price>
 </product>
</products>

Do Spring Batch and Spring Integration overlap?
No, Spring Batch and Spring Integration don’t overlap. This question comes up quite
often when exploring these frameworks, mainly because both provide support to con-
nect to external resources: files (flat or XML), JMS queues, databases, and so on.
Remember that Spring Batch is good at bulk processing: it can efficiently and reliably
read flat files with hundreds of thousands of lines, for example. Spring Integration is
more event driven: it can generate a message when it discovers a new file in a direc-
tory or on a remote FTP server. Spring Integration also provides support to route and
transform messages. How can the frameworks work together? Spring Integration can
work before Spring Batch to trigger an event that will start a job (dropping in a new
input file). This is what we do next in this chapter. You can also find Spring Integration
in Spring Batch: the remote chunking–scaling strategy that chapter 13 covers builds
on top of Spring Integration.

321RESTful job submission with Spring MVC
Because this kind of job submission works for small-to-midsized files (tens or even
hundreds of megabytes, but not more!), you can go from one large, nightly import to
several smaller, more frequent imports.

Clients send XML job submissions over HTTP—using REST semantics—and the system
routes these XML documents to the file system, where another part of the system picks
them up and sends them to Spring Batch (as we’ll see). Table 11.4 lists the tasks
involved in handling job submissions and the corresponding technologies we use to
implement them.

The first task uses Spring MVC to handle HTTP job submissions. Let’s start by deploy-
ing Spring—along with Spring MVC—in a web application.

11.4.1 Deploying Spring in a web application

In our deployment, a Spring MVC controller handles job submissions coming in as
HTTP requests. The controller delegates tracking to a repository and routing to a
Spring Integration gateway. Figure 11.10 illustrates this process.

 To deploy Spring MVC controllers, you need a DispatcherServlet. The Spring
beans related to data access and Spring Integration are deployed in the root application
context of the web application. You end up with two Spring application contexts: one

Table 11.4 Tasks and corresponding technologies to handle job submissions

Task Technologies

Receiving job submissions REST, Spring MVC

Tracking job submissions Database, Spring JDBC, and transaction support

Routing job submission messages Spring Integration

Copying job submissions to file system Spring Integration file system support

Spring MVC and REST
Spring MVC is the web framework bundled with Spring. It’s a simple yet powerful,
command-based web framework, equivalent to web frameworks like Struts 1 and
Struts 2. You can write web applications using Spring MVC with features like valida-
tion, binding, and separation between request processing and view generation. As of
Spring 3.0, it also supports REST.

What is REST? REST stands for Representational State Transfer and is a style of ar-
chitecture. The most famous implementation of REST is the World Wide Web; the
HTTP specification follows all REST semantics. REST enforces practices like state-
lessness and use of a uniform interface (HTTP operations like POST, GET, and PUT).
Servers and clients communicate through the transfer of representation of resources.

322 CHAPTER 11 Enterprise integration
for the DispatcherServlet and
another for the whole web applica-
tion. This structure is typical of web
applications using Spring MVC as
their web container. The two appli-
cation contexts share a parent-
child relationship: the Dispatcher-
Servlet application context sees all
the beans from the root application
context, but not the other way
around. Figure 11.11 illustrates the
two application contexts, their rela-
tionship, and the kinds of Spring
beans they typically own.

 The configuration has two
steps: configuring the root applica-
tion context and configuring the
Spring MVC DispatcherServlet. Chapter 4 covers both steps, so please refer to sec-
tion 4.4.1, and in section 4.4.2, the section “Configuring Spring MVC.”

 Table 11.5 displays the locations of Spring configuration files for both application
contexts in our application.

Unless specified, all Spring configurations in the next snippets and listings take place
in the configuration file for the root application context (you’ll see that there’s
not much in the Spring MVC configuration). You’re now ready to implement the
REST controller.

Table 11.5 Location of Spring configuration files in the web application

Configuration Location

Spring MVC application /WEB-INF/sbia-servlet.xml

Root application context /WEB-INF/applicationContext.xml

REST
controller

Repository
(JDBC)

Gateway
(Spring Integration)

PUT

<products />

Records
submission

Sends submission
to messaging infrastructure

Figure 11.10 Job submissions come in as HTTP PUT requests. The Spring MVC controller
uses a repository to record each submission in a database. The controller then sends
submissions to the Spring Integration messaging infrastructure through a gateway.

Web application

Dispatcher Servlet application
context

Sees beans from

Root application context

Contains Spring MVC web
controllers, Spring MVC
infrastructure beans, etc.

Contains data access beans,
Spring Batch beans, Spring

Integration beans

Figure 11.11 In a web application, a
DispatcherServlet (the heart of Spring MVC) has
its own Spring application context, which can see beans
from the root application context. The scope of the root
application context is the entire web application and
contains beans for data access, business services, and
all the beans from frameworks like Spring Batch and
Spring Integration.

323RESTful job submission with Spring MVC
11.4.2 Writing the REST web controller

Starting with Spring 3.0, Spring MVC provides support for REST. If you’re familiar with
Spring MVC, the programming model for REST support is the same as for traditional,
annotation-based Spring MVC applications. If you’re new to Spring MVC, a REST con-
troller is a POJO with Spring annotations.

 But using a REST framework isn’t enough to be truly RESTful: you need to follow
strict REST semantics, as defined by the HTTP specification. Our RESTful job submis-
sion follows these rules:

■ Operations will be accessible on the /product-imports URL—REST is all about
resources; our resource is an import products document.

■ Clients must PUT product imports on the /product-imports/{importId} URL—The
{importId} element is the import identifier. Clients generate import Ids, and
an ID must start with the name of the client in order to avoid collisions. An
example of a product import URL is /product-imports/partner1-1.

■ The import content is in the body of the request—The body of the HTTP request con-
tains the XML document describing the products to import. HTTP requests with
a nonempty body are rare in traditional web applications, but that’s not the case
in RESTful applications.

■ The system returns an appropriate status code to inform the client of whether the import
was accepted—A 202 status code is returned if the system accepts the job submis-
sion. The system can return a 409 status code if a client tries to submit the same
import multiple times. This makes job submissions idempotent—a client can
resubmit an import if it didn’t get a response. This is useful because the HTTP
protocol doesn’t provide any guarantee of delivery.

Figure 11.12 captures all these requirements.

WARNING We don’t secure the REST controller, mainly for brevity, but we
could do so with a framework like Spring Security.

If you think that fulfilling all these requirements is difficult, don’t worry: Spring MVC
makes the implementation of the REST controller a breeze!

REST
controller

PUT /product-imports/partner1-1

<products />

202 (ACCEPTED)

409 (CONFLICT)

Client

Figure 11.12 The job submission enforces REST rules. Clients must send an HTTP PUT to import
products on a specific URL, which identifies the import as a resource. The REST controller sends
back appropriate status codes: 202 if the submission is accepted, 409 if the server already
accepted the import.

324 CHAPTER 11 Enterprise integration
IMPLEMENTATION OF THE REST WEB CONTROLLER

Implementing the REST web controller by following the rules listed previously will
make you a good citizen in the REST world. You also get all the benefits of REST: the
simplicity and reliability of the HTTP protocol and interoperability with large amounts
of client technologies. Spring MVC helps to enforce these rules through its REST sup-
port. The following listing shows our job submission REST controller; this leverages
some of the REST features of Spring MVC.

package com.manning.sbia.ch11.web;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.dao.DuplicateKeyException;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseStatus;

import com.manning.sbia.ch11.integration.ProductImport;
import com.manning.sbia.ch11.integration.ProductImportGateway;
import com.manning.sbia.ch11.repository.ProductImportRepository;

@Controller
public class ImportProductsController {

 @Autowired
 private ProductImportRepository productImportRepository;

 @Autowired
 private ProductImportGateway productImportGateway;

 @RequestMapping(
 value="/product-imports/{importId}",
 method=RequestMethod.PUT)
 @ResponseStatus(HttpStatus.ACCEPTED)
 public void importProducts(
 @PathVariable String importId,
 @RequestBody String content) {
 productImportRepository.createProductImport(importId);
 productImportGateway.importProducts(content);
 }

 @ExceptionHandler(DuplicateKeyException.class)
 @ResponseStatus(
 value=HttpStatus.CONFLICT,
 reason="Import already submitted.")
 public void duplicateImport() { }

}

For the DispatcherServlet to pick up the REST controller, you annotate it with
@Controller. Because the controller is a Spring-managed bean, it can benefit from

Listing 11.6 Receiving job submissions with a REST web controller

Maps HTTP request
to controller method

B

Handles response
status code

C

Binds import ID from URL pathD
Binds HTTP
request contentE

Handles
resubmission

F

325RESTful job submission with Spring MVC
dependency injection using the @Autowired annotation for its two collaborators. The
importProducts method handles job submissions and uses Spring MVC annotations
to map the HTTP request to the method and to handle the HTTP response. The
@RequestMapping annotation B maps the URL and the PUT operation to the method.
The @ResponseStatus annotation C sets which status code to send back to the client.
At D, you bind part of the URL to the first parameter of the controller’s importProd-
ucts method with the @PathVariable annotation. Spring MVC automatically fills in
this parameter representing the import ID, as defined by the value of the @Request-
Mapping annotation. In the String "/product-imports/{imported}", the {importId}
placeholder refers to the name of the parameter in the Java method. At E, using the
@RequestBody annotation, you bind the body of the HTTP request with the second
parameter of the controller’s importProducts method. Before we see how to handle
the job submission, let’s study F, where exceptions are handled. By using the @Excep-
tionHandler annotation with a list of exception classes on a controller method, you
direct Spring MVC to call this method whenever a controller throws an exception.
This means that if Spring MVC catches a DuplicateKeyException from the import-
Products method, it calls the duplicateImport method and sends back a 409 status
code (“conflict”).

NOTE If you want to learn more about Spring MVC and its REST support, read
Spring in Action, Third Edition, by Craig Walls (Manning Publications, 2011).

Where does a DuplicateKeyException come from? It comes from handling the job
submission. In figure 11.8, we show two steps to handle submissions: first, we record
the import request, and then we send it to the messaging infrastructure. Let’s study
the first step, where the system can throw a DuplicateKeyException.
TRACKING THE JOB SUBMISSIONS WITH A JDBC-BASED REPOSITORY

The system must track job submissions such that system administrators and clients can
monitor the lifecycle of each import. The following listing shows how each product
import ID is stored in the database thanks to a JDBC-based repository.

package com.manning.sbia.ch11.repository.jdbc;

import java.util.Date;
import javax.sql.DataSource;
import org.springframework.dao.DuplicateKeyException;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;
import com.manning.sbia.ch11.repository.ProductImportRepository;

@Repository
@Transactional
public class JdbcProductImportRepository
 implements ProductImportRepository {

 private JdbcTemplate jdbcTemplate;

Listing 11.7 Tracking job submissions with a JDBC-based repository

326 CHAPTER 11 Enterprise integration
 public JdbcProductImportRepository(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 @Override
 public void createProductImport(String importId)
 throws DuplicateKeyException {
 int count = jdbcTemplate.queryForInt(
 "select count(1) from product_import "+
 "where import_id = ?",importId);
 if(count > 0) {
 throw new DuplicateKeyException(
 "Import already exists: "+importId);
 }
 jdbcTemplate.update(
 "insert into product_import "+
 "(import_id,creation_date) values (?,?)",
 importId,new Date());
 }

}

Note that the repository throws a DuplicateKeyException if there’s already an
import with the same ID in the database. Spring MVC then catches this exception and
sends a 409 status code to the client because the web controller’s method is anno-
tated with @ExceptionHandler. Listing 11.7 shows the first version of the products
import repository; we’ll improve it later to map a product import with its correspond-
ing Spring Batch job instance. Let’s now see the second step in handling the submis-
sion: the Spring Integration gateway.
GETTING ON THE SPRING INTEGRATION BUS THROUGH A GATEWAY

If you go back to the REST controller code in listing 11.6, you see that it sends the XML
content of the job submission to a ProductImportGateway. The following snippet
shows the definition of the ProductImportGateway interface:

package com.manning.sbia.ch11.integration;

public interface ProductImportGateway {

 void importProducts(String content);

}

The gateway is an enterprise integration pattern: it allows an application to access the
messaging system transparently. The XML content of the job submission goes on the
Spring Integration messaging bus, but the REST controller doesn’t know anything
about it. This makes the REST controller easier to test and more flexible because it can
be used in a nonmessaging system by providing it an appropriate ProductImport-
Gateway implementation.

 But what about our ProductImportGateway messaging implementation, the one
that sends the XML content to the messaging bus? We have good news: there won’t be
any implementation! Spring Integration provides the implementation dynamically.
This is the Spring configuration we cover next.

Checks import
existence

Inserts import
ID in database

327RESTful job submission with Spring MVC
CONFIGURING THE CONTROLLER, REPOSITORY, AND GATEWAY WITH SPRING

It’s time to configure the components used to receive product import submissions. If
you guessed that we use Spring for this configuration, you’re correct. Let’s start by reg-
istering the Spring MVC REST controller. This configuration must take place in the file
/WEB-INF/sbia-servlet.xml. The following XML snippet shows the configuration of the
REST controller:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:component-scan
 base-package="com.manning.sbia.ch11.web" />

</beans>

That’s it! Spring detects the REST controller because you use component scanning
and annotate the controller class with @Controller. Spring then wires the controller
dependencies. Let’s now see the configuration for the repository and gateway.

The repository and gateway are part of the root application context. The following
listing shows their configuration along with other infrastructure beans, such as the
transaction manager.

<?xml version="1.0" encoding="UTF-8"?>
<beans (...)>

 <bean id="productImportRepository"
 class="com.manning.sbia.ch11.repository.jdbc.

 ➥ JdbcProductImportRepository">
 <constructor-arg ref="dataSource" />
 </bean>

Listing 11.8 Declaring the gateway and repository in the root application context

Registers REST controller
with component scanning

Component scanning
Spring can autodetect beans from classes annotated with specific Spring annotations.
This feature is called component scanning because Spring scans the classpath to dis-
cover candidate classes. The annotations that trigger component scanning are ste-
reotype annotations: they also denote the use of the class (web controller or business
service, for example). Spring provides annotations like @Controller, @Service, and
@Repository, and you can even create your own by annotating them with @Component.
This allows creating your own stereotypes, also eligible for component scanning.

Declares
repository

B

328 CHAPTER 11 Enterprise integration
<int:gateway id="productImportGateway"
 service-interface="com.manning.sbia.ch11.

 ➥ integration.ProductImportGateway"
 default-request-channel="product-imports-as-string"
 />

<int:channel id="product-imports-as-string" />

<int-stream:stdout-channel-adapter
 channel="product-imports-as-string"/>

 <bean id="dataSource"
 class="org.apache.commons.dbcp.

 ➥ BasicDataSource">
 (...)
 </bean>

 <jdbc:initialize-database data-source="dataSource">
 (...)
 </jdbc:initialize-database>

 <bean id="transactionManager"
 class="org.springframework.jdbc.datasource.

 ➥ DataSourceTransactionManager">
 <constructor-arg ref="dataSource" />
 </bean>

 <tx:annotation-driven />

</beans>

The configuration starts with the repository declaration B. This is a plain Spring
bean, not much to say. The most interesting part is the gateway declaration C. You tell
Spring Integration to create an object implementing ProductImportGateway (in the
service-interface attribute). This creates a Spring bean that you can inject in any
other bean. If you call a method on this bean, Spring Integration wraps the method
argument in a message and sends it to the channel set up with the default-request-
channel attribute. Remember that the gateway pattern allows application code to
access the messaging system transparently. This is a common requirement, and Spring
Integration provides a dynamic implementation of this pattern, so you don’t need to
write any Java code. Spring Integration sends the content of each job submission to
the product-imports-as-string channel. At D, you send this content to the con-
sole. Because this is for testing purpose, you don’t wire content transfer to the file sys-
tem (you’ll do that in a later example). Finally, you configure a DataSource E and
the transaction infrastructure F.

 You’re done with the configuration, and although the system isn’t functional yet,
you can easily test it. Let’s see how this works.
TESTING A JOB SUBMISSION WITH CURL

The test checks that the REST controller receives a job submission correctly and
sends it through the gateway such that the content of the request is output on the
console.

Declares
gateway

C

Outputs content to
console for testing

D

Declares and
initializes
data source

E

Sets up
transaction
infrastructure

F

329RESTful job submission with Spring MVC
 All you have to do is send an HTTP PUT request with some content. To do that, you
use the command-line tool curl. You create a products.xml file with some valid XML
content and execute the following command:

curl http://localhost:8080/enterpriseintegration/product-imports/partner1-1

 ➥ -H 'Content-type:text/xml;charset=utf-8' -X PUT

 ➥ --data-binary @products.xml

This command sends an HTTP request with the content of the products.xml file in the
body of the request. You should see the content of the file output on the console, due
to the stdout-channel-adapter you configured (temporarily) in listing 11.8 at D.

 As an alternative to curl, let’s see a Java solution using the Spring class RestTemplate.
TESTING A JOB SUBMISSION WITH RESTTEMPLATE

Spring MVC not only provides REST support on the server side (see the REST control-
ler), it also provides REST support on the client side. The Spring class RestTemplate is
used to consume RESTful web services. In the following snippet, you use the REST tem-
plate to submit a PUT request with a small XML document in its body:

RestTemplate restTemplate = new RestTemplate();
restTemplate.put(
 "http://localhost:8080/enterpriseintegration/product-imports/{importId}",
 "<products />",
 "partner1-1"
);

The first parameter of the put method is the URL of the web service. The second param-
eter is the body of the request (a string with some XML in this case). You can then pass
any number of additional parameters for the RestTemplate to bind in the requested
URL (in this case, only one, the import ID). By executing the code in the previous snip-
pet, you should see the content of the import—<products />—output on the console.

You’re getting close to the end of handling a job submission. Next, you need to do
something with the content of the submission, namely, the XML document contained
in the body of the request. You’re going to copy the XML document to a file so that
the system picks up the file later and submits it to Spring Batch.

11.4.3 Writing the import file in a directory with Spring Integration

You received a job submission and want to store the products to import in the file sys-
tem. Because you use a Spring Integration gateway, the content of the import is now

Any other REST clients out there?
There are graphical alternatives to curl and to the RestTemplate. Firefox has a help-
ful plug-in called Poster for performing REST requests. The rest-client (hosted on
Google Code) project also provides a graphical Java-based application to test a vari-
ety of HTTP communications.

330 CHAPTER 11 Enterprise integration
on the messaging bus as an XML document. You could write a custom message han-
dler to receive the content, create a file, and copy the content into it, but as a Java pro-
grammer, you know that file I/O in Java is cumbersome. Moreover, writing the content
of a message to the file system is a common requirement, so Spring Integration pro-
vides a ready-to-use file-writing channel adapter. Figure 11.13 illustrates how the file-
writing channel adapter works in the case of our import job submission.

 Let’s see now how to configure the file-writing channel adapter.
CONFIGURING A FILE-WRITING CHANNEL ADAPTER

Spring Integration provides a dedicated XML element to declare a file-writing channel
adapter, as shown in the following XML fragment:

<int:channel id="product-imports-as-string" />

<int-file:outbound-channel-adapter
 directory="file:/var/sbia/dropin"
 auto-create-directory="true"
 channel="product-imports-as-string"
 filename-generator="productImportFileNameGenerator"
 />

<bean id="productImportFileNameGenerator"
 class="com.manning.sbia.ch11.integration.

 ➥ ProductImportFileNameGenerator" />

With the outbound-channel-adapter element, a file-writing channel adapter is sim-
ple to declare; its XML attributes are self-explanatory.

NOTE The file-writing channel adapter replaces the stdout-channel-adapter
you configured previously to consume job submission messages.

We should point out the default behavior of the file-writing channel adapter: it takes
the String payload of incoming messages and uses it as the content of the output file.
This is a reasonable default, but the channel adapter needs some help to choose the
name of the output file. It delegates this job to a filename generator that you plug in
using the filename-generator attribute. This is an example of Spring Integration
implementing boilerplate code (file I/O) and letting you plug in your business logic
(filename generation).

 Next, you create a custom implementation of a filename generator, which uses the
import ID as part of the filename.

XML content Product imports
as string

File-writing channel adapter

Filename
generator

Writes to

File system
directory

Figure 11.13 The file-writing channel adapter receives messages and
copies their payload to the file system. It delegates filename creation to
a filename generator (an example of the strategy pattern).

Copies messages’
content on file system

331RESTful job submission with Spring MVC
CREATING THE DESTINATION FILE NAME

You’re about to copy the XML document containing the job submission to a file, but
you need to be careful about the name of this file, mainly to avoid collisions. Fortu-
nately, each import has a unique ID. Recall the structure of an import file:

<?xml version="1.0" encoding="UTF-8"?>
<products import-id="partner1-1">
 (...)
</products>

By using this ID in the name of the file, you should be able to avoid duplicate file-
names. Spring Integration allows plugging in a filename generation component in its
file-writing channel adapter by implementing the FileNameGenerator interface. The
following listing shows the filename generator implementation, which uses the import
ID to generate filenames.

package com.manning.sbia.ch11.integration;

import org.springframework.integration.Message;
import org.springframework.integration.file.FileNameGenerator;
import org.springframework.util.Assert;

public class ProductImportFileNameGenerator implements FileNameGenerator {

 @Override
 public String generateFileName(Message<?> message) {
 Assert.notNull(message.getPayload());
 Assert.isInstanceOf(String.class, message.getPayload());
 String payload = (String) message.getPayload();
 return ProductImportUtils.extractImportId(payload)
 +".xml";
 }

}

The ProductImportFileNameGenerator class extracts the import ID from the XML
document and adds an XML extension to generate the name of the file. A static
method in the ProductImportUtils class encapsulates the import ID extraction. This
method contains some boilerplate XPath code to retrieve the value of the import-id
attribute (this code isn’t worth showing here).

 You’ve completed the handling of import job submissions. Clients can send HTTP
PUT requests, and the system tracks each import submission and copies its content to
the file system. You can test the submission chain with curl or the RestTemplate class
and see if the system creates the files in the target directory (assuming that you send a
valid XML file with a products element and an import-id attribute).

 Now that the import submissions are safely stored on the file system, you need to
send them to a Spring Batch job for processing. The next section covers how to
achieve this with Spring Integration.

Listing 11.9 Implementing the filename generation strategy

Uses import ID
for filename

332 CHAPTER 11 Enterprise integration
11.5 Triggering jobs from file system events
Our system handles job submissions by receiving them over HTTP and storing them
on the file system in a specific target directory. How should the system process these
files? You can launch a Spring Batch job every hour to retrieve all files from the direc-
tory and import their contents in the database. This is an easy task with a scheduler.
But what about reacting to a new import file in the directory? If you use an event-driven
system, files can be imported as soon as they arrive in the directory.

 Spring Integration provides a file message source that does exactly that: it polls a
file system directory and creates a message for each new file created in this directory.
If you can notify the system when a new import file is available, you can trigger a
Spring Batch job to import it.

 You implemented a message-driven Spring Batch job launcher in the Spring Inte-
gration quick-start. The only thing you need to add is functionality to adapt the mes-
sage coming from the file system to a request message to launch a job. Figure 11.14
illustrates this flow of messages.

In the rest of this section, we cover the configuration of the file-reading message
source, the conversion between file messages and job launch messages, and the con-
figuration of the Spring Batch import job. Let’s get started.

11.5.1 Scanning the input directory with Spring Integration

Spring Integration provides the inbound-channel-adapter XML element to declare a
message source for reading files. The following snippet shows how to use it to poll our
submission directory for new files every second (expressed as 1,000 milliseconds):

<int-file:inbound-channel-adapter
 directory="file:/var/sbia/dropin"
 channel="product-imports"
 auto-create-directory="true"

Polls

File system
directory

Product import
to job launch request

message handler
Service
activator

Spring Batch
job launcher

File-reading
message source

File

Job launch
request

Job request
channel

Product import
channel

Figure 11.14 Triggering the import job when an import file is created in the submission directory. The
Spring Integration inbound file message source polls the submission directory and sends messages for
each new file. A custom message handler converts the file messages into job launch messages. Our
message-driven job launcher receives these messages to trigger Spring Batch jobs.

333Triggering jobs from file system events
 filename-pattern="*.xml">
 <int:poller fixed-rate="1000" />
</int-file:inbound-channel-adapter>

Every time the inbound file message source detects a new file in the submission direc-
tory, it sends a Spring Integration message with a File payload. This message contains
enough information to trigger the import job, but it needs some transformation
before going into our generic job launcher.

11.5.2 Converting a file into a job launch request

Our goal now is to create a Message<JobLaunchRequest> object from a Mes-
sage<File> object. Figure 11.15 illustrates this conversion.

 We haven’t implemented the import job yet, but you can guess from figure 11.15
that its name will be importProducts and that it will need the import ID and the path
to the import file as parameters. The following snippet shows the Java class that does
the conversion between the two types of messages:

package com.manning.sbia.ch11.integration;

import java.io.File;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.io.FilenameUtils;

public class ProductImportToJobLaunchRequestHandler {

 public JobLaunchRequest adapt(File products) {
 String importId = FilenameUtils.getBaseName(
 products.getAbsolutePath()
);
 Map<String, String> jobParams = new HashMap<String, String>();
 jobParams.put("importId", importId);
 jobParams.put("inputFile", products.getAbsolutePath());
 return new JobLaunchRequest("importProducts",jobParams);
 }

}

The ProductImportToJobLaunchRequestHandler class is a POJO, which doesn’t know
anything about messaging. You should now know enough about Spring Integration
not to be surprised: we rely on Spring Integration to wrap and unwrap our application
objects around and from messages automatically. You shouldn’t be surprised either to

File

/var/sbia/dropin/partner1-1.xml

JobLaunchRequest
jobName = importProducts
jobParameters =
{importId=partner1-1,

inputFile=/var/sbia/dropin/partner1-1.xml}

Figure 11.15 The conversion between a file message and a job launch request message.
The latter then goes to the generic job launcher to trigger the import job.

334 CHAPTER 11 Enterprise integration
learn that a service activator will plug our handler into the messaging infrastructure,
as shown in the following snippet:

<int:service-activator
 input-channel="product-imports"
 output-channel="job-requests">
 <bean class="com.manning.sbia.ch11.integration.

 ➥ ProductImportToJobLaunchRequestHandler" />
</int:service-activator>

That’s it; the whole job submission chain is connected to the job launcher! Remem-
ber, we started from a REST request, went through the file system, and finally reused
our message-driven job launcher. At the end of this chain lies the import job itself, so
let’s see some Spring Batch code to implement it.

11.5.3 Implementing the import job

The import job reads the input XML file and updates the database accordingly. It looks
like something Spring Batch can easily handle. Nevertheless, you must implement a pre-
liminary step: mapping the import with the job instance. Why do you need to do that?
Imagine you want to know if the partner1-1 import completed successfully. You track
imports by inserting their IDs in the database—mainly to avoid resubmissions—but you
don’t store anything about the status of imports. Spring Batch maintains metadata about
everything it does, so by mapping an
import with a job instance, you know the
status of the import. Nice, isn’t?

 Figure 11.16 shows the two steps of
the import job.

 Let’s start at the beginning: the task-
let that maps the import with the job
instance.
MAPPING THE IMPORT WITH THE JOB INSTANCE

A custom tasklet is in charge of mapping the import with the job instance. The
product_import database table stores the mapping, so you only need to update it. The
JdbcProductImportRepository centralizes the operation on the product_import
table, so you modify it to add the mapping method, as shown in the following listing.

package com.manning.sbia.ch11.repository.jdbc;

(...)

@Repository
@Transactional
public class JdbcProductImportRepository
 implements ProductImportRepository {

 (...)

Listing 11.10 Updating the repository to map the import with the job instance

Mapping import to
job instance

Reading and
writing products

Figure 11.16 The import job has two steps. The
first step maps the import to the job instance, which
gives you access to the import status. The second
step reads the XML file and updates the database.

335Triggering jobs from file system events
 @Override
 public void mapImportToJobInstance(String importId, Long jobInstanceId) {
 jdbcTemplate.update(
 "update product_import set job_instance_id = ? where import_id = ?",
 jobInstanceId,importId);
 }

}

Because a Spring Batch step can’t manipulate the repository, you implement the cus-
tom Tasklet shown in the following listing.

package com.manning.sbia.ch11.batch;

import org.springframework.batch.core.StepContribution;
import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.util.Assert;
import com.manning.sbia.ch11.repository.ProductImportRepository;

public class ImportToJobInstanceMappingTasklet
 implements Tasklet,InitializingBean {

 private String productImportId;

 private ProductImportRepository productImportRepository;

 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 Long jobInstanceId = chunkContext.getStepContext()
 .getStepExecution().getJobExecution()
 .getJobInstance().getId();
 productImportRepository.mapImportToJobInstance(
 productImportId, jobInstanceId
);
 return RepeatStatus.FINISHED;
 }

 public void setProductImportId(String productImportId) {
 this.productImportId = productImportId;
 }

 public void setProductImportRepository(
 ProductImportRepository productImportRepository) {
 this.productImportRepository = productImportRepository;
 }

 @Override
 public void afterPropertiesSet() throws Exception {
 Assert.notNull(productImportId);
 }

}

Listing 11.11 Tasklet to map the import with the job instance

Gets job instance
from runtime

Maps import with
job instance

336 CHAPTER 11 Enterprise integration
The first step of the job is complete. Let’s now see how to read products from XML
and write them to the database.
READING XML AND WRITING INTO THE DATABASE

The second step is a traditional read-write scenario, so the import isn’t a big deal to
implement with Spring Batch. You use Spring Batch’s XML support to read the XML
file and do some configuration. To update the database, you reuse the JDBC writer
implemented in chapter 1. Recall that this writer only inserts or updates products in
the database, depending on whether those products already exist. You don’t write any
new code for the writing phase, but you have to do some configuration work.

 Spring Batch provides support to map XML fragments with Java objects. The
framework integrates with a Spring module called Spring OXM to do this job. Spring
OXM is mostly an abstraction that can plug into existing marshalling libraries. We use
Castor here, but XStream, JAXB 2, or XMLBeans would work as well.

 Castor needs metadata to map an XML fragment to a Java class. The metadata can
be in an XML document, as shown in the following listing.

<mapping>

 <class name="com.manning.sbia.ch01.domain.Product" identity="id">
 <map-to xml="product" />
 <field name="id" type="string">
 <bind-xml name="id" node="element" />
 </field>
 <field name="name" type="string">
 <bind-xml name="name" node="element" />
 </field>
 <field name="description" type="string">
 <bind-xml name="description" node="element" />
 </field>
 <field name="price" type="big-decimal">
 <bind-xml name="price" node="element"/>
 </field>
 </class>

</mapping>

You can then declare a Spring OXM marshaller that points to this mapping file:

<bean id="marshaller"
 class="org.springframework.oxm.castor.CastorMarshaller">
 <property name="mappingLocation"
 value="classpath:/com/manning/sbia/ch11/batch/castor-xml-mapping.xml"
 />
</bean>

The Spring Batch XML reader needs a reference to this marshaller bean to create
product Java objects from the incoming XML file. Let’s put all of this together by con-
figuring the job.

Listing 11.12 Configuring Castor to map XML to the Product class

337Triggering jobs from file system events
CONFIGURING THE JOB

The following listing shows the job configuration, where you wire together the steps
and their components: mapping tasklet, reader, and writer.

<batch:job id="importProducts"
 xmlns="http://www.springframework.org/schema/batch">
 <step id="mapImportToJobInstanceStep"
 next="readWriteProductsStep">
 <tasklet ref="mapImportToJobInstanceTasklet" />
 </step>
 <step id="readWriteProductsStep" >
 <tasklet>
 <chunk reader="productsReader"
 writer="productsWriter"
 commit-interval="100" />
 </tasklet>
 </step>
</batch:job>

<bean id="mapImportToJobInstanceTasklet"
 class="com.manning.sbia.ch11.batch.

 ➥ImportToJobInstanceMappingTasklet"
 scope="step">
 <property name="productImportId"
 value="#{jobParameters['importId']}" />
 <property name="productImportRepository"
 ref="productImportRepository" />
</bean>

<bean id="productsReader"
 class="org.springframework.batch.item.xml.

 ➥ StaxEventItemReader"
 scope="step">
 <property name="unmarshaller" ref="marshaller" />
 <property name="fragmentRootElementName"
 value="product" />
 <property name="resource"
 value="file:#{jobParameters['inputFile']}" />
</bean>

<bean id="productsWriter"
 class="com.manning.sbia.ch01.batch.

 ➥ProductJdbcItemWriter">
 <constructor-arg ref="dataSource" />
</bean>

If you’re this deep in the book, listing 11.13 should be clear (wink!). You configure
the job with a plain Tasklet step and a chunk-oriented step. You also use late binding
with the step scope to refer to job parameters. Don’t hesitate to refer to chapter 5 if
you want a quick reminder of an XML reader configuration.

 This time, this is it; you completed the import of products! You used enterprise inte-
gration techniques to make the update of the online application event driven. Not only

Listing 11.13 Configuring the import products job

Configures
job

Declares
mapping tasklet

Declares reader
and writer

338 CHAPTER 11 Enterprise integration
do nightly imports update the catalog, but clients can choose to submit updates through
HTTP and see results quickly. Spring Batch lives at the end of this chain but fits nicely
with REST and event-driven technologies like Spring MVC and Spring Integration.

 Now that the import works, we can easily improve the system by adding monitoring
features. Next, we provide access to the status of imports through REST.

11.6 RESTful job monitoring with Spring MVC
The online store application can now receive updates more frequently; you imple-
mented this feature in the previous section. But the system is a black box to the client
that submits imports. How can clients know that the application received and success-
fully processed the imports they submitted? It’s time to complement the REST inter-
face of our new system by communicating the status of imports.

 Remember the first step of the import job: mapping the import to the job instance
in the database. Spring Batch maintains metadata about the executions of batch pro-
cesses—this is a key feature for monitoring but also for restarting jobs—so accessing
the metadata is useful to communicate the state of an import job to a client.

 Our goal is for clients and system administrators to be able to access the status of
any import job. The REST controller is the entry point; it retrieves the information
from the database thanks to an improved version of the JDBC repository. Figure 11.17
illustrates the architecture of our monitoring feature.

Adding this feature requires modifying the JDBC repository, the REST controller, and
some configuration in the Spring MVC servlet (but these modifications are minor).
Let’s start by improving the repository.

11.6.1 Getting access to the job metadata in the repository

The JdbcProductImportRepository communicates the state of imports through Pro-
ductImport objects. The following listing shows the implementation of the Product-
Import class.

package com.manning.sbia.ch11.integration;

public class ProductImport {

Listing 11.14 Representing the status of an import in the ProductImport class

Repository
(JDBC)

REST
controller

GET /product-imports/partner1-1

<product-import />
202 (ACCEPTED)

404 (NOT FOUND)

Client

System data +
batch metadata

Figure 11.17 A client can find out the status of an import from the REST controller. The controller
consults the repository, which uses system data and Spring Batch metadata to communicate the status
of import jobs.

339RESTful job monitoring with Spring MVC
 private String importId;

 private String state;

 public ProductImport() { }

 public ProductImport(String importId, String state) {
 super();
 this.importId = importId;
 this.state = state;
 }

 // getters and setters
 (...)

}

The ProductImport class is a POJO; its only goal is to encapsulate data. You’ll see later
that the system serializes instances of this class to XML and sends them to the client.
For now, you’re going to modify the JDBC repository to load ProductImport objects
from the database, as shown in the following listing.

package com.manning.sbia.ch11.repository.jdbc;

import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobInstance;
import org.springframework.batch.core.explore.JobExplorer;
import org.springframework.dao.EmptyResultDataAccessException;
import com.manning.sbia.ch11.integration.ProductImport;
import com.manning.sbia.ch11.repository.ProductImportRepository;
(...)
@Repository
@Transactional
public class JdbcProductImportRepository
 implements ProductImportRepository {

 private JdbcTemplate jdbcTemplate;

 private JobExplorer jobExplorer;

 public JdbcProductImportRepository(
 DataSource dataSource,JobExplorer jobExplorer) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 this.jobExplorer = jobExplorer;
 }

 (...)

 @Override
 public ProductImport get(String importId) {
 int count = jdbcTemplate.queryForInt(
 "select count(1) from product_import "+
 "where import_id = ?",importId);
 if(count == 0) {
 throw new EmptyResultDataAccessException(
 "No import with this ID: "+importId,1);
 }

Listing 11.15 Retrieving the status of imports from the repository

Checks import
existence

B

340 CHAPTER 11 Enterprise integration
 String status = "PENDING";
 Long instanceId = jdbcTemplate.queryForLong(
 "select job_instance_id from product_import "+
 "where import_id = ?",importId);
 JobInstance jobInstance = jobExplorer
 .getJobInstance(instanceId);
 if(jobInstance != null) {
 JobExecution lastJobExecution = jobExplorer
 .getJobExecutions(jobInstance).get(0);
 status = lastJobExecution.getStatus().toString();
 }
 return new ProductImport(importId, status);
 }

}

Listing 11.15 shows a new repository class dependency: JobExplorer. The Spring
Batch JobExplorer interface provides easy access to batch metadata. The repository
uses it to retrieve job instances and job executions. The repository’s get method con-
tains the logic to communicate the status of an import. It starts by checking the exis-
tence of the import the caller is querying B. If the method finds no corresponding
import, it throws an exception. Once you know the import exists, you can start think-
ing about communicating its status. At C, you define the default status—PENDING—
which means the import exists but no corresponding job instance exists yet (the
import file is in the submission directory, waiting for Spring Integration to pick it up).
At D, you try to find the corresponding job instance, and if it exists, you retrieve the
status of its last execution.

NOTE The repository only communicates the status of the import, but it
could also communicate any information available in the batch metadata,
such as duration of the import and number of records written and skipped.

The new version of the repository is a good example of using Spring Batch beans to
access batch metadata. Because the repository now depends on the job explorer, it
requires a modification in its Spring configuration. The following snippet shows how
to declare the job explorer and how to inject it in the repository:

<bean id="jobExplorer"
 class="org.springframework.batch.core.explore.support.

 ➥ JobExplorerFactoryBean">
 <property name="dataSource" ref="dataSource" />
</bean>
<bean id="productImportRepository"
 class="com.manning.sbia.ch11.repository.jdbc.

 ➥ JdbcProductImportRepository">
 <constructor-arg ref="dataSource" />
 <constructor-arg ref="jobExplorer" />
</bean>

Now that the repository connects the application and Spring Batch, let’s see how to
leverage this information in the web controller.

Sets
default
import
statusC

Gets job
instance
status

D

341RESTful job monitoring with Spring MVC
11.6.2 Communicating job status from a web controller

To communicate the status of an import, the REST web controller needs to follow the
strict semantics illustrated back in figure 11.17:

■ Answering GET operations from a resource URL
■ Sending back a 200 (OK) status code if everything goes fine
■ Sending back a 404 (NOT FOUND) status code if there’s no import for the

requested URL

The following listing shows how to fulfill these requirements with Spring MVC REST.

package com.manning.sbia.ch11.web;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.dao.EmptyResultDataAccessException;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.ResponseStatus;
import com.manning.sbia.ch11.integration.ProductImport;
import com.manning.sbia.ch11.repository.ProductImportRepository;
(...)
@Controller
public class ImportProductsController {

 @Autowired
 private ProductImportRepository productImportRepository;

 (...)

 @RequestMapping(
 value="/product-imports/{importId}",
 method=RequestMethod.GET)
 @ResponseBody
 public ProductImport getProductImport(
 @PathVariable String importId) {
 return productImportRepository.get(importId);
 }

 @ExceptionHandler(
 EmptyResultDataAccessException.class)
 @ResponseStatus(value=HttpStatus.NOT_FOUND,
 reason="No product import for this ID.")
 public void noImportFound() { }

}

The web controller delegates the retrieval of the ProductImport to the repository.
If everything goes well, the system sends the ProductImport object to the response-
rendering mechanism. Remember that the repository throws an EmptyResultData-
AccessException if there’s no import for the given ID. Such an exception triggers the

Listing 11.16 Communicating the status of an import with the web controller

Sends back
product
import status

Sends 404 if no
import found

342 CHAPTER 11 Enterprise integration
exception-handling mechanism in Spring MVC, which calls the noImportFound method
(annotated with @ExceptionHandler). The noImportFound method sends back a 404
(NOT FOUND) status code, following REST semantics.

 But what happens to the ProductImport returned by the getProductImport
method? You want the framework to serialize a ProductImport object to XML and
send it back to the client in the response body. Spring MVC can do that, but it needs
some hints. The first hint is the @ResponseBody annotation on the getProduct-
Import method to trigger a special, REST-oriented rendering of the response in
Spring MVC.

 This rendering mechanism is based on message converters (HttpMessageCon-
verter is the corresponding Spring interface) whose goal (among others) is to stream
a Java object in the HTTP response. Spring MVC registers some default message con-
verters, but you’ll need to override them if you want to convert the ProductImport
object into XML properly. Fortunately, Spring MVC integrates nicely with Spring OXM
to do this job. Recall that in section 11.5.3, where Castor was used to import the XML
products file into the database, you complemented the mapping information with
instructions for the ProductImport class and plugged the Castor marshaller into
Spring MVC.

 The following listing shows how to provide the mapping information to Castor for
converting a ProductImport object to XML.

<mapping>

 <class name="com.manning.sbia.ch01.domain.Product" identity="id">
 (...)
 </class>

 <class name="com.manning.sbia.ch11.integration.ProductImport">
 <map-to xml="product-import" />
 <field name="importId" type="string">
 <bind-xml name="import-id" node="element" />
 </field>
 <field name="state" type="string">
 <bind-xml name="state" node="element" />
 </field>
 </class>

</mapping>

Spring MVC needs to know about the Castor marshaller you defined earlier. This
means registering an XML-based message converter using the marshaller and plug-
ging this message converter into Spring MVC’s HandlerAdapter. The following listing
shows the necessary configuration to make Spring MVC use the XML message
converter. Because this is a Spring MVC configuration, it should take place in the file
/WEB-INF/sbia-servlet.xml.

Listing 11.17 Completing the Castor configuration to map the ProductImport class

343RESTful job monitoring with Spring MVC
<?xml version="1.0" encoding="UTF-8"?>
<beans (...)>

 <bean class="org.springframework.web.servlet.mvc.annotation.

 ➥ AnnotationMethodHandlerAdapter">
 <property name="messageConverters">
 <list>
 <bean class="org.springframework.http.converter.

 ➥ StringHttpMessageConverter" />
 <bean class="org.springframework.http.converter.xml.

 ➥ MarshallingHttpMessageConverter">
 <constructor-arg ref="marshaller" />
 </bean>
 </list>
 </property>
 </bean>

 <context:component-scan base-package="com.manning.sbia.ch11.web" />

</beans>

The Spring configuration in listing 11.18 is complex. Read the corresponding sidebar
to learn more details about Spring MVC, handler adapters, and message converters.

Testing the monitoring feature is easy: first, submit an import to the system (see the
source code for this book). Let’s assume you submit a partner1-1 import: you can use
curl (or a web browser) to access it:

curl http://localhost:8080/enterpriseintegration/product-imports/partner1-1

The response (formatted for readability) should look like the following:

Listing 11.18 Using the XML message converter with Spring MVC

Spring MVC, handler adapters, and message converters
The DispatcherServlet class is at the heart of the Spring MVC framework. It dele-
gates work to infrastructure beans that include a handler adapter. The Annotation-
MethodHandlerAdapter is a handler adapter implementation that allows using all of
the annotations we’ve seen on Spring MVC web controllers. The Dispatcher-
Servlet has such a handler adapter set up by default, but you can override it by de-
claring your own in the Spring application context for the servlet. That’s exactly what
you do in listing 11.18, because the default AnnotationMethodHandlerAdapter
doesn’t use Castor to serialize objects into XML returned by web controllers.
Message converters registered on the handler adapter perform this serialization. You
use a MarshallingHttpMessageConverter to use the Castor marshaller. But how
can you refer to this Castor marshaller bean? Remember, the root application context
defines the marshaller, whose beans are all visible from the application context of
a DispatcherServlet.

344 CHAPTER 11 Enterprise integration
<?xml version="1.0" encoding="UTF-8"?>
<product-import>
 <import-id>partner1-1</import-id>
 <state>COMPLETED</state>
</product-import>

Congratulations, you completed the entire use case! This monitoring feature is the
final touch on our enterprise integration system. Clients can now interact and control
everything in the system, from import submissions to job monitoring.

11.7 Summary
This was quite a journey! Spring Batch can do so much more than handle large
amounts of data through nightly cron jobs. Spring Batch is flexible enough to be part
of an enterprise integration project that uses the messaging integration style. The sce-
nario used in this chapter illustrates how different systems can communicate using
lightweight and effective techniques and stay loosely coupled. Because of our new cli-
ent submission architecture for imports to the online store, clients can update the
catalog more frequently, in a simple way. Implementing our integration use case
involved technologies like REST, file manipulation, messaging, and batch processes.
Spring technologies—Spring MVC, Spring Integration, and Spring Batch—facilitated
this implementation.

 We finished by using Spring Batch job metadata to communicate the status of
imports to clients. This monitoring feature rounds out our use case and, in chapter 12,
you’ll discover more monitoring techniques.

Monitoring jobs
In the real world, errors occur when running batch jobs. Batch jobs exchange data
between different information systems and tools, and it’s not always easy to guaran-
tee consistency among these systems. Detecting job errors is more difficult because
jobs don’t require user interaction during execution. Detecting errors is also more
challenging because applications generally execute batch jobs in the background.

 In some cases, rerunning batch jobs is enough to solve problems, such as when
a system like a database is temporarily down. When errors are caused by bad data,
running the batch job again won’t solve the problem. Because batch jobs run
mainly in the background, receiving notifications when errors occur is critical. How
do you solve this problem? You provide support in your application for batch mon-
itoring and management.

 Batch monitoring tracks batch job executions. Spring Batch makes it possible to
monitor a job because it collects data on job and step executions and saves it to a

This chapter covers
■ Understanding the job metadata managed by

Spring Batch
■ Using Spring Batch objects to interact with the

job metadata
■ Monitoring jobs
345

346 CHAPTER 12 Monitoring jobs
database. Spring Batch provides classes to access the database and acts as the founda-
tion for monitoring tools.

 In this chapter, we cover what monitoring is and how to monitor job executions in
Spring Batch. We then go through the different ways to monitor batch job executions
as supported by the job repository database. First, let’s see what monitoring is.

12.1 Introducing monitoring
In the scope of computer science, the word monitoring is used in different contexts:
network, system, and website monitoring, for example. In all cases, monitoring aims
to detect problems automatically and notify administrators through dedicated con-
soles and applications. This is a best practice used to detect errors that may occur in
an application. For Spring Batch applications, this means detecting errors in jobs and
notifying administrators.

 In this section, we show what monitoring looks like at a high level and see its func-
tion in the context of batch job executions.

12.1.1 Monitoring overview

Before we get into the benefits of monitoring, let’s first look at a high-level example by
monitoring a web application. The goal is to make sure the application is reachable
and that it responds to requests within a given time limit. Figure 12.1 depicts monitor-
ing a web application.

 For this use case, you can imagine a monitoring tool that checks that the web
server process is up, the web application is available through HTTP, and the applica-
tion responds to requests within a given time limit. This tool displays its results
through a web page that it updates periodically and notifies administrators via email
when problems occur.

Web applicationWeb server

H
TT

P

Web server process

Monitoring tool

Checks web server
process

Checks web
application

availability through
HTTP

Figure 12.1 Monitoring a web application and checking its availability

347Introducing monitoring
A monitoring tool has two main features: detection and notification. The tool detects
job execution errors and automatically sends notifications to application administra-
tors depending on the severity of the problem. We call these notifications alerts. A tool
can send an alert using email, Short Message Service (SMS), instant messaging, and so
on. Monitoring an application warns you quickly of errors and provides information
to allow you to diagnose and solve problems. This improves applications’ availability.

 You now have a high-level view of monitoring. Let’s see how monitoring works with
batch jobs in Spring Batch.

12.1.2 Batch jobs and monitoring

Monitoring is particularly useful and even essential in the context of batch jobs
because applications execute jobs in the background without a user interface.

 Monitoring is possible with Spring Batch because it records everything that happens
during batch job executions in a job repository database. Figure 12.2 shows interactions
between batch job executions and monitoring tools using the job repository database.

 In figure 12.2, you can see that Spring Batch stores everything that happens dur-
ing job execution in the job repository database; tools also access the job repository

Web
monitoring

console

Job
repository

Spring Batch
process

Spring Batch
process

JMX serverWeb
navigator JMX client

Spring Batch process
executions

Spring Batch process
monitoring

JobRepository

JobExplorer or
JobOperator

Uses

Uses

Accesses

Accesses

Figure 12.2 Monitoring
batch jobs using execution
data from the job repository
database

348 CHAPTER 12 Monitoring jobs
database to provide monitoring and management. The repository tracks not only the
whole batch job but also its component steps. This makes it possible to know precisely
when and where errors occur.

 You now know what monitoring is and what it looks like in general, as well as how it
applies to batch jobs. It’s time to get to the meat of the chapter by focusing on the job
repository and detecting errors. Next, we describe accessing the job repository data-
base from Java applications using the Spring Batch API. We also use Spring Batch
Admin and JMX to monitor batch job executions.

 When executing batch jobs, Spring Batch records information about what hap-
pens in the job repository database. This information is the foundation used to moni-
tor executions.

12.2 Accessing batch execution data
As described in the previous section, monitoring uses data from the job repository
database managed by the Spring Batch infrastructure. The first step in monitoring
batch job executions is to understand the Spring Batch database schema. You’ll then
learn how to access the data using Spring Batch.

 In this section, you use a database-based repository with JDBC. You should use an
in-memory repository only for tests, not in production environments. Spring Batch
provides a set of Data Access Objects (DAOs) that every class interacting with the per-
sistent job repository uses internally. First, we look at the job database schema used by
Spring Batch for a persistent job repository. Learning about this schema helps you
understand how to monitor applications.

12.2.1 Job database schema

Spring Batch includes a built-in database schema for persistent job repositories but
doesn’t provide automatic schema creation. Spring Batch does, however, contain all
the necessary scripts used to create this schema depending on your database. The
scripts are located in the org.springframework.batch.core package. Spring Batch uses
JDBC to interact with the job repository database. You use Spring’s JDBC facilities and
its JDBC XML vocabulary to create the database structure, as in following snippet:

<bean id="dataSource" class="(...)"> (...) </bean>

<jdbc:initialize-database data-source="dataSource">
 <jdbc:script
 location="classpath:/org/springframework/batch/core/schema-h2.sql"/>
 <!-- Additional scripts for application -->
 <jdbc:script location="classpath:/create-tables.sql"/>
</jdbc:initialize-database>

After configuring the data source to access the job repository, you specify the class
path location of the H2 database script. Script filenames follow the pattern schema-
<DATABASE-TYPE>.sql. All SQL scripts create the tables described in figure 12.3.
Notice that Spring Batch also provides cleanup scripts for dropping the tables. These

349Accessing batch execution data
scripts are located in the same package and follow the pattern schema-drop-<DATA-
BASE-TYPE>.sql.

 Figure 12.4 shows the Spring Batch classes that carry the same data as the database
tables. These classes store everything that happens during batch job executions.
Because they provide an object-oriented representation of the tables they map, we use
these classes to describe the schema.

BATCH_JOB_INSTANCE

JOB_INSTANCE_ID
VERSION

JOB_NAME
JOB_KEY

BATCH_JOB_PARAMS

BATCH_JOB_EXECUTION

JOB_EXECUTION_ID
VERSION

JOB_INSTANCE_ID
CREATE_TIME
START_TIME

END_TIME
STATUS

EXIT_CODE
EXIT_MESSAGE
LAST_UPDATED

BATCH_STEP_EXECUTION

STEP_EXECUTION_ID
VERSION

STEP_NAME
JOB_EXECUTION_ID

START_TIME
END_TIME

STATUS
COMMIT_COUNT

READ_COUNT
FILTER_COUNT
WRITE_COUNT

READ_SKIP_COUNT
WRITE_SKIP_COUNT

PROCESS_SKIP_COUNT
ROLLBACK_COUNT

EXIT_CODE
EXIT_MESSAGE
LAST_UPDATED

JOB_INSTANCE_ID
TYPE_CD

KEY_NAME
STRING_VAL

DATE_VAL
LONG_VAL

DOUBLE_VAL

Figure 12.3 Database
schema for the Spring
Batch job repository

Entity

JobInstance

JobParameters

JobExecution

StepExecution

jobName
createTime

endTime
exitStatus

failureExceptions
jobId

lastUpdated
startTime

status
running
stopping

id
version

commitCount
endTime

exitStatus
failureExceptions

filterCount
jobExecutionId
jobParameters

lastUpdated
processSkipCount

readCount
readSkipCount
rollbackCount

skipCount
startTime

status
stepName
summary

writeCount
writeSkipCount Figure 12.4 Job execution classes

350 CHAPTER 12 Monitoring jobs
Table 12.1 provides a short description of each class involved in job executions.

To help you understand the roles these classes play, we describe how Spring Batch
populates these objects when it executes a job.

 When Spring Batch launches a job, it first checks to see if a job instance exists. A
job instance includes a set of parameters. With this information, Spring Batch deter-
mines if it can launch the job. Spring Batch then creates a job execution that
includes information like the creation timestamp, start time, and a link to its job
instance. The last task is to execute the job steps. After Spring Batch executes each
job step, the exit status is set on each step; the global exit status for the job is set after
all steps are executed.

 Figure 12.5 shows the interactions between a job’s lifecycle and the job repository.
 You now know what happens during job execution and how Spring Batch popu-

lates data in the job repository. It’s time to see what data is present in the job reposi-
tory database after an execution of the imports products job from our case study. As

Table 12.1 Job execution classes and descriptions

Class Description

JobInstance A job instance with a set of parameters

JobParameters The parameters of a job instance

JobExecution An execution of a job instance

StepExecution An execution of a step within a job execution

Launching job

Job repository

JobInstance

JobExecution

StepExecutionExecuting step

Executing job

Creates step execution data

Sets exit status of
step execution

Creates job execution data

Sets exit status of job
execution

For each step

Checks job instance

Executing job instance

Creates step execution
data

Figure 12.5 Interactions between job and repository during batch execution

351Accessing batch execution data
you may recall, the job consists of a single step: read products from a file and insert
them in a database table.

 You launch the job importProductsJob four times with different parameters. Fig-
ure 12.6 shows the contents of the BATCH_JOB_INSTANCE table.

 Because you launched the job importProductsJob four times, you have four rows
in the BATCH_JOB_INSTANCE table. For each job instance, you execute the job only
once, so you find one job execution row per job instance in the BATCH_JOB_EXECUTION
table, for four rows, as shown in figure 12.7. In addition to the start and end times of
the execution, you can also see the status and exit codes and that only one execution
completed successfully; the other three failed.

The BATCH_STEP_EXECUTION table provides an additional level of detail. You can see
which steps the job executed for each job execution, as described in figure 12.8.
Because there’s only a single step in the importProductsJob job, you find four
rows for the executions (one per execution) and see that only a single step ended
successfully. The exit codes of these step executions correspond to the exit codes of
the job executions.

 These database tables let you follow the execution of batch jobs and see what
happens at both the job and step levels. You can easily get into the database with a
tool like Squirrel—a universal SQL client for JDBC—but Spring Batch provides enti-
ties and facilities to access and visualize the data from Java applications and monitor-
ing tools.

 In the next section, we describe how to explore the job repository using Spring
Batch facilities and how to detect problems in batch job executions.

Figure 12.6 Contents of the
BATCH_JOB_INSTANCE table

Figure 12.7 Contents of the BATCH_JOB_EXECUTION table

Figure 12.8 Contents of the BATCH_STEP_EXECUTION table

352 CHAPTER 12 Monitoring jobs
12.2.2 Accessing data from the job repository

In addition to providing data structures for job metadata, Spring Batch provides enti-
ties that provide easy access to the job repository. In chapter 2, we introduced the
JobRepository interface. In chapter 3, section 3.3, we showed how to configure a
repository but not how to use it in detail. In this section, we explore this subject and
describe different ways to interact with the job repository. We begin by using the
JobRepository interface.
USING THE JOBREPOSITORY INTERFACE

Spring Batch defines the JobRepository interface for its internal infrastructure use
when executing batch jobs. Spring Batch uses a JobRepository to interact with the
job repository during batch job execution. Spring Batch also uses a JobRepository to
check parameters when starting jobs and storing information corresponding to job
and step executions. You configure a JobRepository and reference it from the job
configuration.

 This section presents an overview of the services the JobRepository interface
offers. We describe how to use a JobRepository during batch execution, but we don’t
use it for batch monitoring. The following listing shows the JobRepository interface.

public interface JobRepository {
 boolean isJobInstanceExists(String jobName, JobParameters jobParameters);
 JobExecution createJobExecution(
 String jobName, JobParameters jobParameters)
 throws JobExecutionAlreadyRunningException, JobRestartException,
 JobInstanceAlreadyCompleteException;
 void update(JobExecution jobExecution);
 void add(StepExecution stepExecution);
 void update(StepExecution stepExecution);
 void updateExecutionContext(StepExecution stepExecution);
 void updateExecutionContext(JobExecution jobExecution);
 StepExecution getLastStepExecution(
 JobInstance jobInstance, String stepName);
 int getStepExecutionCount(JobInstance jobInstance, String stepName);
 JobExecution getLastJobExecution(
 String jobName, JobParameters jobParameters);
}

Spring Batch defines the JobRepository interface for use by the job infrastructure to
populate the job repository with job and step execution data. We don’t recommend
using a JobRepository outside the Spring Batch infrastructure. Fortunately, Spring
Batch provides other objects for such use cases. The first one we discuss, the Job-
Explorer interface, lets you explore the job repository content in read-only mode.
EXPLORING THE JOB REPOSITORY

The Spring Batch infrastructure uses the JobRepository interface during batch job
execution to store job and step data. But JobRepository methods aren’t well suited to
exploring the job repository.

Listing 12.1 The JobRepository interface

353Accessing batch execution data
 To explore the job repository, Spring Batch provides a dedicated interface, the
JobExplorer, which offers methods to get information about job and step executions
for both running and completed jobs and steps. The JobExplorer interface defines
methods to get job execution, step execution, and job instance data, as described in
the following listing.

public interface JobExplorer {
 Set<JobExecution> findRunningJobExecutions(String jobName);
 JobExecution getJobExecution(Long executionId);
 List<JobExecution> getJobExecutions(JobInstance jobInstance);
 JobInstance getJobInstance(Long instanceId);
 List<JobInstance> getJobInstances(
 String jobName, int start, int count);
 List<String> getJobNames();
 StepExecution getStepExecution(
 Long jobExecutionId, Long stepExecutionId);
}

As for the JobRepository interface, Spring Batch provides a built-in default imple-
mentation based on JDBC and previously described DAOs. To facilitate configuring a
JobExplorer, Spring Batch provides the JobExplorerFactoryBean class. This factory
class requires only a data source and a large object (LOB) handler for configuration.
This allows the explorer to configure DAOs to save execution contexts automatically.

 The following snippet configures a job explorer using the JobExplorerFactory-
Bean class.

<bean id="jobExplorer"
 class="org.springframework.batch.core

 ➥ .explore.support.JobExplorerFactoryBean">
 <property name="dataSource" ref="dataSource"/>
 <property name="lobHandler" ref="lobHandler"/>
</bean>

<bean id="dataSource" class="(...)"> (...) </bean>
<bean id="lobHandler"
 class="org.springframework.jdbc.support.lob.DefaultLobHandler"/>

Now that you’ve configured a JobExplorer entity, let’s see how you can use it. Table 12.2
describes each method of the JobExplorer interface. These methods act as the foun-
dation for the next section, which describes how to detect job execution problems.

Listing 12.2 The JobExplorer interface

Table 12.2 JobExplorer interface methods

Method Description

getJobNames Gets the names of running or completed jobs. Use the names
returned by this method to find job instances.

findRunningJobExecutions Finds all currently running job executions.

Configures
job explorer

354 CHAPTER 12 Monitoring jobs
The following snippet describes how to use the JobExplorer interface to find all cur-
rently running job instances.

List<JobExecution> runningJobInstances = new ArrayList<JobExecution>();
List<String> jobNames = jobExplorer.getJobNames();
for (String jobName : jobNames) {
 Set<JobExecution> jobExecutions
 = jobExplorer.findRunningJobExecutions(jobName);
 runningJobInstances.addAll(jobExecutions);
}

The JobExplorer interface is the root interface used to browse data contained in the
job repository. The JobOperator interface let’s you interact with and control job exe-
cutions using job metadata. We cover this interface, which can also stop jobs, in chap-
ter 4, section 4.5.1.

 The JobOperator interface is similar to the JobExplorer interface but uses sim-
pler types. The JobOperator interface also includes methods to start and stop jobs.
The following listing shows the JobOperator interface.

public interface JobOperator {
 List<Long> getExecutions(long instanceId);
 List<Long> getJobInstances(String jobName, int start, int count);
 Set<String> getJobNames();
 String getParameters(long executionId);
 Set<Long> getRunningExecutions(String jobName);
 Map<Long,String> getStepExecutionSummaries(long executionId);
 String getSummary(long executionId);
 Long restart(long executionId);
 Long start(String jobName, String parameters);
 Long startNextInstance(String jobName);
 boolean stop(long executionId);
}

getJobExecution Returns a job execution based on an identifier. Use this method
with a job execution identifier from the getJobExecutions
method.

getJobExecutions Gets all job executions for a job instance.

getJobInstance Gets a job instance for an identifier.

getJobInstances Gets all job instances for a job name.

getStepExecution Gets a job execution for a job and step execution identifier. The
JobExplorer interface doesn’t have a method to return all
step executions. Use the JobExecution class to do this.

Listing 12.3 The JobOperator interface

Table 12.2 JobExplorer interface methods (continued)

Method Description

355Accessing batch execution data
As you can see, the JobOperator interface is similar to the JobExplorer interface, but
it uses String and Long identifiers instead of Spring Batch metadata objects. Note
the difference in the behavior of the getJobNames methods: the JobExplorer
method looks at the repository and returns a sorted list of unique job instance
names. The JobOperator method returns the available job names you can launch
with the start method.

 The JobOperator interface is lightweight and particularly suitable for monitoring
technologies like JMX, which we examine in section 12.5.

 Using what we’ve learned in this section, particularly the JobExplorer interface,
we see next how to address real-life use cases monitoring batch jobs.
DETECTING PROBLEMS DURING JOB EXECUTIONS

As emphasized early in this chapter, the primary goal of job monitoring is to find out
if, when, and where something went wrong. In this section, we present a practical
example to detect problems and their causes. In sections 12.4 and 12.5, we follow the
same pattern to find problems.

 A common use case in monitoring is detecting batch job failures. You detect failed
jobs by iterating over all job names and then finding job executions for job instances
that end with a failed exit status. The following listing shows how to implement this
detection algorithm using the JobExplorer interface. You use this code to iterate over
the job names retrieved with the getJobNames method.

public List<JobExecution> getFailedJobExecutions(String jobName) {
 List<JobExecution> failedJobExecutions = new ArrayList<JobExecution>();

 int pageSize = 10;
 int currentPageSize = 10;
 int currentPage = 0;

 while (currentPageSize == pageSize) {
 List<JobInstance> jobInstances
 = jobExplorer.getJobInstances(
 jobName, currentPage * pageSize, pageSize);
 currentPageSize = jobInstances.size();
 currentPage++;
 for (JobInstance jobInstance : jobInstances) {
 List<JobExecution> jobExecutions
 = jobExplorer.getJobExecutions(jobInstance);
 for (JobExecution jobExecution : jobExecutions) {
 if (jobExecution.getExitStatus().equals(
 ExitStatus.FAILED)) {
 failedJobExecutions.add(jobExecution);
 }
 }
 }
 }
}

Listing 12.4 Detecting failed job instances

Gets job instances
for job

B

Gets job executions
for instance

C

Detects execution
failuresD

356 CHAPTER 12 Monitoring jobs
First, you use the job name to get job instances, in pages, using the getJobInstances
method B from the JobExplorer interface. You call this method until you get to the
last page. Using the job instance list, you then get the corresponding job executions
with the getJobExecutions method C. By checking the exit status of each job execu-
tion, you can find which jobs ended in failure. You use the getExitStatus of the
JobExecution class D to check the exit status.

 When you detect failed batch jobs, you investigate causes. Failures can occur at two
levels during batch execution: job and step. After identifying the failed job execution,
you can collect errors at both the job execution and step execution levels. The Job-
Execution and StepExecution classes can also provide this information using the
getExitStatus and getFailureExceptions methods, as described in table 12.3.

These methods provide information on what went wrong during job executions.
Exceptions are accessible through the getFailureExceptions method. The following
listing describes how to query a failed job execution to get to the exceptions that
caused the failures.

private List<Throwable> getFailureExceptions(JobExecution jobExecution) {
 List<Throwable> failureExceptions = new ArrayList<Throwable>();

 if (!jobExecution.getExitStatus().equals(ExitStatus.FAILED)) {
 return failureExceptions;
 }

 List<Throwable> jobFailureExceptions
 = jobExecution.getFailureExceptions();
 failureExceptions.addAll(jobFailureExceptions);

 for (StepExecution stepExecution : jobExecution.getStepExecutions()) {
 List<Throwable> stepFailureExceptions
 = stepExecution.getFailureExceptions();
 failureExceptions.addAll(stepFailureExceptions);
 }

 return failureExceptions;
}

After checking the exit status to see if the job execution failed, you get a list of failure
exceptions for this execution B. You then iterate over executed steps for the job

Table 12.3 JobExecution and StepExecution methods related to failures

Method Description

getFailureExceptions Returns the list of exceptions that caused the execution failure. Spring
Batch populates this list during batch execution.

getExitStatus Returns the execution exit code. The method returns an ExitStatus,
which contains both the exit code and exit description.

Listing 12.5 Getting exceptions that cause job execution failure

Gets failure
exceptions for job

B

Gets failure
exceptions

for steps C

357Accessing batch execution data
execution and get the corresponding failure exceptions C. You add all exceptions to
a List returned by the method.

 Because Spring Batch doesn’t save these exceptions in the job repository, this
information is reachable only from the same process that runs the job execution. If
you want to find the cause of a job execution failure after the job completes, you need
to use the description of the exit status. The following listing describes how to retrieve
all failure descriptions for a job execution.

private List<String> getFailureExitDescriptions(
 JobExecution jobExecution) {
 List<String> exitDescriptions = new ArrayList<String>();

 if (!jobExecution.getExitStatus().equals(ExitStatus.FAILED)) {
 return exitDescriptions;
 }

 String jobExitStatus
 = jobExecution.getExitStatus();
 if (jobExitStatus.getExitDescription().isEmpty()) {
 exitDescriptions.add(jobExitStatus.getExitDescription());
 }

 for (StepExecution stepExecution : jobExecution.getStepExecutions()) {
 ExitStatus stepExitStatus
 = stepExecution.getExitStatus();
 if (stepExitStatus.equals(ExitStatus.FAILED)
 && !"".equals(stepExitStatus.getExitDescription())) {
 exitDescriptions.add(stepExitStatus.getExitDescription());
 }
 }

 return exitDescriptions;
}

The implementation of the getFailureExitDescriptions method is similar to the
implementation of the getFailureExceptions method. After using the exit status to
check that the job execution failed, you get the exit status description for the failed
execution B. You then iterate over executed steps for the job execution and get the
corresponding failure exit descriptions C. You add all descriptions to a List returned
by the method.

 In some cases, it’s interesting to get execution information even if the executions
are successful. It’s particularly interesting when skips or retries occur. This makes it
possible, for example, to detect whether or not skips are normal. The getSkipCount
method of the StepExecution class provides information on the number of processed
skips during execution, as described in the following snippet:

private boolean hasSkipsDuringExecution(JobExecution jobExecution) {
 for (StepExecution stepExecution : jobExecution.getStepExecutions()) {
 if (stepExecution.getSkipCount() > 0) {
 return true;

Listing 12.6 Getting descriptions of problems that cause job execution failure

Gets exit
description for job

B

Gets exit descriptions
for stepsC

Check skip
countB

358 CHAPTER 12 Monitoring jobs
 }
 }
 return false;
}

By iterating over all executed steps for a job execution, the method checks if the step
execution contains skips using the JobExecution getSkipCount method B. If the
returned value is greater than zero, the job contains at least one skip.

 You can translate this processing using the JobOperator interface. Because Job-
Operator methods deal only with simple types, you must use the summary methods,
getSummary and getStepExecutionSummaries, to get details on errors or skip counts.
In section 12.5, we describe how to use the JobOperator methods to monitor
job executions.

 You can use the JobExplorer and JobOperator interfaces to monitor job execu-
tions. You can also use tools to save time, receive notifications, and explore the job
repository. Next, we describe how to receive notifications using a listener.

12.3 Monitoring with listeners
You can use two approaches to monitor jobs: active and passive. In this section, we
show how to implement passive monitoring to send notifications when something
goes wrong during batch job executions. We base our implementation on the Spring
Batch listener feature.

 We also describe how to implement and configure a generic monitoring listener
for any use case. In this example, monitoring doesn’t use data from the job repository
but uses in-memory objects for the current batch job execution. When the listener
receives failure notifications, you can then query the repository for more information.

12.3.1 Implementing a monitoring listener

The batch listener triggers notifications when failures occur during batch executions.
Because you want to support different notification mechanisms (in our examples,
email and Spring messaging), you create a general-purpose interface called Batch-
MonitoringNotifier. By using this interface with a notification listener, you keep the
listener generic and configurable.

 The BatchMonitoringNotifier interface defines a single method named notify,
which takes one argument: the current JobExecution instance. The job execution
contains the job instance and failure exceptions. The following snippet shows the
BatchMonitoringNotifier interface:

public interface BatchMonitoringNotifier {
 void notify(JobExecution jobExecution);
}

With this interface defined, you can build a generic monitoring listener. This listener
uses the notifier when a job execution fails. The following listing provides an imple-
mentation of such a listener using Spring Batch annotations.

359Monitoring with listeners
public class MonitoringExecutionListener {
 private BatchMonitoringNotifier monitoringNotifier;

 @BeforeJob
 public void executeBeforeJob(JobExecution jobExecution) {
 //Do nothing
 }

 @AfterJob
 public void executeAfterJob(JobExecution jobExecution) {
 if(jobExecution.getStatus() == BatchStatus.FAILED) {
 //Notify when job fails
 monitoringNotifier.notify(jobExecution);
 }
 }

 public void setMonitoringNotifier(
 BatchMonitoringNotifier monitoringNotifier) {
 this.monitoringNotifier = monitoringNotifier;
 }
}

The BatchMonitoringNotifier interface is an instance variable B in the Moni-
toringExecutionListener class. When Spring Batch calls this listener after a job exe-
cutes, if the status of the job execution is FAILED C, the listener calls the monitoring
notifier with the current JobExecution instance as its parameter.

 The configuration of this execution listener follows the same rules as described in
chapter 3, section 3.4.3. The following listing uses the listeners XML element to reg-
ister the monitoring notifier in the importProductsJob job.

<batch:job id="importProductsJob">
 <batch:step id="readWrite">
 (...)
 </batch:step>
 <batch:listeners>
 <batch:listener ref="monitoringJobListener"/>
 </batch:listeners>
</batch:job>

<bean id="monitoringJobListener"
 class="com.manning.sbia.ch12.notifier.MonitoringExecutionListener">
 <property name="monitoringNotifier"
 ref="monitoringNotifier"/>
</bean>

<bean id="monitoringNotifier"
 class="com.manning.sbia.ch12.notifier.BatchMonitoringNotifierImpl">
 (...)
</bean>

Listing 12.7 Implementation of the monitoring execution listener

Listing 12.8 Configuring the monitoring listener

References
monitoring notifierB

Notifies
failuresC

Registers
listener for job

B

Defines listener
as bean

C

Sets
notifierD

360 CHAPTER 12 Monitoring jobs
You use the listener XML element B to register the listener in the job with a bean
reference. You then define the listener C. You also define a property of type Batch-
MonitoringNotifier and inject it in the listener configuration D.

 You have implemented a generic framework to trigger notifications when failures
occur; you can now implement some notifiers. You start with a JavaMail notifier, which
sends emails when the listener detects a problem.

12.3.2 Notifying using emails

Our first notification use case is sending emails when failures occur. In this case, the
application administrator receives emails containing error descriptions for failed
jobs. This implementation is based on the JavaMail API and the corresponding
Spring support.

 This example uses a Spring MailSender to send an email and a Spring Simple-
MailMessage to build the message content. The following listing describes this Moni-
toringNotifier implementation.

public EmailMonitoringNotifier implements BatchMonitoringNotifier {
 private MailSender mailSender;
 private SimpleMailMessage templateMessage;

 private String formatExceptionMessage(Throwable exception) {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 exception.printStackTrace(new PrintStream(baos));
 return baos.toString();
 }

 private String createMessageContent(JobExecution jobExecution) {
 List<Throwable> exceptions = jobExecution.getFailureExceptions();
 StringBuilder content = new StringBuilder();
 content.append("Job execution #");
 content.append(jobExecution.getId());
 content.append(" of job instance #");
 content.append(jobExecution.getJobInstance().getId());
 content.append(" failed with following exceptions:");
 for (Throwable exception : exceptions) {
 content.append("");
 content.append(formatExceptionMessage(exception));
 }
 return content.toString();
 }

 public void notify(JobExecution jobExecution) {
 SimpleMailMessage msg = new SimpleMailMessage(
 this.templateMessage
);
 msg.setTo("batch-administrator@example.com");
 String content = createMessageContent(
 jobExecution
);
 msg.setText(content);

Listing 12.9 JavaMail failure notifier

Defines email
message

B

361Monitoring with listeners
 try{
 mailSender.send(msg);
 } catch(MailException ex) { (...) }
 }

 (...)
}

In the notify method, you create an email message using the SimpleMailMessage
class. You set the recipient address and the plain text content created from data con-
tained in the job execution B. You then use the injected MailSender instance to send
the message C.

 To configure this notifier, you define a Spring JavaMail sender and a template for
messages. The following listing describes how to configure the email-based notifier.

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host" value="mail.manning.com"/>
</bean>

<bean id="templateMessage"
 class="org.springframework.mail.SimpleMailMessage">
 <property name="from" value="batch-notifier@example.com"/>
</bean>

<bean id="emailMonitoringNotifier"
 class="com.manning.sbia.ch12.notifier.EmailMonitoringNotifier">
 <property name="mailSender" ref="mailSender"/>
 <property name="templateMessage" ref="templateMessage"/>
</bean>

You first define JavaMail entities using Spring support B and then inject them in the
email-based notifier C.

 Because Spring provides a generic messaging mechanism between beans config-
ured in application contexts, it’s also possible to provide a BatchMonitoringNotifier
implementation that triggers events in this system rather than using JavaMail. This
mechanism provides the ability to implement transparent bridges between technolo-
gies. In the next section, we describe how to implement a monitoring notifier that cre-
ates and sends messages using Spring messaging.

12.3.3 Notifying using Spring messaging

Sending email messages is good, but it’s specific to a single messaging technology.
Using the generic messaging feature in Spring opens the door to using other technol-
ogies for failure notifications like Java Management Extension (JMX). This feature is
built in to the ApplicationContext and allows beans to send messages to each other.
This corresponds to implementing the listener pattern in the Spring container. The
Spring container itself uses this generic messaging framework to notify entities it man-
ages of events like container initialization and finalization.

Listing 12.10 Configuration of the JavaMail failure notifier

Sends
messageC

Defines JavaMail
entity

B

Injects
entities

C

362 CHAPTER 12 Monitoring jobs
 The two key messaging types are the ApplicationEventPublisher interface for
sending messages and the ApplicationEvent class for consuming them. In order
to notify, you configure Spring to inject an ApplicationEventPublisher instance in
the notifier, which must also implement the Spring ApplicationEventPublisher-
Aware interface. The following listing shows the implementation of a Spring messag-
ing notifier.

public class ApplicationEventMonitoringNotifier
 implements ApplicationEventPublisherAware, MonitoringNotifier {
 private ApplicationEventPublisher applicationEventPublisher;

 (...)

 public void notify(JobExecution jobExecution) {
 String content = createMessageContent(jobExecution);
 applicationEventPublisher. publishEvent(
 new SimpleMessageApplicationEvent(this, content));
 }

 public void setApplicationEventPublisher(
 ApplicationEventPublisher applicationEventPublisher) {
 this.applicationEventPublisher = applicationEventPublisher;
 }
}

In this example, the notify method uses the ApplicationEventPublisher instance
(configured through injection) to send a message B to other beans present in the
Spring application context. You create the message using the Spring SimpleMessage-
ApplicationEvent class.

 Configuration of the ApplicationEventMonitoringNotifier class is simple
because all you do is define the notifier as a bean:

<bean id="applicationEventMonitoringNotifier"
 class="com.manning.sbia.ch12.notification
 ➥ .ApplicationEventMonitoringNotifier"/>

As you can see, this mechanism is generic and dispatches events from batch jobs in the
Spring configuration, but this isn’t all you can do. You can also plug in a listener using
the ApplicationListener interface.

 We’ve now finished our overview of the API used to implement monitoring of
batch job executions. Choosing this low-level approach can be a bit tedious. We focus
next on higher-level tools to monitor batch jobs. We begin with Spring Batch Admin.

12.4 Web monitoring with Spring Batch Admin
Spring Batch Admin is the monitoring web console that ships with Spring Batch. It pro-
vides a quick and convenient way to explore the job repository using a web browser.
This approach falls into the active monitoring category because you need to use the
tool to see if something went wrong; it doesn’t provide notifications. We introduced this

Listing 12.11 Spring messaging notifier

Sends
message

B

363Web monitoring with Spring Batch Admin
tool briefly in chapter 2 to display batch execution results. Appendix B covers how to
install and set up Spring Batch Admin.

 Figure 12.9 provides an overview of Spring Batch Admin and shows the tool run-
ning in a Java web server using Spring Batch execution data and JDBC-based DAOs to
access the job repository.

 Because Spring Batch Admin maps batch execution concepts and data into its UI,
the information displayed will be familiar when using the tool. You can find batch exe-
cution problems with the same concepts as when using the Spring Batch API. In this
section, we first provide an overview of the tool’s capabilities and then describe how to
detect problems.

12.4.1 Feature overview

You can look at Spring Batch Admin as an application layer on top of the job explorer
described in section 12.2.2. Figure 12.10 shows how to navigate Spring Batch Admin.

 One feature of Spring Batch Admin is the ability to import job configuration files.
This feature makes it possible to manage executions (start, stop, and so on) directly
through the web console. This section concentrates on how to use the tool to access
information on job executions.

Web container

Spring Batch’s
execution dataWeb

user
interface

Job repository
(Database)

JD
B

C

H
TT

P

Spring Batch’s
execution access entities

Spring Batch Admin web application

Uses

Figure 12.9 Overview of the Spring Batch Admin architecture

Home

Job executions

Step executions

Job

Job instances

Job execution
details

Step execution
details

Figure 12.10 Navigating Spring Batch Admin

364 CHAPTER 12 Monitoring jobs
You execute the importProductsJob job from our
case study, which contains a step named readWrite.
When the job execution is in progress or is finished,
the corresponding job and job instance are present
in the UI, as shown in figures 12.11 and 12.12.

 Figure 12.12 shows that the job instance con-
tains the execution you launched and that it com-
pleted successfully. You can quickly see that the
last execution completed successfully. You can
then go to the recent and current job executions
page and click on the job execution to see its
details, as shown in figures 12.13 and 12.14.

 The last details you can get to are those of step
executions. You reach these pages by following the
link on the job execution details page from fig-
ure 12.14. This gives you access to the information
illustrated in figures 12.15 and 12.16.

Figure 12.11 Job names
registered

Figure 12.12 Job instances
for a given job

Figure 12.13
Recent and current
job executions

Figure 12.15 Step execution list for the job execution

Figure 12.14 Details for a job
execution

365Web monitoring with Spring Batch Admin
The Spring Batch Admin tool lets you quickly access
information on batch job executions. It provides a job
list and the ability to drill down to details, all from a web
browser. This is a great tool for monitoring batch jobs
remotely. The main benefit is that you now have a way
to detect failures.

12.4.2 Detecting problems encountered
during batch executions

In the previous section, the tables in the figures con-
tained fields named Status and ExitCode, which tell you
about the success and failure of job and step executions.

 If you see FAILED, you can conclude that something
went wrong during an execution. As when using the job
explorer, you look at the job and step details to know
more about what failed. As an example of finding a fail-
ure, we introduce a malformed field in the input file of
the importProductsJob batch job of our case study.
Execute the job again, and you’ll see in the job execu-
tions list and details that there was a problem, as shown
in figures 12.17 and 12.18.

Because the error occurs while importing the
input file, you can’t see the details of this error at
the job execution level. You must look at the
details of the corresponding step. This is the
readWrite step from our case study, the only step
in the importProductsJob job.

 When displaying the step details, you see the cor-
responding error in the exit message field. This
message corresponds to the exception thrown
when trying to parse the malformed field. This
exception is a FlatFileParseException, as shown
in figure 12.19.

 Figure 12.19 shows the step execution details
page, which displays information related to fail-
ures and skips. This makes it possible to detect

Figure 12.17 Recent and
current job executions con-
taining a failed job execution

Figure 12.16 Details of the
step execution

Figure 12.18 Details of a failed job
execution

366 CHAPTER 12 Monitoring jobs
when skips occur during executions if they occur using the read skips, write skips, and
process skips properties.

 Using tools like Spring Batch Admin layered on top of Spring Batch to access the
job repository saves you a lot of time. Spring Batch Admin uses the Spring Batch low-
level API to provide a web console to monitor batch jobs. Next, we use JMX, the Java
technology dedicated to management, to monitor our application.

12.5 Monitoring with JMX
JMX supplies management and monitoring tools for applications and devices (like
printers). JMX represents resources with objects called MBeans (Managed Beans).

 The success of JMX is such that Sun integrated it in J2SE as of version 5.0. Today,
many Java EE application servers and frameworks use JMX. Applications that imple-
ment JMX provide access to information about application resources and provide
administrative operations for live applications.

 To understand how Spring Batch integrates with JMX, you must understand the JMX
architecture. The layered architecture of JMX exposes application resources as MBeans
through the instrumentation layer. The MBean server is responsible for handling resources
exposed as remote resources through the distributed services layer. Figure 12.20 shows the
layers of the JMX architecture. JMX clients like JConsole or applications can connect to
agents through server-side connectors using client-side connectors.

Figure 12.19 Details of a step execution failure include a stack trace in the exit message.

367Monitoring with JMX
Integrating Spring Batch with JMX involves exposing Spring Batch resources as JMX-
managed resources. Spring provides support to expose any POJO as an MBean.
Although exporting jobs is possible, you normally expose JobOperator entities as
MBeans. Note that using a JobExplorer through JMX isn’t great because it exposes
complex objects, not simple ones like a JobOperator.

 The JMX launcher configures and registers a JobOperator with JMX for running
jobs asynchronously. Monitoring clients can then access the JobOperator through
JMX. Clients include the standard Java jconsole application and any clients accessing
entities remotely through JMX connectors. Figure 12.21 illustrates this architecture.

 As shown in the figure, the first step is to define the Spring Batch monitoring pro-
cess that configures Spring Batch’s entities for JMX monitoring. This means configur-
ing the JobOperator entity and exporting it as an MBean in the JMX server through
Spring’s JMX support. Although not mandatory, you commonly define batch struc-
tures at this level to manage them (start, stop, and so on) directly through JMX via a
JobOperator. Next, we describe how to access and use entities present in the JMX
server. Based on these entities, we monitor batch jobs and their executions.

HTTP Other JMX-compliant
connectors Other

Protocol adapters Connectors

MBeanServer

MBeans (several kinds usable)

Application resources
Instrumentation

Agents

Distributed services

SNMP

Figure 12.20 JMX architecture

MBeanServer

JobOperator

Job
repository

Exports

Spring Batch
monitoring process

Monitoring clients

Uses

Batch job

Figure 12.21 Using JMX with Spring Batch

368 CHAPTER 12 Monitoring jobs
12.5.1 Configuring JMX for Spring Batch

The main type in Spring JMX is the MBeanExporter class, which is responsible for
transparently creating MBeans from POJOs and determining which fields and methods
are reachable through JMX. Because Spring JMX is out of the scope of this book, we
focus only on how to use Spring JMX to export Spring Batch entities through JMX. If
you want to go deeper, refer to Craig Walls’ Spring in Action, Third Edition (Manning
Publications, 2010).

 We describe how to configure the JobOperator entity in chapter 4, listing 4.6. Based
on this configuration, you export objects through JMX. The first step is to define the
bean corresponding to the JobOperator in the beans property of the MBeanExporter
that defines beans to export and their corresponding JMX identifiers. The second step
uses the assembler property to determine which data to export through JMX. The fol-
lowing listing shows how export a JobOperator bean through JMX.

<bean class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="spring:service=batch,bean=jobOperator">
 <bean class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target" ref="jobOperator"/>
 <property name="interceptorNames" value="exceptionTranslator" />
 </bean>
 </entry>
 </map>
 </property>
 <property name="assembler">
 <bean class="org.springframework.jmx.export
 ➥ .assembler.InterfaceBasedMBeanInfoAssembler">
 <property name="interfaceMappings">
 <map>
 <entry key="spring:service=batch,bean=jobOperator"
 value="org.springframework.batch.core.launch.JobOperator"/>
 </map>
 </property>
 </bean>
 </property>
</bean>
(...)

When you reference the jobOperator bean in the beans property of the MBean-
Exporter bean, you specify its corresponding object name in JMX B. In the case of
the jobOperator bean, the domain is spring with two key-value property pairs. The
first property specifies that the object be relative to a batch. The second property is
the bean name.

 Within the assembler property, you use the InterfaceBasedMBeanInfoAssembler
class, which uses beans to define which fields and methods are reachable through
JMX C. For the previous JMX path, you specify use of the JobOperator interface.

Listing 12.12 Exporting a JobOperator through JMX

Exports job
operator

B

Defines elements
to export

C

369Monitoring with JMX
The configuration doesn’t define an MBean server for the MBeanExporter bean. The
MBeanExporter bean can detect the current MBean server automatically from the JVM
process. For example, Spring uses the MBean server from the JVM process with no addi-
tional configuration.

 You access JMX remotely because the MBean server doesn’t run on the same
machine as the clients (by design). Therefore, you must configure a JMX server connec-
tor, which the JMX specification defines to allow remote access to JMX agents. JMX sup-
ports Remote Method Invocation (RMI) natively, and you can configure Spring JMX
using its ConnectorServerFactoryBean class, as shown in the following listing. In this
case, JMX manages RMI transparently for remote access.

<bean id="registry"
 class="org.springframework. remoting.rmi.RmiRegistryFactoryBean">
 <property name="port" value="1099"/>
</bean>

<bean id="serverConnector"
 class="org.springframework.jmx.support.ConnectorServerFactoryBean">
 <property name="objectName" value="connector:name=rmi"/>
 <property name="serviceUrl"
 value="service:jmx:rmi://localhost/jndi/
 ➥ rmi://localhost:1099/myconnector"/>
 <property name="threaded" value="true"/>
</bean>

You create the RMI registry with the Spring RmiRegistryFactoryBean class B and set
the RMI port. You then configure a JMX server connector with the ConnectorServer-
FactoryBean class C. After defining the path of the connector in JMX with the
objectName property, you specify the address to access the JMX server through RMI
with the serviceUrl property.

 At this point, you’ve configured everything to monitor Spring Batch jobs through
JMX. The next section focuses on how to explore batch execution data and find
problems.

12.5.2 Monitoring with JMX consoles

Starting with Java 5, JMX, an MBean server, and JConsole are built into the Java plat-
form. You launch JConsole using the jconsole command on the command line.

Listing 12.13 Configuring a JMX server connector

JMX object names
A JMX object name is an MBean identifier and must conform to the syntax defined by
the JMX specification. This syntax is a domain name and a colon, followed by a com-
ma-separated list of key-value pairs. For example:

spring:service=batch,bean=jobOperator.

Defines RMI registryB

Configures JMX
connector

C

370 CHAPTER 12 Monitoring jobs
JConsole provides monitoring information on the
Java process, its memory usage, thread and class
information, and MBeans. JConsole displays both
internal and user-defined MBeans. For JMX con-
figurations used to monitor batch jobs in JCon-
sole, corresponding MBeans are located under
the spring/batch tree node of the MBean explorer
tree in the left pane, as shown in figure 12.22.

 Each MBean has a set of attributes and opera-
tions. In the case of the JobOperator MBean,
these operations allow retrieving execution data,
as shown in figure 12.23.

 Using these methods, you monitor and man-
age a Spring Batch job, its instances, and its fail-
ures. This section follows the same use case as in

Figure 12.22 Monitoring batch jobs using JConsole

Figure 12.23 Viewing JobOperator
operations (methods) in JConsole

371Monitoring with JMX
the Spring Batch Admin section. First,
you get job instances based on a job
name, importProductsJob for the
case study, as described in figure 12.24.
The getJobInstances method
returns job instance identifiers.
Remember that the JobInstance class
uses simple types exclusively. Using
these identifiers, you can retrieve iden-
tifiers corresponding to job execu-
tions with the getExecutions

methods, as shown in figure 12.25.
 Using a job execution identifier,

you can use the getSummary and get-
StepExecutionSummaries methods to
get detailed information of what hap-
pened during execution at both the
job and step execution levels. These
two methods return a String contain-
ing information on executions,
including the exit status and exit
description, which you can use to detect errors and their causes.

 Figures 12.26 and 12.27 describe calls to the methods getSummary and getStep-
ExecutionSummaries. Figures 12.18 and 12.19 show the same information.

 Spring Batch integrates well with JMX, the Java standard management technology,
for monitoring purposes. Using Spring JMX support, you can expose JobOperator

Figure 12.26 Displaying
the summary of a job
execution

Figure 12.24 Getting job instance identifiers for a
job name

Figure 12.25 Getting job execution identifiers for a
job instance

372 CHAPTER 12 Monitoring jobs
objects and interact with the job repository. You can then access these objects
remotely through a JMX console like JConsole to remotely execute operations, get
execution information, and manage batch job executions.

12.6 Summary
Monitoring is an important aspect of working with batch jobs because it lets you see
what happens during job executions and detect failures. All through this chapter, we
focused on which features and tools Spring Batch provides to monitor batch job exe-
cutions and detect failures.

 Spring Batch offers various ways to monitor batch job executions:

■ Directly browse the job repository database—The most basic approach is to browse
history data directly in the job repository database using a SQL client and exe-
cuting SQL requests.

■ Access execution history using the Spring Batch API—The JobExplorer and
JobOperator interfaces implement a thin object-oriented layer on top of the
job repository database.

■ Use Spring Batch Admin—Spring Batch provides the Spring Batch Admin web con-
sole used to monitor batch job executions based on the job repository database.

■ Monitor with JMX—You can use Spring Batch and JMX together to expose Spring
Batch entities and access job execution history.

We don’t recommend using the Spring Batch API directly in most cases. A better
approach is to use high-level tools like Spring Batch Admin or JMX through a console
like JConsole. In chapter 13, we focus on advanced features of Spring Batch used to
improve performance: scaling jobs and parallelizing executions.

Figure 12.27 Displaying
summaries for all step
executions of a job
execution

Scaling and
 parallel processing
Now that you have some real batch jobs under your belt, you can test them for per-
formance in a development or testing environment. But what do you do when per-
formance isn’t good enough?

 You implement scaling and partitioning! Spring Batch provides several scaling
techniques to improve performance without making code changes. You implement
scaling by reconfiguring jobs, not changing code. For partitioning, you implement
code to divide work between a master and slave nodes.

 In this chapter, we discuss general scaling concepts for batch processing and, in
particular, the Spring Batch model for scaling and partitioning. We look at the dif-
ferent ways to scale applications à la Spring Batch and describe various solutions.

This chapter covers
■ Introducing scaling concepts
■ Deciding when and where to use scaling
■ Learning how to scale batch jobs
■ Exploring scaling patterns and techniques
373

374 CHAPTER 13 Scaling and parallel processing
We finish with guidelines for choosing the most efficient techniques to improve the
performance of your batch job.

13.1 Scaling concepts
Before tackling scaling in Spring Batch, we describe what scaling is and how it can
generally help improve the performance of your applications. We then see how to
apply scaling concepts in the context of batch jobs.

 Spring Batch provides a scaling framework and various implementations to
improve the performance of jobs and steps through configuration changes without
modifying code.

13.1.1 Enhancing performance by scaling

Batch jobs are a bit particular with regard to scaling because they run in the back-
ground and don’t require user interaction. For this reason, measuring the response
time for user requests isn’t an applicable performance metric. Batch jobs do have con-
straints on the time it takes to process an entire job. Batch applications usually run at
night and have a limited time window to complete. The goal of scaling a batch job is
to meet execution time requirements.

 As with any application, you can tune the step and application algorithms. This is
the first step to consider, but processing can still take too much time even after such
improvements. You must then consider scaling your batch applications.

 Scaling is the capability of a system to increase total throughput under an
increased load when you add resources (typically hardware). You can consider several
approaches to implement scaling for your applications:

■ Vertical scaling (scale up)—Getting a bigger, better, and faster machine that hosts
the application to reach the desired performance.

■ Horizontal scaling (scale out)—Adding more processing nodes (or machines) to a
system to handle load. This approach aims to distribute processing remotely on
several nodes.

With vertical scaling, you work at the
computer and system levels to achieve
what is also called local scaling. Such an
approach is particularly interesting if
you want to leverage multicore or mul-
tiprocessor hardware, as illustrated in
figure 13.1. Local scaling is suitable if
processing implies a lot of I/O.

 Horizontal scaling uses another
approach by distributing processing
over several nodes, as shown in fig-
ure 13.2. Each node supports a por-
tion of the processing load. In this

Machine

Application

Adds

Processor Memory Administrator

Figure 13.1 Vertical scaling (scaling up) migrates
an application to more powerful hardware.

375Scaling concepts
scenario, computers don’t necessarily need to be as powerful as in the vertical
approach. Horizontal scaling commonly integrates mechanisms like load balancing,
replication, and remote scaling.

 Horizontal scaling can leverage grid and cloud computing in order to implement
remote processing.

 This concludes our brief overview of scaling concepts. We now have a high-level
view of the two techniques we use to improve batch job performance: horizontal and
vertical scaling. Next, we see how to implement horizontal and vertical scaling with
minimum impact on applications.

13.1.2 The Spring Batch scaling model

As described in the early chapters of this book, Spring Batch offers a generic frame-
work to support batch job concepts. Job, Step, Tasklet, and Chunk are all domain
objects in the batch job world. These types define a
job and its parts. By default, Spring Batch executes
all jobs sequentially.

 Scaling in Spring Batch defines how to execute
processing in parallel, locally, or on other machines.
Scaling takes place mainly at the step level, and you
can use different strategies to define at which level
you want to split processing. You can choose to par-
allelize whole steps or only parts of their processing.
You can also define datasets and process them in
parallel locally or remotely. The best technique (or
combination of techniques) is the one that allows
your application to meet your performance expecta-
tions. Figure 13.3 depicts Spring Batch local scaling,
and figure 13.4 shows Spring Batch remote scaling.

Load balancing Replication

Machine
(Node)

Application

Machine
(Node)

Application

Machine
(Node)

Application

Machine
(Node)

Application

Figure 13.2 Horizontal scaling splits application processing on different nodes and requires
load balancing.

Thread
Thread

Batch job

Thread

Step

Step Step

Parallel execution
For dataset (partition)

Figure 13.3 Local scaling in a single
process executes batch job steps in
parallel.

376 CHAPTER 13 Scaling and parallel processing
You can implement batch job scaling through configuration by using the Spring Batch
XML vocabulary for multithreading and parallel step execution. For more advanced
uses, you must configure steps with additional specialized objects.

 Table 13.1 lists all scaling strategies provided by Spring Batch, shows if the strategy
supports local or remote scaling, and describes its main feature.

Before exploring each scaling strategy provided by Spring Batch, let’s look at the fea-
tures of local and remote scaling and the use of the Spring task executor.
LOCAL AND REMOTE SCALING

As noted in table 13.1, Spring Batch supports both local and remote scaling. Imple-
menting scaling on a single machine uses multithreading through the Spring task
executor abstraction that we describe in the next section. Spring Batch natively sup-
ports this feature without any advanced configuration. When specified, multithread-
ing is automatically performed when executing steps.

 Remote scaling is more complex: it requires a remoting technology like Java Mes-
saging Service (JMS) or GridGain, and you must plug in scaling to batch processing
using Spring Batch hooks. This allows you to remotely execute a step or process a chunk.
Remote scaling is more complex to configure and use but it provides higher scalability.

Table 13.1 Scaling strategies provided by Spring Batch

Strategy Local/Remote Description

Multithreaded step Local A step is multithreaded.

Parallel step Local Executes steps in parallel using multithreading.

Remote chunking Remote Distributes chunk processing to remote nodes.

Partitioning step Local and remote Partitions data and splits up processing.

Batch job

Step

Remote

Step

P
ar

al
le

l e
xe

cu
tio

n
Fo

r d
at

as
et

 (p
ar

tit
io

n)

Batch job

Step

Step

Batch job

Step

Figure 13.4 Remote
scaling in more than
one process executes
batch job steps in
parallel.

377Scaling concepts
 Spring Batch doesn’t provide implementations for remoting; it provides only the
generic framework to plug in different service providers. The Spring Batch Admin mod-
ule Spring Batch Integration aims to fill this void using Spring Integration facilities. We
look at Spring Batch Integration in the remote chunking and partitioning sections.
THE SPRING TASK EXECUTOR ABSTRACTION

The Spring framework provides a Java 5–independent abstraction for using thread
pools called the task executor. This abstraction is identical to the concept of the execu-
tor introduced in Java 5 and uses the same contract.

The Spring task executor lets you execute a task according to a strategy by implement-
ing the java.lang.Runnable interface. The following snippet lists the Spring Task-
Executor interface:

public interface TaskExecutor {
 void execute(Runnable task);
}

This interface is used internally by Spring and its portfolio projects, but it can also be
used for your own needs. It specifies execution of Runnable code in a multithreaded
environment. The implementation is responsible for implementing the appropriate
strategy. The following snippet describes how to use the TaskExecutor interface in an
application. The first line creates the task executor, and the last line executes the task:

TaskExecutor taskExecutor = createTaskExecutor();
for(int i = 0; i<25; i++) {
 String message = "Execution " + i);
 taskExecutor.execute(new SampleTask(message));
}

The following listing shows the SampleTask class that implements the Runnable inter-
face and prints a message to the console from its run method.

public class SampleTask implements Runnable {
 private String message;

 public SampleTask(String message) {
 this.message = message;
 }

Listing 13.1 Implementing the Runnable interface

Concurrency and Java 5
Java 5 introduced the java.util.concurrent package, which includes classes commonly
useful in concurrent programming. The package uses hardware-level constructs to al-
low efficient use of concurrency in Java programs without resorting to native code.
The package provides classes and interfaces for collections (map, queue, list, and
so on), executors (threads), synchronizers (semaphore), and timing.

378 CHAPTER 13 Scaling and parallel processing
 public void run() {
 System.out.println(message);
 }
}

This technique simplifies multithreading usage in an application. It provides a simple
contract and hides complexity in the implementations. Table 13.2 lists the main
Spring TaskExecutor implementations.

Each of these TaskExecutor implementations can be configured as a bean in the
Spring configuration and injected in other Spring-powered plain old Java objects
(POJOs). The following snippet describes how to configure a TheadPoolTaskExecu-
tor. It first defines a task executor bean and then specifies task executor properties:

<bean id="taskExecutor"
 class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="corePoolSize" value="5"/>
 <property name="maxPoolSize" value="10"/>
 <property name="queueCapacity" value="25"/>
</bean>

The Spring TaskExecutor interface provides a uniform way to add concurrent pro-
cessing to Spring applications. Spring Batch uses a TaskExecutor to enable multi-
threading in batch jobs. This feature is particularly useful to scale applications locally
and enable parallel processing. Practically speaking, when scaling locally, you declare
a TaskExecutor bean and plug it into Spring Batch.

 Now that you know the core concepts behind scaling, let’s see the Spring Batch
techniques for implementing it. For each technique, we describe its features, configu-
ration, and when it applies. We start by adding multithreading to an application.

13.2 Multithreaded steps
By default, Spring Batch uses the same thread to execute a batch job from start
to finish, meaning that everything runs sequentially. Spring Batch also allows
multithreading at the step level. This makes it possible to process chunks using sev-
eral threads.

Table 13.2 Main Spring TaskExecutor implementations

Implementation Description

SimpleAsyncTaskExecutor Starts a new thread for each invocation. Supports a concurrency
limit, which blocks any invocations that are over the limit until a
slot is free.

ThreadPoolTaskExecutor Wraps and configures a Java 5 ThreadPoolExecutor class,
which manages the thread pool.

WorkManagerTaskExecutor Wraps and configures a CommonJ WorkManager class, which
provides support for executing concurrent tasks.

379Multithreaded steps
You can use multithreading to avoid waiting on one object (reader, processor, or
writer) to finish processing one chunk in order to process another. Reading, process-
ing, and writing chucks can take place in separate execution threads. This technique
may not improve performance and is useful only if multithreading is supported by the
hardware. Your mileage may vary. For example, performance wouldn’t increase on a
machine with one processor core and a job doing a huge amount of processing, but
the technique would be more efficient for a job performing a lot of I/O.

 Figure 13.5 illustrates how a step handles reading and writing using multiple threads.
 One consequence of this approach is

that the step doesn’t necessarily process
items in order. There's no guarantee as
to the item processing order, so you
should consider the order random or
undefined. We look at this aspect of
multithreading later in this section with
an example.

 We’re done with multithreaded
step concepts, so let’s dive into config-
uration and usage.

13.2.1 Configuring a multithreaded step

Configuring a multithreaded step in Spring Batch is simple because it involves only
specifying a task executor for the step’s tasklet. Spring Batch then automatically
enables multithreading for the step and uses the task executor to process chunks.

 The following listing describes how to configure and add multithreading to our
readWriteProductsStep used to import products. For this example, we rename it
readWriteProductsMultiThreadedStep.

<batch:job id="importProductsMultiThreadedJob">
 <batch:step id="readWriteProductsMultiThreadedStep">
 <batch:tasklet task-executor="taskExecutor">

Listing 13.2 Configuring a multithreaded step

Spring Batch entities and thread safety
Make sure you check the documentation of the readers and writers you use before
configuring a step for multithreading. Most of the built-in Spring Batch readers and
writers aren’t thread-safe and therefore are unsafe for use in a multithreaded step.
If the Javadoc for a class doesn’t document thread safety, you need to look at the
implementation to determine thread safety and make sure the code is stateless. You
can still work with thread-safe (stateless) readers and writers; see the Spring Batch
parallelJobs example, which demonstrates using a progress indicator for reading
items from a database.

Step

Reader

Writer

Thread

Thread

Thread

Uses Calls

Figure 13.5 A step reading and writing using
multiple threads

380 CHAPTER 13 Scaling and parallel processing
 <batch:chunk reader="reader" writer="writer" commit-interval="10"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

<bean id="taskExecutor"
 class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="corePoolSize" value="5"/>
 <property name="maxPoolSize" value="5"/>
</bean>

The XML tasklet element sets the task-executor attribute, which is used to specify a
TaskExecutor implementation configured as a Spring bean. Using this attribute auto-
matically enables multithreading for the step.

 Because understanding what happens when multithreading is involved is a bit diffi-
cult, let’s see how it works by running an import of 100 products. You add trace state-
ments in the reader and writer to see which thread executes read and write
operations. The following listing shows a portion of the console output.

(...)
thread #5 – read product with product id #51
thread #5 – read product with product id #52
thread #5 – read product with product id #53
thread #3 – read product with product id #54
thread #5 – read product with product id #55
thread #3 – read product with product id #56
thread #5 – read product with product id #57
thread #3 – read product with product id #58
thread #5 – read product with product id #59
thread #3 – read product with product id #60
thread #5 – read product with product id #61
thread #3 – read product with product id #62
thread #5 – read product with product id #63
thread #3 – read product with product id #64
thread #5 – read product with product id #65
thread #3 – read product with product id #66
thread #5 – read product with product id #67
thread #3 – read product with product id #68
thread #3 – read product with product id #69
thread #5 – write products with product ids #51, #52, #53,

 ➥ #55, #57, #59, #61, #63, #65, #67
thread #3 – read product with product id #70
thread #3 – write products with product ids #54, #56, #58,

 ➥ #60, #62, #64, #66, #68, #69, #70
(...)

Listing 13.3 shows items processed in separate execution threads. The main conse-
quence of this approach is that Spring Batch doesn’t read items sequentially; chunks
may contain items that aren’t consecutive because threads read input data progres-
sively and concurrently. Each thread builds its own chunk using a reader and passes
this chunk to the writer. When a thread reaches the commit interval for a chunk,

Listing 13.3 Console output when importing products using threads

381Multithreaded steps
Spring Batch creates a new chunk. Because you’re using stock Spring Batch readers
and writers that aren’t thread-safe, you must read, process, and write items from the
same thread. Furthermore, out-of-order item processing must be supported for the
application if you want to use this technique. Listing 13.3 also shows that each chunk
built by a reader on a thread contains the number of items specified in the commit
interval, except for the last items.

 When configured for multithreading, the tasklet element also accepts an addi-
tional attribute called the throttle-limit. This attribute configures the level of
thread concurrency and has a default value of 6. This is particularly useful to ensure
that Spring Batch fully utilizes the thread pool. You must check that this value is con-
sistent with other pooling resources such as a data source or thread pool. A thread
pool might prevent the throttle limit from being reached. Ensure the core pool size is
larger than this limit.

 The following listing uses the throttle-limit attribute to configure a multi-
threaded step.

<batch:job id="importProductsMultiThreadedJob">
 <batch:step id="readWriteProductsMultiThreadedStep">
 <batch:tasklet task-executor="taskExecutor"
 throttle-limit="5">
 (...)
 </batch:tasklet>
 </batch:step>
</batch:job>
(...)

This approach is particularly interesting to get several threads to process chunks in
parallel and save execution time. Multithreading also has its drawbacks, because it
implies concurrent access of readers, processors, and writers. Such issues can be prob-
lematic when the implementations aren’t thread-safe. The next section focuses on
these multithreading issues.

13.2.2 Multithreading issues

Spring Batch frees you from thread management in your code, but the nature of oper-
ating in a multithreaded environment means that you must be aware of its limitations
and requirements. This is a similar situation as with Java EE environments and servlets.
All objects shared by threads must be thread-safe to insure correct behavior. The bad
news here is that most Spring Batch readers and writers aren’t thread-safe. We call
such objects stateful.

 The most problematic classes regarding thread safety in Spring Batch are Item-
Reader implementations because they commonly manage the state of processed data
to make jobs restartable. To understand this better, take the example of a non-thread-
safe ItemReader implementation, the JdbcCursorItemReader class. This class uses a
JDBC ResultSet to read data and carries no thread-safety guarantee. For this reason

Listing 13.4 Setting the throttle limit of a multithreaded step

Sets throttle
limit to 5

382 CHAPTER 13 Scaling and parallel processing
and because the class doesn’t implement concurrency management, you can't use it
from multiple threads.
IMPLEMENTING A THREAD-SAFE ITEM READER

We have solutions to work around these thread safety issues. The first one is to imple-
ment a synchronizing delegator for the ItemReader interface that adds the synchro-
nized keyword to the read method. Reading is usually cheaper than writing, so
synchronizing the reading isn’t that bad: one thread reads (quickly) a chunk and
hands it off to another thread that handles the (time-consuming) writing. The writing
thread is busy for a while, at least long enough for the reading thread to read another
chunk and for another thread to write the new chunk. To summarize, threads won’t
fight for reading, because they're busy writing. The following listing shows how to
implement a synchronized reader.

public SynchronizingItemReader implements ItemReader<Product>, ItemStream {
 private ItemReader<Product> delegate;

 public synchronized Product read()
 throws Exception {
 return delegate.read();
 }

 public void close() throws ItemStreamException {
 if (this.delegate instanceof ItemStream) {
 ((ItemStream)this.delegate).close();
 }
 }

Listing 13.5 Implementation of a synchronized reader

Thread safety
Thread safety describes the behavior of code when several threads access it concur-
rently. We say code (like a class) is thread-safe if you can use it in a multithreaded
environment and it still produces correct results. This mainly means that conflicts
don’t arise when using its static and instance variables. Accessing static and in-
stance variables from several threads can cause problems, so this type of code usu-
ally isn’t thread-safe.

Such issues can also create additional problems during concurrent accesses of
methods that use static variables without multithreading support.

Instance variables aren’t free from concurrent access problems either. If one thread
sets an instance variable, it can cause problems for another thread reading or writing it.

Classes can support multithreading using facilities provided by the Java platform,
such as the synchronized keyword, the ThreadLocal class, and the Java 5 java
.util.concurrent package.

In general, insuring thread safety is challenging.

Synchronizes
read methodB

Delegates for state
managementC

383Multithreaded steps
 public void open(ExecutionContext context)
 throws ItemStreamException {
 if (this.delegate instanceof ItemStream) {
 ((ItemStream)this.delegate).open(context);
 }
 }

 public void update(ExecutionContext context)
 throws ItemStreamException {
 if (this.delegate instanceof ItemStream) {
 ((ItemStream)this.delegate).update(context);
 }
 }

 (...)
}

First, you mark your product item reader’s read method B with the synchronized
keyword and delegate processing to the delegate item reader. Because the target
reader can potentially implement the ItemStream interface to manage state, you also
need to implement this interface and delegate to its corresponding methods C.

 Another solution is to add finer synchronization to processing and handle state
yourself. After adding the synchronize keyword to the reader, you deactivate the
Spring Batch step state management. You configure the ItemReader bean with the
saveState attribute for built-in Spring Batch item readers. For custom implementa-
tions, you implement the update method from the ItemStream interface to do noth-
ing if the class implements the ItemReader interface. Because you manage state
yourself, you can restart the job.
IMPLEMENTING THE PROCESS INDICATOR PATTERN

Let’s implement a thread-safe reader that applies the process indicator pattern. To
apply this pattern, you add a dedicated column to the input data table to track pro-
cessed products. For our use case, you use a column called processed from the Prod-
uct table as the process indicator. The first step is to implement a thread-safe item
reader. To do that, you reuse the SynchronizingItemReader class described in the
previous section. The target item reader manages state on its own. In this simple sce-
nario, the item writer sets the processed indicator flag to true after writing the item,
as shown in figure 13.6.

Delegates for state
management

C

ItemReader
(thread-safe)

Product

(processed = false)

ItemWriter

Reads

Sets processed = true
Updates

Output entity

Writes

Writes chunks

Step

Figure 13.6 Implementation of
the process indicator pattern in
a step

384 CHAPTER 13 Scaling and parallel processing
The following listing describes how to make a JdbcCursorItemReader thread-safe and
configure it to manage state.

<bean id="productItemReader"
 class="com.manning.sbia.ch13.SynchronizingItemReader">
 <property name="delegate" ref="targetProductItemReader"/>
</bean>

<bean id="targetProductItemReader"
 class="org.springframework.batch.item.database.JdbcCursorItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="sql"
 value="select id, name, description, price
 ➥ from product where processed=false"/>
 <property name="saveState" value="false"/>
 <property name="rowMapper" ref="productRowMapper"/>
</bean>

(...)

You start by configuring a SynchronizingItemReader bean to make the delegate item
reader thread-safe. The synchronized item reader uses the delegate property to refer-
ence the delegate item reader. You then use the processed indicator column in the SQL
statement to read data. A processed value of false causes the database to return only
unprocessed rows. Finally, you disable Spring Batch state management. This is the
other requirement to make the item reader thread-safe (with the synchronization of
the read method). But by doing that, you lose the reader’s restartability feature,
because the item reader won’t know where it left off after a failure. Luckily, the process
indicator is there to enable restartability: the reader reads only unprocessed items.

 The item writer then needs to flag the product as handled using the processed
column and then write the item, as described in the following listing.

public class ProductItemWriter extends JdbcDaoSupport
 implements ItemWriter<Product> {
 (...)
 public void write(List<Product> items) throws Exception {
 for (Product product : items) {
 getJdbcTemplate().update(
 "update product set processed=true where id=?",
 product.getId());
 //Writing the product content
 (...)
 }
 }
}

In the write method, each item in the loop is tagged as processed B by setting
the processed column to true. The item reader won’t process products with the

Listing 13.6 Configuring a thread-safe JdbcCursorItemReader with an indicator

Listing 13.7 Implementing a JDBC ItemWriter with a SQL indicator

Marks item
as processedB

385Parallelizing processing (single machine)
processed column value set to true. This technique allows managing state and makes
the job restartable.

 Notice that the writer needs to extend a Spring Batch built-in writer like Jdbc-
BatchItemWriter to specify processing and set the processed column to true when an
item is processed. To go further and be nonintrusive, you add an item processor that
manages the indicator column, as illustrated in figure 13.7.

 You can imagine that implementing your own state management is more difficult
with files as input. A common technique is to import data from a file into a dedicated
staging database table. The import is fast, even when not multithreaded. The job then
bases its data processing on this staging database table, using a parallelized step and
the process indicator pattern.

 We’ve begun to parallelize the processing using multithreading and focusing on
chunk processing. This is an interesting way to improve performance but holds limita-
tions due to multithreading and thread-safety issues. Let’s turn our attention to a new
technique that also uses multithreading to parallel processing, but at the step level,
and eliminates these types of problems.

13.3 Parallelizing processing (single machine)
Based on the previous section, multithreading is far from good enough. We can now see
that the key to scaling is to find a suitable technique to parallelize batch processing.

 Spring Batch provides a convenient way to organize steps for parallel execution.
Spring Batch XML supports this feature directly at the configuration level. The feature
also relates to the job flow feature. We focus here on the capability of a job flow to split
step processing. This aspect is useful for scaling batch jobs because it allows executing
several steps in parallel, as illustrated in figure 13.8 where Spring Batch executes dedi-
cated steps in parallel to process products, books, and mobile phones.

 A Spring Batch job can define a set of steps that execute in a specific order. In
chapter 10, we configure Spring Batch with advanced flows to control which steps to
execute and in what order. Spring Batch flow support provides the split element as a
child of the job element. The split element specifies parallel execution of its con-
taining steps.

ItemReader
(thread-safe)

Product

(processed = false)

ItemProcessor ItemWriter

Reads

Sets processed = true

Updates
Output entity

Writes

Processes
items

Writes
chunks

Step

Figure 13.7 The process indicator pattern for a step using an ItemProcessor

386 CHAPTER 13 Scaling and parallel processing
13.3.1 Configuring parallel steps

Configuring steps for parallel execution is simple and natural in Spring Batch XML. In
a split XML element, you add flows to define what to execute in parallel. These flows
can contain a single step or several steps with a specific order. Because you can con-
sider a split to be a step, it can have an identifier and be the target of the next attri-
butes in steps. A split can also define a next attribute to specify what to execute after
all flows in the split end. A split ends when all contained flows end.

 The following listing describes how to organize the steps in our case study to read
books and mobile products in parallel.

<batch:job id="importProductsJob">
 <batch:step id="decompress" next="readWrite">
 <batch:tasklet ref="decompressTasklet"/>
 </batch:step>
 <batch:split id="readWrite" next="moveProcessedFiles">
 <batch:flow>
 <batch:step id="readWriteBookProduct"/>
 </batch:flow>
 <batch:flow>
 <batch:step id="readWriteMobileProduct"/>
 </batch:flow>
 </batch:split>
 <batch:step id="moveProcessedFiles">
 <batch:tasklet ref="moveProcessedFilesTasklet" />
 </batch:step>
</batch:job>

Listing 13.8 defines a job with parallel steps named importProductsJob. After receiv-
ing and decompressing product files, you process the files in parallel that correspond

Listing 13.8 Configuring parallel steps to import products

Job

Step
(for products)Thread

Thread

Thread

1 - Executes Step
(for books)

Step
(for mobiles)

2 - Returns

Step
3 - Executes

Waiting for
all completions

Figure 13.8 Executing steps in parallel using dedicated threads

Defines
step split

B

Defines
flows

C

387Remote chunking (multiple machines)
to products for books and mobile phones. For this task, you define a split element
with the identifier readWrite B. This split defines two flows with a single step for
each flow and for each product type C. Once these two steps end, you call the step
moveProcessedFiles.

 As mentioned previously, using parallel steps implies multithreading. By default, par-
allel step execution uses a SyncTaskExecutor, but you can specify your own using the
task-executor attribute on the split element, as described in the following listing.

<batch:job id="importProductsJob">
 (...)
 <batch:split id="readWrite"
 task-executor="taskExecutor"
 next="moveHandledFiles">
 (...)
 </batch:split>
</batch:job>

<bean id="taskExecutor" (...)/>

Our first two scaling techniques use multithreading to parallelize processing of
chunks and steps where all processing executes on the same machine. For this reason,
performance correlates to a machine’s capabilities. In the next section, we use tech-
niques to process jobs remotely, providing a higher level of scalability. Let’s start with
the remote chunking pattern, which executes chunks on several slave computers.

13.4 Remote chunking (multiple machines)
The previously described techniques aim to integrate concurrent and parallel process-
ing in batch processing. This improves performance, but it may not be sufficient. A
single machine will eventually hit a performance limit. Therefore, if performance still
isn’t suitable, you can consider using multiple machines to handle processing.

 In this section, we describe remote chunking, our first Spring Batch scaling tech-
nique for batch processing on multiple machines.

13.4.1 What is remote chunking?

Remote chunking separates data reading and processing between a master and multi-
ple slave machines. The master machine reads and dispatches data to slave machines.
The master machine reads data in a step and delegates chunk processing to slave
machines through a remote communication mechanism like JMS. Figure 13.9 provides
an overview of remote chunking, the actors involved, and where processing takes place.

 Because the master is responsible for reading data, remote chunking is relevant
only if reading isn’t a bottleneck.

 As you can see in figure 13.9, Spring Batch implements remote chunking through
two core interfaces respectively implemented on the master and slave machines:

Listing 13.9 Configuring a task executor

Sets task
executor

388 CHAPTER 13 Scaling and parallel processing
■ ChunkProvider—Returns chunks from an item reader; it's used by the Chunk-
OrientedTasklet.

■ ChunkProcessor—Handles item writing and processing.

The ChunkProvider interface is responsible for returning chunks from an Item-
Reader. Chunk processors can handle the chunks. By default, Spring Batch uses the
SimpleChunkProvider implementation, which delegates to the read method of the
item reader. The following snippet lists the ChunkProvider interface:

public interface ChunkProvider<T> {
 void postProcess(StepContribution contribution, Chunk<T> chunk);
 Chunk<T> provide(StepContribution contribution) throws Exception;
}

The ChunkProcessor interface receives the chunks and is responsible for processing
them in its process method. By default, Spring Batch uses the SimpleChunkProcessor
implementation, which handles basic item writing and processing. The following snip-
pet lists the ChunkProcessor interface:

public interface ChunkProcessor<I> {
 void process(StepContribution contribution, Chunk<I> chunk)

 ➥ throws Exception;
}

Now that we know about the relevant mechanisms and actors used in remote chunk-
ing, it’s time for a concrete example. If you look for additional remote chunking sup-
port in the Spring Batch distribution, you find nothing more. Spring Batch only
provides the extensible framework to make it possible to use such a mechanism in
batch processing, but it doesn’t provide implementations. In addition to the remote
chunking framework in the Spring Batch core, the Spring Batch Admin project pro-
vides a module called Spring Batch Integration that includes a Spring Integration–

Step

Reader

Master

C
hu

nk
Pr

ov
id

er

Writer

Slave

ChunkProcessor

Writer

Slave

ChunkProcessor

Figure 13.9 Remote chunking with a master machine reading and dispatching data to slave
machines for processing

389Remote chunking (multiple machines)
based extension for remote chunking. This module provides facilities to implement
remoting in Spring Batch and remote chunking using Spring Integration channels.

13.4.2 Remote chunking with Spring Integration

The major challenge in implementing remote chunking is to make the master and its
slaves communicate reliably to exchange chunks for processing. Spring Batch chose
Spring Integration for its communication infrastructure because Spring Integration pro-
vides a message-driven, transport-independent framework. JMS is the obvious choice for
communication because it’s asynchronous and provides guaranteed delivery. Neverthe-
less, Spring Integration wraps its use of JMS. This leaves the door open for supporting
other messaging technologies, such as Advanced Message Queuing Protocol (AMQP).

The remote chunking implementation based on Spring Integration isn’t in the Spring
Batch distribution itself, but you can find it in the Spring Batch Admin distribution.

 Chapter 11 covers the basics of Spring Integration in a real-world enterprise inte-
gration scenario. If you’re in a hurry and are only interested in implementing remote
chunking, you can move on directly to the next section, which describes remote
chunking using channels.
REMOTE CHUNKING USING CHANNELS

A messaging channel is a communication medium between two applications using a
message-oriented middleware (MOM) system, as described in Enterprise Integration Pat-
terns by Gregor Hohpe and Bobby Woolf (Addison-Wesley, 2004). On one end, the appli-
cation writes data on the channel, and on the other end, the application reads data from
the channel. The messaging middleware is responsible for delivering the data.

 A channel is a great communication medium for remote chunking. It provides the
abstraction to make communication between master and slaves independent from any
technology for remotely processing chunks. Moreover, channels implement reliable
messaging, ensuring that no message is lost. Figure 13.10 shows which mechanisms
and entities are involved when implementing remote chunking with Spring Integra-
tion and Spring Batch.

 Because two types of actors—master and slave—are involved when implementing
remote chunking, we successively describe the master and slave machine implementa-
tions. We focus here on how to configure these machines using Spring Integration
and how to make them communicate. To keep things simple, we implement only one
slave, but you can generalize this to several slaves. First, let’s look at the master.

Why does remote chunking need guaranteed delivery?
With remote chunking, a master node sends chunks to slave nodes for processing.
You don’t want to lose these chunks in case of failure! That’s why reliable messaging
technologies—like JMS or AMQP—are good candidates for remote chunking with
Spring Batch.

390 CHAPTER 13 Scaling and parallel processing
IMPLEMENTING THE MASTER

In remote chunking, the master is responsible for reading input data and sending
the corresponding chunks to slaves for processing. As shown in figure 13.10, you use
the ChunkMessageChannelItemWriter class to exchange data using Spring Integra-
tion channels.

 Because you use Spring Integration channels, you configure channels for requests,
replies, and the messaging gateway. The gateway produces and consumes messages
using channels. The following listing describes how to configure channels and the
messaging gateway for a remote chunking master machine.

<bean id="messagingGateway"
 class="org.springframework.integration.core.MessagingTemplate">
 <property name="defaultChannel" ref="requests" />
 <property name="receiveTimeout" value="1000" />
</bean>

<!-- Channels -->

Listing 13.10 Configuring Spring Integration for a remote chunking master

Step (Master)

Reader ChunkProcessor

Writer ChunkProcessor

ChunkMessageChannelItemWriter

MessagingGateway

Listener

ChunkProcessorChunkHandler

R
eq

ue
st

s

R
ep

lie
s

Slave

Sends

Receives

Receives

Sends

C
ha

nn
el

s

Calls

Calls

Interacts

Interacts

Calls

Figure 13.10 Spring Integration–
based implementation of remote
chunking using a messaging gate-
way and a listener to communicate
between master and slaves
through channels

Configures
messaging gateway B

391Remote chunking (multiple machines)
<int:channel id="requests"/>
<int:channel id="incoming"/>

<int:transformer input-channel="incoming"
 output-channel="replies" ref="headerExtractor" method="extract" />

<bean id="headerExtractor"
 class="org.springframework.batch.integration
 ➥ .chunk.JmsRedeliveredExtractor"/>

<!-- Adapters -->

<int-jms:outbound-channel-adapter
 connection-factory="connectionFactory"
 channel="requests"
 destination-name="requests"/>

(...)

<int:channel id="replies" scope="thread">
 <int:queue />
 <int:interceptors>
 <bean id="pollerInterceptor"
 class="org.springframework.batch.integration
 ➥ .chunk.MessageSourcePollerInterceptor">
 <property name="messageSource">
 <bean class="org.springframework.integration
 ➥ .jms.JmsDestinationPollingSource">
 <constructor-arg>
 <bean class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="defaultDestinationName" value="replies"/>
 <property name="receiveTimeout" value="100"/>
 </bean>
 </constructor-arg>
 </bean>
 </property>
 <property name="channel" ref="incoming"/>
 </bean>
 </int:interceptors>
</int:thread-local-channel>

You configure the messaging gateway B to send and receive messages from the mes-
saging middleware. The gateway uses channels for requests and replies that you con-
figure using Spring Integration XML C. Notice here the use of the channel adapter
outbound-channel-adapter D for the requests channel with a JMS outbound desti-
nation. To receive and handle messages from the reply destination, you define a
thread-local-channel E.

 Now that you’ve configured your Spring Integration XML elements, let's see how
to define Spring Batch entities from the Spring Batch Integration module to imple-
ment remote chunking for the master. This configuration may seem a bit like magic.
No entity mentioned in the introduction section appears in the configuration, and
it’s difficult to see how the ChunkMessageChannelItemWriter bean is involved in
the processing.

Defines
channels

C

Defines channel
adapter for requests

D

Defines thread local
channel for replies

E

392 CHAPTER 13 Scaling and parallel processing
 In fact, the RemoteChunkHandlerFactoryBean class is responsible for configuring the
step for remote chunking. It automatically and transparently converts an existing
chunk–oriented step into a remote chunk–oriented step for the master. To achieve this,
the class replaces the current chunk processor with one that writes chunks to a message
channel. The following listing describes how to configure a master for remote chunking.

<bean id="chunkWriter"
 class="org.springframework.batch.integration.chunk
 ➥ .ChunkMessageChannelItemWriter" scope="step">
 <property name="messagingGateway" ref="messagingGateway"/>
</bean>

<bean id="chunkHandler"
 class="org.springframework.batch.integration.chunk
 ➥ .RemoteChunkHandlerFactoryBean">
 <property name="chunkWriter" ref="chunkWriter"/>
 <property name="step" ref="stepChunk"/>
</bean>

You start by configuring a ChunkMessageChannelItemWriter bean using the messag-
ing gateway. Next, you configure the factory bean for the chunk handler using the
RemoteChunkHandlerFactoryBean class. You set the chunkWriter property to the
chunk channel writer, and then reference the step defined with the stepChunk ID
using the step property. This step corresponds to the step implementing remote
chunking for the batch job.

 The RemoteChunkHandlerFactoryBean class creates a chunk handler, which makes
it possible to configure a master as a slave to process chunks. In this case, you add a
service activator bean using Spring Integration. We describe this in the next section.

 You’ve configured the master to send chunks through a channel for remote pro-
cessing. Next, let’s configure a slave.
IMPLEMENTING A SLAVE

In remote chunking, slaves process chunks remotely and can send data back to the
master. Slaves correspond to dedicated Spring applications that are channel listeners
that receive messages, process content, and use the reply channel to notify the master.

 At the slave level, you use more low-level objects because you communicate through
JMS destinations, the underlying mechanism for channels. The service activator is a JMS
message listener that triggers processing for the chunk handler. The following listing
describes JMS listener definitions and the service activator configuration. The service
activator references both input and output channels.

<!-- JMS listener container -->
<jms:listener-container
 connection-factory="connectionFactory"
 transaction-manager="transactionManager"
 acknowledge="transacted">

Listing 13.11 Configuring a master for remote chunking

Listing 13.12 Configuring Spring Integration for a remote chunking slave

393Remote chunking (multiple machines)
 <jms:listener destination="requests"
 response-destination="replies"
 ref="chunkHandler"
 method="handleChunk"/>
</jms:listener-container>

You use a message listener container to receive messages from a JMS message queue and
drive it to a POJO defined as a listener. You set attributes on the listener-container
element for a JMS connection factory, a transaction manager, and the acknowledgment
type. The listener element specifies how to route messages to the chunk handler.

 As shown in figure 13.10, the entry point for the listener on the slave side is a
ChunkProcessorChunkHandler. The handler is responsible for triggering processing
of the chunk processor for the received chunk. For this reason, you must configure a
chunk processor in the handler. This handler knows how to distinguish between a
processor that is fault tolerant, and one that is not. If the processor is fault tolerant,
then exceptions can be propagated on the assumption that there will be a rollback
and the request will be re-delivered.

 The following listing describes how to configure a SimpleChunkProcessor in this
context and set it on the item writer to execute.

<bean id="chunkHandler"
 class="org.springframework.batch.integration.chunk
 ➥ .ChunkProcessorChunkHandler">
 <property name="chunkProcessor">
 <bean
 class="org.springframework.batch.core.step.item.SimpleChunkProcessor">
 <property name="itemWriter"
 ref="itemWriter"/>
 <property name="itemProcessor">
 <bean class="org.springframework.batch.item
 ➥ .support.PassThroughItemProcessor"/>
 </property>
 </bean>
 </ property>
</bean>

Configuring slaves requires defining the chunk handler that the listener calls when
receiving messages from the requests destination. In Spring Integration, the handler
is a ChunkProcessorChunkHandler bean that specifies a chunk processor used to han-
dle the received chunk. Here, you use the SimpleChunkProcessor class with the target
item writer to execute (the itemWriter attribute) and an item processor that does
nothing (the itemProcessor attribute).

 Third-party tools like GridGain1 provide additional implementations for remote
chunking. GridGain is an innovative Java and Scala–based cloud application platform,
which you can use with the Spring Batch Integration module2 for GridGain.

Listing 13.13 Configuring a slave for remote chunking

1 www.gridgain.com/
2 http://aloiscochard.blogspot.com/search/label/gridgain

http://aloiscochard.blogspot.com/search/label/gridgain
www.gridgain.com/

394 CHAPTER 13 Scaling and parallel processing
 In summary, remote chunking uses a master to send chunks to remote slaves for
processing. In the next section, we explore a flexible scaling Spring Batch technique
called partitioning.

13.5 Fine-grained scaling with partitioning
The last technique provided by Spring Batch for scaling is partitioning. You use parti-
tioning to implement scaling in a finer-grained manner. At this level, you can also use
multithreading and remoting techniques.

NOTE Partitioning is arguably the most popular scaling strategy in Spring
Batch: it’s simple to configure if you stick to the defaults and local imple-
mentation; and restart still works out of the box.

Figure 13.11 shows an overview of how partitioning works in Spring Batch and how it
provides scaling. The figure shows that partitioning takes place at the step level and
divides processing into two main parts:

■ Data partitioning—Creates step executions to process data. This splitting allows
parallelizing and data processing. Data partitioning depends on the nature of the
data: ranges of primary keys, the first letter of a product name, and so on. A batch
developer would likely implement their own partitioning logic in a Partitioner.
The Spring Batch Partitioner interface defines the contract for this feature.

■ Step execution handling—Specifies
how to handle different step execu-
tions. It can be local with multi-
threading (or not) and even remote
using technologies like Spring Inte-
gration. A framework typically pro-
vides the way to handle execution,
and Spring Batch provides a multi-
threaded implementation. The
Spring Batch PartitionHandler

interface defines the contract for
this feature.

We recommended this approach when you
want to parallelize processing of data par-
titions and when you want to control how to
create and handle these partitions.

 Now that we've described the general
concepts behind Spring Batch partitioning,
it’s time to see how to implement and con-
figure an example. This technique is con-
figuration-centric and provides an open
framework to integrate custom strategies.

Step

Partitioner

Master

Remote
handler

Slave

Step
execution

Step
execution

Step
execution

PartitionHandler

Locally Remotely
Or

Splits Splits

Remote
handler

Slave

Handles Handles

Figure 13.11 Partitioning splits input data pro-
cessing into several step executions processed
on the master or remote slave machines.

395Fine-grained scaling with partitioning
13.5.1 Configuring partitioning

As described previously, to implement partitioning, you must define the splitting and
processing of data. Partitioning corresponds to creating several step executions for a
step. You configure this example using Spring Batch XML.

 To configure partitioning, you use the partition element instead of the tasklet
element in the step configuration. The partition element partitions the target step
configured using the step attribute, which eliminates any impact on implementations
of step entities like readers, processors, and writers. It’s only a matter of configuration.
Additional settings are also available to configure the partitioner and handler.

 Listing 13.14 describes a basic partitioning configuration for the readWriteProd-
ucts step of our case study. The listing shows how to use the partition and handler
elements and hides the configuration of additional entities like the partitioner. We
focus on these later when we describe the Spring Batch partitioning Service Provider
Interface (SPI) in section 13.5.2.

<batch:job id="importProducts">
 <batch:step id="readWriteProducts">
 <batch:partition step="partitionReadWriteProducts"
 partitioner="partitioner">
 <batch:handler grid-size="2"
 task-executor="taskExecutor"/>
 </batch:partition>
 </batch:step>
</batch:job>

<batch:step id="partitionReadWriteProducts">
 <batch:tasklet>
 <batch:chunk reader="reader" writer="writer" commit-interval="3"/>
 </batch:tasklet>
</batch:step>

<bean id="partitioner" (...)> (...) </bean>
<bean id="taskExecutor" (...)> (...) </bean>

The partitioning configuration is located in the step instead of in its declaration. The
partition references this configuration with the step attribute. You set additional
properties on the partition with the partitioner attribute and the handler inner ele-
ment. The default value for the partition handler defined in the handler element is

Listing 13.14 Configuring step partitioning

Why doesn’t partitioning need guaranteed delivery?
Contrary to remote chunking, partitioning doesn’t need guaranteed delivery. With par-
titioning, Spring Batch handles each partition in its own step execution. On a restart
after failure, Spring Batch re-creates the partitions and processes them again. Spring
Batch doesn’t leave data unprocessed.

396 CHAPTER 13 Scaling and parallel processing
TaskExecutorPartitionHandler. The step is now defined independently using the
step that contains standard elements like tasklet and chunk. Note that using the
step attribute makes sense only for local partitioning, because it refers to a local step
bean in the current Spring application context. In the case of remote partitioning—
when the processing happens in a different process—referring to a local step bean
doesn’t make sense. For remote partitioning, you usually set up the step name on the
partition handler. The partition handler then sends the step name—a simple
String—to a remote worker. The step name then refers to a step bean in another
Spring application context.

 The configuration schema provides the ability to use any handler implementation
with the handler attribute in the partition element, as described in the following
listing.

<batch:job id="importProducts">
 <batch:step id="readWriteProducts">
 <batch:partition step="partitionReadWriteProducts"
 partitioner="partitioner"
 handler="partitionHandler">
 </batch:partition>
 </batch:step>
</batch:job>

<bean id="partitionHandler" (...)> (...) </bean>
(...)

Before dealing with the partitioning SPI, we emphasize an important and interest-
ing aspect of partitioning: late binding is available with this feature. The difference
here is that late binding gives access to property values present in the current step
execution.

 To understand this better, let’s look at an example. If you split a step to handle
each file in a multiresource reader separately, you can access the name of the current
file using late binding, as described in the following snippet. Each partition sets the
filename property for the step execution. Notice that the step is involved in a parti-
tioned step:

<bean id="itemReader" scope="step"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="#{stepExecutionContext[fileName]}"/>
 (...)
</bean>

In this section, we described how to use partitioning in step configurations. We saw
how easy implementation is and that there is no impact on the steps involved. Spring
Batch provides an open framework for partitioning that allows defining and imple-
menting advanced and custom solutions.

Listing 13.15 Configuring step partitioning with a partition handler

References
partition handler

397Fine-grained scaling with partitioning
13.5.2 The partitioning SPI

It’s time to look at how things work under the hood and how to extend this support.
Spring Batch provides a complete SPI for this purpose, using the interfaces listed in
table 13.3.

These interfaces and classes are involved when partitioning steps, as described earlier
in listing 13.14. When Spring Batch executes a partitioned step, it invokes the parti-
tion handler to process the partition. The step then aggregates results and updates
the step status.

 The partition handler does the heavy lifting. It’s responsible for triggering parti-
tioning based on the StepExecutionSplitter that creates the step executions. A split-
ter implementation like the SimpleStepExecutionSplitter class uses a Partitioner
to get execution contexts for each step execution: the partitioner performs the split-
ting. Once the splitting is complete,
the partition handler executes each
step with a defined strategy. It can be
local with multithreading or remote.
As a batch job developer, you would
typically write (or configure) only a
Partitioner implementation to par-
tition your data.

 Figure 13.12 summarizes the
objects involved during partitioning.

 It’s now time to tackle different
ways of using partition handlers and
partitioners. We begin with the

Table 13.3 Partitioning SPI

Interface Description

PartitionHandler Determines how to partition and handle input data. An implementa-
tion completely controls the execution of a partitioned
StepExecution. It doesn’t know how partitioning is implemented
and doesn’t manage the aggregation of results. The default implemen-
tation is the TaskExecutorPartitionHandler class.

StepExecutionSplitter A strategy interface for generating input execution contexts for a parti-
tioned step execution. The strategy is independent from the partition
handler that executes each step. By default, this interface delegates
to a Partitioner. The default implementation is the
SimpleStepExecutionSplitter class.

Partitioner Creates step executions for the partitioned step. The default imple-
mentation is the SimplePartitioner class, which creates empty
step executions.

StepExecutionSplitter

PartitionStep

Partitioner

PartitionHandler

Target step

Uses

Uses

Partitions

Uses

Figure 13.12 Partitioning SPI objects involved in
partitioning and processing data for a partitioned step

398 CHAPTER 13 Scaling and parallel processing
default implementations provided by Spring Batch, describe how to use third-party
implementations, and finish with custom implementations.
USING THE DEFAULT PARTITION HANDLER

The partitioning classes give you the ability to scale steps on several processing nodes
and enable strategies to increase performance. Partitioning is particularly useful to
distribute step processing on several computers. This isn’t always necessary. In fact,
the default Spring Batch PartitionHandler implementation uses multithreading to
process steps.

 Let’s take our case study as an example and use multithreading to import multiple
product files concurrently. Section 13.2 describes how to add multithreading for the
whole step, but this approach can’t control which thread processes which data. Parti-
tioning provides this support by using dedicated threads to process all of the data for
each file. Using the default PartitionHandler implementation, the TaskExecutor-
PartitionHandler class, makes this possible. Figure 13.13 illustrates the multi-
threaded aspect of this architecture.

 Configuring this strategy is simple because it’s similar to the generic strategy
described earlier. The difference is how to configure partitioning using XML. Spring
Batch provides the MultiResourcePartitioner class to create a new step execution
for each file to import. The following listing describes how to configure a Multi-
ResourcePartitioner bean and how to use it on the partitioned step.

Step

Partitioner

Step
execution

File #1

PartitionHandler

Thread
#1

Thread
#2

Thread
#3

Step
execution

File #2

Step
execution

File #3

File #1

File #2

File #3

Splits Splits

Executes Executes

Based
on

Figure 13.13 Using dedicated threads to process data when importing product files with
partitioning

399Fine-grained scaling with partitioning
<batch:job id="importProducts">
 <batch:step id="readWriteProducts">
 <batch:partition step="partitionReadWriteProducts"
 partitioner="partitioner">
 <batch:handler grid-size="2" task-executor="taskExecutor"/>
 </batch:partition>
 </batch:step>
</batch:job>

<bean id="partitioner"
 class="org.springframework.batch.core
 ➥ .partition.support.MultiResourcePartitioner">
 <property name="keyName" value="fileName"/>
 <property name="resources"
 value="file:./resources/partition/input/*.txt"/>
</bean>

(...)

<bean id="taskExecutor"
 class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="corePoolSize" value="5"/>
 <property name="maxPoolSize" value="5"/>
</bean>

Configuring this strategy follows the same rules as for using the partition element B.
The step attribute B specifies the step to partition, and the handler child element sets
the partition handler B. The partitioner attribute B references a MultiResource-
Partitioner bean C that specifies a pattern for a file list in the resources property D.
It also sets the keyName property D to specify the name of the current resource to use
when adding a file in the step context attributes.

 The last thing you must do is specify the resource file to process in the item reader
using late binding. Partitioning is most powerful when each created step execution
has its own parameter values. For the MultiResourcePartitioner class, the fileName
context attribute is the resource name associated with the step execution. The follow-
ing snippet describes how to specify the filename at the item reader level. Remember
to specify the step scope when using late binding!

<bean id="itemReader" scope="step"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="#{stepExecutionContext[fileName]}"/>
 (...)
</bean>

The previous sections describe how to use the Spring Batch implementations of the
partitioning SPI. It’s also possible to use implementations from third-party tools like
the Spring Batch Integration module or to implement custom classes.
USING CHANNEL-BASED PARTITIONS

Implementing a PartitionHandler remains a tricky task and, unfortunately, the
Spring Batch core doesn’t provide implementations other than the TaskExecutor-
PartitionHandler. As for remote chunking, the Spring Batch Integration module

Listing 13.16 Configuring partitioning with a MultiResourcePartitioner

Configures step
partitioning

B

Configures
partitioner

C

Specifies partitioner
properties

D

Specifies resource
to handle

400 CHAPTER 13 Scaling and parallel processing
provides classes compatible with Spring Integration channels called MessageChannel-
PartitionHandler and StepExecutionRequestHandler.

 Figure 13.14 shows which mechanisms and types are involved when implementing
remote partitioning with Spring Integration support from Spring Batch.

 Master and slave machines communicate using Spring Integration channels. As with
remote chunking, we apply the master-slave pattern. On the master side, we use the Mes-
sageChannelPartitionHandler class to send the partitioned data to slaves for process-
ing for a particular step. We specify the step name in the configuration. The following
listing describes how to configure this partition handler and set it on the partition.

<bean id="partitionHandler"
 class="org.springframework.batch.integration
 ➥ .partition.MessageChannelPartitionHandler">
 <property name="messagingOperations">
 <bean class="org.springframework.integration.core.MessagingTemplate">
 <property name="defaultChannel" ref="requests"/>
 <property name="receiveTimeout" value="10000"/>
 </bean>
 </property>
 <property name="replyChannel" ref="replies"/>
 <property name="stepName" value="importProductsStep"/>
 <property name="gridSize" value="2"/>
</bean>

(...)

Listing 13.17 Configuring a master for remote partitioning

Step

Partition

Master Slave

Remote step

MessageChannelPartition
Handler

MessagingGateway
Listener

StepExecutionRequest
Handler

Requests

Replies

StepLocator

Channels

Uses

Uses

Uses

Interacts

Uses

References

Figure 13.14 Partitioning using Spring Integration: the master and slaves communicate using channels,
a messaging gateway, and a listener.

Configures remote
partition handlerB

401Fine-grained scaling with partitioning
<batch:job id="importProductsJob-master">
 <batch:step id="importProductsStep-master">
 <batch:partition handler="partitionHandler"
 partitioner="partitioner" />
 </batch:step>
</batch:job>

<batch:step id="importProductsStep">
 <batch:tasklet>
 <batch:chunk commit-interval="10">
 <batch:reader> (...) </batch:reader>
 </batch:chunk>
 </batch:tasklet>
</batch:step>

You configure the remote partition handler using the MessageChannelPartition-
Handler class B. This partition handler uses the messagingOperations property so
that the Spring Integration messaging client can execute requests on channels. The
replyChannel property is set to the channel to listen to replies. The stepName prop-
erty is set to the step to execute on the slave. Finally, the gridSize property tells the
underlying StepExecutionSplitter implementation how many StepExecution

instances to create. In the bean that defines the job, the step importProductsStep-
master refers to the partition handler C.

 As for remote chunking, a listener triggers processing on the slave. The slave lis-
tener then delegates to a StepExecutionRequestHandler bean to process the received
partition data. To determine which step to execute, you configure a step locator bean
of type BeanFactoryStepLocator. The following listing describes how to configure a
slave for remote partitioning.

<int:service-activator
 ref="stepExecutionRequestHandler"
 input-channel="requests"
 output-channel="replies">
 <poller>
 <interval-trigger interval="10" />
 </poller>
</service-activator>

(...)

<bean id="stepExecutionRequestHandler"
 class="org.springframework.batch.integration
 ➥ .partition.StepExecutionRequestHandler"
 p:jobExplorer-ref="jobExplorer"
 p:stepLocator-ref="stepLocator"/>

<bean id="stepLocator"
 class="org.springframework.batch.integration
 ➥ .partition.BeanFactoryStepLocator"/>

<batch:step id="importProductsStep">

Listing 13.18 Configuring a slave for remote partitioning

Sets handler
in partitionC

Configures service
activatorB

Configures request
handler

C

Configures
step locator

D

402 CHAPTER 13 Scaling and parallel processing
 <batch:tasklet>
 <batch:chunk commit-interval="10">
 <batch:writer> (...) </batch:writer>
 </batch:chunk>
 </batch:tasklet>
</batch:step>

The entry point for the slave is a Spring Integration service activator B that uses input
and output channels to communicate with the remote partitioning step. This service
activator references the request handler for processing. You configure this handler as
a StepExecutionRequestHandler C to find and execute the target step. A step loca-
tor is in charge of finding this step. You use the BeanFactoryStepLocator class D,
which looks for the step in the current Spring context.

 Partitioning is flexible because of the partition handler, which implements a local
or remote strategy to process partitioned data. Partitioning a step also makes it possi-
ble to customize splitting data using custom implementations of the StepExecution-
Splitter and Partitioner interfaces.
CUSTOMIZING DATA PARTITIONING

The two interfaces involved in custom partitioning are StepExecutionSplitter and
Partitioner. A StepExecutionSplitter is responsible for creating input execution
contexts for a partitioned step execution in its split method. The following snippet
lists the StepExecutionSplitter interface:

public interface StepExecutionSplitter {
 String getStepName();
 Set<StepExecution> split(StepExecution stepExecution, int gridSize)

 ➥ throws JobExecutionException;
}

The default implementation of the StepExecutionSplitter interface, the Simple-
StepExecutionSplitter class, delegates to a partitioner to generate Execution-
Context instances. For this reason, developers don’t commonly implement custom
classes; instead, customizations take place at the Partitioner level.

 Spring Batch uses a Partitioner at the end of the partitioning process chain. A
Partitioner implementation provides a strategy to partition data. The partition
method uses the given grid size to create a set of unique input values, such as a set of
non-overlapping primary key ranges or a set of unique filenames. The following snip-
pet lists the Partitioner interface:

public interface Partitioner {
 Map<String, ExecutionContext> partition(int gridSize);
}

Let’s now implement a custom strategy to partition data from a database table. You
first determine data ranges and then assign them to step executions. Assume here that
data is distributed uniformly in the table. Figure 13.15 summarizes the use case.

 You implement a custom partitioner called ColumnRangePartitioner that deter-
mines the minimum and maximum values for the column of a table. The partitioner

403Fine-grained scaling with partitioning
uses these values to define ranges based on the grid size specified. The following list-
ing describes the implementation of the ColumnRangePartitioner class.

public class ColumnRangePartitioner implements Partitioner {
 private SimpleJdbcTemplate jdbcTemplate;
 private String table;
 private String column;

 (...)

 public Map<String, ExecutionContext> partition(int gridSize) {
 int min = jdbcTemplate.queryForInt(
 "SELECT MIN(" + column + ") from " + table);
 int max = jdbcTemplate.queryForInt(
 "SELECT MAX(" + column + ") from " + table);
 int targetSize = (max - min) / gridSize + 1;

 Map<String, ExecutionContext> result
 = new HashMap<String, ExecutionContext>();
 int number = 0;
 int start = min;
 int end = start + targetSize - 1;

 while (start <= max) {
 ExecutionContext value = new ExecutionContext();
 result.put("partition" + number, value);

 if (end >= max) {
 end = max;
 }

Listing 13.19 Custom ColumnRangePartitioner class

Step

Partitioner

Step
execution
Range #1

PartitionHandler

Step
execution
Range #2

Step
execution
Range #3

Range #1

Range #2

Range #3

Table

Based
on

Executes Executes

Figure 13.15 Partitioning based on database column values

Determines range
properties

B

Creates new
execution context

C

Specifies properties
for contextD

404 CHAPTER 13 Scaling and parallel processing
 value.putInt("minValue", start);
 value.putInt("maxValue", end);
 start += targetSize;
 end += targetSize;
 number++;
 }

 return result;
 }
}

The partition method assumes that the column is of integer type and queries the
minimum and maximum values from the database B. The method then creates as
many execution contexts as specified by the targetSize count C and adds them to
the partition Map D. The method also sets the minValue and maxValue properties D
in the context to identify the range for the current context.

 We’ve seen throughout this chapter that Spring Batch provides several scaling pat-
terns to improve performance. The challenge is in choosing the right pattern for a
given use case. In the next section, we compare the pattern features and provide
guidelines for choosing a pattern (or combination patterns) for different use cases.

13.6 Comparing patterns
In choosing the best pattern for a use case, you need to consider your batch jobs, over-
all application, and the whole information system. In this section, we provide guide-
lines for choosing scaling patterns.

 Table 13.4 summarizes the Spring Batch approaches used to implement scaling.
These patterns leverage multithreading, remoting, and partitioning to improve per-
formance.

The first piece of advice we can give you about choosing a scaling techniques is, don’t
do it! Implement your jobs traditionally and use the techniques in this chapter only if
you face performance issues. Keep it simple! Then, if your jobs take too long to exe-
cute, you can first consider using local scaling with multithreading if your hardware

Table 13.4 Spring Batch scaling approaches

Pattern Type Description

Multithreaded step Local A set of threads handles a step. All resources involved must be
thread-safe. Carefully consider concurrency issues.

Parallel step Local Execute steps in parallel using multithreading. Parallelize steps in a
step flow using multithreading. Because parallel steps must be
strictly independent, this approach has no concurrency issues.

Remote chunking Remote Execute chunks remotely. A master sends chunks to remote slaves
for processing. Useful if reading on the master isn’t a bottleneck.

Partitioning step Local and
remote

Define data sets for parallel processing. Control parallel data set pro-
cessing. The master mustn’t have a bottleneck when using remoting.

Specifies properties
for context

D

405Summary
supports it. This is relevant if you have multicore or multiprocessor hardware. For
multithreaded steps, you must be extremely cautious, think about thread-safety, and
batch job state. Most of the classes involved in steps, like the built-in readers and writ-
ers, aren’t thread-safe, so you shouldn’t use them in a multithreaded environment.
You can also parallelize processing with multithreading using parallel steps and parti-
tioning steps. Parallel steps require organized processing in steps, which is generally a
good approach. With partitioning steps, you can leverage built-in classes to select sets
of data to process in parallel. For example, using one thread per file to import data is
particularly convenient and efficient.

 In a second round, if performance still doesn’t suit you, you can consider remoting
and splitting batch processing on several machines. On one hand, be aware that
remote scaling introduces complexity in your batch jobs; use it only if you must. On
the other hand, these techniques provide high levels of scalability.

 You can use two different Spring Batch techniques in this context: remote chunk-
ing and partitioning. Remote chunking systematically sends chunks to slaves for
remote processing, whereas partitioning creates data sets to send to slaves for remote
processing. Table 13.5 lists the pros and cons of both patterns.

For the remoting patterns, Spring Batch doesn’t provide implementations in its core
distribution. You can consider using the Spring Batch Integration module in Spring
Batch Admin to use Spring Integration–based remoting.

 As you can see, Spring Batch provides a large solution set to implement batch pro-
cess scaling. The biggest challenge is in choosing the right patterns to improve perfor-
mance.

13.7 Summary
Scaling in Spring Batch provides various solutions to enhance batch job performance
with minimum impact on existing job implementations. Spring Batch configuration
files mostly implement scaling and can involve multithreading, parallel executions,
partitioning, and remoting.

Table 13.5 Comparing Spring Batch remote scaling patterns

Approach Pros Cons

Remote
chunking

No need to know about the input data structure

Not sensitive to timeout values

Transactional middleware required to
handle failures

Potential bottleneck in reader for data
serialization

Partitioning
step

Transactional middleware not required to handle
failures

No bottleneck in reader for data serialization

Low bandwidth and transport costs

Need to know the input data structure

Can be sensitive to timeout values

406 CHAPTER 13 Scaling and parallel processing
 Spring Batch implements nonsequential processing with multithreading. One
approach is to use multithreaded steps, but you need to be cautious because this
requires thread-safe code, and you must add specific state management code to keep
batch jobs restartable. Spring Batch also provides the ability to execute steps in paral-
lel. This requires proper organization of a batch process in steps. The configuration
defines the execution sequence.

 Spring Batch provides advanced and highly scalable patterns and frameworks.
Remote chunking splits chunk processing on several computers to balance the
processing load. Partitioning provides a way to split up data for remote or multi-
threaded processing.

 Scaling can be challenging to implement and is strongly linked to batch processing
and the execution environment. Spring Batch implements a set of patterns that you
can use and combine to improve performance.

 Chapter 14 covers an essential aspect of application development: testing. This is
particularly true for batch jobs because they mainly process data without user interac-
tion and apply complex business rules. Unit and functional testing gives us the confi-
dence to maintain and grow applications.

Testing batch applications
In the core chapters of this book, we introduced Spring Batch concepts and you
learned how to configure and run a batch job and how to read, process, and write
data. Then, in the Spring Batch advanced concepts chapters, we explored exception
handling, batch monitoring, and scaling. We addressed all the important aspects of
creating batch jobs. The next step is to verify that an application works correctly.

 Testing is a best practice in software development and is essential to batch appli-
cations. This chapter explains testing concepts and implementing unit, integration,
and functional tests. We leverage the Spring Framework, Spring Batch’s testing sup-
port, and the Mockito mock framework. This chapter demonstrates how to do all of
this by using our case study as an example. Figure 14.1 depicts how to test our use case.

 The goal of our batch application is to import products from a text file into a
database. You start by validating the job’s parameters: an input file and a report file.
Then, you read the product flat file and convert each line into a Product object. A

This chapter covers
■ Test concepts
■ Unit testing
■ Integration testing
■ Functional testing
407

408 CHAPTER 14 Testing batch applications
CompositeItemProcessor processes each Product. The CompositeItemProcessor is
composed of two Validators: one for checking that a product’s price isn’t null and
the other for checking that the price is positive. An item writer outputs products that
don’t match these conditions to a reject file with the help of a StepListener. You
write product items with your own ProductItemWriter based on the SimpleJdbc-
Template. If the job writes any product to the reject file, a statistics step generates a
file that contains the average product price. The job ends with a cleanup step.

14.1 The what and why of testing
Let’s talk a bit about what testing is and how testing can improve the reliability and
robustness of an application. We look at different kinds of tests and then see how to
implement them for our case study.

14.1.1 What is testing?

Software testing is a process used to ensure that the source code you write does what
it’s supposed to do. This process helps you find errors. Let’s look at two main testing
strategies: black-box and white-box testing.

Statistics step

Some items
written?

Yes No

Job parameters
validator

Chunk-oriented step
Item reader

Item processor
Item writer

Step listener

Cleanup step

Decision

Figure 14.1 High-level view of
our batch application workflow.
Our testing strategy applies to
all the components shown in
the figure.

409The what and why of testing
BLACK-BOX TESTING

Black-box testing focuses on software features without relying on internal knowledge
of the implementation. This kind of testing shows that the application accepts input
and produces output without errors; you base tests on requirements and functionality.
WHITE-BOX TESTING

White-box testing focuses on implementation of software with internal knowledge
of design, algorithms, and constraints. In white-box testing, you also focus on code
coverage.

14.1.2 Different types of testing

Depending on what you want to test, you have two strategies to choose from: white-
box or black-box testing. Table 14.1 lists the main types of testing.

This chapter focuses on unit tests, integration tests, and functional tests.
 A unit test should address a single point of functionality and should be fast, under-

standable (by a human), automatic (no human intervention), and isolated from
external resources such as a database, file system, web service, and JMS broker. A unit
test aims to test a public API. With integration and functional tests, you can use exter-
nal systems such as a database, which can even be an in-memory database to speed up
tests. All these tests must be automatic and require no human intervention.

Type Definition Strategy

Unit testing Tests a single software module (a component, a service, and so on)
and requires detailed knowledge of implementation internals

White box

Integration testing Tests software modules to verify overall functionality and requires
detailed knowledge of implementation internals

White box

Functional testing Focuses on functional requirements of an application by verifying that
input is accepted and expected output is produced without errors

Black box

System testing Tests all parts of an application Black box

Acceptance testing Verifies that the application meets customer-specified requirements Black box

Performance testing Checks whether the system meets performance requirements Black box

Test-driven development (TDD)
TDD is a software development process based on short iteration cycles and unit
tests. Using this process, you write an automated test first, ensure that the test fails,
write the code, and then ensure that the test passes. The benefits of the TDD pro-
cess are that it drives the API and design, provides good code coverage, promotes
safe code refactoring, and keeps developers focused on the task.

410 CHAPTER 14 Testing batch applications
We now know what testing is and what the different types of tests are, but you might be
wondering, should I test my applications? What’s the benefit?

14.1.3 Why test?

If you’re reading this book, you’re human and writing software. Unintentionally, at
least, humans make mistakes. A defect in a production environment may cause a mal-
function of a part of the software, leading to a system failure with corrupted data. For
example, in an insurance company, this could result in an error to a client’s refund or
a salesperson may be unable to create a new contract. The later bugs are discovered,
the more it costs to fix them. Software testing helps minimize bugs.

 During development, we wish to add features quickly without breaking existing ones.
Sometimes, developers are afraid of changing code. They don’t know what the software
is supposed to do or how it works. Software testing helps developers understand existing
source code by reading through test source code. Software applications have grown in
complexity and size, and testing in the development phase helps developers gain con-
fidence and get feedback when a test succeeds or fails. Furthermore, automated tests
save time. The benefits of testing are great: tests improve the quality, reliability, and
robustness of software. Nowadays, software testing has become unavoidable.

 With all the necessary pieces in place, we’re ready to write some tests. For the rest
of this chapter, we look at each type of test—unit, integration, and functional—and
see how to create each test with Spring Batch.

14.2 Unit testing
In this section, we introduce how to write basic unit tests with JUnit, and then we look
at the Mockito mock framework. Table 14.2 shows which of our sample unit tests
require JUnit and a mock framework (the test class names refer to the source code
from the book).

Figure 14.2 depicts what components we cover in our unit test examples. This figure
shows that we unit test all components except for the statistics step. This is good news:
Spring Batch artifacts (validator, reader, writer, and so on) are unit testable! Even if
these artifacts are meant to be used in complex jobs that handle large amounts of
data, they’re isolated enough from their runtime environment to be unit tested.
That’s a direct benefit of the plain old Java object (POJO) programming model that
the Spring Framework—and so Spring Batch—promotes. Table 14.3 shows our exam-
ple test classes and the corresponding Spring Batch domain objects they cover.

Test class name JUnit Mock framework

JUnitSampleTest ✔

MockitoSampleTest ✔ ✔

411Unit testing
14.2.1 Introducing JUnit

JUnit is an open source unit testing framework and is the de facto standard for unit
testing in Java. Starting with version 4.5 (released in 2008), JUnit provides annotations
and additional classes to ease the task of writing unit tests.

TIP To learn everything there is to know about JUnit, read JUnit in Action,
Second Edition, by Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary
Gregory (Manning Publications, 2011).

Test class Spring Batch domain object

ImportValidatorTest JobParametersValidator

CompositeItemProcessorTest ItemProcessor

ProductFieldSetMapperTest ItemReader

PriceMandatoryValidatorTest Validator in an ItemProcessor

PositivePriceValidatorTest Validator in an ItemProcessor

ProductItemWriterMockTest ItemWriter

ProductItemListener StepListener

NextDeciderTest JobExecutionDecider

CleanTaskletTest Tasklet

Statistics step

Some items
written?

Yes No

Job parameters
validator

Chunk-oriented step
Item reader

Item processor
Item writer

Step listener

Cleanup step

Decision

Component covered by unit test

Figure 14.2 Components
unit tested by our examples.
We unit test all components
except the statistics step.

412 CHAPTER 14 Testing batch applications
To implement a test case, you start by creating a public class; by convention, you post-
fix the class name with Test or TestCase, for example, ImportValidatorTest.
Because we use annotations, our test class no longer needs to inherit from the JUnit
TestCase class as it did in JUnit version 3.

 To create a test method, you write a public method with no return value, no argu-
ments, and an @Test annotation. By convention, the method name starts with test.

 At the start of a test run, JUnit runs methods with @Before annotations before
each test method. Use @Before methods to initialize new instances of test objects
stored in instance variables. These objects are available in each test method, and we
call them fixtures.

JUnit runs methods with @After annotations after each test method to clean up fix-
tures or other resources as necessary.

 Because some resources are expensive to initialize and manage, you can have JUnit
call setup and tear down methods once per test run. Use the @BeforeClass annotation
to call a method once per test run before JUnit has run all test methods. Use the @After-
Class annotation to call a method once per test run after JUnit has run all test methods.

 Methods in the Assert class help you compare an expected value to an actual
value. You’ll mostly use methods in the Assert class prefixed with assert. If an
assert method contract is respected, the test continues; if not, the method throws an
Error, and the test is stopped and marked as failed. Table 14.4 shows the main
Assert methods.

The following listing shows a bare-bones unit test with the annotations and some of
the Assert methods described in table 14.4.

public class JUnitSampleTest {
 @Before
 public void setUp()
 // initialize something
 }

 @After
 public void tearDown() {
 // do something

Method signature Description

assertTrue(booleanValue) Fails if booleanValue is false

assertNotNull(value) Fails if value is null

assertNull(value) Fails if value isn’t null

assertEquals(expectedValue, actualValue) Fails if expectedValue isn’t equal
to actualValue

Listing 14.1 Basic JUnit test case with annotations and assert methods

413Unit testing
 @Test
 public void testMethod1() {
 // do something
 assertTrue(true);
 }

 @Test
 public void testMethod2() {
 // do something
 assertNotNull("string");
 }
}

Listing 14.1 shows a test case without a superclass. JUnit calls the setUp method anno-
tated with @Before before each @Test method. JUnit calls the tearDown method anno-
tated with @After after each @Test method. These methods manage the lifecycle of
fixtures. JUnit calls the @Test methods testMethod1 and testMethod2 and records
which test succeeds or fails. In the method testMethod2, you use an assert method
to verify that a string isn’t null.

 In most of the tests cases in this chapter, we use the static import coding style, so we
don’t need to prefix assert method calls with the Assert class name. We can now
move on and test some real code.

 We apply this new knowledge on simple examples first. Feel free to refer to our
plan in figure 14.2 and table 14.3 to keep track of what you’re doing.
TESTING A VALIDATOR

In our case study, a CompositeItemProcessor is composed of two ValidatingItem-
Processors. Each one calls a custom Validator: PriceMandatoryValidator, which
validates that a product’s price isn’t null, and a PositivePriceValidator, which vali-
dates that a product’s price is positive.

 For this test scenario, you instantiate a Validator, prepare a Product fixture, and
verify the result. The PriceMandatoryValidator validates an input object; if this
object is invalid, it throws an exception. In this case, it’s easy to test a Validator, which
has only one method, validate.

public class PriceMandatoryValidatorTest {
 private PriceMandatoryValidator validator;
 private Product product;

 @Before
 public void setUp() {
 validator = new PriceMandatoryValidator();
 product = new Product();
 }

 @Test
 public void testValidProduct() {
 product.setPrice(new BigDecimal("100.0"));
 validator.validate(product);
 }

Listing 14.2 Testing a product validator for a non-null price

414 CHAPTER 14 Testing batch applications
 @Test(expected = ValidationException.class)
 public void testInvalidProduct() {
 validator.validate(product);
 }
}

In the setUp method, you create a new PriceMandatoryValidator and a new Product
fixture.

 In the first test method, testValidProduct, the validator checks that a product has
a positive price.

 In the second test method, testInvalidProduct, the test leaves the product price
as null, so the validator throws a ValidationException, as expected. To tell the test
you expect a ValidationException, we add the attribute expected to the @Test anno-
tation like this: @Test(expected = ValidationException.class). If the test method
doesn’t throw a ValidationException, JUnit fails the test.

 With the second validator, PositivePriceValidator, you have three cases: a posi-
tive, a zero, and a negative price.

public class PositivePriceValidatorTest {
 private PositivePriceValidator validator;
 private Product product;

 @Before
 public void setUp() {
 validator = new PositivePriceValidator();
 product = new Product();
 }

 @Test
 public void testPositivePrice() {
 product.setPrice(new BigDecimal("100.0"));
 validator.validate(product);
 }

 @Test(expected = ValidationException.class)
 public void testZeroPrice() {
 product.setPrice(new BigDecimal("0.0"));
 validator.validate(product);
 }

 @Test(expected = ValidationException.class)
 public void testNegativePrice() {
 product.setPrice(new BigDecimal("-800.0"));
 validator.validate(product);
 }
}

In this example, the setUp method creates a PositivePriceValidator B. In the
method testPositivePrice C, you test a positive product price; this unit test validates
the product, and the test method passes. In the method testNegativePrice D, you test

Listing 14.3 Testing a product validator for a positive price

Creates validator
and Product fixture

B

Asserts
positive price

C

Asserts Validation-
Exception for negative
price

D

415Unit testing
a negative price; the test method throws a ValidationException, as expected, which
causes JUnit to mark the test as successful.

 In this section, we touched on JUnit framework basics: how to use JUnit with exam-
ple test cases and how to test validators from our batch application. The next section
introduces a mock framework to help you control the behavior of objects internal to
our case study.

14.2.2 Using mock objects with Mockito

JUnit is a great tool dedicated to unit testing, but our objects aren’t as simple as in
the previous example. For a complex object, you only want to verify the behavior of
the object, not the dependencies the object relies on. To achieve this goal, you cre-
ate mock objects for dependencies. Mock objects are powerful for testing compo-
nents in isolation and under total control. A mock object is a fake object,
dynamically (or automatically) generated for us, that you control: you define what a
method returns, when a method throws an exception, and so on. You can do all this
in a few lines of code without writing new classes. After executing tests, you can ver-
ify that execution reached a mock object, what methods the test caused to call, how
many times, and so forth.

 For this book, we chose Mockito1 as our mock framework, but many others are
available. With Mockito, you can easily create a mock object for a class or interface
and control and validate mock objects with a fluent-styled2 API.

 The following sample code, inspired by the Mockito documentation, shows how to
create, manipulate, and verify a mock object:

// mocks an interface
List<String> mockedList = mock(List.class);
mockedList.add("one");
mockedList.clear();
verify(mockedList, times(1)).add("one");
verify(mockedList, times(1)).clear();
verifyNoMoreInteractions(mockedList);

This example checks that the code calls the methods add and clear only once by
using the verify method and the call to times(1). The call to verifyNoMoreInter-
actions checks that the test caused no other method calls on the mock object. The
methods prefixed with verify throw MockitoExceptions and fail a unit test when a
call doesn’t meet expectations.

 With Mockito, you can mock a concrete class and control most of the behavior of
the mock object. The following sample shows how to stub a LinkedList’s get method
to return the string "first":

1 http://code.google.com/p/mockito
2 http://martinfowler.com/bliki/FluentInterface.html

http://code.google.com/p/mockito
http://martinfowler.com/bliki/FluentInterface.html

416 CHAPTER 14 Testing batch applications
// mocks a concrete class
LinkedList<String> mockedList = mock(LinkedList.class);
when(mockedList.get(0)).thenReturn("first");
assertEquals("first", mockedList.get(0));

You can also create spy objects, based on real objects, and verify behavior, as shown in
the following example:

List<String> list = new LinkedList<String>();
List<String> spy = Mockito.spy(list);
spy.add("one");
spy.add("two");
verify(spy).add("one");
verify(spy).add("two");

In this case, you call the add method on the List<String> object; the benefit is to
confirm that the add method has been called twice, once with the parameter one and
once with the parameter two. Use spying when you want to test legacy code.

 Remember that, in a unit test, we want to test only a single module or component
of an application and only one object if possible. In these unit tests, we use the white-
box testing strategy, and we don’t want to depend on other objects. Mockito helps us
achieve these goals by mocking dependent objects, which we then wire into our own
objects. In addition, we can control and verify how mock objects are used. The follow-
ing sections explore how to test batch applications using JUnit and Mockito.
TESTING A FIELDSETMAPPER

In chapter 5, we use a FieldSetMapper to create an object from tokens with the help
of a FieldSet. In our case study, a FlatFileItemReader in a product Step uses a Pro-
ductFieldSetMapper to map fields from a flat file line into a Product object. The fol-
lowing shows our custom ProductFieldSetMapper.

public class ProductFieldSetMapper implements FieldSetMapper<Product> {
 public static final String FIELD_ID = "ID";
 public static final String FIELD_NAME = "NAME";
 public static final String FIELD_DESCRIPTION = "DESCRIPTION";
 public static final String FIELD_PRICE = "PRICE";

 @Override
 public Product mapFieldSet(FieldSet fieldSet) throws BindException {
 Product product = new Product();
 product.setId(fieldSet.readString(FIELD_ID));
 product.setName(fieldSet.readString(FIELD_NAME));
 product.setDescription(fieldSet.readString(FIELD_DESCRIPTION));
 product.setPrice(fieldSet.readBigDecimal(FIELD_PRICE));
 return product;
 }
}

This FieldSetMapper implementation is simple by Spring Batch standards. The next
listing tests our FieldSetMapper with and without Mockito.

Listing 14.4 ProductFieldSetMapper implements FieldSetMapper

417Unit testing
import static com.manning.sbia.ch14.batch.ProductFieldSetMapper.

 ➥FIELD_DESCRIPTION;
import static com.manning.sbia.ch14.batch.ProductFieldSetMapper.

 ➥FIELD_ID;
import static com.manning.sbia.ch14.batch.ProductFieldSetMapper.

 ➥FIELD_NAME;
import static com.manning.sbia.ch14.batch.ProductFieldSetMapper.

 ➥FIELD_PRICE;
(..)
public class ProductFieldSetMapperTest {
 @Test
 public void testMapFieldMapClassic()
 throws Exception {
 DefaultFieldSet fieldSet = new DefaultFieldSet(
 new String[] { "id", "name", "desc", "100.25" },
 new String[] { FIELD_ID, FIELD_NAME,
 FIELD_DESCRIPTION, FIELD_PRICE });
 ProductFieldSetMapper mapper = new ProductFieldSetMapper();
 Product p = mapper.mapFieldSet(fieldSet);
 assertEquals("id", p.getId());
 assertEquals("name", p.getName());
 assertEquals("desc", p.getDescription());
 assertEquals(new BigDecimal("100.25"), p.getPrice());
 }

 @Test
 public void testMapFieldSetMock() throws Exception {
 FieldSet fieldSet = mock(FieldSet.class);
 ProductFieldSetMapper mapper = new ProductFieldSetMapper();
 mapper.mapFieldSet(fieldSet);
 verify(fieldSet, times(1)).readString(FIELD_ID);
 verify(fieldSet, times(1)).readString(FIELD_NAME);
 verify(fieldSet, times(1)).readString(FIELD_DESCRIPTION);
 verify(fieldSet, times(1)).readBigDecimal(FIELD_PRICE);
 verifyNoMoreInteractions(fieldSet);
 }
}

The ProductFieldSetMapperTest class has two test methods: testMapFieldSet-
Classic and testMapFieldSetMock.

 The testMapFieldSetClassic test method B creates a DefaultFieldSet with
column names and values. Then the assert methods check that a product was cre-
ated and correctly populated. This is the standard JUnit style; you test expected values
against actual values.

 The testMapFieldSetMock test method C mocks a FieldSet, invokes mapField-
Set, checks values, and also verifies that no other methods have been called on the
fieldSet. The call to verifyNoMoreInteractions checks that the test didn’t call
other methods on the fieldSet. If the ProductFieldSetMapper calls other methods,
like readString("string"), the test fails. Using a mock object, you can check the
mapFieldSet behavior in detail.

Listing 14.5 Testing a FieldSetMapper with and without Mockito

Classic
test

B

Mockito
test

C

418 CHAPTER 14 Testing batch applications
TESTING AN ITEMLISTENERSUPPORT

In our next example, the ProductItemListener class in listing 14.6 implements a
StepListener. Spring Batch calls a ProductItemListener after processing each prod-
uct object in the product step. Remember that the role of our CompositeItemProces-
sor is to filter products.

public class ProductItemListener extends
 ItemListenerSupport<Product,Product> {
 private FlatFileItemWriter<Product> excludeWriter;
 @Override
 public void afterProcess(Product item, Product result) {
 if (result == null) {
 try {
 excludeWriter.write(Arrays.asList(item));
 } catch (Exception e) {
 }
 }
 }
 @Required
 public void setExcludeWriter(FlatFileItemWriter<Product> excludeWriter) {
 this.excludeWriter = excludeWriter;
 }
}

Note that the @Required annotation marks the property method setExcludeWriter
as mandatory and causes the Spring context load to fail if it isn’t called.

 If the job filters out a product, the afterProcess method has a null result argu-
ment value, and you write the Product item to a product reject file using the exclude-
Writer. This implementation uses a FlatFileItemWriter as a reject file writer to
maintain less source code.

 The goals of the tests in this section are to avoid using the file system and to write
tests that filter and don’t filter items. We also control how the excludeWriter is used.
The following listing shows our test case for the ProductItemListenerTest class.

public class ProductItemListenerTest {
 private Product p = null;
 private FlatFileItemWriter<Product> writer = null;
 private List<Product> items = null;

 @Before
 public void setUp() {
 p = new Product();
 p.setId("211");
 p.setName("BlackBerry");
 items = Arrays.asList(p);
 writer = mock(FlatFileItemWriter.class);
 }

Listing 14.6 A Product ItemListener implementation

Listing 14.7 Testing an ItemSupportListener

419Unit testing
 @Test
 public void testAfterProcess() throws Exception {
 ProductItemListener listener = new ProductItemListener();
 listener.setExcludeWriter(writer);
 listener.afterProcess(p, null);
 verify(writer, times(1)).write(items);
 }

 @Test
 public void testAfterProcessResult() throws Exception {
 ProductItemListener listener = new ProductItemListener();
 listener.setExcludeWriter(writer);
 listener.afterProcess(p, p);
 verify(writer, never()).write(items);
 }
}

In this listing, the method setUp populates the product items list fixture with one
Product and mocks a FlatFileItemWriter to avoid using the file system. The test-
AfterProcess method calls the method afterProcess on the ProductItemListener
with a Product as the input and a null value as the output product. In this case, the
test simulates that the CompositeItemProcessor filters input products for prices less
than or equal to zero. The test checks that the listener invokes the write method on
the exclude writer once.

 In the testAfterProcessResult method, the test calls afterProcess with the
same input product, which means that the CompositeItemProcessor doesn’t filter
this product. Finally, you ensure that this is the case.

 In the next sections, we look at some of Mockito’s advanced features, like control-
ling values returned from a method, creating elaborate tests, and spying on objects.
TESTING A JOBPARAMETERSVALIDATOR

You’re ready to test a JobParametersValidator (listing 14.8), which the job invokes at
the beginning of its processing to validate JobParameters. The ImportValidator veri-
fies that the product input file exists and that the statistics path parameter isn’t null.
For this unit test, you don’t want to depend on the file system, so you mock a
ResourceLoader.

public class ImportValidatorTest {
 String PRODUCTS_PATH =
 "classpath:com/manning/sbia/ch14/input/products.txt";
 String STATISTIC_PATH = "file:./target/statistic.txt";
 private ResourceLoader resourceLoader;
 private ImportValidator validator;

 @Before
 public void setUp() {
 resourceLoader = mock(ResourceLoader.class,
 Mockito.RETURNS_DEEP_STUBS);
 when(resourceLoader.getResource(PRODUCTS_PATH).exists())
 .thenReturn(true);

Listing 14.8 Testing a JobParametersValidator with Mockito’s spy feature

420 CHAPTER 14 Testing batch applications
 validator = new ImportValidator();
 validator.setResourceLoader(resourceLoader);
 }

 @Test
 public void testJobParameters() throws JobParametersInvalidException {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString(PARAM_INPUT_RESOURCE, PRODUCTS_PATH)
 .addString(PARAM_REPORT_RESOURCE, STATISTIC_PATH)
 .toJobParameters();
 JobParameters spy = Mockito.spy(jobParameters);
 validator.validate(spy);
 verify(spy, times(2)).getParameters();
 verify(spy, times(1)).getString(
 PARAM_INPUT_RESOURCE);
 verifyNoMoreInteractions(spy);
 }

 @Test(expected = JobParametersInvalidException.class)
 public void testEmptyJobParameters()
 throws JobParametersInvalidException {
 JobParameters jobParameters = new JobParametersBuilder()
 .toJobParameters();
 validator.validate(jobParameters);
 }

 @Test(expected = JobParametersInvalidException.class)
 public void testMissingJobParameters()
 throws JobParametersInvalidException {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString(PARAM_INPUT_RESOURCE, PRODUCTS_PATH)
 .toJobParameters();
 validator.validate(jobParameters);
 }
}

In the testJobParameters method, you verify the ImportValidator implementation
by spying on JobParameters B. You use spied objects because you want to control
how many times the test calls getParameter and getString C. This test shows that,
for the given input, the ImportValidator validate method causes getParameters to
be called twice (it could be with parameters.getParameters().containsKey(key),
for example). The test also shows that the getString(String) method is called once
with a PARAM_INPUT_RESOURCE argument value.

 The testValidateEmptyJobParameters method verifies that the ImportValida-
tor throws a JobParametersInvalidException when the job parameters, which are
required, are empty.

 The testMissingJobParameters method verifies that the ImportValidator throws
a JobParametersInvalidException when the job parameters are missing a required
parameter. This test checks only one case; a complete implementation would check all
possible cases.

Spies on
JobParameters

B

Verifies mock
Behavior

C

421Unit testing
 Note that Spring Batch provides a DefaultJobParametersValidator class in which
you manually set required and optional keys. Spring Batch can also automatically dis-
cover these keys.

 The next section tests an ItemWriter, a more complex example.
TESTING AN ITEMWRITER

Our ProductItemWriter writes Product objects to a database via a SimpleJdbcTem-
plate. The following listing shows how to do this.

public class ProductItemWriter implements ItemWriter<Product> {
 String INSERT_SQL = "INSERT INTO PRODUCT (ID, NAME, DESCRIPTION, PRICE)

 ➥VALUES (:id, :name, :description, :price)";
 String UPDATE_SQL = "UPDATE PRODUCT SET NAME=:name,

 ➥DESCRIPTION=:description, PRICE=:price WHERE ID=:id";
 ItemSqlParameterSourceProvider<Product> itemSqlParameterSourceProvider;
 SimpleJdbcTemplate simpleJdbcTemplate;

 @Required
 public void setSimpleJdbcTemplate(
 SimpleJdbcTemplate simpleJdbcTemplate) {
 this.simpleJdbcTemplate = simpleJdbcTemplate;
 }

 @Required
 public void setItemSqlParameterSourceProvider(
 ItemSqlParameterSourceProvider<Product>
 itemSqlParameterSourceProvider) {
 this.itemSqlParameterSourceProvider = itemSqlParameterSourceProvider;
 }

 @Override
 public void write(List<? extends Product> items) throws Exception {
 for (Product item : items) {
 SqlParameterSource args = itemSqlParameterSourceProvider
 .createSqlParameterSource(item);
 int updated = simpleJdbcTemplate.update(UPDATE_SQL, args);
 if (updated == 0) {
 simpleJdbcTemplate.update(INSERT_SQL, args);
 }
 }
 }
}

This writer uses SQL INSERT and UPDATE statements. If a product already exists in the
database, the ProductItemWriter executes a SQL UPDATE. If the product isn’t in the
database, the ProductItemWriter first tries to execute an UPDATE, which fails, and
then executes an INSERT, which succeeds. For each product item, the writer creates a
SqlParameterSource to bind its values into a SQL statement’s named parameters.

 Let’s look at the item writer test, where you unit test everything with Spring Batch,
JUnit, and Mockito. The following listing shows the unit test for the item writer.

Listing 14.9 Writing to a database with the ProductItemWriter

422 CHAPTER 14 Testing batch applications
public class ProductItemWriterMockTest {
 private Product p;
 private SimpleJdbcTemplate jdbcTemplate;
 private ProductItemWriter writer = new ProductItemWriter();
 private ItemSqlParameterSourceProvider<Product> ispsp;
 private List<Product> items;

 @Before
 public void setUp() {
 p = new Product();
 p.setId("211");
 p.setName("BlackBerry");
 items = Arrays.asList(p);
 writer = new ProductItemWriter();
 ispsp = new BeanPropertyItemSqlParameterSourceProvider<Product>();
 writer.setItemSqlParameterSourceProvider(ispsp);
 jdbcTemplate = mock(SimpleJdbcTemplate.class);
 writer.setSimpleJdbcTemplate(jdbcTemplate);
 writer.setItemSqlParameterSourceProvider(ispsp);
 }

 @Test
 public void testUpdateProduct() throws Exception {
 when(jdbcTemplate.update(eq(UPDATE_SQL),
 any(SqlParameterSource.class)))
 .thenReturn(1);
 writer.write(items);
 verify(jdbcTemplate, times(1))
 .update(eq(UPDATE_SQL),
 any(SqlParameterSource.class));
 verify(jdbcTemplate, times(0))
 .update(eq(INSERT_SQL),
 any(SqlParameterSource.class));
 verifyNoMoreInteractions(jdbcTemplate);
 }

 @Test
 public void testInsertProduct() throws Exception {
 when(jdbcTemplate.update(eq(UPDATE_SQL),
 any(SqlParameterSource.class)))
 .thenReturn(0);
 writer.write(items);
 verify(jdbcTemplate, times(1))
 .update(eq(UPDATE_SQL),
 any(SqlParameterSource.class));
 verify(jdbcTemplate, times(1))
 .update(eq(INSERT_SQL);
 any(SqlParameterSource.class));
 verifyNoMoreInteractions(jdbcTemplate);
 }
}

First, you set up your fixture objects in the setUp method where you also set up a mock
object for a SimpleJdbcTemplate B and initialize it with its required dependencies.

Listing 14.10 Advanced testing of an ItemWriter

Mocks
SimpleJdbcTemplateB

Mocks
return value

C

Verifies
invocations

D

423Unit testing
 The first test, testUpdateProduct, simulates at C that the UPDATE statement
returns only one affected row, which means that the product already exists. Using the
eq and any methods, Mockito allows you to control method arguments for any
instance of SqlParameterSource. After that, you count how many times the test called
each SQL statement D; you expected one UPDATE and zero INSERTs.

 In the second test, testInsertProduct, if the UPDATE statement affects zero rows,
the SimpleJdbcTemplate executes a SQL INSERT. You expected one call to UPDATE and
one call to INSERT.

 You have now successfully tested a FieldSetMapper, an item listener, and an item
writer, which are all key components of Spring Batch. The ability to test these core
components gives you the confidence to proceed with changing and growing
the application.

 In the previous sections, we introduced JUnit, a powerful unit testing framework,
and the Mockito mocking framework. We can’t use unit testing for most of our case
study yet, but it won’t be long before we can. Next, we look at techniques that allow
you to test Spring Batch applications at all levels.

14.2.3 Mocking Spring Batch domain objects

Spring batch manages beans during a batch application’s lifecycle. Some of these
objects are too complex to create outside the Spring Batch infrastructure, like a unit
test. That’s why Spring Batch provides the Spring Batch Test module. This module
includes classes like MetaDataInstanceFactory, whose goal is to create test instances
of JobExecution, JobInstance, and StepExecution. The following example creates a
test StepExecution and JobExecution using the MetaDataInstanceFactory class:

StepExecution stepExecution = MetaDataInstanceFactory
 .createStepExecution();
JobExecution jobExecution = MetaDataInstanceFactory.createJobExecution();

The Test module opens up Spring Batch domain objects to be tested. Classes like
JobExecutionDecider and Tasklet, for example, have APIs that require the types of
objects supplied by MetaDataInstanceFactory.

TESTING A JOBEXECUTIONDECIDER

Remember that, in figure 14.2, the JobExecutionDecider manages the batch flow.
You use the MetaDataInstanceFactory to create a JobExecution and StepExecution.
The NextDecider sits between CleanStep and StatisticStep. It returns NEXT if the
job writes any products, based on the number of written items for this execution, and
COMPLETED otherwise. It’s important to test JobExecutionDecider because it’s respon-
sible for the batch workflow. The following listing shows the NextDeciderTest class.

public class NextDeciderTest {
 StepExecution stepExecution = null;
 JobExecution jobExecution = null;
 NextDecider decider = null;

Listing 14.11 Testing batch workflow with JobExecutionDecider

424 CHAPTER 14 Testing batch applications
 @Before
 public void setUp() {
 stepExecution = MetaDataInstanceFactory
 .createStepExecution();
 jobExecution = MetaDataInstanceFactory
 .createJobExecution();
 decider = new NextDecider();
 }

 @Test
 public void testNextStatus() {
 stepExecution.setWriteCount(5);
 FlowExecutionStatus status = decider.decide(
 jobExecution, stepExecution);
 assertEquals(status.getName(), "NEXT");
 }

 @Test
 public void testCompletedStatus() {
 stepExecution.setWriteCount(0);
 FlowExecutionStatus status = decider
 .decide(jobExecution, stepExecution);
 assertEquals(status,
 FlowExecutionStatus.COMPLETED);
 }
}

This test case creates a StepExecution and a JobExecution with the Spring Batch Test
class MetaDataInstanceFactory. You set the write count value to a positive value, call
the decide method, and check that the result is NEXT.

 In the next test method, you set the write count to zero and check that the result is
COMPLETED.

 Let’s continue to explore the MetaDataInstanceFactory class by testing a Tasklet.
TESTING A TASKLET

You can also manipulate complex Spring Batch domain objects like a ChunkContext
(a requirement of the Tasklet API) with the MetaDataInstanceFactory class. The fol-
lowing listing demonstrates testing such a tasklet.

public class CleanTaskletTest {
 @Test
 public void clean() throws Exception {
 StepExecution stepExecution =
 MetaDataInstanceFactory.createStepExecution();
 StepContribution contrib = new StepContribution(stepExecution);
 ChunkContext context = new ChunkContext(
 new StepContext(stepExecution));
 CleanTasklet clean = new CleanTasklet();
 RepeatStatus status = clean.execute(contrib, context);
 assertEquals(RepeatStatus.FINISHED, status);
 }
}

Listing 14.12 Testing a simple tasklet with Spring Batch domain mocks

Creates chunk
contextB

425Integration testing
In the CleanTaskletTest class, you create a ChunkContext B to test the Tasklet,
which doesn’t require any dependencies. The implementation of the CleanTasklet
class always returns RepeatStatus.FINISHED.

 This unit test ends this section. We created unit tests for our case study with JUnit,
Mockito, and Spring Batch mock domain objects. These examples show you how to
improve the reliability and robustness of batch applications. The next section covers
creating integration tests.

14.3 Integration testing
In this section, we address another aspect of testing where we test software modules
in realistic production conditions to validate overall functionality. As a white-box
strategy, integration testing is aware of internal implementation details. This time, we
use a real database, Spring, and Spring Batch application contexts, including batch
job definitions.

 Table 14.5 shows test class names and corresponding Spring Batch domain classes.

Figure 14.3 depicts what components we cover in our integration test examples.

Test class Spring Batch domain class

ReaderWithListenerTest ItemReader

ReaderWithStepScopeTestUtilsTest ItemReader

CompositeItemProcessorTest ItemProcessor

Statistics step

Some items
written?

Yes No

Job parameters
validator

Chunk-oriented step
Item reader

Item processor
Item writer

Step listener

Cleanup step

Decision

Component covered by integration test

Figure 14.3 Components
covered by integration tests

426 CHAPTER 14 Testing batch applications
To go on with integration testing of our case study, we introduce the Spring TestContext
Framework and the Spring Batch StepScopeTestExecutionListener class. To track
what you’re testing, please refer to figure 14.3. We focus next on testing instances of
Step, ItemReader, and ItemProcessor.

14.3.1 Introducing the Spring TestContext Framework

The Spring Framework provides support for integration testing with the Spring Test-
Context Framework, which lets you write tests for a framework like JUnit. In JUnit, the
@RunWith annotation sets a Runner class, which is responsible for launching tests, trig-
gering events, and marking tests as successful or failed.

SPRING TESTCONTEXT REQUIREMENTS To use the Spring TestContext frame-
work, you need Java 5 or greater and JUnit version 4.5 or greater. Annotate your
test class with the @RunWith annotation and the value SpringJUnit4Class-
Runner.class.

For integration testing, we use the following Spring TestContext Framework features:

■ The @ContextConfiguration annotation is used to load a Spring context from
an XML file, for example, @ContextConfiguration("/path/context.xml"). By
convention, if an application context path isn’t set, the path is set to [Test-
ClassName]-context.xml.

■ Spring TestContext caches the application context for better performance. This
saves time on each test startup.

■ The @DirtiesContext annotation indicates that the application context for a
test is dirty and that TestContext should close it after each test.

■ Spring TestContext defines a listener API for tests to interact with objects with the
@TestExecutionListeners annotation. For example, the DependencyInject-
TestExecutionListener class provides support for dependency injection and
initialization of test instances. Spring TestContext adds this listener by default and
injects field by type, annotated with @Autowired or by name with @Resource.

The following simple example uses these features:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/path/to/context.xml")
public class SampleIntegrationTest {
 @Autowired
 private AnObject anObject;

 @Test
 public void test() {
 }
}

For integration tests, you hit a real database: the H2 Database,3 which is a fast Java SQL
database. You configure it as an in-memory database to avoid file system access. The
following snippet shows the Spring configuration of the DataSource bean:

3 www.h2database.com

www.h2database.com

427Integration testing
<bean id="dataSource"
 class="org.springframework.jdbc.datasource.SingleConnectionDataSource">
 <property name="driverClassName" value="${datasource.driver}" />
 <property name="url" value="${datasource.url}" />
 <property name="username" value="${datasource.username}" />
 <property name="password" value="${datasource.password}" />
</bean>

<context:property-placeholder location="/path/to/batch-h2.properties" />

In this configuration, you import the H2 configuration properties from the batch-
h2.properties file. The following snippet shows the content of this file:

datasource.driver=org.h2.Driver
datasource.url=jdbc:h2:mem:products;DB_CLOSE_DELAY=-1
datasource.username=sa
datasource.password=

The keyword mem indicates that H2 should work only in memory. For database initial-
ization, you add jdbc:initialize-database to the application context, which refers
to the Datasource used to execute a list of SQL scripts:

<jdbc:initialize-database data-source="dataSource">
 <jdbc:script
 location="classpath:com/manning/sbia/ch14/sql/create-tables.sql" />
</jdbc:initialize-database>

You now have the basic elements in place to begin integration testing of our batch job.
You load a Spring application context and set up an in-memory database based on SQL
scripts. The next step is to deal with Spring Batch components using a special scope.

14.3.2 Using the Spring Batch StepScopeTestExecutionListener

In Spring Batch, you can configure components at runtime with a special scope
named step and a late binding SpEL (Spring Expression Language) expression based
on a step or a job execution:

<bean id="reader"
 class="org.springframework.batch.item.file.FlatFileItemReader"
 scope="step">
 <property name="resource" value="#{jobParameters['inputResource']}" />
 (...)
</bean>

To help test these components, the Spring Batch Test module includes a special lis-
tener called StepScopeTestExecutionListener that implements the Spring Test
TestExecutionListener interface. By default, this listener creates an empty Step-
Execution. If a getStepExecution method exists, StepScopeTestExecutionListener
invokes it to create a StepExecution.

 The following example illustrates this usage:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
@TestExecutionListeners(StepScopeTestExecutionListener.class })
public class SampleIntegrationTest {

428 CHAPTER 14 Testing batch applications
 public StepExecution getStepExecution() {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString("author", "Olivier B.").toJobParameters();
 return MetaDataInstanceFactory.createStepExecution(jobParameters);
 }
 (...)
}

It’s time to begin integration testing based on our case study and practice what we’ve
learned.
TESTING AN ITEMPROCESSOR

In our case study, you use an ItemProcessor in the Product step. Specifically, you use
a CompositeItemProcessor composed of two ValidatingItemProcessors, which use
PositivePriceValidator and PriceMandatoryValidator. Remember that you
already tested each Validator separately in unit tests (see the previous section on unit
testing). For an integration test, you test the real processor chain, which the Spring
context defines. The following listing shows the CompositeItemProcessorTest class.

@ContextConfiguration
@TestExecutionListeners({ DependencyInjectionTestExecutionListener.class,
 StepScopeTestExecutionListener.class })
@RunWith(SpringJUnit4ClassRunner.class)
public class CompositeItemProcessorTest {
 @Autowired
 private ItemProcessor<Product, Product> processor;

 public StepExecution getStepExecution() {
 JobParameters jobParameters = new JobParametersBuilder()
 .addDouble("maxPrice", "200.0")
 .toJobParameters();
 StepExecution execution = createStepExecution(jobParameters);
 return execution;
 }

 @Test
 @DirtiesContext
 public void testProcessor() throws Exception {
 Product p1 = new Product();
 p1.setPrice(new BigDecimal("100.0"));
 Product p2 = processor.process(p1);
 assertNotNull(p2);
 }

 @Test
 @DirtiesContext
 public void testNegativePriceFailure()
 throws Exception {
 Product p1 = new Product();
 p1.setPrice(new BigDecimal("-800.0"));
 Product p2 = processor.process(p1);
 assertNull(p2);
 }

Listing 14.13 Testing an ItemProcessor with the Spring TestContext Framework

Adds
StepScopeTestExecutionListenerB

Injects
processor

C

Creates custom
step executionD

Tests different
use cases

E

429Integration testing
 @Test
 @DirtiesContext
 public void testZeroPriceFailure()
 throws Exception {
 Product p1 = new Product();
 p1.setPrice(new BigDecimal("0.0"));
 Product p2 = processor.process(p1);
 assertNull(p2);
 }

 @Test
 @DirtiesContext
 public void testEmptyProductFailure()
 throws Exception {
 Product p1 = new Product();
 Product p2 = processor.process(p1);
 assertNull(p2);
 }
}

You start by adding a StepScopeTestExecutionListener B to create a custom Step-
Execution D with a mandatory parameter in the step scope. You take advantage of
the Spring TestContext Framework to autowire the real ItemProcessor C.

 You can now validate your test scenarios based on various product price values E.
If a product price is positive, the ItemProcessor returns the same product object; oth-
erwise it returns null. The test testNegativePriceFailure tests a negative price, and
testZeroPriceFailure tests a price product equal to zero. The last test, testEmpty-
ProductFailure, tests an empty Product object.

 Note that the ValidatingItemProcesors for this job are configured with filter =
true, which means they don’t throw exceptions.

 This integration test validates that the CompositeItemProcessor has no bugs in its
Validator order. If you had the PositivePriceValidator in the first position, these
tests would fail with a NullPointerException because the validator assumes that the
price product isn’t null.

 Let’s continue with a more complex example: testing an ItemReader.
TESTING AN ITEMREADER

In this section, we describe two ways to test an ItemReader. First, we see an example
using the same technique as previously shown. Then we use the Spring Batch Test
class StepScopeTestUtils.

 In the test in the following listing, you read data from a real file in the file system
(but you could mock it). The test checks the content of the first line of data and how
many lines the file includes.

import static com.manning.sbia.ch14.batch.ImportValidator.

 ➥ PARAM_INPUT_RESOURCE;
(..)
@ContextConfiguration

Listing 14.14 Testing an ItemReader with the Spring Batch Test module

E Tests different
use cases

430 CHAPTER 14 Testing batch applications
@TestExecutionListeners({
DependencyInjectionTestExecutionListener.class,
 StepScopeTestExecutionListener.class })
@RunWith(SpringJUnit4ClassRunner.class)
public class ReaderWithListenerTest {
 String PRODUCTS_PATH =
 "classpath:com/manning/sbia/ch14/input/products.txt";

 @Autowired
 private ItemReader<Product> reader;

 public StepExecution getStepExecution() {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString(PARAM_INPUT_RESOURCE, PRODUCTS_PATH)
 .toJobParameters();
 StepExecution execution = createStepExecution(
 jobParameters);
 return execution;
 }

 @Before
 public void setUp() {
 ((ItemStream) reader).open(new ExecutionContext());
 }

 @Test
 @DirtiesContext
 public void testReader() throws Exception {
 Product p = reader.read();
 assertNotNull(p);
 assertEquals("211", p.getId());
 assertNotNull(reader.read());
 assertNotNull(reader.read());
 assertNotNull(reader.read());
 assertNotNull(reader.read());
 assertNotNull(reader.read());
 assertNotNull(reader.read());
 assertNotNull(reader.read());
 assertNull(reader.read());
 }
}
 @After
 public void tearDown() {
 ((ItemStream) reader).close();
 }

We start each test with the @Before setUp method B to open the stream with a new
ExecutionContext. We read a first line C and compare the expected ID value D. The
product file contains eight lines, which we verify by calling read eight times and
checking that each call returns data. Then, we expect the ninth call to read to return
null E, indicating that we’ve reached the end of the file. After each @Test method,
we close the stream in the @After tearDown method F.

 The Spring Batch Test StepScopeTestUtils method doInStepScope is the other
way to test a Spring Batch component in a step scope for the ItemReader in our case

Creates new
execution context

B

Reads from
item reader

C

Checks
first itemD

Checks reading
is done

E

Closes
reader

F

431Integration testing
study. We must create an implementation of the java.util.concurrent.Callable
interface that returns an object, in this case, the count of lines read. Listing 14.15
shows our ReaderWithStepScopeTestUtilsTest class.

import static com.manning.sbia.ch14.batch.ImportValidator.

 ➥ PARAM_INPUT_RESOURCE;
(..)
@ContextConfiguration
@RunWith(SpringJUnit4ClassRunner.class)
public class ReaderWithStepScopeTestUtilsTest {
 String PRODUCTS_PATH =
 "classpath:com/manning/sbia/ch14/input/products.txt";
 @Autowired
 private ItemReader<Product> reader;

 public StepExecution getStepExecution() {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString(PARAM_INPUT_RESOURCE, PRODUCTS_PATH)
 .toJobParameters();
 StepExecution execution = createStepExecution(jobParameters);
 return execution;
 }

 @Test
 @DirtiesContext
 public void testReader() throws Exception {
 int count = StepScopeTestUtils.doInStepScope(getStepExecution(),
 new Callable<Integer>() {
 @Override
 public Integer call() throws Exception {
 int count = 0;
 try {
 ((ItemStream) reader).open(new ExecutionContext());
 while (reader.read() != null) {
 count++;
 }
 return count;
 } finally {
 ((ItemStream) reader).close();
 }
 }
 });
 assertEquals(8, count);
 }
}

You start the test by creating an anonymous implementation of the Callable inter-
face B. Then you open a stream with a new ExecutionContext, and while the reader
reads items in a loop, you count lines as you read them C. Finally, you close the
stream. Again, you ensure that you have read eight lines D.

Listing 14.15 Testing an ItemReader with StepScopeTestUtils’ doInStepScope

Creates step-
scoped behaviorB

Reads
all items

C

Checks read
items count

D

432 CHAPTER 14 Testing batch applications
 We don’t see a best approach here. Using a listener is simpler than using Step-
ScopeTestUtils, but the latter is more flexible and may be more effective for a com-
plex ItemReader.

 Now we move on to functional testing.

14.4 Functional testing
Table 14.6 shows functional test classes and corresponding Spring Batch domain
objects.

Figure 14.4 shows what components we cover in our functional test examples.
 Here, we focus on the functional requirements of an application, and remember

that we use the black-box testing strategy. Considering the job’s overall functionality,
we provide input values and verify output values without concern for any implementa-
tion details. This kind of testing gives you confidence in the correctness of a whole
batch job.

 Because this is a section on testing Step and Job objects, we validate the product
and statistics step and the batch overall (see the test plan in figure 14.4).

Test class Spring Batch domain object

ProductStepTest Step

StatisticStepTest Step

WholeBatchTest Job

Statistics step

Some items
written?

Yes No

Job parameters
validator

Chunk-oriented step
Item reader

Item processor
Item writer

Step listener

Cleanup step

Decision

Component covered by functional test

Whole batch

Figure 14.4
Components covered
in our functional test
examples

Table 14.6 Functional testing plan
and Spring Batch domain objects

433Functional testing
14.4.1 Introducing JobLauncherTestUtils

The JobLauncherTestUtils class is another class from the Spring Batch Test module
to help you test a single Step or Job. The JobLauncherTestUtils class automatically
injects a job by type from the application context; this implies that there’s only one
batch job in your test application context. This is a best practice. With JobLauncher-
TestUtils, you can launch a single step of a job by specifying the step name. You can
also specify job parameters. The following snippet shows how to launch only one step:

JobExecution jobExecution = jobLauncherTestUtils.launchStep(
 stepName,jobParameters
);

You can also launch a whole job with job parameters, as shown in the following
snippet:

JobExecution jobExecution = jobLauncherTestUtils.launchJob(jobParameters);

The AssertFile class from the Spring Batch Test module includes assert methods
to compare File and Resource contents. You use the AssertFile class to compare the
content of the expected reference file with an actual exclude or statistics file. Recall
that JUnit uses the terms expected and actual in its APIs consistently, where the
expected value comes first and the actual value second:

// Assert that two files are the same
assertFileEquals(File expected, File actual);
assertFileEquals(Resource expected, Resource actual);
// Assert that file expectedLineCount lines
assertLineCount(int expectedLineCount, File file);
assertLineCount(int expectedLineCount, Resource resource);

Using these new testing classes, we can now work on the Step test.

14.4.2 Testing a step

Steps define the sequence of actions in a job. A step is a critical part of a job, so it’s
important to test it in isolation. It’s easy to write such a test with the JobLauncherTest-
Utils class. Our test scenario in the following listing provides input data, launches the
productsStep, ensures that the batch status is COMPLETED, counts how many lines the
job has filtered and written, and finally compares the rejected products file with a ref-
erence file.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class ProductStepTest {
 String PRODUCTS_PATH =
 "classpath:com/manning/sbia/ch14/input/products.txt";
 String EXCLUDES_REF_PATH = "com/manning/sbia/ch14/output/excludes.txt";
 String EXCLUDES_PATH = "./target/excludes.txt";
 @Autowired

Listing 14.16 Functional testing of the product step

434 CHAPTER 14 Testing batch applications
 private JobLauncherTestUtils jobLauncherTestUtils;
 @Autowired
 private SimpleJdbcTemplate jdbcTemplate;

 @Test
 @DirtiesContext
 public void testIntegration() throws Exception {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString(PARAM_INPUT_RESOURCE, PRODUCTS_PATH)
 .toJobParameters();

 JobExecution exec = jobLauncherTestUtils
 .launchStep("productsStep",jobParameters);
 assertEquals(
 BatchStatus.COMPLETED, exec.getStatus());
 StepExecution setpExec = exec.getStepExecutions()
 .iterator().next();
 assertEquals(2, setpExec.getFilterCount());
 assertEquals(6, setpExec.getWriteCount());
 assertEquals(6, jdbcTemplate.queryForInt(
 "SELECT COUNT(*) from PRODUCT"));
 assertFileEquals(
 new ClassPathResource(EXCLUDES_REF_PATH),
 new FileSystemResource(EXCLUDES_PATH));
 }
}

In this test, you start by declaring instance variables for JobLauncherTestUtils B and
SimpleJdbcTemplate C, and use Spring TestContext dependency injection to initial-
ize them. In the testIntegration method, you set up JobParameters and use Job-
LauncherTestUtils to launch the productsStep D. At E, you start checking
expectations. You expect the COMPLETED batch status for the job execution. Then you
retrieve the first step in the StepExecution, count filtered items, and count written
items. Finally, you count the products in the database and compare file contents from
the exclude product file and the reference file.

 The statistics step calculates the average price of products; there’s no code, only
Spring Batch configuration, as shown in the following listing.

<step id="statisticStep" next="cleanStep">
 <tasklet>
 <chunk reader="statisticReader" writer="statisticWriter"
 commit-interval="100" />
 </tasklet>
</step>

<bean id="statisticReader"
 class="org.springframework.batch.item.database.JdbcCursorItemReader">
 <property name="dataSource" ref="dataSource" />
 <property name="rowMapper">
 <bean class="org.springframework.jdbc.core.SingleColumnRowMapper">
 <constructor-arg value="java.math.BigDecimal" />
 </bean>

Listing 14.17 Compute and write the product average into a file from a step

Injects testing
utilitiesB

Injects
SimpleJdbcTemplateC

Launch
step

D

Checks
expectations

E

435Functional testing
 </property>
 <property name="sql">
 <value>SELECT AVG(PRICE) FROM PRODUCT</value>
 </property>
</bean>

<bean id="statisticWriter"
 class="org.springframework.batch.item.file.FlatFileItemWriter"
 scope="step">
 <property name="resource" value="#{jobParameters['reportResource']}" />
 <property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.

 ➥ PassThroughLineAggregator" />
 </property>
</bean>

This step uses a reader based on a JdbcCursorItemReader that computes the average
price for all products using the AVG SQL function. The step has a simple writer to get the
result, via a PassThroughLineAggregator, and write it with a FlatFileItemWriter.

 The following listing shows you another example by testing the step statistic-
Step and setting up data in a database.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class StatisticStepTest {
 String STATISTIC_REF_PATH =
 "com/manning/sbia/ch14/output/statistic-summary.txt";
 String STATISTIC_PATH = "./target/statistic-summary.txt";
 @Autowired
 private JobLauncherTestUtils jobLauncherTestUtils;
 @Autowired
 private SimpleJdbcTemplate jdbcTemplate;
 ItemSqlParameterSourceProvider<Product> ispsp;

 @Before
 public void setup() {
 ispsp = new BeanPropertyItemSqlParameterSourceProvider<Product>();

 Product product = new Product();
 product.setId("1");
 product.setDescription("");
 product.setPrice(new BigDecimal(10.0f));

 SqlParameterSource args = ispsp.createSqlParameterSource(product);
 jdbcTemplate.update(INSERT_SQL, args);

 product = new Product();
 product.setId("2");
 product.setDescription("");
 product.setPrice(new BigDecimal(30.0f));
 args = ispsp.createSqlParameterSource(product);
 jdbcTemplate.update(INSERT_SQL, args);
 }

Listing 14.18 Functional testing of a step with a database

436 CHAPTER 14 Testing batch applications
 @Test
 @DirtiesContext
 public void integration() throws Exception {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString("reportResource", "file:" + STATISTIC_PATH)
 .toJobParameters();

 JobExecution exec = jobLauncherTestUtils.launchStep("statisticStep",
 jobParameters);
 assertEquals(BatchStatus.COMPLETED, exec.getStatus());
 StepExecution setpExec = exec.getStepExecutions().iterator().next();
 assertEquals(1, setpExec.getWriteCount());

 assertFileEquals(
 new ClassPathResource(STATISTIC_REF_PATH),
 new FileSystemResource(STATISTIC_PATH));
 }
}

This test is similar to the product step test except that you set up data in a database.
You launch the step statisticStep and check that the file content is equal to the
content of the reference file.

 These examples show that it’s easy to test with Spring and Spring Batch. What a dif-
ference from using a bash shell! With Spring Batch, applications are easy to write and
test. Stay with us: the final section tests a whole job.

14.4.3 Testing a job

We finish this chapter with The Big One: testing an entire job—an easy task with all
that we’ve learned. With the help of the Spring TestContext framework and the Job-
LauncherTestUtils class, it takes only a few lines of code to do the job, as demon-
strated in the following listing.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class WholeBatchTest {
 String PRODUCTS_PATH =
 "classpath:com/manning/sbia/ch14/input/products.txt";
 String STATISTIC_PATH = "file:./target/statistic.txt";
 @Autowired
 private JobLauncherTestUtils jobLauncherTestUtils;
 @Autowired
 private SimpleJdbcTemplate jdbcTemplate;

 @Test
 @DirtiesContext
 public void integration() throws Exception {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString(PARAM_INPUT_RESOURCE, PRODUCTS_PATH)
 .addString(PARAM_REPORT_RESOURCE, STATISTIC_PATH)
 .toJobParameters();

Listing 14.19 Testing a whole job

Injects test
utilities

B

437Summary
 JobExecution exec = jobLauncherTestUtils
 .launchJob(jobParameters);
 assertEquals(BatchStatus.COMPLETED,
 exec.getStatus());
 assertEquals(6, jdbcTemplate.queryForInt(
 "SELECT COUNT(*) from PRODUCT"));
 }
}

You start with Spring injecting a JobLauncherTestUtils B, then call launchJob C,
and check the batch status. Finally, you count product table rows, and that’s all! You
have successfully tested a whole batch job!

 It’s now time to conclude our journey in the land of batch application testing.

14.5 Summary
In this chapter, you learned how to implement unit, integration, and functional tests
for batch applications. You looked at test concepts and why writing tests improves the
reliability and robustness of applications. We introduced the notion of test strategies
like white-box and black-box testing. You also learned how to write unit tests with JUnit
and the Mockito mock framework, where you learned how to test your application’s
behavior. Then, you looked at the Spring TestContext Framework and the Spring
Batch Test module, which helped a lot. Finally, you created Step and Job tests to
check overall functionality. Based on our case study, you created many test cases to
show that all aspects of a batch job can be tested. Indeed, it has never been easier to
create tests for batch jobs.

 This is the final chapter; we hope you enjoyed this book. Now, go out and practice
on your own. The appendixes that follow show you how to configure your favorite
IDEs and Maven for use with Spring Batch and how to set up Spring Batch Admin, the
web administration console for Spring Batch.

Launches
job

C

appendix A
Setting up the

 development environment

This appendix shows you how to set up your development environment. We begin
with Apache Maven 3: installing Maven and using basic commands. We then create
a new Maven project from scratch and add the necessary dependencies for Spring
Batch. We also explore Spring Batch features from the SpringSource Tool Suite for
Eclipse and learn how to set up a Spring Batch project quickly from a blank Maven
project and use the Spring Batch development tools.

A.1 Apache Maven 3
Apache Maven provides build tools, documentation, dependency management,
and reporting for your projects. One of the benefits of Maven is to promote stan-
dards and conventions that accelerate the development cycle. At the heart of all
Maven projects is the POM—the Project Object Model—represented in a pom.xml
file. The POM contains general project information like name, version, dependen-
cies, and plug-in descriptions.

 First, we install Maven and learn some basic commands. We then create a new
Maven project from scratch and configure it to use Spring Batch.

NOTE For more information about Maven, visit http://maven.apache.org.

A.1.1 Installation

Maven is a Java program, so you need Java on your computer to be able to run it. To
check that your computer has the Java SDK (software development kit) installed
and available, run the command java -version; you should see this output:

% java -version
java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02, mixed mode)
439

http://maven.apache.org

440 APPENDIX A Setting up the development environment
The java -version command shows you the Java version in detail. At the time of this
writing, the latest version of Apache Maven is 3.0.3.

NOTE Maven 3 requires a Java 5 SDK installed (a JRE isn’t sufficient).

You can download Maven 3 from its official website: http://maven.apache.org. It
comes as an archive file that creates an apache-maven-3.0.3 directory where it’s
extracted. You then need to create an M2_HOME environment variable that contains the
directory where you installed Maven 3. To make the mvn command available in your
shell, add M2_HOME/bin to your PATH environment variable: use $M2_HOME/bin if
you’re using a UNIX/Linux-based OS; use %M2_HOME%\bin for Windows.

 You can check that you installed Maven properly by running the mvn –version
command, which outputs information about your system:

% mvn -version
Apache Maven 3.0.3 (r1075438; 2011-02-28 18:31:09+0100)
Maven home: /home/acogoluegnes/bin/apache-maven-3.0.3
Java version: 1.6.0_26, vendor: Sun Microsystems Inc.
Java home: /home/acogoluegnes/bin/jdk1.6.0_26/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "2.6.38-8-generic", arch: "amd64",

 ➥ family: "unix"

The output you get will differ, but it ensures that Maven is correctly installed on your
computer. Now that you’ve installed Maven, let’s use it! But before we look at the
Maven command line, let’s go over some concepts.

A.1.2 Understanding Maven

Maven uses the concept of a build lifecycle, where the three built-in build lifecycles
are default, clean, and site.

■ Default—Handles project deployment
■ Clean—Handles project cleaning
■ Site—Handles the creation of site documentation

Each build lifecycle consists of an ordered list of build phases. For example, the default
lifecycle has the following phases, in this order: validate, compile, test, package,
integration-test, verify, install, and deploy. When you run a given phase, all
prior phases run before it in sequence. For example, if you run install, phases from
validate to verify run first. A build phase consists of goals, where a goal represents a
task smaller than a build phase. For example, the Maven Clean plug-in contributes to
the clean phase with a goal named clean. Also, note that Maven uses two phases by
default: clean and site.

 To get some basic help, run the following command:

% mvn --help
usage: mvn [options] [<goal(s)>] [<phase(s)>]

Table A.1 lists some common and useful Maven commands.

http://maven.apache.org

441Apache Maven 3
Thanks to its build lifecycles, phases, and goals, Maven commands are the same what-
ever the project. Developers are no longer lost.

 Next, we look at the steps necessary to create a blank Maven project from scratch.
We’ll then add the necessary dependencies before importing the project in the
SpringSource Tool Suite.

A.1.3 Creating a blank project

In this section, we create a blank Maven project, a necessary step before making the
project Spring Batch–powered. Maven includes features to generate projects using an
archetype. An archetype is a project template that contains model files like pom.xml
and a standard directory tree.

 On UNIX/Linux-based systems:

% mvn archetype:generate \
 -DarchetypeArtifactId=maven-archetype-quickstart \
 -DarchetypeVersion=1.1 \
 -DgroupId=com.manning.sbia \
 -DartifactId=appA \
 -Dversion=1.0-SNAPSHOT \
 -Dpackage=com.manning.sbia.appA

On Windows:

mvn archetype:generate ^
 -DarchetypeArtifactId=maven-archetype-quickstart ^
 -DarchetypeVersion=1.1 ^
 -DgroupId=com.manning.sbia ^
 -DartifactId=appA ^
 -Dversion=1.0-SNAPSHOT ^
 -Dpackage=com.manning.sbia.appA

To create a new project, you use the maven archetype plug-in. This command gener-
ates an empty project based on the Maven file and directory layout. Maven creates the
project in the appA directory (the name of the project). The project contains a couple
of Java classes; you can delete them and create directories to make your project look
like the following:

Table A.1 Common Maven commands

Maven command Description

mvn clean Deletes all build output, usually the target directory

mvn test Compiles main and test source trees and runs unit tests

mvn clean package Cleans, compiles, tests, and packages the project

mvn clean install Cleans, compiles, tests, and produces an artifact like a
JAR file or a WAR file, and installs it in the local repository

mvn clean install -P bootstrap As above but using a bootstrap profile

442 APPENDIX A Setting up the development environment
appA/
 pom.xml
 src/
 main/
 java/
 resources/
 test/
 java/
 resources/

The previous snippet shows Maven’s standard project structure. If you follow this
structure, Maven will know automatically where to find Java classes, test classes, and so
on. Hurrah for convention over configuration!

 You have your Maven project—this is great, but it’s empty. If you were to develop
some Spring Batch inside the project, Maven wouldn’t be able to compile your code.
This is because you need to add Spring Batch dependencies, so let’s see how to
add them.

A.1.4 Adding Spring Batch dependencies to the Maven project

There’s nothing related to Spring Batch in your blank Maven project, so you need to
add these dependencies inside the pom.xml file. Maven downloads all dependencies
from internet repositories, so you don’t have to worry about hunting the JAR files from
multiple websites. The following listing shows the content of the pom.xml file once
you add the Spring Batch dependencies.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.sbia</groupId>
 <artifactId>appA</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>appA</name>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <spring.batch.version>
 2.1.8.RELEASE
 </spring.batch.version>
 <maven.compiler.source>1.6</maven.compiler.source>
 <maven.compiler.target>1.6</maven.compiler.target>
 </properties>

 <dependencies>

 <dependency>
 <groupId>org.springframework.batch</groupId>
 <artifactId>spring-batch-core</artifactId>

Listing A.1 The pom.xml file Spring Batch dependencies

Defines property
for Spring Batch
version

B

Declares Spring
Batch dependencies

C

443Apache Maven 3
 <version>${spring.batch.version}</version>
 <exclusions>
 <exclusion>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

 <dependency>
 <groupId>org.springframework.batch</groupId>
 <artifactId>
 spring-batch-infrastructure
 </artifactId>
 <version>${spring.batch.version}</version>
 </dependency>

 <dependency>
 <groupId>org.springframework.batch</groupId>
 <artifactId>spring-batch-test</artifactId>
 <version>${spring.batch.version}</version>
 <scope>test</scope>
 </dependency>

 </dependencies>
</project>

You define a spring.batch.version property B because you’ll need the Spring
Batch version in several places. It’s more convenient to define a property once and
then refer to it. You also set up maven.compiler properties the for the Java compiler.
You then add Spring Batch dependencies C. Note the use of the version property and
the exclusion of the Apache Commons Logging dependency. As soon as you refer to a
dependency—Spring Batch, in our case—Maven downloads all transitive dependen-
cies. Commons Logging would come as a transitive dependency of the Spring Frame-
work, and you don’t want it: that’s why you exclude it with the exclusion element
(more on logging later). At D you add the Spring Batch test module. Chapter 14
introduces you to this test module, but you can still test your Spring Batch jobs with-
out it (import the dependency only if you need it). You use the scope element for the
test dependency. With the scope element set to test, Maven adds the corresponding
dependency only for compiling and running tests.

 You now have the bare minimum to use Spring Batch, but you need to add some
other dependencies to make the case study from chapter 1 work.
ADDING SPRING DEPENDENCIES

Spring Batch 2.1 is compatible with both Spring 2.5 and Spring 3.0, but it pulls
Spring 2.5 dependencies by default. We use Spring 3.0 in this book, so you should
add the dependencies listed in table A.2 to your pom.xml.

 By using Spring 3.0, you’ll benefit from the latest bug fixes and from features like
the jdbc namespace to easily create an in-memory database—handy for testing—or
Representational State Transfer (REST) support. Let’s now see about the logging
dependencies.

Declares Spring
Batch dependencies

C

Declares Spring
Batch test
dependency

D

444 APPENDIX A Setting up the development environment
ADDING LOGGING DEPENDENCIES

Logging to the console or a file is useful: it can help with debugging. You can add your
own logging statements in your code, but all the frameworks—including Spring
Batch—produce their own logging messages. Logging can be complicated to set up in
Java. For the full story, look at the sidebar about logging; for the short story, add the
dependencies listed in table A.3.

As you can see from table A.3, we’re using Logback as the logging implementation. It
needs a configuration file: logback-test.xml, which you can create in src/test/
resources. The following listing shows the content of the logback-test.xml file.

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>

Table A.2 Spring dependencies to add to the pom.xml file

Group ID Artifact ID Version

org.springframework spring-beans 3.0.5.RELEASE

org.springframework spring-context 3.0.5.RELEASE

org.springframework spring-core 3.0.5.RELEASE

org.springframework spring-jdbc 3.0.5.RELEASE

org.springframework spring-tx 3.0.5.RELEASE

Table A.3 Logging dependencies to add to the pom.xml file

Group ID Artifact ID Version

org.slf4j slf4j-api 1.6.1

org.slf4j jcl-over-slf4j 1.6.1

ch.qos.logback logback-classic 0.9.29

Listing A.2 Configuring Logback in logback-test.xml

Logging in Spring Batch
Let’s face it: logging in Java is a mess. There are standards, de facto standards, and
several logging façades. How can a beginner sort this out? Covering logging and logging
configuration best practices is beyond the scope of this book. To make it short, we
use SLF4J as a façade, the implementation of Apache Commons Logging over SLF4,
and Logback as the SLF4J implementation. For a thorough explanation of the logging
configuration in Spring Batch—and in Spring in general—take a look at this blog entry:
http://blog.springsource.com/2009/12/04/logging-dependencies-in-spring/.

http://blog.springsource.com/2009/12/04/logging-dependencies-in-spring/

445Apache Maven 3
 <pattern>
 %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n
 </pattern>
 </encoder>
 </appender>

<logger name="org.springframework.batch" level="warn" />

 <root level="error">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

The logback-test.xml file is okay for a test configuration, but you should have a look at
the Logback documentation for a more production-oriented configuration.

 We’re done with logging dependencies; let’s now configure dependencies that the
case study uses.
ADDING DEPENDENCIES FOR THE CASE STUDY

Chapter 1 introduces the case study: the batch job for the online store application.
The batch job uses Apache Commons IO to deal with decompressing the input ZIP
archive and H2, the Java database. Table A.4 lists the dependencies that the study uses.

We’re getting close to the end of the dependencies: next, we test dependencies!
ADDING TEST DEPENDENCIES

We use JUnit and the Spring TestContext Framework to write an integration test for
our case study batch job. Table A.5 lists the corresponding dependencies.

Don’t forget to use the test scope for these dependencies! We’re done with the depen-
dencies: your Maven project is ready to compile and launch Spring Batch jobs. But are
you going to use a text editor to write these jobs? Surely not. Now that your Maven
project is all set up, you can start using a full-blown IDE—with some Spring and Spring
Batch support—to write your jobs: the SpringSource Tool Suite for Eclipse.

Table A.4 Case study dependencies to add to the pom.xml file

Group ID Artifact ID Version

commons-io commons-io 2.0.1

com.h2database h2 1.3.156

Table A.5 Test dependencies to add to the pom.xml file

Group ID Artifact ID Version

junit junit 4.8.2

org.springframework spring-test 3.0.5.RELEASE

446 APPENDIX A Setting up the development environment
A.2 The SpringSource Tool Suite for Eclipse
The SpringSource Tool Suite (STS) is an Eclipse-based IDE. The focus of STS is to provide
tools to help Spring developers create and manage Spring-based applications. STS offers
tools to edit XML Spring contexts using a completion editor and wizards to facilitate
project creation. STS also includes Groovy, Grails, and OSGi tools. You can download STS
from www.springsource.com/products/springsource-tool-suite-download.

NOTE You don’t need a specific IDE to work on a Spring Batch project. STS is
free and provides some nice tooling for Spring and Spring Batch. That’s why
we use it, but you could use NetBeans or IntelliJ IDEA on a Spring Batch proj-
ect as well. It’s also worth mentioning that you can install STS’s tooling on top
of an existing Eclipse installation (instead of downloading STS as a bundle)
because it’s a set of plug-ins.

This section covers how to import a Maven project into STS and use the tooling to cre-
ate a Spring Batch job.

A.2.1 Importing the Spring Batch project

STS has built-in support for Maven, so you can easily import the Maven project you
created in section A.1 with STS. You’ll end up with a ready-to-edit project, with config-
uration managed by the STS-Maven integration plug-in.

 To import the Maven-based Spring Batch project in STS, choose File > Import >
Maven and Existing Maven Projects. You can then browse to the project directory and
click on Finish, as figure A.1 shows.

 Once created, the project shows up in the Eclipse workspace with a Maven layout,
as figure A.2 illustrates.

 The project is now in the STS workspace. Let’s see how to create and edit a Spring
configuration file.

Figure A.1 STS can import
a Maven project. STS then
configures the project by
using the project POM.

www.springsource.com/products/springsource-tool-suite-download

447The SpringSource Tool Suite for Eclipse
A.2.2 Creating and editing a Spring configuration file

Spring Batch configuration relies on Spring configuration. STS has first-class support
to manage Spring configuration files. This support includes a wizard to create a
Spring file, namespace management, code completion (Ctrl-Space works in Spring
XML files!), and much more. STS also provides a nice visualization tool for Spring
Batch jobs. Let’s explore all of this now.

 You start by using a wizard to create a Spring configuration file. From the package
explorer, right-click the src/main/resources source directory and select New > Spring
Bean Configuration File. Use the file import-products-job-context.xml and click Next.
You can then choose the namespaces you want to include. Include the batch
namespace, as figure A.3 shows, and then click Finish.

 Once the Spring configuration file is created, you can select and edit it, as shown
in figure A.4. The editor validates the syntax and provides code completion.

 You’re now ready to create a Spring Batch job: use the batch namespace to declare
the job, steps, your item reader and writer, and so on. You can then visualize the
Spring Batch job by choosing the Batch-Graph tab in the editor. Figure A.5 shows the
Spring Batch graphical editor.

STS speeds up Spring Batch development by offering useful tools, particularly the
Spring Batch visual development tool.

Figure A.2 The blank Maven project imported in STS. STS automatically includes the
dependencies specified in the POM.

448 APPENDIX A Setting up the development environment
Figure A.3 When creating a Spring configuration file with the wizard, STS lets you choose which XML
namespaces you want to include in the file declaration. You can also change the namespaces once the
wizard creates the file, on the Namespaces tab.

Figure A.4 The XML editor for Spring configuration files is arguably STS’s most useful tool for the
Spring developer. It provides validation, code completion, and graphical visualization for Spring Batch.

449Summary
A.3 Summary
In this appendix, we set up Maven and Eclipse development environments for Spring
Batch applications. We introduced Maven, installed it, and learned its basic com-
mands. Using a simple Maven archetype, we created a blank project and added the
necessary dependencies for Spring Batch development.

 Finally, we saw how the STS for Eclipse facilitates Spring Batch application develop-
ment. We used STS to import the Maven project and to create and edit a Spring con-
figuration file for a Spring Batch project.

 Appendix B shows how to install Spring Batch Admin, the web-based administra-
tion console for Spring Batch.

Figure A.5 Visualizing a Spring
Batch job inside STS, thanks to
the Batch-Graph tab. You can
also edit the job definition by
dragging components from the
left to the main editor area. You
can edit each component by
double-clicking it.

appendix B
Managing

 Spring Batch Admin

Spring Batch Admin is a web-based administration console for Spring Batch. With
it, you can monitor the execution of batch jobs and start and stop executions. You
can make Spring Batch Admin the only entry point in your batch infrastructure,
because it provides all the features to manage and monitor the behavior of your
jobs. In addition, if you find a missing feature, you can implement it and contribute
it back to the project, because Spring Batch Admin is an open source project.

 Spring Batch Admin builds on top of Spring technologies like the Spring
Framework, Spring MVC, and Spring Integration. Spring Batch Admin is a full-
blown web application, but it remains easy to configure and deploy. This appendix
shows you how to deploy a Spring Batch Admin instance in a couple of minutes.
Even if your Spring Batch Admin instance runs on top of an embedded database, it
will be helpful for you to discover the web console. You’ll also see how to deploy
Spring Batch Admin in its own web application and how to make it cohabit with
other applications inside the same web application.

 Spring Batch Admin uses Spring for its configuration, and you’ll see how to set
it up to connect to your batch metadata. If you’re already running a Spring Batch
infrastructure, you’ll be able to browse a web view of it in a matter of minutes. This
appendix also covers more advanced configuration scenarios, like deploying job
definitions and overriding infrastructure Spring beans in Spring Batch Admin.

B.1 Downloading Spring Batch Admin
Table B.1 lists the relevant web pages about Spring Batch Admin and includes the
download page.

NOTE We’re using Spring Batch Admin 1.2.0.RELEASE in this appendix.
450

451Building Spring Batch Admin from the distribution sample
If you download the Spring Batch Admin distribution from the download page, you’ll
see the package is small. Spring Batch Admin is a web frontend, so it runs inside a web
application, but you can easily embed it in any web application. You can also choose to
let it run alone in a dedicated web application. You have multiple deployment
options, and we’ll start with the latter, as the distribution contains a sample project to
build a web application with Spring Batch Admin in it. This is the quickest way to have
a Spring Batch Admin instance running. We’ll then study the second deployment
option before covering how to configure Spring Batch Admin in more detail.

B.2 Building Spring Batch Admin from the distribution sample
We’re going to build a web archive with Spring Batch Admin in it. We use the sample
provided in the distribution, which uses Maven as the build tool. You’ll need Maven 2
or greater installed on your computer

 Unzip the Spring Batch Admin distribution and open an OS command shell in the
corresponding directory. Then, type the following commands:

cd sample/
cd spring-batch-admin-parent/
mvn install
cd..
cd spring-batch-admin-sample/
mvn install

The first set of commands installs a parent POM inside your local Maven repository.
The sample uses this POM. The second set of commands builds the web archive. Once
the last command has finished, you should find a WAR file in the directory spring-
batch-admin-sample/target. You can deploy this WAR file in any web container (like
Jetty or Tomcat) or any application server (like Glassfish or JBoss).

 Once Maven has deployed the archive, go the following URL to check the installa-
tion: http://localhost:8080/spring-batch-admin-sample-1.2.0.RELEASE/

 The home page of your Spring Batch Admin instance is shown in figure B.1. From
this home page, you can navigate through the application and discover its interface.

 The Spring Batch Admin sample uses an embedded database and has some default
jobs installed. This is useful for a quick tryout of Spring Batch Admin and its main fea-
tures. You can also use the sample as a starting point for your own Spring Batch
Admin installation and customize its Spring configuration files and web.xml file. We’ll
see more about the configuration of Spring Batch Admin in section B.4.

Table B.1 Web pages related to the Spring Batch Admin project

URL Description

http://static.springsource.org/spring-batch-admin/index.html Home page

http://static.springsource.org/spring-batch-admin/reference/reference.xhtml User guide

http://www.springsource.com/download/community Download page

http://static.springsource.org/spring-batch-admin/index.html
http://static.springsource.org/spring-batch-admin/reference/reference.xhtml
http://www.springsource.com/download/community

452 APPENDIX B Managing Spring Batch Admin
Perhaps you already have a web application running and you would like to run Spring
Batch Admin in this same application, next to your business application. The next sec-
tion shows how to embed Spring Batch Admin in an existing web application.

B.3 Embedding Spring Batch Admin in a web application
Spring Batch Admin is a lightweight application: it consists of only two JAR files con-
taining web controllers, Spring configuration files, images, and views. Embedding
Spring Batch Admin in a web application is as easy as including these two JARs and
their dependencies and configuring the web.xml file. Let’s see how to add Spring
Batch Admin dependencies in a Maven project.

B.3.1 Adding Spring Batch Admin dependencies

The following listing shows a Maven POM file that contains Spring Batch Admin
dependencies. Spring Batch Admin has its own dependencies (Spring Batch, the
Spring Framework, and so forth), but Maven pulls them in automatically.

<?xml version="1.0"?>
<project (...)>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.sbia</groupId>
 <artifactId>appB</artifactId>
 <version>1.0.0</version>
 <name>appB</name>

Listing B.1 Maven dependencies for Spring Batch Admin

Figure B.1 The home page of a Spring Batch Admin instance lists the services the application provides.

453Embedding Spring Batch Admin in a web application
 <packaging>war</packaging>
 <dependencies>

 <dependency>
 <groupId>org.springframework.batch</groupId>
 <artifactId>spring-batch-admin-resources</artifactId>
 <version>1.2.0.RELEASE</version>
 </dependency>

 <dependency>
 <groupId>org.springframework.batch</groupId>
 <artifactId>spring-batch-admin-manager</artifactId>
 <version>1.2.0.RELEASE</version>
 </dependency>

 </dependencies>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

</project>

When adding Spring Batch Admin dependencies to an existing project, be careful of
conflicts between dependencies. Your project can have its own dependencies, so you may
need more configuration than what listing B.1 provides. This extra configuration can
exclude transitive dependencies from Spring Batch Admin, or from your own project.

B.3.2 Declaring Spring Batch Admin in web.xml

The easiest way to configure Spring Batch Admin in the web.xml of your web applica-
tion is to use the sample’s web.xml file as inspiration. Spring Batch Admin needs the
following elements in web.xml:

■ A servlet listener to bootstrap the root application context—If your web application
uses Spring, this listener is already there, so just add an entry for the Spring
Batch Admin Spring configuration file.

■ Servlet filters to deal with HTTP headers in requests and responses—They’re useful
mainly because Spring Batch Admin uses some RESTful-styled communication
between the client and the server.

■ A Spring MVC DispatcherServlet—Spring Batch Admin uses Spring MVC as its
web layer.

■ A ResourceServlet—To serve static resources from JAR files.

Be careful to avoid conflicts with your own application when configuring the URL map-
ping of Spring Batch Admin. The sample uses /* which handles all inbound URLs.

 Once you have completed this configuration, you can package your web application
with Maven and deploy it in a web container. You’ll get the same result as in the previous
section, but now Spring Batch Admin will be bundled inside your own application!

 The next section covers how to configure Spring Batch Admin to plug in your own
environment.

454 APPENDIX B Managing Spring Batch Admin
B.4 Configuring Spring Batch Admin
Spring Batch Admin uses Spring for its configuration, and it’s straightforward to set
up for your own environment. We’ll see first how to plug Spring Batch Admin into the
batch metadata. You’ll be able to monitor the execution of your batch jobs, even if
they don’t run in the same process as Spring Batch Admin. Then, we’ll see how to add
job configurations to Spring Batch Admin. You’ll be able to monitor job executions
and start and stop jobs from Spring Batch Admin. We’ll finish with advanced settings
used to integrate Spring Batch Admin more deeply with an existing application.

B.4.1 Plugging into your batch metadata

Spring Batch Admin needs only one thing to plug into batch metadata: how to con-
nect to the database that hosts these metadata. In Java terms, this means configuring a
data source. You don’t have to bother with Spring configuration; you can just specify
the connection parameters in a batch-default.properties file located at the root of the
classpath. The following listing shows an example of such a properties file to connect
to an H2 database.

batch.jdbc.driver=org.h2.Driver
batch.jdbc.url=jdbc:h2:tcp://localhost/sbia_appB
batch.jdbc.user=sa
batch.jdbc.password=
batch.database.incrementer.class=org.springframework.jdbc

 ➥ .support.incrementer.H2SequenceMaxValueIncrementer

batch.data.source.init=false
batch.business.schema.script=
batch.schema.script=
batch.drop.script=
batch.remote.base.url=

The batch-default.properties file must be located at the root of the classpath. In a
Maven project, the file can be in the src/main/resources directory. The file must con-
tain the four usual database connection settings: driver class, URL, username, and pass-
word. You can also specify the implementation of a value incrementer for Spring Batch
to generate primary keys. Look at implementations of the DataFieldMaxValueIncre-
menter interface in the Spring Framework and pick the one matching your database.

NOTE Don’t forget to put the JDBC database driver JAR file on the classpath
of the web application.

The configuration in listing B.2 tells Spring Batch not to run any SQL scripts on the
target database. This assumes the database contains all the batch metadata tables
(remember, the scripts to create these tables are in the Spring Batch core JAR file).

 Once you complete the database settings, you can package the application and
deploy it. The application will connect to the batch metadata, and you’ll be able to

Listing B.2 Configuring the database connection in batch-default.properties

Database connection
settings

455Configuring Spring Batch Admin
monitor the execution of your jobs. By configuring just the connection to the batch
metadata, you can’t really use Spring Batch Admin as the only entry point to your
batch infrastructure. To be able to launch executions directly from Spring Batch
Admin, add all your job resources—Java classes, Spring Batch configuration—to the
web application.

B.4.2 Deploying your own job files

Spring Batch Admin scans a specific location to find Spring configuration files that
define jobs. This specific location is the META-INF/spring/batch/jobs directory on the
classpath (any JAR file is eligible as a root for scanning, as is the WEB-INF/classes direc-
tory in the web application).

 Each configuration file must be self-contained: it must define a job and all the
Spring beans the job depends on, except for infrastructure beans like the job reposi-
tory, the data source, and the transaction manager. Every bean defined in the root
application context of the web application is visible to a job in a Spring configuration
file. That’s why job configurations can depend on such common beans and don’t
need to define them.

 A typical job configuration file inside the META-INF/spring/batch/jobs directory
will then contain the job definition—using the batch namespace—and Spring beans
like item readers and item writers for the job.

 Such a deployment is powerful: you can write your Spring Batch jobs in standalone
projects and deploy them inside a Spring Batch Admin instance. As long you locate
the configuration files in the META-INF/spring/batch/jobs directory, Spring Batch
Admin will pick them up and make them available in the user interface.

NOTE The sample from the Spring Batch Admin distribution defines some
dummy jobs in its META-INF/spring/batch/jobs directory. Delete these jobs if
you don’t want them to appear in your Spring Batch Admin instance.

The Spring Batch Admin UI isn’t the only way to trigger a job execution: you can
embed a Java scheduler like Quartz or Spring Scheduler inside the application and let
jobs be kicked off periodically. Look at chapter 4 for the various ways to use a Java
scheduler with Spring Batch.

 Once Spring Batch Admin connects to your batch metadata and can accept your
new jobs, it gives you a great view of your batch infrastructure. You can even go further
through the configuration and change some Spring Batch Admin internals. This is
especially useful when Spring Batch Admin must cohabit with an existing business
application in the same web application.

B.4.3 Overriding the Spring Batch Admin configuration

Spring Batch Admin includes configuration for Spring beans like the data source, the
transaction manager, and the job repository. Spring Batch Admin lets you configure
parts of these beans, as we saw in section B.4.1 when we used a properties file for the

456 APPENDIX B Managing Spring Batch Admin
connection to the database. Spring Batch Admin also lets you override part of its con-
figuration. This means you can define Spring beans that Spring Batch Admin will use
in place of the default beans. Imagine that your data source comes from an applica-
tion server as a Java Naming and Directory Interface (JNDI) resource. In this case, the
database connection settings don’t make sense because you only need to perform
a JNDI lookup. You can define a data source bean and use Spring’s JNDI support for
the lookup.

 There are two conditions for overriding to work:

1 The bean must have the same ID as the bean defined in the Spring Batch
Admin configuration.

2 The bean definition must be loaded after Spring Batch Admin bean definitions.

To meet the first condition, you need to know the names of beans in the Spring Batch
Admin configuration. Table B.2 lists some of the beans that are likely to be overrid-
den. If you want to know all the beans you can override, the best source is…the source
code! The Spring configuration files are located in the META-INF/spring/batch/boot-
strap directory of the Spring Batch Admin manager module. The Spring Batch Admin
reference guide also provides the list of the beans you can override.

You now know about overriding infrastructure beans, which is the first condition to
meet to change the configuration of Spring Batch Admin. The second condition is to
ensure that the definitions of the new beans are loaded after the Spring Batch Admin
configuration. This doesn’t mean you need an extra application context; it means you
need to be careful about the order in which Spring configuration files are loaded.
Bean definitions override previous definitions with the same ID, so the order in which
configuration files are loaded matters. This a rule Spring enforces in its application
context implementations. To be sure your properly named beans override the default
beans, you have two options (you can use one or the other or both):

Table B.2 Some beans to override in Spring Batch Admin

Bean name Interface Default

dataSource DataSource Commons database connection
pool

transactionManager PlatformTransaction-
Manager

DataSourceTransaction-
Manager

jobLauncher JobLauncher SimpleJobLauncher

jobLauncherTaskExecutor TaskExecutor Asynchronous, with Java 5 thread
pool

jobRepository JobRepository Persistent job repository

457Summary
1 Declare your beans in files located in the /META-INF/spring/batch/override/ directory—
Spring Batch Admin ensures such files are loaded after the default files.

2 Declare your configuration files after the Spring Batch Admin files—In the context-
ConfigLocation parameter that specifies the files for the root application con-
text in the web.xml file, declare the Spring Batch Admin configuration file in
the first position, followed by your own application files.

Once both conditions are met (names for the beans and correct locations for the files),
you’re ready to configure some the Spring Batch Admin infrastructure. The following
listing shows how to override the data source and the task executor to launch jobs.

<?xml version="1.0" encoding="UTF-8"?>
<beans (...)>

 <jee:jndi-lookup id="dataSource"
 jndi-name="java:comp/env/jdbc/SpringBatchAdmin"/>

 <task:executor id="jobLauncherTaskExecutor"
 pool-size="10"
 rejection-policy="ABORT"/>

</beans>

By default, the task:executor element uses the Java 5 thread pool. Being able to
override some of the key components of Spring Batch Admin is powerful. Spring
Batch Admin can share any resource you use in your business application. You can
plug in a server-provided data source, as we did in listing B.3, where Spring looks up
the data source through JNDI. In listing B.3, we also defined our own thread-pooled
task executor for the job launcher to use. Note that you can also plug in a server-
provided thread pool like the JCA WorkManager or CommonJ (depending on what’s
available in your application server). Spring provides a bridge with a TaskExecutor
implementation for CommonJ. Spring Batch Admin can then use resources from the
application server.

B.5 Summary
Spring Batch Admin includes all the features needed to monitor accurately your Spring
Batch–powered infrastructure. You have multiple deployment options with Spring
Batch Admin: you can deploy it in its own web application or let it cohabit with other
applications in the same web application. The former is well suited to headless batch
jobs if they’re not part of any web frontend. The latter works nicely when you embed
Spring Batch in a web application and run it as a business application frontend.

 The first setup step is to plug Spring Batch Admin into your batch metadata to
monitor the execution of your jobs. You can then go further and use Spring Batch
Admin to start and stop job executions. You can also override the Spring Batch Admin
infrastructure to plug in existing infrastructure components, like a data source or a
thread pool provided by your server.

Listing B.3 Overriding infrastructure beans

Looks up data
source from JNDI

Defines thread pool
to launch jobs

index
Symbols

@After annotations 412
@Autowired annotation 27, 325
@Before annotations 412
@Before methods 412
@BeforeClass annotation 412
@ContextConfiguration annotation 27, 426
@DirtiesContext annotation 426
@ExceptionHandler annotation 325
@Header 319
@PathVariable annotation 325
@RequestBody annotation 325
@RequestMapping annotation 107, 325
@RequestParam annotation 107
@ResponseStatus annotation 107, 325
@RunWith annotation 27
@Scheduled annotation 102–103
@ServiceActivator 319
syntax 26
#expression syntax 26

Numerics

200 (OK) status code 341
202 status code 323
404 (NOT FOUND) status code 341
409 status code 323

A

abstract attribute 58, 61, 84–85
abstractions, task executor 377–378
Accenture 5
acceptance testing 409

ACID properties 252
ACME 197
Advanced Message Queuing Protocol. See AMQP
after method 82
afterChunk 254
AfterJob annotation 79
afterJob method 79
afterProcess method 81, 418–419
afterPropertiesSet 152–153
afterRead method 81
AfterStep annotation 82
afterStep method 80, 82
afterWrite method 81
allow-start-if-complete attribute 62, 85, 244–245
AMQP (Advanced Message Queuing

Protocol) 389
AnnotatedImportProductsJobListener class 79
AnnotationMethodHandlerAdapter 343
annotations, launching batch jobs from

Spring 102–103
AOP (Aspect-Oriented Programming) 240–242
Apache Commons IO project 21
Apache Maven 3 development environment

439–445
description of 440–441
installation 439–440
projects, adding dependencies to 442, 444–445

appendAllowed property 161
application code, retrying in with

RetryTemplate 239–240
application components 34
application developer, stopping batch jobs

for 113–116
from chunk-oriented step 114–116
from tasklet 113–114

ApplicationContext 361
459

INDEX460
applicationContext.xml file 105
ApplicationEvent class 362
ApplicationEventMonitoringNotifier class 362
ApplicationEventPublisherAware 362
ApplicationListener 362
applications

batch 4–5
online store 8–9, 278–279
web, deploying Spring MVC framework in

321–322
ArgPreparedStatementSetter 205–206
Aspect-Oriented Programming. See AOP
assembler property 368
Assert class 412–413
assertEquals(expectedValue, actualValue)

method 412
AssertFile class 433
assertNotNull(value) method 412
assertNull(value) method 412
assertTrue(booleanValue) method 412
assertUpdates 180–181
asynchronous batch job launches, vs. synchronous

batch job launches 89–90
attributes, of transactions 255–256
AUTO_ACKNOWLEDGE 264

B

BackToBackPatternClassifier class 190–192
batch applications 3–5
Batch class 154, 212
batch configuration 53–86

advanced 75–86
configuration inheritance 83–86
listeners 78–83
SpEL 76–77
step scope 75–76

job repository 72–75
choosing 72–73
specifying parameters for 73–75

jobs 57–60
configuring 58–60
job entities hierarchy 57–58

steps 60–72
XML vocabulary 54–57

namespace 54–56
XML features 56–57

batch domain language 33–35
how Spring Batch interacts with outside

world 35
main components of 34–35
reasons for using 33

batch jobs 87–116
embedding scheduler in container 91
idempotent operations in 272–273

launching from command line
handling exit codes 94–97
overview 90–91
with job parameters 94
without job parameters 93

launching from cron 98–99
configuring 98–99
jobs suited for use with 99

launching from Spring scheduler 99–103
options for 100
setting up 100–101
with annotations 102–103
with XML 101–102

launching from web application 103–109
embedding Spring Batch in 104–105
with HTTP request 105–109

reason for building with 9
Spring Batch launcher API 88–89
stopping gracefully 109–116

for application developer 113–116
for operator 110–113

synchronous vs. asynchronous launches 89–90
triggering jobs by external event 91–92

batch metadata 263, 454–455
batch namespace 39, 54–55
batch prefix 19
batch processes

reason for using 9–10
testing 23–28

leveraging SpEL for configuration 25–26
setting up test infrastructure 23–25
writing test for job 26–28

batch processing 57
batch status, vs. exit status 282
BATCH_JOB_EXECUTION table 351
BATCH_JOB_INSTANCE table 351
BATCH_STEP_EXECUTION table 351
batch-default.properties file 454
Batch-Graph tab 44, 447, 449
batch-oriented processing, Spring Batch 5
BatchMonitoringNotifier interface 358–359
BatchSqlUpdate class 159
BatchStatus 282
batchUpdate 159
bean element 55, 76
Bean Validation standard, validating items

with 216–219
BeanFactory 147
BeanFactoryPostProcessor interface 76
BeanFactoryStepLocator class 401–402
BeanPropertySqlParameterSource 180
beans namespace prefix 54–55
beans, holder 296–300
BeanWrapperFieldExtractor class 164, 167,

170–171, 173

INDEX 461
BeanWrapperFieldSetMapper 128–130
before method 82
beforeChunk 254
BeforeJob annotation 79
beforeJob method 79
beforeProcess method 81
beforeRead method 81
BeforeStep annotation 82
beforeStep method 82
beforeWrite method 81
BEGIN 165
benefits, of testing 410
best effort pattern

with JMS 263–266
avoiding duplicate messages 266
avoiding losing messages with transaction

synchronization 264–266
issues with message delivery 263–264

BigDecimal type 14–15, 129
binding, late

writing in job execution context and reading
using 295–296

writing to holder bean and using to late binding
to read 299–300

Bitronix Transaction Manager 262
BookProduct 169–170
bookProductLineAggregator 170–171
bulletproof jobs 223–250

description of 224
designing bulletproof job 224–225
skip, retry, and restart features in action

226–227
techniques for bulletproofing jobs 225–226

restart on error 242–250
completed steps 245–246
enabling between job executions 243–244
in middle of chunk-oriented step 247–250
limiting number of restarts 246
no restart option 244–245

retrying on error 234–242
configuring retryable exceptions 234–236
controlling with retry policy 236–238
listening to retries 238–239
RetryTemplate implementation 239–242

skipping instead of failing 227–234
configuring exceptions to be skipped

227–228
configuring SkipPolicy class for complete

control 229–231
listening and logging skipped items 231–234

C

cache-capacity attribute 64–65
Callable interface 431

Callback class 161, 174
Callback interface 161
case studies 8–11

dependencies for 445
import product use case 10–11
online store application 8–9
reason for building with batch jobs 9
reason for using batch processes 9–10

Castor 6
CastorMarshaller 136–137
chaining item processors 219–222
channel adapters, file-writing 330
channel-based partitions, SPI using 399–402
channels, remote chunking using 389
character-separated fields, extracting 126–127
checked exception 71
chunk element 19, 43, 45, 56, 67–68
chunk processing 7, 12–13, 33
chunk size, choosing 19
chunk-completion-policy attribute 64–65
chunk-oriented architecture 193
chunk-oriented steps

restarting on errors in middle of 247–250
stopping batch jobs from 114–116
transaction management in 254

ChunkContext 291, 424–425
ChunkListener 80, 254
ChunkMessageChannelItemWriter class 390–392
ChunkOrientedTasklet 45, 63, 388
ChunkProcessor interface 388
ChunkProcessorChunkHandler 393
ChunkProvider interface 388
chunks 213, 215, 220, 222, 251, 253, 263, 267

chunk-oriented steps 207–208
configuring 63–69
processing items in 194–195

chunkWriter 392
Classifier interface 190
ClassifierCompositeItemWriter class 190–192
classpath argument 93
ClassPathXmlApplicationContext class 93
clean lifecycle 440
CleanStep 423
CleanTasklet class 424–425
CleanTaskletTest class 411, 424–425
cleanup step 42
CLIENT_ACKNOWLEDGE 264
close method 82
code, application 239–240
ColumnRangePartitioner class 402–403
comma-separated value. See CSV
command line, launching batch jobs from

handling exit codes 94–97
overview 90–91
with job parameters 94
without job parameters 93

INDEX462
CommandLineJobRunner class 92–97
commit convention, in Spring and Java Enterprise

Edition 71
commit-interval attribute 19, 64–65, 70, 85
Commons database 456
commons-io 445
COMPLETED 302–304, 423–424, 436–437
COMPLETED WITH SKIPS 281–284, 286
CompletionPolicy interface 64
component scanning 327
components

plugging in existing with ItemProcessorAdapter
class 200–201

transaction management in 253–255
chunk-oriented steps 254
listeners 254–255
tasklets 253

CompositeItemProcessor 220–221, 418–419,
428–429

CompositeItemProcessorTest class 411, 425, 428
CompositeItemWriter 189
compressing files 20
computed fields, writing to files 165
configuration files, Spring 447–449
configuration inheritance 83–86
configuration step 11
configuration, leveraging SpEL for 25–26
ConnectorServerFactoryBean class 369
Console Server 39
containers, embedding batch jobs scheduler in 91
contextConfigLocation 457
ContextLoaderListener class 104–105
ContextLoaderListener object 109
controllers

configuring 327–328
web, communicating job status from 341–344

conversion field 168
conversion values 168
COUNT 281
cron annotation attribute 102
cron option, Spring scheduler 100
cron, launching batch jobs from 98–99

configuring 98–99
jobs suited for use with 99

CSV (comma-separated value) 14, 119
curl tool, testing job submission with 328–329
cursorRefPosition 144
cursors, reading with 140–144, 148–150
CustomEditorConfigurer class 128
Customer object 186–187
CustomScopeConfigurer class 76

D

DAOs (Data Access Objects) 72, 206, 348
data partitioning, customizing 394, 402–404
data replication 308–309
data retrieval, using paging to manage 144–148,

150–151
data-source attribute 74
Database Connection Pool library. See DBCP
database cursors, reading with 140–144
database item writers

configuring 18
implementing 17–18

database schema, for jobs 348–351
databases

configuring Spring Batch infrastructure in
37–41
accessing job metadata 39–40
job repository 38–41

reading XML and writing into 336
writing data to 179–183

with JDBC 179–181
with ORM 182–183

DataFieldMaxValueIncrementer interface 454
dataSource bean 456
dataSource data source 74
DataSource interface 18, 69
DataSourceTransactionManager class 69–70, 75
date job parameter 48
Date object 94
date parameter 94
DBCP (Database Connection Pool) library 74
DeadlockLoserDataAccessException class 67
deciders, job execution 285–287
decision logic, embedding

in job execution decider 285–287
in step execution listener 283–285

declarative transactions, common pitfalls
with 256–257

decompress step 60–61
decompressing, input files 20–23
decompression step 11
decompression tasklet, implementing 20–22
decompressTasklet bean 77
DecompressTasklet class 20–21
DecompressTasklet tasklet 63
default lifecycle 440
DefaultFieldSet 417
DefaultJobParametersValidator class 59–60, 421
DefaultLineMapper class 15, 17, 120–121,

125–126
DefaultRecordSeparatorPolicy 123, 132
Defines property 442
delegates 219
delimited files, writing data to 166

INDEX 463
DelimitedLineAggregator class 162–166
DelimitedLineTokenizer class 16, 126–127
dependencies

adding to projects 443
dependencies for case study 445
logging dependencies 444–445
test dependencies 445

Spring Batch Admin, adding to web
application 452–453

DependencyInjectTestExecutionListener class 426
destination files, name of 331
detecting, and filtering duplicates 269–271
detection, manual 267–272
development environments 439–449

Apache Maven 3 439–445
description of 440–441
installation 439–440
projects 441–445

STS for Eclipse 446–449
importing projects 446
Spring configuration file 447–449

directories, writing import files with Spring MVC
framework in 329–331

configuring file-writing channel adapter 330
destination file name 331

DiscountService 239–242
DispatcherServlet class 108–109, 322, 343, 453
distributed services layer 366
distribution samples, building Spring Batch Admin

console from 451–452
Document Object Model. See DOM
Document Type Definition configuration system.

See DTD
doInStepScope 430–431
DOM (Document Object Model) 135
domain language, batch 33–35

how Spring Batch interacts with outside
world 35

main components of 34–35
reasons for using 33

domain objects
creating with FlatFileItemReader class 14–15
JMS messages and 267–268

driving query pattern, implementing with item
processor 204–208

configuring chunk-oriented step 207–208
executing with JDBC item reader 205–206
loading items 206–207

DTD (Document Type Definition) configuration
system 55

duplicate message 263
duplicateImport method 325
DuplicateKeyException 325
DUPS_OK_ACKNOWLEDGE 264

E

EchoJobParametersTasklet 317
Eclipse development environment, STS for

446–449
importing projects 446
Spring configuration file 447–449

email messages
notifying of problems using 360–361
writing data to send 186–187

embedding
decision logic

in job execution decider 285–287
in step execution listener 283–285

Spring Batch Admin console 452–453
EmptyResultDataAccessException 180
encoding property 161, 174
enterprise integration 306–344

definition of 307–310
enterprise integration challenges 307–309
styles of enterprise integration 309–310

Spring Batch framework and 310–311
Spring Integration framework 312–320

combining with Spring Batch framework 313
project 312–313
quick-start 313–320

Spring MVC framework 320–331, 338–344
triggering jobs from file system events 332–338

converting file into job launch request
333–334

implementing import job 334–338
scanning input directory with Spring Integra-

tion framework 332–333
enterprise service bus. See ESB
entities, registered as streams 68
Entity 121, 149
EntityManagerFactory 183
equals() 236
errors, restarting on 242–250

completed steps 245–246
enabling between job executions 243–244
in middle of chunk-oriented step 247–250
limiting number of restarts 246
no restart option 244–245

ESB (enterprise service bus) 312
ETL (extract, transform, and load) process 10
events, triggering batch jobs by 91–92
Exception class 71, 229
ExceptionClassifierRetryPolicy 237
exceptions

configuring retryable 234–236
to be skipped, configuring 227–228

exclude element 67, 228, 235
excludeWriter 418
exclusion element 443

INDEX464
execute method 21, 45, 253, 274
execution context, sharing data between steps

using 289–296
ExecutionContext 383, 402–403, 430–431
ExecutionContextPromotionListener 294
ExecutionListener interface 81
executions 277–305

job flow
complex 278–279
driving 280–287
externalizing flow definitions 300–302

sharing data between steps 287–300
stopping job execution 302–305

executor element, XML 90
exit code mapper 95
exit codes, launching batch jobs from command

line 94–97
exit status 282–287

batch status vs. 282
choosing between step execution listener and

job execution decider 287
embedding decision logic

in job execution decider 285–287
in step execution listener 283–285

ExitCode 303, 365
exitCode method 96
ExitCodeMapper interface 96–97
ExitStatus class 95–96, 282–286
Extensible Markup Language. See XML
externalizing job flow definitions 300–302
extract, transform, and load process. See ETL
ExtractorLineAggregator 160–163

F

FactoryBean 147
fail elements 303
FAILED 281–284, 302–304, 355–357
failing

skipping incorrect lines instead of 28–31
skipping instead of 227–234

configuring exceptions to be skipped
227–228

configuring SkipPolicy class for complete
control 229–231

listening and logging skipped items 231–234
fetchSize 141, 143, 145, 149
FieldExtractor class, writing data to files

using 163–165
FieldExtractor interface 163
fields

creating objects from 128–130
extracting character-separated 126–127

FieldSet class 126, 128–130, 163, 416–417
FieldSet parameter 15

FieldSetMapper 120–121, 128–129, 416–417
FieldSetMapper interface 15, 125, 128–129
fieldSetMappers 134
fieldsUsedAsTargetMethodArguments 184–185
file sets

reading 138–139
writing data to 178–179

file system events, triggering jobs from 332–338
converting file into job launch request 333–334
implementing import job 334–338
scanning input directory with Spring Integra-

tion framework 332–333
file-writing channel adapters 330
File.listFiles method 249
filename generation strategy 331
filename property 396
filename-generator attribute 330
filename, to import from job configuration 77
FileNameGenerator interface 331
files

converting into job launch request 333–334
destination, name of 331
import, writing in directory with Spring MVC

framework 329–331
input, decompressing with tasklet 20–23
reasons for compressing 20
writing data to 159–179

adding header and footer 171–173
computed fields 165
delimited files 166
file sets 178–179
fixed-width files 166–169
matching classes to LineAggregators 169–171
using FieldExtractor class 163–165
using FlatFileItemWriter class 161–163
using LineAggregator Interface 163
XML files 173–178

FilesInDirectoryItemReader class 248–249
FileUtils class 21
filtering

detecting duplicates and, with item
processor 269–271

items 208–211
implementing processor for 209–211
in item-processing phase 208–209

FilteringProductItemProcessor 196–197
findRunningJobExecutions method 353
fine-grained scaling, with partitioning 394–404

configuring 395–396
SPI 397–404

FINISHED constant 22
fixed-delay option, Spring scheduler 100
fixed-length fields 127
fixed-rate option, Spring scheduler 100
fixed-width files, writing data to 166–169

INDEX 465
fixedDelay annotation attribute 102
FixedLengthTokenizer 126–127
fixtures 412
flags field 167
flat files 119–134

DefaultLineMapper class 125–126
fields

creating objects from 128–130
extracting character-separated 126–127

FlatFileItemReader class 125
reading

configuration of FlatFileItemReader class
16–17

creating domain objects with FlatFileItem-
Reader class 14–15

flat file format 14
implementing FieldSetMapper interface

15–16
Product domain class 14

reading JSON 130–132
reading records

heterogonous 133–134
multiline 132–133

FlatFileFooterCallback 160–161, 171–172
FlatFileHeaderCallback 160–161, 171, 173
FlatFileItemReader bean 26
FlatFileItemReader class 14, 29, 120–125

configuration of 16–17
creating domain objects with 14–15

FlatFileItemWriter class 160–167, 170–173,
418–419

FlatFileParseException class 29–30, 228, 232–233
FlowStep class 44
footer, writing to files 171–173
footerCallback property 161, 174
Formatter class 166–168
Formatter conversions 168
FormatterLineAggregator class 162, 166–167,

170–171, 173
fragmentRootElementName 136–137
functional testing 409, 432–437

jobs 436–437
steps 433–436
using JobLauncherTestUtils 433

G

gateways
configuring 327–328
Spring Integration framework 326

GeneratesJobMetaData class 39
getCommaCount 132–133
getExecutions 354, 371
getExitCode() method 96
getExitStatus 355–357

getFailureExceptions 356–357, 360
getFailureExitDescriptions 357
getJobExecution method 354
getJobExecutions method 354
getJobInstance method 354
getJobInstances method 354
getJobNames 353–355
getNext method 59
getObject 147
getParameters 354, 420
getProducts 152–153
getSkipCount 357
getStepExecution 353, 427–428, 430–431
getStepExecutionSummaries 354, 358, 371
getString 420
getSummary 354, 358, 371
global transactions 259–262

local transactions vs. 260
transaction managers and 260–262

globalListener listener 86
grid-computing frameworks 7
gridSize 400–403

H

H2 database 454
handlers, partition 398–399
hashCode() 236
HDFS (Hadoop Distributed File System) 7
header, writing to files 171–173
headerCallback property 161, 174
heterogonous records 133–134
Hibernate, SessionFactory interface 99
hibernate.cfg.xml 150
HibernateCursorItemReader 149–150
HibernateItemWriter class 158, 182–183
HibernatePagingItemReader 150–151
HibernateTemplate 182
hierarchies, job entities 57–58
holder beans, sharing data between steps

using 296–300
horizontal scaling 374
HTTP requests, launching batch jobs with

105–109

I

iBATIS 6
IbatisBatchItemWriter 183
idempotency, handling duplicate messages

with 272–273
definition of idempotency 272
idempotent operations in batch job 272–273

IdToProductItemProcessor 207–208

INDEX466
Implementation class 197
import files, writing in directory with Spring MVC

framework 329–331
configuring file-writing channel adapter 330
destination file name 331

import jobs 334–338
configuring 337–338
mapping with job instance 334–336
reading XML and writing into database 336

import product use case 10–11
import products job, multiple runs of 47–50
import-id attribute 331
import-products-job.xml file 92
import-products.jar file 93
importId property 299
importing projects 446
ImportMetadata class 297
ImportMetadataHolder class 297
importProducts method 325
importProductsJob 359, 364–365, 371, 386–387
ImportProductsJobListener class 78–79
importProductsStep-master 401
ImportValidator 419–420, 429, 431
ImportValidatorTest class 411–412, 419
in-memory database 41
in-memory job repositories 73
include element 227–228, 233, 236, 239
incrementer attribute 58–59
incrementer object 59
information portal 308
infrastructure components 34
infrastructure configuration file 25
InitializingBean 152–153
INPUT 420, 429–431, 434, 436
input directory, scanning with Spring Integration

framework 332–333
input files, decompressing with tasklet 20–23
input, services as 151–154
inputResource job parameter 26
INSERT 180–181, 187–188, 421–423
insert statement, SQL 17
install phase 440
instance, and parameters 88–89
instrumentation layer 366
integration file 321
integration testing 409, 425–432

using Spring Batch
StepScopeTestExecutionListener 427–432
for ItemProcessor 428–429
for ItemReader 429–432

using Spring TestContext Framework 426–427
integration-test 440
InterfaceBasedMBeanInfoAssembler class 368
intValue method 96

InventoryOrderWriter 268–269, 271
IOUtils class 21
isEndOfRecord 123, 132–133
isolation attribute 70
isolation-level-for-create attribute 74–75
item listeners 78
item processing 12
item processors 194–197

chaining 219–222
configuring 195–197
detecting and filtering duplicates with 269–271
filtering

implementing 209–211
items in item-processing phase 208–209

implementing custom 199–200, 202–204
processing

in chunk-oriented step 194–195
use cases for 195

item readers
JDBC 139–148

ORM 148–151
reading with database cursors and result

sets 140–144
using paging to manage data retrieval

144–148
ORM

cursors 148–150
data retrieval 150–151

item writers
custom 187–189
database

configuring 18
implementing 17–18

writing and tracking items in 268–269
ItemJmsWriter 186
ItemListenerSupport, testing using Mockito

418–419
ItemPreparedStatementSetter class 180–181
ItemPreparedStatementSetter interface 181
itemPreparedStatementSetter property 180
ItemProcessListener interface 80–81
ItemProcessor class 201
ItemProcessor interface 12, 63, 195, 197, 203
ItemProcessorAdapter 197, 200–201, 204, 207
ItemReader interface 151–152, 156, 382–383
ItemReaderAdapter 152–153
ItemReaderException 228
ItemReadListener interface 80–81
items 34
ItemSkipListener 254
ItemSqlParameterSourceProvider class

180, 421–422, 435
itemSqlParameterSourceProvider property 180
ItemStream interface 118–119, 248–250, 290, 383

INDEX 467
ItemSupportListener 418
ItemWriteListener interface 80–81
itemWriter 393
ItemWriter interface 17–18, 162, 174, 179, 188
ItemWriterAdapter class 184–185
ItemWriters 187, 192, 201, 204, 384, 421–423

J

JAR file 93, 441–442, 452–455
java -version 439–440
Java Architecture for XML Binding. See JAXB
Java Archive file. See JAR file
Java class 314–315, 333, 336
Java database 445
Java Enterprise Edition 71
Java language, representation of job launch

request 314–316
Java Management Extension. See JMX
Java Message Service. See JMS
Java method 325
Java Naming and Directory Interface. See JNDI
Java object 316, 336, 342, 410
Java Open Transaction Manager. See JOTM
Java Persistence API. See JPA
Java process 93
Java Transaction API. See JTA
java –version command 439
Java Virtual Machine process. See JVM
java.lang.Runnable 377
java.util.concurrent package 377
java.util.concurrent.Callable 431
java.util.Formatter 162, 166, 169
java.util.logging 232
java.util.Map 130
JavaScript Serialized Object Notation. See JSON
JavaServer Faces. See JSF
javax.sql.XAConnection 261
JAXB (Java Architecture for XML Binding) 6, 173
JConsole, monitoring with JMX 369–372
JDBC (Java Database Connectivity) 5

executing driving query pattern with 205–206
initialize-database 348, 427
item readers 139–148

ORM 148–151
reading with database cursors and result

sets 140–144
using paging to manage data retrieval

144–148
repository based on

tracking job submissions with 325–326
writing data to databases with 179–181

JDBC database 454
JDBC driver 140–141, 145
JdbcBatchItemWriter class 179–181, 183, 385

JdbcCursorItemReader class 140, 143–144, 206,
381, 384

JdbcCursorItemReader sql 206
JdbcPagingItemReader 145–146
JdbcProductImportRepository 334
JdbcTemplate 159, 188, 198–199, 206, 210
JMS (Java Message Service) 35, 71, 118, 158, 257,

312, 376
best effort pattern with 263–266

avoiding duplicate messages 266
avoiding losing messages with transaction

synchronization 264–266
issues with message delivery 263–264

messages, and domain objects 267–268
reading data from 154–155
writing data to 185–186

JmsItemReader class 154–155
JmsItemWriter class 185
JmsTemplate 154–155, 185–186, 264–265
JMX (Java Management Extension), monitoring

with 366–372
configuring 368–369
using JConsole 369–372

JNDI (Java Naming and Directory Interface) 456
jndi-name 153–154
Job bean 108
job database schema, and monitoring 348–351
job element 19, 56–59, 61, 73, 78
job execution deciders

embedding decision logic in 285–287
enabling restarting on errors between 243–244
step execution listeners and

choosing between 287
job exit statuses 95
job explorer 112
job files, deploying 455
job flow

complex, in online store application 278–279
driving 280–287

choosing one path over another 280–281
exit status 282–287

externalizing flow definitions 300–302
job instance 88
Job Instances view 48
Job interface 88
job launcher 24, 34, 36, 112
job listeners 78–80
Job object 315
job parameter 36, 88, 107
job registry 112
job repositories 24–25, 34, 36–37, 72–75, 112

choosing 72–73
configuring 38–39
creating tables for 38
implementations of 40–41

INDEX468
job repositories (continued)
monitoring using 352–358

detecting problems using 355–358
JobExplorer interface 352–355
JobRepository interface 352

specifying parameters for 73–75
in-memory job repository 73
persistent job repository 73–75

job-executions channel 317
job-repository attribute 25, 58, 73
job-repository element 39, 56, 73, 75
JobExecution class 350, 362, 423–424, 433–434
JobExecution getSkipCount 358
JobExecution object 89
jobExecutionContext object 77
jobExecutionContext variable 296
JobExecutionDecider interface 285, 411, 423–424
JobExecutionListener interface 78–79
JobExplorer interface 340, 352–356
JobExplorer method 355
JobExplorerFactoryBean class 353
JobInstance class 350, 352–353, 355, 371, 423
jobLauncher bean 456
JobLauncher interface 35–36, 88, 92, 99
jobLauncherTaskExecutor bean 456
JobLauncherTestUtils class 433–437
JobLaunchingMessageHandler class 315–316
JobLaunchRequest class 314–315
JobLaunchRequest object 315–317, 319
JobOperator interface 58, 110, 354–355, 368, 372
JobOperator method 355, 358
JobParameters argument 88
JobParameters class 35–36, 350
jobParameters object 77
jobParameters variable 26
JobParametersBuilder class 88
JobParametersExtractor bean 302
JobParametersIncrementer interface 59
JobParametersInvalidException 420
JobParametersValidator class 411, 419–421
JobParametersValidator interface 59
JobRegistry interface 315
jobRegistry property 107
jobRepository bean 25, 58, 456
JobRepository interface 36–38, 72, 352–353
jobs 57–60

accessing metadata 39–40
anatomy of 41–50

modeling jobs with steps 42–45
running job instances and job executions

46–50
batch, idempotent operations in 272–273
configuring 58–60, 271–272

execution context of 289–290
using step execution context and promoting

data to 293–295
using to share data between steps 290–293
writing in and reading using late

binding 295–296
functional testing of 436–437
job entities hierarchy 57–58
launching and storing metadata 36–37

job launcher 36
job repository 36–37

launching with Spring Batch framework
313–320
and Spring Integration framework 317–320
Java representation of job launch

request 314–316
simple job to display job parameters 316–317

monitoring with Spring MVC framework
341–344

REST, with Spring MVC framework 320–331,
338–344

status of, communicating from web
controller 341–344

testing submission of
with curl tool 328–329
with RestTemplate class 329

tracking submissions with JDBC-based
repository 325–326

triggering from file system events 332–338
converting file into job launch request

333–334
implementing import job 334–338
scanning input directory with Spring Integra-

tion framework 332–333
writing test for 26–28

JobStep class 44
JOTM (Java Open Transaction Manager) 261
JPA (Java Persistence API) 5, 182, 260
JpaItemWriter 183
JpaPagingReader class 150
JpaQueryProvider 151
JpaTransactionManager class 70
JSF (JavaServer Faces) 216
JSON (JavaScript Serialized Object Notation)

117, 124, 130–132
JSON file 121
JsonLineMapper class 130–131
JsonLineMapperWrapper class 131
JTA (Java Transaction API) 41, 261
JtaTransactionManager class 261
junit 445
JUnit framework, unit testing using 411–415
JUnitSampleTest 410
JVM (Java Virtual Machine) process 90

INDEX 469
K

keyName 399

L

large object. See LOB
late binding 76

writing in job execution context and
reading 295–296

writing to holder bean and using to late
binding 299–300

launch method 101
LaunchDatabaseAndConsole class 39, 50
LaunchDatabaseAndConsole program 47
LaunchImportProductsJob class 47, 49
launchJob 433, 437
LaunchSpringBatchAdmin program 47
lib directory 93
lifecycles, of job instances and job executions 47
LimitCheckingItemSkipPolicy 229–230
LineAggregator Interface

matching classes to 169–171
writing data to files using 163

LineAggregator interface 160, 162–163, 166
lineAggregator property 161
LineCallbackHandler 120–122
LineMapper interface 14–15, 120–121, 123, 125
lineSeparator property 161
linesToSkip 16, 122–123
LineTokenizer 120–121, 125–128
LinkedList 415–416
List<String> 353–354, 357, 415–416
ListDirectoryItemReader 155–156
listener-container 392–393
listeners 78–83, 223, 232–233, 239, 250

job 78–80
monitoring with 358–362

implementing 358–360
notifying using emails 360–361
notifying using Spring messaging 361–362

repeat and retry 82–83
step execution, embedding decision logic

in 283–285
steps 80–82
stopping from chunk-oriented step 114–115
transaction management in 254–255

listeners element 78, 82, 86
listening

to retries 238–239
to skipped items 231–234

loading items 206–207
LOB (large object) 74, 353
lob-handler attribute 74

local partitioning 396
local scaling 374, 376–377
local transactions, vs. global transactions 260
logback-test.xml file 444
logging dependencies 444–445
logging, skipped items 231–234, 444

M

M2_HOME variable 440
M2_HOME/bin 440
machine implementations

master 390–392
slave 392–394

MailSender 360–361
main method 92–93
manual detection, handling duplicate messages

with 267–272
configuring job for 271–272
detecting and filtering duplicates with item

processor 269–271
JMS messages and domain objects 267–268
writing and tracking items in item writer

268–269
Map 130–131
mapFieldSet method 16, 128–129, 416–417
MapJobRepositoryFactory class 73
MapJobRepositoryFactoryBean class 73
mapLine 124, 131
mapping, import jobs with job instance 334–336
mapRow 142
Marshaller class 136, 175
Marshaller interface 179
marshaller property 174
MarshallingHttpMessageConverter 343
master machine implementation 390–392
Maven command 440–441
Maven file 441
maven.compiler 442–443
max-varchar-length attribute 74
maxRows 141, 143
maxValue 404
MBean 366–367, 369–370
MBeanExporter class 368–369
Message object 333
message-based solutions 4
message-oriented middleware. See MOM
MessageBuilder class 319
MessageChannelPartitionHandler class 400–401
MessageListenerContainers 154
messages

avoiding duplicate 266
avoiding losing with transaction

synchronization 264–266

INDEX470
messages (continued)
handling duplicate

with idempotency 272–273
with manual detection 267–272

issues with delivery of 263–264
JMS, and domain objects 267–268

messagingOperations 400–401
META-INF/persistence.xml 183
META-INF/spring/batch/jobs directory 455
metadata, job

accessing in repository 338–340
launching and storing 36–37

MetaDataInstanceFactory class 423–424, 428
metamodels 202
method attribute 102
method process, ItemProcessor interface 12
MimeMessage 186
minValue 404
MobilePhoneProduct 134, 169–170
mobileProductLineAggregator 170–171
Mockito, unit testing using 415–423

for FieldSetMapper 416–417
for ItemListenerSupport 418–419
for ItemWriter 421–423
for JobParametersValidator 419–421

MockitoSampleTest 410
Model-View-Controller. See MVC
modeling, jobs 42–45
MOM (message-oriented middleware)

185, 257, 389
monitoring 345–372

and job database schema 348–351
overview 346–348
using job repository 352–358

detecting problems using 355–358
JobExplorer interface 352–355
JobRepository interface 352

with JMX 366–372
configuring 368–369
using JConsole 369–372

with listeners 358–362
implementing 358–360
notifying using emails 360–361
notifying using Spring messaging 361–362

with Spring Batch Admin 362–366
detecting problems using 365–366
features of 363–365

MonitoringExecutionListener class 359
MonitoringNotifier 360, 362
moveProcessedFiles 386–387
multiline records 132–133
MultiResourceItemReader 138–139, 249
MultiResourceItemWriter class 178–179
MultiResourcePartitioner class 398–399
MultiResourceReader class 138

multithreaded step pattern 404
multithreaded step strategy 376
multithreaded steps 378–385

configuring 379–381
issues with 381–385

process indicator pattern 383–385
thread-safe item reader 382–383

MVC (Model-View-Controller) 216
mvn clean command 441
mvn clean install -P bootstrap command 441
mvn clean install command 441
mvn clean package command 441
mvn command 440
mvn test command 441
mvn –version command 440

N

name=value syntax 94
namespaces 19, 54–56
needsToBeFiltered 196, 210
NEXT 423–424
next attribute 23, 43, 61
NextDecider 423–424
NextDeciderTest class 411, 423
no restart option 244–245
no-rollback-exception-classes 71, 259
NonTransientFlatFileException 228
NonTransientResourceException 228, 248–249
NOOP (NO OPeration) 73
null 152, 156, 253, 267, 270
NullPointerException 429

O

objectName 369
onError method 83, 238
online store application 8–9, 278–279
onProcessError method 81
onReadError method 81
onSkipInProcess method 81
onSkipInRead method 81
onSkipInWrite method 81
onWriteError method 81
open method 83
Open Services Gateway initiative. See OSGi
OPERATION 189–190
operator, stopping batch jobs for 110–113

configuring job operator 110–112
invoking job operator 110
understanding stop message 112–113

optionalKeys property 60
Oracle database 262
Order object 268

INDEX 471
OrderItem 267–269
org.slf4j 444
org.springframework 444–445
org.springframework.batch.core package 38
org.springframework.validation 216
ORM (Object Relational Mapping) 157, 204

item readers 148–151
cursors 148–150
data retrieval 150–151

writing data to databases with 182–183
OS command 451
OSGi (Open Services Gateway initiative) 35
outbound-channel-adapter 391
overwriteOutput property 174
OXM class 137

P

pageSize 146, 151
paging, using to manage data retrieval 144–148,

150–151
PagingQueryProvider 146
parallel step pattern 404
parallel step strategy 376
parallelizing, processing 385–387
parallelJobs 379
parameters

and instance, in Spring Batch launcher API
88–89

job, simple job to display 316–317
launching batch jobs from command line

with job parameters 94
without job parameters 93

parameters.getParameters().containsKey(key)
420

parent attribute 58, 61, 84–85
parentStep parent step 85
ParseException 228, 248–249
partition element 395
partition handlers, SPI using default 398–399
partitioner 397
Partitioner interface 394, 397, 402
PartitionHandler interface 394, 397
partitioning step pattern 404
partitioning step strategy 376
partitioning, fine-grained scaling with 394–404

configuring 395–396
SPI 397–404

partitions, channel-based 399–402
PartitionStep class 44
PartnerIdItemProcessor 199–200, 221
PartnerIdMapper 198–201, 221
PartnerProduct 201–203, 220
PartnerProductItemProcessor 202–204, 221
PartnerProductMapper 202–204

PassThroughFieldExtractor class 163–164
PassThroughLineAggregator class

160, 162–163, 435
PassThroughLineMapper class 124
PATH environment variable 440
paths, choosing one over another 280–281
PatternMatchingCompositeLineMapper class

124, 133–134
patterns

process indicator 383–385
scaling, comparing 404–406
transaction management 259–273

best effort pattern with JMS 263–266
global transactions 259–262
handling duplicate messages 267–273
shared resource transaction pattern 262–263

PENDING status 340
performance, enhancing by scaling 374–375
persistent job repositories 41, 73–75
PessimisticLockingFailureException 235
plain old Java objects. See POJO
PlatformTransactionManager interface 63, 70,

73, 261
plugging, into batch metadata 454–455
POJO (plain old Java objects) 80, 316, 378, 410
policies, retry 236–238
polling file system to trigger jobs task 311
POM (Project Object Model) 439
POM file 452
pom.xml file 439, 442
PositivePriceValidator 413–414, 428–429
PositivePriceValidatorTest class 411
PostgresPagingQueryProvider class 147
PRB 133–134
precision field 168
PreparedStatement 139, 142–143, 181
preparedStatementSetter 141–143, 205–206
prepareInputFileFlow bean 301
PriceMandatoryValidator 413–414, 428
PriceMandatoryValidatorTest class 411
primers, on transactions 252
PRM 133–134
procedureName 143–144
process indicator pattern 383–385
process method 209
process scheduling 97
processing

items
in chunk-oriented step 194–195
use cases for 195

parallelizing 385–387
processing data 193–222

filtering items 208–211
implementing processor for 209–211
in item-processing phase 208–209

INDEX472
processing data (continued)
item processors 194–197

chaining 219–222
configuring 195–197
implementations 197
processing 194–195

transforming items 197–208
implementing driving query pattern with item

processor 204–208
read 198–204

validating items 208, 211–219
with Bean Validation standard 216–219
with custom validator 213–214
with Valang validator from Spring Modules

project 214–215
with ValidatingItemProcessor class 212

processing phase 193
processor attribute 63, 65, 67
processor element 66
processor-transactional 258
processors

item, detecting and filtering duplicates
with 269–271

transactional, and transactional reader 257–258
Product class 149–150, 182, 190, 217, 336
product data 11–20

database item writer
configuring 18
implementing 17–18

read-write step
anatomy of 11–13
configuring 18–20

reading flat file 14–17
configuration of FlatFileItemReader class

16–17
creating domain objects with FlatFileItem-

Reader class 14–15
format of 14
implementing FieldSetMapper interface for

Product objects 15–16
Product domain class 14

Product domain objects 14
Product ItemListener 418
Product method 184
Product objects, implementing FieldSetMapper

interface for 15–16
Product table 383
product-imports-as-string channel 328
Product.class 134
ProductFieldExtractor 165
ProductFieldSetMapper class 15, 17, 129, 416–417
ProductFieldSetMapperTest class 411, 417
ProductFooterCallback class 172
ProductFooterStaxCallback class 175–177
ProductHeaderStaxCallback 175, 177

ProductImport class 338–339, 342
ProductImportFileNameGenerator class 331
ProductImportGateway interface 326
ProductImportToJobLaunchRequestHandler

class 333
ProductImportUtils class 331
ProductItemListener class 411, 418–419
ProductItemListenerTest class 418
ProductItemWriter 408, 421–422
ProductItemWriterMockTest class 411
ProductJdbcItemWriter class 17–18
ProductLineAggregator 171
productMarshaller 137
ProductRouterClassifier 190–192
ProductRowMapper 141–142, 206–207
products_corrupted.zip file 49
products.zip file 49
ProductService class 184–185
ProductServiceAdapter class 152–153
ProductsLineAggregator class 170
productsStep 433–434
ProductStepTest class 432
productWriter 185
Project Object Model. See POM
projects 441–442

adding dependencies to 442–445
for case study 445
logging 444–445
test 445

importing 446
Spring Integration framework 312–313

propagation attribute 71
PROPAGATION_NEVER 253
property element 55
PropertyEditor interface 128
PropertyExtractingDelegatingItemWriter

class 184–185
PropertyPlaceholderConfigurer class 76
prototype scope 76
prototypeBeanName 129–130
PUT requests 322

Q

Quartz 103
queryProvider 146, 149, 151
queryString 149–151
quick-start, launching Spring Batch job 313–320

Java representation of job launch request
314–316

simple job to display job parameters 316–317
with Spring Integration framework 317–320

INDEX 473
R

Range class 127–128
RangeArrayPropertyEditor class 127–128
RDBMS (relational database management system)

setup 25
read items

changing state of 198–201
implementing custom item processor

199–200
plugging in existing component with Item-

ProcessorAdapter class 200–201
use case 198–199

producing new objects from 201–204
implementing custom item processor

202–204
use case 201–202

READ_COMMITTED 70, 255
READ_UNCOMMITTED 70, 255–256
read-write step

anatomy of 11–13
configuring 18–20

reader attribute 63, 65, 67
reader element 66
reader-transactional-queue 64, 72, 257–258,

265, 271
readers

implementing custom 155
thread-safe item 382–383
transactional, and transactional processor

257–258
ReaderWithListenerTest class 425
ReaderWithStepScopeTestUtilsTest class 425, 431
reading and writing step 11
reading data 117–156

concepts related to 118–119
file sets 138–139
flat files 119–134

DefaultLineMapper class 125–126
fields 126–130
FlatFileItemReader class 125
reading JSON 130–132
reading records 132–134

from JMS 154–155
from relational databases 139–151
implementing custom readers 155
services as input 151–154
XML files 135–137

reading file 138
readWrite step 60–61
readWriteProducts 23, 395–396, 399
readWriteProductsMultiThreadedStep 379, 381
readWriteProductsStep 379
ready-to-use components 5, 11
RecordSeparatorPolicy interface 120, 123, 132

ref attribute 60, 62–63, 102
refCursorPosition 143–144
relational database management system setup. See

RDBMS
relational databases, reading data from 139–151
reliability, Spring Batch 5
remote chunking 387–394

description of 387–389
with Spring Integration framework 389–394

master machine implementation 390–392
remote chunking using channels 389
slave machine implementation 392–394

remote chunking pattern 404
remote chunking strategy 376
Remote Method Invocation. See RMI
remote partitioning 396
remote procedure 309–310
remote scaling 376–377
remote-slsb 153–154
RemoteChunkHandlerFactoryBean class 392
repeat and retry listeners 82–83
REPEATABLE_READ level 70
RepeatStatus 22, 424–425
RepeatStatus.CONTINUABLE 253
RepeatStatus.FINISHED 253
replyChannel 400–401
repositories

accessing job metadata in 338–340
configuring 327–328
JDBC-based, tracking job submissions with

325–326
REQUIRED 255–256
requiredKeys property 60
requirements, for Spring TestContext

Framework 426–427
REQUIRES_NEW 254, 257
RESOURCE 183, 420, 429–431, 436
Resource interface 137
resource property 16, 26, 161, 174
ResourceAwareItemReaderItemStream

interface 139
ResourceAwareItemWriterItemStream 162, 179
ResourcelessTransactionManager class 73
resources 137–138, 154
ResourceServlet 453
ResourceSuffixCreator interface 179
REST (Representational State Transfer)

106, 321, 443
monitoring jobs with 338–344
submitting jobs with 320–331

restart feature 226–227, 289, 303
restartable attribute 58, 244–245, 247–250
restarting, on error 242–250

completed steps 245–246
enabling between job executions 243–244

INDEX474
restarting, on error (continued)
in middle of chunk-oriented step 247–250
limiting number of restarts 246
no restart option 244–245

RestTemplate class 329, 331
result sets, reading with 140–144
ResultSet 140–142, 144, 146, 381
retrieval, of data 144–148, 150–151
retry feature

combining with skip feature 236
in action with skip and restart features 226–227

retry policies, controlling retrying on error
with 236–238

retry-limit attribute 64–65, 234–237, 239
retry-listeners element 66, 239
retry-policy attribute 64
retry-policy element 66
retryable-exception-classes 67, 234–237, 239
retrying, on error 234–242

configuring retryable exceptions 234–236
controlling with retry policy 236–238
listening to retries 238–239
RetryTemplate implementation 239–242

RetryListener interface 238
RetryListenerSupport 238
RetryOperations interface 239
RetryOperations property 240
RetryOperationsInterceptor 240–241
RetryPolicy interface 64, 237, 240
RetryTemplate implementation

retrying in application code with 239–240
retrying transparently with AOP and 240–242

RMI (Remote Method Invocation) 312, 369
RmiRegistryFactoryBean class 369
robustness, Spring Batch 5
rollback convention 71
rolling back, choosing whether to 258–259
root-database-context.xml file 39
rootElementAttributes property 174
rootTagName property 174–175, 177
router classifier 190
routerDelegate 191–192
RowMapper 139, 141–142, 146, 206–207
run method 36, 88–89, 92
Runnable interface 377
Runner class 426
RuntimeException class 71

S

samples, building Spring Batch Admin console
from 451–452

SampleTask class 377
SamsungStatementSetter 142–143
saveOrUpdate 182–183

saveState property 161, 174, 383–384
sbia-servlet.xml file 108
scale out approach 374
scale up approach 374
scaling 373–406

comparing patterns 404–406
enhancing performance by 374–375
local and remote 376–377
model of 375–378

local and remote scaling 376–377
task executor abstraction 377–378

multithreaded steps 378–385
configuring 379–381
issues with 381–385

parallelizing processing, configuring parallel
steps 385–387

remote chunking 387–394
description of 387–389
with Spring Integration framework 389–394

scaling strategies 7–8
scaling, fine-grained 394–404
schedulers 6
scheduling jobs 115
scheduling.xml file 105
schema-.sql 348
schema-[database].sql naming convention, SQL

scripts 38
schema-drop-.sql 349
scope attribute 76
SCP (Secure Copy) 20, 137
Secure Shell. See SSH
SELECT statement 140–143, 147–148, 434–435
SERIALIZABLE level 71, 75, 255
server connector, JMX 369
service activator 317
Service Provider Interface. See SPI
service-activator 319
service-interface attribute 328
service=batch,bean=jobOperator 368–369
services, as input 151–154
serviceUrl 369
servlet filters 453
servlet listener 453
[servlet-name]-servlet.xml file 108
SessionFactory interface 99, 149–150, 182
sessionTransacted 264–265, 271
setExcludeWriter 418–419
setResource 162
Shared database 309
shared resource transaction pattern 262–263
Short Message Service. See SMS
shoudDeleteIfExists property 162
shouldDeleteIfEmpty property 162
SimpleAsyncTaskExecutor implementation 378
SimpleChunkProcessor class 388, 393

INDEX 475
SimpleJdbcTemplate 408, 421–423, 434–436
SimpleJobLauncher class 36, 38
SimpleJobRepository class 72
SimpleJvmExitCodeMapper class 95
SimpleMailMessage class 186–187, 360–361
SimpleMailMessageItemWriter 186–187
SimpleMessageApplicationEvent class 362
SimplePartitioner class 397
SimpleRetryPolicy 237–238, 240, 242
SimpleStepExecutionSplitter class 397, 402
SingleColumnRowMapper 205–206
singleton scope 76
site lifecycle 440
skip feature

combining retry feature with 236
in action with retry and restart features 226–227

skip-limit attribute 30, 64–65, 228
skip-limit pair 230
skip-policy attribute 64, 229
skip-policy element 66
SkipListener interface 80–81, 231–232
SkipListenerSupport 232
skippable-exception-classes 227–230, 233, 236
skipping 209

incorrect lines 28–31
instead of failing 227–234

configuring exceptions to be skipped
227–228

configuring SkipPolicy class for complete
control 229–231

listening and logging skipped items 231–234
SkipPolicy class, configuring for complete

control 229–231
SkipPolicy interface 64
slave machine implementation 392–394
SMS (Short Message Service) 347
sp_product 144
specificListener listener 86
SpEL (Spring Expression Language) 25–26,

76–77, 427
SPI (Service Provider Interface) 395, 397–404

customizing data partitioning 402–404
using channel-based partitions 399–402
using default partition handler 398–399

split element 385
Spring Batch 3–31

batch applications 4–5
case study 8–11

import product use case 10–11
online store application 8–9
reason for building with batch jobs 9
reason for using batch processes 9–10

decompressing input file with tasklet 20–23
implementing decompression tasklet 20–22
reasons for compressing files 20

description of 5–8
robustness and reliability 6–7
scaling strategies 7–8

embedding in web applications 104–105
infrastructure of 36–41

configuring in database 37–41
launching jobs and storing job metadata

36–37
interaction with outside world 35
product data 11–20

database item writer 17–18
read-write step 11–20
reading flat file 14–17

skipping incorrect lines instead of failing 28–31
testing batch process 23–28

leveraging SpEL for configuration 25–26
setting up test infrastructure 23–25
writing test for job 26–28

Spring Batch Admin 40, 47, 49, 450–457
building from distribution sample 451–452
configuring 454–457

deploying job files 455
overriding Spring Batch Admin

configuration 455–457
plugging into batch metadata 454–455

downloading 450–451
embedding in web application 452–453

adding Spring Batch Admin
dependencies 452–453

declaring Spring Batch Admin console in
web.xml file 453

monitoring with 362–366
detecting problems using 365–366
features of 363–365

Spring Batch database 348
Spring Batch file 313
Spring Batch framework

combining with Spring Integration
framework 313

enterprise integration and 310–311
launching jobs with 313–320

Java representation of job launch
request 314–316

simple job to display job parameters 316–317
using Spring Integration framework 317–320

Spring Batch interface 200
Spring Batch JAR file 38
Spring Batch launcher API 88–89, 92
Spring Batch namespace 56
Spring Batch StepScopeTestExecutionListener,

integration testing using 427–432
for ItemProcessor 428–429
for ItemReader 429–432

Spring Batch Test module 423–425
for JobExecutionDecider 423–424
for tasklet 424–425

INDEX476
Spring Batch type 315
Spring Batch XML 19, 42, 44–45
Spring class 329
Spring configuration file 447–449
Spring default namespace 56
Spring Expression Language. See SpEL
Spring file 447
Spring Framework foundations, Spring Batch 5
Spring Integration framework 312–320

gateway 326
project 312–313
quick-start, launching Spring Batch job 313–320
remote chunking with 389–394

master machine implementation 390–392
slave machine implementation 392–394
using channels 389

scanning input directory with 332–333
sending job launch request with 318–320
with Spring Batch framework 313, 317–318

Spring interface 342
Spring messaging, notifying of problems

using 361–362
Spring Modules project, Valang validator

from 214–215
Spring MVC controller, launching batch jobs

using 106–109
Spring MVC framework

and REST
monitoring jobs with 338–344
submitting jobs with 320–321, 329–331

deploying in web application 321–322
Spring OXM 6
Spring scheduler, launching batch jobs from

99–103
options for 100
setting up 100–101
with annotations 102–103
with XML 101–102

Spring TestContext Framework 27, 426–427
Spring transaction manager 70
Spring XML Beans 55
Spring XML schema-based configuration 55
spring.batch.version 442–443
SpringJUnit4ClassRunner.class 426–428, 430–431,

435–436
SpringSource 5
SpringSource Tool Suite. See STS
SpringValidator class 215–216
SQL database 426
SQL parameter 180–181
SQL scripts 38
SQL statement 141–143, 147–148,

158–159, 179–181
SqlPagingQueryProviderFactoryBean 146–147
SqlParameterSource 421–423, 435

src/main/resources directory 454
SSH (Secure Shell) 20
Start Date attribute 48
start-limit attribute 62, 244, 246
startNextInstance method 58
stateful objects 381
StatelessSession 149
Statement parameter 149
states, of read items 198–201
statisticStep 434–436
StatisticStepTest class 432
Status field 365
StAX (Streaming API for XML) 6, 135, 174
StaxEventItemReader class 136–137
StaxEventItemWriter class 173–174, 176–179
StaxWriterCallback 174–176
STDOUT class 444
stdout-channel-adapter 329
step element 19, 25–26, 43, 56, 60–62
step execution context

sharing data between steps using 289–290
using and promoting data to job execution

context 293–295
step execution handling 394
step execution listeners

and job execution deciders, choosing
between 287

embedding decision logic in 283–285
Step interface 44
step scope 75–77, 427
stepChunk 392
StepExecution class 175–177, 352–353, 427–431,

434, 436
StepExecution object 113–114
StepExecution parameter 80
StepExecution.setTerminateOnly() method 113
stepExecutionContext object 77
StepExecutionListener interface 80
StepExecutionListenerSupport 172–173, 175–176
StepExecutionRequestHandler 400–402
StepExecutionSplitter interface 397, 402
StepListener interface 80, 408, 411, 418
stepName 400–401
steps 60–72

chunk-oriented
configuring 207–208
processing items in 194–195
restarting on errors in middle of 247–250
transaction management in 254

completed, restarting on errors 245–246
configuring 60–61

chunks 63–69
tasklets 61–63
transactions 69–72

functional testing of 433–436

INDEX 477
steps (continued)
modeling jobs with 42–45

configuring 43–44
processing with TaskletStep

implementation 44–45
parallel, configuring 386–387
sharing data between 287–300

using execution context 289–296
using holder beans 296, 300

using job execution context to share data
between 290–293

StepScope class 75–76
StepScopeTestExecutionListener class 426–430
StepScopeTestUtils method 429–432
stopConditionsMet method 115
STOPPED 282, 302–303
stopping batch jobs 109–116

for application developer 113–116
from chunk-oriented step 114–116
from tasklet 113–114

for operator 110–113
configuring job operator 110–112
invoking job operator 110
understanding stop message 112–113

storage technologies, Spring Batch 5–6
StoredProcedureItemReader 143–144
Streaming API for XML. See StAX
streams element 67–68
String argument 96
String column 403
String property 292, 299
String table 403
String type 15
String-typed parameters 94
STS (SpringSource Tool Suite), for Eclipse devel-

opment environment 446–449
importing projects 446
Spring configuration file 447–449

STS-Maven integration plug-in 446
synchronization, of transactions 264–266
synchronizer, job repository as 75
SynchronizingItemReader class 382–384
synchronous batch job launches, vs. asynchronous

batch job launches 89–90
SyncTaskExecutor 387
system exit codes 95
system testing 409
System.printf() method 168

T

table-prefix attribute 74
tables, creating for job repository 38
targetDirectory job parameter 26
targetFile job parameter 26

targetMethod 153, 184
targetObject 153, 184
targetSize 403–404
task 102–103

annotation-driven element 103
scheduled element 102
scheduled-tasks element 102

task executor abstraction 377–378
task namespace 90, 100–101
task-executor attribute 380
task:executor element 457
TaskExecutor interface 90, 377–378
TaskExecutorPartitionHandler class 396–399
tasklet code 291
tasklet element 19, 23, 62–63, 380–381
Tasklet interface 20–22, 44–45, 62–63
tasklet tag 43
tasklets

configuring 61–63
decompression

implementing 20–22
of input files 20–23

stopping batch jobs from 113–114
testing, using Spring Batch Test module

424–425
transaction management in 253

TaskletStep class 44
TaskletStep implementation, processing with

44–45
TDD (test-driven development) 409
Test class 410–411, 424–425, 429, 432
test dependencies 445
Test method 413, 430
test-driven development. See TDD
testAfterProcessResult 419
TestCase class 412
testEmptyProductFailure 429
TestExecutionListeners 426–428, 430
testing 407–437

batch process 23–28
leveraging SpEL for configuration 25–26
setting up test infrastructure 23–25
writing test for job 26–28

benefits of 410
defined 408–409
functional testing 432–437

jobs 436–437
steps 433–436
using JobLauncherTestUtils 433

integration testing 425–432
using Spring Batch

StepScopeTestExecutionListener
427–432

using Spring TestContext Framework
426–427

INDEX478
testing (continued)
types of 409–410
unit testing 410–425

using JUnit framework 411–415
using Mockito 415–423

using Spring Batch Test module 423–425
for JobExecutionDecider 423–424
for tasklet 424–425

testInsertProduct 422–423
testIntegration 434
testJobParameters 420
testMapFieldSetClassic 417
testMapFieldSetMock 417
testMissingJobParameters 420
testNegativePrice 414–415
testNegativePriceFailure 428–429
testPositivePrice 414
testUpdateProduct 423
testValidateEmptyJobParameters 420
testValidProduct 413–414
testZeroPriceFailure 429
TheadPoolTaskExecutor 378
thread safety 379, 382
thread-local-channel 391
thread-safe item reader 382–383
Thread.currentThread().isInterrupted()

method 112
ThreadLocal class 382
ThreadPoolExecutor class 378
ThreadPoolTaskExecutor implementation 378
throttle-limit attribute 381
throws clause 71
timeout attribute 71
toArray() method 163
tokenizers 126, 134
toString() method 160, 162–164, 168, 360
tracking, writing items and 268–269
transaction attributes 62–63, 69, 74, 255–256
transaction managers, and global

transactions 260–262
transaction synchronization, avoiding losing mes-

sages with 264–266
transactional processors, and transactional

reader 257–258
transactional property 162, 175
transactional reader, and transactional

processor 257–258
TransactionDefinition class 71
transactionManager bean 456
transactionManager transaction manager 75
transactionManager-ref attribute 73
transactions 251–274

configuration of 255–259
choosing whether to roll back 258–259
common pitfalls with declarative

transactions 256–257

transaction attributes 255–256
transactional reader and processor 257–258

configuring 69–72
management in components 253–255

chunk-oriented steps 254
listeners 254–255
tasklets 253

management patterns 259–273
best effort pattern with JMS 263–266
global transactions 259–262
handling duplicate messages 267–273
shared resource transaction pattern 262–263

primer on 252
transforming, items 197–208

implementing driving query pattern with item
processor 204–208

read 198–204
TransientDataAccessException 235
transparently retrying, with AOP and Retry-

Template implementation 240–242
try-catch block 71
types, of testing 409–410

U

unchecked exception 71
unit testing 410–425

using JUnit framework 411–415
using Mockito 415–423

for FieldSetMapper 416–417
for ItemListenerSupport 418–419
for ItemWriter 421–423
for JobParametersValidator 419–421

unmarshaller 135–137
UPDATE statement 188, 421, 423
update statement 226, 232, 234, 249
update_timestamp 205
use cases

for changing state of read items 198–199
for processing items 195
for producing new objects from read items

201–202
useStateless 151

V

valang property 215
ValangValidator 215–216
validate method 59
validate phase 440
validating items 208, 211–219

with Bean Validation standard 216–219
with custom validator 213–214
with Valang validator from Spring Modules

project 214–215
with ValidatingItemProcessor class 212

INDEX 479
ValidatingItemProcessor class 212, 215, 219, 222
ValidationException class 71, 212–215,

218, 414–415
validator element 60
Validator interface 212, 216
Validator object 197
values() method 163
verify phase 440
verifyNoMoreInteractions 415, 417, 420, 422
version property 175
vertical scaling 374

W

WAR file 441, 451
web applications

deploying Spring MVC framework in 321–322
embedding Spring Batch Admin console

in 452–453
adding Spring Batch Admin

dependencies 452–453
declaring Spring Batch Admin console in

web.xml file 453
launching batch jobs from 103–109

embedding Spring Batch in 104–105
with HTTP request 105–109

web container 35
web controllers

communicating job status from 341–344
REST 323–329

configuring controller, repository, and
gateway 327–328

implementation of 324–325
Spring Integration gateway 326
testing job submission 326–328

WEB-INF directory 104, 108
WEB-INF/batch-infrastructure.xml file 108
web.xml file 104, 108, 451, 453
WholeBatchTest class 432
width field 167
WorkManager class 378
WorkManagerTaskExecutor implementation 378
WrappedJsonLineMapper class 131
writeCount 175–177
writeHeader 171–172
writer attribute 63, 65, 67
writer element 66

writers, item 268–269
writing data 157–192

adapting existing services for reuse 183–185
concepts for 158
custom item writers 187–189
to databases 179–183

with JDBC 179–181
with ORM 182–183

to files 159–179
adding header and footer 171–173
computed fields 165
delimited files 166
file sets 178–179
fixed-width files 166–169
matching classes to LineAggregators 169–171
using FieldExtractor class 163–165
using FlatFileItemWriter class 161–163
using LineAggregator Interface 163
XML files 173–178

to JMS 185–186
to send email messages 186–187

writing files 159

X

XA-compliant driver 261
XML (Extensible Markup Language) 6, 135–137

features of 56–57
launching batch jobs from Spring scheduler

with 101–102
reading and writing into database 336
Spring scheduler 99
vocabulary 54–57

namespace 54–56
XML features 56–57

XML files, writing data to 173–178
XML namespaces 318
XMLEvent 175–176
XMLEventFactory class 175–176
XStream 6
XStreamMarshaller class 174, 177

Z

ZIP archive 22, 28

Cogoluègnes Templier Gregory Bazoud

E
ven though running batch jobs is a common task, there’s no
standard way to write them. Spring Batch is a framework
for writing batch applications in Java. It includes reusable

components and a solid runtime environment, so you don’t have
to start a new project from scratch. And it uses Spring’s familiar
programming model to simplify confi guration and implementa-
tion, so it’ll be comfortably familiar to most Java developers.

Spring Batch in Action is a thorough, in-depth guide to writing
effi cient batch applications. Starting with the basics, it discusses
the best practices of batch jobs along with details of the Spring
Batch framework. You’ll learn by working through dozens of
practical, reusable examples in key areas like monitoring, tuning,
enterprise integration, and automated testing.

What’s Inside
Batch programming from the ground up
Implementing data components
Handling errors during batch processing
Automating tedious tasks

No prior batch programming experience is required. Basic
knowledge of Java and Spring is assumed.

Arnaud Cogoluègnes, Thierry Templier, and Olivier Bazoud are
Java EE architects with a focus on Spring. Gary Gregory is a Java
developer and soft ware integration specialist.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/SpringBatchinAction

$59.99 / Can $62.99 [INCLUDING eBOOK]

Spring Batch IN ACTION

JAVA/SPRING

M A N N I N G

SEE INSERT

“Clear, easy to read, and
 very thorough.” —Rick Wagner, Red Hat

“A must-have for enterprise
 batch programmers.”
 —John Guthrie, SAP

“A fresh look at using batch
 in the enterprise.”
 —Tray Scates
 Unisys Corporation

“Th e defi nitive source.”
 —Cédric Exbrayat
 Lyon Java User Group

“Flawlessly written,
 easily readable,
 powerfully presented.”
 —Willhelm Lehman
 Websense Inc.

	Wow! eBook
	Spring Batch in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code convention and downloads
	Author Online
	About the authors

	about the cover illustration
	Background
	Introducing Spring Batch
	1.1 What are batch applications?
	1.2 Meet Spring Batch
	1.2.1 Robustness and reliability
	1.2.2 Scaling strategies

	1.3 Introducing the case study
	1.3.1 The online store application
	1.3.2 Why build an online store with batch jobs?
	1.3.3 Why use batch processes?
	1.3.4 The import product use case

	1.4 Reading and writing the product data
	1.4.1 Anatomy of the read-write step
	1.4.2 Reading a flat file
	1.4.3 Implementing a database item writer
	1.4.4 Configuring a database item writer
	1.4.5 Configuring the read-write step

	1.5 Decompressing the input file with a tasklet
	1.5.1 Why compress the file?
	1.5.2 Implementing the decompression tasklet
	1.5.3 Configuring the tasklet

	1.6 Testing the batch process
	1.6.1 Setting up the test infrastructure
	1.6.2 Leveraging SpEL for configuration
	1.6.3 Writing the test for the job

	1.7 Skipping incorrect lines instead of failing
	1.8 Summary

	Spring Batch concepts
	2.1 The batch domain language
	2.1.1 Why use a domain language?
	2.1.2 Main components of the domain language
	2.1.3 How Spring Batch interacts with the outside world

	2.2 The Spring Batch infrastructure
	2.2.1 Launching jobs and storing job metadata
	2.2.2 Configuring the Spring Batch infrastructure in a database

	2.3 Anatomy of a job
	2.3.1 Modeling jobs with steps
	2.3.2 Running job instances and job executions

	2.4 Summary

	Core Spring Batch
	Batch configuration
	3.1 The Spring Batch XML vocabulary
	3.1.1 Using the Spring Batch XML namespace
	3.1.2 Spring Batch XML features

	3.2 Configuring jobs and steps
	3.2.1 Job entities hierarchy
	3.2.2 Configuring jobs
	3.2.3 Configuring steps
	3.2.4 Configuring tasklets and chunks
	3.2.5 Configuring transactions

	3.3 Configuring the job repository
	3.3.1 Choosing a job repository
	3.3.2 Specifying job repository parameters

	3.4 Advanced configuration topics
	3.4.1 Using step scope
	3.4.2 Leveraging SpEL
	3.4.3 Using listeners to provide additional processing
	3.4.4 Configuration inheritance

	3.5 Summary

	Running batch jobs
	4.1 Launching concepts
	4.1.1 Introducing the Spring Batch launcher API
	4.1.2 Synchronous vs. asynchronous launches
	4.1.3 Overview of launching solutions

	4.2 Launching from the command line
	4.2.1 Using Spring Batch’s command-line job runner

	4.3 Job schedulers
	4.3.1 Using cron
	4.3.2 Using the Spring scheduler

	4.4 Launching from a web application
	4.4.1 Embedding Spring Batch in a web application
	4.4.2 Launching a job with an HTTP request

	4.5 Stopping jobs gracefully
	4.5.1 Stopping a job for the operator
	4.5.2 Stopping a job for the application developer

	4.6 Summary

	Reading data
	5.1 Data reading concepts
	5.2 Reading flat files
	5.2.1 Configuring the FlatFileItemReader class
	5.2.2 Introducing the DefaultLineMapper class
	5.2.3 Using the DefaultLineMapper class
	5.2.4 Extracting character-separated fields
	5.2.5 Creating objects from fields
	5.2.6 Reading JSON
	5.2.7 Multiline records
	5.2.8 Reading heterogonous records

	5.3 Reading XML files
	5.4 Reading file sets
	5.5 Reading from relational databases
	5.5.1 Using JDBC item readers
	5.5.2 Using ORM item readers

	5.6 Using other input sources
	5.6.1 Services as input
	5.6.2 Reading from JMS

	5.7 Implementing custom readers
	5.8 Summary

	Writing data
	6.1 Data-writing concepts
	6.2 Writing files
	6.2.1 Writing flat files
	6.2.2 Writing XML files
	6.2.3 Writing file sets

	6.3 Writing to databases
	6.3.1 Writing with JDBC
	6.3.2 Writing with ORM

	6.4 Adapting existing services for reuse
	6.5 Writing to JMS
	6.6 Sending email messages
	6.7 Implementing custom item writers
	6.8 Advanced writing techniques
	6.8.1 Composing item writers
	6.8.2 Routing items to specific item writers

	6.9 Summary

	Processing data
	7.1 Processing items
	7.1.1 Processing items in a chunk-oriented step
	7.1.2 Use cases for item processing
	7.1.3 Configuring an item processor
	7.1.4 Item processor implementations

	7.2 Transforming items
	7.2.1 Changing the state of read items
	7.2.2 Producing new objects from read items
	7.2.3 Implementing the driving query pattern with an item processor

	7.3 Filtering and validating items
	7.3.1 Filtering in the item-processing phase
	7.3.2 Implementing a filtering item processor
	7.3.3 Validating items

	7.4 Chaining item processors
	7.5 Summary

	Implementing bulletproof jobs
	8.1 What is a bulletproof job?
	8.1.1 What makes a job bulletproof?
	8.1.2 Designing a bulletproof job
	8.1.3 Techniques for bulletproofing jobs
	8.1.4 Skip, retry, and restart in action

	8.2 Skipping instead of failing
	8.2.1 Configuring exceptions to be skipped
	8.2.2 Configuring a SkipPolicy for complete control
	8.2.3 Listening and logging skipped items

	8.3 Retrying on error
	8.3.1 Configuring retryable exceptions
	8.3.2 Controlling retry with a retry policy
	8.3.3 Listening to retries
	8.3.4 Retrying in application code with the RetryTemplate
	8.3.5 Retrying transparently with the RetryTemplate and AOP

	8.4 Restart on error
	8.4.1 How to enable restart between job executions
	8.4.2 No restart please!
	8.4.3 Whether or not to restart already completed steps
	8.4.4 Limiting the number of restarts
	8.4.5 Restarting in the middle of a chunk-oriented step

	8.5 Summary

	Transaction management
	9.1 A transaction primer
	9.2 Transaction management in Spring Batch components
	9.2.1 Transaction management in tasklets
	9.2.2 Transaction management in chunk-oriented steps
	9.2.3 Transaction management in listeners

	9.3 Transaction configuration
	9.3.1 Transaction attributes
	9.3.2 Common pitfalls with declarative transactions
	9.3.3 Transactional reader and processor
	9.3.4 To roll back or not to roll back

	9.4 Transaction management patterns
	9.4.1 Transactions spanning multiple resources: global transactions
	9.4.2 The shared resource transaction pattern
	9.4.3 The best effort pattern with JMS
	9.4.4 Handling duplicate messages with manual detection
	9.4.5 Handling duplicate messages with idempotency

	9.5 Summary

	Advanced Spring Batch
	Controlling execution
	10.1 A complex flow in the online store application
	10.2 Driving the flow of a job
	10.2.1 Choosing one path over another
	10.2.2 Batch status vs. exit status: what’s the deal?
	10.2.3 Choosing the exit status

	10.3 Sharing data between steps
	10.3.1 Using the execution context to share data
	10.3.2 Sharing data using Spring holder beans

	10.4 Externalizing flow definitions
	10.5 Stopping a job execution
	10.6 Summary

	Enterprise integration
	11.1 What is enterprise integration?
	11.1.1 Enterprise integration challenges
	11.1.2 Styles of enterprise integration

	11.2 Spring Batch and enterprise integration
	11.2.1 An enterprise integration use case

	11.3 Spring Integration, a toolbox for enterprise integration
	11.3.1 The Spring Integration project
	11.3.2 Combining Spring Integration and Spring Batch
	11.3.3 Spring Integration quick-start: launching a Spring Batch job

	11.4 RESTful job submission with Spring MVC
	11.4.1 Deploying Spring in a web application
	11.4.2 Writing the REST web controller
	11.4.3 Writing the import file in a directory with Spring Integration

	11.5 Triggering jobs from file system events
	11.5.1 Scanning the input directory with Spring Integration
	11.5.2 Converting a file into a job launch request
	11.5.3 Implementing the import job

	11.6 RESTful job monitoring with Spring MVC
	11.6.1 Getting access to the job metadata in the repository
	11.6.2 Communicating job status from a web controller

	11.7 Summary

	Monitoring jobs
	12.1 Introducing monitoring
	12.1.1 Monitoring overview
	12.1.2 Batch jobs and monitoring

	12.2 Accessing batch execution data
	12.2.1 Job database schema
	12.2.2 Accessing data from the job repository

	12.3 Monitoring with listeners
	12.3.1 Implementing a monitoring listener
	12.3.2 Notifying using emails
	12.3.3 Notifying using Spring messaging

	12.4 Web monitoring with Spring Batch Admin
	12.4.1 Feature overview
	12.4.2 Detecting problems encountered during batch executions

	12.5 Monitoring with JMX
	12.5.1 Configuring JMX for Spring Batch
	12.5.2 Monitoring with JMX consoles

	12.6 Summary

	Scaling and parallel processing
	13.1 Scaling concepts
	13.1.1 Enhancing performance by scaling
	13.1.2 The Spring Batch scaling model

	13.2 Multithreaded steps
	13.2.1 Configuring a multithreaded step
	13.2.2 Multithreading issues

	13.3 Parallelizing processing (single machine)
	13.3.1 Configuring parallel steps

	13.4 Remote chunking (multiple machines)
	13.4.1 What is remote chunking?
	13.4.2 Remote chunking with Spring Integration

	13.5 Fine-grained scaling with partitioning
	13.5.1 Configuring partitioning
	13.5.2 The partitioning SPI

	13.6 Comparing patterns
	13.7 Summary

	Testing batch applications
	14.1 The what and why of testing
	14.1.1 What is testing?
	14.1.2 Different types of testing
	14.1.3 Why test?

	14.2 Unit testing
	14.2.1 Introducing JUnit
	14.2.2 Using mock objects with Mockito
	14.2.3 Mocking Spring Batch domain objects

	14.3 Integration testing
	14.3.1 Introducing the Spring TestContext Framework
	14.3.2 Using the Spring Batch StepScopeTestExecutionListener

	14.4 Functional testing
	14.4.1 Introducing JobLauncherTestUtils
	14.4.2 Testing a step
	14.4.3 Testing a job

	14.5 Summary

	appendix A: Setting up the development environment
	A.1 Apache Maven 3
	A.1.1 Installation
	A.1.2 Understanding Maven
	A.1.3 Creating a blank project
	A.1.4 Adding Spring Batch dependencies to the Maven project

	A.2 The SpringSource Tool Suite for Eclipse
	A.2.1 Importing the Spring Batch project
	A.2.2 Creating and editing a Spring configuration file

	A.3 Summary

	appendix B: Managing Spring Batch Admin
	B.1 Downloading Spring Batch Admin
	B.2 Building Spring Batch Admin from the distribution sample
	B.3 Embedding Spring Batch Admin in a web application
	B.3.1 Adding Spring Batch Admin dependencies
	B.3.2 Declaring Spring Batch Admin in web.xml

	B.4 Configuring Spring Batch Admin
	B.4.1 Plugging into your batch metadata
	B.4.2 Deploying your own job files
	B.4.3 Overriding the Spring Batch Admin configuration

	B.5 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

