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Chapter 1. Introduction



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 1st chapter of the final book.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at arufino@oreilly.com.




Bitcoin is a collection of concepts and technologies that form the basis of a digital money ecosystem. Units of currency called bitcoin are used to store and transmit value among participants in the Bitcoin network. Bitcoin users communicate with each other using the Bitcoin protocol primarily via the internet, although other transport networks can also be used. The Bitcoin protocol stack, available as open source software, can be run on a wide range of computing devices, including laptops and smartphones, making the technology easily accessible.

Tip

In this book, the unit of currency is called “bitcoin” with a small b,
and the system is called “Bitcoin”, with a capital B.




Users can transfer bitcoin over the network to do just about anything
that can be done with conventional currencies, including buying and selling
goods, sending money to people or organizations, or extending credit. Bitcoin
can be purchased, sold, and exchanged for other currencies at
specialized currency exchanges. Bitcoin is arguably the perfect form
of money for the internet because it is fast, secure, and borderless.


Unlike traditional currencies, the bitcoin currency is entirely virtual. There are no
physical coins or even individual digital coins. The coins are implied in
transactions that transfer value from spender to receiver. Users of
Bitcoin control keys that allow them to prove ownership of bitcoin in the
Bitcoin network. With these keys, they can sign transactions to unlock
the value and spend it by transferring it to a new owner. Keys are often
stored in a digital wallet on each user’s computer or smartphone.
Possession of the key that can sign a transaction is the only
prerequisite to spending bitcoin, putting the control entirely in the
hands of each user.


Bitcoin is a distributed, peer-to-peer system. As such, there is no
central server or point of control. Units of bitcoin
are created through a process called “mining,” which involves repeatedly
performing a competitive computational task that references a list of recent Bitcoin
transactions. Any participant in the Bitcoin network may operate as a
miner, using their computing devices to help secure
transactions. Every 10 minutes, on average, one Bitcoin miner can add security to
past transactions and is rewarded with both brand new
bitcoin and the fees paid by recent transactions. Essentially, Bitcoin
mining decentralizes the currency-issuance
and clearing functions of a central bank and replaces the need for any
central bank.


The Bitcoin protocol includes built-in algorithms that regulate the
mining function across the network. The difficulty of the computational
task that miners must perform is adjusted dynamically so that, on
average, someone succeeds every 10 minutes regardless of how many miners
(and how much processing) are competing at any moment. The protocol also
halves the rate at which new bitcoins are created,
limiting the total number of bitcoins that will be created to a fixed total
just below 21 million coins. The result is that the number of bitcoins in
circulation closely follows an easily predictable curve where half of
the remaining coins are added to circulation every four years.  By the
time the third edition of this book has been published for ten years, 99% of all bitcoins
that will ever exist will have been issued.  Due to bitcoin’s
diminishing rate of issuance, over the long term, the Bitcoin currency
is deflationary.  Furthermore, nobody can force you to accept
any bitcoins that were created beyond the
expected issuance rate.


Behind the scenes, Bitcoin is also the name of the protocol, a peer-to-peer network, and a distributed computing innovation. Bitcoin builds on decades of research in cryptography and distributed systems and includes at least four key innovations brought together in a unique and powerful combination. Bitcoin consists of:



	
A decentralized peer-to-peer network (the Bitcoin protocol)



	
A public transaction ledger (the blockchain)



	
A set of rules for independent transaction validation and currency issuance (consensus rules)



	
A mechanism for reaching global decentralized consensus on the valid blockchain (Proof-of-Work algorithm)






As a developer, I see Bitcoin as akin to the internet of money, a network for propagating value and securing the ownership of digital assets via distributed computation. There’s a lot more to Bitcoin than first meets the eye.


In this chapter we’ll get started by explaining some of the main concepts and terms, getting the necessary software, and using Bitcoin for simple transactions. In the following chapters, we’ll start unwrapping the layers of technology that make Bitcoin possible and examine the inner workings of the Bitcoin network and protocol.


Digital Currencies Before Bitcoin

The emergence of viable digital money is closely linked to developments in cryptography. This is not surprising when one considers the fundamental challenges involved with using bits to represent value that can be exchanged for goods and services. Three basic questions for anyone accepting digital money are:


	
Can I trust that the money is authentic and not counterfeit?



	
Can I trust that the digital money can only be spent once (known as the “double-spend” problem)?



	
Can I be sure that no one else can claim this money belongs to them and not me?







Issuers of paper money are constantly battling the counterfeiting problem by using increasingly sophisticated papers and printing technology.  Physical money addresses the double-spend issue easily because the same paper note cannot be in two places at once. Of course, conventional money is also often stored and transmitted digitally. In these cases, the counterfeiting and double-spend issues are handled by clearing all electronic transactions through central authorities that have a global view of the currency in circulation. For digital money, which cannot take advantage of esoteric inks or holographic strips, cryptography provides the basis for trusting the legitimacy of a user’s claim to value.  Specifically, cryptographic digital signatures enable a user to sign a digital asset or transaction proving the ownership of that asset. With the appropriate architecture, digital signatures also can be used to address the double-spend issue.


When cryptography started becoming more broadly available and understood in the late 1980s, many researchers began trying to use cryptography to build digital currencies. These early digital currency projects issued digital money, usually backed by a national currency or precious metal such as gold.


Although these earlier digital currencies worked, they were centralized and, as a result, were easy to attack by governments and hackers. Early digital currencies used a central clearinghouse to settle all transactions at regular intervals, just like a traditional banking system. Unfortunately, in most cases these nascent digital currencies were targeted by worried governments and eventually litigated out of existence. Some failed in spectacular crashes when the parent company liquidated abruptly. To be robust against intervention by antagonists, whether legitimate governments or criminal elements, a decentralized digital currency was needed to avoid a single point of attack. Bitcoin is such a system, decentralized by design, and free of any central authority or point of control that can be attacked or corrupted.










History of Bitcoin


Bitcoin was first described in 2008 with the publication of a
paper titled “Bitcoin: A Peer-to-Peer Electronic Cash
System,”1 written under the
alias of Satoshi Nakamoto (see XREF HERE). Nakamoto
combined several prior inventions such as digital signatures and Hashcash to create
a completely decentralized electronic cash system that does not rely on
a central authority for currency issuance or settlement and validation
of transactions. A key innovation was to use a distributed computation
system (called a “Proof-of-Work” algorithm) to conduct a global
“election” every 10 minutes, allowing the decentralized network to
arrive at consensus about the state of transactions. This
elegantly solves the issue of double-spend where a single currency unit
can be spent twice. Previously, the double-spend problem was a weakness
of digital currency and was addressed by clearing all transactions
through a central clearinghouse.


The Bitcoin network started in 2009, based on a reference implementation
published by Nakamoto and since revised by many other programmers. The
implementation of the Proof-of-Work algorithm (mining) that provides
security and resilience for Bitcoin has increased in power
exponentially, and now exceeds the combined number of computing operations of the
world’s top supercomputers.


Satoshi Nakamoto withdrew from the public in April 2011, leaving the responsibility of developing the code and network to a thriving group of volunteers. The identity of the person or people behind Bitcoin is still unknown. However, neither Satoshi Nakamoto nor anyone else exerts individual control over the Bitcoin system, which operates based on fully transparent mathematical principles, open source code, and consensus among participants. The invention itself is groundbreaking and has already spawned new science in the fields of distributed computing, economics, and econometrics.


A Solution to a Distributed Computing Problem

Satoshi Nakamoto’s invention is
also a practical and novel solution to a problem in distributed
computing, known as the “Byzantine Generals’ Problem.” Briefly, the
problem consists of trying to get multiple participants without a leader
to agree on a course of action by exchanging information over an
unreliable and potentially compromised network. Satoshi Nakamoto’s solution, which uses the concept of
Proof-of-Work to achieve consensus without a central trusted
authority, represents a breakthrough in distributed computing.












Bitcoin Uses, Users, and Their Stories


Bitcoin is an innovation in the ancient technology of money. At its core, money simply facilitates the exchange of value between people. Therefore, in order to fully understand Bitcoin and its uses, we’ll examine it from the perspective of people using it. Each of the people and their stories, as listed here, illustrates one or more specific use cases. We’ll be seeing them throughout the book:


	North American e-commerce retails

	
Alice lives in Northern California’s Bay Area. She has heard about Bitcoin from her techie friends and wants to start using it. We will follow her story as she learns about Bitcoin, acquires some, and then spends her bitcoin to buy a laptop from Bob’s online store. This story will introduce us to the software, the exchanges, and basic transactions from the perspective of a retail consumer.



	North American high-value retail

	
Carol is an art gallery owner in San Francisco. She sells expensive paintings for bitcoin. This story will introduce the risks of a “51% attack” for retailers of high-value items.



	Offshore contract services

	
Bob, the cafe owner in Palo Alto, is building a new website. He has contracted with a web developer, Gopesh, who lives in Bangalore, India. Gopesh has agreed to be paid in bitcoin. This story will examine the use of Bitcoin for outsourcing, contract services, and international wire transfers.



	Web store

	
Gabriel is an enterprising young teenager in Rio de Janeiro, running a small web store that sells Bitcoin-branded t-shirts, coffee mugs, and stickers. Gabriel is too young to have a bank account, but his parents are encouraging his entrepreneurial spirit.



	Charitable donations

	
Eugenia is the director of a children’s charity in the Philippines. Recently she has discovered Bitcoin and wants to use it to reach a whole new group of foreign and domestic donors to fundraise for her charity. She’s also investigating ways to use Bitcoin to distribute funds quickly to areas of need. This story will show the use of Bitcoin for global fundraising across currencies and borders and the use of an open ledger for transparency in charitable organizations.



	Import/export

	
Mohammed is an electronics importer in Dubai. He’s trying to use Bitcoin to buy electronics from the United States and China for import into the UAE to accelerate the process of payments for imports. This story will show how Bitcoin can be used for large business-to-business international payments tied to physical goods.



	Mining for bitcoin

	
Jing is a computer engineering student in Shanghai. He has built a “mining” rig to mine for bitcoin using his engineering skills to supplement his income. This story will examine the “industrial” base of Bitcoin: the specialized equipment used to secure the Bitcoin network and issue new currency.






Each of these stories is based on the real people and real industries currently using Bitcoin to create new markets, new industries, and innovative solutions to global economic issues.










Getting Started


Bitcoin is a protocol that can be accessed using an
application that speaks the protocol. A “Bitcoin wallet” is the
most common user interface to the Bitcoin system, just like a web
browser is the most common user interface for the HTTP protocol. There
are many implementations and brands of Bitcoin wallets, just like there
are many brands of web browsers (e.g., Chrome, Safari, Firefox, and
Internet Explorer). And just like we all have our favorite browsers
(Mozilla Firefox, Yay!) and our villains (Internet Explorer, Yuck!),
Bitcoin wallets vary in quality, performance, security, privacy, and
reliability. There is also a reference implementation of the Bitcoin
protocol that includes a wallet, known as “Bitcoin Core,” which is
derived from the original implementation written by Satoshi Nakamoto.










Choosing a Bitcoin Wallet


Bitcoin wallets are one of the most actively developed applications in the Bitcoin ecosystem. There is intense competition, and while a new wallet is probably being developed right now, several wallets from last year are no longer actively maintained. Many wallets focus on specific platforms or specific uses and some are more suitable for beginners while others are filled with features for advanced users. Choosing a wallet is highly subjective and depends on the use and user expertise. Therefore it would be pointless to recommend a specific brand or wallet. However, we can categorize Bitcoin wallets according to their platform and function and provide some clarity about all the different types of wallets that exist. It is worth trying out several different wallets until you find one that fits your needs.












Types of Bitcoin wallets


Bitcoin wallets can be categorized as follows, according to the platform:


	Desktop wallet

	
A desktop wallet was the first type of Bitcoin wallet created as a reference implementation and many users run desktop wallets for the features, autonomy, and control they offer. Running on general-use operating systems such as Windows and Mac OS has certain security disadvantages, however, as these platforms are often insecure and poorly configured.



	Mobile wallet

	
A mobile wallet is the most common type of Bitcoin
wallet. Running on smart-phone operating systems such as Apple iOS and
Android, these wallets are often a great choice for new users. Many are
designed for simplicity and ease-of-use, but there are also fully
featured mobile wallets for power users.  To avoid downloading and
storing large amounts of data, most mobile wallets retrieve information
from remote servers, reducing your privacy by disclosing to third
parties information about your Bitcoin addresses and balances.



	Web wallet

	
Web wallets are accessed through a web browser and store
the user’s wallet on a server owned by a third party. This is similar to
webmail in that it relies entirely on a third-party server. Some of
these services operate using client-side code running in the user’s
browser, which keeps control of the Bitcoin keys in the hands of the
user, although the user’s dependence on the server still compromises
their privacy. Most, however, take control of the Bitcoin keys from
users in exchange for ease-of-use. It is inadvisable
to store large amounts of bitcoin on third-party systems.



	Hardware signing devices

	
Hardware signing devices are devices that can
store keys and sign transactions using special-purpose hardware and
firmware. They usually
connect to a desktop, mobile, or web wallet via USB cable,
near-field-communication (NFC), or a camera with QR codes.  By handling
all Bitcoin-related operations on the specialized hardware, these
wallets are less vulnerable to many types of attacks.  Hardware signing
devices are sometimes called “hardware wallets”, but they need to be
paired with a full-featured wallet to send and receive transactions, and
the security and privacy offered by that paired wallet plays a critical
role in how much security and privacy the user obtains when using the
hardware signing device.


















Full-node vs. Lightweight


Another way to categorize bitcoin wallets is by their degree of autonomy and how they interact with the Bitcoin network:


	Full-node

	
A full node is a program that validates the
entire history of Bitcoin transactions (every transaction by every user,
ever).  Optionally, full nodes can also store previously validated
transactions and serve data to other Bitcoin programs, either on the
same computer or over the internet.  A full node uses substantial
computer resources—​about the same as watching an hour-long streaming
video for each day of Bitcoin transactions—​but the full node offers
complete autonomy to its users.



	Lightweight client

	
A lightweight
client, also known as a simplified-payment-verification (SPV) client,
connects to a full node or other remote server for receiving and sending
Bitcoin transaction information, but stores the user wallet locally,
partially validates the transactions it receives, and independently
creates outgoing transactions.



	Third-party API client

	
A third-party
API client is one that interacts with Bitcoin through a third-party
system of application programming interfaces (APIs), rather than by
connecting to the Bitcoin network directly. The wallet may be stored by
the user or by third-party servers, but the client trusts the remote
server to provide it with accurate information and protect its privacy.





Tip

Bitcoin is a Peer-to-Peer (P2P) network.  Full nodes are the peers:
each peer individually validates every confirmed transaction and can
provide data to its user with complete authority.  Lightweight wallets
and other software are clients: each client depends on one or more peers
to provide it with valid data.  Bitcoin clients can perform secondary
validation on some of the data they receive and make connections to
multiple peers to reduce their depedence on the integrity of a single
peer, but the security of a client ultimately relies on the integrity of
its peers.
















Custodial vs. Non-Custodial


A very important additional consideration is who controls the keys. As
we will see in subsequent chapters, access to bitcoins is
controlled by “private keys”, which are like very long PIN numbers. If
you are the only one to have custody and control over these private
keys, you are in control of your bitcoin. Conversely, if you do not have
custody, then your bitcoin is managed by a third-party custodian, who
ultimately controls your funds on your behalf. Wallets fall into two
important categories based on custody: non-custodial wallets where you
control the keys and the funds and custodial wallets where some
third-party controls the keys. To emphasize this point, I (Andreas)
coined the phrase:


Your keys, your coins. Not your keys, not your coins.


Combining these categorizations, many Bitcoin wallets fall into a few
groups, with the three most common being desktop full node
(non-custodial), mobile lightweight wallet (non-custodial), and web
third-party wallet (custodial). The lines between different categories
are often blurry, as many wallets run on multiple platforms and can
interact with the network in different ways.


For the purposes of this book, we will be demonstrating the use of a
variety of downloadable Bitcoin clients, from the reference
implementation (Bitcoin Core) to mobile and web wallets. Some of the
examples will require the use of Bitcoin Core, which, in addition to
being a full node, also exposes APIs to the wallet, network, and
transaction services. If you are planning to explore the programmatic
interfaces into the Bitcoin system, you will need to run Bitcoin Core,
or one of the alternative full node implementations.














Quick Start


Alice, who we introduced in “Bitcoin Uses, Users, and Their Stories”, is not a
technical user and only recently heard about Bitcoin from her friend
Joe. While at a party, Joe is once again enthusiastically explaining
Bitcoin to everyone around him and is offering a demonstration. Intrigued,
Alice asks how she can get started with Bitcoin. Joe says that a mobile
wallet is best for new users and he recommends a few of his favorite
wallets. Alice downloads one of Joe’s recommendations
and installs it on her phone.


When Alice runs her wallet application for the first time, she chooses
the option to create a new Bitcoin wallet. Because the wallet she has
chosen is a non-custodial wallet, Alice (and only Alice) will be in
control of her keys. Therefore, she bears responsibility for backing
them up, since losing the keys means she loses access to her bitcoins. To
facilitate this, her wallet produces a recovery code that can be used
to restore her wallet.












Recovery Codes


Most modern non-custodial Bitcoin wallets will provide a recovery
code for their user
to back up.  The recovery code usually consists of numbers, letters, or words
selected randomly by the software, and is used as the basis for the keys
that are generated by the wallet. See Table 1-1 for
examples.


Table 1-1. Sample Recovery Codes


	Wallet
	Recovery code





	BlueWallet

	(1) media (2) suspect (3) effort (4) dish (5) album (6) shaft (7) price (8) junk (9) pizza (10) situate (11) oyster (12) rib




	Electrum

	nephew dog crane clever quantum crazy purse traffic repeat fruit old clutch




	Muun

	LAFV TZUN V27E NU4D WPF4 BRJ4 ELLP BNFL






Tip

A recovery code is sometimes called a “mnemonic” or “mnemonic phrase”,
which implies you should memorize the phrase, but writing the phrase
down on paper takes less work and tends to be more reliable than most
people’s memories.  Another alternative name is “seed phrase” because
it provides the input (“seed”) to the function which generates all of
a wallet’s keys.




If something happens to Alice’s wallet, she can download a new copy of
her wallet software and enter this recovery code to rebuild the wallet
database of all the onchain transactions she’s ever sent or received.
However, recovering from the recovery code will not by itself restore any additional
data Alice entered into her wallet, such as the names she associated
with particular addresses or transactions.  Although losing access to
that metadata isn’t as important as losing access to money, it can
still be important in its own way.  Imagine you need to review an old
bank or credit card statement and the name of every entity you paid (or
who paid you) has been blanked out.  To prevent losing metadata, many
wallets provide an additional backup feature beyond recovery codes.


For some wallets, that additional backup feature is even more important
today than it used to be.  Many Bitcoin payments are now made using
offchain technology, where not every payment is stored in the public block
chain.  This reduces users costs and improves privacy, among other
benefits, but it means that a mechanism like recovery codes that depends on
onchain data can’t guarantee recovery of all of a user’s bitcoins.  For
applications with offchain support, it’s important to make frequent
backups of the wallet database.


Of note, when receiving funds to a new mobile wallet for the first time,
many wallets will often re-verify that you have securely backed-up your
recovery code. This can range from a simple prompt to requiring the
user to manually re-enter the code.

Warning

Although many legitimate wallets will prompt you to re-enter
your recovery code, there are also many malware applications that mimic the
design of a wallet, insist you enter your recovery code, and then
relay any entered code to the malware developer so they can steal
your funds.  This is the equivilent of phishing websites that try to
trick you into giving them your bank passphrase.  For most wallet
applications, the only times they will ask for your recovery code are during
the initial set up (before you have received any bitcoins) and during
recovery (after you lost access to your original wallet).  If the application
asks for your recovery code any other time, consult with an expert to
ensure you aren’t being phished.














Bitcoin addresses


Alice is now ready to start using her new bitcoin wallet.  Her wallet application randomly generated a private key (described in more detail in “Private Keys”) which will be used to derive Bitcoin addresses that direct to her wallet. At this point, her Bitcoin addresses are not known to the Bitcoin network or “registered” with any part of the Bitcoin system. Her Bitcoin addresses are simply random numbers that correspond to her private key that she can use to control access to the funds. The addresses are generated independently by her wallet without reference or registration with any service.

Tip

There
are a variety of Bitcoin addresses and invoice formats.  Addresses and
invoices can be shared with other bitcoin users
who can use them to send bitcoin directly to your wallet.  You can share
an address or invoice with other people without worrying about the
security of your bitcoins.  Unlike a bank account number, nobody who
learns one of your Bitcoin addresses can withdraw money from your wallet—​you
must initiate all spends.  However, if you give two people the same
address, they will be able to see how much bitcoin the other person sent
you.  If you post your address publicly, everyone will be able to see
how much bitcoin other people sent you.  To protect your privacy, you
should generate a new invoice with a new address each time you request a
payment.














Receiving bitcoin


Alice uses the Receive button, which displays a QR code along with a Bitcoin address, shown in Figure 1-1.



[image: Wallet receive screen with QR code displayed]
Figure 1-1. Alice uses the Receive screen on her mobile Bitcoin wallet, and displays her address in a QR code format




The QR code is the square with a pattern of black and white dots, serving as a form of barcode that contains the same information in a format that can be scanned by Joe’s smartphone camera. Near the wallet’s QR code is the Bitcoin address it encodes, and Alice may choose to manually send her address to Joe by copying it onto her clipboard with a tap.

Warning

Any funds sent to the addresses in this book will be lost.  If you want
to test sending bitcoins, please consider donating it to a
bitcoin-accepting charity.














Getting Your First Bitcoin


The first task for new users is to acquire some bitcoin.


Bitcoin transactions are irreversible. Most electronic payment networks such as credit cards, debit cards, PayPal, and bank account transfers are reversible. For someone selling bitcoin, this difference introduces a very high risk that the buyer will reverse the electronic payment after they have received bitcoin, in effect defrauding the seller. To mitigate this risk, companies accepting traditional electronic payments in return for bitcoin usually require buyers to undergo identity verification and credit-worthiness checks, which may take several days or weeks. As a new user, this means you cannot buy bitcoin instantly with a credit card. With a bit of patience and creative thinking, however, you won’t need to.


Here are some methods for getting bitcoin as a new user:



	
Find a friend who has bitcoin and buy some from him or her directly. Many Bitcoin users start this way. This method is the least complicated. One way to meet people with bitcoin is to attend a local Bitcoin meetup listed at Meetup.com.



	
Use a classified service such as localbitcoins.com to find a seller in your area to buy bitcoin for cash in an in-person transaction.



	
Earn bitcoin by selling a product or service for bitcoin. If you are a programmer, sell your programming skills. If you’re a hairdresser, cut hair for bitcoin.



	
Use a bitcoin ATM in your city.  A bitcoin ATM is a machine that accepts cash and sends bitcoin to your smartphone bitcoin wallet. Find a bitcoin ATM close to you using an online map from Coin ATM Radar.



	
Use a bitcoin currency exchange linked to your bank account. Many countries now have currency exchanges that offer a market for buyers and sellers to swap bitcoin with local currency. Exchange-rate listing services, such as BitcoinAverage, often show a list of bitcoin exchanges for each currency.





Tip

One of the advantages of
Bitcoin over other payment systems is that, when used correctly, it
affords users much more privacy. Acquiring, holding, and spending
bitcoin does not require you to divulge sensitive and personally
identifiable information to third parties. However, where bitcoin
touches traditional systems, such as currency exchanges, national and
international regulations often apply. In order to exchange bitcoin for
your national currency, you will often be required to provide proof of
identity and banking information. Users should be aware that once a
Bitcoin address is attached to an identity, other associated bitcoin
transactions may also become easy to identify and track—​including
transactions made earlier. This is one reason
many users choose to maintain dedicated exchange accounts unlinked to
their wallets.




Alice was introduced to bitcoin by a friend so she has an easy way to acquire her first bitcoin. Next, we will look at how she buys bitcoin from her friend Joe and how Joe sends the bitcoin to her wallet.












Finding the Current Price of Bitcoin


Before Alice can buy bitcoin from Joe, they have to agree on the exchange rate between bitcoin and US dollars. This brings up a common question for those new to bitcoin: “Who sets the bitcoin price?” The short answer is that the price is set by markets.


Bitcoin, like most other currencies, has a floating exchange rate. That means that the value of bitcoin fluctuates according to supply and demand in the various markets where it is traded. For example, the “price” of bitcoin in US dollars is calculated in each market based on the most recent trade of bitcoin and US dollars. As such, the price tends to fluctuate minutely several times per second. A pricing service will aggregate the prices from several markets and calculate a volume-weighted average representing the broad market exchange rate of a currency pair (e.g., BTC/USD).


There are hundreds of applications and websites that can provide the current market rate. Here are some of the most popular:


	Bitcoin Average

	
A site that provides a simple view of the volume-weighted-average for each currency.



	CoinCap

	
A service listing the market capitalization and exchange rates of hundreds of crypto-currencies, including bitcoin.



	Chicago Mercantile Exchange Bitcoin Reference Rate

	
A reference rate that can be used for institutional and contractual reference, provided as part of investment data feeds by the CME.






In addition to these various sites and applications, some bitcoin
wallets will automatically convert amounts between bitcoin and other
currencies.












Sending and Receiving Bitcoin


Alice has
decided to buy 0.001 bitcoin. After she and Joe check the exchange rate,
she gives Joe an appropriate amount of cash, opens her mobile wallet
application, and selects Receive. This
displays a QR code with Alice’s first Bitcoin address.


Joe then selects Send on his smartphone wallet and opens the QR code
scanner.  This allows Joe to scan the barcode with his smartphone camera
so that he doesn’t have to type in Alice’s Bitcoin address, which is
quite long and difficult to type.


Joe now has Alice’s Bitcoin address set as the recipient. Joe enters the
amount as 0.001 bitcoins (BTC), see Figure 1-2.  Some wallets may
show the amount in a different denomination: 0.001 BTC is 1 millibitcoin
(mBTC) or 100,000 satoshis (sats).


Some wallets may also suggest Joe enter a label for this transaction; if
so, Joe enters “Alice”.  Weeks or months from now, this will help Joe
remember why he sent these 0.001 bitcoins.  Some wallets may also prompt
Joe about fees.  Depending on the wallet and how the transaction is
being sent, the wallet may ask Joe to either enter a transaction fee rate or
prompt him with a suggested feerate.  The higher the transaction fee rate, the
faster the transaction will be confirmed (see “Confirmations”).



[image: Wallet send screen]
Figure 1-2. Bitcoin wallet send screen




Joe then carefully checks to make sure he has entered the correct
amount, because he is about to transmit money and mistakes will soon become
irreversible. After double-checking the address and amount, he presses
Send to transmit the transaction. Joe’s mobile Bitcoin wallet constructs
a transaction that assigns 0.001 BTC to the address provided by Alice,
sourcing the funds from Joe’s wallet and signing the transaction with
Joe’s private keys. This tells the Bitcoin network that Joe has
authorized a transfer of value to Alice’s new address. As the
transaction is transmitted via the peer-to-peer protocol, it quickly
propagates across the Bitcoin network. After just a few seconds, most of
the well-connected nodes in the network receive the transaction and see
Alice’s address for the first time.


Meanwhile, Alice’s wallet is constantly “listening” for new
transactions on the Bitcoin network, looking for any that match the
addresses it contains. A few seconds after Joe’s wallet transmits the
transaction, Alice’s wallet will indicate that it is receiving
0.001 BTC.


Confirmations

At first, Alice’s address will show the transaction from Joe as “Unconfirmed.” This means that the transaction has been propagated to the network but has not yet been recorded in the bitcoin transaction ledger, known as the blockchain. To be confirmed, a transaction must be included in a block and added to the blockchain, which happens every 10 minutes, on average. In traditional financial terms this is known as clearing. For more details on propagation, validation, and clearing (confirmation) of bitcoin transactions, see XREF HERE.




Alice is now the proud owner of 0.001 BTC that she can spend. Over the next few days, Alice buys more bitcoin using an ATM and an exchange. In the next chapter we will look at her first purchase with bitcoin, and examine the underlying transaction and propagation technologies in more detail.





1 “Bitcoin: A Peer-to-Peer Electronic Cash System,” Satoshi Nakamoto (https://bitcoin.org/bitcoin.pdf).









Chapter 2. How Bitcoin Works



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 2nd chapter of the final book.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at arufino@oreilly.com.




The Bitcoin system, unlike traditional banking and
payment systems, does not require trust in third parties. Instead of a central
trusted authority, in Bitcoin, each user can use software running on
their own computer to verify the correct operation of every
aspect of the Bitcoin system.
In this chapter, we will examine bitcoin from a high level by tracking a
single transaction through the Bitcoin system and watch as it
is recorded on the blockchain, the distributed ledger of all
transactions. Subsequent chapters will delve into the technology behind
transactions, the network, and mining.








Bitcoin Overview


In the overview diagram shown in Figure 2-1, we see that the
Bitcoin system consists of users with wallets containing keys,
transactions that are propagated across the network, and miners who
produce (through competitive computation) the consensus blockchain,
which is the authoritative ledger of all transactions.


Each example in this chapter is based
on an actual transaction made on the Bitcoin network, simulating the
interactions between the users (Joe, Alice, Bob, and Gopesh) by sending
funds from one wallet to another. While tracking a transaction through
the Bitcoin network to the blockchain, we will use a blockchain
explorer site to visualize each step. A blockchain explorer is a web
application that operates as a bitcoin search engine, in that it allows
you to search for addresses, transactions, and blocks and see the
relationships and flows between them.



[image: Bitcoin Overview]
Figure 2-1. Bitcoin overview




Popular blockchain explorers include:



	
Blockstream Explorer



	
Mempool.Space



	
BlockCypher Explorer






Each of these has a search function that can take a Bitcoin address,
transaction hash, block number, or block hash and retrieve corresponding
information from the Bitcoin network. With each transaction or block
example, we will provide a URL so you can look it up yourself and study
it in detail.

Block explorer privacy warning

Searching information on a block explorer may disclose to its operator
that you’re interested in that information, allowing them to associate
it with your IP address, browser fingerprint, past searches, or other
identifiable information.  If you look up the transactions in this book,
the operator of the block explorer might guess that you’re learning
about Bitcoin, which shouldn’t be a problem.  But if you look up your
own transactions, the operator may be able to guess how many bitcoins
you’ve received, spent, and currently own.












Buying from an Online Store


Alice, introduced in the previous chapter, is a new user who has just
acquired her first bitcoins. In “Getting Your First Bitcoin”, Alice met with
her friend Joe to exchange some cash for bitcoins. Since then, Alice has
bought additional bitcoins.  Now Alice will make
her first retail transaction, buying access to a premium podcast episode from Bob’s online store.


Bob’s web store recently started accepting bitcoin payments by adding a
bitcoin option to its website. The prices at Bob’s store are listed in
the local currency (US dollars), but at checkout, customers have the
option of paying in either dollars or bitcoin.


Alice finds the podcast episode she wants to buy and proceeds to the checkout page. At checkout,
Alice is offered the option to pay with bitcoin, in addition to the
usual options. The checkout cart displays the price in US dollars and
also in bitcoin (BTC), at Bitcoin’s prevailing exchange rate.


Bob’s
e-commerce system will automatically create a QR code containing an
invoice (Figure 2-2).


Unlike a QR code that simply contains a destination Bitcoin address, this
invoice is a QR-encoded URI that contains a destination address,
a payment amount, and a description.
This allows a bitcoin wallet application to prefill the
information used to send the payment while showing a human-readable
description to the user. You can scan the QR code with a bitcoin wallet
application to see what Alice would see.



[image: payment-request]
Figure 2-2. Invoice QR code



Tip

Try to scan this with your wallet to see
the address and amount but DO NOT SEND MONEY.




bitcoin:bc1qk2g6u8p4qm2s2lh3gts5cpt2mrv5skcuu7u3e4?amount=0.01577764&
label=Bob%27s%20Store&
message=Purchase%20at%20Bob%27s%20Store

Components of the URI

A Bitcoin address: "bc1qk2g6u8p4qm2s2lh3gts5cpt2mrv5skcuu7u3e4"
The payment amount: "0.01577764"
A label for the recipient address: "Bob's Store"
A description for the payment: "Purchase at Bob's Store"


Alice uses her smartphone to scan the barcode on display. Her smartphone
shows a payment for the correct amount to Bob’s Store and she selects Send to
authorize the payment. Within a few seconds (about the same amount of
time as a credit card authorization), Bob sees the transaction on the
register.

Note

The
Bitcoin network can transact in fractional values, e.g., from
millibitcoin (1/1000th of a bitcoin) down to 1/100,000,000th of a
bitcoin, which is known as a satoshi.  This book uses the same
pluralization rules used for dollars and other traditional currencies
when talking about amounts greater than one bitcoin and when using
decimal notation, such as “10 bitcoins” or “0.001 bitcoins.”  The same
rules also apply to other bitcoin bookkeeping units, such as
millibitcoins and satoshis.




You can examine Alice’s transaction to Bob’s Store on the blockchain
using a block explorer site (Example 2-1):


Example 2-1. View Alice’s transaction on Blockstream Explorer


https://blockstream.info/tx/674616f1fbc6cc748213648754724eebff0fc04506f2c81efb1349d1ebc8a2ef



In the following sections, we will examine this transaction in more
detail. We’ll see how Alice’s wallet constructed it, how it was
propagated across the network, how it was verified, and finally, how Bob
can spend that amount in subsequent transactions.












Bitcoin Transactions


In simple terms, a transaction tells the
network that the owner of some bitcoin value has authorized the transfer
of that value to another owner. The new owner can now spend the bitcoin
by creating another transaction that authorizes the transfer to another
owner, and so on, in a chain of ownership.










Transaction Inputs and Outputs


Transactions are like lines in a double-entry
bookkeeping ledger.  Each transaction contains one or more “inputs,”
which are like debits against a bitcoin account. On the other side of
the transaction, there are one or more “outputs,” which are like credits
added to a bitcoin account. The inputs
and outputs (debits and credits) do not necessarily add up to the same
amount. Instead, outputs add up to slightly less than inputs and the
difference represents an implied transaction fee, which is a small
payment collected by the miner who includes the transaction in the
ledger. A bitcoin transaction is shown as a bookkeeping ledger entry in
Figure 2-3.


The transaction also contains proof of ownership for each amount of
bitcoin (inputs) whose value is being spent, in the form of a digital
signature from the owner, which can be independently validated by
anyone. In bitcoin terms, “spending”
is signing a transaction that transfers value from a previous
transaction over to a new owner identified by a Bitcoin address.



[image: Transaction Double-Entry]
Figure 2-3. Transaction as double-entry bookkeeping














Transaction Chains


Alice’s payment to Bob’s Store uses a
previous transaction’s output as its input. In the previous chapter,
Alice received bitcoin from her friend Joe in return for cash.
We’ve labeled that as Transaction 1 (Tx1) in Figure 2-4.


Tx1 sent 0.001 bitcoins (100,000 satoshis) to an output locked by
Alice’s key. Her new transaction to Bob’s Store (Tx2) references the
previous output as an input.  In the illustration, we show that
reference using an arrow and by labeling the input as “Tx1:0”.  In an
actual transaction, the reference is the 32-byte transaction identifier
(txid) for the transaction where Alice received the money from Joe.  The
“:0” indicates the position of the output where Alice received the
money; in this case, the first position (position 0).


As shown, actual Bitcoin transactions don’t
explicitly include the value of their input.  To determine the value of
an input, software needs to use the input’s reference to find the
previous transaction output being spent.


Alice’s Tx2 contains two new outputs, one paying 75,000 satoshis for the
podcast and another paying 20,000 satoshis back to Alice to receive
change.



[image: Transaction chain]
Figure 2-4. A chain of transactions, where the output of one transaction is the input of the next transaction



Tip

Serialized Bitcoin transactions---the data format that software uses for
sending transactions---encodes the value to transfer using an integer
of the smallest defined onchain unit of value.  When Bitcoin was first
created, this unit didn’t have a name and some developers simply called
it the base unit.  Later many users began calling this unit a
satoshi (sat) in honor of Bitcoin’s creator.  In Figure 2-4
and some other illustrations in this book, we use satoshi values because
that’s what the protocol itself uses.














Making Change


In addition to one or more outputs that pay the receiver of
bitcoins, many transactions will also include an output that pays the
spender of the bitcoins, called a change output.
This is because transaction inputs,
like currency notes, cannot be divided. If you purchase a $5 US dollar
item in a store but use a $20 dollar bill to pay for the item, you
expect to receive $15 dollars in change. The same concept applies to
bitcoin transaction inputs. If you purchased an item that costs 5
bitcoins but only had an input worth 20 bitcoins to use, you would send one
output of 5 bitcoins to the store owner and one output of 15 bitcoins back
to yourself as change (not counting your transaction fee).


At the level of the Bitcoin protocol, there is no difference between a
change output (and the address it pays, called a change address) and a
payment output.


Importantly, the change address does not have to be the
same address as that of the input and for privacy reasons is often a new
address from the owner’s wallet.  In ideal circumstances, the two
different uses of outputs both use never-before-been addresses and
otherwise look identical, preventing any third party from determining
which outputs are change and which are payments.  However, for
illustration purposes, we’ve added shading to the change outputs in
Figure 2-4.












Coin selection


Different wallets use different strategies when choosing which
inputs to use to a payment, called coin selection.


They might aggregate many small
inputs, or use one that is equal to or larger than the desired payment.
Unless the wallet can aggregate inputs in such a way to exactly match
the desired payment plus transaction fees, the wallet will need to
generate some change. This is very similar to how people handle cash. If
you always use the largest bill in your pocket, you will end up with a
pocket full of loose change. If you only use the loose change, you’ll
always have only big bills. People subconsciously find a balance between
these two extremes, and bitcoin wallet developers strive to program this
balance.












Common Transaction Forms


A very common form of transaction is a simple payment. This type of
transaction has one input and two outputs and is shown in
Figure 2-5.



[image: Common Transaction]
Figure 2-5. Most common transaction




Another common form of transaction is a consolidation transaction one that spends several inputs
into a single output (Figure 2-6). This represents
the real-world equivalent of exchanging a pile of coins and currency
notes for a single larger note. Transactions like these are sometimes
generated by wallets and business to clean up lots of smaller amounts.



[image: Aggregating Transaction]
Figure 2-6. Transaction aggregating funds




Finally, another transaction form that is seen often on the bitcoin
ledger is payment batching that pays to multiple outputs
representing multiple recipients (Figure 2-7).
This type of transaction is sometimes used by commercial entities to
distribute funds, such as when processing payroll payments to multiple
employees.



[image: Distributing Transaction]
Figure 2-7. Transaction distributing funds














Constructing a Transaction


Alice’s wallet application contains all
the logic for selecting inputs and generating outputs to build a
transaction to Alice’s specification. Alice only needs to choose a
destination, amount, and transaction fee, and the rest happens in the wallet
application without her seeing the details. Importantly, if a wallet
already knows what inputs it controls, it can construct transactions
even if it is completely offline.
Like writing a check at home and later sending it to the bank in an
envelope, the transaction does not need to be constructed and signed
while connected to the Bitcoin network.










Getting the Right Inputs


Alice’s wallet
application will first have to find inputs that can pay the amount she
wants to send to Bob. Most wallets keep track of all the available
outputs belonging to addresses in the wallet. Therefore, Alice’s wallet
would contain a copy of the transaction output from Joe’s transaction,
which was created in exchange for cash (see “Getting Your First Bitcoin”).
A bitcoin wallet application that runs on a full node actually
contains a copy of every confirmed transaction’s unspent outputs, called
Unspent Transaction Outputs (UTXOs).
However, because full nodes use more resources, most
user wallets run “lightweight” clients that track only the user’s own
UTXOs.


If the wallet application does not maintain a copy of all UTXOs, it can
query the Bitcoin network to retrieve this
information using a variety of APIs available by different providers or
by asking a full node using an application programming interface (API)
call. Example 2-2 shows an API request, constructed as an HTTP GET
command to a specific URL. This URL will return all the unspent
transaction outputs for an address, giving any application the
information it needs to construct transaction inputs for spending. We
use the simple command-line HTTP client cURL to retrieve the response.
Note that looking up information using a third-party API like this is similar to
using a block explorer; see the privacy warning in
“Block explorer privacy warning”.


Example 2-2. Look up all the unspent outputs for Alice’s Bitcoin address


$ address=bc1pyfw56zu5vsq0ulu9kytasgw4xwnm3eysll6tfdz8d9gtht97k7tqxsz78n
$ curl https://blockchain.info/unspent?active=$address



{
  "notice": "",
  "unspent_outputs": [
    {
      "tx_hash_big_endian": "4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19278fe33aeb",
      "tx_hash": "eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da135698679268041c54a",
      "tx_output_n": 1,
      "script": "5120225d4d0b946400fe7f85b117d821d533a7b8e490fff4b4b4476950bbacbeb796",
      "value": 100000,
      "value_hex": "0186a0",
      "confirmations": 111,
      "tx_index": 8276421070086947
    }
  ]
}


The response in Example 2-2 shows one unspent output (one that has
not been redeemed yet) under the ownership of Alice’s address.
The response includes the reference to the transaction in which this
UTXO is contained (the payment from Joe), the output index
number, its value in satoshis, and the script derived from Alice’s
address.  With this information, Alice’s wallet
application can construct a transaction to transfer that value to new
owner addresses.

Tip

View the transaction from Joe to Alice.




In this case, this single
UTXO is sufficient to pay for the podcast. Had this not been the case,
Alice’s wallet application might have to combine several
smaller UTXOs, like picking coins from a purse until it could
find enough to pay for the podcast. In both cases, there might be a need
to get some change back, which we will see in the next section, as the
wallet application creates the transaction outputs (payments).












Creating the Outputs


A transaction output is
created in the form of a script that creates an encumbrance on the value
and can only be redeemed by the introduction of a solution to the
script. In simpler terms, Alice’s transaction output will contain a
script that says something like, “This output is payable to whoever can
present a signature from the key corresponding to Bob’s public address.”
Because only Bob has the wallet with the keys corresponding to that
address, only Bob’s wallet can present such a signature to redeem this
output. Alice will therefore “encumber” the output value with a demand
for a signature from Bob.


This transaction will also include a second output, because Alice’s
funds contain more money than the cost of the
podcast. Alice’s change
output is created in the very same
transaction as the payment to Bob. Essentially, Alice’s wallet breaks
her funds into two outputs: one to Bob and one back to herself. She can
then spend the change output in a subsequent transaction.


Finally, for the transaction to be processed by the network in a timely
fashion, Alice’s wallet application will add a small fee. This is not
explicit in the transaction; it is implied by the difference in value between
inputs and outputs.  This transaction fee is collected by the
miner as a fee for validating and including the transaction in a block
to be recorded on the blockchain.

Tip

View the transaction from Alice to Bob’s Store.














Adding the Transaction to the Ledger


The transaction created by Alice’s wallet application
contains everything necessary to confirm ownership of the funds and
assign new owners. Now, the transaction must be transmitted to the
Bitcoin network where it will become part of the blockchain. In the next
section we will see how a transaction becomes part of a new block and
how the block is mined. Finally, we will see how the new block, once
added to the blockchain, is increasingly trusted by the network as more
blocks are added.












Transmitting the transaction


Because the transaction contains all
the information necessary to process, it does not matter how or where it
is transmitted to the Bitcoin network. The Bitcoin network is a
peer-to-peer network, with each Bitcoin peer participating by
connecting to several other Bitcoin peers. The purpose of the Bitcoin
network is to propagate transactions and blocks to all participants.














How it propagates



Peers in the Bitcoin peer-to-peer network are programs that have both
the software logic and the data necessary for them to fully verify the
correctness of a new transaction.  The connections between peers are
often visualized as edges (lines) in a graph, with the peers themselves
being the nodes (dots).  For that reason, Bitcoin peers are commonly
called “full verification nodes”, or full nodes for short.


Alice’s wallet application can send the new
transaction to any Bitcoin node it is connected to over any type of
connection: wired, WiFi, mobile, etc.  It can also send the transaction
to another program (such as a block explorer) that will relay it to a
node.  Her bitcoin wallet does not have
to be connected to Bob’s bitcoin wallet directly and she does not have
to use the internet connection offered by the cafe, though both those
options are possible, too. Any Bitcoin node that receives a
valid transaction it has not seen before will immediately forward it to
all other nodes to which it is connected, a propagation technique known
as gossiping. Thus, the transaction rapidly propagates out across the
peer-to-peer network, reaching a large percentage of the nodes within a
few seconds.














Bob’s view


If Bob’s bitcoin wallet application is directly connected to Alice’s
wallet application, Bob’s wallet application might be the first to
receive the transaction. However, even if Alice’s wallet sends the
transaction through other nodes, it will reach Bob’s wallet within a few
seconds. Bob’s wallet will immediately identify Alice’s transaction as
an incoming payment because it contains an output redeemable by Bob’s
keys. Bob’s wallet application can also independently verify that the
transaction is well formed.  If Bob is using his own full node, his
wallet can further verify Alice’s transaction only spends valid UTXOs.














Bitcoin Mining


Alice’s transaction is now propagated on the Bitcoin
network. It does not become part of the blockchain until it is
verified and included in a block by a process called mining. See
XREF HERE for a detailed explanation.


The Bitcoin system of counterfeit protection is based on computation.
Transactions are bundled into blocks.  Blocks have a very small header
that must be formed in a very specific way, requiring an enormous
amount of computation to get right—​but only a small amount of
computation to verify as correct.
The mining process serves two purposes in bitcoin:



	
Miners can only
receive honest income from creating blocks that follow all of Bitcoin’s
consensus rules.  Therefore, miners are normally incentivized to
only include valid transactions in their blocks and the blocks they
build upon.  This allows users to optionally trust that any transaction
in a block is a valid transaction.



	
Mining currently creates new bitcoin in each block, almost like a central bank
printing new money. The amount of bitcoin created per block is limited
and diminishes with time, following a fixed issuance schedule.






Mining achieves a fine balance between cost and reward. Mining uses
electricity to solve a computational problem. A successful miner will
collect a reward in the form of new bitcoin and transaction fees.
However, the reward will only be collected if the miner has correctly
validated all the transactions, to the satisfaction of the rules of
consensus. This delicate balance provides security for bitcoin without
a central authority.


Mining is designed to be a decentralized lottery.  Each miner can create
their own lottery ticket by creating a block template that includes
the new transactions they want to mine plus some additional data fields.
The miner inputs their template into a specially-designed algorithm that
scrambles (or “hashes”) the data, producing output that looks nothing
like the input data.  This hash function will always produce the same
output for the same input—​but nobody can predict what the output will
look like for a new input, even if it is only slighly different from a
previous input.  If the output of hash function matches a template
determined by the Bitcoin protocol, the miner wins the lottery and
Bitcoin users will accept the block template with its transactions as a
valid block.  If the output doesn’t match the template, the miner makes
a small change to their block template and tries again.  As of this
writing, the number of block templates miners need to try before finding
a winning combination is about 168 billion trillions.  That’s also how
many times the hash function needs to be run.


However, once a winning combination has been found, anyone can verify
the block is valid by running the hash function just once.  That makes a
valid block something that requires an incredible amount of work to
create but only a trivial amount of work to verify.  The simple
verification process is able to probabalistically prove the work was
done, so the data necessary to generate that proof—​in this case, the
block—​is called Proof-of-Work (PoW).


In
“Bitcoin Uses, Users, and Their Stories”, we introduced Jing, an entrepreneur in Shanghai. Jing runs a mining farm,
which is a business that runs thousands of specialized mining computers,
competing for the block reward. Jing’s mining
computers compete against thousands of similar systems in the global
lottery to create the next block.


Jing started mining in 2010 using a very fast desktop computer to find a
suitable Proof-of-Work for new blocks. As more miners started joining
the Bitcoin network, the Bitcoin protocol automatically increased the
difficulty of finding a new block.
Soon, Jing and other miners upgraded to more specialized hardware, such
as high-end dedicated graphical processing units (GPUs)
used in gaming desktops. At the time of this writing,
the difficulty is so high that it is profitable only to mine with
application-specific integrated circuits (ASIC), essentially
hundreds of mining algorithms printed in hardware, running in parallel
on a single silicon chip. Jing’s company
also participates in a mining pool, which much like a lottery pool
allows several participants to share their efforts and rewards. Jing’s
company now runs a warehouse containing thousands of  ASIC miners to
mine for bitcoin 24 hours a day. The company pays its electricity costs
by selling the bitcoin it is able to generate from mining, creating some
income from the profits.










Mining Transactions in Blocks


New transactions are constantly
flowing into the network from user wallets and other applications. As
these are seen by the Bitcoin network nodes, they get added to a
temporary pool of unverified transactions maintained by each node. As
miners construct a new block, they add unverified transactions from this
pool to the new block and then attempt to prove the validity of that new
block, with the mining algorithm (Proof-of-Work). The process of mining
is explained in detail in XREF HERE.


Transactions are added to the new block, prioritized by the highest-fee
transactions first and a few other criteria. Each miner starts the
process of mining a new block of transactions as soon as he receives the
previous block from the network, knowing he has lost that previous round
of competition. He immediately creates a new block, fills it with
transactions and the fingerprint of the previous block, and starts
calculating the Proof-of-Work for the new block. Each miner includes a
special transaction in his block, one that pays his own Bitcoin address
the block reward (currently 12.5 newly created bitcoin) plus the sum of
transaction fees from all the transactions included in the block. If he
finds a solution that makes that block valid, he “wins” this reward
because his successful block is added to the global blockchain and the
reward transaction he included becomes spendable. Jing, who participates in a mining pool, has set up his
software to create new blocks that assign the reward to a pool address.
From there, a share of the reward is distributed to Jing and other
miners in proportion to the amount of work they contributed in the last
round.


Alice’s
transaction was picked up by the network and included in the pool of
unverified transactions. Once validated by a full node, it was
included in a block template generated by Jing’s
mining pool. All the miners participating in that mining pool
immediately start trying to generate a Proof-of-Work for the block template.
Approximately five minutes after the transaction was first transmitted
by Alice’s wallet, one of Jing’s ASIC miners found a solution for the
block and announced it to the network. After other miners
validated the winning block, they started a new lottery to generate the next
block.


Jing’s winning block containing Alice’s transaction became part of the
blockchain. The block containing Alice’s transaction is counted as one
“confirmation” of that transaction.  After the block containing Alice’s
transaction has propagated through the network, creating an alternative
block with a different version of Alice’s transaction (such as a
transaction that doesn’t pay Bob) would require performing the same
amount of work as it will take all Bitcoin miners to create an entirely
new block.  For the entire network to accept an alternative block, an
additional new block would need to be mined on top of the alternative.


That means miners have a choice.  They can work with Alice on an
alternative version of the transaction where she pays Bob, perhaps with
Alice paying miners a share of the money she previously paid Bob.  This
dishonest behavior will require they expend the effort required to
create two new blocks.  Instead, miners who behave honestly can create a
single new block and and receive all of the fees from the transactions
they include in it, plus the block reward.  Normally, the high cost of
dishonestly creating two blocks for a small additional payment is much
less profitable than honestly creating a new block, making it unlikely
that a confirmed transaction will be deliberately changed.  For Bob, this
means that he can begin to believe that the payment from Alice can be
relied upon.

Tip

You can see the block that includes
Alice’s transaction.




Approximately 19 minutes
after Jing’s block, a new block is mined by another miner. Because this
new block is built on top of the block that contained Alice’s
transaction (giving Alice’s transaction two confirmations) Alice’s
transaction can now only be changed if two alternative blocks are
mined—​plus a new block built on top of them—​for a total of three
blocks that would need to be mined for Alice to take back the money she
sent Bob.  Each block mined on top of the one containing Alice’s
transaction counts as an additional confirmation.  As the blocks pile on
top of each other, it becomes harder to reverse the transaction, thereby
giving Bob more and more confidence that Alice’s payment is secure.


In Figure 2-8,  we can
the block which contains Alice’s transaction. Below it are
hundreds of thousands of blocks, linked to each other in a chain of
blocks (blockchain) all the way back to block #0, known as the genesis
block. Over time, as the “height” of new blocks increases, so does the
computation difficulty for the chain as a whole.
By convention, any block with more than six confirmations
is considered very hard to change, because it would require an immense amount of
computation to recalculate six blocks (plus one new block). We will examine
the process of mining and the way it builds confidence in more detail in
XREF HERE.



[image: Alice's transaction included in a block]
Figure 2-8. Alice’s transaction included in a block












Spending the Transaction


Now that Alice’s
transaction has been embedded in the blockchain as part of a block, it
is part of the distributed ledger of Bitcoin and visible to all Bitcoin
applications. Each bitcoin full node can independently verify the
transaction as valid and spendable. Full nodes validate every transfer
of the funds from the moment the bitcoin were first generated in
a block through each subsequent transaction until they reach
Bob’s address. Lightweight clients can do what is called a simplified
payment verification (see XREF HERE) by confirming that the
transaction is in the blockchain and has several blocks mined after it,
thus providing assurance that the miners expended significant effort
committing to it.


Bob can now spend the output from this and other transactions. For
example, Bob can pay a contractor or supplier by transferring value from
Alice’s podcast payment to these new owners. Bob’s bitcoin
software might consolidate many small payments into a larger payment,
perhaps concentrating all the day’s bitcoin revenue into a single
transaction. This would consolidate the various payments into a single
output (and a single address). For a diagram of a consolidation
transaction, see Figure 2-6.


As Bob spends the payments received from Alice and other customers, he
extends the chain of transactions. Let’s assume that Bob pays his web
designer Gopesh in
Bangalore for a new website page. Now the chain of transactions will
look like Figure 2-9.



[image: Alice's transaction as part of a transaction chain]
Figure 2-9. Alice’s transaction as part of a transaction chain from Joe to Gopesh




In this chapter, we saw how transactions build a chain that moves value
from owner to owner. We also tracked Alice’s transaction, from the
moment it was created in her wallet, through the Bitcoin network and to
the miners who recorded it on the blockchain. In the rest of this book,
we will examine the specific technologies behind wallets, addresses,
signatures, transactions, the network, and finally mining.











Chapter 3. Bitcoin Core: The Reference Implementation



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 3rd chapter of the final book.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at arufino@oreilly.com.




People only accept money in exchange for their valuable goods and
services if they believe that they’ll be able to spend that money later.
Money that is counterfeit or unexpectedly debased may not be spendable
later, so every person accepting bitcoin has a strong incentive to
verify the integrity of the bitcoins they receive.  The Bitcoin system
was designed so that it’s possible for software running entirely on your
local computer to perfectly prevent counterfeiting, debasement, and
several other critical problems.  Software which provides that function
is called a full verification node because it verifies every confirmed
Bitcoin transaction against every rule in the system.  Full verification
nodes, full nodes for short, may also provide tools and data for
understanding how Bitcoin works and what is currently happening in the
network.


In this chapter, we’ll install Bitcoin Core, the implementation which
most full node operators have used since the beginning of the Bitcoin
network.   We’ll then inspect blocks, transactions, and other data from
your node, data which is authoritative—​not because some powerful entity
designated it as such but because your node independently verified it.
Throughout the rest of this book, we’ll continue using Bitcoin Core to
create and examine data related to the blockchain and network.








From Bitcoin to Bitcoin Core


Bitcoin is an open
source project and the source code is available under an open (MIT)
license, free to download and use for any purpose.  More than just being
open source, Bitcoin is developed by
an open community of volunteers. At first, that community consisted of
only Satoshi Nakamoto. By 2023, Bitcoin’s source code had more than 1,000
contributors with about a dozen developers working on the code almost
full-time and several dozen more on a part-time basis. Anyone can
contribute to the code—including you!


When Bitcoin was created by Satoshi Nakamoto, the
software was mostly completed before the whitepaper reproduced in
XREF HERE was published. Satoshi wanted to make sure the
implementation worked before publishing a paper about it. That first implementation, then simply
known as “Bitcoin”, has been heavily modified and
improved. It has evolved into what is known as Bitcoin Core, to
differentiate it from other implementations. Bitcoin Core is
the reference implementation of the Bitcoin system, meaning that it
provides a reference for how each part of the technology should be
implemented. Bitcoin Core implements all aspects of Bitcoin, including
wallets, a transaction and block validation engine, and all modern parts
of Bitcoin peer-to-peer communication.


Figure 3-1 shows the architecture of Bitcoin
Core.



[image: Bitcoin Core Architecture]
Figure 3-1. Bitcoin Core architecture (Source: Eric Lombrozo)












Bitcoin Development Environment


If you’re a
developer, you will want to set up a development environment with all
the tools, libraries, and support software for writing Bitcoin
applications. In this highly technical chapter, we’ll walk through that
process step-by-step. If the material becomes too dense (and you’re not
actually setting up a development environment) feel free to skip to the
next chapter, which is less technical.










Compiling Bitcoin Core from the Source Code


Bitcoin Core’s
source code can be downloaded as an archive or by cloning the
authoritative source repository from GitHub.  On the Bitcoin Core download
page, select the most recent version and download the compressed
archive of the source code. Alternatively, use the git command line to create a
local copy of the source code from the
GitHub bitcoin page.

Tip

In
many of the examples in this chapter we will be using the operating
system’s command-line interface (also known as a “shell”), accessed via
a “terminal” application. The shell will display a prompt; you type a
command; and the shell responds with some text and a new prompt for your
next command. The prompt may look different on your system, but in the
following examples it is denoted by a $ symbol. In the examples, when
you see text after a $ symbol, don’t type the $ symbol but type the
command immediately following it, then press Enter to execute the
command. In the examples, the lines below each command are the operating
system’s responses to that command. When you see the next $ prefix,
you’ll know it’s a new command and you should repeat the process.




In this example, we are using the git command to create a
local copy (“clone”) of the source code:


$ git clone https://github.com/bitcoin/bitcoin.git
Cloning into 'bitcoin'...
remote: Enumerating objects: 245912, done.
remote: Counting objects: 100% (3/3), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 245912 (delta 1), reused 2 (delta 1), pack-reused 245909
Receiving objects: 100% (245912/245912), 217.74 MiB | 13.05 MiB/s, done.
Resolving deltas: 100% (175649/175649), done.

Tip

Git is the most widely used
distributed version control system, an essential part of any software
developer’s toolkit. You may need to install the git command, or a
graphical user interface for git, on your operating system if you do not
have it already.




When the git cloning operation has completed, you will have a complete
local copy of the source code repository in the directory bitcoin.
Change to this directory using the cd command:


$ cd bitcoin










Selecting a Bitcoin Core Release


By default, the local copy will be synchronized with the
most recent code, which might be an unstable or beta version of Bitcoin.
Before compiling the code, select a specific version by checking out a
release tag. This will synchronize the local copy with a specific
snapshot of the code repository identified by a keyword tag. Tags are
used by the developers to mark specific releases of the code by version
number. First, to find the available tags, we use the git tag command:


$ git tag
v0.1.5
v0.1.6test1
v0.10.0
...
v0.11.2
v0.11.2rc1
v0.12.0rc1
v0.12.0rc2
...


The list of tags shows all the released versions of bitcoin. By
convention, release candidates, which are intended for testing, have
the suffix “rc.” Stable releases that can be run on production systems
have no suffix. From the preceding list, select the highest version
release, which at the time of writing was v24.0.1. To synchronize the
local code with this version, use the git checkout command:


$ git checkout v24.0.1
Note: switching to 'v24.0.1'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

HEAD is now at b3f866a8d Merge bitcoin/bitcoin#26647: 24.0.1 final changes


You can confirm you have the desired version “checked out” by issuing
the command git status:


HEAD detached at v24.0.1
nothing to commit, working tree clean












Configuring the Bitcoin Core Build


The source code includes documentation, which
can be found in a number of files. Review the main documentation located
in README.md in the bitcoin directory.
In this chapter, we will build the Bitcoin Core daemon
(server), also known as bitcoind on Linux (a Unix-like system). Review the instructions for
compiling the bitcoind command-line client on your platform by reading
doc/build-unix.md.  Alternative instructions can be found in
the doc directory; for example, build-windows.md for Windows
instructions.  As of this writing, instructions are available for
Android, FreeBSD, NetBSD, OpenBSD, MacOS (OSX), Unix, and Windows.


Carefully review the build prerequisites, which are in the first part of
the build documentation. These are libraries that must be present on
your system before you can begin to compile bitcoin. If these
prerequisites are missing, the build process will fail with an error. If
this happens because you missed a prerequisite, you can install it and
then resume the build process from where you left off. Assuming the
prerequisites are installed, you start the build process by generating a
set of build scripts using the autogen.sh script.


$ ./autogen.sh
libtoolize: putting auxiliary files in AC_CONFIG_AUX_DIR, 'build-aux'.
libtoolize: copying file 'build-aux/ltmain.sh'
libtoolize: putting macros in AC_CONFIG_MACRO_DIRS, 'build-aux/m4'.
 ...
configure.ac:58: installing 'build-aux/missing'
src/Makefile.am: installing 'build-aux/depcomp'
parallel-tests: installing 'build-aux/test-driver'


The autogen.sh script creates a set of automatic configuration scripts
that will interrogate your system to discover the correct settings and
ensure you have all the necessary libraries to compile the code. The
most important of these is the configure script that offers a number
of different options to customize the build process. Use the
--help flag to see the various options:


$ ./configure --help
`configure' configures Bitcoin Core 24.0.1 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

...
Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
  --enable-silent-rules   less verbose build output (undo: "make V=1")
  --disable-silent-rules  verbose build output (undo: "make V=0")
...


The configure script allows you to enable or disable certain features
of bitcoind through the use of the --enable-FEATURE and
--disable-FEATURE flags, where FEATURE is replaced by the
feature name, as listed in the help output. In this chapter, we will
build the bitcoind client with all the default features. We won’t be
using the configuration flags, but you should review them to understand
what optional features are part of the client. If you are in an academic
setting, computer lab restrictions may require you to install
applications in your home directory (e.g., using --prefix=$HOME).


Here are some useful options that override the default behavior of the
configure script:


	--prefix=$HOME

	This overrides the default installation location (which is /usr/local/) for the resulting executable. Use $HOME to put everything in your home directory, or a different path.



	--disable-wallet

	This is used to disable the reference wallet implementation.



	--with-incompatible-bdb

	If you are building a wallet, allow the use of an incompatible version of the Berkeley DB library.



	--with-gui=no

	Don’t build the graphical user interface, which requires the Qt library. This builds server and command-line bitcoin only.





Next, run the configure script to automatically discover all the necessary libraries and create a customized build script for your system:


$ ./configure
checking for pkg-config... /usr/bin/pkg-config
checking pkg-config is at least version 0.9.0... yes
checking build system type... x86_64-pc-linux-gnu
checking host system type... x86_64-pc-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
...
[many pages of configuration tests follow]
...


If all went well, the configure command will end by creating the
customized build scripts that will allow us to compile bitcoind. If
there are any missing libraries or errors, the configure command will
terminate with an error instead of creating the build scripts. If an
error occurs, it is most likely because of a missing or incompatible
library. Review the build documentation again and make sure you install
the missing prerequisites. Then run configure again and see if that
fixes the error.












Building the Bitcoin Core Executables


Next, you
will compile the source code, a process that can take up to an hour to
complete, depending on the speed of your CPU and available memory.
During the compilation process you should see output every few seconds
or every few minutes, or an error if something goes wrong. If an error
occurs, or the compilation process is interrupted, it can be resumed any
time by typing make again. Type make to start compiling the
executable application:


$ make
Making all in src
  CXX      bitcoind-bitcoind.o
  CXX      libbitcoin_node_a-addrdb.o
  CXX      libbitcoin_node_a-addrman.o
  CXX      libbitcoin_node_a-banman.o
  CXX      libbitcoin_node_a-blockencodings.o
  CXX      libbitcoin_node_a-blockfilter.o
[... many more compilation messages follow ...]


On a fast system with more than one CPU, you might want to set the
number of parallel compile jobs. For instance, make -j 2 will use two
cores if they are available. If all goes well, Bitcoin Core is now
compiled. You should run the unit test suite with make check to ensure
the linked libraries are not broken in obvious ways. The final step is
to install the various executables on your system using the make
install command. You may be prompted for your user password, because
this step requires administrative privileges:


$ make check && sudo make install
Password:
Making install in src
 ../build-aux/install-sh -c -d '/usr/local/lib'
libtool: install: /usr/bin/install -c bitcoind /usr/local/bin/bitcoind
libtool: install: /usr/bin/install -c bitcoin-cli /usr/local/bin/bitcoin-cli
libtool: install: /usr/bin/install -c bitcoin-tx /usr/local/bin/bitcoin-tx
...


The default installation of bitcoind
puts it in /usr/local/bin. You can confirm that Bitcoin Core is
correctly installed by asking the system for the path of the
executables, as follows:


$ which bitcoind
/usr/local/bin/bitcoind

$ which bitcoin-cli
/usr/local/bin/bitcoin-cli












Running a Bitcoin Core Node


Bitcoin’s peer-to-peer
network is composed of network “nodes,” run mostly by individuals and
some of the businesses that provide Bitcoin services. Those running
Bitcoin nodes have a direct and authoritative view of the Bitcoin
blockchain, with a local copy of all the spendable bitcoins
independently validated by their own system. By running a node, you
don’t have to rely on any third party to validate a transaction.
Additionally, by using a Bitcoin node to fully validate the transactions
you receive to your wallet, you contribute to the Bitcoin network and
help make it more robust.


Running a node, however, requires downloading and processing over 500 GB
of data initially and about 400 MB of Bitcoin transactions per day.
These figures are for 2023 and will likely increase over time.  If you
shut down your node or get disconnected from the internet for several
days, your node will need to download the data that it missed.  For
example, if you close Bitcoin Core for ten days, you will need to
download approximately 4 GB the next time you start it.


Depending on whether you choose to index all transactions and keep a
full copy of the blockchain, you may also need a lot of disk space---at
least 1 TB if you plan to run Bitcoin Core for several years.  By
default, Bitcoin nodes also transmit transactions and blocks to other
nodes (called “peers”), consuming upload internet bandwidth. If your
internet connection is limited, has a low data cap, or is metered
(charged by the gigabit), you should probably not run a Bitcoin node on
it, or run it in a way that constrains its bandwidth (see
Example 3-2).  You may connect your node instead to an
alternative network, such as a free satellite data provider like
Blockstream Satellite.

Tip

Bitcoin Core keeps a full
copy of the blockchain by default, with nearly every transaction that has ever
been confirmed on the Bitcoin network since its inception in 2009. This
dataset is hundreds of gigabytes in size and is downloaded incrementally
over several hours or days, depending on the speed of your CPU and
internet connection. Bitcoin Core will not be able to process
transactions or update account balances until the full blockchain
dataset is downloaded. Make sure you have enough disk space, bandwidth,
and time to complete the initial synchronization. You can configure
Bitcoin Core to reduce the size of the blockchain by discarding old
blocks (see Example 3-2), but it will still download the
entire dataset.




Despite these resource requirements, thousands of people run Bitcoin
nodes. Some are running on systems as simple as a Raspberry Pi (a $35
USD computer the size of a pack of cards).


Why would you want to run a node? Here are some of the most common
reasons:



	
You do not want to rely on any third party to validate the
transactions you receive.



	
You do not want to disclose to third parties which transactions belong
to your wallet.



	
You are developing Bitcoin software and need to rely on a Bitcoin
node for programmable (API) access to the network and blockchain.



	
You are building applications that must validate transactions
according to Bitcoin’s consensus rules. Typically, Bitcoin software
companies run several nodes.



	
You want to support Bitcoin. Running a node that you use to
validate the transactions you receive to your wallet makes the network
more robust.






If you’re reading this book and interested in strong security, superior
privacy, or developing Bitcoin software, you should be running your own
node.










Configuring the Bitcoin Core Node


Bitcoin Core will look for a
configuration file in its data directory on every start. In this section
we will examine the various configuration options and set up a
configuration file. To locate the configuration file, run bitcoind
-printtoconsole in your terminal and look for the first couple of
lines.


$ bitcoind -printtoconsole
2023-01-28T03:21:42Z Bitcoin Core version v24.0.1
2023-01-28T03:21:42Z Using the 'x86_shani(1way,2way)' SHA256 implementation
2023-01-28T03:21:42Z Using RdSeed as an additional entropy source
2023-01-28T03:21:42Z Using RdRand as an additional entropy source
2023-01-28T03:21:42Z Default data directory /home/harding/.bitcoin
2023-01-28T03:21:42Z Using data directory /home/harding/.bitcoin
2023-01-28T03:21:42Z Config file: /home/harding/.bitcoin/bitcoin.conf
...
[a lot more debug output]
...


You can hit Ctrl-C to shut down the node once you determine the location
of the config file. Usually the configuration file is inside the
.bitcoin data directory under your user’s home directory. Open the
configuration file in your preferred editor.


Bitcoin Core offers more than 100 configuration options that modify the
behavior of the network node, the storage of the blockchain, and many
other aspects of its operation. To see a listing of these options, run
bitcoind  --help:


$ bitcoind --help
Bitcoin Core version v24.0.1

Usage:  bitcoind [options]                     Start Bitcoin Core

Options:

  -?
       Print this help message and exit

  -alertnotify=<cmd>
       Execute command when an alert is raised (%s in cmd is replaced by
       message)
...
[many more options]


Here are some of
the most important options that you can set in the configuration file,
or as command-line parameters to bitcoind:


	alertnotify

	
Run a specified command or script to send emergency alerts
to the owner of this node.



	conf

	
An alternative location for the configuration file. This only
makes sense as a command-line parameter to bitcoind, as it can’t be
inside the configuration file it refers to.



	datadir

	
Select the directory and filesystem in which to put all the
blockchain data. By default this is the .bitcoin subdirectory of your
home directory. Make sure this filesystem has several gigabytes of free
space.



	prune

	
Reduce the disk space requirements to this many megabytes, by
deleting old blocks. Use this on a resource-constrained node that can’t
fit the full blockchain.



	txindex

	
Maintain an index of all transactions. This allows you to
programmatically retrieve any transaction by its ID provided that the
block containing that transaction hasn’t been pruned.



	dbcache

	
The size of the UTXO cache. The default is 450 MiB. Increase
this size on high-end hardware to read and write from your disk less
often, or reduce the size on low-end hardware to save memory at the
expense of using your disk more frequently.



	blocksonly

	
Minimize your bandwidth usage by only accepting blocks of
confirmed transactions from your peers instead of relaying unconfirmed
transactions.



	maxmempool

	
Limit the transaction memory pool to this many megabytes.
Use it to reduce memory use on memory-constrained nodes.






Transaction Database Index and txindex Option

By default,
Bitcoin Core builds a database containing only the transactions
related to the user’s wallet. If you want to be able to access any
transaction with commands like getrawtransaction (see
“Exploring and Decoding Transactions”), you need to configure Bitcoin
Core to build a complete transaction index, which can be achieved with
the txindex option. Set txindex=1 in the Bitcoin Core configuration
file. If you don’t set this option at first and later set it to full
indexing, you need to
wait for it to rebuild the index.




Example 3-1 shows how you might combine the preceding options,
with a fully indexed node, running as an API backend for a bitcoin
application.


Example 3-1. Sample configuration of a full-index node


alertnotify=myemailscript.sh "Alert: %s"
datadir=/lotsofspace/bitcoin
txindex=1



Example 3-2 shows a resource-constrained node running on a
smaller server.


Example 3-2. Sample configuration of a resource-constrained system


alertnotify=myemailscript.sh "Alert: %s"
blocksonly=1
prune=5000
dbcache=150
maxmempool=150



Once you’ve edited the configuration file and set the options that best
represent your needs, you can test bitcoind with this configuration.
Run Bitcoin Core with the option printtoconsole to run in the
foreground with output to the console:


$ bitcoind -printtoconsole
2023-01-28T03:43:39Z Bitcoin Core version v24.0.1
2023-01-28T03:43:39Z Using the 'x86_shani(1way,2way)' SHA256 implementation
2023-01-28T03:43:39Z Using RdSeed as an additional entropy source
2023-01-28T03:43:39Z Using RdRand as an additional entropy source
2023-01-28T03:43:39Z Default data directory /home/harding/.bitcoin
2023-01-28T03:43:39Z Using data directory /lotsofspace/bitcoin
2023-01-28T03:43:39Z Config file: /home/harding/.bitcoin/bitcoin.conf
2023-01-28T03:43:39Z Config file arg: [main] blockfilterindex="1"
2023-01-28T03:43:39Z Config file arg: [main] maxuploadtarget="1000"
2023-01-28T03:43:39Z Config file arg: [main] txindex="1"
2023-01-28T03:43:39Z Setting file arg: wallet = ["msig0"]
2023-01-28T03:43:39Z Command-line arg: printtoconsole=""
2023-01-28T03:43:39Z Using at most 125 automatic connections (1024 file descriptors available)
2023-01-28T03:43:39Z Using 16 MiB out of 16 MiB requested for signature cache, able to store 524288 elements
2023-01-28T03:43:39Z Using 16 MiB out of 16 MiB requested for script execution cache, able to store 524288 elements
2023-01-28T03:43:39Z Script verification uses 3 additional threads
2023-01-28T03:43:39Z scheduler thread start
2023-01-28T03:43:39Z [http] creating work queue of depth 16
2023-01-28T03:43:39Z Using random cookie authentication.
2023-01-28T03:43:39Z Generated RPC authentication cookie /lotsofspace/bitcoin/.cookie
2023-01-28T03:43:39Z [http] starting 4 worker threads
2023-01-28T03:43:39Z Using wallet directory /lotsofspace/bitcoin/wallets
2023-01-28T03:43:39Z init message: Verifying wallet(s)…
2023-01-28T03:43:39Z Using BerkeleyDB version Berkeley DB 4.8.30: (April  9, 2010)
2023-01-28T03:43:39Z Using /16 prefix for IP bucketing
2023-01-28T03:43:39Z init message: Loading P2P addresses…
2023-01-28T03:43:39Z Loaded 63866 addresses from peers.dat  114ms
[... more startup messages ...]


You can hit Ctrl-C to interrupt the process once you are satisfied that
it is loading the correct settings and running as you expect.


To run Bitcoin Core in the background as a process, start it with the
daemon option, as bitcoind -daemon.


To monitor the progress and runtime status of your Bitcoin node, start
it in daemon mode and then use the command bitcoin-cli getblockchaininfo:


$ bitcoin-cli getblockchaininfo


{
  "chain": "main",
  "blocks": 0,
  "headers": 83999,
  "bestblockhash": "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
  "difficulty": 1,
  "time": 1673379796,
  "mediantime": 1231006505,
  "verificationprogress": 3.783041623201835e-09,
  "initialblockdownload": true,
  "chainwork": "0000000000000000000000000000000000000000000000000000000100010001",
  "size_on_disk": 89087,
  "pruned": false,
  "warnings": ""
}


This shows a node with a blockchain height of 0 blocks and 83999
headers. The node first fetches the block headers from its peers in
order to find the blockchain with the most proof of work and
afterward continues to download the full blocks, validating them as it
goes.


Once you are happy with the configuration options you have selected, you
should add bitcoin to the startup scripts in your operating system, so
that it runs continuously and restarts when the operating system
restarts. You will find a number of example startup scripts for various
operating systems in bitcoin’s source directory under contrib/init and
a README.md file showing which system uses which script.












Bitcoin Core Application Programming Interface (API)


Bitcoin Core
implements a JSON-RPC interface that can also be accessed using
the command-line helper bitcoin-cli. The command line allows us to
experiment interactively with the capabilities that are also available
programmatically via the API. To start, invoke the help command to see a list of
the available Bitcoin Core RPC commands:


$ bitcoin-cli help
+== Blockchain ==
getbestblockhash
getblock "blockhash" ( verbosity )
getblockchaininfo
...
walletpassphrase "passphrase" timeout
walletpassphrasechange "oldpassphrase" "newpassphrase"
walletprocesspsbt "psbt" ( sign "sighashtype" bip32derivs finalize )


Each of these commands may take a number of parameters. To get
additional help, a detailed description, and information on the
parameters, add the command name after help. For example, to see help
on the getblockhash RPC command:


$ bitcoin-cli help getblockhash
getblockhash height

Returns hash of block in best-block-chain at height provided.

Arguments:
1. height    (numeric, required) The height index

Result:
"hex"    (string) The block hash

Examples:
> bitcoin-cli getblockhash 1000
> curl --user myusername --data-binary '{"jsonrpc": "1.0", "id": "curltest", "method": "getblockhash", "params": [1000]}' -H 'content-type: text/plain;' http://127.0.0.1:8332/


At the end of the help information you will see two examples of the RPC
command, using the bitcoin-cli helper or the HTTP client curl. These
examples demonstrate how you might call the command. Copy the first
example and see the result:


$ bitcoin-cli getblockhash 1000
00000000c937983704a73af28acdec37b049d214adbda81d7e2a3dd146f6ed09


The result is a block hash, which is described in more detail in the
following chapters. But for now, this command should return the same
result on your system, demonstrating that your Bitcoin Core node is
running, is accepting commands, and has information about block 1000 to
return to you.


In the next sections we will demonstrate some very useful RPC commands
and their expected output.










Getting Information on Bitcoin Core’s Status


Bitcoin
Core provides status reports on diffent modules through the JSON-RPC
interface. The most important commands include getblockchaininfo,
getmempoolinfo, getnetworkinfo and getwalletinfo.


Bitcoin’s getblockchaininfo RPC command was introduced earlier. The
getnetworkinfo command displays basic information about the status of
the Bitcoin network node. Use bitcoin-cli to run it:


$ bitcoin-cli getnetworkinfo


{
  "version": 240001,
  "subversion": "/Satoshi:24.0.1/",
  "protocolversion": 70016,
  "localservices": "0000000000000409",
  "localservicesnames": [
    "NETWORK",
    "WITNESS",
    "NETWORK_LIMITED"
  ],
  "localrelay": true,
  "timeoffset": -1,
  "networkactive": true,
  "connections": 10,
  "connections_in": 0,
  "connections_out": 10,
  "networks": [
    ...
    detailed information about all networks (ipv4, ipv6, onion, i2p, and cjdns)
    ...
  ],
  "relayfee": 0.00001000,
  "incrementalfee": 0.00001000,
  "localaddresses": [
  ],
  "warnings": ""
}


The data is returned in JavaScript Object Notation (JSON), a format that
can easily be “consumed” by all programming languages but is also quite
human-readable. Among this data we see the version numbers for the
Bitcoin Core software and Bitcoin protocol.  We see
the current number of connections and various information about the
Bitcoin network and the settings related to this node.

Tip

It will take some time, perhaps more than a day, for bitcoind
to catch up to the current blockchain height as it downloads
blocks from other Bitcoin nodes. You can check its progress using
getblockchaininfo to see the number of known blocks.














Exploring and Decoding Transactions


In “Buying from an Online Store”, Alice made a purchase from Bob’s store. Her
transaction was recorded on the blockchain.
Let’s use the API to retrieve and examine that transaction by passing
the txid as a parameter:


$ bitcoin-cli getrawtransaction 466200308696215bbc949d5141a49a41\
38ecdfdfaa2a8029c1f9bcecd1f96177

01000000000101eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da13569
8679268041c54a0100000000ffffffff02204e0000000000002251203b41daba
4c9ace578369740f15e5ec880c28279ee7f51b07dca69c7061e07068f8240100
000000001600147752c165ea7be772b2c0acb7f4d6047ae6f4768e0141cf5efe
2d8ef13ed0af21d4f4cb82422d6252d70324f6f4576b727b7d918e521c00b51b
e739df2f899c49dc267c0ad280aca6dab0d2fa2b42a45182fc83e81713010000
0000

Tip

A transaction ID (txid)
is not authoritative. Absence of a txid in the blockchain does not mean
the transaction was not processed. This is known as “transaction
malleability,” because transactions can be modified prior to
confirmation in a block, changing their txids.  After a transaction is
included in a block, its txid cannot change unless there is a blockchain
reorganization where that block is removed from the best blockchain.
Reorganizations are rare after a transaction has several confirmations.




The command getrawtransaction returns a serialized transaction in
hexadecimal notation. To decode that, we use the decoderawtransaction
command, passing the hex data as a parameter. You can copy the hex
returned by getrawtransaction and paste it as a parameter to
decoderawtransaction:


$ bitcoin-cli decoderawtransaction 01000000000101eb3ae38f27191aa5f3850dc9cad0↵
0492b88b72404f9da135698679268041c54a0100000000ffffffff02204e00000000000022512↵
03b41daba4c9ace578369740f15e5ec880c28279ee7f51b07dca69c7061e07068f82401000000↵
00001600147752c165ea7be772b2c0acb7f4d6047ae6f4768e0141cf5efe2d8ef13ed0af21d4f↵
4cb82422d6252d70324f6f4576b727b7d918e521c00b51be739df2f899c49dc267c0ad280aca6↵
dab0d2fa2b42a45182fc83e817130100000000



{
  "txid": "466200308696215bbc949d5141a49a4138ecdfdfaa2a8029c1f9bcecd1f96177",
  "hash": "f7cdbc7cf8b910d35cc69962e791138624e4eae7901010a6da4c02e7d238cdac",
  "version": 1,
  "size": 194,
  "vsize": 143,
  "weight": 569,
  "locktime": 0,
  "vin": [
    {
      "txid": "4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19...aeb",
      "vout": 1,
      "scriptSig": {
        "asm": "",
        "hex": ""
      },
      "txinwitness": [
        "cf5efe2d8ef13ed0af21d4f4cb82422d6252d70324f6f4576b727b7d918e5...301"
      ],
      "sequence": 4294967295
    }
  ],
  "vout": [
    {
      "value": 0.00020000,
      "n": 0,
      "scriptPubKey": {
        "asm": "1 3b41daba4c9ace578369740f15e5ec880c28279ee7f51b07dca...068",
        "desc": "rawtr(3b41daba4c9ace578369740f15e5ec880c28279ee7f51b...6ev",
        "hex": "51203b41daba4c9ace578369740f15e5ec880c28279ee7f51b07d...068",
        "address": "bc1p8dqa4wjvnt890qmfws83te0v3qxzsfu7ul63kp7u56w8q...5qn",
        "type": "witness_v1_taproot"
      }
    },
    {
      "value": 0.00075000,
      "n": 1,
      "scriptPubKey": {
        "asm": "0 7752c165ea7be772b2c0acb7f4d6047ae6f4768e",
        "desc": "addr(bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg)#qq404gts",
        "hex": "00147752c165ea7be772b2c0acb7f4d6047ae6f4768e",
        "address": "bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg",
        "type": "witness_v0_keyhash"
      }
    }
  ]
}



The transaction decode shows all the components of this transaction,
including the transaction inputs and outputs. In this case we see that
the transaction used one input and generated two outputs. The input to
this transaction was the output from a previously confirmed transaction
(shown as the vin txid). The two outputs correspond to the payment to
Bob and the change back to Alice.


We can further explore the blockchain by examining the previous
transaction referenced by its txid in this transaction using the same
commands (e.g., getrawtransaction). Jumping from transaction to
transaction we can follow a chain of transactions back as the coins are
transmitted from one owner to the next.












Exploring Blocks


Exploring
blocks is similar to exploring transactions. However, blocks can be
referenced either by the block height or by the block hash. First,
let’s find a block by its height.
We use the getblockhash command, which takes the block height as the
parameter and returns the block header hash for that block:


$ bitcoin-cli getblockhash 123456
0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682ff6cd83c3ca



Now that we know the header hash for our chosen block, we can
query that block. We use the getblock command with the block hash as
the parameter:


$ bitcoin-cli getblock 0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682f↵
f6cd83c3ca



{
  "hash": "0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682ff6cd83c3ca",
  "confirmations": 651742,
  "height": 123456,
  "version": 1,
  "versionHex": "00000001",
  "merkleroot": "0e60651a9934e8f0decd1c5fde39309e48fca0cd1c84a21ddfde95033762d86c",
  "time": 1305200806,
  "mediantime": 1305197900,
  "nonce": 2436437219,
  "bits": "1a6a93b3",
  "difficulty": 157416.4018436489,
  "chainwork": "000000000000000000000000000000000000000000000000541788211ac227bc",
  "nTx": 13,
  "previousblockhash": "0000000000000b60bc96a44724fd72daf9b92cf8ad00510b5224c6253ac40095",
  "nextblockhash": "000000000000129f5f02be247070bf7334d3753e4ddee502780c2acaecec6d66",
  "strippedsize": 4179,
  "size": 4179,
  "weight": 16716,
  "tx": [
    "5b75086dafeede555fc8f9a810d8b10df57c46f9f176ccc3dd8d2fa20edd685b",
    "e3d0425ab346dd5b76f44c222a4bb5d16640a4247050ef82462ab17e229c83b4",
    "137d247eca8b99dee58e1e9232014183a5c5a9e338001a0109df32794cdcc92e",
    "5fd167f7b8c417e59106ef5acfe181b09d71b8353a61a55a2f01aa266af5412d",
    "60925f1948b71f429d514ead7ae7391e0edf965bf5a60331398dae24c6964774",
    "d4d5fc1529487527e9873256934dfb1e4cdcb39f4c0509577ca19bfad6c5d28f",
    "7b29d65e5018c56a33652085dbb13f2df39a1a9942bfe1f7e78e97919a6bdea2",
    "0b89e120efd0a4674c127a76ff5f7590ca304e6a064fbc51adffbd7ce3a3deef",
    "603f2044da9656084174cfb5812feaf510f862d3addcf70cacce3dc55dab446e",
    "9a4ed892b43a4df916a7a1213b78e83cd83f5695f635d535c94b2b65ffb144d3",
    "dda726e3dad9504dce5098dfab5064ecd4a7650bfe854bb2606da3152b60e427",
    "e46ea8b4d68719b65ead930f07f1f3804cb3701014f8e6d76c4bdbc390893b94",
    "864a102aeedf53dd9b2baab4eeb898c5083fde6141113e0606b664c41fe15e1f"
  ]
}



The confirmations entry tells us the depth of this block—​how many
blocks have been built on top of it, indicating the difficulty of
changing any of the transactions in this block.  The height tells us
how many blocks preceeded this block.  We see the block’s version, the
time it was created (according to its miner), the median time of the 11
blocks that preceed this block (a time measurement that’s harder for
miners to manipulate), and the size of the block in three different
measurements (its legacy stripped size, it’s full size, and its size in
weight units).  We also see some fields used for security and
proof-of-work (merkle root, nonce, bits, difficulty, and chainwork);
we’ll examine those in detail in XREF HERE.












Using Bitcoin Core’s Programmatic Interface


The
bitcoin-cli helper is very useful for exploring the Bitcoin Core API
and testing functions. But the whole point of an application programming
interface is to access functions programmatically. In this section we
will demonstrate accessing Bitcoin Core from another program.


Bitcoin Core’s API is a JSON-RPC interface. JSON stands for JavaScript
Object Notation and it is a very convenient way to present data that
both humans and programs can easily read. RPC stands for Remote
Procedure Call, which means that we are calling procedures (functions)
that are remote (on the Bitcoin Core node) via a network protocol. In
this case, the network protocol is HTTP.


When we used the bitcoin-cli command to get help on a command, it
showed us an example of using curl, the versatile command-line HTTP
client to construct one of these JSON-RPC calls:


$ curl --user myusername --data-binary '{"jsonrpc": "1.0", "id":"curltest", "method": "getblockchaininfo", "params": [] }' -H 'content-type: text/plain;' http://127.0.0.1:8332/


This command shows that curl submits an HTTP request to the local host
(127.0.0.1), connecting to the default Bitcoin RPC port (8332), and
submitting a  jsonrpc request for the getblockchaininfo method using
text/plain encoding.


You might notice that curl will ask for credentials to be sent along
with the request. Bitcoin Core will create a random password on each
start and place it in the data directory under the name .cookie. The
bitcoin-cli helper can read this password file given the data
directory. Similarly, you can copy the password and pass it to curl (or
any higher level Bitcoin Core RPC wrappers). Alternatively, you can
create a static password with the helper script provided in
./share/rpcuser/rpcuser.py in Bitcoin Core’s source directory.


If you’re implementing a JSON-RPC call in your own program, you can use
a generic HTTP library to construct the call, similar to what is shown
in the preceding curl example.


However, there are libraries in most popular programming languages that
“wrap” the Bitcoin Core API in a way that makes this a lot simpler. We
will use the python-bitcoinlib library to simplify API access.
Remember, this requires you to have a running Bitcoin Core instance,
which will be used to make JSON-RPC calls.


The Python script in Example 3-3 makes a simple getblockchaininfo
call and prints the block parameter from the data returned by Bitcoin
Core.


Example 3-3. Running getblockchaininfo via Bitcoin Core’s JSON-RPC API


from bitcoin.rpc import RawProxy

# Create a connection to local Bitcoin Core node
p = RawProxy()

# Run the getblockchaininfo command, store the resulting data in info
info = p.getblockchaininfo()

# Retrieve the 'blocks' element from the info
print(info['blocks'])



Running it gives us the following result:


$ python rpc_example.py
773973


It tells us how many blocks our local Bitcoin Core node has in its
blockchain. Not a spectacular result, but it demonstrates the basic use
of the library as a simplified interface to Bitcoin Core’s JSON-RPC API.


Next, let’s use the getrawtransaction and decodetransaction calls to
retrieve the details of Alice’s payment to Bob. In Example 3-4,
we retrieve Alice’s transaction and list the transaction’s outputs. For
each output, we show the recipient address and value. As a reminder,
Alice’s transaction had one output paying Bob and one output for
change back to Alice.


Example 3-4. Retrieving a transaction and iterating its outputs


from bitcoin.rpc import RawProxy

p = RawProxy()

# Alice's transaction ID
txid = "466200308696215bbc949d5141a49a4138ecdfdfaa2a8029c1f9bcecd1f96177"

# First, retrieve the raw transaction in hex
raw_tx = p.getrawtransaction(txid)

# Decode the transaction hex into a JSON object
decoded_tx = p.decoderawtransaction(raw_tx)

# Retrieve each of the outputs from the transaction
for output in decoded_tx['vout']:
    print(output['scriptPubKey']['address'], output['value'])



Running this code, we get:


$ python rpc_transaction.py
bc1p8dqa4wjvnt890qmfws83te0v3qxzsfu7ul63kp7u56w8qc0qwp5qv995qn 0.00020000
bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg 0.00075000


Both of the preceding examples are rather simple. You don’t really need
a program to run them; you could just as easily use the bitcoin-cli
helper. The next example, however, requires several hundred RPC calls
and more clearly demonstrates the use of a programmatic interface.


In Example 3-5, we first retrieve block 277316, then retrieve each of
the 419 transactions within by reference to each transaction ID. Next,
we iterate through each of the transaction’s outputs and add up the
value.


Example 3-5. Retrieving a block and adding all the transaction outputs


from bitcoin.rpc import RawProxy

p = RawProxy()

# The block height where Alice's transaction was recorded
blockheight = 277316

# Get the block hash of block with height 277316
blockhash = p.getblockhash(blockheight)

# Retrieve the block by its hash
block = p.getblock(blockhash)

# Element tx contains the list of all transaction IDs in the block
transactions = block['tx']

block_value = 0

# Iterate through each transaction ID in the block
for txid in transactions:
    tx_value = 0
    # Retrieve the raw transaction by ID
    raw_tx = p.getrawtransaction(txid)
    # Decode the transaction
    decoded_tx = p.decoderawtransaction(raw_tx)
    # Iterate through each output in the transaction
    for output in decoded_tx['vout']:
        # Add up the value of each output
        tx_value = tx_value + output['value']

    # Add the value of this transaction to the total
    block_value = block_value + tx_value

print("Total value in block: ", block_value)



Running this code, we get:


$ python rpc_block.py

Total value in block:  10322.07722534


Our example code calculates that the total value transacted in this
block is 10,322.07722534 BTC (including 25 BTC reward and 0.0909 BTC in
fees). Compare that to the amount reported by a block explorer site by
searching for the block hash or height. Some block explorers report the
total value excluding the reward and excluding the fees. See if you can
spot the difference.












Alternative Clients, Libraries, and Toolkits


There
are many alternative clients, libraries, toolkits, and even full-node
implementations in the bitcoin ecosystem. These are implemented in a
variety of programming languages, offering programmers native interfaces
in their preferred language.


The following sections list some of the best libraries, clients, and
toolkits, organized by programming languages.










C/C++


	Bitcoin Core 

	
The reference implementation of bitcoin



	libbitcoin

	
Cross-platform C++ development toolkit, node, and consensus library



	bitcoin explorer

	
Libbitcoin’s command-line tool
















JavaScript


	bcoin

	
A modular and scalable full-node implementation with API



	Bitcore 

	
Full node, API, and library by Bitpay



	BitcoinJS 

	
A pure JavaScript Bitcoin library for node.js and browsers
















Java


	bitcoinj

	
A Java full-node client library
















Python


	python-bitcoinlib

	
A Python bitcoin library, consensus library, and node by Peter Todd



	pycoin

	
A Python bitcoin library by Richard Kiss
















Go


	btcd

	
A Go language full-node Bitcoin client
















Rust


	rust-bitcoin

	
Rust bitcoin library for serialization, parsing, and API calls
















C#


	NBitcoin

	
Comprehensive bitcoin library for the .NET framework






Many more libraries exist in a variety of other programming languages
and more are created all the time.


If you followed the instructions in this chapter, you now have Bitcoin
Core running and have begun exploring the network and blockchain using
your own full node.  From now on you can independently use software you
control, on a computer you control, to verify any bitcoins you receive
follow every rule in the Bitcoin system without having to trust any
outside authority.  In the coming chapters, we’ll learn more about the
rules of the system and how your node and your wallet use them to secure
your money, protect your privacy, and make spending and receiving
convenient.













Chapter 4. Keys and Addresses



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 4th chapter of the final book.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at arufino@oreilly.com.




Alice wants to pay Bob, but the the thousands of Bitcoin full nodes who
will verify her transaction don’t know who Alice or Bob are—​and we want
to keep it that way to protect their privacy.  Alice needs to
communicate that Bob should receive some of her bitcoins without tying
any aspect of that transaction to Bob’s real-world identity or to other
Bitcoin payments that Bob receives.  The method Alice uses must ensure
that only Bob can further spend the bitcoins he receives.


The original Bitcoin paper describes a very simple scheme for achieving
those goals, shown in Figure 4-1.  A receiver like Bob
accepts bitcoins to a public key in a transaction which is signed by the
spender (like Alice).  The bitcoins which Alice is spending had been
previously received to one her public keys, and she uses the
corresponding private key to generate her signature.  Full nodes can
verify that Alice’s signature commits to the output of a hash function
that itself commits to Bob’s public key and other transaction details.



[image: Transaction chain from original Bitcoin paper]
Figure 4-1. Transaction chain from original Bitcoin paper




We’ll examine public keys, private keys, signatures, and hash functions
in this chapter, and then use all of them together to describe
the addresses used by modern Bitcoin software.








Public Key Cryptography


Public key
cryptography was invented in the 1970s and is a mathematical foundation
for modern computer and information security.


Since the invention of public key cryptography, several suitable
mathematical functions, such as prime number exponentiation and elliptic
curve multiplication, have been discovered. These mathematical functions
are easy to calculate in
one direction and infeasible to calculate in the opposite direction
using the computers and algorithms available today.
Based on these mathematical functions, cryptography enables the creation
of unforgeable digital signatures. Bitcoin uses
elliptic curve addition and multiplication as the basis for its cryptography.


In Bitcoin, we can use public key cryptography to create a key pair that
controls access to bitcoin. The key pair consists of a private key
and a public key derived from the private key. The public key is used to
receive funds, and the private key is used to sign transactions to spend
the funds.


There is a mathematical relationship between the public and the private
key that allows the private key to be used to generate signatures on
messages. These signatures can be validated against the public key without
revealing the private key.

Tip

In some wallet
implementations, the private and public keys are stored together as a
key pair for convenience. However, the public key can be calculated
from the private key, so storing only the private key is also possible.




A Bitcoin wallet contains a collection of key
pairs, each consisting of a private key and a public key. The private
key (k) is a number, usually derived from a number picked at random.
From the private key, we
use elliptic curve multiplication, a one-way cryptographic function, to
generate a public key (K).


Why Use Asymmetric Cryptography (Public/Private Keys)?

Why is asymmetric
cryptography used in bitcoin? It’s not used to “encrypt” (make secret)
the transactions. Rather, the useful property of asymmetric cryptography
is the ability to generate digital signatures. A private key can be
applied to the digital fingerprint of a transaction to produce a
numerical signature. This signature can only be produced by someone with
knowledge of the private key. However, anyone with access to the public
key and the transaction fingerprint can use them to verify the
signature. This useful property of asymmetric cryptography makes it
possible for anyone to verify every signature on every transaction,
while ensuring that only the owners of private keys can produce valid
signatures.












Private Keys


A
private key is simply a number, picked at random.  Control
over the private key is the root of user control over all funds
associated with the corresponding Bitcoin public key. The private key is
used to create signatures that are used to spend bitcoin by proving
control of funds used in a transaction. The private key must remain
secret at all times, because revealing it to third parties is equivalent
to giving them control over the bitcoin secured by that key. The private
key must also be backed up and protected from accidental loss, because
if it’s lost it cannot be recovered and the funds secured by it are
forever lost, too.

Tip

A bitcoin private key is just a number. You can pick your private keys
randomly using just a coin, pencil, and paper: toss a coin 256 times and
you have the binary digits of a random private key you can use in a
Bitcoin wallet. The public key can then be generated from the private
key.  Be careful, though, as any process that’s less than completely
random can significantly reduce the security of your private key and the
bitcoins it controls.




The first and most important step in generating keys is to find a secure
source of randomness (which computer scientists call entropy). Creating a Bitcoin key is almost
the same as “Pick a number between 1 and 2256.” The exact method you
use to pick that number does not matter as long as it is not predictable
or repeatable. Bitcoin software uses cryptographically-secure random
number generators to produce 256 bits of entropy.


More precisely, the private key can be any number between 0 and n -
1 inclusive, where n is a constant (n = 1.1578 * 1077, slightly less
than 2256) defined as the order of the elliptic curve used in bitcoin
(see “Elliptic Curve Cryptography Explained”). To create such a key, we randomly pick a
256-bit number and check that it is less than n. In programming terms,
this is usually achieved by feeding a larger string of random bits,
collected from a cryptographically secure source of randomness, into the
SHA256 hash algorithm, which will conveniently produce a 256-bit value
that can be interpreted as a number.
If the result is less than n, we have a suitable private key.
Otherwise, we simply try again with another random number.

Warning

Do not write your own code to create a random
number or use a “simple” random number generator offered by your
programming language. Use a cryptographically secure pseudorandom number
generator (CSPRNG) with a seed from a source of sufficient entropy.
Study the documentation of the random number generator library you
choose to make sure it is cryptographically secure. Correct
implementation of the CSPRNG is critical to the security of the keys.




The following is a randomly generated private key (k) shown in
hexadecimal format (256 bits shown as 64 hexadecimal digits, each 4
bits):


1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

Tip

The size of bitcoin’s private key space, (2256) is an unfathomably
large number. It is approximately 1077 in decimal. For comparison, the
visible universe is estimated to contain 1080 atoms.














Elliptic Curve Cryptography Explained


Elliptic curve cryptography is a type of asymmetric
or public key cryptography based on the discrete logarithm problem as
expressed by addition and multiplication on the points of an elliptic
curve.


Figure 4-2 is an example of an elliptic curve, similar to that used
by bitcoin.



[image: ecc-curve]
Figure 4-2. An elliptic curve




Bitcoin uses a specific elliptic curve and set of mathematical
constants, as defined in a standard called secp256k1, established by
the National Institute of Standards and Technology (NIST). The
secp256k1 curve is defined by the following function, which produces
an elliptic curve:
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The mod p (modulo prime number p) indicates that this curve is over a
finite field of prime order p, also written as 
  𝔽 p 
, where p = 2256 – 232 – 29 – 28 – 27 – 26 –
24 – 1, a very large prime number.


Because this curve is defined over a finite field of prime order instead
of over the real numbers, it looks like a pattern of dots scattered in
two dimensions, which makes it difficult to visualize. However, the math
is identical to that of an elliptic curve over real numbers. As an
example, Figure 4-3 shows the same elliptic curve over a much
smaller finite field of prime order 17, showing a pattern of dots on a
grid. The secp256k1 bitcoin elliptic curve can be thought of as a much
more complex pattern of dots on a unfathomably large grid.



[image: ecc-over-F17-math]
Figure 4-3. Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17




So, for example, the following is a point P with coordinates (x,y) that
is a point on the secp256k1 curve:


P = (55066263022277343669578718895168534326250603453777594175500187360389116729240, 32670510020758816978083085130507043184471273380659243275938904335757337482424)


Example 4-1 shows how you can check this yourself using Python:


Example 4-1. Using Python to confirm that this point is on the elliptic curve


Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> p = 115792089237316195423570985008687907853269984665640564039457584007908834671663
>>> x = 55066263022277343669578718895168534326250603453777594175500187360389116729240
>>> y = 32670510020758816978083085130507043184471273380659243275938904335757337482424
>>> (x ** 3 + 7 - y**2) % p
0



In elliptic curve math, there is a point called the “point at infinity,”
which roughly corresponds to the role of zero in addition. On computers,
it’s sometimes represented by x = y = 0 (which doesn’t satisfy the
elliptic curve equation, but it’s an easy separate case that can be
checked).


There is also a + operator, called “addition,” which has some
properties similar to the traditional addition of real numbers that
gradeschool children learn. Given two points P1 and P2 on the
elliptic curve, there is a third point P3 = P1 + P2, also on the
elliptic curve.


Geometrically, this third point P3 is calculated by drawing a line
between P1 and P2. This line will intersect the elliptic curve in
exactly one additional place. Call this point P3' = (x, y). Then
reflect in the x-axis to get P3 = (x, –y).


There are a couple of special cases that explain the need for the “point
at infinity.”


If P1 and P2 are the same point, the line “between” P1 and P2
should extend to be the tangent on the curve at this point P1. This
tangent will intersect the curve in exactly one new point. You can use
techniques from calculus to determine the slope of the tangent line.
These techniques curiously work, even though we are restricting our
interest to points on the curve with two integer coordinates!


In some cases (i.e., if P1 and P2 have the same x values but
different y values), the tangent line will be exactly vertical, in which
case P3 = “point at infinity.”


If P1 is the “point at infinity,” then P1 + P2 = P2. Similarly,
if P2 is the point at infinity, then P1 + P2 = P1. This shows
how the point at infinity plays the role of zero.


It turns out that + is associative, which means that (A +
B) + C = A + (B + C). That means we can write A
+ B + C without parentheses and without ambiguity.


Now that we have defined addition, we can define multiplication in the
standard way that extends addition. For a point P on the elliptic curve,
if k is a whole number, then kP = P + P + P + …​ + P (k times). Note
that k is sometimes confusingly called an “exponent” in this case.












Public Keys


The public key is calculated from
the private key using elliptic curve multiplication, which is
irreversible: K = k * G, where k is the private key, G is a
constant point called the generator point, and K is the resulting
public key. The reverse operation, known as “finding the discrete
logarithm”—calculating k if you know K—is as difficult as trying
all possible values of k, i.e., a brute-force search. Before we
demonstrate how to generate a public key from a private key, let’s look
at elliptic curve cryptography in a bit more detail.

Tip

Elliptic curve multiplication is a type of function that cryptographers
call a “trap door” function: it is easy to do in one direction
(multiplication) and impossible to do in the reverse direction
(division). Someone with a private key can easily create the public
key and then share it with the world knowing that no one can reverse the
function and calculate the private key from the public key. This
mathematical trick becomes the basis for unforgeable and secure digital
signatures that prove control over bitcoin funds.




Starting with a private key in the
form of a randomly generated number k, we multiply it by a
predetermined point on the curve called the generator point G to
produce another point somewhere else on the curve, which is the
corresponding public key K. The generator point is specified as part
of the secp256k1 standard and is always the same for all keys in
bitcoin:



  
    K
    =
    k
    *
    G
  




where k is the private key, G is the generator point, and K is the
resulting public key, a point on the curve. Because the generator point
is always the same for all bitcoin users, a private key k multiplied
with G will always result in the same public key K. The relationship
between k and K is fixed, but can only be calculated in one
direction, from k to K. That’s why a Bitcoin public key can be
shared with anyone and does not reveal the user’s private key (k).

Tip

A private key can be converted into a public key, but a public key
cannot be converted back into a private key because the math only works
one way.




Implementing the elliptic curve multiplication, we take the private key
k generated previously and multiply it with the generator point G to
find the public key K:


K = 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD * G


Public key K is defined as a point K = (x,y):


K = (x, y)

where,

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB


To visualize multiplication of a point with an integer, we will use the
simpler elliptic curve over real numbers—remember, the math is
the same. Our goal is to find the multiple kG of the generator point
G, which is the same as adding G to itself, k times in a row. In
elliptic curves, adding a point to itself is the equivalent of drawing a
tangent line on the point and finding where it intersects the curve
again, then reflecting that point on the x-axis.


Figure 4-4 shows the process for deriving G, 2G, 4G, as a
geometric operation on the curve.

Tip

Many Bitcoin implementations use
the libsecp256k1 crytographic
library to do the elliptic curve math.





[image: ecc_illustrated]
Figure 4-4. Elliptic curve cryptography: visualizing the multiplication of a point G by an integer k on an elliptic curve














ScriptPubKey and ScriptSig


Although the illustration from the original Bitcoin paper, Figure 4-1,
shows public keys (pubkeys) and signatures (sigs) being used directly,
the first version of Bitcoin instead had payments sent to a field called
scriptPubKey and had them authorized by a field called scriptSig.
These fields allow additional operations to be performed in addition to
(or instead of) verifying that a signature corresponds to a public key.
For example, a scriptPubKey can contain two public keys and require two
corresponding signatures be placed in the spending scriptSig.


Later, in XREF HERE, we’ll learn about scripts in detail.  For now,
all we need to understand is that bitcoins are received to a
scriptPubKey which acts like a public key, and bitcoin spending is
authorized by a scriptSig which acts like a signature.










IP Addresses: The Original Address For Bitcoin (P2PK)


We’ve established that Alice can pay Bob by assigning some of her
bitcoins to one of Bob’s public keys.  But how does Alice get one of
Bob’s public keys?  Bob could just give her a copy, but let’s look again
at the public key we worked with in “Public Keys”.  Notice
that it’s quite long.  Imagine Bob trying to read that to Alice over the
phone.


x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB


Instead of direct public key entry, the earliest version of Bitcoin
software allowed a spender to enter the receiver’s IP address.  This
feature was later removed—​there are many problems
with using IP addresses—​but a quick description of it will help us
better understand why certain features may have been added to the
Bitcoin protocol.



[image: Early Bitcoin send screen]
Figure 4-5. Early send screen for Bitcoin via The Internet Archive




If Alice entered Bob’s IP address in Bitcoin 0.1, her full node would
establish a connection with his full node and receive a new public key
from Bob’s wallet that his node had never previously given anyone.  This
being a new public key was important to ensure that different
transactions paying Bob couldn’t be connected together by someone
looking at the blockchain and noticing that all of the transactions paid
the same public key.


Using the public key her node received from Bob’s node, Alice’s wallet
would construct a transaction output paying a very simple scriptPubKey:


<Bob's public key> OP_CHECKSIG


Bob would later be able to spend that output with a scriptSig consisting
entirely of his signature:


<Bob's signature>


To figure out what a scriptPubKey and scriptSig are doing, you can
combine them together (scriptSig first) and then note that each piece of
data (shown in angle brackets) is placed at the top of a list of items,
called a stack.  When an operation code (opcode) is encountered, it uses
items from the stack, starting with the topmost items.  Let’s look at
how that works by beginning with the combined script:


<Bob's signature> <Bob's public key> OP_CHECKSIG


For this script, Bob’s signature is put on the stack, then Bob’s public
key is placed on top of it.  The OP_CHECKSIG operation consumes two
elements, starting with the public key and followed by the signature,
removing them from the stack.  It verifies the signature corresponds to
the public key and also commits to (signs) the various fields in the
transaction.  If the signature is correct, OP_CHECKSIG replaces itself
on the stack with the value 1; if the signature was not correct, it
replaces itself with a 0.  If there’s a non-zero item on top of the stack at the
end of evaluation, the script passes.  If all scripts in a transaction
pass, and all of the other details about the transaction are valid, then
full nodes will consider the transaction to be valid.


In short, the script above uses the same public key and signature
described in the original paper but adds in the complexity of two script
fields and an opcode.  That seems like extra work here, but we’ll begin
to see the benefits when we look at “Legacy Addresses for P2PKH”.


This type of output is known today as Pay-to-Public-Key, or P2PK for
short.  It was never widely used for payments, and no widely-used
program has supported IP address payments for almost a decade.










Legacy Addresses for P2PKH


Entering the IP address of the person you want to pay has a number of
advantages, but it also has a number of downsides.  One particular
downside is that the receiver needs their wallet to be online at their
IP address, and it needs to be accessible from the outside world.  For
a lot of people, that isn’t an option.  They turn their computers off at
night, their laptops go to sleep, they’re behind firewalls, or they’re
using Network Address Translation (NAT).


This brings us back to the problem of receivers like Bob having to give
spenders like Alice a long public key.  The shortest version of Bitcoin
public keys known to the developers of early Bitcoin were 65 bytes, the
equivalent of 130 characters when written in hexadecimal.  However, Bitcoin
already contained several data structures much larger than 65 bytes
which needed to be securely referenced in other parts of Bitcoin using the
smallest amount of data that was secure.


Bitcoin accomplishes that with a hash function, a function which takes
a potentially large amount of data, scrambles it (hashes it), and outputs a
fixed amount of data.  A cryptographic hash function will always produce
the same output when given the same input, and a secure function will
also make it impractical for somebody to choose a different input that
produces a previously-seen output.  That makes the output a commitment
to the input.  It’s a promise that, in practice, only input x will
produce output X.


For example, imagine I want to ask you a question and also give you my
answer in a form that you can’t read immediately.  Let’s say the
question is, “in what year did Satoshi Nakamoto start working on
Bitcoin?”  I’ll give you a commitment to my answer in the form of
output from the SHA256 hash function, the function most commonly used in
Bitcoin:


94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e


Later, after you tell me your guess to the answer of the question, I can
reveal my answer and prove to you that my answer, as input to the hash
function, produces exactly the same output I gave you earlier:


$ echo "2007.  He said about a year and a half before Oct 2008" | sha256sum
94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e


Now imagine that we ask Bob the question, “what is your public key?” Bob
can use a hash function to give us a cryptographically secure commitment
to his public key.  If he later reveals his key, and we verify it
produces the same commitment he previously gave us, we can be sure it
was the exact same key that was used to create that earlier commitment.


The SHA256 hash function is considered to be very secure and produces
256 bits (32 bytes) of output, less than half the size of original
Bitcoin public keys.  However, there are other slightly less secure hash
functions that produce smaller output, such as the RIPEMD160 hash
function whose output is 160 bits (20 bytes).  For reasons Satoshi
Nakamoto never stated, the original version of Bitcoin made commitments
to public keys by first hashing the key with SHA256 and then hashing
that output with RIPEMD160; this produced a 20-byte commitment to the
public key.


We can look at that algorithmically.
Starting with the public key K, we compute the SHA256 hash and then
compute the RIPEMD160 hash of the result, producing a 160-bit (20-byte)
number:



  
    A
    =
    R
    I
    P
    E
    M
    D
    160
    (
    S
    H
    A
    256
    (
    K
    )
    )
  




where K is the public key and A is the resulting commitment.


Now that we understand how to make a commitment to a public key, we need
to figure out how to use it in a transaction.  Consider the following
scriptPubKey:


OP_DUP OP_HASH160 <Bob's commitment> OP_EQUAL OP_CHECKSIG


And also the following scriptSig:


<Bob's signature> <Bob's public key>


Together, they form the following script:


<sig> <pubkey> OP_DUP OP_HASH160 <commitment> OP_EQUALVERIFY OP_CHECKSIG


As we did in “IP Addresses: The Original Address For Bitcoin (P2PK)”, we start putting items on the stack.  Bob’s
signature goes on first; his public key is then placed on top of the
stack.  The OP_DUP operation duplicates the top item, so the top and
second-to-top item on the stack are now both Bob’s public key.  The
OP_HASH160 operation consumes (removes) the top public key and
replaces it with the result of hashing it with RIPEMD160(SHA256(K)),
so now the top of the stack is a hash of Bob’s public key.  Next, the
commitment to Bob’s public key is added to the top of the stack.  The
OP_EQUALVERIFY operation consumes the top two items and verifies that
they are equal; that should be the case if the public key Bob provided
in the scriptSig is the same public key used to create the commitment in
the scriptPubKey that Alice paid.  If OP_EQUALVERIFY fails, the whole
script fails.  Finally, we’re left with a stack containing just Bob’s
signature and his public key; the OP_CHECKSIG opcode verifies they
correspond with each other and that the signature commits to the
transaction.


Although this process of Paying To a Public Key Hash (P2PKH) may seem
convoluted, it allows Alice’s payment to
Bob to contain only a 20 byte commitment to his public key instead of
the key itself, which would’ve been 65 bytes in the original version of
Bitcoin.  That’s a lot less data for Bob to have to communicate to
Alice.


However, we haven’t yet discussed how Bob gets those 20 bytes from his
Bitcoin wallet to Alice’s wallet.  There are commonly used encodings for
byte values, such as hexadecimal, but any mistake made in copying a
commitment would result in the bitcoins being sent to an unspendable
output, causing them to be lost forever.  In “Base58Check Encoding”, we’ll
look at compact encoding and reliable checksums.










Base58Check Encoding


In order to represent long numbers in a compact way,
using fewer symbols, many computer systems use mixed-alphanumeric
representations with a base (or radix) higher than 10. For example,
whereas the traditional decimal system uses 10 numerals, 0 through 9,
the hexadecimal system uses 16, with the letters A through F as the six
additional symbols. A number represented in hexadecimal format is
shorter than the equivalent decimal representation. Even more compact,
base64 representation uses 26 lowercase letters, 26 capital letters, 10
numerals, and 2 more characters such as “+” and “/” to
transmit binary data over text-based media such as email.


Base58 is a similar encoding to
base64, using upper- and lowercase letters and numbers,
but omitting some characters that are frequently mistaken for one
another and can appear identical when displayed in certain fonts.
Specifically, base58 is base64 without the 0 (number zero), O (capital
o), l (lower L), I (capital i), and the symbols “+” and
“/”. Or, more simply, it is a set of lowercase and capital letters and
numbers without the four (0, O, l, I) just mentioned. Example 4-2
shows the full base58 alphabet.


Example 4-2. Bitcoin’s base58 alphabet


123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz



To add extra security against typos or transcription errors, base58check
adds an error-checking code to the base58 alphabet. The checksum is an additional four bytes
added to the end of the data that is being encoded. The checksum is
derived from the hash of the encoded data and can therefore be used to
detect transcription and typing errors. When presented with
base58check code, the decoding software will calculate the checksum of
the data and compare it to the checksum included in the code. If the two
do not match, an error has been introduced and the base58check data is
invalid. This prevents a mistyped Bitcoin address from being accepted by
the wallet software as a valid destination, an error that would
otherwise result in loss of funds.


To convert data (a number) into a base58check format, we first add a
prefix to the data, called the “version byte,” which serves to easily
identify the type of data that is encoded. For example, the prefix zero
(0x00 in hex) indicates that the data should be used as the commitment (hash) in
a legacy P2PKH scriptPubKey.  A list of common version prefixes is shown
in Table 4-1.


Next, we compute the “double-SHA” checksum, meaning we apply the SHA256
hash-algorithm twice on the previous result (prefix and data):


checksum = SHA256(SHA256(prefix+data))


From the resulting 32-byte hash (hash-of-a-hash), we take only the first
four bytes. These four bytes serve as the error-checking code, or
checksum. The checksum is appended to the end.


The result is composed of three items: a prefix, the data, and a
checksum. This result is encoded using the base58 alphabet described
previously. Figure 4-6 illustrates the base58check
encoding process.



[image: Base58CheckEncoding]
Figure 4-6. Base58Check encoding: a base58, versioned, and checksummed format for unambiguously encoding bitcoin data




In Bitcoin, other data besides public key commitmens are presented to the user in
base58check encoding to make that data compact, easy to read, and easy to detect
errors. The version prefix in base58check encoding is used to create
easily distinguishable formats, which when encoded in base58 contain
specific characters at the beginning of the base58check-encoded payload.
These characters make it easy for humans to identify the type of data
that is encoded and how to use it. This is what differentiates, for
example, a base58check-encoded Bitcoin address that starts with a 1 from
a base58check-encoded private key WIF that starts with a 5. Some example
version prefixes and the resulting base58 characters are shown in
Table 4-1.


Table 4-1. Base58Check version prefix and encoded result examples


	Type
	Version prefix (hex)
	Base58 result prefix





	Address for Pay-to-Public-Key-Hash (P2PKH)

	0x00

	1




	Address for Pay-to-Script-Hash (P2SH)

	0x05

	3




	Testnet Address for P2PKH

	0x6F

	m or n




	Testnet Address for P2SH

	0xC4

	2




	Private Key WIF

	0x80

	5, K, or L




	BIP-32 Extended Public Key

	0x0488B21E

	xpub







Putting together public keys, hash-based commitments, and base58check
encocding, we can see the illustration of the conversion of a public key
into a Bitcoin address in Figure 4-7.



[image: pubkey_to_address]
Figure 4-7. Public key to Bitcoin address: conversion of a public key into a Bitcoin address












Decode from Base58Check


The Bitcoin Explorer commands (see XREF HERE) make it easy to write
shell scripts and command-line “pipes” that manipulate bitcoin keys,
addresses, and transactions. You can use Bitcoin Explorer to decode the
base58check format on the command line.


We use the base58check-decode command to decode the uncompressed key:


$ bx base58check-decode 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
wrapper
{
    checksum 4286807748
    payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
    version 128
}


The result contains the key as payload, the WIF version prefix 128, and a checksum.


Notice that the “payload” of the compressed key is appended with the
suffix 01, signaling that the derived public key is to be compressed:


$ bx base58check-decode KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
wrapper
{
    checksum 2339607926
    payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01
    version 128
}












Compressed public keys



When Bitcoin was first authored, its developers only knew how to create
65-byte public keys.  However, a later developer became aware of an
alternative encoding for public keys that used only 33 bytes and which
was backwards compatible with all Bitcoin full nodes at the time,
so there was no need to change the Bitcoin protocol.  Those 33-byte
public keys are known as compressed public keys and the original 65
byte keys are known as uncompressed public keys.  Using smaller public keys
results in smaller transactions, allowing more payments to be made in the same
block.


As we saw in the section “Public Keys”, a public key is a point (x,y) on an
elliptic curve. Because the curve expresses a mathematical function, a
point on the curve represents a solution to the equation and, therefore,
if we know the x coordinate we can calculate the y coordinate by
solving the equation y2 mod p = (x3 + 7) mod p. That allows us to
store only the x coordinate of the public key point, omitting the y
coordinate and reducing the size of the key and the space required to
store it by 256 bits. An almost 50% reduction in size in every
transaction adds up to a lot of data saved over time!


Here’s the public key generated by the private key we created in
“Public Keys”.


x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB


Here’s the same public key shown as a 520-bit number (130 hex digits)
with the prefix 04 followed by x and then y coordinates, as 04 x
y:


K = 04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A↵
07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB



Whereas uncompressed public keys have a prefix of 04, compressed
public keys start with either a 02 or a 03 prefix. Let’s look at why
there are two possible prefixes: because the left side of the equation
is y2, the solution for y is a square root, which can have a
positive or negative value. Visually, this means that the resulting y
coordinate can be above or below the x-axis. As you can see from the
graph of the elliptic curve in Figure 4-2, the curve is symmetric,
meaning it is reflected like a mirror by the x-axis. So, while we can
omit the y coordinate we have to store the sign of y (positive or
negative); or in other words, we have to remember if it was above or
below the x-axis because each of those options represents a different
point and a different public key. When calculating the elliptic curve in
binary arithmetic on the finite field of prime order p, the y
coordinate is either even or odd, which corresponds to the
positive/negative sign as explained earlier. Therefore, to distinguish
between the two possible values of y, we store a compressed public key
with the prefix 02 if the y is even, and 03 if it is odd, allowing
the software to correctly deduce the y coordinate from the x
coordinate and uncompress the public key to the full coordinates of the
point. Public key compression is illustrated in Figure 4-8.


Here’s the same public key generated in “Public Keys”, shown as a compressed
public key stored in 264 bits (66 hex digits) with the prefix 03
indicating the y coordinate is odd:


K = 03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A


This compressed public key corresponds to the same private key, meaning
it is generated from the same private key. However, it looks different
from the uncompressed public key. More importantly, if we convert this
compressed public key to a commitment using the HASH160
function (RIPEMD160(SHA256(K))) it will produce a different
commitment than the uncompressed public key, leading to a different
address. This can be confusing, because it means that a single private
key can produce a public key expressed in two different formats
(compressed and uncompressed) that produce two different Bitcoin
addresses. However, the private key is identical for both Bitcoin
addresses.



[image: pubkey_compression]
Figure 4-8. Public key compression




Compressed public keys are now the default in almost all Bitcoin
software, and were made required when using certain new features added
in later protocol upgrades.


However, some software still needs to support uncompressed public keys,
such as a wallet application importing private keys from an older
wallet.  When the new wallet scans the block chain for old P2PKH outputs
and inputs, it needs to know whether to scan the 65-byte keys (and
commitments to those keys) or 33-byte keys (and their commitments).  Failure
to scan for the correct type can lead to the user not being able to
spend their full balance.  To resolve this issue, when private keys are
exported from a wallet, the Wallet Import Format (WIF) that is used to
represent them is implemented slightly differently in newer Bitcoin
wallets, to indicate that these private keys have been used to produce
compressed public keys.










Legacy Pay-to-Script-Hash (P2SH)


As we’ve seen in preceding sections, someone receiving Bitcoins (like
Bob) can require payments to him contain certain constraints in their
scriptPubKeys.  Bob will need to fulfill those constraints using a
scriptSig when he spends those bitcoins.  In “IP Addresses: The Original Address For Bitcoin (P2PK)”, the constraint
was simply that the scriptSig needed to provide an appropriate
signature.  In “Legacy Addresses for P2PKH”, an appropriate public key also needed to be
provided.


In order for a spender (like Alice) to place the constraints Bob wants
in the scriptPubKey she uses to pay him, Bob needs to communicate those
constraints to her.  This is similar to the problem of Bob needing to
communicate his public key to her.  Like that problem, where
public keys can be fairly large, the constraints Bob uses can also be
quite large---potentially thousands of bytes.  That’s not only thousands
of bytes which need to be communicated to Alice, but thousands of bytes
for which she needs to pay transaction fees every time she wants to spend
money to Bob.  However, the solution of using hash functions to create
small commitments to large amounts of data also applies here.


The BIP16 upgrade to the Bitcoin protocol in 2013 allows a
scriptPubKey to commit to a redemption script (redeemScript).  When
Bob spends his bitcoins, his scriptSig need to provide a redeemScript
that matches the commitment and also any data necessary to satisfy the
redeemScript (such as signatures).  Let’s start by imagining Bob wants
to require two signatures to spend his bitcoins, one signature from his
desktop wallet and one from a hardware signing device.  He puts those
conditions into a redeemScript:


<public key 1> OP_CHECKSIGVERIFY <public key 2> OP_CHECKSIG


He then creates a commitment to the redeemScript using the same
HASH160 mechanism used for P2PKH commitments, RIPEMD160(SHA256(script)).
That commitment is placed into the scriptPubKey using a special
template:


OP_HASH160 <commitment> OP_EQUAL

Warning

Payments to Script Hashes (P2SH) must use the specific P2SH template
with no extra data or conditions in the scriptPubKey.  If the
scriptPubKey is not exactly OP_HASH160 <20 bytes> OP_EQUAL, the
redeemScript will not be used and any bitcoins may either be unspendable
or spendable by anyone (meaning anyone can take them).




When Bob goes to spend the payment he received to the commitment for his
script, he uses a scriptSig that includes the redeemScript, with it
serialized as a single data element.  He also provides the signatures
he needs to satisfy the redeemScript, putting them in the order that
they will be consumed by the opcodes:


<signature2> <signature1> <redeemScript>


When Bitcoin full nodes receive Bob’s spend, they’ll verify that the
serialized redeemScript will hash to the same value as the commitment.
Then they’ll replace it on the stack with its deserialized value:


<signature2> <signature1> <pubkey1> OP_CHECKSIGVERIFY <pubkey2> OP_CHECKSIG


The script is executed and, if it passes and all of the other
transaction details are correct, the transaction is valid.


Addresses for Pay-to-Script-Hash (P2SH) are also created with
base58check.  The version prefix is set to 5, which results in an
encoded address starting with a 3. An example of a P2SH address is
3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM, which can be derived using the
Bitcoin Explorer commands script-encode, sha256, ripemd160, and
base58check-encode (see XREF HERE) as follows:


$ echo \
'DUP HASH160 [89abcdefabbaabbaabbaabbaabbaabbaabbaabba] EQUALVERIFY CHECKSIG' > script
$ bx script-encode < script | bx sha256 | bx ripemd160 \
| bx base58check-encode --version 5
3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM

Tip

P2SH is not necessarily the same as a multisignature
transaction. A P2SH address most often represents a multisignature
script, but it might also represent a script encoding other types of
transactions.




P2PKH and P2SH are the only two script templates used with base58check
encoding.  They are now known as legacy addresses and, as of early 2023,
are only used in
about 10% of transactions.
Legacy addresses were supplanted by the bech32 family of addresses.


P2SH collision attacks

All addresses based on hash functions are theoretically vulnerable to an
attacker finding two different inputs (e.g. redeemScripts) that produce
the same hash function output (commitment).  For addresses created
entirely by a single party, the chance of an attacker generating a
different input for an existing commitment is proportional to the
strength of the hash algorithm.  For a secure 160-bit algorithm like
HASH160, the probability is 1-in-2160.  This is a second pre-image
attack.


However, this changes when an attacker is able to influence the original input
value. For example, an attacker participates in the creation of a
multisignature script where the attacker doesn’t need to submit his
public key until after he learns all of the other party’s public keys.
In that case, the strength of hash algorithm is reduced to its square
root.  For HASH160, the probability becomes 1-in-280.  This is a
collision attack.


To put those numbers in context, as of early 2023, all Bitcoin miners
combined execute about 280 hash functions every hour.  They run a
different hash function than HASH160, so their existing hardware can’t
create collision attacks for it, but the existence of the Bitcoin
network proves that collision attacks against 160-bit functions like
HASH160 are practical.  Bitcoin miners have spent the equivalent of
billions of US dollars on special hardware, so creating a collision
attack wouldn’t be cheap, but there are organizations which expect to
receive billions of dollars in bitcoins to addresses generated by
processes involving multiple parties, which could make the attack
profitable.


There are well established cryptographic protocols for preventing
collision attacks but a simple solution which doesn’t require any
special knowledge on the part of wallet developers is to simply use
a stronger hash function.  Later upgrades to Bitcoin made that possible
and newer Bitcoin addresses provide at least 128 bits of collision
resistance.  To perform 2128 hash operations would require all current
Bitcoin miners about 50 billion years to perform.


Although we do not believe there is any immediate threat to anyone
creating new P2SH addresses, we recommend all new wallets use newer
types of addresses to eliminate address collision attacks as a concern.












Bech32 addresses


In 2017, the Bitcoin protocol was upgraded to prevent transaction
identifiers (txids) from being changed without the consent of a spending
user (or a quorum of signers when multiple signatures are required).
The upgrade, called segregated witness (or segwit for short),  also
provided additional capacity for transaction data in blocks and several
other benefits.  However, users wanting direct access to segwit’s
benefits had to accept payments to variations on the legacy P2PKH and
P2SH scripts.


As mentioned in XREF HERE, one of the advantages of the P2SH output type
was that a spender (such as Alice) didn’t need to know the details of
the script the receiver (such as Bob) used.  The segwit upgrade was
designed to be compatible with this mechanism, allowing users to
immediately begin accessing many of the new benefits by using a P2SH
address.  But for Bob to gain access to all of the benefits, he would
need Alice’s wallet to pay him using a different type of script.  That
would require Alice’s wallet to upgrade to supporting the new scripts.


At first, Bitcoin developers proposed BIP142, which would continue using
base58check with a new version byte, similar to the P2SH upgrade.  But
getting all wallets to upgrade to new scripts with a new base58check
version was expected to require almost as much work as getting them to
upgrade to an entirely new address format, so several Bitcoin
contributors set out to design the best possible address format.  They
identified several problems with base58check:



	
Its mixed case presentation made it inconvenient to read aloud or
transcribe.  Try reading one of the legacy addresses in this chapter
to a friend who you have transcribe it.  Notice how you have to prefix
every letter with the words “uppercase” and “lowercase”.  Also note
when you review their writing that the uppercase and lowercase
versions of some letters can look similar in many people’s
handwriting.



	
It can detect errors, but it can’t help users correct those errors.
For example, if you accidentally transpose two characters when manually
entering an address, your wallet will almost certainly warn that a
mistake exists, but it won’t help you figure out where the error is
located.  It might take you several frustrating minutes to eventually
discover the mistake.



	
A mixed case alphabet also requires extra space to encode in QR code
images, which are commonly used to share addresses and invoices
between wallets.  That extra space means QR codes need to be larger at
the same resolution or they become harder to scan quickly.



	
It requires every spender wallet upgrade to support new protocol
features like P2SH and segwit.  Although the upgrades themselves might
not require much code, experience shows that many wallet authors are
busy with other work and can sometimes delay upgrading for years.
This adversely affects everyone who wants to use the new features.






The developers working on an address format for segwit found solutions
for each of these problems in a new address format called
bech32 (pronounced with a soft “ch”, as in “besh thirty-two”).  The
“bech” stands for BCH, the initials of the three individuals who
discovered the cyclic code in 1959 and 1960 upon which bech32 is based.
The “32” stands for the number of characters in the bech32 alphabet
(similar to the 58 in base58check).



	
Bech32 uses only numbers and a single case of letters (preferably
rendered in lowercase).  Despite its alphabet being almost half the
size of the base58check alphabet, bech32 addresses are only slightly
longer than the longest equivalent P2PKH legacy addresses.



	
Bech32 can both detect and help correct errors.  In an address of an
expected length, it is mathematically guaranteed to detect any error
affecting four characters or less; that’s more reliable than
base58check.  For longer errors, it will fail to detect them less than
one time in a billion, which is roughly the same reliability as
base58check.  Even better, for an address typed with just a few
errors, it can tell the user where those errors occurred, allowing them to
quickly correct minor transcription mistakes.  See Example 4-3
for an example of an address entered with errors.






Example 4-3. Bech32 typo detection


Address:
  bc1p9nh05ha8wrljf7ru236awn4t2x0d5ctkkywmv9sclnm4t0av2vgs4k3au7


Detected errors shown in bold.  Generated using the
bech32 address decoder demo.




	
Bech32 is preferably written with only lowercase characters, but those
lowercase characters can be replaced with uppercase characters before
encoding an address in a QR code.  This allows the use of a special QR
encoding mode that uses less space.  Notice the difference in size and
complexity of the two QR codes for the same address in
Figure 4-9.







[image: The same bech32 address QR encoded in uppercase and lowercase]
Figure 4-9. The same bech32 address QR encoded in uppercase and lowercase





	
Bech32 takes advantage of an upgrade mechanism designed as part of
segwit to make it possible for spender wallets to be able to pay
output types that aren’t in use yet.  The goal was to allow developers
to build a wallet today that allows spending to a bech32 address
and have that wallet remain able to spend to bech32 addresses for
users of new features added in future protocol upgrades.  It was
hoped that we might never again need to go through the system-wide
upgrade cycles necessary to allow people to fully use P2SH and segwit.














Problems with bech32 addresses


Bech32 addresses would have been a success in every area except for one
problem.  The mathematical guarantees about their ability to detect
errors only apply if the length of the address you enter into a wallet
is the same length of the original address.  If you add or remove any
characters during transcription, the guarantee doesn’t apply and your
wallet may spend funds to a wrong address.  However, even without the
guarantee, it was thought that it would be very unlikely that a user adding
or removing characters would produce a string with a valid checksum, ensuring
users’ funds were safe.


Unfortunately, the choice for one of the constants in the bech32
algorithm just happened to make it very easy to add or remove the letter
“q” in the penultimate position of an address that ends with the letter
“p”.  In those cases, you can also add or remove the letter “q” multiple
times.  This will be caught by the checksum some of the time, but it
will be missed far more often than the one-in-a-billion expectations for
bech32’s substitution errors.  For an example, see Example 4-4.


Example 4-4. Extending the length of bech32 address without invalidating its checksum


Intended bech32 address:
bc1pqqqsq9txsqp

Incorrect addresses with a valid checksum:
bc1pqqqsq9txsqqqqp
bc1pqqqsq9txsqqqqqqp
bc1pqqqsq9txsqqqqqqqqp
bc1pqqqsq9txsqqqqqqqqqp
bc1pqqqsq9txsqqqqqqqqqqqp



For the initial version of segwit (version 0), this wasn’t a practical
concern.  Only two valid lengths were defined for v0 segwit outputs: 22
bytes and 34 bytes.  Those correspond to bech32 addresses 42 characters
or 62 characters long, so someone would need to add or remove the letter “q”
from the penultimate position of a bech32 address 20 times in order to
send money to an invalid address without a wallet being able to detect
it.  However, it would become a problem for users in the future if
a segwit-based upgrade were ever to be implemented.












Bech32m


Although bech32 worked well for segwit v0, developers didn’t want to
unnecessarily constrain output sizes in later versions of segwit.
Without constraints, adding or removing a single “q” in a bech32 address
could result in a user accidentally sending their money to an
output that was either unspendable or spendable by anyone (allowing
those bitcoins to be taken by anyone).  Developers exhaustively analyzed the bech32
problem and found that changing a single constant in their algorithm
would eliminate the problem, ensuring that any insertion or deletion of
up to five characters will only fail to be detected less often than one
time in a billion.


The version of bech32 with a single different constant is known as
Bech32 Modified (bech32m).  All of the characters in bech32 and bech32m
addresses for the same underlying data will be identical except for the
last six (the checksum).  That means a wallet will need to know which
version is in use in order to validate the checksum, but both address
types contain an internal version byte that makes determining that easy.












Encoding and Decoding bech32m addresses


In this section, we’ll look at the encoding and parsing rules for
bech32m Bitcoin addresses since they encompass the ability to parse
bech32 addresses and are the current recommended address format for
Bitcoin wallets.


Bech32m addresses start with a Human Readable Part (HRP).  There are
rules in BIP173 for creating your own HRPs, but for Bitcoin you only
need to know about the HRPs already chosen, shown in
Table 4-2.


Table 4-2. Bech32 HRPs for Bitcoin


	bc

	Bitcoin mainnet




	tb

	Bitcoin testnet







The HRP is followed by a separator, the number “1”.  Earlier proposals
for a protocol separator used a colon but some operating systems and
applications which allow a user to double click on a word to highlight
it for copy and pasting won’t extend the highlighting to and past a
colon.  A number ensured double-click highlighting would work with any
program that supports bech32m strings in general (which include other
numbers).  The number “1” was chosen because bech32 strings don’t
otherwise use it in order to prevent accidental transliteration between
the number “1” and the lowercase letter “l”.


The other part of a bech32m address is called the “data part”.  There
are three elements to this part:


	Witness version

	
A single byte which encodes as a single character
in a bech32m Bitcoin address immediately following the separator.
This letter represents the segwit version.  The letter “q” is the
encoding of “0” for segwit v0, the initial version of segwit where
bech32 addresses were introduced.  The letter “p” is the encoding of
“1” for segwit v1 (also called taproot) where bech32m began to be
used.  There are seventeen possible versions of segwit and it’s
required for Bitcoin that the first byte of a bech32m data part decode
to the number 0 through 16 (inclusive).



	Witness program

	
From 2 to 40 bytes.  For segwit v0, this witness program
must be either 20 or 32 bytes; no other length is valid.  For segwit
v1, the only defined length as of this writing is 32 bytes but other
lengths may be defined later.



	Checksum

	
Exactly 6 characters.  This is created using a BCH code, a type of
error correction code (although for Bitcoin addresses, we’ll see later
that it’s essential to use the checksum only for error detection—​not
correction).






Let’s illustrate these rules by walking through an example of creating
bech32 and bech32m addresses.  For all of the following examples, we’ll use the
bech32m reference code
for Python.


Let’s start by generating four output scripts, one for each of the
different segwit outputs in use at the time of publication, plus one for
a future segwit version that doesn’t yet have a defined meaning.  The
scripts are listed in Table 4-3.


Table 4-3. Scripts for different types of segwit outputs


	P2WPKH

	OP_0 2b626ed108ad00a944bb2922a309844611d25468




	P2WSH

	OP_0 648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f




	P2TR

	OP_1 2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311




	Future Example

	OP_16 0000







For the P2WPKH output, the witness program contains a commitment constructed in exactly the same
way as the commitment for a P2PKH output seen in “Legacy Addresses for P2PKH”.  A public key is passed into a SHA256 hash
function.  The resultant 32 byte digest is then passed into a RIPEMD-160
hash function.  The digest of that function (the commitment) is placed
in the witness program.


For the P2WSH output, we don’t use the P2SH algorithm.  Instead we take
the script, pass it into a SHA256 hash function, and use the 32-byte
digest of that function in the witness program.  For P2SH, the SHA256
digest was hashed again with RIPEMD-160, but that may not be secure in
some cases; for details, see “P2SH collision attacks”.  A result of
using SHA256 without RIPEMD160 is that P2WSH commitments are 32 bytes
(256 bits) instead 20 bytes (160 bits).


For the Pay-to-Taproot (P2TR) output, the witness program is a point on
the secp256k1 curve.  It may be a simple public key, but in most cases
it should be a public key that commits to some additional data.  We’ll
learn more about that commitment in XREF HERE.


For the example of a future segwit version, we simply use the highest
possible segwit version number (16) and the smallest allowed witness
program (2 bytes) with a null value.


Now that we know the version number and the witness program, we can
convert each of them into a bech32 address.  Let’s use the bech32m reference
library for Python to quickly generate those addresses, and then take a
deeper look at what’s happening:


wget https://raw.githubusercontent.com/sipa/bech32/master/ref/python/segwit_addr.py
2023-01-30 11:59:10 (46.3 MB/s) - ‘segwit_addr.py’ saved [5022/5022]

$ python
>>> from segwit_addr import *
>>> from binascii import unhexlify

>>> help(encode)
encode(hrp, witver, witprog)
    Encode a segwit address.

>>> encode('bc', 0, unhexlify('2b626ed108ad00a944bb2922a309844611d25468'))
'bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee'
>>> encode('bc', 0, unhexlify('648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f'))
'bc1qvj9r9egtd7mu2gemy28kpf4zefq4ssqzdzzycj7zjhk4arpavfhsct5a3p'
>>> encode('bc', 1, unhexlify('2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311'))
'bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7'
>>> encode('bc', 16, unhexlify('0000'))
'bc1sqqqqkfw08p'


If we open the file segwit_addr.py and look at what the code is doing,
the first thing we will notice
is the sole difference between bech32 (used for segwit v0) and bech32m
(used for later segwit versions) is the constant.


BECH32_CONSTANT = 1
BECH32M_CONSTANT = 0x2bc830a3


Next we notice the code produce the checksum.  In the final step of the
checksum, the appropriate constant is merged into the value using an xor
operation.  That single value is the only difference between bech32 and
bech32m.


With the checksum created, each 5-bit character in the data part
(including the witness version, witness program, and checksum) is
converted to alphanumeric characters.


For decoding back into a scriptPubKey, we work in reverse.  First let’s
use the reference library to decode two of our addresses:


>>> help(decode)
decode(hrp, addr)
    Decode a segwit address.

>>> _ = decode("bc", "bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee"); _[0], bytes(_[1]).hex()
(0, '2b626ed108ad00a944bb2922a309844611d25468')
>>> _ = decode("bc", "bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7"); _[0], bytes(_[1]).hex()
(1, '2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311')


We get back both the witness version and the witness program.  Those can
be inserted into the template for our scriptPubKey:


<version> <program>


For example:


OP_0 2b626ed108ad00a944bb2922a309844611d25468
OP_1 2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311

Warning

One
possible mistake here to be aware of is that a witness version of 0 is
for OP_0, which uses the byte 0x00—​but a witness version of 1 uses
OP_1, which is byte 0x51.  Witness versions 2 through 16 use 0x52
through 0x60, respectively.




When implementing bech32m encoding or decoding, we very strongly
recommend that you use the test vectors provided in BIP350.  We also ask
that you ensure your code passes the test vectors related to paying future segwit
versions that haven’t been defined yet.  This will help make your
software is usable for many years to come even if you aren’t able to add
support for new Bitcoin features as soon as they become available.














Private key formats


The private key
can be represented in a number of different formats, all of which
correspond to the same 256-bit number. Table 4-4 shows several common
formats used to represent private keys. Different formats are used in
different circumstances. Hexadecimal and raw binary formats are used
internally in software and rarely shown to users. The WIF is used for
import/export of keys between wallets and often used in QR code
(barcode) representations of private keys.


Modern relevancy of private key formats

Early Bitcoin wallet software generated one or more independent private
keys when a new user wallet was initialized.  When the initial set of
keys had all been used, the wallet might generate additional private
keys.  Individual private keys could be exported or imported.  Any time
new private keys were generated or imported, a new backup of the wallet
needed to be created.


Later Bitcoin wallets began using deterministic wallets where all
private keys are generated from a single seed value.  These wallets only
ever need to be backed up once for typical onchain use.  However, if a
user exports a single private key from one of these wallets and an
attacker acquires that key plus some non-private data about the wallet,
they can potentially derive any private key in the wallet—​allowing the
attacker to steal all of the wallet funds.  Additionally, keys cannot be
imported into deterministic wallets.  This means almost no modern
wallets support the ability to export or import an individual key.  The
information in this section is mainly of interest to anyone needing
compatibility with early Bitcoin wallets.


For more information, see XREF HERE.




Table 4-4. Private key representations (encoding formats)


	Type
	Prefix
	Description





	Raw

	None

	32 bytes




	Hex

	None

	64 hexadecimal digits




	WIF

	5

	Base58Check encoding: base58 with version prefix of 128- and 32-bit checksum




	WIF-compressed

	K or L

	As above, with added suffix 0x01 before encoding







Table 4-5 shows the private key generated in several different formats.


Table 4-5. Example: Same key, different formats


	Format
	Private key





	Hex

	1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd




	WIF

	5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn




	WIF-compressed

	KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ







All of these representations are different ways of showing the same
number, the same private key. They look different, but any one format
can easily be converted to any other format. Note that the “raw binary”
is not shown in Table 4-5 as any encoding for display here would, by
definition, not be raw binary data.


We use the wif-to-ec command from Bitcoin Explorer (see XREF HERE)
to show that both WIF keys represent the same private key:


$ bx wif-to-ec 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

$ bx wif-to-ec KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd












Compressed private keys


Ironically,
the term “compressed private key” is a misnomer, because when a private
key is exported as WIF-compressed it is actually one byte longer than
an “uncompressed” private key. That is because the private key has an
added one-byte suffix (shown as 01 in hex in Table 4-6), which
signifies that the private key is from a newer wallet and should only be
used to produce compressed public keys. Private keys are not themselves
compressed and cannot be compressed. The term “compressed private key”
really means “private key from which only compressed public keys should
be derived,” whereas “uncompressed private key” really means “private
key from which only uncompressed public keys should be derived.” You
should only refer to the export format as “WIF-compressed” or “WIF” and
not refer to the private key itself as “compressed” to avoid further
confusion


Table 4-6 shows the same key, encoded in WIF and WIF-compressed formats.


Table 4-6. Example: Same key, different formats


	Format
	Private key





	Hex

	1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD




	WIF

	5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn




	Hex-compressed

	1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD01




	WIF-compressed

	KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ







Notice that the hex-compressed private key format has one extra byte at
the end (01 in hex). While the base58 encoding version prefix is the
same (0x80) for both WIF and WIF-compressed formats, the addition of one
byte on the end of the number causes the first character of the base58
encoding to change from a 5 to either a K or L. Think of this as the
base58 equivalent of the decimal encoding difference between the number
100 and the number 99. While 100 is one digit longer than 99, it also
has a prefix of 1 instead of a prefix of 9. As the length changes, it
affects the prefix. In base58, the prefix 5 changes to a K or L as
the length of the number increases by one byte.


Remember, these formats are not used interchangeably. In a newer
wallet that implements compressed public keys, the private keys will
only ever be exported as WIF-compressed (with a K or L prefix). If
the wallet is an older implementation and does not use compressed public
keys, the private keys will only ever be exported as WIF (with a 5
prefix). The goal here is to signal to the wallet importing these
private keys whether it must search the blockchain for compressed or
uncompressed public keys and addresses.


If a bitcoin wallet is able to implement compressed public keys, it will
use those in all transactions. The private keys in the wallet will be
used to derive the public key points on the curve, which will be
compressed. The compressed public keys will be used to produce Bitcoin
addresses and those will be used in transactions. When exporting private
keys from a new wallet that implements compressed public keys, the WIF
is modified, with the addition of a one-byte suffix 01 to the private
key. The resulting base58check-encoded private key is called a
“compressed WIF” and starts with the letter K or L, instead of
starting with “5” as is the case with WIF-encoded (uncompressed) keys
from older wallets.

Tip

“Compressed private keys” is a misnomer! They are not compressed;
rather, WIF-compressed signifies that the keys should only be used to
derive compressed public keys and their corresponding Bitcoin addresses.
Ironically, a “WIF-compressed” encoded private key is one byte longer
because it has the added 01 suffix to distinguish it from an
“uncompressed” one.
















Advanced Keys and Addresses


In the
following sections we will look at advanced forms of keys and addresses,
such as vanity addresses and paper wallets.










Vanity Addresses


Vanity addresses are valid Bitcoin
addresses that contain human-readable messages. For example,
1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 is a valid address that contains
the letters forming the word “Love” as the first four base58 letters.
Vanity addresses require generating and testing billions of candidate
private keys, until a Bitcoin address with the desired pattern is found.
Although there are some optimizations in the vanity generation
algorithm, the process essentially involves picking a private key at
random, deriving the public key, deriving the Bitcoin address, and
checking to see if it matches the desired vanity pattern, repeating
billions of times until a match is found.


Once a vanity address matching the desired pattern is found, the private
key from which it was derived can be used by the owner to spend bitcoin
in exactly the same way as any other address. Vanity addresses are no
less or more secure than any other address. They depend on the same
Elliptic Curve Cryptography (ECC) and SHA as any other address. You can
no more easily find the private key of an address starting with a vanity
pattern than you can any other address.


In Chapter 1, we introduced Eugenia, a children’s
charity director operating in the Philippines. Let’s say that Eugenia is
organizing a bitcoin fundraising drive and wants to use a vanity Bitcoin
address to publicize the fundraising. Eugenia will create a vanity
address that starts with “1Kids” to promote the children’s charity
fundraiser. Let’s see how this vanity address will be created and what
it means for the security of Eugenia’s charity.












Generating vanity addresses


It’s important to realize that a Bitcoin address is simply a number
represented by symbols in the base58 alphabet. The search for a pattern
like “1Kids” can be seen as searching for an address in the range from
1Kids11111111111111111111111111111 to
1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz. There are approximately 5829
(approximately 1.4 * 1051) addresses in that range, all starting with
“1Kids.” Table 4-7 shows the range of addresses that have the
prefix 1Kids.


Table 4-7. The range of vanity addresses starting with “1Kids”


	From

	1Kids11111111111111111111111111111




	
	1Kids11111111111111111111111111112




	
	1Kids11111111111111111111111111113




	
	…​




	To

	1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz







Let’s look at the pattern “1Kids” as a number and see how frequently we
might find this pattern in a Bitcoin address (see Table 4-8). An
average desktop computer PC, without any specialized hardware, can
search approximately 100,000 keys per second.


Table 4-8. The frequency of a vanity pattern (1KidsCharity) and average search time on a desktop PC


	Length
	Pattern
	Frequency
	Average search time





	1

	1K

	1 in 58 keys

	< 1 milliseconds




	2

	1Ki

	1 in 3,364

	50 milliseconds




	3

	1Kid

	1 in 195,000

	< 2 seconds




	4

	1Kids

	1 in 11 million

	1 minute




	5

	1KidsC

	1 in 656 million

	1 hour




	6

	1KidsCh

	1 in 38 billion

	2 days




	7

	1KidsCha

	1 in 2.2 trillion

	3–4 months




	8

	1KidsChar

	1 in 128 trillion

	13–18 years




	9

	1KidsChari

	1 in 7 quadrillion

	800 years




	10

	1KidsCharit

	1 in 400 quadrillion

	46,000 years




	11

	1KidsCharity

	1 in 23 quintillion

	2.5 million years







As you can see, Eugenia won’t be creating the vanity address
“1KidsCharity” anytime soon, even if she had access to several thousand
computers. Each additional character increases the difficulty by a
factor of 58. Patterns with more than seven characters are usually found
by specialized hardware, such as custom-built desktops with multiple
GPUs.
Vanity searches on GPU systems are many orders of magnitude
faster than on a general-purpose CPU.


Another way to find a vanity address is to outsource the work to a pool
of vanity miners. A pool is a service that
allows those with GPU hardware to earn bitcoin searching for vanity
addresses for others. For a fee, Eugenia can outsource the search for a
seven-character pattern vanity address and get results in a few hours
instead of having to run a CPU search for months.


Generating a vanity address is a brute-force exercise: try a random key,
check the resulting address to see if it matches the desired pattern,
repeat until successful.














Vanity address security and privacy


Vanity addresses were popular in the
early years of Bitcoin but have almost entirely disappeared from use as
of 2023.  There are two likely causes for this trend:


	
Deterministic wallets: as we saw in “Recovery Codes”, it’s possible to
back up every key in most modern wallets by simply writing down a few
words or characters.  This is achieved by deriving every key in the
wallet from those words or characters using a deterministic algorithm.
It’s not possible to use vanity addresses with a deterministic wallet
unless the user backs up additional data for every vanity address they
create.  More practically, most wallets using deterministic key
generation simply don’t allow importing a private key or key tweak from
a vanity generator.



	
Avoiding address reuse: using a vanity address to receive multiple
payments to the same address creates a link between all of those
payments.  This might be acceptable to Eugenia if her non-profit needs
to report its income and expenditures to a tax authority anyway.
However, it also reduces the privacy of people who either pay Eugenia or
receive payments from her.  For example, Alice may want to donate
anonymously and Bob may not want his other customers to know that he
gives discount pricing to Eugenia.







Given those problems, we don’t expect to see many vanity addresses in
the future, although there will probably always be some.














Paper Wallets


Paper wallets are bitcoin private keys printed on paper.
Often the paper wallet also includes the corresponding Bitcoin address
for convenience, but this is not necessary because it can be derived
from the private key.

Warning

Paper wallets are an OBSOLETE technology and are dangerous for most
users. There are many subtle pitfalls involved in generating them, not
least of which the possibility that the generating code is compromised
with a “back door”. Hundreds of bitcoin have been stolen this way. Paper
wallets are shown here for informational purposes only and should not be
used for storing bitcoin. Use a recovery code to backup your
keys, possibly with a hardware signing device to store keys and sign transactions. DO NOT
USE PAPER WALLETS.




Paper wallets come in many shapes, sizes, and designs, but at a very
basic level are just a key and an address printed on paper.
Table 4-9 shows the simplest form of a paper wallet.


Table 4-9. Simplest form of a paper wallet—a printout of the Bitcoin address and private key


	Public address
	Private key (WIF)





	1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x

	5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn







Paper wallets come in many designs and sizes, with many different
features. Figure 4-10 shows a sample paper wallet.



[image: mbc2 0408]
Figure 4-10. An example of a simple paper wallet




Some are intended to be given as gifts and have seasonal themes, such as
Christmas and New Year’s themes. Others are designed for storage in a
bank vault or safe with the private key hidden in some way, either with
opaque scratch-off stickers, or folded and sealed with tamper-proof
adhesive foil.  Other designs feature additional copies of the key and
address, in the form of detachable stubs similar to ticket stubs,
allowing you to store multiple copies to protect against fire, flood, or
other natural disasters.



[image: mbc2 0412]
Figure 4-11. An example of a paper wallet with additional copies of the keys on a backup “stub”




From the original public-key focused design of Bitcoin to modern addresses
and scripts like bech32m and pay-to-taproot—​and even addresses for
future Bitcoin upgrades—​you’ve learned how the Bitcoin protocol allows
spenders to identify the wallets which should receive their payments.
But when it’s actually your wallet receiving the payments, you’re going
to want the assurance that you’ll still have access to that money even
if something happens to your wallet data.  In the next chapter, we’ll
look at how Bitcoin wallets are designed to protect their funds from a
variety of threats.
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