
School I&C, Claude Petitpierre 1

JPA: Java Persistence API

• JavaBeans synchronized with
the database

• Other names: Hibernate, EJB3

School I&C, Claude Petitpierre 2

JPA Object
@Entity
public class Wine implements java.io.Serializable {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id = null;
private String wineName;

public Long getId() { // getters – setters, generated by Eclipse
return id;

}
public void setId(Long id) {

this.id = id;
}
public String getWineName () {

return wineName;
}

}

School I&C, Claude Petitpierre 3

Objet JPA with non-persistent attributes
@Entity
public class Wine implements java.io.Serializable {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id = null;
private String wineName;

transient private String flag; // not in the BD, not serialized

@Transient
private String caracteristic; // not in the BD

// . . . getters / setters . . .
}

// the transients are only used in JSF, not in the BD

School I&C, Claude Petitpierre 4

Imports into a JPA

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Wine implements java.io.Serializable
{

. . .
}

Created by
clicking on the
error marks

School I&C, Claude Petitpierre

Introduce an object
into the database

javax.persistence.EntityManager em = ejb3_utility.Manager.open();
javax.persistence.EntityTransaction tx = em.getTransaction();

tx.begin();
Wine wine = new Wine(nameW, grape, year);
em.persist(wine);
// the modifications done here are also introduced into the DB

tx.commit(); // or tx.rollback();
ejb3_utility.Manager.close();

// persist adds automatically an id in the field @Id of the object

School I&C, Claude Petitpierre 6

Create a Project Containing JPAs

See http://ltiwww.epfl.ch/~petitpie/InternetProgramming/JPA_Aux/JPA.html

School I&C, Claude Petitpierre 7

Project with objects JPA

• Create a Dynamic Web Project

• Add the list of .jar in
WebContent/WEB-INF/lib

• Add ejb3_utility/Manager.java in src

• Add META-INF/persistence.xml in the directory
src and introduce the name of every JPA in
this file

School I&C, Claude Petitpierre 8

Persistence.xml (part)

<persistence-unit name="NameDeManager">
<class>db.Wine</class>
<properties>

<property name="hibernate.dialect" value="org.hibernate.dialect.MySQLDialect"/>
<property name="hibernate.hbm2ddl.auto" value="update"/>
<property name="hibernate.connection.driver_class" value="com.mysql.jdbc.Driver"/>
<property name="hibernate.connection.username" value="username"/>
<property name="hibernate.connection.password" value="password"/>
<property name="hibernate.connection.url" value="jdbc:mysql://localhost:3306/test"/>
<property name="javax.persistence.transactionType" value="RESOURCE_LOCAL"/>

</properties>
</persistence-unit>

</persistence>

Located in src/META-INF

School I&C, Claude Petitpierre

Indirection in the session
(p remains in the session)

Person
Business
Person p;
public void action() {

. . .
p = em.merge(p);
. . .

}

session

School I&C, Claude Petitpierre

Some explanations for the previous slide
The bean business contains the actions as well as the Javabeans that keep
the data.

This statement accesses an action from a JSP page: #{business.action}

This one accesses an attribute of Person: # {business.p.name}

Getters-setters are required for p like for the person attributes

In order to access a JavaBeans from an action, one just need to write
(referring to the previous slide):

p.name
or

getP().getName()

The JavaBeans could also be stored directly in the session, but it would be
more difficult to access them.

School I&C, Claude Petitpierre

Relationships between JPAs

School I&C, Claude Petitpierre 12

Relationships between JPA 1:1
Merchant
merchantName
wine

Wine
wineName
grape
year
merchant

1 1

@OneToOne

private Merchant merchant;

In Merchant
(one must choose a
side for mappedBy)

In Wine

@OneToOne(mappedBy="merchant")

private Wine wine;

// Getters – setters for the two fields

School I&C, Claude Petitpierre

Access to the elements of the relationship

In Java code: merchant.getWine().getYear)

wine.getMerchant().getMerchantName()

In a JSP: #{merchant.wine.year}

#{wine.merchant.merchantName}

Next slide: the collection must be introduced within

a h:DataTable

Of course all these attributes must have getters-setters

School I&C, Claude Petitpierre 14

Relationships between JPA 1:N
Merchant
merchantName
wines

Wine
wineName
grape
year
merchant

1 N

@ManyToOne

private Merchant merchant;

In Merchant

In Wine

@OneToMany(mappedBy="merchant")

private Collection<Wine> wines;

// Getters – setters for the collection for the field merchant

School I&C, Claude Petitpierre 15

Relationships between JPA N:M
Marchand
nameMarchand
wines

Wine
nameWine
cepage
year
marchands

N M

@ManyToMany(mappedBy="wines")

private Collection marchands;

In Merchant

In Wine

@ManyToMany

private Collection<Wine> wines;

// Getters – setters for the two collections

School I&C, Claude Petitpierre 16

Relationships between JPA N:M, cascade

@ManyToMany(mappedBy="wines")

private Collection<Merchant> merchants = new ArrayList<Merchant>();

In Merchant

In Wine

@ManyToMany (cascade = CascadeType.ALL)

private Collection<Wine> wines = new ArrayList<Wine>();

// Persistence and remove cascades

School I&C, Claude Petitpierre 17

Insertion of JPAs in the relationships

School I&C, Claude Petitpierre

Relation in the database and
in the objects

It is the responsability of the developer to introduce the relationships
in both directions between the objets.

In order for the relationship to be forwarded to the database, one
must perform this operation within a transaction handled by the
manager. Namely, the main data must be attached (see following)
and the added object not free.

Moreover, one must introduce at least the element on the side that
does not have the indication mappedBy.

School I&C, Claude Petitpierre 19

Relationships entre JPA 1:1

@OneToOne

private Merchant merchant;

@OneToOne(mappedBy="merchant")

private Wine wine;

tx.begin();
merchant= em.merge(merchant);
em.persist(v);
merchant.setWine(v);
tx.commit();

tx.begin();
wine = em.merge(wine);
em.persist(m);
wine.setMerchant (m);
tx.commit();

// necessary and sufficient to
// introduce the relation into the DB

School I&C, Claude Petitpierre 20

Relationships between JPA 1:N

@ManyToOne

private Marchand marchand;

@OneToMany(mappedBy="merchant")

private Collection<Wine> wines;

tx.begin();
merchant = em.merge(merchant);
em.persist(v);
merchant.wines.add(v);
tx.commit();

tx.begin();
wine = em.merge(wine);
em.persist(m);
wine.setMerchant(m);
tx.commit();

// necessary and sufficient to
// introduce the relation into the DB

School I&C, Claude Petitpierre 21

Relationships entre JPA N:M

@ManyToMany(mappedBy="wines")

private Collection merchants;

@ManyToMany

private Collection<Wine> wines;

tx.begin();
merchant = em.merge(merchant);
em.persist(v);
merchant.wines.add(v);
tx.commit();

// the statements of one side are sufficient
// to enter the relationship into the DB

tx.begin();
wine = em.merge(wine);
em.persist(m);
wine.merchants.add(m);
tx.commit();

School I&C, Claude Petitpierre

Walk through the elements of a relationship x:N

public class Merchant {
@OneToMany(mappedBy="merchant")
private Collection<Wine> wines;
public void setWines(…) { … }
public Collection<Wine> getWines(…) { … }

}

// . . . transaction . . .
merchant = em.merge(merchant);
for (Wine v: merchant.getWines()) { // relationship

System.out.println(v.getName());
}

// The wines are automatically "merged" when the
// collection is walked trhough

School I&C, Claude Petitpierre

The merge operation

School I&C, Claude Petitpierre

The merge operation
As has been explained, persist introduces the data into the database. This
statement must be executed within an transaction and the transaction must be
closed between calls from two different pages.

Thus, when a persist must be performed for a new page, the transaction must
be reopened.

This is done by the merge statement.

The object remains in the session. It contains the ID that refers to the record in
the database where its data have been stored.

In order to resynchronize the object with the database, one executes:

p1 = em.merge(p) // within a transaction

The new object p1 is now linked to the transaction and to the database.

The previous object must be abandoned, and, if needed, replaced in the
session by p1.

School I&C, Claude Petitpierre

Person

Operation merge

Person

DB

em.persist(p) p1 = em.merge(p)

Person

Manager
p = new Person()

p
p1

First
transaction

Second
transaction

// the modifications of p1 are transmitted into the DB

School I&C, Claude Petitpierre

PersonPerson

Operation merge

Person
id=3

DB

Page

em.persist(p)

Page Page Page

p1 = em.merge(p)

Person
id=3

p1 = em.merge(p)

Person
id=3session

To program
explicitely

School I&C, Claude Petitpierre

Object already bound to the transaction

If the object is bound to the transaction by a previous operation (a
previous merge, a find, its existence in a relationship), the merge
function returns the object already in the transaction, but it forwards
the content of this object to the object already in the transaction.

In that case, the object in the argument of the merge must also be
abandonned, and the new object may have to be rebound to the
session.

School I&C, Claude Petitpierre

Functioning of the merge

Personne

Id : 5

Personne

Id : 5

p1
p

Manager

p1 = em.merge(p)

5

p1 is a copy of p
Only the modifications
on p1 will be transmitted
to the database at the
closure of the transaction

School I&C, Claude Petitpierre

merge of an object already in the transaction

Person

Id : 5

p3

Manager

p5 = em.merge(p3)

5

If the id is already referenced, the content of the new object is copied into the
referenced object and the referenced object is returned

Person

Id : 5

p4memorized
before the merge

School I&C, Claude Petitpierre

Same thing in more details

One assumes that p1 and p2 have been created by some means, for example
by directly introducing 5 in the id.

The first merge introduces p3 in the transaction

As the id of p3 is now referenced, the second merge copies the content of the
new object into object p3 and then the reference of this object is returned in p4

At the end, p3 and p4 point to the same object, which is coherent

School I&C, Claude Petitpierre

merge of an object already in the transaction

Person

Id : 5
Krishna

Person

Id : 5
Durga

p2

p1

Manager

p3 = em.merge(p1)

5

p4 = em.merge(p2)

Person

Id : 5

p3
memorisation

copy of the content
p4

School I&C, Claude Petitpierre

Avoiding losing the session objects

The object structure already presented copes nicely with the particularities
of the merge statement, .

class Business {
Person p;
public void action() {

. . .
p = em.merge(p); // same variable in and out

. . .
}

}

As the business JavaBean remains in the session, there is no need to
reinsert p into the session.

School I&C, Claude Petitpierre

Merge for two different pages

School I&C, Claude Petitpierre

Use of the merge command
with relationships

School I&C, Claude Petitpierre

merge of an element of the relationships
Course

id=3
Student

id=8
Student

id=4
Student

id=7

c

Manager

id: 3, 8, 4, 7

c1 = em.merge(c)

Course
id=3

c1

for (Wine v: marchand.getWines()) {
System.out.println(v.getName());

} // merged automatically

Course
id=3

c1
Student

id=8
Student

id=4
Student

id=7

no copy
values forgotten

BD

retrieval

School I&C, Claude Petitpierre

merge in the relationships
Course

id=3
Student

id=8
Student

id=4
Student

id=7

c

Manager

3, 8, 4, 7

c1 = em.merge(c)

Course
id=3

c1

for (Wine v: marchand.getWines()) {
System.out.println(v.getName());

} // the 4 is reused because it is already merged

Course
id=3

c1
Student

id=8
Student

id=7

st = em.merge(st)

Student
id=4

st

The modifications on
the blue objects are
reproduced in the DB

st

Student
id=4

forgotten

School I&C, Claude Petitpierre

Reconnection to the database
As previously described, the JPA objects are created
independently from the database and their synchronization
with it is performed explicitely.

An object can thus be free (no ID), attached (an ID and within
a transaction) or detached (keeps its ID, but is not attached to
a transaction).

An object within the HTTP session can keep its ID from one
page to the other. In order to reintegrate a transaction, it must
be merged, as explained in the previous pages.

Similarly, an object that would be retrieved by a query obtains
an ID, but it is not attached to the transaction.

School I&C, Claude Petitpierre

Attached
Elements

em = Manager.open();
client = new Client("Hans");
// free
tx.begin();
em.persist(p);
// attached
tx.commit();
Manager.close();
// detached, its id remains initialized
client.setId(0);
// free
client = (Client) result.getSingleResult();
// detached

School I&C, Claude Petitpierre

merge()
Client client = (Client)result.getSingleResult();
// detached, its id is initialized
tx.begin();
client2 = em.merge(client);
// attached, the modifications will be registered at the commit
tx.commit();

// em.merge() returns a copy integrated in the transaction
// Thus take care, if client is registered in the session
// HTTP, its copy must be re-registrered in the session !

School I&C, Claude Petitpierre

Update

When an attached object is updated, its modifications
are followed by the manager and at the commit, they
are transmitted into the dadabase.

The same thing happens with the relationships.

In order to verify that the system reacts according to
our plans, one can simply look at the tables with the
help of the MySQL monitor

School I&C, Claude Petitpierre 41

JQL

Adaptation of SQL to the JPAs

School I&C, Claude Petitpierre 42

Use of JQL
Query result = em.createQuery("SELECT v FROM Wine v");

wine = (Wine)result.getSingleResult(); // a single line,
// an exception is thrown if the command
// defines 0 or more than one entry

wines = (ArrayList<Wine>) result.getResultList(); // several lines
(0 to n)

// the find is automatically attached to the manager, but there is
// no need of a transaction, if the object is not to be modified

School I&C, Claude Petitpierre

Elimination of an element

Query result = em.createQuery(
"SELECT v FROM Wine v WHERE v.wineName="Bordeaux"

);

wine = (Wine)result.getSingleResult();

. . .

em.remove(wine);

// no need of a transaction

School I&C, Claude Petitpierre

JQL with relationships

44

Relationship 1:1

SELECT m FROM Merchant m

WHERE m.wine.wineName='Epesse‘

(m.wine is an attribute)

Relationship 1:N, N:N

SELECT m FROM Merchant m, IN(m.hisWines) w

WHERE w.wineName='Epesse'

(m.hisWines is a collection)

School I&C, Claude Petitpierre

Introduce an element in a relationship

Query result = em.createQuery(
"SELECT c FROM Client c
WHERE c.name=' "+clientName+" ' ");

Client client = (Client) result.getSingleResult();

tx.begin();
client.getBasket().add(p);
tx.commit(); // or tx.rollback();

School I&C, Claude Petitpierre

Lazy loading (1)

46

When the manager loads a relationship that only needs one attribute
(1:1, 1:N), it loads the single element of the relationship directly.

When it must load a list (N:M, N:1), it loads the elements only when they
are accessed. In the example below, the elements are not reachable any
more, because the transaction is closed before the elements have been
touched (one assumes that client has a 1:N relationship with product):

Client client = (Client)result.getSingleResult();
tx.begin();
client2 = em.merge(client);
tx.commit();
for (Product p: client2.listOfProducts) {

print(p); // are not reachable any more
}

School I&C, Claude Petitpierre

Lazy loading (2)

47

In order to force the retrieval when the list is in the transaction, one must
access the liste, for example by calling function size():

Client client = (Client)result.getSingleResult();
tx.begin();
Client client2 = em.merge(client);
client2.size(); // just to enforce the retrieval
tx.commit();
for (Product p: client2.listeProducts) {

print(p); // available
}

// Note: one could also specify that the retrieval be made automatically
// (eager loading) in the parameters controlling the JPA (see the JPA doc).

