

What Readers Are Saying About Pragmatic Guide to Git

I’d heard a lot of the hype surrounding Git. It wasn’t until I read Travis’
book that I learned why people are so enthusiastic about it. Travis does a
great job explaining the power of Git in a digestible format.

Ivo Jansch
PHP evangelist, author, and founder, Egeniq.com

Git can be intimidating and frustrating to new users. Pragmatic Guide to Git
alleviates that pain with a straightforward, concise walk-through that arms
readers with exactly what they need to use Git productively.

Luigi Montanez
Software developer, Sunlight Labs

This book is a must-have for anyone using Git or just getting started with
Git. It has saved me time in finding the best practices for managing my Git
repositories and will sit on my bookshelf as the go-to resource for anything
Git.

John Mertic
Senior software engineer, SugarCRM

With two years of experience with Git, I thought I would have known most
everything in Pragmatic Guide to Git. After reading it cover to cover, I
learned that’s not the case. It’s a well-organized collection of useful Git
techniques for all audiences.

Luke Pillow
Software engineer, pillowfactory.org

Pragmatic Guide to Git
Travis Swicegood

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic Pro-
grammers, LLC was aware of a trademark claim, the designations have been printed in initial
capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic
Programming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic
Programmers, LLC.
Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.
Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please
visit us at http://www.pragprog.com.
The team that produced this book includes:
Editor: Susannah Davidson Pfalzer
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett
Layout: Steve Peter
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.
Printed in the United States of America.

ISBN-10: 1-934356-72-7
ISBN-13: 978-1-934356-72-2
Printed on acid-free paper.
P1.0 printing, October 2010
Version: 2010-10-29

http://www.pragprog.com

Contents
Acknowledgments 8

Introduction 9
Who Is This Book For? . 9
How to Read This Book . 10
How Git Is Different . 12
The Git Workflow . 13
Online Resources . 16

I Getting Started 17
Task 1. Installing Git 20

Task 2. Configuring Git 22

Task 3. Creating a New Repository 24

Task 4. Creating a Local Copy of an Existing Repository 26

II Working with Git 28
Task 5. Seeing What Has Changed 32

Task 6. Staging Changes to Commit 34

Task 7. Committing Changes 36

Task 8. Ignoring Files 38

Task 9. Undoing Uncommitted Changes 40

Task 10. Moving Files in Git 42

Task 11. Deleting Files in Git 44

CONTENTS 6

Task 12. Sharing Changes 46

III Organizing Your Repository with Branches and Tags 48
Task 13. Creating and Switching Branches 54

Task 14. Viewing Branches 56

Task 15. Merging Commits Between Branches 58

Task 16. Rewriting History by Rebasing 60

Task 17. Deleting Branches 62

Task 18. Tagging Milestones 64

IV Working with a Team 66
Task 19. Adding and Removing Remotes 70

Task 20. Retrieving Remote Changes 72

Task 21. Retrieving Remote Changes, Part II 74

Task 22. Sending Changes to Remotes 76

Task 23. Handling Remote Tags and Branches 78

V Branches and Merging Revisited 80
Task 24. Handling Conflicts 82

Task 25. Handling Conflicts with a GUI 84

Task 26. Temporarily Hiding Changes 86

Task 27. Cherry-Picking Commits 88

Task 28. Controlling How You Replay Commits 90

Task 29. Moving Branches 92

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=6

CONTENTS 7

VI Working with the Repository’s History 94
Task 30. Viewing the Log 98

Task 31. Filtering the Log Output 100

Task 32. Comparing Differences 102

Task 33. Generating Statistics About Changes 104

Task 34. Assigning Blame 106

VII Fixing Things 108
Task 35. Fixing Commits 110

Task 36. Reverting Commits 112

Task 37. Resetting Staged Changes and Commits 114

Task 38. Erasing Commits 116

Task 39. Finding Bugs with bisect 118

Task 40. Retrieving “Lost” Commits 120

VIII Moving Beyond the Basics 122
Task 41. Exporting Your Repository 124

Task 42. Doing Some Git Housekeeping 126

Task 43. Syncing with Subversion 128

Task 44. Initializing Bare Repositories 130

A Glossary 132

Index 136

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=7

Acknowledgments
Like any book, this is the result of much more than an author such as me
sitting in front of their computer typing a bunch of words. Please give me a
few minutes to thank those involved in bringing this book to you.
First, I’d like to thank a reader of my first book, who shot me an email that
planted the seed that became this book.
Next, Dave, Andy, and the entire crew at Pragmatic Bookshelf have been
great to work with a second time. Both books I’ve written for them have
been gambles—first as a rookie author and then with this book as an author
charting the territory of a new format—and they haven’t blinked an eye.
My editor, Susannah Davidson Pfalzer, has been indispensable. She was al-
ways there with advice, tips, the occasional tough love, and an ever-optimistic
attitude; every author should be so lucky.
Reviewers of early drafts of this book provided me with a tremendous amount
of constructive feedback that helped shaped this book into what you’re hold-
ing in your hands (or looking at on your computer’s screen). Thanks to Joel
Clermont, Javier Collado, Geoff Drake, Chad Dumler-Montplaisir, Wayne
Huang, Michael Hunger, Ivo Jansch, Jerry Kuch, Johnathan Meehan, John
Mertic, Luigi Montanez, Karl Pfalzer, Luke Pillow, Christophe Portneuve,
Tom Sartain, Stefan Turalski, Tom Van Herreweghe, Matt Warren, and Nick
Watts.
No acknowledgments for a book on an open source tool would be complete
without acknowledging the work of the legion of volunteers who made the
project possible. A huge debt is owed by all of us who use Git to the nearly
700 people who have contributed to the project.
My family and friends, in particular my wife (whom I’m lucky enough to
count as both), have been amazing—as always. Without their support, and
that of the rest of my family and friends, this book would not have happened.

Introduction
The world of version control systems (VCSs) has undergone a major shift
over the past few years. Fast, reliable, and approachable distributed version
control systems (DVCSs) such as Git have burst onto the scene and changed
the landscape of open source software development and corporate software
workflows.
This book is your guide to this new paradigm. It’s not a complete reference;
instead, it focuses on getting you up and running quickly. Pragmatic Guide to
Git covers the 95 percent of Git that you’ll use at least once a week, as well
as a few tasks that will come in handy but aren’t used as often.
Git started when the license of VCS software that the Linux kernel used to
track changes was revoked. After investigating the other alternatives, Linus
Torvalds decided he could write a better version control system in a fewweeks
than what currently existed, so he set off to do that.
Git, then in a very rough form, was the result of that two weeks of hacking
together some shell scripts back in the spring of 2005. Linus had to calculate
pieces of the commits by hand on the first few commits (commits are the
changes Git tracks for you). Since those original hand-rolled commits, Git
has become the leader in the field of DVCS.

Who Is This Book For?

This book is geared for someone new to Git who is looking to get up to speed
quickly. This book is for you if you’re already familiar with another VCS
such as Subversion and are looking for a quick guide to the Git landscape or
if you’re a quick study and want a concise guide. It’s organized by task to
make it easy to translate from the task you need to accomplish to how the
process works in Git.
If you’ve never used a version control system before and thought Subversion
was something you did to overthrow governments, this book will get you up
and running with Git. For much more detail on version control concepts, you
should read Pragmatic Version Control Using Git,1 my other book, as well.
1. http://pragprog.com/titles/tsgit/

http://pragprog.com/titles/tsgit/

HOW TO READ THIS BOOK 10

How to Read This Book

This book is organized in parts to guide you from starting out through more
complex situations, with each part broken down into tasks. Tasks follow a
specific formula: the left page explains the task and the commands related to
it, and the right page gives you the raw commands with a little bit of informa-
tion about them and a cross-reference to related tasks.
You can read this book in paper form as an open book to see the tasks side
by side, but it’s also an excellent reference in digital form, especially when
searching for a particular Git task.
If you’re reading a digital version of this book on a computer with a large
enough display, I recommend setting your reader to display two pages side by
side instead of a single page. That gives you the same visual that’s intended
in the book.
On your first pass, I suggest that you read the introductions to each part. They
give you a broad overview of how to approach each part of the Git workflow,
as well as a synopsis of the tasks contained in that part.
Armed with high-level information, you can determine where to dive in. You
can read this book from start to finish or cherry-pick the tasks relevant to what
you’re trying to accomplish.
The parts of this book are organized to walk you through the various phases
of use in Git.

• Part I, Getting Started, starts with the absolute basics—installing and
configuring Git and creating your first repository.

• Part II, Working with Git, covers the basic commands you need as
part of your day-to-day interaction with Git by yourself. These are the
building blocks, and they’re a must-read if this is your first time using
Git.

• Part III, Organizing Your Repository with Branches and Tags, intro-
duces branches, a powerful and central part of Git that’s necessary for
understanding how everything works together.

• Part IV, Working with a Team, covers the most powerful aspect of any
VCS: collaborating with other developers. This part gets you up to
speed on how to share your work with other developers and retrieve
changes from them.

• Part V, Branches and Merging Revisited, builds on the information in
Part III and teaches you how to handle it when things go wrong, as

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=10

HOW TO READ THIS BOOK 11

well as some of the more complex ways to handle merging and moving
branches around.

• Part VI, Working with the Repository’s History, introduces you to all
the history you’ve been generating. Using this information, you can
figure out what another developer (or maybe even you) was thinking
when you made a particular change.

• Part VII, Fixing Things, shows you how Git can help you fix things in
your repository—be that commits that need to be adjusted or finding
bugs in your code.

• Part VIII,Moving Beyond the Basics, introduces you to a few concepts
that don’t fit into the normal everyday workflow but are useful when
they’re needed.

There are diagrams throughout this book. Whenever you see a circle, it repre-
sents a commit—with the exception of Figure 2, on page 16, where the circles
represent repositories.
This matches the style used throughout the Git manual when it shows example
repository structures to explain commands. In addition to the standard graph-
ical diagrams throughout, in some places I’ve opted for a plain-text diagram
to introduce you to the Git manual diagram style.
Throughout the book you’ll see examples of the output you can expect Git
to generate for a given command. Keep in mind that your output won’t be
exactly the same because of the way Git keeps track of commit IDs—more
on that in a minute.
Several commands don’t generate any output after they run successfully,
though. For these commands, I include an empty prompt> after the success-
ful command to show that there is no output.
The first reference to each new term includes an explanation of what the term
means. If you read the book from start to finish, you’ll know all of the terms
from previous introductions to them.
Did you forget a term or are you using the book as a reference and not reading
it straight through? You’re covered there, too. You can refer to Appendix A,
on page 132; there you’ll get explanations of all the common—and some not
so common—jargon you’ll encounter in this book and in your adventures in
Git.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=11

HOW GIT IS DIFFERENT 12

What Version of Git to Use
I used the 1.7.x version of Git while writing the majority of this book. All of
the commands as of this writing work with 1.7.2.1 and should work with the
majority of Git 1.6.x versions.
The installation methods mentioned in Task 1, Installing Git, on page 20 all
have recent versions of Git available, so make sure you’re running a recent
version, and you won’t have any trouble following along. You can run git

--version from the command line to see what version you have.
Before we dive into the tasks, let’s talk a bit about Git and what makes it
unique.

How Git Is Different

Git is a bit different from traditional version control systems. If you’re com-
ing to Git from another centralized system, this section explains some of the
differences and gets you thinking in Git style.

Distributed vs. Centralized
There are generally two models in version control systems: centralized and
distributed. Tools such as Subversion typically require a network connection
to a centralized server. You make a change to your project and then commit
that change, which is sent to the centralized server to track. Other developers
can then immediately access your changes.
Distributed version control systems, such as Git, break the process of com-
mitting code and sharing it with others into two parts. You can commit your
code to your local private repository without having to talk to a centralized
server, removing the need to be connected to a network to make a change.

Private vs. Public Repositories
Each developer who is sharing code with other developers has at least two
repositories: a private and a public repository. The private repository is the
one that exists on your computer and is the one you make commits to.
Public repositories are the repository that you use to share your changes with
other developers. Multiple developers might have access to push changes to
the same public repository, or each developer may have their own public
repositories.
You can push to and fetch from multiple repositories. This allows you to pull
in changes from another developer who’s working on the same project.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=12

THE GIT WORKFLOW 13

Commit IDs Instead of Revision Numbers
Centralized VCS have the benefit of having one system that doles out revi-
sion numbers. Because everyone is committing and sharing their code in one
repository, that repository can control what numbers it assigns to a particular
commit.
That model doesn’t work in a decentralized system. Who’s to say which com-
mit is actually the second commit, me or you? Git uses commit IDs that are
SHA-1 hashes instead. The hash is based on the code, what came before it,
who made the commit, when they made it, and a few other pieces of metadata.
The chances are incredibly small of there being two different commits with
the same commit ID.

Forking Is Good
For the longest time, forking a project was a bad thing. It drained resources
away from the main project, and merging changes between the two projects
was time-consuming when possible.
Git’s superior merge capabilities, rooted in its distributed nature, make merg-
ing changes from a “forked” repository trivial. In fact, the idea of forking is
so ingrained in the Git community that one of the largest Git communities
online, GitHub,2 is built around the concept. To offer your changes, you fork
a repository, commit your changes, and then ask the original developer to pull
your changes in through a pull request.
Instead of an indicator of a project suffering from internal strife, the num-
ber of forks on a repository is considered the sign of an active community
working on a project.

The Git Workflow

Working by yourself on a project with no version control, you hack a little, test
it out and see whether it does what you want, tweak a few more lines of code,
and repeat. Adding version control into the mix, you start committing those
tweaks to keep a record of them. The high-level overview of Git’s general
workflow is shown in Figure 1, on the next page.

My Standard Workflow
My standard day working with Git goes something like this: I fetch all the
changes from the other developers on my team to make sure I’m working
with the latest code, and then I start working on the user stories I have for the
day. As I make changes, I create a handful of commits—a separate commit
for each change that I make.
2. http://github.com/

Report erratum

this copy is (P1.0 printing, October 2010)

http://github.com/
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=13

THE GIT WORKFLOW 14

Fetch Changes
from the Team

Make Changes
& Commit Them
(repeat until done)

Review Commits
Share Changes
with the Team

Start your day here

Figure 1: The Git workflow

Occasionally, I end up with several separate changes that all need to be com-
mitted. I’ll break out Git’s patch mode, stage, and finally commit each set of
changes separately.
Once I have the feature complete, I give the commits I’ve created a quick
review to make sure all the changes are necessary. At this point I look for
commits that can be combined and make sure they are in the most logical
order.
Finally, once I have those commits ready, I share those commits by push-
ing them (push is the term for sending commits to another repository) back
upstream to my public repository so the rest of the team can view them and
integrate them with their repositories.

Small Teams with a Shared Repository
Many small teams use Git like a traditional version control system. They have
one main repository that all the developers can send changes to, and each
developer has their own private repository to track their changes in.
You make your changes locally; then when you’re ready to share them with
other developers, you push them back to the repository you all share.
If someone else has shared their changes since the last time you updated from
the shared repository, you will get an error. You must first get the changes
from the shared repository and integrate them into your repository through
a process called merging. Once the changes are merged, you can push your
changes to share with the rest of the team.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=14

THE GIT WORKFLOW 15

Git in Open Source
Each open source project has its own methods of accepting changes. Some
projects use a fully distributed model where only one person can push changes
to the main repository, and that person is responsible for merging changes
from all the contributors into the main repository.
Having only one person capable of pushing changes is often too demanding
a job for a large open source project. Many have a main repository that all of
the committers can send changes to.
The main developers encourage people who are just starting out to fork their
project—create a copy of the repository somewhere else—so the main devel-
opers and other members of the community can review their changes. If
they’re accepted, one of the main contributors merges them back into the
project’s repository.
These different scenarios constitute different repository layouts. Git allows
several different layouts, and covering them deserves a section to itself.

Repository Layouts
The distributed nature of Git gives you a lot of flexibility in how you manage
your repositories. Every person on your team has their own private repository
—the repository that only that person can update. However, there are two
distinct ways to handle public repositories. For a visual explanation of these
layouts, see Figure 2, on the following page.
One method is the fully distributed model. In this, each developer has their
own public repository that the developer uses to publish their changes to.
All the other developers on the team then pull changes from everyone else’s
repositories to keep current.
In practice, most teams have a lead developer who is responsible for making
sure all the changes are integrated. This limits the number of repositories you
and your team have to pull changes from to one, but it increases the workload
on the person who has to integrate everyone’s changes.
Another method is the shared repository model, where all developers can push
to a shared repository. This resembles the standard centralized model and is
often adopted by teams when they first start using Git—it requires the least
amount of mental overhead when it comes to thinking about where a change
is shared.
You can mix both of these as well to create a hybrid solution. Use a shared
repository for all of the code that’s ready for production, and each developer
maintains their own public repository for sharing code that’s still a work in
progress. This is the model I’ve employed successfully at my company and

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=15

ONLINE RESOURCES 16

YouBob Alice

Shared
Repository

You

Bob Alice

Push

Pull

Distributed
Repositories

Figure 2: Shared and distributed repository layout with three developers. Gray
circles are the private repositories; outlined circles are public repositories.

that’s used by many open source projects—push final changes to the main
repository, and keep experimentation in your own repository.

Online Resources

Several online resources are available for this book. The book’s website is the
jumping-off point for all of them:
http://pragprog.com/titles/pg_git/
From here, you can view the errata (and add any errors you find) and head to
the book’s forum where you can discuss and ask questions—both about the
book and about Git.
Now that you know what this book is about, let’s get started.

Report erratum

this copy is (P1.0 printing, October 2010)

http://pragprog.com/titles/pg_git/
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=16

Part I

Getting Started

GETTING STARTED 18

Ready to get started with Git?3 Git is an extremely powerful tool

that’s relatively easy to start using. Like all software, it requires instal-

lation and minimal setup before you can start using it.

Covered in this part:

• We start off with Task 1, Installing Git , on page 20 to handle

installation. Git’s heritage in the Linux world means it can be

compiled directly from source, but there are other (easier)

options for every major operating system.

• You need to tell Git a few configuration settings before you

start using it, covered in Task 2, Configuring Git , on page 22.

• Now that Git is installed and configured, you start using it in

Task 3, Creating a New Repository , on page 24. You learn how

to create a completely new repository.

• Another way to start a Git repository is to create a clone of

someone else’s repository, covered in Task 4, Creating a Local

Copy of an Existing Repository , on page 26.

Once you’ve made it through these basic steps, you’ll be ready

to start working with Git. Feel free to skim the following tasks if you

already have Git installed and configured and have created a new

repository or cloned an existing one.

3. I promise, no more get/Git puns the rest of the book.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=18

GETTING STARTED 19

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=19

INSTALLING GIT 20

1 Installing Git

You can install Git in several different ways: by using one of the GUI
installers, by using a package management system, or, in the time-honored
Linux tradition that spawned Git, by compiling it from source.
Don’t worry if you’re not ready to start compiling software; all major
operating systems provide alternatives to compiling Git yourself. For
example, Ubuntu provides Git via its apt-get tool, so a few commands from
the terminal are enough to get you going. Likewise, OS X users have the
option of using MacPorts4 or the new Homebrew5 to handle the installation.
Not to be left out, Windows users who use Cygwin6 can also install it via
Cygwin’s setup.exe.
Windows and OS X users who prefer GUI installations have alternatives
available as well. Windows users can use the msysGit7 installer to get up and
running, and OS X users can install Git using the Git OS X Installer8 to
install Git via a DMG.
The original way to install Git, which is still the best if you want to remain
on the latest version, is to build it from source. The various dependencies can
be hard to track down, especially if you plan on building the user manual.
Tools like apt-get build-dep on Ubuntu are helpful for tracking down all of
the dependencies.
Watch mixing installation tools. For example, if you use a Mac and have
installed most of your software using MacPorts, stick with MacPorts; if you
compile all your own software on Linux, now probably isn’t the time to start
using apt-get. Switching to Git provides you with enough learning
opportunities, so be careful to guard that installing Git doesn’t cause the yak
to get a trim.9

4. http://www.macports.org/
5. http://github.com/mxcl/homebrew—Homebrew is relatively new tool that handles compiling
software on a Mac. It stores all of its formulas, the instructions for installing software, in a Git
repository.
6. http://www.cygwin.com/
7. http://code.google.com/p/msysgit/
8. http://code.google.com/p/git-osx-installer/
9. http://en.wiktionary.org/wiki/yak_shaving

Report erratum

this copy is (P1.0 printing, October 2010)

http://www.macports.org/
http://github.com/mxcl/homebrew
http://www.cygwin.com/
http://code.google.com/p/msysgit/
http://code.google.com/p/git-osx-installer/
http://en.wiktionary.org/wiki/yak_shaving
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=20

INSTALLING GIT 21

Compile Git from its source code.

Download the latest tarball from the Git website.10
prompt> tar -xjf git-YOUR-VERSION.tar.bz2

prompt> cd git-YOUR-VERSION

prompt> make

prompt> make install

You can compile the documentation from source as well. Replace the last
two lines in the previous steps with this:
prompt> make all doc

prompt> make install install-doc

Install Git on Ubuntu.

prompt> sudo apt-get install git-core

To install the user manual, do this:
prompt> sudo apt-get install git-doc

To install the Git to Subversion functionality, do this:
prompt> sudo apt-get install git-svn

You can use apt-get to handle all of the dependencies and then compile Git
from source using the previous steps.
prompt> sudo apt-get build-dep git-core git-doc git-svn

Install Git on OS X.

You can use MacPorts and install Git with SVN functionality:
prompt> sudo port install git-core +svn

There is also a Git Installer for OS X available on Google Code.

Install on Windows.

Download latest msysGit installer from here:
http://code.google.com/p/msysgit/

Or, install as part of Cygwin’s setup process.

10. http://git-scm.com/

Report erratum

this copy is (P1.0 printing, October 2010)

http://git-scm.com/
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=21

CONFIGURING GIT 22

2 Configuring Git

Git requires some configuration to work. You must tell Git your name and
your email address since there is no central repository to keep track of that
information. Git uses both to calculate the commit ID—an SHA-111
hash—that identifies each commit.
The first two commands on the next page use --global to specify that they
are configuration values for every repository you interact with on this
machine. The configuration file is stored in ~/.gitconfig. You can edit the
file directly in addition to using the git config command.
You can set every setting on a global or per-repository basis. By leaving
--global out of the command, the settings will be stored in the repository’s
.git/config file.
You might want to set a few other useful configuration values while
configuring Git. You can set color.ui to auto if you like to have your
command-line interfaces colorized.
The auto setting tells Git to use color whenever it is generating output to be
displayed but to render plain text whenever the output is being piped to
another process. This makes it easy to output a raw diff—the changes
between two versions of the file—to a file but still allows you to see the
colorized diff when you view the output directly.
Finally, Git uses core.editor to specify a particular editor. Git launches an
editor whenever you need to create a commit message, edit patches, and do a
few other tasks.
Git doesn’t require you to set the core.editor value, though. It tries to figure
out what editor to use by checking the following values, in order:
GIT_EDITOR environment variable; core.editor configuration value; VISUAL

environment variable; EDITOR environment variable; and, finally, plain vi.
The value is the command-line script to launch your editor. In Windows, this
is a bit tricky, but there’s an excellent thread on Stack Overflow12 that can
help you get started.

11. http://en.wikipedia.org/wiki/SHA
12. http://j.mp/git-editor-on-windows

Report erratum

this copy is (P1.0 printing, October 2010)

http://en.wikipedia.org/wiki/SHA
http://j.mp/git-editor-on-windows
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=22

CONFIGURING GIT 23

Configure Git to know who you are.

prompt> git config --global user.name "Your Name"

prompt> git config --global user.email "user@domain.com"

prompt>

Set the Git user for a specific repository.

prompt> cd /path/to/repository

prompt> git config user.name "Your Name"

prompt> git config user.email "user@domain.com"

prompt>

Turn colors on wherever possible in the Git UI.

prompt> git config --global color.ui auto

prompt>

Configure Git’s editor.

prompt> git config --global core.editor /path/to/editor

prompt>

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=23

CREATING A NEW REPOSITORY 24

3 Creating a New Repository

Repositories in Git are stored on your local file system right alongside the
code they track. You create a repository by typing git init in the directory that
you want to start tracking files in.
You use two repositories in Git to collaborate with others: a private one and a
public one. Your private repository—the one we’re creating here—is where
you do all your work. It’s the repository with the working tree.
This two-tier system gives you the ability to track local experimental
changes while only sharing changes via your public repository that are ready
for others to work with. Be careful that you don’t allow yourself to code in a
cave, though. Hoarding all your changes until they are “just right” is the
quickest way to harm a project. Share early; share often.
git init creates a .git directory in your current directory and initializes the Git
repository inside that. Once you’ve initialized a repository, you still need to
add and commit the files using git add (see Task 6, Staging Changes to
Commit, on page 34) and git commit (see Task 7, Committing Changes, on
page 36), respectively, but both of these require an initialized repository first.
You have to initialize the repository only once.
Once you’ve initialized a repository, you have a working tree that you can
interact with. The working tree is your view into what’s stored in your
repository. It typically represents the latest copy of what’s stored in your
repository.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=24

CREATING A NEW REPOSITORY 25

Create a repository.

prompt> mkdir some-repository

prompt> cd some-repository

prompt> git init

For example, to create a repository called widgets in the /work directory,
use this:
prompt> mkdir /work/widgets

prompt> cd /work/widgets

prompt> git init

Initialized empty Git repository in /work/widgets/.git/

Create a repository in an existing directory, and add all files

from that directory.

prompt> cd /path/to/some/directory

prompt> git init

prompt> git add .

prompt> git commit -m "some commit message"

For example, to create a repository inside an existing directory called
/work/existing-widget, use this:
prompt> cd /work/existing-widget

prompt> git init

Initialized empty Git repository in /work/existing-widget/.git/

prompt> git add .

prompt> git commit -m "initial commit"

[master (root-commit) 6e477fa] initial commit

101 files changed, 4083 insertions(+), 0 deletions(-)

create mode 100644 AUTHORS

... and 100 more files ...

Related Tasks

• Task 4, Creating a Local Copy of an Existing Repository, on the next
page

• Task 7, Committing Changes, on page 36
• Task 12, Sharing Changes, on page 46
• Task 44, Initializing Bare Repositories, on page 130

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=25

CREATING A LOCAL COPY OF AN EXISTING REPOSITORY 26

4 Creating a Local Copy of an Existing
Repository

You need to create a clone of a remote repository to start making changes to
it. The git clone command initializes a new repository on your computer
and fetches the entire history—all the changes that have been tracked during
the life of that repository. After it’s complete, you can start making changes
to the files in your local working tree and tracking commits locally.
Sometimes you don’t need the entire history of the repository. You don’t
always need the last ten years of changes—the last year’s might suffice. You
can use the --depth parameter to limit how many revisions you fetch. This is
called a shallow repository.
There are a few limitations to this type of repository clone. For example, you
can’t create another clone from it. There is a place for these clones, however.
Say you want to submit a patch—a change—to a project with a long history.
You only need the recent changes to show your change against, so a shallow
repository is perfect.
Depending on how the firewall on your computer or local area network
(LAN) is configured, you might get an error trying to clone a remote
repository over the network. Git uses SSH by default to transfer changes
over the network, but it also uses the Git protocol (signified by having git://

at the beginning of the URI) on port 9418. Check with your local network
administrator to make sure communication on ports 22—the port SSH
communicates on—and 9418 are open if you have trouble communicating
with a remote repository.
You use git clone to fetch changes when a repository already exists, but you
don’t have to clone a repository to work with a remote repository. Remote
repositories are repositories that you can talk to, generally over a network, to
push and pull changes from. You can initialize a new repository, like we
talked about in Task 3, Creating a New Repository, on page 24, and then add
a remote repository later with the git remote command (see Task 19, Adding
and Removing Remotes, on page 70).

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=26

CREATING A LOCAL COPY OF AN EXISTING REPOSITORY 27

Clone a repository.

prompt> git clone some-repository

... example ...

prompt> git clone git://github.com/tswicegood/bobby-tables.git

Cloning into bobby-tables...

remote: Counting objects: 39, done.

remote: Compressing objects: 100% (25/25), done.

remote: Total 39 (delta 16), reused 26 (delta 9)

Receiving objects: 100% (39/39), 39.23 KiB, done.

Resolving deltas: 100% (16/16), done.

Clone a repository into a specific path.

prompt> git clone some-repository some-path

... example ...

prompt> git clone git://github.com/tswicegood/bobby-tables.git btbls

Cloning into btbls...

remote: Counting objects: 39, done.

remote: Compressing objects: 100% (25/25), done.

remote: Total 39 (delta 16), reused 26 (delta 9)

Receiving objects: 100% (39/39), 39.23 KiB, done.

Resolving deltas: 100% (16/16), done.

Create a shallow clone with the last fifty commits.

prompt> git clone --depth 50 some-repository

These are valid Git repository URIs.

user@ssh host:path_to_repo

git://some_domain/path_to_repo

http://some_domain/path_to_repo/

https://some_domain/path_to_repo/path/to/repo

Related Tasks

• Task 3, Creating a New Repository, on page 24
• Task 12, Sharing Changes, on page 46
• Task 19, Adding and Removing Remotes, on page 70
• Task 44, Initializing Bare Repositories, on page 130

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=27

Part II

Working with Git

WORKING WITH GIT 29

Now that you have Git and your repository set up, it’s time to start

learning how to interact with Git. A handful of commands are all

you need to get you through most tasks. Once you finish the tasks in

this part, you’ll know them all.

As we saw in the introduction, the workflow in Git is different from

other version control systems and definitely different from working

without any version control system. Each time you make a change

you want to track, you need to commit it.

The workflow goes like this. First, create your repository—either cre-

ate a new repository or clone an existing one. Then make some

changes, test that they do what you want, commit those changes,

make some more changes, and so on. Finally, you share those

changes when they’re ready.

One thing to keep in mind when working with a distributed version

control system (DVCS) like Git is that committing a change and shar-

ing that change are two different processes. This is different from

centralized VCS such as Subversion and CVS, where the two actions

are synonymous.

This separation provides you with a lot of freedom. You can experi-

ment locally, try a whole bunch of things, and then share the best

solution, but to paraphrase an old uncle, “With great freedom

comes great responsibility.”

Lots of small, discrete changes that touch very specific portions of

the code are better than a few monolithic changes. Make sure you

don’t sit on a whole bunch of changes until they’re perfect. First,

they’ll never be perfect. There’s always something else to refactor

and abstract away. Second, the bigger the change becomes, the

harder it becomes to fully understand, review, and test.

Third, it makes tracking down bugs later easier. Tools such as git bisect

(see Task 39, Finding Bugs with bisect , on page 118) make finding

which commit introduced a bug easy. Smaller commits mean that

once you know which commit caused the bug, you can figure out

the exact change that much faster.

We’ve already covered how to create a new repository or clone an

existing one (git init and git clone in Task 3, Creating a New Reposi-

tory , on page 24 and Task 4, Creating a Local Copy of an Existing

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=29

WORKING WITH GIT 30

Repository , on page 26, respectively). Making changes and testing

are up to you and how you interact with the code in your project.

Seeing what changes need to be committed is where we pick up.

The tasks in this part are ordered roughly the same way you’ll use

them in Git.

Covered in this part:

• The first thing is seeing what has changed. We cover this in Task

5, Seeing What Has Changed, on page 32, which shows you

how to compare your working tree with what the repository

knows about.

• After you know what has changed, then you need to stage

the changes you want to commit. This is covered in Task 6,

Staging Changes to Commit , on page 34.

• The changes are staged; now it’s time to commit them. Task 7,

Committing Changes, on page 36 shows you how to create a

commit and add a log message to it.

• With any project, files will be generated that you don’t need

to commit. Task 8, Ignoring Files, on page 38 teaches you how

to tell Git to ignore those files.

• What happens when you accidentally stage a file you didn’t

mean to or you decide that you want to get rid of a change

that you made to a file before committing it? Task 9, Undo-

ing Uncommitted Changes, on page 40 covers how to undo

those staged changes so you don’t accidentally commit

something.

• Files sometimes need to change where they live. A new pro-

ject layout is adopted, or files or directories are renamed. Task

10, Moving Files in Git , on page 42 shows you how to handle

these inevitable changes.

• Likewise, some files or directories outlive their usefulness. Since

the repository keeps a record of all files that it has ever

tracked, you can delete those old files without worrying about

not having them to reference later if you need to do so. Task

11, Deleting Files in Git , on page 44 shows you how.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=30

WORKING WITH GIT 31

• Finally, Task 12, Sharing Changes, on page 46 is a whirlwind

tour of how to share changes with other developers. It’s done

at 30,000 feet and is enough to get you started. A lot more

about collaboration is covered in Part IV, Working with a Team.

Now, let’s dive into the specifics.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=31

SEEING WHAT HAS CHANGED 32

5 Seeing What Has Changed

Your local repository tracks changes. Before you start committing just
anything, you need to see what changes exist between your working tree and
your repository and what changes are staged and ready to commit. git status

is the tool for the job.
git status has several different outputs, depending on what’s in your working
tree. The example on the next page is from one of my repositories, and it
contains all three types of outputs: staged changes, changes to known files,
and untracked files. Let’s go over them in reverse order of how they appear
on the next page—the order of least important to most.
Starting at lines 14 and ending at 17, Git outputs the files and paths that it
doesn’t know anything about—the files that you haven’t told Git about yet.
This section has the header Untracked files before it starts, and if you turned
on color output like we discussed in Task 2, Configuring Git, on page 22, it
displays the files and paths in red.
Next up are the files that Git knows about but that have changed. These are
listed between lines 8 and 12 and are preceded by Changed but not

updated. Like untracked files, these show up as red if you have colors
configured.
Finally, the top section listed between lines 3 and 6 shows what files you
would commit if you ran git commit right now. For more on committing,
flip to Task 7, Committing Changes, on page 36. Files in this section show
up as green if you turned colors on and are preceded by Changes to be

committed.
Depending on the state of your repository, the output from git status might
contain any of those sections or none at all. It adapts itself as needed.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=32

SEEING WHAT HAS CHANGED 33

What the status of a new repository looks like.

If you just created a repository using git init, this is what your repository
looks like:
prompt> git status

On branch master

#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

What git status looks like in a repository with changes.

git status requires a repository with some changes in its working tree to see
the various output. The following is the output of git status on my local
Castanaut repository:

Line 1 prompt> git status

- # On branch master

- # Changes to be committed:

- # (use "git reset HEAD <file>..." to unstage)

5 #

- # modified: castanaut.gemspec

- #

- # Changed but not updated:

- # (use "git add <file>..." to update what will be committed)

10 # (use "git checkout -- <file>..." to discard changes in ...

- #

- # modified: README.txt

- #

- # Untracked files:

15 # (use "git add <file>..." to include in what will be ...

- #

- # pkg/

What git status looks like with no changes.

prompt> git status

On branch master

nothing to commit (working directory clean)

Related Tasks

• Task 3, Creating a New Repository, on page 24
• Task 6, Staging Changes to Commit, on the next page
• Task 7, Committing Changes, on page 36

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=33

STAGING CHANGES TO COMMIT 34

6 Staging Changes to Commit

Git uses a two-step process to get changes into the repository. The first step
is staging changes through git add. Staging a change adds it to the index, or
staging area. This sits between the working tree—your view of the
repository—and the actual repository.
Through the staging area, you can control what is staged from the most
coarse-grained—adding everything within the repository—down to editing
the changes, line by line.
First you can select individual files or paths to add by calling git add and
passing the filename or path as the parameter. Git adds everything under a
path if you provide that. It uses standard shell-style wildcards, so wildcards
work: base.* matches base.rb and base.py.
Another quick way to add all files is the -A parameter. This adds all the files
inside the repository that are not explicitly ignored (see Task 8, Ignoring
Files, on page 38). Closely related, you can add files that have changed using
the -u parameter. It doesn’t add any new files, though, only files that have
already been tracked and have modifications in them.
You can control which parts of a file you commit using the -p parameter.
Running this, you’re presented with each section of the file that has changed,
and you’re given the opportunity to add or skip it. You can stage the change
by pressing y or skip a change with n. s lets you break the change into
smaller pieces. This and a few other options aren’t always available. You can
press ? inside patch mode to get a list of all the commands and what they do.
Taking the control a step further, you can directly edit the changes that are
being staged by using the -e parameter. This opens the diff in your
configured editor (we talked about that in Task 2, Configuring Git, on
page 22). Your editor has the file in a diff format—additions are prefixed
with +, and removals are prefixed with -.
One quirk of Git is that it can’t track empty directories (at least as of version
1.7.2.1). There’s a reason for this in the underlying architecture and the way
Git tracks data in the repository, but that’s a bigger topic than this page
allows for. To track an “empty” directory, you can add an empty dot file (a
file beginning with a dot). An empty .gitignore works (see Task 8, Ignoring
Files, on page 38). I use .include_in_git.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=34

STAGING CHANGES TO COMMIT 35

Stage an entire file to commit.

prompt> git add path/to/file

... or ...

prompt> git add path/

... or everything under the current directory ...

prompt> git add .

prompt>

Add all files in the current repository.

prompt> git add -A|--all

prompt>

Add all tracked files that have been changed.

prompt> git add -u|--update

prompt>

Choose which changes to commit.

prompt> git add -p|--patch

... or a specific file ...

prompt> git add -p path/to/file

prompt>

Open the current diff in the editor.

prompt> git add -e

... or a specific file ...

prompt> git add -e path/to/file

prompt>

Related Tasks

• Task 5, Seeing What Has Changed, on page 32
• Task 7, Committing Changes, on the next page

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=35

COMMITTING CHANGES 36

7 Committing Changes

Git tracks changes to your repository through commits, which you make
with the git commit command. It is the workhorse of Git and something
you’ll use a ton.
Prior to most commits, you need to stage the files you want to commit using
the git add. You can use it to stage specific changes, portions of files, and
other things that are covered in more detail in Task 6, Staging Changes to
Commit, on page 34.
Each commit requires a commit message. You can use -m and a string in
quotation marks as your message or use Git’s editor to write a message.
There’s more information on the editor in Task 2, Configuring Git, on
page 22. You can specify multiple paragraphs by specifying multiple -m

parameters.
You can avoid git add and commit every change in your working tree with
the -a parameter. It commits everything you have staged and all the changes
to your working tree.
Because Git breaks committing and sharing into two separate tasks, you can
change commits that haven’t been shared. We’ve all accidentally committed
a file that we weren’t supposed to and realized the second after we hit Enter
that there was a problem with the commit. You can amend your commit with
the --amend parameter. You can add -C HEAD (HEAD points to the latest
commit in your branch) to the call to reuse the commit’s original log
message if you don’t need to change it. There’s more on --amend in Task
35, Fixing Commits, on page 110.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=36

COMMITTING CHANGES 37

Stage and commit changes.

prompt> git add <some file>

prompt> git commit -m "Some message"

[master a276f08] Some message

1 files changed, 2 insertions(+), 0 deletions(-)

Commit all modified files.

prompt> git commit -m "Some message" -a

[master 5d251db] Some message

1 files changed, 1 insertions(+), 0 deletions(-)

Commit and launch editor for commit message.

prompt> git add <some file>

prompt> git commit

Related Tasks

• Task 5, Seeing What Has Changed, on page 32
• Task 6, Staging Changes to Commit, on page 34
• Task 12, Sharing Changes, on page 46
• Task 35, Fixing Commits, on page 110

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=37

IGNORING FILES 38

8 Ignoring Files

Software projects generate a lot of cruft. Some of it you don’t need to
commit. For example, I do a lot of work in Python, which leaves a ton of
.pyc files laying around, and I edit using MacVim, which creates a swap file
for each file that you’re editing. We don’t need or want these files cluttering
up our repository or showing up in git status. That’s where the .gitignore

and friends comes in.
Each line of the .gitignore is scanned, and any matches it finds are ignored
by Git. Your .gitignore file is inside your repository, so you can track it like
any other file. You can put it at the top level of your repository, and in that
case the rules cascade through all subdirectories. You can also use
subdirectory-specific .gitignore, and those rules will only apply to files and
directories inside that subdirectory.
Sometimes you don’t want to commit your .gitignore file to your repository.
Maybe you’re be contributing to an open source project—there’s no need to
add your *.swp to the project-wide .gitignore. You have two options in this
case: use the .git/info/excludes file or add the ignore cases to your global
excludesfile.
The .git/info/excludes is the same as a .gitignore file, except it’s not
tracked by Git since it’s inside the .git directory. It’s useful for excluding files
that are specific to a project without adding a .gitignore file to the repository.
For files that you want to ignore in every repository on your computer, you
can set the core.excludesfile configuration value to point to a file that
contains your global ignore rules. It follows the same format as the
.gitignore and .git/info/excludes files.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=38

IGNORING FILES 39

Ignore a specific file and/or path called cache.

Add the following to .gitignore:
cache

Ignore all .swp files from Vim.

Add the following to .gitignore:
*.swp

Set up a global excludes file.

Your excludesfile can exist anywhere you want on your computer. The
following example puts it in your home directory in the .gitignore file:
prompt> git config --global core.excludesfile \

~/.gitignore

I have the following my ~/.gitignore since I’m on a Mac and use Vim:
.DS_Store

*.swp

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=39

UNDOING UNCOMMITTED CHANGES 40

9 Undoing Uncommitted Changes

Git’s two-step process for tracking a commit means you can have files that
are staged for commit that you’re not ready to commit. You use git reset

HEAD or git rm --cached depending on the circumstance.
Scenario 1: You staged a change to file and want to unstage it—use git reset

HEAD. This is the most common use. You’re telling Git, “Change the
index—the staging area—to the latest version of this file.”
Scenario 2: You have a new file that’s been staged that you don’t want to
commit now—use git rm --cached. Normally, git rm is used to remove files
from your repository, but adding the --cached option tells Git to leave your
working tree alone.
Another common problem is making changes that you want to undo
completely. You can use git checkout to do this, but be careful. git

checkout happily removes all untracked changes from a file or directory.
You can’t get those changes back if they were never tracked by Git.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=40

UNDOING UNCOMMITTED CHANGES 41

Unstage a modified file that’s been staged.

For example, to undo changes to cache.py, use this:
prompt> git reset HEAD -- cache.py

Unstaged changes after reset:

M cache.py

If you’re not familiar with command-line programs, you might not recognize
that --. It tells Git that all arguments are done and that the rest are files or
paths. It’s useful when files and branch or tag names clash.

Undo all uncommitted changes to a file.

Warning: Doing this deletes files and cannot be undone.
prompt> git checkout -- cache.py

Related Tasks

• Task 36, Reverting Commits, on page 112
• Task 37, Resetting Staged Changes and Commits, on page 114

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=41

MOVING FILES IN GIT 42

10 Moving Files in Git

Performing tasks such as reorganizing files, changing file formats, and so on,
requires that files and sometimes entire directories get moved. git mv

handles this for you.
You provide it with two options: the name of the original file and the new
name. This works on files, directories, or symlinks—anything Git can track.
You can move files, directories, and symlinks into other directories as well.
Provide git mv a directory as the second option, and you’re set.
Git stages the change for you after you call git mv. You must call git

commit after git mv to make the move permanent.
git mv won’t overwrite an existing file; it displays an error instead. You can
override this behavior by providing --force (or -f). Be careful, though,
because this makes Git overwrite the existing file. That’s dangerous if the
existing file you’re overwriting isn’t tracked by Git. You have no way of
getting that file back.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=42

MOVING FILES IN GIT 43

Move a file or directory.

For example, to move README.md to README.rst, use this:
prompt> git mv README.md README.rst

prompt> git commit -m "Changed README from Markdown to ReSTructured text"

[master f810d86] Changed README from Markdown to ReSTructured text

1 files changed, 0 insertions(+), 0 deletions(-)

rename README.md => README.rst (100%)

Move a file or directory into another directory.

prompt> git mv README.rst docs/

prompt> git commit -m "Moved README into docs/ directory"

[master 99a0de8] Moved README into docs/ directory

1 files changed, 0 insertions(+), 0 deletions(-)

rename README.rst => docs/README.rst (100%)

Related Tasks

• Task 6, Staging Changes to Commit, on page 34
• Task 7, Committing Changes, on page 36

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=43

DELETING FILES IN GIT 44

11 Deleting Files in Git

Files and directories sometimes outlive their usefulness. You can remove
them from your working tree and tell Git to quit tracking them using the git

rm command.
This doesn’t remove the file from your repository’s history; it removes it
only from your working tree going forward. You can always go back in the
history of the repository and see the files or directories that have been
removed.
You call git rm and provide it with a filename to tell Git to remove it (or a
standard shell pattern—*.php matches all files that end in .php). You don’t
have to provide the --, but it’s necessary if you’re trying to remove a file that
conflicts with a command-line option. It tells Git that you’re done providing
options, and everything else is a file.
You must provide the -r option if you are deleting a directory and all the files
under it. It tells Git to recursively delete all the files starting at the provided
directory.
Like most other actions in Git, git rm requires git commit to finalize its
action. git rm stages the removal, and git commit finalizes it.
You can undo a git rm before you make a commit through a two-step
process. First, you have to reset the index using git reset HEAD. Be sure to
provide the filename if you want to leave other staged files alone. Second,
check out the file from the repository to restore it using git checkout --

path/to/file.
git rm attempts to keep you from accidentally deleting a file that has changes
that have not been committed. You can override this behavior with -f, but be
careful. Forcing Git to delete the file removes the file and all traces of the
changes that haven’t been committed yet.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=44

DELETING FILES IN GIT 45

Delete a file from Git.

To delete a file called outdated.py, use this:
prompt> git rm -- outdated.py

rm 'outdated.py'

prompt> git commit -m "remove outdated.py"

[master 42010bf] remove outdated.py

1 files changed, 0 insertions(+), 17 deletions(-)

delete mode 100644 outdated.py

Delete a directory from Git.

To delete a directory called old/, use this:
prompt> git rm -r -- old/

rm 'old/outdated.py'

prompt> git commit -m "remove the old/ directory"

[master ddbd005] remove the old/ directory

1 files changed, 0 insertions(+), 17 deletions(-)

delete mode 100644 old/outdated.py

Get a directory back after deleting it but before committing it.

This example uses the previous example where old/ is deleted using git rm,
but before the staged deletes are committed. There are two steps. First, reset
the index:
prompt> git reset HEAD -- old/

Unstaged changes after reset:

M old/outdated.py

Second, check out the files from the repository:
prompt> git checkout -- old/

Force a file to be removed.

prompt> git rm -f -- outdated.py

rm 'outdated.py'

Related Tasks

• Task 9, Undoing Uncommitted Changes, on page 40
• Task 10,Moving Files in Git, on page 42

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=45

SHARING CHANGES 46

12 Sharing Changes

Remember that Git is different from most traditional version control
systems; committing a change and sharing that change are two distinct tasks.
Committing changes is covered in detail in Task 7, Committing Changes, on
page 36; this task gives you a quick cheat sheet for the various tasks you
need to perform to collaborate with others. For more detail on these steps,
see Part IV, Working with a Team.
Once you have a local clone (see Task 4, Creating a Local Copy of an
Existing Repository, on page 26) or have set up a remote after initializing
your repository (see Task 19, Adding and Removing Remotes, on page 70),
you need to fetch changes from the remote repository to keep your local
branches (we’ll cover what branches are in just a second in Part III, Working
with Branches) in sync using git fetch. After fetching changes, you must
merge those changes using any of the methods covered in Part III. Fetching
is covered in more detail in Task 20, Retrieving Remote Changes, on
page 72.
You can also fetch changes and merge them at the same time using git pull.
It fetches the changes and then merges them into the current branch. You can
specify the --rebase parameter to have Git rebase your local branch on top
of the remote changes (see Task 16, Rewriting History by Rebasing, on
page 60). Pulling is covered in more detail in Task 21, Retrieving Remote
Changes, Part II, on page 74.
Sending changes back to a remote repository to share is done via the git

push command. Consider it the inverse of git pull; it sends your changes to
the remote repository and merges those changes into the remote branch via a
fast-forward merge, which is a merge where both branches share a common
ancestor and only the branch being merged in has changes in it.
Don’t worry if parts of this sound like Greek. This is a high-level overview
without diving into the specifics. The next two parts are going to fill in all
the missing pieces.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=46

SHARING CHANGES 47

1. Set up the remote repository.

• You clone a repository. Or...
• You add a remote to an existing repository.

2a. Fetch changes from a remote repository.

prompt> git fetch <remote name>

... then merge the changes into your work ...

2b. Pull changes from a remote repository.

prompt> git pull <remote name>

... pull from a repository you cloned ...

prompt> git pull origin

... pull, but rebase your local changes on top

... of the remote change instead of merging them

prompt> git pull --rebase origin <remote branch name>

3. Push changes to a remote repository.

prompt> git push <remote name> <branch name>

Related Tasks

• Task 4, Creating a Local Copy of an Existing Repository, on page 26
• Task 7, Committing Changes, on page 36
• Task 19, Adding and Removing Remotes, on page 70
• Task 20, Retrieving Remote Changes, on page 72
• Task 21, Retrieving Remote Changes, Part II, on page 74
• Task 22, Sending Changes to Remotes, on page 76

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=47

Part III

Organizing Your Repository with

Branches and Tags

ORGANIZING YOUR REPOSITORY WITH BRANCHES AND TAGS 49

Now that you have the basics down, it’s time to learn about

branches. Branches allow you to segregate different lines of devel-

opment. They’re integral how Git works, so having a good concep-

tual understanding of what they are is crucial to becoming profi-

cient with Git.

Version control systems of yesterday had poor support for branches

and even worse support for merging those branches back together.

Git changes this. In fact, one of the most compelling features of Git

is its ability to easily handle creating branches and gracefully merge

them back together.

Branches track changes to multiple versions of a project. For exam-

ple, you might be finishing up version 1.0 and already starting on

new features for version 1.1. Using branches, you can keep the code

from version 1.0 isolated so new features from 1.1 don’t accidentally

slip into the version that is getting ready to release.

You give branches names, making it easier track them based on

their name, rather than some commit ID. master is the name of the

default branch that Git uses. All your commits so far in this book

have been in that branch. You can create as many branches as

you want.

Branches in Git are relatively simplistic—they’re simply a text file in-

side the repository that marks the latest commit in the branch. Treat-

ing branches as pointers makes operations with branches painless

and fast.

There are several different ways to approach using branches. One

approach is the topic branch. You can use this style of branch to

work on a specific feature, fix a bug, or deal with any other “topic.”

Once it’s complete, then you merge the finished changes back into

your master branch.

Another common type of branch is the release branch, the type

of branch mentioned earlier. You create release branches as you

approach a release in your project. They’re useful when you or other

members on your team are working on multiple versions of your

project.

You can create a branch called release_v1.0 for the 1.0 version to

isolate that release from features that aren’t supposed to ship until

version 1.1. Work on version 1.1 continues like normal in the mas-

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=49

ORGANIZING YOUR REPOSITORY WITH BRANCHES AND TAGS 50

ter branch, and any changes from the final work on version 1.0 get

merged back into master.

You can use tags to mark milestones in your project, such as re-

leases. Tags are similar to branches, except they are read-only.

Once you create a tag, you can’t change it. Well, that’s almost

true, but for now consider them completely unchangeable.

Branches and tags are not shared by default. Like commits, you’re

given the ability to decide which branches and tags to share with

other developers and when.

Branches in Git are pointers to a specific commit in your repository’s

history. Since each commit knows about its parent (or parents), Git

can reconstruct what’s in a branch by looking at the latest com-

mit in that branch and walking the history backward to find all the

ancestors. This simplified approach to branches makes them quick

to create, rename, merge, and even delete.

You occasionally have to merge changes between branches to

keep from duplicating the same work in different branches. Git

makes this easy by tracking which commits have been merged be-

tween branches for you. Many modern VCS do not do this at all or

do it poorly.

Git can employ several different merge strategies to merge

branches together. The first is the fast-forward merge. Fast-forwards

are performed when two conditions are met: when the branch you

are merging in is being merged back into the branch it was created

from and when the original branch hasn’t had any new commits

since the branch was created. For an example, check out Figure 3,

on the next page.

Fast-forward merges do not actually create anything new in the

repository. They “fast-forward” the branch pointer to the new

location.

Recursive merges are used by default when both the branches

have commits that are not in the other branch. Git creates a merge

commit that has two parent commits—the latest commit in each

branch (see Figure 4, on page 52).

Another way to get information from one branch into another is

through rebasing the branch. Rebasing is a powerful tool in Git that’s

often misunderstood, which is understandable—there’s no corollary

in traditional VCS. It’s best explained with an example workflow.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=50

ORGANIZING YOUR REPOSITORY WITH BRANCHES AND TAGS 51

Before a Fast-Forward Merge

master

development

After a Fast-Forward Merge

master

development

Figure 3: Before and after a fast-forward merge

Consider the following example.

Rebasing Changes

You start your morning by pulling in all the changes from the

company’s shared repository and then start working. During the

morning, your co-worker pushes some commits upstream. When

you try to push the commits you’ve made, you get an error. You

now have two options. You can fetch the changes and do the

following:

1. Merge them into your local branch, creating a merge

commit.

2. Rebase your local branch on top of the remote branch.

Rebasing takes the commits you made this morning and then

replays them, one by one, starting on the other branch. You can

do this to keep the appearance of a continuous stream of

development instead of having a bunch of merge commits

scattered throughout your repository’s history.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=51

ORGANIZING YOUR REPOSITORY WITH BRANCHES AND TAGS 52

Before a Recursive Merge

After a Recursive Merge

master

development

master

development

Figure 4: Before and after a recursive merge

Now, let’s see what’s covered in this part:

• Before you can use branches, you must create them. You

will learn how to do that in Task 13, Creating and Switching

Branches, on page 54.

• Keeping track of your branches requires that you be able to

see what branches you have. Task 14, Viewing Branches, on

page 56 covers the commands you need to know in order to

see the branches you have in your repository.

• Having multiple branches to separate work on your project

into different areas is useful only if you can merge the changes

all back together. You learn this in Task 15, Merging Commits

Between Branches, on page 58.

• No coverage of merging is complete without talking about

rebasing. Rebasing is often misunderstood and feared, so Task

16, Rewriting History by Rebasing, on page 60 gets you com-

fortable with the mechanics of rebasing.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=52

ORGANIZING YOUR REPOSITORY WITH BRANCHES AND TAGS 53

• Branches often outlive their intended use. Once you no longer

need a branch, you can then delete it using the methods de-

scribed in Task 17, Deleting Branches, on page 62.

• Finally, you need to be able to mark milestones in your

branches. We cover that in Task 18, Tagging Milestones, on

page 64.

At first glance, it might seem odd that branches—generally consid-

ered an advanced topic in most version control systems—are cov-

ered before discussing how to collaborate with a team. There is a

reason for this. Remotes in Git are read-only branches. Once you

know how to work with a branch, you know how to interact with a

remote repository minus a couple of extra commands we’ll cover

when we get there.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=53

CREATING AND SWITCHING BRANCHES 54

13 Creating and Switching Branches

Git’s branches enable you to separate experimentation from
production-ready code. Git’s convention is to treat themaster branch as its
main line of code. You can rename it to anything you want, but it’s a good
idea to keep with the convention.
You can create a new branch using the git branch command and providing
it at least one additional parameter: the name of the branch you want to
create. This uses your current location in the repository as the place to create
the branch from.
You can also create branches starting at points in the history of the
repository. Provide git branch with the name of the new branch you want to
create followed by the commit ID or branch or tag name to create a branch at
that point.
Following the “do one thing, do it well” idiom, git branch just creates the
branch; you have to switch to it. You can use the git checkout command to
check out the new branch.
Creating a new branch and checking it out immediately is common in Git.
You can do both actions with one command: git checkout -b. Like git

branch, it requires at least one parameter—the name of the new
branch—and takes an optional second parameter specifying the point to
create it from.
Tracking branches store additional metadata information about the
relationship between two branches. The most common tracking branch is a
local branch that tracks a remote branch (something Git does for you by
default). This additional information is used by other commands, such as git

push and git status, to provide additional functionality.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=54

CREATING AND SWITCHING BRANCHES 55

Create a new branch from current place in the repository.

prompt> git branch <new branch name>

... example ...

prompt> git branch new

prompt>

Create a new branch from another branch, tag, or commit.

prompt> git branch <new branch name> <starting point>

... example ...

prompt> git branch newer 99a0de8

prompt>

Check out a different branch, tag, and so on.

prompt> git checkout <branch>

... example ...

prompt> git checkout newer

Switched to branch 'newer'

Create a branch and check it out at the same time.

prompt> git checkout -b <new branch> [<starting point>]

... example ...

prompt> git checkout -b newest 64648c9

Switched to branch 'newest'

Create a branch with or without tracking.

Using a remote branch as your <starting point implies that --track is on.
Use --no-track to turn it off.
prompt> git branch --track <new branch> [<starting point>]

prompt> git branch --no-track <new branch> [<starting point>]

prompt>

Related Tasks

• Task 14, Viewing Branches, on the next page
• Task 15,Merging Commits Between Branches, on page 58
• Task 16, Rewriting History by Rebasing, on page 60
• Task 29,Moving Branches, on page 92

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=55

VIEWING BRANCHES 56

14 Viewing Branches

You need to be able to see what branches your repository has in it so you can
switch between them. You can use a visualization tool such as gitk13 or
GitX.14 You can use git branch to get the same information, however.
You can view local, remote, or all branches depending on which parameters
you pass to git branch. Calling git branch by itself shows you your local
branches. You can add either the -r parameter or the -a parameter to view
only the remote branches or all the branches, respectively.
Your current branch always has an asterisk before it in the output from git

branch. It’s colored green if you turned on color output (see Task 2,
Configuring Git, on page 22). Likewise, remote branches are colored red if
colors are on.
One gotcha with remote branches is that the output from git branch -a

shows their name with a remote/ prefix. git branch -r doesn’t. You can use
either name with commands that require a branch name.
It’s useful to see what branches have or have not been merged into the
current branch. You can see that by using the --merged and --no-merged

parameters.
It’s also useful to be able to find out which branches contain a particular
commit. For example, you can track which branches contain a commit that
has a known bug in it by using the --contains parameter.

13. Gitk is a cross-platform application written in tcl/tk that ships with Git.
14. A Mac-only clone of Gitk that is designed to be more “Mac-like.” It’s available from
http://gitx.frim.nl/.

Report erratum

this copy is (P1.0 printing, October 2010)

http://gitx.frim.nl/
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=56

VIEWING BRANCHES 57

View all local branches.

prompt> git branch

master

new

newer

* newest

View all remote branches.

prompt> git branch -r

origin/master

View all branches.

prompt> git branch -a

master

new

newer

* newest

remotes/origin/master

View all that are or are not merged into the current branch.

prompt> git branch --merged

prompt> git branch --no-merged

View all branches that contain a particular commit.

prompt> git branch --contains <commit id>

Related Tasks

• Task 13, Creating and Switching Branches, on page 54
• Task 15,Merging Commits Between Branches, on the next page

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=57

MERGING COMMITS BETWEEN BRANCHES 58

15 Merging Commits Between Branches

You have to merge changes from another branch into your current branch in
order to be able to use them. The simplest way to do this is through git

merge.
git merge takes two options: the name of the other branch you want to
merge and the optional local branch you want to merge into. You can leave
off the current branch when you’re merging changes into your current
branch.
By default, git merge commits the merged changes if they can be
successfully merged. You can short-circuit this with the --no-commit

option. This is useful when you want to review, and possibly edit, the
changes from the merge before making a commit.
We touched on how Git attempts to merge commits in the introduction to
Part III. Fast-forward merges are often useful, but sometimes you want to log
that a merge happened. This is common in projects when a big feature that
was developed in a separate branch is merged in; it provides a single commit
you can revert if it needs to be removed in the future. You can do this with
the --no-ff option. It forces Git to create a merge commit, showing that the
two branches were merged.
Another extra you can add when merge commits are created is the --log

option. Traditional merge log messages contain Merge branch

’development’. There are two ways you change this. First, you can add the
--log, which adds the subject line from each commit to the merge commit
message. Or, you can use -m and a message, which lets you specify the
entire message just like git commit.
Git tries to figure out how to merge all the changes, but sometimes it can’t.
This is called a conflict and requires your intervention. Task 24, Handling
Conflicts, on page 82 shows you how to handle these cases.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=58

MERGING COMMITS BETWEEN BRANCHES 59

Merge changes from development to the master branch.

prompt> git checkout master

Switched to branch 'master'

prompt> git merge development

Updating af0fe21..290b0d2

Fast-forward

old/README.rst | 8 ++------

1 files changed, 2 insertions(+), 6 deletions(-)

Merge changes, but don’t commit.

prompt> git merge --no-commit development

Automatic merge went well; stopped before committing...

Force the creation of a merge commit.

prompt> git merge --no-ff development

Merge made by recursive.

old/README.rst | 8 ++------

1 files changed, 2 insertions(+), 6 deletions(-)

Add a one-line log message from each merged commit to the

merge message.

prompt> git merge --log development

Specify a custom log message for a merge commit, if created.

prompt> git merge -m "my message" development

You can use git commit --amend to modify the commit message after the
fact too. Here’s an example:
prompt> git merge --log --no-ff development

prompt> git commit --amend -c HEAD

... editor launches ...

Related Tasks

• Task 13, Creating and Switching Branches, on page 54
• Task 14, Viewing Branches, on page 56
• Task 16, Rewriting History by Rebasing, on the next page
• Task 21, Retrieving Remote Changes, Part II, on page 74
• Task 24, Handling Conflicts, on page 82
• Task 25, Handling Conflicts with a GUI, on page 84

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=59

REWRITING HISTORY BY REBASING 60

16 Rewriting History by Rebasing

Rebasing commits is the one concept in Git that has no counterpart inside
the traditional version control world. Using git rebase, you can rewrite the
history of a repository in a variety of ways. It is one of the most powerful
commands in Git, which makes it one of the most dangerous.
rebase takes a series of commits (normally a branch) and replays them on
top of another commit (normally the last commit in another branch). The
parent commit changes so all the commit IDs are recalculated. This can
cause problems for other developers who have your code because the IDs
don’t match up.
There’s a simple rule of thumb with git rebase: use it as much as you want
on local commits. Once you’ve shared changes with another developer, the
headache is generally not worth the trouble.
git rebase takes a branch (the most common use), a tag, or a commit ID to
rebase on top of. You can also pass the --rebase option to git pull, causing it
to perform a rebase instead of merging the upstream changes into your local
branch.
git rebase requires a clean working tree—that is, a working tree with no
modified files. If you have changes that you’re not ready to commit, you can
stash them (see Task 26, Temporarily Hiding Changes, on page 86) until
you’re done.
A conflict might arise during the replaying of commits. Like a conflict
during a regular merge, a conflict happens when two commits modify the
same line of code. git rebase stops when this happens and asks you to fix
the conflict (see Task 24, Handling Conflicts, on page 82) and then continue.
You tell Git you’re ready with git rebase --continue.
You can also skip a commit that’s causing a conflict by calling git rebase

--skip. That could lead to further conflicts, however. You can abort the rebase
too with git rebase --abort.
There’s always a safety net if you need to undo a rebase after it’s completed.
Git points ORIG_HEAD at the commit before major changes like git rebase

are run. You can use git reset to reset your repository back to that original
state.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=60

REWRITING HISTORY BY REBASING 61

Rebase your current branch against another.

For example, rebase your current branch against master:
prompt> git rebase master

First, rewinding head to replay your work on top of it...

Applying: simple commit

You can also rebase against a tag or commit ID. For example, if af0fe21 is
the commit ID formaster, use this:
prompt> git rebase af0fe21

... same as above ...

Undo a rebase after it completes.

prompt> git reset --hard ORIG_HEAD

HEAD is now at e9f9fdc update the README

Using --hard can be dangerous. Check Task 37, Resetting Staged Changes
and Commits, on page 114 for an explanation of its use.

After a Rebase

master

development

master

development

Before a Rebase

Related Tasks

• Task 15,Merging Commits Between Branches, on page 58
• Task 24, Handling Conflicts, on page 82
• Task 26, Temporarily Hiding Changes, on page 86
• Task 37, Resetting Staged Changes and Commits, on page 114

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=61

DELETING BRANCHES 62

17 Deleting Branches

Branches can, and normally do, outlive their usefulness. Once you no longer
need one, you can delete it from your repository. Remember, branches in Git
are pointers to a commit. Deleting a branch doesn’t delete any commits, just
the named pointer that refers to that commit.
One area where Git differs from traditional version control systems is the
expense related to creating and deleting branches. It’s common to leave
branches such as a release branch in the repository indefinitely in
Subversion. Git doesn’t require that.
Since tags and branches both point to a single commit, you can tag your
release and then delete the release branch. You can always create a new
branch from the tag later if you need to make a change and then retag the
new version, and the history will look like the branch had always been there.
You can delete a branch with git branch -d. You must provide the branch
name you want to delete. Git warns you if the branch you are trying to delete
has not been merged into the current branch.
You can override this behavior by using -D (capital D). This tells Git that
you want to delete the branch even if it hasn’t been merged in.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=62

DELETING BRANCHES 63

Delete a branch that has been merged into the current branch.

To delete a branch called experiment, do this:
prompt> git branch -d experiment

Deleted branch experiment (was e9f9fdc).

Delete a branch that hasn’t been merged into the current

branch.

prompt> git branch -D experiment

Deleted branch experiment (was e9f9fdc).

Related Tasks

• Task 18, Tagging Milestones, on the following page

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=63

TAGGING MILESTONES 64

18 Tagging Milestones

You need to make milestones in your projects, each slightly different, such
as for one, its weekly iterations, and for another, its version numbers. You
can use git tag to handle this.
git tag creates a read-only marker within the repository. You can treat tags
like branch names, except you can’t check them out and start committing to
them. You can create a new branch from a tag, however.
Creating a tag requires one parameter: the name of the tag. Nearly every
character you can use as part of a filename on Unix systems can be used as
part of a tag name. You cannot use the characters ^, *, or :, and a tag cannot
begin or end with /.
You can create a tag from a commit other than HEAD by supplying a second
parameter to git tag. It can be a reference commit (either directly or relative
to another commit) or a branch name (directly or relative as well).
Call git tag without any parameters to list all tags. One key difference
between tags and branches is that there is no difference between a remote tag
and a local tag. A tag is a tag.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=64

TAGGING MILESTONES 65

List all tags.

prompt> git tag

v0.1

v0.2

Tag the latest commit as version 1.0 in the current branch.

prompt> git tag v1.0

prompt>

Create a tag called beta1 from the next to last commit.

prompt> git tag beta1 HEAD^

prompt>

Related Tasks

• Task 23, Handling Remote Tags and Branches, on page 78

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=65

Part IV

Working with a Team

WORKING WITH A TEAM 67

Everything we’ve covered up to this point is about working with Git

on your own. You can use Git like this to track your own projects,

but that doesn’t take full advantage of Git’s power. You need to be

able to collaborate with other developers on your team using Git.

You share code with other developers using remote repositories.

Remote repositories are given names to make them easier to re-

member. For example, the conventional name for your default re-

mote repository is origin.

There are two different ways to share code through a remote reposi-

tory in Git: with a shared repository model or a distributed repository

model. For a visual of these two models, see Figure 5, on the follow-

ing page. The one most familiar to those coming from another VCS

is the shared repository model.

A shared repository means that all members of your team can push

and pull from the same repository. Team members keep their

changes locally until they’re ready; then they push those changes

back upstream when they’re complete for the rest of the team to

use.

This model is very familiar to anyone used to working with a tradi-

tional version control system. There’s very little overhead in deter-

mining where the code is and what state everything is in.

You can also use a distributed repository model for handling your

repositories. Each member of your team has their own private repos-

itories on their computers plus a public repository that they push

their code to. Each team member needs to pull changes from the

other team members to make sure they have the latest code.

Most teams using a distributed model designate someone as the

release manager. It becomes their job to make sure that everything

is merged together, and that member’s public repository becomes

the repository of record. This is also common in open source projects

using Git.

Many teams see the most benefit from a hybrid of these two ap-

proaches. One repository is considered the repository of record that

everyone syncs against, and then developers share their changes

through their public repositories. Once changes are ready to be-

come part of the official version, they get pushed to the official

repository.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=67

WORKING WITH A TEAM 68�
ouBob Alice

Shared
Repository

You

Bob Alice

Push

Pull

Distributed
Repositories

Figure 5: Shared and distributed repository layout with three developers. Gray
circles are the private repositories; outlined circles are public repositories.

In addition to the concept of remotes, these tasks introduce two

new concepts you use to retrieve and send changes to remote

repositories:

• Fetching, or retrieving changes from a remote repository, cov-

ered in Task 20, Retrieving Remote Changes, on page 72

• Pushing, or sending changes to a remote repository, discussed

in Task 22, Sending Changes to Remotes, on page 76

You might wonder where pulling fits into this. The only difference

between a pull (see Task 21, Retrieving Remote Changes, Part II, on

page 74) and a fetch (see Task 20, Retrieving Remote Changes, on

page 72) is that pulling merges changes after Git fetches them. It’s

a shorthand way to combine fetching and merging into one com-

mand.

All of these changes being retrieved from remote repositories are

stored inside your local repository in remote branches. Git treats

remote repositories—often called just remotes—as branches. All of

the commits from the remotes are stored alongside your commits in

the repository, and special remote branches track which commits

have branches pointing to them.

You can treat remote branches like normal branches with one ex-

ception: you can’t commit to them. That means you can merge or

cherry-pick commits from them into your local branches or rebase

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=68

WORKING WITH A TEAM 69

your local branches on top of remote branches. The only way to

get commits into a remote branch is to push those changes to the

remote.

Covered in this part:

• First you need to know how to handle remote repositories. You

learn that in Task 19, Adding and Removing Remotes, on the

next page.

• Next up is fetching changes from remote repositories, which

you learn about in Task 20, Retrieving Remote Changes, on

page 72.

• After you know how to fetch changes, we go over the short-

hand command for fetching and merging changes at the

same time in Task 21, Retrieving Remote Changes, Part II, on

page 74.

• Grabbing changes from other developers is only half the pro-

cess. You need to be able to send your changes back out into

the world. Task 22, Sending Changes to Remotes, on page 76

shows you how.

• We’ve already talked about tags and branches locally. You

learn about remote tags in Task 23, Handling Remote Tags and

Branches, on page 78.

Before you start concerning yourself with pushing and pulling, how-

ever, you need to add a remote repository to communicate with.

Let’s cover that next.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=69

ADDING AND REMOVING REMOTES 70

19 Adding and Removing Remotes

Git allows you to have as many remote repositories as you like. It’s common
to have a different remote for each member of your team in a fully
distributed architecture for your repositories. Git requires that each remote
have a unique name.
You must tell Git where to access remote repositories. You do this using the
git remote add command.15 It requires two parameters: a name and a
repository URL.
The first is simply the short name you use to reference the remote repository
by. The name origin is the conventional name for the repository that you
clone from. Git uses this convention in several commands that allow you to
skip the remote name when you’re working with the origin repository.
The repository URL points to the actual location of the remote repository.
This can be in another directory on your system or, more commonly, a
repository that is accessible via a network connection. Git can transfer over
its own git protocol, over git using SSH to encrypt the data transfer and
handle authentication, and over HTTP/HTTPS.
Git sets up tracking branches for you whenever you create a local branch
from a remote branch. Adding a repository after you start working locally,
though, doesn’t give Git a chance to do that setup. You can add this by
removing the local branch and re-creating it from the remote branch. Don’t
worry—as long as you make sure all the changes in your local branch have
been pushed to your remote repository and your local and remote branch
have the same things in them, you aren’t going to lose any commits.
You can remove remote repositories by using the git remote rm command.
It removes any tracking branch information in addition to removing the
remote definition.

15. Most commands that require a remote repository take both remote names—what you add with
git remote add—or the repository URL.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=70

ADDING AND REMOVING REMOTES 71

Add a new remote repository.

prompt> git remote add <name> <repository URL>

... example ...

prompt> git remote add tswicegood \

git://github.com/tswicegood/bobby-tables.git

propmt>

Remove a remote.

prompt> git remote rm <name>

... example ...

prompt> git remote rm tswicegood

Make the master branch a tracking branch.

Run these commands after you push to your remote repository for the first
time if you want to set up your local branch as a tracking branch of the
remote. As an example, here’s the workflow in a project of mine:
prompt> git checkout origin/master

Note: checking out 'origin/master'.

You are in 'detached HEAD' state. ... and so on ...

git checkout -b new_branch_name

HEAD is now at d7c8880... ignore stuff from virtualenv

prompt> git branch -d master

Deleted branch master (was d7c8880).

prompt> git checkout -b master

Switched to a new branch 'master'

Related Tasks

• Task 4, Creating a Local Copy of an Existing Repository, on page 26
• Task 13, Creating and Switching Branches, on page 54
• Task 20, Retrieving Remote Changes, on the following page
• Task 21, Retrieving Remote Changes, Part II, on page 74
• Task 22, Sending Changes to Remotes, on page 76

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=71

RETRIEVING REMOTE CHANGES 72

20 Retrieving Remote Changes

You must keep your repository in sync with the changes from everyone else
that is collaborating on it with you. You do this with the git fetch command.
Fetching is closely related to git pull, and many people incorrectly use the
two commands interchangeably.
Fetching changes from a remote repository retrieves—literally fetches—the
changes from that remote repository. This stores them in their remote
branches on your local repository. You can use this to see what changes are
on the remote repository without affecting your local repository.
Git fetches the changes from the origin remote repository if you don’t
specify a remote. You can fetch from another repository by providing the
name of that remote repository. By default, it fetches all branches from a
remote repository. You can change this depending on the parameters you
provide to git fetch.
You can fetch a specific branch by calling git fetch with an explicit remote
name and a refspec. Refspecs provide the name of the remote branch and the
branch in your local repository that it should be fetched into separated by a
colon. For example, to fetch only themaster branch from your origin

branch, you use this: git fetch origin master:remotes/origin/master.
This format might look a little wonky at first glance. Most of the time you
refer to a remote branch by <remote name>/<branch name> without the
remotes/ prefix. Its full name contains the remote/ prefix, however, and
you must use its full name with this command.
You can fetch changes from multiple remotes at one time. You can use the
--multiple parameter to provide Git with multiple remotes to fetch changes
from. Use --all to tell Git to go through all of your remotes and fetch the
changes from them.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=72

RETRIEVING REMOTE CHANGES 73

Fetch changes from remote repository.

prompt> git fetch <remote name>

... example ...

prompt> git fetch tswicegood

remote: Counting objects: 39, done.

remote: Compressing objects: 100% (25/25), done.

remote: Total 39 (delta 16), reused 26 (delta 9)

Unpacking objects: 100% (39/39), done.

From git://github.com/tswicegood/bobby-tables

* [new branch] master -> tswicegood/master

Fetch a specific branch.

This requires a peculiar refspec to make sure the fetched branch ends up in
the right place in your local repository.
prompt> git fetch remote \

local branch:remotes/remote/remote branch

To fetch master from origin to your local copy of the origin/master remote
branch, use this:
prompt> git fetch origin master:remotes/origin/master

Fetch changes from multiple remote repositories.

prompt> git fetch --multiple remote1 remote2 ... and so on ...

Fetch changes from all remote repositories.

prompt> git fetch --all

... example after adding another remote ...

prompt> git fetch --all

Fetching tswicegood

Fetching petdance

remote: Counting objects: 414, done.

remote: Compressing objects: 100% (161/161), done.

remote: Total 407 (delta 231), reused 397 (delta 227)

Receiving objects: 100% (407/407), 52.53 KiB, done.

Resolving deltas: 100% (231/231), completed with 2 local objects.

From http://github.com/petdance/bobby-tables

* [new branch] master -> petdance/master

Related Tasks

• Task 4, Creating a Local Copy of an Existing Repository, on page 26
• Task 19, Adding and Removing Remotes, on page 70
• Task 21, Retrieving Remote Changes, Part II, on the next page

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=73

RETRIEVING REMOTE CHANGES, PART II 74

21 Retrieving Remote Changes, Part II

Many people new to Git treat git fetch and git pull as synonyms.
Understanding the differences between the two is important to understanding
how Git handles remote repositories. Remember, remotes are read-only
branches. You fetch changes from a remote repository into those branches
(which are stored locally), instead of committing directly to them, and then
merge those changes as necessary. You can use git pull to combine fetching
and merging into one command.
git pull follows Git’s convention and assumes that you want to pull from the
origin remote repository if you do not specify a remote. You must specify a
remote if you want to provide a specific branch to pull from.
You can provide a full refspec—two branches separated by a colon—to
control which branch you are pulling from and which branch you want those
changes to end up in. You specify the remote branch before the colon and the
local branch after the colon. You can pull into branches that don’t exist.
You can use the --rebase option to tell Git to rebase your local changes on
top of the remote changes instead of performing a merge. This is the
equivalent of running git fetch followed by git rebase. This allows you to
cleanly apply all your local changes on top of the remote changes that have
already been shared.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=74

RETRIEVING REMOTE CHANGES, PART II 75

Pull changes from a remote repository.

prompt> git pull [name [branch name]]

... example ...

prompt> git pull tswicegood master

From git://github.com/tswicegood/bobby-tables

* branch master -> FETCH_HEAD

Pull changes from a different branch into your local branch.

prompt> git pull origin <remote branch>:<local branch>

... example ...

prompt> git pull origin development:team-dev

Pull changes and rebase instead of merge.

To fetch from origin and rebase against itsmain branch, use this:
prompt> git pull --rebase origin master

From git://github.com/origin/bobby-tables

* branch master -> FETCH_HEAD

First, rewinding head to replay your work on top of it...

Applying: add <meta> tags

Related Tasks

• Task 15,Merging Commits Between Branches, on page 58
• Task 16, Rewriting History by Rebasing, on page 60
• Task 19, Adding and Removing Remotes, on page 70
• Task 20, Retrieving Remote Changes, on page 72
• Task 22, Sending Changes to Remotes, on the following page

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=75

SENDING CHANGES TO REMOTES 76

22 Sending Changes to Remotes

You have to publish your repository somewhere that is accessible to other
members of your team. You send your changes to that repository using the
git push command.
Calling git push without any parameters causes Git to assume you want to
push the current local branch to a branch of the same name on the origin

repository. You can provide both a remote repository and a branch name.
git push takes both named remote repositories (that is, those that have been
added via git remote add) and full URLs to remote repositories.
You can provide a branch name to specify which branch to push, but in order
to provide a branch, you must specify a remote repository. For example, to
push your beta branch to your origin repository, you would use this: git

push origin beta.
You can also use the more verbose refspec syntax if you want to push to a
remote branch that is named differently than your local branch. The syntax
of a refspec for git push is two branches separated by a colon—the local
branch first followed by the name of the remote branch. For example,
pushing your localmaster branch to a remote branch named beta, you use
this: git push origin master:beta.
Git attempts to keep you from updating a repository in a way that could
cause issues for others who have cloned your repository. By default, it does
not allow you to push non-fast-forward changes to a remote repository (see
introduction to Part III, Organizing Your Repository with Branches and Tags,
for more information on types of merges).
Non-fast-forward merges are generally caused by one of two things: 1)
someone else has pushed changes to the remote repository; or 2) you’ve
made a modification to your local repository history. For the first case, fetch
the remote changes, and then merge them into your local branch (via git

rebase or git merge). The second case could be caused by a rebase,
amending commits, or resetting the repository.
You normally don’t want to update a remote repository without using a
fast-forward push, but in those rare cases where it is necessary or desired
(you committed sensitive information or are removing a commit that does
not need to be recorded, for example), you can use the --force or -f option to
force Git to allow the update.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=76

SENDING CHANGES TO REMOTES 77

Push the local tracking branch to your origin.

prompt> git push

Push first set of changes from master to your origin.

prompt> git push origin master

Push changes from a specific branch to a specific remote

repository.

prompt> git push <remote name> <branch name>

... example ...

prompt> git push tswicegood development

Counting objects: 42, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (33/33), done.

Writing objects: 100% (42/42), 39.49 KiB, done.

Total 42 (delta 18), reused 5 (delta 4)

Unpacking objects: 100% (42/42), done.

To git://internal.domain51.pvt/sample-repo.git

* [new branch] development -> development

For example, to push to the production branch to the shared remote, use
this:
prompt> git push shared production

Push changes from the local master branch to the remote

production branch.

prompt> git push origin master:production

Force a remote branch to accept a push.

Warning: Use this with extreme caution because it can cause others to get
out of sync with the repository to which you are pushing.
prompt> git push --force

... or ...

prompt> git push -f

Related Tasks

• Task 4, Creating a Local Copy of an Existing Repository, on page 26
• Task 15,Merging Commits Between Branches, on page 58
• Task 19, Adding and Removing Remotes, on page 70
• Task 21, Retrieving Remote Changes, Part II, on page 74

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=77

HANDLING REMOTE TAGS AND BRANCHES 78

23 Handling Remote Tags and Branches

You can push your tags to a remote repository by one of two mechanisms:
you can call git push and supply the tag name as the reference to push, or
you can add the --tags parameter to git push to push all your tags to the
remote.
Most tags are fetched automatically. Fetching changes frommaster that has
several tags in its history causes Git to fetch those tags as well. Like git push

--tags, you can explicitly fetch tags via git fetch --tags.
Be careful with tags, however. Remote tags always win when there are two
tags with the same name. For example, you have a repository that points to
v1.0, and your remote repository has a v1.0 that points to a different commit.
When you pull changes from that remote, your v1.0 is going to change to
reflect the latest.
The best way to handle this is through procedure. Determine who is
responsible on your team for tagging commits and the way you’re going to
name tags,16 and stick to it.
You have to explicitly push a branch to get a local branch to show up on a
remote repository. Likewise, you have to explicitly delete remote branches to
remove them.
You can delete remote branches with a special-case refspec and git push:
:<branch to delete>. This is the equivalent of pushing an empty branch to
the remote repository.

16. Semantic Versioning (http://semver.org/) is a great place to start.

Report erratum

this copy is (P1.0 printing, October 2010)

http://semver.org/
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=78

HANDLING REMOTE TAGS AND BRANCHES 79

Push tag v1.0 to the origin.

prompt> git push origin v1.0

Total 0 (delta 0), reused 0 (delta 0)

To git://internal.domain51.pvt/sample-repo.git

* [new tag] v1.0 -> v1.0

Push all tags to the origin.

prompt> git push --tags origin

Total 0 (delta 0), reused 0 (delta 0)

To git://internal.domain51.pvt/sample-repo.git

* [new tag] v0.8 -> v0.8

* [new tag] v0.9 -> v0.9

Fetch remote tags and update local tags.

prompt> git fetch --tags origin

remote: Counting objects: 42, done.

remote: Compressing objects: 100% (37/37), done.

remote: Total 42 (delta 18), reused 0 (delta 0)

Unpacking objects: 100% (42/42), done.

From git://internal.domain51.pvt/sample-repo.git

* [new tag] v0.8 -> v0.8

* [new tag] v0.9 -> v0.9

* [new tag] v1.0 -> v1.0

Delete the remote branch called beta.

prompt> git push origin :beta

From git://internal.domain51.pvt/sample-repo.git

- [deleted] beta

Related Tasks

• Task 18, Tagging Milestones, on page 64

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=79

Part V

Branches and Merging Revisited

BRANCHES AND MERGING REVISITED 81

Now you have the basics down, understand the concepts of

branches, and have the know-how to collaborate with other devel-

opers. It’s time to revisit branches and some of the more advanced

things you can do with them.

For basic branch usage, see Part III, Organizing Your Repository with

Branches and Tags. This part covers tasks related to managing

branches once they’ve been created. For example, what happens

when you edit the same file in different ways in two branches and

then attempt to merge them back together? A conflict can occur.

We cover multiple ways to handle that in this part.

Covered in this part:

• Conflicts are going to happen. Git tries to figure out how to

handle merging changes as best it can, but sometimes it

can’t. Task 24, Handling Conflicts, on the following page, cov-

ers how to fix cases where a conflict is created.

• You can also use a GUI tool for managing conflicts. Task 25,

Handling Conflicts with a GUI, on page 84, covers that.

• Sometimes you need to temporarily hide changes in your

working tree. We see how you do this in Task 26, Temporarily

Hiding Changes, on page 86.

• There’s more than one way to get changes between

branches. Task 27, Cherry-Picking Commits, on page 88, intro-

duces you to another way to pull individual changes from one

branch into another.

• We revisit the git rebase command in Task 28, Controlling How

You Replay Commits, on page 90, to learn how to use rebase

interactively.

• You can move branches around. There are several ways to do

this, depending on the circumstance. Look at Task 29, Moving

Branches, on page 92, to see how.

Now, let’s brush up on our conflict resolution skills.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=81

HANDLING CONFLICTS 82

24 Handling Conflicts

You can’t develop a project with other developers without generating
conflicting versions of code from time to time. Git goes a long way toward
helping you resolve those automatically, but sometimes it can’t.
For example, the code shown on the opposite page shows two different
solutions to the same problem. You must tell Git how to fix the conflict
because it doesn’t know which version is correct. They both make changes
to the exact same lines of code. You can find out which file or files have
conflicts in two ways: the output from the failed git merge, or git status.
You can find conflicts within a file by looking for <<<<<<<—seven lesser
than signs—with a commit such as HEAD. The original code—the code
inside the branch you’re merging into—is located between the 7 < and
========. The new code is between that marker and >>>>>>>, followed by
the name of branch (or commit ID, tag, and so on) you were merging in.
How you deal with the conflict and determine which version to use is up to
you. You can choose one version over the other, use one and then the other,
combine the two changes together, or completely remove them both.
Once you’ve resolved the conflict, call git add to stage the new changes and
then git commit to commit it. You might not have anything to commit,
however. For example, if you use all the changes from your local branch, Git
doesn’t need to create a new commit. Nothing has changed.
You can also abort a conflict at any time before you commit the changes by
resetting your working tree to ORIG_HEAD. See Task 37, Resetting Staged
Changes and Commits, on page 114 for more information on git reset.
Here’s an example of how a conflict can happen between two branches:

Conflict

Both commits change the same line of code

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=82

HANDLING CONFLICTS 83

See an example merge conflict.

The basics of the error message are the same, but the files are always
different. For example, here’s a conflict in a repository for one of my
projects:
prompt> git merge added_raw

Auto-merging dolt.py

CONFLICT (content): Merge conflict in dolt.py

Automatic merge failed; fix conflicts and then commit the result.

You can find the conflict inside the file by looking for the special markup
that Git adds, <<<<<<< followed by a commit (most of the time HEAD.
Here’s the conflict in the previous file:
<<<<<<< HEAD

def _handle_response(self, response, data=[], raw=False):

return data if raw else simplejson.loads(data)

=======

def _handle_response(self, response, raw=False, data=[]):

if raw:

return data

return simplejson.loads(data)

>>>>>>> added_raw

Commit a fixed conflict.

You can use git status to see whether the conflict still exists:
On branch master

Unmerged paths:

(use "git add/rm <file>..." as appropriate to mark resolution)

#

both modified: dolt.py

#

Once the conflict is resolved, call git add and git commit like you normally
would.

Related Tasks

• Task 15,Merging Commits Between Branches, on page 58
• Task 25, Handling Conflicts with a GUI, on the following page

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=83

HANDLING CONFLICTS WITH A GUI 84

25 Handling Conflicts with a GUI

Merging is often made easier with a GUI that displays each version of the
code in question and allows you to choose which version you prefer. You can
use git mergetool to launch a GUI tool to handle merge conflicts.
You can choose from several different merge tools. Their availability varies
between platforms, and how you interact with a tool is slightly different for
each one you use for merging. Generally, the local copy (the original that
was in your branch before the merge) is displayed on the left, with the
remote, new code on the right.
Common to all GUI merge tools is the ability to step through each change
and choose which version you like. You must save those changes before
exiting. git mergetool looks at the result and stages that as the correct
version of the conflicting code.
You have to commit your changes once the conflict has been resolved, just
like manually merging the conflicts (see Task 24, Handling Conflicts, on
page 82). git mergetool stages the changes for you; that’s the only
difference.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=84

HANDLING CONFLICTS WITH A GUI 85

Launch a merge tool to handle a conflict.

prompt> git mergetool

merge tool candidates: opendiff kdiff3 tkdiff xxdiff meld

tortoisemerge gvimdiff diffuse ecmerge p4merge araxis emerge vimdiff

Merging the files: dolt.py

Normal merge conflict for 'dolt.py':

{local}: modified

{remote}: modified

Hit return to start merge resolution tool (opendiff):

Set gvimdiff as the default merge tool.

prompt> git config --global merge.tool "gvimdiff"

Use the Perforce Visual Merge Tool17 on Windows.

This example shows the Window-specific command, but you can use the
same process on any platform for a custom merge tool.
prompt> git config --global merge.tool p4merge

prompt> git config --global mergetool.p4merge.cmd \

'p4merge.exe \"$BASE\" \"$LOCAL\" \"$REMOTE\" \"$MERGED\"'

Related Tasks

• Task 15,Merging Commits Between Branches, on page 58
• Task 24, Handling Conflicts, on page 82

17. http://www.perforce.com/perforce/products/merge.html

Report erratum

this copy is (P1.0 printing, October 2010)

http://www.perforce.com/perforce/products/merge.html
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=85

TEMPORARILY HIDING CHANGES 86

26 Temporarily Hiding Changes

Some Git operations, such as git rebase, require a clean working tree—a
working tree with no changes. git stash gives you a tool to hide changes that
aren’t quite ready to commit so you can come back to them.
Stashing changes is the equivalent of creating a commit and then resetting
your repository back one commit. Stash provides a mechanism for grabbing
those changes out of history more easily, however.
Stash names are similar to the names you see in the reflog (see Task 40,
Retrieving “Lost” Commits, on page 120). You refer to them as stash@{#},
replacing the # with the age of the stash. The most recent is 0, the one before
that is 1, and so on.
You can call git stash without any parameters to create a new stash. Calling
it without any parameters is the same as calling it with git stash save.
Providing the save option allows you to specify a message explaining what
the stash was.
There are two commands to apply previous stashes to your current working
tree: apply and pop. You can use apply to make the change to your
working tree without removing the stashed change from your stash. Most of
the time, you want to apply it and remove it from the stash, though. That’s
where pop comes in. It “pops” the change off the stack and applies it.
Creating stashes stores the commits outside of normal branches. To see what
stashed changes are available, you can use the git stash list command. Like
the name hints at, it lists all the stashed changes.
You can use the --patch parameter to stash a portion of the change. It works
just like git add -p (see Task 6, Staging Changes to Commit, on page 34).
Sometimes you create a stash and then realize you don’t need it any longer.
You can use git stash drop <stash name> to delete an individual stash, or
you can use the clear option to remove all the stashed changes.
Another interesting use of git stash is the branch option. You can use it to
create a new branch from a stash. Git creates a new branch for you that looks
exactly like your repository did when you called git stash originally. This is
useful for applying a stash to see its changes in situations where the stash
does not apply cleanly to the current working tree.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=86

TEMPORARILY HIDING CHANGES 87

Stash the changes in your working tree.

prompt> git stash

Saved working directory and index state WIP on

master: 8e323b6 add <meta> tags

HEAD is now at 8e323b6 add <meta> tags

Apply a stash to the current working tree.

prompt> git stash apply

... output looks similar to git status after apply ...

Or, to apply and remove from the stash, use this:
prompt> git stash pop

... same output as above plus ...

Dropped refs/stash@{0} (76d9092...)

List the available stashes.

prompt> git stash list

stash@{0}: WIP on master: 8e323b6 add <meta> tags

Create a stash in patch mode.

prompt> git stash save --patch

... launches editor ...

Delete stashes.

prompt> git stash drop <stash name>

Dropped stash@{0} (ea5bd0c...)

Or, to remove all stashed changes, use this:
prompt> git stash clear

prompt>

Create a branch from an existing stash.

prompt> git stash branch [<stash name>]

Related Tasks

• Task 6, Staging Changes to Commit, on page 34
• Task 7, Committing Changes, on page 36
• Task 13, Creating and Switching Branches, on page 54
• Task 16, Rewriting History by Rebasing, on page 60

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=87

CHERRY-PICKING COMMITS 88

27 Cherry-Picking Commits

You sometimes need to grab one commit from another branch and merge it
into your local branch, such as a bug fix that needs to be backported. You
can grab commits one at a time using git cherry-pick.
Cherry-picking a commit from another takes that single commit and
commits it to your local branch. It’s pretty straightforward and appears
extremely useful in a lot of situations, but be careful.
Cherry-picked commits have different commit IDs than the original commit
they came from because their parent changed—remember that a commit ID
is based partially on where it exists in the history, and changing the parent
changes the commit ID. A good rule of thumb is to cherry-pick commits
only when a merge is not an option, in other words, backporting a bug fix
where the backported change is never going to be merged forward.
You must specify the commit that you want to cherry-pick. You can do this
with either a commit ID, a branch name, a tag, or some relative reference to
any of these. Keep in mind that using a branch name or tag means that the
latest commit that those reference is cherry-picked in, not the entire history.
Normally git cherry-pick automatically creates a new commit as soon as it
is done. You can change this behavior with two different options. Use --edit

(or -e) to launch the editor and change the commit message before
committing the cherry-picked revision. This allows you to edit the commit
message but not the actual commit.
You can use --no-commit (or -n) to tell Git to stop as soon as the change has
been merged and staged. You can use this to cherry-pick several commits
and then commit them into your local branch as one commit. Remember to
start with the oldest commit first when cherry-picking more than one
commit; otherwise, you might end up trying to make a change that isn’t
possible or having conflicts because it is in the wrong order.
You can also add a Signed-off-by line to the end of a cherry-picked commit.
Signed-off lines consist of the phrase Signed-off-by: followed by your name
and email address (pulled from the configuration). This is useful for creating
a chain of review for commits and can become essential in backported
commits to ensure they have been properly reviewed prior to being merged
into an existing branch.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=88

CHERRY-PICKING COMMITS 89

Merge a single commit from another branch into your local

one.

prompt> git cherry-pick some commit ID

some commit ID refers to a commit any way you normally can: an actual
commit ID, branch name, tag, or some relative version of any of those. For
example, to cherry-pick the latest from release_1.0 or commit a74cc83,
use this:
prompt> git cherry-pick release_1.0

Finished one cherry-pick.

[master bcdbca8] add <meta> tags

1 files changed, 1 insertions(+), 0 deletions(-)

prompt> git cherry-pick a74cc83

Finished one cherry-pick.

[master dd94f18] working on conerting to Textile

Author: Andy Lester <andy@petdance.com>

5 files changed, 195 insertions(+), 176 deletions(-)

rewrite crank (81%)

create mode 100644 s/index.textile

create mode 100644 s/java.textile

Cherry-pick, but edit the commit message before committing.

prompt> git cherry-pick --edit release_1.0

... or ...

prompt> git cherry-pick -e release_1.0

Cherry-pick, but don’t commit.

prompt> git cherry-pick --no-commit release_1.0

... or ...

prompt> git cherry-pick -n release_1.0

Add a “Signed-off-by” line to the commit message.

prompt> git cherry-pick --signoff release_1.0

... or ...

prompt> git cherry-pick -s release_1.0

Related Tasks

• Task 7, Committing Changes, on page 36
• Task 15,Merging Commits Between Branches, on page 58

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=89

CONTROLLING HOW YOU REPLAY COMMITS 90

28 Controlling How You Replay Commits

Rebasing in Git replays one set of commits on top of another. We covered
the basic case in Task 16, Rewriting History by Rebasing, on page 60. There
is an interactive mode to git rebase that lets you control how the commits
are replayed.
Like a regular rebase, git rebase -i takes the commits in your current branch
and replays them against another point in your repository’s history. You can
use this to change the order of commits, squash commits together, or edit a
previous commit. Consider the following example.
You add a new feature and then start working on the next feature. You realize
a little while later that you could have implemented it in a cleaner fashion.
You could amend the commit (see Task 35, Fixing Commits, on page 110) if
it’s the last commit, but since some time has elapsed, you’ve already created
other commits.
This is where interactive rebasing comes into play. Create the second
commit with the fix you want to use, and then launch git rebase -i and pass
it the commit ID of the original commit ID minus one. For example, if the
commit ID was 322dafc, you should use git rebase -i 322dafc^.
Git rebase’s interactive mode launches your editor with a list of commits.
You can use the editor to move the last line (the commit you just made) up to
immediately after the commit you want to merge it into; then change the first
word to say fixup to merge it into the original commit.
There five different options: pick, reword, edit, squash, and fixup. You can
use any of these as the first word or the first letter of a line to adjust that
commit when it is replayed.
Like a regular git rebase, be careful how you rebase. You can cause issues
for other people who have synced off of your repository if you rebase code
that you’ve already shared. Remember this simple rule of thumb: don’t
rebase code you’ve shared.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=90

CONTROLLING HOW YOU REPLAY COMMITS 91

Rebase interactively.

prompt> git rebase -i <commit ID

... example ...

prompt> git rebase -i HEAD~5

For example, to interactively rebase the last five commits, use this:
prompt> git rebase -i HEAD~5

... or ...

prompt> git rebase -i HEAD^^^^^

See an example interactive rebase.

The following is the result of a git rebase -i on one of my projects:
pick 6b24857 remove theme from repo

pick 29e2376 add in dependency on external repo for theme

pick 7ce4bdf add code to handle deployment of new docs

Rebase 86968d5..7ce4bdf onto 86968d5

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

Related Tasks

• Task 15,Merging Commits Between Branches, on page 58
• Task 16, Rewriting History by Rebasing, on page 60

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=91

MOVING BRANCHES 92

29 Moving Branches

Sometimes you need to move branches around to reorganize them. For
example, you have a branch where you’re working on a future version of
your software. During the rewrite, your team realizes that the better-widget

feature can be released as a minor version of your software instead of being
part of the next major version. This is where you can move a branch to make
your repository more sane.
You use git rebase --onto to move branches. Like a normal git rebase, Git
replays the commits from one branch against another. The difference is that
Git takes the branch you’re rebasing, and instead of replaying it against
another branch, it moves it to an entirely different one.
The syntax is more verbose than a simple git rebase that requires only one
additional parameter. git rebase --onto takes three: the first is the branch
you’re rebasing onto, the second is the branch you’re rebasing from, and the
third is the branch you want to move.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=92

MOVING BRANCHES 93

Move branch better-widget from next-release to master.

This is the current state of the repository: the next-release branch was
created from themaster branch, and the better-widget branch was created
from the next-release branch.
o--master--o

\

o--next-release--o

\

o--better-widget--o

The command to move the branch is a specialized version of git rebase:
prompt> git rebase --onto master next-release better-widget

After running this command, use this:
o--better-widget--o

/

o--master--o

\

o--next-release--o

next-release is moved to the end ofmaster, so if there were more commits
inmaster than were in next-release, better-widget is placed on top of
those. Here’s an example:
o--master--o--o--o

\

o--next-release--o

\

o--better-widget--o

After running git rebase --onto, use this:
o--better-widget--o

/

o--master--o--o--o

\

o--next-release--o

Related Tasks

• Task 16, Rewriting History by Rebasing, on page 60

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=93

Part VI

Working with the Repository’s

History

WORKING WITH THE REPOSITORY’S HISTORY 95

You’ve learned all the basics, as well as some of the more complex

topics in Git. It’s time to start looking at all that history you’ve been

building up and put the code in the context it was created in.

Your repository is a vault of all the changes you and your team have

made to your project. Git tracks all of those changes and their com-

mit messages, making them viewable and searchable via the log.

The log is a reverse chronological view of each commit. By default,

it shows you the commit ID, the author, the committer (if that person

is different from the author), the date, and the log message. You

can show more (or less) in that output.

The power of Git’s log feature is directly related to how your project

handles commit messages. The more information you add to your

commit message, the more valuable the log is to your developers.

Git convention for commit messages is to break the messages into

two parts. Start with a one-line “subject” that tersely describes the

change that was made, and then follow it with a more in-depth

“body” that describes the change in plain text. The rule of thumb is

to explain the change like you’re explaining it to another developer.

Let the code speak for itself, but make sure to include reasons for the

change and explain any potentially odd choices.

Covered in this part:

• We start with the log in Task 30, Viewing the Log, on page 98.

You’ll learn how to view the log in a couple of different formats

and how to understand the information it displays.

• Once you understand the basics of querying Git’s log, Task

31, Filtering the Log Output , on page 100 walks you through

filtering those results through Git’s revisions and ranges.

• Each commit tracks changes between files. Those changes

are described as diffs. You’ll learn how to view Git’s diffs in

Task 32, Comparing Differences, on page 102 so you can see

changes across different commits.

• Everyone loves statistics. Well, at least managers do. In addi-

tion to the excellent diffs and logs that Git provides, it also

gives you the ability to generate some statistics on the

changes your repository is tracking. You’ll learn how to use

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=95

WORKING WITH THE REPOSITORY’S HISTORY 96

these tools in Task 33, Generating Statistics About Changes,

on page 104.

• Finally, we wrap up this part with a section on blame. The logs

provide us with excellent information on individual changes. In

Task 34, Assigning Blame, on page 106, you learn how inspect

information about each line of a file. It’s excellent for assigning

blame—er, praise—on the other members of your team when

you find their excellently unique code.

Now, let’s jump into the basic display of your repository’s history: the

log.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=96

WORKING WITH THE REPOSITORY’S HISTORY 97

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=97

VIEWING THE LOG 98

30 Viewing the Log

Git’s bread and butter is tracking changes to files in your project over a
period of time. You use the log to view that history.
You can use git log to view the standard log output. Git displays the commit
ID, author, date, and commit message for each commit in reverse
chronological order. Git sends the output through less to keep the output
from scrolling past on the screen too fast to be seen.
You can use the --oneline parameter to shorten the log display to show the
first seven characters of the commit ID and the subject of the log message. It
increases the number of commits you can view on one screen and with
properly written log messages makes scanning easier.
Viewing the entire history often gives you too much information. You can
limit the number of commits git log shows by providing it with -N, changing
N with the number of commits you want to display.
Often you need to see the changes made to the file in addition to the log
message to fully understand the change. You can use the -p to show the diff
the commit made.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=98

VIEWING THE LOG 99

View a reverse chronological list of all commits.

prompt> git log

commit 3ac20cfb09212f212a2f60a6227610c680e8a95e

Author: Travis Swicegood <development@domain51.com>

Date: Wed Aug 18 09:29:38 2010 -0500

add sample output for Part V

commit fa0016322bf4e73d1419ddc91777368db0f35484

Author: Travis Swicegood <development@domain51.com>

Date: Wed Aug 18 09:12:35 2010 -0500

add in sample output for Part IV

... and so on, and so on ...

View the log with one shortened commit ID and subject.

prompt> git log --oneline

3ac20cf add sample output for Part V

fa00163 add in sample output for Part IV

8bd724b add note about empty prompt> to the intro

... and so on, and so on ...

View the last N commits.

prompt> git log -N

... examples ...

prompt> git log -5 # show the last five

prompt> git log HEAD^^^^^..HEAD # show the last five

prompt> git log -10 # show the last ten

prompt> git log HEAD~10..HEAD # show the last ten

Show the changes made in the latest commit.

prompt> git log -1 -p HEAD

Note that it is a 1 (as in the number) and not an l (as in library).

Related Tasks

• Task 32, Comparing Differences, on page 102

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=99

FILTERING THE LOG OUTPUT 100

31 Filtering the Log Output

Git’s log is useful way to track what the original developer—often
yourself—was thinking when they made a change, but it often provides too
much information. You can use git log’s many parameters to filter the results
it displays, zeroing in on the information that’s important to you.
You can start to filter the results by providing Git with a directory or path.
You specify the path as the last parameter. To be safe, separate the path from
other parameters with -- (two dashes). Otherwise, Git can’t tell the difference
between the branch or tag work and the path work.
You can also filter the log based on the time of the commit. Using the --since

or --after parameter, you can look at commits after a given point in time. Git
attempts to parse any string you give it but fails silently if it can’t parse the
date you provide. Stick with traditional date and time formats or a number
followed by months, weeks, days, hours, minutes, and so on, to make sure
Git can understand you.
Git provides you with the opposite of --since and --after too; you can use
--until or --before to look for commits older than a given time.
You use --author to filter the results by author or email address. Git matches
on a partial name; --author="Travis" match both commits I make and
commits authored by “The Other Travis.”
Finally, you can use --grep to search through the log messages using a
regular expression, or regexp. It uses basic regular expressions, just like the
command-line tool it takes its name from—grep. You can tell it to ignore
case with the --regexp-ignore-case or the shorter -i parameters.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=100

FILTERING THE LOG OUTPUT 101

Limit the log output to a single file or directory.

prompt> git log -- some/path/

prompt> git log -- some_file

View the commits in the last week.

You can use many kinds of times with --since or --after. Here are a few
variations of looking at the last week of commits:
prompt> git log --since="1 week"

... or ...

prompt> git log --after="7 days"

... or ...

prompt> git log --since="168 hours"

View the commits prior to the last week.

prompt> git log --before="1 week"

... or ...

prompt> git log --until="7 days"

... or ...

prompt> git log --before="168 hours"

View the log entries by a single committer.

prompt> git log --author="some user"

View the log entries containing a regular expression.

prompt> git log --grep="some [Rr]eg[Ee]x"

... or ...

prompt> git log --grep="some regex" --regexp-ignore-case

... or ...

prompt> git log --grep="some regex" -i

Related Tasks

• Task 30, Viewing the Log, on page 98

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=101

COMPARING DIFFERENCES 102

32 Comparing Differences

Git’s log provides you with the information about a change—who made it,
what their intent was, and so on—but sometimes looking at the changes
made to the code provides more information. git diff shows you the changes
that were made between two commits.
You can use git diff to view the changes—referred to as diffs or patches—of
two different commits or states. Most of the time it’s called as git diff with
no parameters. That’s the same as telling Git, “Show me the changes
between my working tree and the staging area.”
git diff considers changes that are staged and ready to be committed as part
of the repository. You can tell Git to show the differences between what is
staged and what is stored in the repository by adding the --staged

parameter. Note that this output does not show any changes that are in your
working tree but not yet staged.
You can also provide a single, explicit commit ID to git diff to tell Git to
compare your current working tree against what is in the repository at that
point. For example, if you want to compare your working tree against the
latest commit, regardless of what has been staged, you can provide the HEAD

parameter to tell Git to compare against that commit.
Most of the time you use git diff one of the ways discussed, but you can use
it in other ways. For example, you can provide a first and second commit to
compare the differences between those two commits.
Looking at the differences between two commits that are far apart might
generate a lot more noise than you need. You can limit the files shown in the
diff by providing a path. The best practice is to include the path after a --,
which tells Git, “This is a path, not a revision.” Without that, Git can confuse
the path you provide with a branch or tag of the same name.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=102

COMPARING DIFFERENCES 103

View the differences between the current working tree and the

staging area.

prompt> git diff

View the differences between the staged changes and

repository.

prompt> git diff --staged

View the differences between the working tree and a commit

in the repository.

prompt> git diff HEAD

prompt> git diff Commit ID

View the differences between two “commits.”

You can use a commit ID, branch name, or tag to reference a commit here.
prompt> git diff first second

... or ...

prompt> git diff first..second

... example ...

prompt> git diff 423d021 1e85ac3

... or ...

prompt> git diff 423d021..1e85ac3

Limit the diff output to a specific path.

prompt> git diff -- path/

Related Tasks

• Task 5, Seeing What Has Changed, on page 32
• Task 30, Viewing the Log, on page 98
• Task 33, Generating Statistics About Changes, on the following page

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=103

GENERATING STATISTICS ABOUT CHANGES 104

33 Generating Statistics About Changes

The individual commit’s changes are important, but viewing those changes
in aggregate through statistics can provide you with a unique view of the
project. Git helps you do that through the various statistical outputs it
generates.
Git’s git diff --stat is the most straightforward of the displays. It takes one or
two commits—remember, git diff assumes HEAD as its second commit if you
don’t specify it—and displays stats regarding the changes rather than
displaying the diff output. It includes file-by-file changes in addition to the
summary statistics. Git uses the diffstat command for this, so the output may
look familiar if you’re used to that program.
Sometimes all you need is the final line of the stats output—the number of
files changed, the number of insertions, and the number of deletions. Use
--shortstat to display that information. It’s the same information displayed at
the last line of the main --stat output but without the file-by-file breakdown.
The output generated by the --stat and --shortstat parameters is not easily
parseable by a computer. You can use the --numstat parameter to generate a
three-column output that is easy to parse. The first column is the number of
inserted lines, the second is the number of deleted lines, and the final column
is the name of the file in question.
You can generate stats using any range of revisions that work with git diff.
Adding any of the stat parameters tells Git to output the stats without
showing the actual differences. You can add -p to the command to show both
the statistical output and the patch or to show the differences.
We’ve talked about viewing statistical information in the context of git diff,
but you can also view it from git log along with each log message. Add
--stat, --shortstat, or --numstat to any git log command to add the
respective statistical output to the log output.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=104

GENERATING STATISTICS ABOUT CHANGES 105

Show change stats between the last ten commits.

prompt> git diff --stat HEAD~10

... or ...

prompt> git diff --stat HEAD~10 HEAD

Show statistics between two commits.

prompt> git diff --stat first second

... example ...

prompt> git diff --stat 423d021 1e85ac3

Show the number of files changed, inserts, and deletes in the

last ten commits.

prompt> git diff --shortstat HEAD~10

Show stats in a parseable format.

prompt> git diff --numstat HEAD~10

Show the patch in addition to the statistical information.

prompt> git diff --stat -p HEAD^

Show statistics about commits in the log.

For full stats by file:
prompt> git log --stat

To display cumulative stats only, use this:
prompt> git log --shortstat

Related Tasks

• Task 30, Viewing the Log, on page 98
• Task 32, Comparing Differences, on page 102

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=105

ASSIGNING BLAME 106

34 Assigning Blame

Despite its combative name, git blame is a useful tool for determining what
the original developer was thinking. Most bugs manifest themselves with an
error at a specific point. You can use git blame to find out when the problem
line was introduced into the repository and use that as a jumping-off point
for further investigation.
git blame displays all or a portion of a file with annotations showing when
the change was made, by who, and, more importantly, in what revision the
change was made. Armed with that, you can inspect the log to determine
what the original author intended.
git blame outputs the following information:

• Short commit ID
• Author’s name
• Date and time of commit
• Line number

By default, the entire file is displayed. You can limit the portion of the file
displayed by using the -L parameter. It requires one parameter: a number or
POSIX regular expression.
You can specify the point to stop, as well, by providing a second value as part
of a comma-separated string. Make sure there’s no space between the start, the
comma, and the second value. The second value can be another line number,
a regular expression, or a number with a plus (+) or minus (-) before it.
The plus sign shows the start plus the number of lines; the minus sign adjusts
the start to show the number of lines before the start. Remember that the plus
and minus are zero-indexed. For example, -L 10,+10 shows lines 10 through
19, not lines 10 through 20.
Git can track content that moves around in a file or is copied from one file to
another. You can use git blame to show content that has moved around by
adding the -M parameter.
You can also track changes copied from another file by using the -C

parameter. It checks the changes in the file against other changes in the
repository to see whether it was copied from somewhere else.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=106

ASSIGNING BLAME 107

Display file with entire line-by-line commit information.

prompt> git blame some/file

Start the output of blame at line 10.

prompt> git blame -L 10 some/file

Limit the output of blame to lines 10 through 20.

prompt> git blame -L 10,20 some/file

... or ...

prompt> git blame -L 10,+11 some/file

... or ...

prompt> git blame -L 20,-11 some/file

Show ten lines of output from blame starting at a POSIX regular

expression.

prompt> git blame -L "/def to_s/",+10 some/file

Check the history to see the change was moved, and display

that information.

prompt> git blame -M some/file

Check the history to see whether the change was copied from

somewhere else or moved around within the file, and display

that information.

prompt> git blame -C some/file

Related Tasks

• Task 30, Viewing the Log, on page 98
• Task 32, Comparing Differences, on page 102

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=107

Part VII

Fixing Things

FIXING THINGS 109

As we discussed earlier, Git breaks the process of committing a

change and sharing that same change into two separate proces-

ses. The benefit of that separation comes into sharp focus when you

need to fix something.

Every commit in Git can be changed. You should avoid making

changes to commits you’ve shared to avoid potential conflicts with

other developers. Keeping that in mind, you can adjust commits as

much as you want.

Covered in this part:

• You need to fix a typo, you forgot to run the unit tests before

committing and accidentally broke them, or you found a bug

after the commit. You learn how to fix these issues in Task 35,

Fixing Commits, on the next page.

• You can undo a commit after you’ve shared your changes by

reverting it—applying the reverse of a commit as a new com-

mit. You learn how to do this in Task 36, Reverting Commits, on

page 112.

• You can reset your current HEAD to any other commit in the

repository and start working from there. In practice, it’s most

useful to undo one or more of the most recent commits. We

cover this in Task 37, Resetting Staged Changes and Commits,

on page 114.

• Sometimes you don’t need to fix a commit; you need to re-

move it entirely. You learn how to do that in Task 38, Erasing

Commits, on page 116.

• Fixing and removing commits is the easy part. Most issues are

bugs in your code. Git provides an excellent tool for isolat-

ing the commit (or commits) that introduced a bug. You learn

about it in Task 39, Finding Bugs with bisect , on page 118.

• Finally, all of this rewriting can cause issues if you’re not care-

ful. One of Git’s mandates is to not lose code, though, so it

provides the reflog to help you recover. You learn how to nav-

igate it in Task 40, Retrieving “Lost” Commits, on page 120.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=109

FIXING COMMITS 110

35 Fixing Commits

One of the advantages of Git is the ability to “fix” commits. Fixing changes
can be as simple as fixing typos that got committed, fixing a bug you didn’t
catch because you hadn’t run your unit tests yet, or doing something as
complex as rearranging an entire series of commits so they are ordered more
logically.
git commit --amend is the way to fix the most recent commit. It comes in
handy for those simple fixes that you catch right away. It is a convenience
wrapper around using git reset --soft HEAD^ (see Task 37, Resetting Staged
Changes and Commits, on page 114) and git commit -c ORIG_HEAD. You
can use the -C parameter with --amend when you want to reuse the original
commit message.
You can use git rebase -i to replay the history of your repository and stop at
certain points. Run the command, provide it with the parent of the commit
you want to edit, and then mark that commit as “edit.” Git stops at that point
and then lets you work on your repository as if it were the previous commit
(see Task 28, Controlling How You Replay Commits, on page 90).
You can fix typos, remove some buggy code, or do anything else you would
normally do with the previous commit. Then, call git rebase --continue so
Git can finish rebasing the rest of the history.
It’s worth noting again: be careful when rewriting history. Feel free to
rewrite to your heart’s content until you share your work. After that, only
rewrite when you have no other option available.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=110

FIXING COMMITS 111

Amend the previous commit.

Make the changes you want and stage those changes, and then use this:
prompt> git commit --amend

... launch editor ...

Amend the previous commit, and keep the same log message.

prompt> git commit --amend -C HEAD

[master 38ec64e] update the README

1 files changed, 5 insertions(+), 0 deletions(-)

Fix the previous commit by removing it entirely.

prompt> git reset --hard HEAD^

HEAD is now at 68f3164 use json if available

Use interactive rebase to edit a commit other than the last one.

This command allows you to rewrite history by changing commits. In this
example, say you want to edit the third commit before HEAD:
prompt> git rebase -i HEAD~3

... launches editor, mark the first commit (the one you want

... to change) as "edit" instead of "pick", then save

... and exit your editor

...

... make the change you want to your commit, then:

prompt> git commit --amend

prompt> git rebase --continue

Related Tasks

• Task 16, Rewriting History by Rebasing, on page 60
• Task 28, Controlling How You Replay Commits, on page 90
• Task 36, Reverting Commits, on the next page
• Task 37, Resetting Staged Changes and Commits, on page 114
• Task 40, Retrieving “Lost” Commits, on page 120

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=111

REVERTING COMMITS 112

36 Reverting Commits

Sometimes we make mistakes. A commit that wasn’t supposed to be shared
gets pushed to a public repository, a commit has a bug that can’t be fixed and
needs to be undone, or maybe you just don’t need that code any longer.
These cases all call for git revert.
The git revert command does just what you might expect. It reverts a single
commit by applying a reverse commit to the history.
You can call git revert with just a commit ID. Git launches the editor with
the commit message already filled out. It follows this pattern:
Revert "some commit message"

This reverts commit <some commit hash>.

You can edit this message to be whatever you want. You can use the
--no-edit parameter to tell Git to use the default message without passing it
through the editor if the default is sufficient.
Sometimes you need to revert several commits to completely undo a change.
You can use --no-commit, or you can use -n to tell Git to perform the revert
but stop short of committing the change. This lets you combine all the revert
commits into one commit, which is useful if you need to revert a feature that
spans several commits. Make sure that you revert commits in reverse
order—the newest commit first. Otherwise, you might confuse Git by trying
to revert code that doesn’t exist yet.
You can use git revert to undo commits that you don’t want or need any
longer, but it does leave a trace. In most cases, you don’t want commits
“disappearing” from your repository. For those instances where you don’t
want a record of your commit at all, see Task 38, Erasing Commits, on
page 116.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=112

REVERTING COMMITS 113

Revert a particular commit.

prompt> git revert <commit id>

... example ...

prompt> git revert de3245fa

Finished one revert.

... launches editor ...

[master 743d2ef] Revert "simplify this code a bit"

1 files changed, 1 insertions(+), 1 deletions(-)

Revert a particular commit, and use the default message.

prompt> git revert --no-edit <commit id>

... example ...

prompt> git revert --no-edit de3245fa

Finished one revert.

... launches editor ...

[master 3a26b89] Revert "simplify this code a bit"

1 files changed, 1 insertions(+), 1 deletions(-)

Revert a commit, but don’t commit the change.

prompt> git revert --no-commit <commit id>

Finished one revert.

... or ...

prompt> git revert -n <commit id>

Finished one revert.

Related Tasks

• Task 35, Fixing Commits, on page 110
• Task 37, Resetting Staged Changes and Commits, on the following
page

• Task 38, Erasing Commits, on page 116

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=113

RESETTING STAGED CHANGES AND COMMITS 114

37 Resetting Staged Changes and
Commits

The git reset command lets you change the HEAD—the latest commit your
working tree points to—of your repository. It modifies either the staging area
or the staging area and working tree.
Git’s ability to craft commits exactly like you want means that you
sometimes need to undo changes to the changes you staged with git add.
You can do that by calling git reset HEAD <file to change>. This is the
most common use of the reset and is like Subversion’s svn revert command.
Remember not to get the two confused. (For more on git revert, see Task 36,
Reverting Commits, on page 112.)
You have two options to get rid of changes completely. git checkout HEAD

<file(s) or path(s)> is a quick way to undo changes to your staging area and
working tree. Be careful with this command, however, because it removes all
changes to your working tree. Git doesn’t know about those changes since
they’ve never been committed. There’s no way to get those changes back
once you run this command.
Another command at your disposal is git reset --hard. It is equally
destructive to your working tree—any uncommitted changes or staged
changes are lost after running it. Running git reset --hard HEAD does the
same thing as git checkout HEAD . (with an extra period after HEAD); it just
doesn’t require a file or path to work.
You can use git reset --hard to remove more than staged changes and
changes to your working tree. You can give it any commit ID to tell Git to
reset your HEAD to that and move the current branch to that location. For
example, if you make two commits and then realize neither should be there,
a quick git reset --hard HEAD^^ fixes that.
You can use --soft with git reset. It resets the repository to the commit you
specify and stages all of those changes. Any changes you have already
staged are not affected, nor are the changes in your working tree.
Finally, you can use --mixed to reset the working tree without staging any
changes. This also unstages any changes that are staged.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=114

RESETTING STAGED CHANGES AND COMMITS 115

Reset staged changes, but don’t erase any changes.

prompt> git reset HEAD

Unstaged changes after reset:

M dolt/__init__.py

... to reset just certain file(s) ...

prompt> git reset HEAD <file1> [<file2> <and so on>]

Completely undo the last commit.

Warning: Be careful with this command; it overwrites the changes in any
files in your working tree.
prompt> git checkout HEAD <file or path to reset>

prompt>

Completely remove the last three commits.

Remember, --hard erases any uncommitted changes in your working tree.
Git doesn’t know about those, so you can’t get them back.
prompt> git reset --hard HEAD^^^

... or ...

prompt> git reset --hard HEAD~3

HEAD is now at 5eada39 add basic read-only version of api wrapper

Reset last commit and stage the changes.

This is useful if the commit has a lot changes, and only a few files and/or
paths need to be altered before committing the changes again.
prompt> git reset --soft HEAD^

prompt>

Undo the last change to HEAD.

prompt> git reset ORIG_HEAD

Unstaged changes after reset:

M dolt/apis/external.py

... if you want to completely remove any changes ...

prompt> git reset --hard ORIG_HEAD

HEAD is now at 99a7a58 fix params_template

Related Tasks

• Task 16, Rewriting History by Rebasing, on page 60
• Task 36, Reverting Commits, on page 112
• Task 35, Fixing Commits, on page 110
• Task 38, Erasing Commits, on the following page
• Task 40, Retrieving “Lost” Commits, on page 120

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=115

ERASING COMMITS 116

38 Erasing Commits

You can tell Git to erase commits. This is contradictory to most version
control systems, but you can treat any commit you haven’t shared with the
rest of the world as something that can be adjusted as necessary.
A word of caution before we get into specifics, though. Don’t delete
commits that you’ve shared without a very good reason. Deleting commits
causes the history to be rewritten, causing the ripple effect problems like a
git rebase. If you’re shared commits, your best bet is git revert (see Task
36, Reverting Commits, on page 112).
You can use git rebase a couple of different ways to handle deletes. First,
you can add the -i parameter to go into an interactive rebase. Once launched,
delete the line (or lines) for the commit you don’t want to keep, save and exit
the editor, and you’re off.
Second, you can use --onto to tell Git to rebase onto the commit you want to
get rid of. You must specify three parameters: first, you specify the commit
you want to start on (the commit before the commit you want to delete);
second, you specify the commit before the one you want to start at again;
third, you specify the final commit you want available.
Dissecting the command from the opposite page, you’re telling Git you want
to rebase HEAD (HEAD^ through HEAD, or the last commit) onto c2d2245.
You can also use git reset to remove any number of the latest commits off
the end of your repository. You can use --hard to remove the changes from
both your index and your working tree, but be careful. This deletes any
changes you have in your working tree. git stash (see Task 26, Temporarily
Hiding Changes, on page 86) is a good idea if you have changes you want to
hang on to.
Remember, you can always use git reflog (see Task 40, Retrieving “Lost”
Commits, on page 120) if one of these commands goes awry. Be mindful of
your working tree, though. It warrants repeating: git reset --hard deletes
uncommitted changes from your working tree, and those uncommitted
changes can’t be retrieved.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=116

ERASING COMMITS 117

Erase with an interactive rebase.

prompt> git rebase -i <commit to erase>^

For example, to erase commit c2d2245, use this:
prompt> git rebase -i c2d2245^

... launches editor ...

Delete the line that contains the c2d2245 commit, and then save and exit the
editor so git rebase can run.

Erase with git rebase --onto.

For example, imagine these commits in your repository:
c2d2245

/ 2245d2c

/ /

o--o--o--o

\ \

\ HEAD

224cd25

Use the following to delete commits 224cd25 and 2245d2c:
prompt> git rebase --onto c2d2245 HEAD^ HEAD

First, rewinding head to replay your work on top of it...

Applying: add API object for interacting with remote API

And after the rebase is successful, the branch looks like this:
c2d2245

/

o--o

\

HEAD

Erase the last commit.

prompt> git reset --hard HEAD^

Related Tasks

• Task 16, Rewriting History by Rebasing, on page 60
• Task 36, Reverting Commits, on page 112
• Task 40, Retrieving “Lost” Commits, on page 120

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=117

FINDING BUGS WITH BISECT 118

39 Finding Bugs with bisect

Unit tests, code review, pair programming, and any number of practices help
limit the number of bugs in your code. We all end up having to track down
bugs, though. It’s part of software development. git bisect helps you limit
the time you spend on this unpleasant task by helping you search through
your repository’s history for the commit that introduced the bug.
git bisect works by dividing and conquering. You know that a particular
commit has a bug in it, or is bad. You also know that a particular point in the
past didn’t have that bug in it, or is good.
bisect takes the remaining commits, divides them in half, and sets your
working tree to that midway point in the history. You can check your
repository for the bug and mark it as either good or bad. Repeat until you
narrow the list of possible commits down to the commit that introduced the
bug.
You can skip a commit if there’s no way to test it. Be careful skipping
commits, however. Skipping too many can make it impossible for Git to
know which commit caused the bug.
After you’ve found the commit with the bug and determined how to fix it,
you need to move back to the original branch where you started. git bisect

reset takes care of that.
You can automate the process of marking a commit as good or bad with a
script. It can be any shell script. The script must use its exit status code to
mark whether the commit it is testing is good, is bad, or should be skipped.
There are three possible exit code status that cause bisect to mark a commit
as good, as bad, or as skipped:

• 0 to mark as good
• 1 or greater to mark as bad
• 125 to skip

Git changes your working tree between each test, so make sure that the script
you give to git bisect run is independent of the repository history. Create the
simplest possible test and put it outside of your working tree, and then use it
there so git bisect doesn’t accidentally overwrite it.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=118

FINDING BUGS WITH BISECT 119

Use bisect to narrow down the buggy commit.

prompt> git bisect start

prompt> git bisect bad

prompt> git bisect good <some commit id>

... mark each commit as good or bad until you

... have narrowed the list of commits down to the

... commit with that introduces the bug

... once you've found the commit and figured out

... how to address it, run the following to return

... back to the branch you started at

prompt> git bisect reset

Use a shortcut to start bisect with HEAD being bad.

prompt> git bisect start HEAD <some good commit id>

... continue as above

Use an automated script to test commits.

prompt> git bisect start HEAD <some good commit id>

prompt> git bisect run /path/to/test/script

... once you've figured out the fix

prompt> git bisect reset

Find a bug in the history with bisect.

The commit to the right is HEAD, and the commit to the left is known to be
good. git bisect cuts the repository in half, and through a process of
elimination shows that HEAD^ is the commit that introduced the bug. Now,
imagine there were 100 commits separating HEAD and the last known good
commit!

√ √ X X

Known BadKnown Good
Bisect Starts Here

Marked as Good

The bad commit is

introduced here

Related Tasks

• Task 30, Viewing the Log, on page 98
• Task 32, Comparing Differences, on page 102
• Task 34, Assigning Blame, on page 106

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=119

RETRIEVING “LOST” COMMITS 120

40 Retrieving “Lost” Commits

Rebasing commits causes the history of your repository to change. Ever
wonder what happens if you accidentally delete the wrong commit in an
interactive rebase? The commit—the point in the repository that recorded the
change—is still stored in your repository, but it’s orphaned. You can use the
reflog to find that commit, even though the normal Git log doesn’t show it.
The Git reflog tracks every time the tip of a branch changes. The tip is the
commit that a particular branch points to. Back in Part III, Organizing Your
Repository with Branches and Tags, we talked more about branches and how
they are pointers to commits. Each time you commit a change to a branch,
the branch is updated to point to that new commit, and the change is logged
in the reflog.
During normal Git usage, you don’t need to concern yourself with the reflog.
It’s handy for fixing mistakes, however.
For example, you run an interactive rebase (discussed in more detail in Task
28, Controlling How You Replay Commits, on page 90) and a few days later
realize that you accidentally removed the wrong commit during the rebase.
Catching it right after the fact means you can use git reset ORIG_HEAD, but
since you didn’t, your options are limited to one: using the reflog.
Running git reflog, you can find the commit before you ran your rebase and
check it out directly. From there, you can determine the commit IDs for the
missing commit, switch to your current branch, and cherry-pick the change
back into your current branch.
Also available are the subcommands delete and expire, which delete
specific reflog entries and expire entries beyond a certain point, respectively.
Under most normal circumstances, you don’t need to use either.
Rewriting history is a powerful part of the Git toolkit. The reflog helps keep
you from hurting yourself too much.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=120

RETRIEVING “LOST” COMMITS 121

View the reflog.

prompt> git reflog

Retrieve a lost commit.

First, let’s “lose” a few commits:
prompt> mkdir /work/tmp-repo && cd /work/tmp-repo

prompt> git init

Initialized empty Git repository in /work/tmp-repo/.git/

... add files a, b, c, d to the repository so we have some commits ...

prompt> for i in a b c d

do echo "simple $i" >> $i && git add $i && git commit -m "simple $i"

done

... output from Git ...

prompt> git rebase -i HEAD~2

... delete the "simple b" commit ...

Successfully rebased and updated refs/heads/master.

prompt> git log --oneline

4325c46 simple c

4b2a2ba simple a

... re-run the for loop above to add a few new commits ...

You can see that you’ve deleted the =simple b commit. Now you can save it
with git reflog:
prompt> git reflog

7ab141b HEAD@{0}: commit: simple e

... and so on, and so on ...

4b2a2ba HEAD@{3}: checkout: moving from master to 4b2a2ba

e563dcc HEAD@{4}: commit: simple c

2b469ed HEAD@{5}: commit: simple b

prompt> git cherry-pick 2b469ed

Finished one cherry-pick.

[master fcc3a79] simple b

1 files changed, 1 insertions(+), 0 deletions(-)

create mode 100644 b

Related Tasks

• Task 16, Rewriting History by Rebasing, on page 60
• Task 27, Cherry-Picking Commits, on page 88
• Task 28, Controlling How You Replay Commits, on page 90
• Task 42, Doing Some Git Housekeeping, on page 126

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=121

Part VIII

Moving Beyond the Basics

MOVING BEYOND THE BASICS 123

At this point you have learned all of the main topics you need to

become a proficient Git user. There are a handful of commands

that you’ll only need to use occasionally.

Covered in this part:

• You may need to export the current state of your repository

without the entire history. You learn how to do that in Task 41,

Exporting Your Repository , on the following page.

• Git attempts to remain as fast as possible, sometimes at the

cost of storage efficiency. Task 42, Doing Some Git Housekeep-

ing, on page 126 shows you the commands to run to recal-

culate your repository’s internal structure and save some disk

space.

• Many developers are still working in an environment where

Subversion is their company’s version control system of choice.

Git provides bidirectional support for SVN—it can both read

from and write to an SVN server. You learn about that in Task

43, Syncing with Subversion, on page 128.

• Finally, we’ve talked about repositories exclusively in the con-

text of repositories with a working tree, but there is another

type of repository: a bare repo. These are used for sharing

changes via pushing and pulling to and from. They’re covered

in Task 44, Initializing Bare Repositories, on page 130.

Now, let’s start off with exporting your repository.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=123

EXPORTING YOUR REPOSITORY 124

41 Exporting Your Repository

Sharing your repository with other developers is a matter of giving them
access to read your public repository, but sometimes you need to give access
to content you’re tracking to people who don’t use Git: clients, customers, or
business partners of a less tech-savvy variety. You can export the contents of
your repository at a particular point to share with these people using the git

archive command.
It’s important to remember you are exporting only one point in the history of
your repository, not the entire history. Some people look at an export as a
backup of their repository. This is not the correct way to do a backup in Git.
Each clone of your repository has the entire history, so push your repository
to a remote repository on some other computer. Backup finished.
You can specify the point you want to export as either a commit ID, HEAD or
some other special commit name, a branch, or a tag. You can also specify a
relative revision if you want to export the parent of a certain commit.
Provide a --prefix parameter with a trailing slash when using git archive.
That tells Git to put the contents of the archive in its own directory within
the archive so it’s expanded into its own directory when you uncompress it.
git archive exports in either a .tar format or a .zip format. You can specify
which you prefer with --format. You can skip the --format parameter if you
provide either --output or -o; Git uses the file extension from the file
provided to it to determine which type it should export.
You can also pipe the output through other commands to modify the output
further if you don’t use the --output parameter. The most common use is
piping the output through gzip or bzip2 with | gzip > some-file.tar.gz. That
turns the tar file into a gzipped tar file. You can also pipe a zip file to gzip,
but that would be redundant and repetitive.18
You can also export individual directories of your repository in addition to
exporting the entire repository. You do this by specifying the revision you
want to export and adding a colon and the name of the directory you want to
export.

18. I really don’t recommend doing that, just in case the geek humor didn’t make it through in
print.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=124

EXPORTING YOUR REPOSITORY 125

Create a tar.gz file of the latest changes in master.

prompt> git archive --format=tar \

--prefix=my-project-latest/ \

HEAD | gzip > my-project-latest.tar.gz

prompt>

... or ...

prompt> git archive --prefix=my-project-latest \

--output my-project-latest.tar && \

gzip my-project-latest.tar

prompt>

Create a zip of the repository at tag v1.0.2.

prompt> git archive --format=zip \

--prefix=my-project-1.0.2/ \

v1.0.2 > my-project-1.0.2.zip

prompt>

... or ...

prompt> git archive --prefix=my-project-1.0.2/ \

v1.0.2 -o my-project-1.0.2.zip

prompt>

Export one directory.

prompt> git archive --format=zip \

--prefix=my-project/ \

HEAD:<some directory> > my-project.zip

prompt>

Related Tasks

• Task 3, Creating a New Repository, on page 24

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=125

DOING SOME GIT HOUSEKEEPING 126

42 Doing Some Git Housekeeping

One of Git’s key advantages is its speed. Keeping it fast requires some
tuning, however. The git gc command provides the tuning tool.
git gc performs several housecleaning tasks. First, it removes any “loose
objects” in the repository over a certain age. All of those commits you
remove via git rebase, git reset, and so on, are still tracked by Git; they’re
just orphaned.
Second, it recalculates the deltas. Deltas are the differences between two
pieces of content in the repository. Many times the first pass at creating the
delta is not the most efficient. Recalculating the deltas with the help of
hindsight allows Git to combine like deltas to reduce the size of the
repository and decrease the time Git spends looking for information in the
repository.
Periodic running of git gc helps keep the repository in top shape. Providing
it with the --aggressive parameter tells Git to focus on making the
repository as efficient as possible, instead of trying to run the command as
quickly as possible.
Git is configured by default to remove loose objects that are older than the
gc.pruneExpire values. The default value is two weeks, but you can change
this using git config. You can also change it by providing a value to git gc

via the --prune=<some value> parameter. This takes the standard time
values.
Many of the commands that cause the repository history to become unruly
automatically call git gc for you. The most notable is git svn rebase. Older
versions of Git required that you run git gc manually to keep the repository
size in check. It’s still a good idea to run git gc from time to time, though, to
make sure your repository is in top shape.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=126

DOING SOME GIT HOUSEKEEPING 127

Run garbage collection.

prompt> git gc

Counting objects: 3048, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (2564/2564), done.

Writing objects: 100% (3048/3048), done.

Total 3048 (delta 2041), reused 667 (delta 476)

Removing duplicate objects: 100% (256/256), done.

Run a more garbage collection in the most size-optimized way.

prompt> git gc --aggressive

Counting objects: 3048, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (2564/2564), done.

Writing objects: 100% (3048/3048), done.

Total 3048 (delta 2041), reused 667 (delta 476)

Removing duplicate objects: 100% (256/256), done.

Remove “loose objects” that are older than a week.

prompt> git gc --prune="1 week"

Counting objects: 244, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (228/228), done.

Writing objects: 100% (244/244), done.

Total 244 (delta 109), reused 0 (delta 0)

Related Tasks

• Task 16, Rewriting History by Rebasing, on page 60

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=127

SYNCING WITH SUBVERSION 128

43 Syncing with Subversion

One of Git’s key advantages over other DVCSs early on was its ability to
communicate with Subversion through git-svn. Though other DVCSs now
have integration with Subversion to varying degrees, Git still leads the pack.
git-svn is installed by default on most systems, but on Ubuntu and other
Linux-based systems that break up software into individual packages. you do
need to install it separately (see Task 1, Installing Git, on page 20).
You can clone a Subversion repository with a standard layout19 by using git

svn clone -s and providing Git with the repository URL. You can use
--trunk, --tags, and --branches to provide Git with a custom location for
your trunk, tags, and branches.
Creating a clone is all you need to do if you’re migrating to Git from
Subversion, but Git can continue to talk to Subversion if you’re not making
the switch.
There is no direct git svn update available on Subversion clones. Instead,
you use git svn rebase to update your local branch with the upstream
changes in Subversion. This fetches the changes from Subversion and then
rebases your local branch against the upstream changes.
Remember, using rebasing commits (whether with git rebase or through git

svn rebase) comes at a potential cost. git-svn requires a rebase to keep track
of which commits are in Subversion and which are only in Git. Because of
this, it’s not a good idea to share changes directly via Git clones of
Subversion repositories. Use Subversion for sharing changes.
You can push changes back upstream to a Subversion repository with git svn

dcommit. You can add the -n parameter if you want to see what commits
will be sent upstream without actually sending them.
The output from any of the git svn commands could take up several pages of
output, so I haven’t included any output here.

19. http://svnbook.red-bean.com/en/1.5/svn.tour.importing.html#svn.tour.importing.layout

Report erratum

this copy is (P1.0 printing, October 2010)

http://svnbook.red-bean.com/en/1.5/svn.tour.importing.html#svn.tour.importing.layout
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=128

SYNCING WITH SUBVERSION 129

Create a Git clone of a standard Subversion repository.

prompt> git svn clone -s svn://example.com/repo

Perform the equivalent of an svn update.

prompt> git svn rebase

Push changes back to upstream Subversion repository.

prompt> git svn dcommit

Or, to see what commits would be sent back upstream, use this:
prompt> git svn dcommit -n

Related Tasks

• Task 16, Rewriting History by Rebasing, on page 60

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=129

INITIALIZING BARE REPOSITORIES 130

44 Initializing Bare Repositories

Most Git repositories that you work with have both the repository metadata
(the files located in the .git/ directory) and a working tree (the files that you
interact with). Repositories that are meant to pushed to and pulled from,
however, are generally created as bare repositories—repositories that don’t
have a working tree.
You use a bare repository to push your changes to. You generally need only
one, but you can have as many as your situation might require. For example,
you might need to create two, each one on different servers, so a different set
of people can access it. You need to make sure to remember to push to both
repositories, though.
Using these repositories helps you separate the act of committing changes
and the act of sharing those changes. You keep your local repository
private—no one can read directly to it, and no one can push to it. You use a
remote repository as a place to share your changes with everyone else.
A bare repository works just like a normal repository, except it doesn’t have
a copy of the working tree. All of the files that are present in the .git/ of your
normal repository are present in the directory where your bare repository
lives.
By convention, bare repositories should end in .git. For example, call your
bare repository widget.git if its name is widget.
To share your repository, place it somewhere that other people can access it.
This could be a network file system, on a directory with proper read
permissions on a remote server, or even on an HTTP server. You can also
make it accessible via the git daemon so it is accessible via the git protocol.
Most third-party hosting solutions, such as GitHub20 or Gitorious,21 handle
the creation of the bare repository for you. You only have to push the
changes to the repository they create. Likewise, if you use Gitosis,22 it
handles the creation of a bare repository for you.
You can use the git clone --mirror command if you want to clone an existing
repository and populate it with the commits from that remote repository.
This is useful for creating local copies of a repository to interact with and
possibly share, without exposing your private local repository.

20. http://github.com/
21. http://gitorious.com/
22. http://eagain.net/gitweb/?p=gitosis.git

Report erratum

this copy is (P1.0 printing, October 2010)

http://github.com/
http://gitorious.com/
http://eagain.net/gitweb/?p=gitosis.git
http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=130

INITIALIZING BARE REPOSITORIES 131

Initialize a bare repository.

prompt> git init --bare /path/to/some/repo.git

Initialized empty Git repository in /path/to/some/repo.git

Create a bare repository copy of a remote repository.

prompt> git clone --mirror <remote repository>

... example ...

prompt> git clone --mirror /work/repo

Cloning into bare repository repo.git...

done.

Related Tasks

• Task 4, Creating a Local Copy of an Existing Repository, on page 26
• Task 19, Adding and Removing Remotes, on page 70
• Task 21, Retrieving Remote Changes, Part II, on page 74
• Task 22, Sending Changes to Remotes, on page 76

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=131

Glossary
• ^: Adding a caret to any commit name (a commit ID, branch name,
or tag) tells Git to use that commit, minus one. You can add multiple
carets: HEAD^^ means HEAD minus two, and so on.

• ~#: The tilde followed by a number is used with a commit name (a
commit ID, branch name, or tag) to specify the commit located at that
point minus the number: HEAD~2 means two commits before HEAD,
and so on.

• amend: Applies the commit that is being made to the previous commit
to amend it.

• bare repository: A repository without a working tree. Generally used
for repositories that are meant to be pushed and pulled to and from.

• blame: An annotated view of a file (or portion of a file) that shows what
commit a change was made in, when that commit happened, and who
made it.

• branch: A separate line of history within the repository stored as a
pointer to a particular commit.

• check out or checkout: The act of taking a branch or files from the
repository and checking it out into the working tree.

• cherry-pick: Taking one commit and applying it to the current branch.
• commit: The individual points in time that your repository tracks. Each
commit in Git tracks who made it, when it was made, the changes that
were made, and what commit (or commits) are its direct parents.

• commit ID: The ID for each commit is an SHA-1 hash based on the data
that makes up a commit. Any change to the commit causes a different
commit ID to be generated. Each commit provides its own integrity
check through its ID.

• commit message: A plain-text message that is stored with the commit.
It is used to convey what the commit did and why. By convention, Git

GLOSSARY 133

breaks commit messages into two parts. The first line is considered the
subject, followed by an empty line, followed by the body of the commit
message.

• conflict: See merge conflict.
• diff : Describes the differences between two (or more) versions of a file
or files.

• fast-forward merge: A merge that moves the pointer of a branch to
another point in the future without creating a merge commit.

• fetch: Retrieving commits from a remote repository and storing them
in the local repository.

• HEAD: The latest point in your repository that your working tree cur-
rently points to.

• index: See staging area.
• interactive rebase: Same as rebase, except Git pauses before the rebase
is started and allows you to modify the commits that are being applied,
modify the order in which they are applied, and specify which commits
should be stopped at so they can be edited.

• log: A reverse chronological output of all the commits that, by default,
include the committer, commit date, commit ID, and commit message.

• master : Refers to the name of the default branch where the majority
of development happens in Git.

• merge: Bringing the contents of two separate branches into sync by
merging them together. This can happen by any number of merge strat-
egies, the most common of which are a fast-forward merge and a recur-
sive merge.

• merge commit: A commit with multiple parents used to signify a merg-
ing of two or more branches. Merge commits are generally created by
recursive merges.

• merge conflict: A conflict that happens when two commits attempt
make changes that cannot be reconciled by automated means. This
generally happens during a merge or while replaying commits during
a rebase.

• non-fast-forward merge: See recursive merge.
• ORIG_HEAD: Refers to the location of HEAD before making any big
changes to it such as running git rebase or git reset.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=133

GLOSSARY 134

• origin: The default name for your main remote repository.
• patch: The differences between two states of a file along with metadata
explaining which file or files were modified.

• patch mode: An interactive mode of staging files via git add or git

stash that allows you to stage portions of the change rather than the
entire file.

• pull: The act of fetching changes from a remote repository and merg-
ing them into your local branch via git pull. This can be done with a
standard merge or via a rebase.

• push: The act of sending commits to a remote repository. Generally
used when sending your changes to a repository that others can access.

• rebase: Replaying one or more commits on top of another point in
the history of the repository. Generally used between branches, often
where the point you are rebasing against is a remote branch.

• recursive merge: A merge where a merge commit is created.
• reflog: A log of all changes to the point of a branch (for example, new
commits, checkouts, rebases, and so on). Useful for fixing bad rebases.

• refspec: References to a particular point inside the repository. Used to
refer to branches, it follows the <source>:<destination> schema. Nor-
mally used with git pull and git push. When pulling, the source is the
remote branch, and the destination is the local branch; when pushing,
the source is the local branch, and the destination is the remote branch.

• remote: Shorthand for remote repository, which refers to repositories
other than your own local one.

• repository: The place where all your codes and the changes to it—
commits—live.

• revert: A reverse commit, used to track when a commit was undone.
• revision: A particular commit, identified by a commit ID. See commit
and commit ID.

• stage: To add a one or more changes to the staging area to be commit-
ted.

• staging area: The place that sits between the repository and your work-
ing tree. You must stage your changes here before they are committed
to the repository.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=134

GLOSSARY 135

• stash: To put all changes in the working tree into a temporary holding
area to be reapplied or discarded later. Useful when running rebase,
which requires a clean working tree.

• tag: A mark of significance within the repository when used as a noun.
The act of creating a tag when used as a verb.

• working tree: Your copy of a particular point in the repository’s history
—normally the very last commit, or HEAD—that exists on the file sys-
tem. This is where you edit the files in your project.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/pg_git/errata/add?pdf_page=135

Index
A
-A parameter, staging files with, 34
-a parameter
committing with, 36
viewing branches with, 56

--abort parameter, for rebasing, 60
aborting
conflicts, 82
rebase, 60

--after parameter for filtering log output,
100

--aggressive parameter, housekeeping
with, 126

--all parameter, fetching from remotes
with, 72

--amend parameter
for fixing commits, 36, 110
merging with, 59

amending commits, 36, 59, 110
see also editing commits

apply command, 86
apt-get tool, 20
archive, exporting, 124
--author parameter for filtering log

output, 100
auto setting for color, 22

B
backup, 124
bare repositories, see repositories, bare
--before parameter for filtering log

output, 100
bisecting, 118
blame, assigning, 106
branches
creating, 54, 86
deleting, 62
fetching specific, 72
merging, 50
metadata, 54
moving, 92

naming, 49
overview, 49–53
pulling specific, 74
pushing to specific, 76
release, 49
remote, 68
switching, 54
topic, 49
tracking, 54, 70

--branches parameter, cloning
Subversion repositories with, 128

bugs, finding, 29, 106, 118
bzip2, 124

C
-C HEAD parameter, reusing log messages

with, 36, 110
-C parameter, limiting blame command

with, 106
--cached parameter, undoing

uncommitted changes with, 40
case, ignoring in log output, 100
centralized version control systems, 12
Changed but not updated status, 32
Changes to be committed status, 32
changes, committing, see committing

changes
checking out, 40, 54, 114
cherry-picking, 88
--clear parameter, stashing with, 86
clones, shallow, see shallow repositories
cloning
bare repositories, 130
remote repositories, 26
Subversion repositories, 128

color settings, 22
color.ui setting, 22
commit ID
calculation of, 13, 22
cherry-picked commits, 88
rebasing effects on, 60

COMMIT MESSAGES -F PARAMETER

shortening log display, 98
commit messages, see messages
commits
cherry-picking, 88
comparing to repository, 102
deleting, 116
editing, 34, 36, 59, 110
erasing, 116
finding bugs in, 29
fixing, 110
merging, 50, 58
rebasing, 50, 60, 90, 116
resetting, 114
retrieving deleted, 120
reverting, 112
specifying when viewing branches, 56
staging, 34
stashing, 86
tagging, 64, 78
testing, 118
see also committing changes; commit
ID

committing changes, 36
cherry-picking, 88
to remote branches, 69
versus sharing changes, 29
staging, 34
see also commit ID; commits

comparing differences, 102
compiling documentation, 21
compiling Git from source code, 20
configuration file storage, 22
configuring
expiration values, 126
Git, 22

conflicts, handling, 82
GUI tool for, 84
while rebasing, 60

--contains parameter, viewing branches
with, 56

core editor setting, 22
core.excludesfile, 38
creating
branches, 54, 86
repositories, 24
tags, 64

custom log messages, 58
Cygwin installation, 20

D
dcommit option, pushing to Subversion

repositories with, 128
delete option for reflog, 120
deleting

branches, 62
commits, 116
directories, 44
files, 44
loose objects, 126
reflog entries, 120
remote repositories, 70
stashes, 86
uncommitted changes, 116
see also resetting commit; reverting
commits

deltas, recalculating, 126
--depth parameter in cloning repositories,

26
diffs
colorizing, 22
statistics, 104
viewing, 34, 98, 102

directories
deleting, 44
exporting, 124
moving, 42

distributed repository model, 15, 67
distributed version control systems, 12
documentation, compiling, 21
--drop parameter, stashing with, 86

E
-e parameter
cherry-picking with, 88
staging files with, 34

edit option in rebasing, 90
--edit parameter
cherry-picking with, 88

editing
commits, 34, 90, 110
messages, 88, 112

EDITOR environment variable, 22
editors, configuring, 22
see also editing

empty directories, 34
erasing commits, 116
see also resetting commits; reverting
commits

errors, see bugs, finding; conflicts,
handling

excludesfile, 38
excluding files, 38
expiration values, 126
expire option for reflog, 120
exporting repositories and directories, 124

F
-f parameter

137

FAST-FORWARD MERGES IGNORING FILES

deleting files with, 44
forcing push with, 76
overwriting files with, 42

fast-forward merges, 50
fetching, 46, 72
versus pulling, 68, 74

filtering log output, 100
fixing commits, 110
see also editing commits

fixup option in rebasing, 90
force parameter, see -f parameter
forcing
deletion of nonmerged branches, 62
deletions, 44
overwriting of files, 42
recursive merges, 76

forking, 13
--format parameter, exporting with, 124
formats for exporting, 124

G
garbage collection, 126
Git
compared to traditional VCS, 12
history, 9

git add command, 34, 36
git archive command, 124
git bisect command, 118
git bisect reset command, 118
git blame command, 106
git branch command, 54, 56, 62
git checkout command, 40, 54
git checkout HEAD command, 114
git cherry-pick command, 88
git clone command, 26
git clone --mirror command, 130
git commit command, 36, 110
git config command, 22
git daemon, 130
git diff command, 102, 104
.git extension, 130
git fetch command, 46, 72
git gc command, 126
.git/info.excludes file, 38
git init command, 24
git log command, 98
filtering, 100
viewing statistics with, 104

git merge command, 58, 82
git mergetool command, 84
git mv command, 42
git pull command, 46, 60, 74
git push command, 46, 74, 76
git rebase command, 60

deleting commits with, 116
interactive, 90, 110, 116
moving branches with, 92

git rebase interactive command, 110
git reflog command, 120
git remote add command, 70
git remote rm command, 70
git reset command, 114
aborting conflicts with, 82
undoing rebase with, 60

git reset --hard command, 114
git reset HEAD command, 40
git revert command, 112
git rm command, 40, 44
git stash command, 86
git status command, 32, 82
git svn command, 128
git svn clone command, 128
git svn dcommit command, 128
git svn rebase command, 128
git tag command, 64
git --version command, 12
GIT_EDITOR environment variable, 22
GitHub, 13, 130
.gitignore file, 38
gitk, 56
Gitorious, 130
Gitosis, 130
GitX, 56
global excludesfile, 38
--global parameter configuration, 22
--grep parameter for filtering log output,

100
GUI installation, 20
GUI tool for merge conflicts, 84
gzip, 124

H
--hard parameter
rebasing with, 116
resetting with, 114

hiding changes, see stashing
history, see repository history
Homebrew installation, 20
housekeeping, 126
hybrid repository model, 16

I
-i parameter
filtering log output with, 100
launching interactive rebase with, 116

ignoring case in log output, 100
ignoring files, 38

138

INDEX -P PARAMETER

index
resetting, 114
staging commits, 34

initializing
bare repositories, 130
repositories, 24

installing Git, 20
interactive rebasing, 90, 110, 116

L
-L parameter, limiting blame command

with, 106
listing
stashes, 86
tags, 64

log, 95
filtering, 100
merges, 58
reusing messages, 36
statistics, 104
viewing, 98

--log-commit option, merging with, 58
loose objects, removing, 126

M
-M parameter, limiting blame command

with, 106
-m parameter
in commit messages, 36
merging with, 58

MacPorts installation, 20
merge strategies, 50
see also merging

merge tools, 84
--merged parameter, viewing branches

with, 56
merging
branches, 50, 56
commits between branches, 58
conflicts, 60, 82, 84
fast-forward, 50
logging, 58
in overview of sharing process, 46
rebasing, 50, 60, 90
recursive, 50, 76
status of branches, 56
see also fetching; pulling; pushing;
cherry-picking

messages
amending while merging, 59
cherry-picked commits, 88
editing, 88, 112
merge log, 58

reusing, 36, 110
stash, 86
writing, 36, 95

metadata, branch, 54
milestones, tagging, 64
--mixed parameter, resetting with, 114
moving
branches, 92
files, directories, etc., 42

msysGit, 20
--multiple parameter, fetching from

remotes with, 72

N
-N option, limiting log with, 98
-n parameter
cherry-picking with, 88
pushing to Subversion repositories
with, 128

reverting with, 112
naming
bare repositories, 130
branches, 49
remote repositories, 70
stash names, 86
tags, 64

--no-merged parameter, viewing
branches with, 56

--no-commit parameter
cherry-picking with, 88
merging with, 58
reverting with, 112

--no-edit parameter, reverting with, 112
--no-ff option, merging with, 58
non-fast-forward merges, see recursive

merges
--numstat parameter, viewing statistics

with, 104

O
-o parameter, exporting with, 124
--oneline parameter, viewing log with, 98
--onto parameter, rebasing with, 92, 116
open source models, 15
OS X installation, 20
--output parameter, exporting with, 124
overriding, see forcing
overwriting files, 42

P
-p parameter
staging files with, 34

139

--PATCH PARAMETER SUBVERSION

viewing diffs in statistical output with,
104

viewing log with, 98
--patch parameter, stashing with, 86
patches, see diffs
pick option in rebasing, 90
pop command, 86
--prefix parameter, exporting with, 124
--prune parameter, housekeeping with,

126
pulling, 46, 68, 74
pushing, 46, 76, 128

R
-r parameter
deleting directories with, 44
viewing branches with, 56

--rebase parameter in overview of
sharing process, 46

rebasing, 46, 60
deleting commits with, 116
with git pull, 60
with git push, 74
interactive, 90, 110, 116
moving branches with, 92
Subversion repositories, 128
work flow example, 50

recursive merges, 50, 76
reflog, 120
--regexp-ignore-case parameter for

filtering log output, 100
release branch, 49
release manager, 67
remote branches, see branches, remote
remote repositories, see repositories,

remote
remote tags, see tags
repositories
bare, 130
comparing to working tree, 102
creating, 24
exporting, 124
housekeeping, 126
initializing, 24
layouts, 15
private versus public, 12, 24
shallow, 26
status of changes, 32
Subversion, 128
see also repositories, remote;
repository history

repositories, remote, 67
adding, 70
cloning, 26, 128

fetching from, 72
models, 67
pulling from, 74
pushing to, 76
removing, 70
sharing changes overview, 46
tracking branches, 70
see also repositories

repository history
bisecting, 118
log, 95, 98, 100
reflog, 120
statistics, 104

repository URLs, 70
resetting commits, 114
retrieving deleted commits, 120
reverting commits, 112
see also erasing commits; resetting
commits

revision numbers, 13
reword option in rebasing, 90

S
SHA-1 hash, calculation of commit ID,

13, 22
shallow clones, see shallow repositories
shallow repositories, 26
shared repository model, 14, 15, 67
sharing changes, overview, 46
see also fetching; merging; pulling;
pushing; rebasing

--shortstat parameter, viewing statistics
with, 104

Signed-off-by line, 88
--since parameter for filtering log output,

100
--skip parameter, rebasing with, 60
skipping
commits, 118
conflicts, 60

--soft parameter, resetting with, 114
squash option in rebasing, 90
--staged parameter, viewing diffs with,

102
staging area, see Index
staging changes to commit, 34
comparing to repository, 102
undoing, 40

stashing, 86
--stat parameter, viewing statistics with,

104
statistics, generating, 104
status, viewing, 32, 82
Subversion, syncing with, 128

140

SWITCHING BRANCHES .ZIP FORMAT

switching branches, 54
syncing with Subversion, 128

T
tags, 50
creating, 64
and deleting branches, 62

--tags parameter, cloning Subversion
repositories with, 128

.tar format, 124
temporarily hiding changes, see stashing
testing commits, 118
topic branch, 49
Torvalds, Linus, 9
tracking branches, 54, 70
--trunk parameter, cloning Subversion

repositories with, 128

U
-u parameter, staging files with, 34
Ubuntu

git svn command, 128
installation, 20

uncommitted changes
deleting, 116
undoing, 40, 114

undoing
commits, 112, 114
deletions, 44
rebase, 60
uncommitted changes, 40, 114

unstaging, 40, 114

--until parameter for filtering log output,
100

Untracked files status, 32
URLs, repository, 70

V
version control systems
history, 9
models, 12

version, determining, 12
vi environment variable, 22
viewing
branches, 56
diffs, 98, 102
remote repositories, 72
status, 32, 82

VISUAL environment variable, 22

W
workflow
example, 13
overview, 29

working tree
comparing to repository, 102
defined, 24
deleting changes in, 116
resetting, 82, 114
stashing changes, 86

Z
.zip format, 124

141

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of
your game. The following are in print as of October 2010; be sure to check our website at
pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build Stunning
Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248
Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200
Agile Web Development with Rails 2009 9781934356166 792
Beginning Mac Programming: Develop with Objective-C
and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great Management 2005 9780976694021 192
Best of Ruby Quiz 2006 9780976694076 304
Cocoa Programming: A Quick-Start Guide for
Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone: Creating
Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on Mac OS X 2009 9781934356326 256
Data Crunching: Solve Everyday Problems using Java,
Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your Code 2009 9781934356289 232
Deploying Rails Applications: A Step-by-Step Guide 2008 9780978739201 280
Design Accessible Web Sites: 36 Keys to Creating
Content for All Audiences and Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open Source
Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375
Enterprise Integration with Ruby 2006 9780976694069 360
Enterprise Recipes with Ruby and Rails 2008 9781934356234 416
Everyday Scripting with Ruby: for Teams, Testers, and
You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250
From Java To Ruby: Things Every Manager Should Know 2006 9780976694090 160
FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240
GIS for Web Developers: Adding Where to Your Web
Applications

2007 9780974514093 275

Google Maps API: Adding Where to Your Applications 2006 PDF-Only 83
Grails: A Quick-Start Guide 2009 9781934356463 200
Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264
Hello, Android: Introducing Google’s Mobile
Development Platform

2010 9781934356562 320

Continued on next page

pragprog.com

Title Year ISBN Pages
Interface Oriented Design 2006 9780976694052 240
iPad Programming: A Quick-Start Guide for iPhone
Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576
Land the Tech Job You Love 2009 9781934356265 280
Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240
Manage It! Your Guide to Modern Pragmatic Project
Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your Capacity
and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for Great
Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby Pros 2010 9781934356470 240
Modular Java: Creating Flexible Applications with OSGi
and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240
No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320
Pomodoro Technique Illustrated: The Easy Way to Do
More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to Computer
Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208
Pragmatic Guide to Git 2010 9781934356722 168
Pragmatic Project Automation: How to Build, Deploy,
and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your
Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176
Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160
Pragmatic Version Control using CVS 2003 9780974514000 176
Pragmatic Version Control Using Git 2008 9781934356159 200
Pragmatic Version Control using Subversion 2006 9780977616657 248
Programming Clojure 2009 9781934356333 304
Programming Cocoa with Ruby: Create Compelling Mac
Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent World 2007 9781934356005 536
Programming Groovy: Dynamic Productivity for the Java
Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic Programmers’ Guide 2004 9780974514055 864
Programming Ruby 1.9: The Pragmatic Programmers’
Guide

2009 9781934356081 960

Continued on next page

Title Year ISBN Pages
Programming Scala: Tackle Multi-Core Complexity on
the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew
JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300
Rails for Java Developers 2007 9780977616695 336
Rails for PHP Developers 2008 9781934356043 432
Rails Recipes 2006 9780977616602 350
Rapid GUI Development with QtRuby 2005 PDF-Only 83
Release It! Design and Deploy Production-Ready
Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192
Seven Languages in Seven Weeks: A Pragmatic Guide to
Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software Projects 2005 9780974514048 224
SQL Antipatterns: Avoiding the Pitfalls of Database
Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun Again 2008 9781934356210 375
Test-Drive ASP.NET MVC 2010 9781934356531 296
TextMate: Power Editing for the Mac 2007 9780978739232 208
The Agile Samurai: How Agile Masters Deliver Great
Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building
Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a Remarkable
Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240
Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400
Web Design for Developers: A Programmer’s Guide to
Design Tools and Techniques

2009 9781934356135 300

More Languages

Seven Languages in Seven Weeks
In this book you’ll get a hands-on tour of Clojure, Haskell, Io,
Prolog, Scala, Erlang, and Ruby. Whether or not your favorite
language is on that list, you’ll broaden your perspective of
programming by examining these languages side-by-side. You’ll
learn something new from each, and best of all, you’ll learn how to
learn a language quickly.
Seven Languages in Seven Weeks: A Pragmatic Guide to
Learning Programming Languages
Bruce A. Tate
(300 pages) ISBN: 978-1934356-59-3. $34.95
http://pragprog.com/titles/btlang

Language Implementation Patterns
Learn to build configuration file readers, data readers, model-driven
code generators, source-to-source translators, source analyzers, and
interpreters. You don’t need a background in computer
science—ANTLR creator Terence Parr demystifies language
implementation by breaking it down into the most common design
patterns. Pattern by pattern, you’ll learn the key skills you need to
implement your own computer languages.
Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages
Terence Parr
(350 pages) ISBN: 978-1934356-45-6. $34.95
http://pragprog.com/titles/tpdsl

http://pragprog.com/titles/btlang
http://pragprog.com/titles/tpdsl

SQL and Debugging

SQL Antipatterns
If you’re programming applications that store data, then chances
are you’re using SQL, either directly or through a mapping layer.
But most of the SQL that gets used is inefficient, hard to maintain,
and sometimes just plain wrong. This book shows you all the
common mistakes, and then leads you through the best fixes.
What’s more, it shows you what’s behind these fixes, so you’ll
learn a lot about relational databases along the way.
SQL Antipatterns: Avoiding the Pitfalls of Database
Programming
Bill Karwin
(300 pages) ISBN: 978-19343565-5-5. $34.95
http://pragprog.com/titles/bksqla

Debug It!
Debug It! will equip you with the tools, techniques, and approaches
to help you tackle any bug with confidence. These secrets of
professional debugging illuminate every stage of the bug life cycle,
from constructing software that makes debugging easy; through
bug detection, reproduction, and diagnosis; to rolling out your
eventual fix. Learn better debugging whether you’re writing Java or
assembly language, targeting servers or embedded
micro-controllers, or using agile or traditional approaches.
Debug It! Find, Repair, and Prevent Bugs in Your Code
Paul Butcher
(232 pages) ISBN: 978-1-9343562-8-9. $34.95
http://pragprog.com/titles/pbdp

http://pragprog.com/titles/bksqla
http://pragprog.com/titles/pbdp

Agile Practices

The Agile Samurai
Faced with a software project of epic proportions? Tired of
over-committing and under-delivering? Enter the dojo of the agile
samurai, where agile expert Jonathan Rasmusson shows you how
to kick-start, execute, and deliver your agile projects. You’ll see
how agile software delivery really works and how to help your
team get agile fast, while having fun along the way.
The Agile Samurai: How Agile Masters Deliver Great Software
Jonathan Rasmusson
(275 pages) ISBN: 9781934356586. $34.95
http://pragprog.com/titles/jtrap

Driving Technical Change
Your co-workers’ resistance to new technologies can be baffling.
Learn to read users’ "patterns of resistance"—and then dismantle
their objections. Every developer must master the art of
evangelizing. With these techniques and strategies, you’ll help your
organization adopt your solutions—without selling your soul to
organizational politics.
Driving Technical Change: Why People On Your Team Don’t
Act On Good Ideas, and How to Convince Them They Should
Terrence Ryan
(200 pages) ISBN: 978-1934356-60-9. $32.95
http://pragprog.com/titles/trevan

http://pragprog.com/titles/jtrap
http://pragprog.com/titles/trevan

Mac iOS

Beginning Mac Programming
Aimed at beginning developers without prior programming
experience. Takes you through concrete, working examples, giving
you the core concepts and principles of development in context so
you will be ready to build the applications you’ve been imagining.
It introduces you to Objective-C and the Cocoa framework in clear,
easy-to-understand lessons, and demonstrates how you can use
them together to write for the Mac, as well as the iPhone and iPod.
Beginning Mac Programming: Develop with Objective-C and
Cocoa
Tim Isted
(300 pages) ISBN: 978-1934356-51-7. $34.95
http://pragprog.com/titles/tibmac

iPad Programming
It’s not an iPhone and it’s not a laptop: the iPad is a
groundbreaking new device. You need to create true iPad apps to
take advantage of all that is possible with the iPad. If you’re an
experienced iPhone developer, iPad Programming will show you
how to write these outstanding new apps while completely fitting
your users’ expectation for this device.
iPad Programming: A Quick-Start Guide for iPhone
Developers
Daniel H Steinberg and Eric T Freeman
(250 pages) ISBN: 978-19343565-7-9. $34.95
http://pragprog.com/titles/sfipad

http://pragprog.com/titles/tibmac
http://pragprog.com/titles/sfipad

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more
titles and products to help you stay on top of your game.

Visit Us Online
Pragmatic Guide to Git

http://pragprog.com/titles/pg_git
Source code from this book, errata, and other resources. Come give us feedback, too!
Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.
Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with our
wiki, and benefit from the experience of other Pragmatic Programmers.
New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available for
purchase at our store: pragprog.com/titles/pg_git.

Contact Us
Online Orders: www.pragprog.com/catalog
Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/pg_git
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/pg_git
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Introduction
	Who Is This Book For?
	How to Read This Book
	How Git Is Different
	The Git Workflow
	Online Resources

	Getting Started
	Task 1. Installing Git
	Task 2. Configuring Git
	Task 3. Creating a New Repository
	Task 4. Creating a Local Copy of an Existing Repository

	Working with Git
	Task 5. Seeing What Has Changed
	Task 6. Staging Changes to Commit
	Task 7. Committing Changes
	Task 8. Ignoring Files
	Task 9. Undoing Uncommitted Changes
	Task 10. Moving Files in Git
	Task 11. Deleting Files in Git
	Task 12. Sharing Changes

	Organizing Your Repository with Branches and Tags
	Task 13. Creating and Switching Branches
	Task 14. Viewing Branches
	Task 15. Merging Commits Between Branches
	Task 16. Rewriting History by Rebasing
	Task 17. Deleting Branches
	Task 18. Tagging Milestones

	Working with a Team
	Task 19. Adding and Removing Remotes
	Task 20. Retrieving Remote Changes
	Task 21. Retrieving Remote Changes, Part II
	Task 22. Sending Changes to Remotes
	Task 23. Handling Remote Tags and Branches

	Branches and Merging Revisited
	Task 24. Handling Conflicts
	Task 25. Handling Conflicts with a GUI
	Task 26. Temporarily Hiding Changes
	Task 27. Cherry-Picking Commits
	Task 28. Controlling How You Replay Commits
	Task 29. Moving Branches

	Working with the Repository's History
	Task 30. Viewing the Log
	Task 31. Filtering the Log Output
	Task 32. Comparing Differences
	Task 33. Generating Statistics About Changes
	Task 34. Assigning Blame

	Fixing Things
	Task 35. Fixing Commits
	Task 36. Reverting Commits
	Task 37. Resetting Staged Changes and Commits
	Task 38. Erasing Commits
	Task 39. Finding Bugs with bisect
	Task 40. Retrieving ``Lost'' Commits

	Moving Beyond the Basics
	Task 41. Exporting Your Repository
	Task 42. Doing Some Git Housekeeping
	Task 43. Syncing with Subversion
	Task 44. Initializing Bare Repositories
	Glossary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

