The .
Pragmatic
Sraminers

Release It!

Design and Deploy
Production-Ready Software

Michael T. Nygard



What readers are saying about Release It!

Agile development emphasizes delivering production-ready code every
iteration. This book finally lays out exactly what this really means for
critical systems today. You have a winner here.

» Tom Poppendieck
Poppendieck.LLC

It’s brilliant. Absolutely awesome. This book would've saved [Really
Big Company] hundreds of thousands, if not millions, of dollars in a
recent release.

» Jared Richardson
Agile Artisans, Inc.

Beware! This excellent package of experience, insights, and patterns
has the potential to highlight all the mistakes you didn’t know you
have already made. Rejoice! Michael gives you recipes of how you
redeem yourself right now. An invaluable addition to your Pragmatic
bookshelf.

» Arun Batchu
Enterprise Architect, netrii LLC



|
Design and Deploy Production-Ready Software

Michael T. Nygard

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas




Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 Michael T. Nygard.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-1-3

ISBN-13: 978-0-9787392-1-8

Printed on acid-free paper with 85% recycled, 30% post-consumer content.
First printing, April 2007

Version: 2007-3-28


http://www.pragmaticprogrammer.com

_ Confents

Preface 10
Who Should Read This Book? . . . . . . ... ... ....... 11
How the Book Is Organized . ... ... ... .......... 12
About the Case Studies . . . . ... .. ............. 13
Acknowledgments . . . . . ... ... ... L. 13

Introduction 14
1.1  Aiming for the Right Target . .. ... ... ....... 15
1.2 UsetheForce ... ..................... 15
1.3 QualityofLife . . ... ... ... .. .. ... ...... 16
1.4 The Scope of the Challenge . .. ............. 16
1.5 A Million Dollars Here, a Million Dollars There . . . . . 17
1.6  Pragmatic Architecture . . . . . ... ... ... ... .. 18

Part I—Stability 20

The Exception That Grounded an Airline 21
2.1 TheOutage. . ... ... ... .. ... ... ... 22
2.2  CONSEQUENCES . . v v v v v v v v et et et e e 25
2.3 Post-mortem . . ... ... ... .. o 27
24 TheSmokingGun. ... ... ............... 31
2.5 An Ounce of Prevention? . . . . ... ... ........ 34

Introducing Stability 35
3.1 Defining Stability . . ... ... ... ........... 36
3.2 FailureModes . ... ... .. ... ... ... 37
3.3 CracksPropagate . . ... ................. 39
3.4 ChainofFailure . . . ... ... .............. 41

3.5 Patterns and Antipatterns . . . ... ... ... ... .. 42



CONTENTS d 6

Stability Antipatterns 44
4.1 IntegrationPoints . . . ... ... ... .. ... ... 46
4.2 ChainReactions . .. ... ... ... ........... 61
4.3 Cascading Failures . . . . ... ... ... ........ 65
4.4 USEIS . . v v v v v it e e e e e e e e 68
4.5 Blocked Threads ... ................... 81
4.6 Attacksof Self-Denial . . . ... ... ... ........ 88
4.7 ScalingEffects. . ... ... ... ... . 0. 91
4.8 Unbalanced Capacities . . . . ... ... ... ...... 96
4.9 Slow Responses . . . . . . . ... 100
4.10 SLAInversion . ... ... .. ... 102
4.11 Unbounded Result Sets . . . ... ... ......... 106

Stability Patterns 110
5.1 UseTimeouts ... ..................... 111
5.2 CircuitBreaker .. .. ................... 115
583 Bulkheads ... ............. .. .. .. ... 119
54 Steady State . . .. .. ... ... ... . 0oL 124
55 FailFast .. ... ... .. ... ... . . . ... 131
5.6 Handshaking . ....................... 134
577 TestHarness. ... ... ... ... ... ......... 136
5.8 Decoupling Middleware . .. ... ............ 141

Stability Summary 144

Part II—Capacity 146

Trampled by Your Own Customers 147
7.1 Countdown and Launch . ... ... .. ......... 147
7.2 Aimingfor QA . . ... ... o 148
7.3 LoadTesting . ... ... .. ... ... .. .. ...... 152
7.4 MurderbytheMasses . . ... .............. 155
7.5 TheTestingGap ... .................... 157
7.6 Aftermath . ... .... ... ... .. 0. 158

Introducing Capacity 161
8.1 Defining Capacity . . . . . ... ... ... ... ..., 161
8.2 Constraints . ... ... ... ... .. 0. 162
8.3 Interrelations . ... .. ... ... ... .. 165


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=6

CONTENTS d 7

8.4 Scalability . ... ... ... oL 165
8.5 Myths About Capacity . .. ... ... ... ....... 166
8.6 Summary. .. ... ... ... 000 174
Capacity Antipatterns 175
9.1 Resource Pool Contention . . . . ... .......... 176
9.2  Excessive JSP Fragments . .. ... ... ........ 180
9.3 AJAXOverkill . ... ... ... o oL 182
9.4 Overstaying Sessions . . . . ... ... ... ....... 185
9.5 Wasted SpaceinHTML . . . .. ... ........... 187
9.6 TheReload Button . .. .................. 191
9.7 Handcrafted SQL . . ... ... .. ............ 193
9.8 Database Eutrophication ... .............. 196
9.9 Integration Point Latency . ... ... .......... 199
9.10 Cookie Monsters . . .. ... ... ... ... ... 201
9.11 Summary. . . . .. ... ...t 203
Capacity Patterns 204
10.1 Pool Connections . . . .. ... ... .. ......... 206
10.2 Use Caching Carefully . .. ... ............. 208
10.3 Precompute Content . . ... ... ... ... ...... 210
10.4 Tune the Garbage Collector . . . .. .. ... ...... 214
105 Summary. . ... ... ... ... 217
Part III—General Design Issues 218
Networking 219
11.1 Multihomed Servers . .. ... ... .. ......... 219
11.2 Routing . . . . . ... ... .. . 222
11.3 Virtual IPAddresses . . ... ... .. .......... 223
Security 226
12.1 The Principle of Least Privilege . ... ... ... .. .. 226
12.2 Configured Passwords . . .. .. ... .......... 227
Availability 229
13.1 Gathering Availability Requirements . . . . . . ... .. 229
13.2 Documenting Availability Requirements . . . . . . . .. 230
13.3 Load Balancing . ... .. ... .............. 232
13.4 Clustering . . ... ... .. .. .. .. .. 238


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=7

CONTENTS «d 8

Administration 240
14.1 “Does QA Match Production?” . . . . ... .. ... ... 241
14.2 Configuration Files . . . ... ... ... . ... ..... 243
14.3 Start-up and Shutdown . ... ... .. ......... 247
14.4 Administrative Interfaces . ... ... ... ... .... 248

Design Summary 249

Part IV—Operations 251

Phenomenal Cosmic Powers, Itty-Bitty Living Space 252
16.1 PeakSeason . ... ......... ... ..., 252
16.2 Baby’s First Christmas . . . . . ... ... ... ..... 253
16.3 TakingthePulse ... ... ................ 254
16.4 ThanksgivingDay . . . .. .. .. .. ... ........ 256
16.5 BlackFriday . ... ... ... ... ... ......... 256
16.6 VitalSigns . . ... .. ... L oo 257
16.7 DiagnosticTests . . . . . ... ... ... ... ..... 259
16.8 Callina Specialist . .. ... ... ... ... ..... 260
16.9 Compare Treatment Options . . . . ... .. ... ... 262
16.10 Does the Condition Respond to Treatment? . . . . . . . 262
16.11 WindingDown . . . . . . ... ... ... .. ..., 263

Transparency 265
17.1 Perspectives . . . . .. ... .. .. . oL 267
17.2 Designing for Transparency . . . ... ... ... . ... 275
17.3 Enabling Technologies . . . . . ... .. ... ...... 276
174 Logging . . . . . . . . . . i i 276
17.5 Monitoring Systems . . . . . . ... ... ... .. 283
17.6 Standards, De Jure and De Facto . . ... .. .. ... 289
17.7 Operations Database . . . .. ... ... ......... 299
17.8 Supporting Processes . . . . . ... ... ... ... ... 305
179 Summary. . . .. .. ... .. e 309

Adaptation 310
18.1 Adaptation Over Time . . ... ... ... ........ 310
18.2 Adaptable Software Design . . . ... ... ... .... 312
18.3 Adaptable Enterprise Architecture . . . ... ... ... 319
18.4 Releases Shouldn'tHurt . . . . ... ... ... ..... 327

185 Summary. . . ... . .. ... e 334



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=8

CONTENTS «d 9

Bibliography 336

Index 339



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=9

_ DPreface

You've worked hard on the project for more than year. Finally, it looks
like all the features are actually complete, and most even have unit
tests. You can breathe a sigh of relief. You're done.

Or are you?

Does “feature complete” mean “production ready”? Is your system really
ready to be deployed? Can it be run by operations staff and face the
hordes of real-world users without you? Are you starting to get that
sinking feeling that you’ll be faced with late-night emergency phone
calls or pager beeps? It turns out there’s a lot more to development
than just getting all the features in.

Too often, project teams aim to pass QA’s tests, instead of aiming for life
in Production (with a capital P). That is, the bulk of your work probably
focuses on passing testing. But testing—even agile, pragmatic, auto-
mated testing—is not enough to prove that software is ready for the
real world. The stresses and the strains of the real world, with crazy
real users, globe-spanning traffic, and virus-writing mobs from coun-
tries you've never even heard of, go well beyond what we could ever
hope to test for.

To make sure your software is ready for the harsh realities of the real
world, you need to be prepared. I'm here to help show you where the
problems lie and what you need to get around them. But before we
begin, there are some popular misconceptions I'll discuss.

First, you need to accept that fact that despite your best laid plans, bad
things will still happen. It’s always good to prevent them when possible,
of course. But it can be downright fatal to assume that you've predicted
and eliminated all possible bad events. Instead, you want to take action
and prevent the ones you can but make sure that your system as a
whole can recover from whatever unanticipated, severe traumas might
befall it.



WHO SHOULD READ THIS Book? <« 11

Second, realize that “Release 1.0” is not the end of the development
project but the beginning of the system’s life on its own. The situa-
tion is somewhat like having a grown child leave its parents for the
first time. You probably don’t want your adult child to come and move
back in with you, especially with their spouse, four kids, two dogs, and
cockatiel.

Similarly, your design decisions made during development will greatly
affect your quality of life after Release 1.0. If you fail to design your
system for a production environment, your life after release will be filled
with “excitement.” And not the good kind of excitement. In this book,
you'll take a look at the design trade-offs that matter and see how to
make them intelligently.

And finally, despite our collective love of technology, nifty new tech-
niques, and cool systems, in the end you have to face the fact that none
of that really matters. In the world of business—which is the world that
pays us—it all comes down to money. Systems cost money. To make
up for that, they have to generate money, either in direct revenue or
through cost savings. Extra work costs money, but then again, so does
downtime. Inefficient code costs a lot of money, by driving up capital
and operation costs. To understand a running system, you have to fol-
low the money. And to stay in business, you need to make money—or
at least not lose it.

It is my hope that this book can make a difference and can help you and
your organization avoid the huge losses and overspending that typically
characterize enterprise software.

Who Should Read This Book?

I've targeted this book at architects, designers, and developers of enter-
prise-class software systems—this includes websites, web services, and
EAI projects, among others. To me, enterprise-class simply means that
the software must be available, or the company loses money. These
might be commerce systems that generate revenue directly through
sales or perhaps critical internal systems that employees use to do their
jobs. If anybody has to go home for the day because your software stops
working, then this book is for you.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=11

How THE BOOK Is ORGANIZED <« 12

How the Book Is Organized

The book is divided into four parts, each introduced by a case study.
Part 1 shows you how to keep your systems alive—maintaining system
uptime. Distributed systems, despite promises of reliability through
redundancy, exhibit availability more like “two eights” rather than the
coveted “five nines.”! Stability is a necessary prerequisite to any other
concerns. If your system falls over and dies every day, nobody is going
to care about any aspects of the far future. Short-term fixes—and short-
term thinking—will dominate in that environment. You’'ll have no viable
future without stability, so you'll start by looking at ways to ensure
you've got a stable base system from which to work.

Once you've achieved stability, your next concern is capacity. You'll
look at that in Part 2, where you’ll see how to measure the capacity
of the system, learn just what capacity actually means, and learn how
to optimize capacity over time. I'll show you a number of patterns and
antipatterns to help illustrate good and bad designs and the dramatic
effects they can have on your system’s capacity (and hence, the number
of late-night pager or cell calls you'll get).

In Part 3, you'll look at general design issues that architects should con-
sider when creating software for the data center. Hardware and infras-
tructure design has changed significantly over the past ten years; for
example, practices such as multihoming, which were once relatively
rare, are now nearly universal. Networks have grown more complex—
they're layered and intelligent. Storage area networking is common-
place. Software designs must account for and take advantage of these
changes in order to run smoothly in the data center.

In Part 4, you’ll examine the system’s ongoing life as part of the overall
information ecosystem. Too many production systems are like Schro-
dinger’s cat—locked inside a box, with no way to observe its actual
state. That doesn’'t make for a healthy ecosystem. Without informa-
tion, it is impossible to make deliberate improvements.? Chapter 17,
Transparency, on page 265 discusses the motives, technologies, and
processes needed to learn from the system in production (which is
the only place you can learn certain lessons). Once the health, per-
formance, and characteristics of the system are revealed, you can act

1. That is, 88% uptime instead of 99.999% uptime.
2. Random guesses might occasionally yield improvements but are more likely to add
entropy than remove it.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=12

ABOUT THE CASE STUDIES <« 13

on that information. And in fact, that’s not optional—you must take
action in the light of new knowledge. Sometimes that’s easier said than
done, and in Chapter 18, Adaptation, on page 310 you’ll look at the
barriers to change and ways to reduce and overcome those barriers.

About the Case Studies

I have included several extended case studies to illustrate the major
themes of this book. These case studies are taken from real events and
real system failures that I have personally observed. These failures were
very costly—and embarrassing—for those involved. Therefore, I have
obfuscated some information to protect the identities of the companies
and people. I have also changed the names of the systems, classes, and
methods. Only “nonessential” details have been changed, however. In
each case, I have maintained the same industry, sequence of events,
failure mode, error propagation, and outcome. The costs of these fail-
ures are not exaggerated. These are real companies, and this is real
money. | have preserved those figures to underscore the seriousness of
this material. Real money is on the line when systems fail.

Acknowledgments

This book grew out of a talk that I originally presented to the Object
Technology User’s Group.® Because of that, I owe thanks to Kyle Lar-
son and Clyde Cutting, who volunteered me for the talk and accepted
the talk, respectively. Tom and Mary Poppendieck, authors of two fan-
tastic books on “lean software development™ have provided invaluable
encouragement. They convinced me that I had a book waiting to get out.
Special thanks also go to my good friend and colleague, Dion Stewart,
who has consistently provided excellent feedback on drafts of this book.

Of course, I would be remiss if I didn’t give my warmest thanks to my
wife and daughters. My youngest girl has seen me working on this for
half of her life. You have all been so patient with my weekends spent
scribbling. Marie, Anne, Elizabeth, Laura, and Sarah, I thank you.

3. See http://www.otug.org.
4. See Lean Software Development [ ] and Implementing Lean Software Develop-

ment [ 1.


http://www.otug.org
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=13

Chapter 1

w
Software design as taught today is terribly incomplete. It talks only
about what systems should do. It doesn’t address the converse—things

systems should not do. They should not crash, hang, lose data, violate
privacy, lose money, destroy your company, or Kill your customers.

In this book, we will examine ways we can architect, design, and build
software—particularly distributed systems—for the muck and tussle of
the real world. We will prepare for the armies of illogical users who do
crazy, unpredictable things. Our software will be under attack from the
moment we release it. It needs to stand up to the typhoon winds of a
flash mob, a Slashdotting, or a link on Fark or Digg. We'll take a hard
look at software that failed the test and find ways to make sure your
software survives contact with the real world.

Software design today resembles automobile design in the early 90s:
disconnected from the real world. Cars designed solely in the cool com-
fort of the lab looked great in models and CAD systems. Perfectly curved
cars gleamed in front of giant fans, purring in laminar flow. The design-
ers inhabiting these serene spaces produced designs that were elegant,
sophisticated, clever, fragile, unsatisfying, and ultimately short-lived.
Most software architecture and design happens in equally clean, dis-
tant environs.

You want to own a car designed for the real world. You want a car
designed by somebody who knows that oil changes are always 3,000
miles late; that the tires must work just as well on the last sixteenth
of an inch of tread as on the first; and that you will certainly, at some
point, stomp on the brakes while you're holding an Egg McMuffin in
one hand and a cell phone in the other.



AIMING FOR THE RIGHT TARGET < 15

1.1 Aiming for the Right Target

Most software is designed for the development lab or the testers in the
Quality Assurance (QA) department. It is designed and built to pass
tests such as, “The customer’s first and last names are required, but
the middle initial is optional.” It aims to survive the artificial realm of
QA, not the real world of production.

When my system passes QA, can I say with confidence that it is ready
for production? Simply passing QA tells me little about the system’s
suitability for the next three to ten years of life. It could be the Toy-
ota Camry of software, racking up thousands of hours of continuous
uptime. It could be the Chevy Vega (a car whose front end broke off
on the company’s own test track) or a Ford Pinto, prone to blowing up
when hit in just the right way. It is impossible to tell from a few days or
weeks of testing in QA what the next several years will bring.

Product designers in manufacturing have long pursued “design for
manufacturability”—the engineering approach of designing products
such that they can be manufactured at low cost and high quality.
Prior to this era, product designers and fabricators lived in different
worlds. Designs thrown over the wall to production included screws
that could not be reached, parts that were easily confused, and cus-
tom parts where off-the-shelf components would serve. Inevitably, low
quality and high manufacturing cost followed.

Does this sound familiar? We're in a similar state today. We end up
falling behind on the new system because we're constantly taking sup-
port calls from the last half-baked project we shoved out the door. Our
analog of “design for manufacturability” is “design for production.” We
don’t hand designs to fabricators, but we do hand finished software to
IT operations. We need to design individual software systems, and the
whole ecosystem of interdependent systems, to produce low cost and
high quality in operations.

1.2 Use the Force

Your early decisions make the biggest impact on the eventual shape of
your system. The earliest decisions you make can be the hardest ones
to reverse later. These early decisions about the system boundary and
decomposition into subsystems get crystallized into the team structure,
funding allocation, program management structure, and even time-
sheet codes. Team assignments are the first draft of the architecture.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=15

QUALITY OF LIFE < 16

(See the sidebar on page 150.) It’s a terrible irony that these very early
decisions are also the least informed. This is when your team is most
ignorant of the eventual structure of the software in the beginning, yet
that is when some of the most irrevocable decisions must be made.

Even on “agile” projects,! decisions are best made with foresight. It
seems as if the designer must “use the force” to see the future in order
to select the most robust design. Since different alternatives often have
similar implementation costs but radically different lifecycle costs, it is
important to consider the effects of each decision on availability, capac-
ity, and flexibility. I'll show you the downstream effects of dozens of
design alternatives, with concrete examples of beneficial and harmful
approaches. These examples all come from real systems I've worked on.
Most of them cost me sleep at one time or another.

1.3 Quality of Life

Release 1.0 is the beginning of your software’s life, not the end of the
project. Your quality of life after Release 1.0 depends on choices you
make long before that vital milestone.

Whether you wear the support pager, sell your labor by the hour, or pay
the invoices for the work, you need to know that you are dealing with a
rugged, Baja-tested, indestructible vehicle that will carry your business
forward, not a fragile shell of fiberglass that spends more time in the
shop than on the road.

1.4 The Scope of the Challenge

The “software crisis” is now more than thirty years old. According to these terms come from
the gold owners, software still costs too much. (But, see Why Does Soft- ¢ 29t community. The

gold owner is the one
ware Cost So Much? | ] about that.) According to the goal donors, Paving.jor the sofware.
The goal donor is the one

software still takes too long—even though schedules are measured in whose needs you are
. . . trying to fill. These are
months rather than years. Apparently, the supposed productivity gains seidom the same person.

from the past thirty years have been illusory.

1. Tllreveal myself here and now as a strong proponent of agile methods. Their emphasis
on early delivery and incremental improvements means software gets into production
quickly. Since production is the only place to learn how the software will respond to
real-world stimuli, I advocate any approach that begins the learning process as soon as
possible.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=16

A MILLION DOLLARS HERE, A MILLION DOLLARS THERE <« 17

On the other hand, maybe some real productivity gains have gone into
attacking larger problems, rather than producing the same software
faster and cheaper. Over the past ten years, the scope of our systems
expanded by orders of magnitude.

In the easy, laid-back days of client/server systems, a system’s user
base would be measured in the tens or hundreds, with few dozen con-
current users at most. Now, sponsors glibly toss numbers at us such
as “25,000 concurrent users” and “4 million unique visitors a day.”

Uptime demands have increased, too. Whereas the famous “five nines”
(99.999%) uptime was once the province of the mainframe and its care-
takers, even garden-variety commerce sites are now expected to be
available 24 by 7 by 365.2 Clearly, we've made tremendous strides even
to consider the scale of software we build today, but with the increased
reach and scale of our systems come new ways to break, more hostile
environments, and less tolerance for defects.

The increasing scope of this challenge—to build software fast that’s
cheap to build, good for users, and cheap to operate—demands con-
tinually improving architecture and design techniques. Designs appro-
priate for small brochureware websites fail outrageously when applied
to thousand-user, transactional, distributed systems, and we’ll look at
some of those outrageous failures.

1.5 A Million Dollars Here, a Million Dollars There

A lot is on the line here: your project’s success, your stock options or
profit sharing, your company’s survival, and even your job. Systems
built for QA often require so much ongoing expense, in the form of
operations cost, downtime, and software maintenance, that they never
reach profitability, let alone net positive cash for the business, which
is reached only after the profits generated by the system pay back the
costs incurred in building it. These systems exhibit low levels of avail-
ability, resulting in direct losses in missed revenue and sometimes even
larger indirect losses through damage to the brand. For many of my
clients, the direct cost of downtime exceeds $100,000 per hour.

2. That phrase has always bothered me. As an engineer, I expect it to either be “24 by
365” or be “24 by 7 by 52.”


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=17

PRAGMATIC ARCHITECTURE <« 18

In one year the difference between 98% uptime and 99.99% uptime
adds up to more than $17 million.® Imagine adding $17 million to the
bottom line just through better design!

During the hectic rush of the development project, you can easily make
decisions that optimize development cost at the expense of operational
cost. This makes sense only in the context of the project team being
measured against a fixed budget and delivery date. In the context of the
organization paying for the software, it's a bad choice. Systems spend
much more of their life in operation than in development—at least, the
ones that don’t get canceled or scrapped do. Avoiding a one-time cost
by incurring a recurring operational cost makes no sense. In fact, the
opposite decision makes much more financial sense. If you can spend
$5,000 on an automated build and release system that avoids down-
time during releases, the company will avoid $200,000.% 1 think that
most CFOs would not mind authorizing an expenditure that returns
4,000% ROL.

Design and architecture decisions are also
Don’t avoid one-time financial decisions. These choices must be
development expenses made with an eye toward their implementation
at the cost of recurring ~ cost as well as their downstream costs. The
fusion of technical and financial viewpoints is

operational expenses.
one of the most important recurring themes in

this book.

1.6 Pragmatic Architecture

Two divergent sets of activities both fall under the term architecture.
One type of architecture strives toward higher levels of abstraction that
are more portable across platforms and less connected to the messy
details of hardware, networks, electrons, and photons. The extreme
form of this approach results in the “ivory tower’—a Kubrickesque
clean room, inhabited by aloof gurus, decorated with boxes and arrows
on every wall. Decrees emerge from the ivory tower and descend upon
the toiling coders. “Use EJB container-managed persistence!” “All Uls
shall be constructed with JSF!” “All that is, all that was, and all that

3. At an average $100,000 per hour, the cost of downtime for a tier-1 retailer.

4. This assumes $10,000 per release (labor plus cost of planned downtime), four releases
per year, and a five-year horizon. Most companies would like to do more than four releases
per year, but I'm being conservative.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=18

PRAGMATIC ARCHITECTURE <« 19

shall ever be lives in Oracle!” If you've ever gritted your teeth while cod-
ing something according to the “company standards” that would be ten
times easier with some other technology, then you've been the victim
of an ivory-tower architect. I guarantee that an architect who doesn’t
bother to listen to the coders on the team doesn’t bother listening to the
users either. You've seen the result: users who cheer when the system
crashes, because at least then they can stop using it for a while.

In contrast, another breed of architect rubs shoulders with the coders
and might even be one. This kind of architect does not hesitate to
peel back the lid on an abstraction or to jettison one if it does not
fit. This pragmatic architect is more likely to discuss issues such as
memory usage, CPU requirements, bandwidth needs, and the benefits
and drawbacks of hyperthreading and CPU bonding.

The ivory-tower architect most enjoys an end-state vision of ringing
crystal perfection, but the pragmatic architect constantly thinks about
the dynamics of change. “How can we do a deployment without reboot-
ing the world?” “What metrics do we need to collect, and how will we
analyze them?” “What part of the system needs improvement the most?”
When the ivory-tower architect is done, the system will not admit any
improvements; each part will be perfectly adapted to its role. Contrast
that to the pragmatic architect’s creation, in which each component is
good enough for the current stresses—and the architect knows which
ones need to be replaced depending on how the stress factors change
over time.

If youre already a pragmatic architect, then I've got chapters full of
powerful ammunition for you. If you're an ivory-tower architect—and
you haven’t already stopped reading—then this book might entice you
to descend through a few levels of abstraction to get back in touch with
that vital intersection of software, hardware, and users: living in pro-

duction. You, your users, and your company will all be much happier
when the time comes to finally release it!



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=19

Part 1

Stability



Chapter 2

Case Stuay: The Exception That
rounded An A

Have you ever noticed that the incidents that blow up into the biggest
issues start with something very small? A tiny programming error starts
the snowball rolling downhill. As it gains momentum, the scale of the
problem keeps getting bigger and bigger. A major airline experienced
just such an incident. It eventually stranded thousands of passengers
and cost the company hundreds of thousands of dollars. Here’s how it
happened.

It started with a planned failover on the database cluster that served the
Core Facilities (CF).! The airline was moving toward a service-oriented
architecture, with the usual goals of increasing reuse, decreasing devel-
opment time, and decreasing operational costs. At this time, CF was in
its first generation. The CF team planned a phased rollout, driven by
features. It was a sound plan, and it probably sounds familiar—most
large companies have some variation of this project underway now.

CF handled flight searches—a very common service for any airline
application. Given a date, time, city, airport code, flight number, or any
combination, CF could find and return a list of flight details. When this

incident happened, the self-service check-in kiosks, IVR, and “channel interactive voice
Response: the dreaded
telephone menu system

partner” applications had been updated to use CF. Channel partner
applications generate data feeds for big travel-booking sites. IVR and
self-service check-in are both used to put passengers on airplanes—

1. As always, all names, places, and dates are changed to protect the confidentiality of
people and companies involved.



THE OUTAGE < 22

“butts in seats” in the vernacular. The development schedule had plans
for new releases of the gate agents and call center applications to tran-
sition to CF for flight lookup, but those had not been rolled out yet,
which turned out to be a good thing, as you will soon see.

The architects of CF were well aware of how critical it would be. They
built it for high availability. It ran on a cluster of J2EE application
servers with a redundant Oracle 9i database. All the data was stored
on a large external RAID array with off-site tape backups taken twice
daily and on-disk replicas in a second chassis that were guaranteed to
be at most five minutes old.

The Oracle database server would run on one node of the cluster at
a time, with Veritas Cluster Server controlling the database server,
assigning the virtual IP address, and mounting or unmounting filesys-
tems from the RAID array. Up front, a pair of redundant hardware load
balancers directed incoming traffic to one of the application servers.
Calling applications like the self-service check-in kiosks and IVR sys-
tem would connect to the front-end virtual IP address. So far, so good.

If you've done any website or web services work, Figure 2.1, on the
next page probably looks familiar. It is a very common high-availability
architecture, and it’s a good one. CF did not suffer from any of the usual
single-point-of-failure problems. Every piece of hardware was redun-
dant: CPUs, fans, drives, network cards, power supplies, and network
switches. The servers were even split into different racks in case a sin-
gle rack got damaged or destroyed. In fact, a second location thirty
miles away was ready to take over in the event of a fire, flood, bomb, or
meteor strike.

2.1 The Outage

As was the case with most of my large clients, a local team of engi-
neers dedicated to the account operated the airline’s infrastructure. In
fact, that team had been doing most of the work for more than three
years when this happened. On the night this started, the local engi-
neers had executed a manual database failover from CF database 1
to CF database 2. (See Figure 2.1, on the following page.) They used
Veritas to migrate the active database from one host to the other. This
allowed them to do some routine maintenance to the first host. Totally
routine. They had done this procedure dozens of times in the past.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=22

T Virtual IP Address

(o~ =))—(- - =) Hardware Load Balancer

CF App 1 CF App 2 CF App 3 CF Appn

<%Virtual IP Address

i

Heartbeat

LI

CF Datébase 1 CF Datébase 2

: I :
e (ITIRITE S '

1 1

RAID 5
Array

Figure 2.1: CF Deployment Architecture

Veritas Cluster Server orchestrates the failover. In the space of one
minute, it can shut down the Oracle server on database 1, unmount the
filesystems from the RAID array, remount them on database 2, start
Oracle there, and reassign the virtual IP address to database 2. The
application servers can’t even tell that anything has changed, because
they are configured to connect to the virtual IP address only.

The client scheduled this particular change for a Thursday evening,
at around 11 p.m., Pacific time. One of the engineers from the local
team worked with the operations center to execute the change. All went
exactly as planned. They migrated the active database from database 1
to database 2 and then updated database 1. After double-checking that
database 1 was updated correctly, they migrated the database back


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=23

THE OUTAGE < 24

to database 1 and applied the same change to database 2. The whole
time, routine site monitoring showed that the applications were contin-
uously available. No downtime was planned for this change, and none
occurred. At about 12:30 a.m., the crew marked the change as “Com-
pleted, Success” and signed off. The local engineer headed for bed, after
working a 22-hour shift. There’s only so long you can run on double
espressos, after all.

Nothing unusual occurred until two hours later.

At about 2:30 a.m., all the check-in kiosks went red on the monitoring
console—every single one, everywhere in the country, stopped servicing
requests at the same time. A few minutes later, the IVR servers went
red too. Not exactly panic time, but pretty close, because 2:30 a.m. in
Pacific time is 5:30 a.m. Eastern time, which is prime time for com-
muter flight check-in on the Eastern seaboard. The operations center
immediately opened a Severity 1 case and got the local team on a con-
ference call.

In any incident, my first priority is always to restore service. Restoring
service takes precedence over investigation. If I can collect some data
for post-mortem root cause analysis, that’s great—unless it makes the
outage longer. When the fur flies, improvisation is not your friend. For-
tunately, the team had created scripts long ago to take thread dumps of
all the Java applications and snapshots of the databases. This style of
automated data collection is the perfect balance. It’s not improvised, it
does not prolong an outage, yet it aids post-mortem analysis. According
to procedure, the operations center ran those scripts right away. They
also tried restarting one of the kiosks’ application servers.

The trick to restoring service is figuring out what to target. You can
always “reboot the world” by restarting every single server, layer by
layer. That’s almost always effective, but it takes a long time. Most of
the time, you can find one culprit that is really locking things up. In a
way, it is like a doctor diagnosing a disease. You could treat a patient
for every known disease, but that will be painful, expensive, and slow.
Instead, you want to look at the symptoms the patient shows to fig-
ure out exactly which disease to treat. The trouble is that individual
symptoms aren’t specific enough. Sure, once in a while, some symptom
points you directly at the fundamental problem, but not usually. Most
of the time, you get symptoms—Ilike a fever—that tell you nothing by
themselves.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=24

CONSEQUENCEs «d 25

Hundreds of diseases can cause fevers. To distinguish between possible
causes, you need more information from tests or observations.

In this case, the team was facing two separate sets of applications that
were both completely hung. It happened at almost the same time, close
enough that the difference could just be latency in the separate moni-
toring tools that the kiosks and IVR applications used. The most obvi-
ous hypothesis was that both sets of applications depended on some
third entity that was in trouble. As you can see from Figure 2.2, on the
next page, that was a big finger pointing at CF, the only common depen-
dency shared by the kiosks and the IVR system. The fact that CF had
a database failover three hours before this problem also made it highly
suspect. Monitoring hadn’t reported any trouble with CF, though. Log
file scraping did not reveal any problems, and neither did URL probing.
As it turns out, the monitoring application was only hitting a status
page, so it did not really say much about the real health of the CF
application servers. We made a note to fix that error through normal
channels later.

Remember, restoring service was the first priority. This outage was
approaching the one-hour SLA limit, so the team decided to restart service-level agreement:
each of the CF application servers. As soon as they restarted the first 4 onact between e

service provide and the
CF application server, the IVR systems began recovering. Once all CF Zﬁi’;ﬁaﬁsﬂi wa
servers were restarted, IVR was green, but the kiosks still showed red. penatties for breaking
On a hunch, the lead engineer decided to restart the kiosks’ own appli- fhe Sk

cation servers. That did the trick; the kiosks and IVR systems were all

showing green on the board.

The total elapsed time for the incident was a little more than three
hours, from 11:30 p.m. to 2:30 a.m. Pacific time.

2.2 Consequences

Three hours might not sound like much, especially when you com-
pare that to some legendary outages. (EBay’s 24-hour outage from 1999
comes to mind, for example.) The impact to the airline lasted a lot longer
than just three hours, though. Airlines don’t staff enough gate agents
to check everyone in using the old systems. When the kiosks go down,
the airline has to call in agents who are off-shift. Some of them are over
their 40 hours for the week, incurring union-contract overtime (time
and a half). Even the off-shift agents are only human, though. By the


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=25

CONSEQUENCESs < 26

Check-in Check-in Check-in Check-in
Kiosk Kiosk Kiosk Kiosk

Kiosk
West
Cluster

Kiosk
East
Cluster

Travel
Sites

CF

IVR
App Sabre
Cluster

/T\

IVR IVR IVR
Blade Blade Blade

Figure 2.2: Common Dependencies



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=26

PosST-MORTEM <« 27

time the airline could get more staff on-site, they could deal only with
the backlog. It took until nearly 3 p.m. to deal with the backlog.

It took so long to check in the early-morning flights that planes could
not push back from their gates. They would have been half empty. Many
travelers were late departing or arriving that day. Thursday happens to
be the day that a lot of “nerd-birds” fly: commuter flights returning
consultants to their home cities. Since the gates were still occupied,
incoming flights had to be switched to other unoccupied gates. So, even
travelers who were already checked in still got inconvenienced. They
had to rush from their original gate to the reallocated gate.

The delays were shown on Good Morning America (complete with video
of pathetically stranded single moms and their babies) and the Weather
Channel’s travel advisory.

The FAA measures on-time arrivals and departures as part of the air-
line’s annual report card. They also measure customer complaints sent
to the FAA about an airline.

The CEO’s compensation is partly based on the FAA’s annual report
card.

You know it’s going to be a bad day when you see the CEO stalking
around the operations center to find out who cost him his vacation
home in St. Thomas.

2.3 Post-mortem

At 10:30 a.m. Pacific time, eight hours after the outage started, Tom,?
our account representative, called me to come down for a post-mortem.
Because the failure occurred so soon after the database failover and
maintenance, suspicion naturally condensed around that action. In
operations, “post hoc, ergo propter hoc”® turns out to be a good starting
point most of the time. It’s not always right, but it certainly provides a
place to begin looking. In fact, when Tom called me, he asked me to fly
there to find out why the database failover caused this outage.

Once I was airborne, I started reviewing the problem ticket and prelim-
inary incident report on my laptop.

2. Not his real name.
3. Literally “after this, therefore because of this.” It refers to the common logical fallacy
of attributing causation based on close timing. Also known as “you touched it last.”


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=27

PosT-MORTEM <« 28

My agenda was simple: conduct a post-mortem investigation, and
answer some questions:

* Did the database failover cause the outage? If not, what did?

* Was the cluster configured correctly?

¢ Did the operations team conduct the maintenance correctly?

* How could the failure have been detected before it became an out-
age?

* Most important, how do we make sure this never, ever happens
again?

Of course, my presence there also served to demonstrate to the client
that we were serious about responding to this outage. Not to mention,
my investigation should also allay any fears about the local team white-
washing the incident. They would never do such a thing, of course, but
managing perception after a major incident can be just as important as
managing the incident itself.

A post-mortem is like a murder mystery. You

Manage perceptions have a set of clues. Some are reliable, such
affer a major incident. as server logs copied from the time of the out-
It's as important as age. Some are unreliable, such as statements

managing the incident from people about what they saw. As with real
witnesses, people will mix observations with
speculation. They will present hypotheses as
facts. The post-mortem can actually be harder to solve than a murder,
because the body goes away. There is no corpse to autopsy, because
the servers are back up and running. Whatever state they were in that
caused the failure no longer exists. The failure might have left traces in
the log files or monitoring data collected from that time, or it might not.
The clues can be very hard to see.

itself.

As I read the files, I made some notes about data to collect. From the
application servers, I would need log files, thread dumps, and configu-
ration files. From the database servers, I would need configuration files
for the databases and the cluster server. I also made a note to compare
the current configuration files to those from the nightly backup. The
backup ran before the outage, so that would tell me whether any con-
figurations were changed between the backup and my investigation. In
other words, that would tell me whether someone was trying to cover
up a mistake.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=28

PosT-MORTEM <« 29

By the time I got to my hotel, my body said it was after midnight. All
I wanted was a shower and a bed. What I got instead was a meeting
with our account executive to brief me on developments while I was
incommunicado in the air. My day finally ended around 1 a.m.

In the morning, fortified with quarts of coffee, I dug into the database
cluster and RAID configurations. I was looking for common prob-
lems with clusters: not enough heartbeats, heartbeats going through
switches that carry production traffic, servers set to use physical IP
addresses instead of the virtual address, bad dependencies among
managed packages, and so on. At that time, I didn’t carry a check-
list; these were just problems that I had seen more than once or heard
about through the grapevine. I found nothing wrong. The engineering
team had done a great job with the database cluster. Proven, textbook
work. In fact, some of the scripts appeared to be taken directly from
Veritas’s own training materials.

Next, it was time to move on to the application servers’ configuration.
The local engineers had made copies of all the log files from the kiosk
application servers during the outage. I was also able to get log files
from the CF application servers. They still had log files from the time
of the outage, since it was just the day before. Better still, there were
thread dumps in both sets of log files. As a longtime Java programmer,
I love Java thread dumps for debugging application hangs.

Armed with a thread dump, the application is an open book, if you
know how to read it. You can deduce a great deal about applications
for which you've never seen the source code. You can tell what third-
party libraries an application uses, what kind of thread pools it has,
how many threads are in each one, and what background processing
the application uses. By looking at the classes and methods in each
thread’s stack trace, you can even tell what protocols the application
uses.

It did not take long to decide that the problem had to be within CF. The
thread dumps for the kiosks’ application servers showed exactly what
I would expect from the observed behavior during the incident. Out of
the forty threads allocated for handling requests from the individual
kiosks, all forty were blocked inside SocketinputStream.socketReadO(), a
native method inside the internals of Java’s socket library. They were
trying vainly to read a response that would never come.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=29

PosT-MORTEM < 30

Getting Thread Dumps
Any Java application will dump the state of every thread in the

JVM when you send it a signal 3 (SIGQUIT) on UNIX systems or
press Ctrl+Break on Windows systems.

To use this on Windows, you must be at the console, with a Com-
mand Prompt window running the Java application. Obviously,
if you are logging in remotely, this pushes you toward VNC or
Remote Desktop.

On UNIX, you can use kill to send the signal:
kill -3 18835

One catch about the thread dumps: they always come out on
“standard out.” Many canned start-up scripts do not capture
standard out, or they send it fo /dev/null. (For example, Gen-
too Linux’s JBoss package sets JBOSS_ CONSOLE to /dev/null by
default.) Log files produced with Log4J or java.util.logging can-
not show thread dumps. You might have to experiment with
your application server’s start-up scripts to get thread dumps.

Here is a small portion of a thread dump from JBoss 3.2.5:

"http-0.0.0.0-8080-Processor25" daemon prio=1 tid=0x08a593f0 \

nid=0x57ac runnable [a88f1000..a88flccc]

at java.net.PlainSocketImpl.socketAccept(Native Method)

at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:353)

- locked <Oxac5d3640> (a java.net.PlainSocketImpl)

at java.net.ServerSocket.implAccept(ServerSocket.java:448)

at java.net.ServerSocket.accept(ServerSocket.java:419)

at org.apache.tomcat.util.net.DefaultServerSocketFactory.\
acceptSocket (DefaultServerSocketFactory.java:60)

at org.apache.tomcat.util.net.PoolTcpEndpoint.\
acceptSocket(PoolTcpEndpoint.java:368)

at org.apache.tomcat.util.net.TcpWorkerThread.\
runIt(PoolTcpEndpoint.java:549)

at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.\
run(ThreadPool.java:683)

at java.lang.Thread.run(Thread.java:534)

"http-0.0.0.0-8080-Processor24" daemon prio=1 tid=0x08a57c30 \

nid=0x57ab in Object.wait() [a8972000..a8972ccc]

at java.lang.Object.wait(Native Method)

- waiting on <Oxacede700> (a org.apache.tomcat.util.threads.\
ThreadPool$ControlRunnable)

at java.lang.Object.wait(Object.java:429)

at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.\
run(ThreadPool.java:655)

- locked <Oxacede700> (a org.apache.tomcat.util.threads.\
ThreadPool$ControlRunnable)

at java.lang.Thread.run(Thread.java:534)

They do get verbose.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=30

THE SMOKING GUN < 31

7 A

Getting Thread Dumps (cont.)

This fragment shows two threads, each named like http-0.0.0.0-
8080-ProcessorN. Number 25 is in a runnable state, whereas
thread 24 is blocked in Object.wait(). This frace clearly indicates
that these are members of a thread pool. That some of the
classes on the stacks are named ThreadPool$SControlRunnable()
might also be a clue.

The kiosk application server’s thread dump also gave me the pre-
cise name of the class and method that all forty threads had called:
FlightSearch.lookupByCity(). I was surprised to see references to RMI and
EJB methods a few frames higher in the stack. CF had always been
described as a “web service.” Admittedly, the definition of a web service
was pretty loose at that time, but it still seems like a stretch to call a
stateless session bean a “web service.”

Remote Method Invocation (RMI) provides EJB with its remote proce-
dure calls. EJB calls can ride over one of two transports: CORBA (dead
as disco) or RMI. As much as I like RMI's programming model, it’s really
dangerous because calls cannot be made to time out. As a result, the
caller is vulnerable to problems in the remote server.

2.4 The Smoking Gun

At this point, the post-mortem analysis agreed with the symptoms from
the outage itself: CF appeared to have caused both IVR and kiosk
check-in to hang. The biggest remaining question was still, “What hap-
pened to CF?”

The picture got clearer as I investigated the thread dumps from CF.
CF’s application server used separate pools of threads to handle EJB
calls and HTTP requests. That's why CF was always able to respond to
the monitoring application, even during the middle of the outage. The
HTTP threads were almost entirely idle, which makes sense for an EJB
server. The EJB threads, on the other hand, were all completely in use
processing calls to FlightSearch.lookupByCity(). In fact, every single thread
on every application server was blocked at exactly the same line of code:
attempting to check out a database connection from a resource pool.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=31

THE SMOKING GUN < 32

It was circumstantial evidence, not a smoking gun, but considering the
database failover before the outage, it seemed that I was on the right
track.

The next part would be dicey. I needed to look at that code, but the
operations center had no access to the source control system. Only
binaries were deployed to the production environment. That’s usually a
good security precaution, but it was a bit inconvenient at the moment.
When I asked our account executive how we could get access to the
source code, he was reluctant to take that step. Given the scale of the
outage, you can imagine that there was plenty of blame floating in the
air looking for someone to land on. Relations between the operations
center and Development—never all that cozy—were more strained than
usual. Everyone was on the defensive, wary of any attempt to point the
finger of blame in their direction.

So, with no legitimate access to the source code, I did the only thing I
could do. I took the binaries from production and decompiled them.*
The minute I saw the code for the suspect EJB, I knew I had found the
real smoking gun. This particular session bean turned out to be the
only facility that CF implemented yet. The actual code is show on the
facing page.

Actually, at first glance, this method looks well constructed. Use of the
try..finally block indicates the author’s desire to clean up resources. In
fact, this very cleanup block has appeared in some Java books on the
market. Too bad it contains a fatal flaw.

It turns out that java.sgl.Statement.close() can throw a SQLException. It
almost never does. Oracle’s driver does only when it encounters an
IOException attempting to close the connection—following a database
failover, for instance.

Suppose the JDBC connection was created before the failover. The IP
address used to create the connection will have moved from one host
to another, but the current state of TCP connections will not carry over
to the second database host. Any socket writes will eventually throw an
IOException (after the operating system and network driver finally decide
that the TCP connection is dead). That means every JDBC connection
in the resource pool is an accident waiting to happen.

4. My favorite tool for decompiling Java code is still JAD. It is fast and accurate, though
it is beginning to creak and groan when used on Java 5 code.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=32

THE SMOKING GUN < 33

package com.example.cf.flightsearch;

public class FlightSearch implements SessionBean {
private MonitoredDataSource connectionPool;

public List lookupByCity(. . .) throws SQLException, RemoteException {
Connection conn = null;
Statement stmt = null;

try {
conn = connectionPool.getConnection();
stmt = conn.createStatement();

// Do the lookup logic
// return a list of results
} finally {
if (stmt != null) {
stmt.close();

}

if (conn != null) {
conn.close();
}
}
}
}

Amazingly, the JDBC connection is still willing to create statements. To
create a statement, the driver’s connection object checks only its own
internal status.® If the JDBC connection thinks it is still connected,
then it will create the statement. Executing that statement will throw a
SQLException when it does some network I/0. But, closing the statement
will also throw a SQLException, because the driver attempts to tell the
database server to release resources associated with that statement.

In short, the driver is willing to create a Statement Object that cannot
be used. You might consider this a bug. Many of the developers at the
airline certainly made that accusation. The key lesson to be drawn here,
though, is that the JDBC specification allows java.sgl.Statement.close() to
throw SQLException, so your code has to handle it.

In the previous offending code, if closing the statement throws an
exception, then the connection does not get closed, resulting in a

5. This might be a quirk peculiar to Oracle’s JDBC drivers. I've decompiled only Oracle’s.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=33

AN OUNCE OF PREVENTION? <d 34

resource leak. After forty of these calls, the resource pool is exhausted,
and all future calls will block at connectionPool.getConnection(). That is
exactly what I saw in the thread dumps from CF.

The entire globe-spanning, multibillion dollar airline with its hundreds
of aircraft and tens of thousands of employees was grounded by one
programmer’s rookie error: a single uncaught SQLException.

2.5 An Ounce of Prevention?

When such staggering cost results from such a small error, the natural
response is to say, “This must never happen again.” But how can it be
prevented? Would a code review have caught this bug? Only if one of the
reviewers knew the internals of Oracle’s JDBC driver or the review team
spent hours on each method. Would more testing have prevented this
bug? Perhaps. Once the problem was identified, the team performed a
test in the stress test environment that did demonstrate the same error.
The regular test profile didn’t exercise this method enough to show the
bug. In other words, once you know where to look, it’s simple to make
a test that finds it.

Ultimately, it is just fantasy to expect every single bug like this one to
be driven out. Bugs will happen. They cannot be eliminated, so they
must be survived instead.

The worst problem here is that the bug in one system could propagate
to all the other affected systems. A better question to ask is, “How do we
prevent bugs in one system from affecting everything else?” Inside every
enterprise today is a mesh of interconnected, interdependent systems.
They cannot—must not—allow bugs to cause a chain of failures. You're
going to look at design patterns that can prevent this type of problem
from spreading.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=34

Chapter 3

New software emerges like a new college graduate, full of optimistic
vigor, suddenly facing the harsh realities of the world outside the lab.
Things happen in the real world that just do not happen in the lab,
usually bad things. In the lab, all the tests are contrived by people who
know what answer they expect to get. In the real world, the tests aren’t
designed to have answers. Sometimes they’re just setting your software
up to fail.

Enterprise software must be cynical. Cynical software expects bad
things to happen and is never surprised when they do. Cynical soft-
ware doesn’t even trust itself, so it puts up internal barriers to protect
itself from failures. It refuses to get too intimate with other systems,
because it could get hurt.

The airline’s Core Facilities project discussed in the previous chapter
was not cynical enough. As so often happens, the team got caught up
in the excitement of new technology and advanced architecture. It had
lots of great things to say about leverage and synergy. Dazzled by the
dollar signs, it didn’t see the stop sign and took a turn for the worse.

Poor stability carries significant real costs. The obvious cost is lost rev-
enue. The retailer I discussed in Chapter 1, Introduction, on page 14
loses $100,000 per hour of downtime, and that’s during the off-season.
Trading systems can lose that much in a single missed transaction!

A common rule of thumb says that it costs from $25 to $50 for an
online retailer to acquire a customer. With 5,000 unique visitors per



DEFINING STABILITY <« 36

hour, assume 10 percent of those would-be visitors walk away for good.
That means $12,500 to $25,000 in wasted customer acquisition costs.!

Less tangible, but just as painful, is lost reputation. Tarnish to the
brand might be less immediately obvious than lost customers, but try
having your holiday-season operational problems reported in Business-
Weelk. Millions of dollars in image advertising—touting online customer
service—can be undone in a few hours by a batch of bad hard drives.

Good stability does not necessarily cost a lot.
A highly stable design When building the architecture, design, and
usually costs the same even low-level implementation of a system,
to implement as an there are many decision points that have high
unstable one. leverage over the system’s ultimate stability.
Confronted with these leverage points, two
paths might both satisfy the functional requirements (aiming for QA).
One will lead to hours of downtime every year while the other will not.
The amazing thing is that the highly stable design usually costs the
same to implement as the unstable one.

3.1 Defining Stability

To talk about stability, I need to define some terms. A transaction is an
abstract unit of work processed by the system. This is not the same as
a database transaction. A single unit of work might encompass many
database transactions. In an ecommerce site, for example, one common
type of transaction is “Customer Places Order.” This transaction spans
several pages, often including external integrations such as credit card
verification. Transactions are the reason that the system exists. A sin-
gle system can process just one type of transaction, making it a dedi-
cated system. A mixed workload is a combination of different transac-
tion types processed by a system.

When I use the word system, I mean the complete, interdependent set of
hardware, applications, and services required to process transactions
for users. A system might be as small as a single application, or it might
be a sprawling, multitier network of applications and servers.

I use system when I mean a collection of hosts, applications, network
segments, power supplies, and so on, that process transactions from
end to end.

1. hittp://retailindustry.about.com/library/weekly/aa122599a.htm


http://retailindustry.about.com/library/weekly/aa122599a.htm
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=36

FAILURE MODES <« 37

A resilient system keeps processing transactions, even when there are
transient impulses, persistent stresses, or component failures disrupt-
ing normal processing. This is what most people mean when they just
say stability. It’s not just that your individual servers or applications
stay up and running but rather that the user can still get work done.

The terms impulse and stress come from mechanical engineering. An
impulse is a rapid shock to the system. An impulse to the system is
when something whacks it with a hammer. In contrast, stress to the
system is a force applied to the system over an extended period.

A flash mob pounding the Xbox 360 product detail page, thanks to
a rumor about discounts, causes an impulse. Ten thousand new ses-
sions, all arriving within one minute of each other, is very difficult to
withstand. Getting Slashdotted is an impulse. Dumping twelve million
messages into a queue at midnight on November 21st is an impulse.
These are things that can fracture the system in the blink of an eye.

On the other hand, getting slow responses from your credit card pro-
cessor, because it doesn’t have enough capacity for all of its customers,
is a stress on the system. In a mechanical system, a material changes
shape when stress is applied. This change in shape is called the strain.
Stress produces strain. The same thing happens with computer sys-
tems. The stress from the credit card processor will cause strain to
propagate to other parts of the system, which can produce odd effects.
It could manifest as higher RAM usage on the web servers or excess
I/0 rates on the database server or as some other far distant effect.

A system with longevity keeps processing
transactions for a long time. What is a long Run longevity fesfs. It's
time? It depends. A useful working definition the only way to catch
of a long time is the time between code deploy- longevity bugs.

ments. If new code is deployed into production
every week, then it doesn’t matter if the system can run for two years
without rebooting. On the other hand, a data collector in western Mon-
tana really shouldn’t need to be rebooted by hand once a week. (Unless
you want to live in western Montana, that is.)

3.2 Failure Modes

Sudden impulses and excessive strain both can trigger catastrophic
failure. In either case, some component of the system will start to
fail before everything else does. In Inviting Disaster | |, James R.
Chiles refers to these as cracks in the system. He draws an analogy


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=37

FAILURE MODES < 38

Extending Your Life S
The major dangers to your system’s longevity are memory leaks

and data growth. Both kinds of sludge will kill your system in pro-
duction. Both are rarely caught during tesfing.

Testing makes problems visible so you can fix them (which is |
why | always thank my testers when they find bugs). Follow-
ing Murphy’s law, whatever you do not test against will hap-
pen. Therefore, if you do not test for crashes right after midnight
or out-of-memory errors in the application’s forty-ninth hour of
uptime, those crashes will happen. If you do not test for memory
leaks that show up only after seven days, you will have memory
leaks after seven days.

The frouble is that applications never run long enough in the
development environment to reveal their longevity bugs. How
long do you usually keep an application server running in your
development environment? I'll bet the average life span is less
than the length of a sitcom on TiVo.* In QA it might run a little
longer but is probably sfill getting recycled at least daily, if not
more offen. Even when it is up and running, it’s not under con-
finuous load. These environments are not conducive to long-
running tests, such as leaving the server running for a month
under daily traffic.

These sorts of bugs usually aren’t caught by load testing either.
A load test runs for a specified period of time and then quits.
Load-testing vendors charge large dollars per hour, so hobody
asks them to keep the load running for a week at a time. Your
development team probably shares the corporate network, so
you cannot disrupt such vital corporate activities as email and
web browsing for days at a time.

So, how do you find these kinds of bugs? The only way you can
catch them before they bite you in production is to run your
own longevity tests. If you can, set aside a developer machine.
Have it run JMeter, Marathon, or some other load-testing tool.
Don’t hit the system hard; just keep driving requests all the time.
(Also, be sure to have the scripts slack for a few hours a day to
simulate the slow period during the middle of the night. That will
catch connection pool and firewall timeouts.)

+.  Once you skip commercials and the opening and closing credits: about 21
minutes.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=38

CRACKS PROPAGATE <« 39

7 A

Extending Your Life Span (cont.)

Sometimes the economics don‘t justify setting up a complete
environment. If not, at least try to test important parts while
stubbing out the rest. It’s sfill better than nothing.

If all else fails, production becomes your longevity testing envi-
ronment by default. You'll definitely find the bugs there, but it’s
not a recipe for a happy lifestyle.

between a complex system on the verge of failure and a steel plate with
a microscopic crack in the metal. Under stress, that crack can begin
to propagate, faster and faster. Eventually, the crack will propagate
faster than the speed of sound, and the metal breaks with an explosive
sound. The original trigger and the way the crack spreads to the rest
of the system, together with the result of the damage, are collectively
called a failure mode.

No matter what, your system will have a variety of failure modes. Deny-
ing the inevitability of failures robs you of your power to control and
contain them. Once you accept that failures will happen, you have the
ability to design your system’s reaction to specific failures. Just as auto
engineers create crumple zones—areas designed to protect passengers
by failing first—you can create safe failure modes that contain the dam-
age and protect the rest of the system. This sort of self-protection deter-
mines the whole system’s resilience.

Chiles calls these protections crackstoppers. Like building crumple
zones into cars to absorb impacts and keep passengers safe, you can
decide what features of the system are indispensable and build in fail-
ure modes that keep cracks away from those features. If you do not
design your failure modes, then you will get whatever unpredictable—
and usually dangerous—ones happen to emerge.

3.3 Cracks Propagate

Let’s see how this applies to the grounded airline I investigated before.
The airline’s Core Facilities project had not designed its failure modes.
The crack started at the improper handling of the SQLException, but
it could have been stopped at many other points. Let’s look at some
examples, from low-level detail to high-level architecture.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=39

CRACKS PROPAGATE < 40

Because the pool was configured to block requesting threads when
no resources were available, it eventually tied up all request-handling
threads. (This happened independently in each application server
instance.) The pool could have been configured to create more connec-
tions if it was exhausted. It could also have been configured to block
callers for a limited time, instead of blocking forever when all connec-
tions were checked out. Either of these would have stopped the crack
from propagating.

At the next level up, a problem with one call in CF caused the calling
applications on other hosts to fail. Because CF exposed its services as
Enterprise JavaBeans (EJBs), it used RMI. By default, RMI calls will
never time out. In other words, the callers blocked waiting to read their
responses from CF’s EJBs. The first twenty callers to each instance
received exceptions: a SQLException wrapped in an InvocationTargetExcep-
tion wrapped in a RemoteException, to be precise. After that, the calls
started blocking.

The client could have been written to set a timeout on the RMI sockets.?
At a certain point in time, CF could also have decided to build an HTTP-
based web service instead of EJBs. Then, the client could set a timeout
on its HTTP requests.® The clients might also have written their calls so
the blocked threads could be jettisoned, instead of having the request-
handling thread make the external integration call. None of these were
done, so the crack propagated from CF to all systems that used CF.

At a still larger scale, the CF servers themselves could have been par-
titioned into more than one service group. That would keep a problem
within one of the service groups from taking down all users of CF. (In
this case, all service groups would have cracked in the same way, but
that would not always be the case.) This is another way of stopping
cracks from propagating into the rest of the enterprise.

Looking at even larger architecture issues, CF could have been built
using request/reply message queues. In that case, the caller would
know that a reply might never arrive. It would have to deal with
that case, as part of handling the protocol itself. Even more radi-
cally, the callers could be searching for flights by looking for entries

2. For example, by installing a socket factory that calls Socket.setSoTimeout() on all new
sockets it creates.

3. Unless it used java.net.URL and java.net.URLConnection, though. Until Java 5, it was
impossible to set a timeout on HTTP calls made through the standard Java library.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=40

CHAIN OF FAILURE <« 41

in a tuplespace that matched the search criteria. CF would keep the
tuplespace populated with flight records. The more tightly coupled the
architecture, the greater the chance that this coding error can propa-
gate. Conversely, the less coupled architectures act as shock absorbers,
diminishing the effects of this error instead of amplifying them.

Any of these approaches could have stopped the SQLException problem
from spreading to the rest of the airline. Sadly, the designers had not
considered the possibility of “cracks” when they created the shared ser-
vices.

3.4 Chain of Failure

Underneath every system outage, there is a chain of events like this.
One small thing leads to another, which leads to another. Looking at
the entire chain of failure after the fact, the failure seems inevitable.
If you tried to estimate the probability of that exact chain of events
occurring, it would look incredibly improbable. But, it looks improba-
ble only if you consider the probability of each event independently. A
coin has no memory; each toss has the same probability, independent
of previous tosses. The combination of events causing the failure is not
independent. A failure in one point or layer actually increases the prob-
ability of other failures. If the database gets slow, then the application
servers are more likely to run out of memory. Because the layers are
coupled, the events are not independent.

At each step in the chain of failure, the crack can be accelerated,
slowed, or stopped. High levels of complexity provide more directions
for the cracks to propagate in.

Tight coupling accelerates cracks. For instance, the tight coupling of
EJB calls allowed a resource exhaustion problem in CF to create larger
problems in its callers. Coupling the request-handling threads to the
external integration calls in those systems caused a remote problem to
turn into downtime.

One way to prepare for every possible failure is to look at every external
call, every I/0, every use of resources, and every expected outcome
and ask, “What are all the ways this can go wrong?” Think about the
different types of impulse and stress that can be applied:

e What if I can’t make the initial connection?
e What if it takes ten minutes to make the connection?


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=41

PATTERNS AND ANTIPATTERNS < 42

* What if I can make the connection and then it gets disconnected?

* What if I can make the connection and I just can’t get any response
from the other end?

e What if it takes two minutes to respond to my query?

¢ What if 10,000 requests come in at the same time?

* What if my disk is full when I try to log the error message about
the SQLException that happened because the network was bogged
down with a worm?

I'm getting tired already, and that’s just the beginning of everything that
can go wrong. So, the exhaustive brute-force approach is impractical for
anything but life-critical systems or Mars rovers. What if you actually
have to deliver in this decade? You need to look at some patterns that
let you create shock absorbers to relieve those stresses.

3.5 Paiterns and Antipatterns

I've dealt with hundreds of production failures. Each one was unique.
(They were mostly unique, anyway, since I try not to have the same
failure happen twice!) I can’t think of two incidents where the precise
chain of failure happened the same way: same triggers, same fracture,
same propagation. Over time, however, patterns of failure do emerge.
A certain brittleness along an axis, a tendency for this problem to
amplify that way. These are the stability antipatterns. Chapter 4, Sta-
bility Antipatterns, on page 44 deals with these patterns of failure.

If there are systematic patterns of failure, you might imagine that some
common solutions would apply. You would be correct. Chapter 5, Sta-
bility Patterns, on page 110 deals with design and architecture patterns
to defeat the antipatterns. These patterns cannot prevent cracks in the
system. Nothing can. There will always be some set of conditions that
can trigger a crack. These patterns stop cracks from propagating. They
help contain damage and preserve partial functionality instead of allow-
ing total crashes.

It should come as no surprise that these patterns and antipatterns
interact with each other. The antipatterns have a tendency to rein-
force each other. Like matching garlic, silver, and fire to their respective
movie monsters,* each of the patterns alleviate specific problems.

4. That would be vampires, werewolves, and Frankenstein’s monster.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=42

PATTERNS AND ANTIPATTERNS < 43

Scaling Effects -
SLA Inversion

mitigates

counters
Attacks of reduces impact Decoupling
Self-Denial P Middleware

lead to

counters
exacerbates
counters
Bulkheads Blocked Threads
Test Harness
leads to found
- - near finds problems in
Chain Reactions mutual
results from

aggravation Integration Points
counters violating

s
Steady State / 10295 _damage leads to
avoids J
counters
Slow Responses Cascading Failures

counters prevents

Circuit Breaker

leads to

Unbalanced
Capacities

counters
leads to

counters

Fail Fast

counters works with

can avoid

Handshaking

Unbounded
Result Sets

Figure 3.1: Interaction of Patterns and Antipatterns

Figure 3.1 maps the most important of these interactions. You'll start
now by looking at the common sources of failure: the antipatterns.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=43

Chapter 4

Once upon a time, application crashes were just about the most com-
mon type of bug, with operating system crashes a near second. I could
make snide remarks about how little has changed, but that would be
dishonest. Applications rarely crash these days, thanks in large part to
the wide adoption of Java, PHP, Ruby, and other interpreted languages.
Operating systems have generally gotten more stable and reliable due
to the hard work of many thousands of programmers. We used to think
of a hundred concurrent users as representing a large system; now
we think in the tens of thousands. Instead of application uptime in
the hours, we now look for months of continuous uptime. The breadth
of our applications’ reach has exploded, first as we integrate systems
within the enterprise and then again as we integrate across enterprises.

Of course, this also means bigger challenges. As we integrate the world,
tightly coupled systems are the rule rather than the exception. Big
systems serve more users by commanding more resources; but, in
many failure modes, big systems fail faster than small systems. The
size and the complexity of these systems push us to what Inviting Dis-
aster [ ] calls the technology frontier, where the twin specters of
highly interactive complexity and tight coupling conspire to turn rapidly
moving cracks into full-blown failures.

Highly interactive complexity arises when systems have enough mov-
ing parts and hidden, internal dependencies that most operators’ men-
tal models are either incomplete or just plain wrong. In The Design
of Everyday Things | ]. Don Norman describes the disconnect
between the users’ mental model and the implementation model that
can occur when the implementation is invisible and the surface appear-
ance is not obvious. He describes his experience with the two dials in
his refrigerator that appear to directly control the temperature in the



CHAPTER 4. STABILITY ANTIPATTERNS < 45

refrigeration section and the freezer section. Adjusting the dials under
that mental model resulted in frozen milk and thawed meat, because
the actual mechanism was controlling the proportion of chilled air sent
to each section. In a system exhibiting highly interactive complexity, the
operator’s instinctive actions will have results ranging from ineffective
to actively harmful. With the best of intentions, the operator can take
an action, based on his own mental model of how the system functions,
that triggers a completely unexpected linkage. Such linkages contribute
to problem inflation, turning a minor issue into a major incident. Hid-
den linkages in cooling monitoring and control systems are partly to
blame for the Three Mile Island reactor incident.! These hidden link-
ages often appear obvious during the post-mortem analysis but are in
fact devilishly difficult to anticipate.

Tight coupling allows cracks in one part of the system to propagate
themselves—or multiply themselves—across layer or system bound-
aries. In the physical world, you can think of a catwalk held up by four
bolts threaded through a metal plate. The catwalk, the nuts and bolts,
the plate, and the ceiling are obviously tightly coupled. (In fact, that’s
sort of the point of the bolts!) The failure of a single bolt will radically
increase the stress on the other bolts, the ceiling, and the catwalk. This
increased stress makes it extremely likely that another component in
the system will fail—probably the catwalk itself. In your systems, tight
coupling can appear within application code, in calls between systems,
or anyplace a resource has multiple consumers.

In this chapter, we’ll look at eleven stability antipatterns I've observed.
These are common forces that I've seen at the root cause of more than
one system failure. Some of these are like the guy who goes into the
doctor and says, “Doc, whenever I do this, it hurts,” and hits himself in
the head with a hammer. Quoth the doctor, “Don’t do that!” Each of the
antipatterns will create, accelerate, or multiply cracks in the system.
These bad behaviors are to be avoided.

In all cases, however, the main point to
remember is that things will break. Don’t pre- Antipatterns create,
tend you can eliminate every possible source of accelerate, or multiply
failure, because either nature or nurture will crgcks in the system.
create bigger failures to wreck your systems.
Assume the worst, because cracks happen.

1. Inviting Disaster | ], pages 37-63.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=45

INTEGRATION POINTS < 46

Integration Points

I haven’'t seen a “pure-website” project since about 1996. If your
projects are like mine, they have probably been enterprise integration
projects that happen to have an HTML-based front end. Indeed, despite
lip service, companies didn’t really get off the starting line for enter-
prise integration until they needed to create dynamic websites. Those
projects were the impetus that finally forced many companies to inte-
grate systems that have never played well together. Look at the sys-
tem context diagram from any of these projects, and you’ll see the site
squatting in the center of the diagram with lines stretching in every
direction. Feeds come in from inventory, pricing, content management,
CRM, ERP, MRP, SAP, WAP, BAP, BPO, R2D2, and C3PO0. Data extracts
fly off toward CRM, fulfillment, booking, authorization, fraud checking,
address normalization, scheduling, shipping, and so on. Reports are
generated (one hopes) showing business statistics to business people,
technical statistics to technical people, and management statistics to
management.

Integration points are the number-one killer of systems. Every single
one of those feeds presents a stability risk. Every socket, process, pipe,
or remote procedure call can and will hang. Even database calls can
hang, in ways obvious and subtle. Every feed into the system can hang
it, crash it, or generate other impulses at the worst possible time. You’'ll
look at some of the specific ways these integration points can go bad
and what you can do about them.

Socket-Based Protocols

Many higher-level integration protocols run over sockets. In fact, pretty
much everything except named pipes and shared-memory IPC is socket
based. The higher protocols introduce their own failure modes, but they
are all susceptible to failures at the socket layer.

The simplest failure mode occurs when the remote system refuses con-
nections. The calling system must deal with connection failures. Usu-
ally, this is not much of a problem, since everything from C to Java
to Ruby has clear ways to indicate a connection failure—either a -1
return value in C or an exception in Java, C#, and Ruby. Because the
API makes it clear that connections don’t always work, programmers
deal with that case.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=46

INTEGRATION POINTS < 47

How Many Feeds?

| was helping launch a replatform/rearchitecture project for a
huge retailer. It came fime to identify all the production firewall
rules so we could open holes in the firewall to allow authorized
connections to the production system. We had already gone
through the usual suspects: the web servers’ connections to
the application server, the application server to the database
server, the cluster manager to the cluster nodes, and so on.

When it came time to add rules for the feeds in and out of
the production environment, we were pointed at the project
manager for enterprise integration. That's right, the site rebuild
project had its own project manager dedicated to integration.
That was our second clue that this was not going to be a simple
task. (The first clue was that nobody else could tell us what all
the feeds were.) The PM understood exactly what we needed.
He pulled up his database of integrations and ran a custom
report to give us the connection specifics.

On one hand, | was impressed that he had a fully pop-
ulated database to keep track of the various feeds (syn-
chronous/asynchronous, batch or tfrickle feed, source system,
frequency, volume, cross-reference numbers, business stake-
holder, and so on). On the other hand, however, | was dismayed
that he needed a database to keep track of it!

It probably comes as no surprise, then, that the site was
plagued with stability problems when it launched. It was like
having a newborn baby in the house; | was awakened up every
night at 3 a.m. for the latest crash or crisis. We kept document-
ing the spots where the app crashed and feeding them back
to the maintenance team for correction. | never kept a tally, but
I’'m sure that every single synchronous integration point caused
at least one outage.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=47

INTEGRATION POINTS < 48

Local Server Remote Server

Calling Remote

Application Application

Figure 4.1: Simplest Topology: Direct Connection
I

One wrinkle to watch out for, though, is that it can take a long time to
discover that you can’t connect. Hang on for a quick dip into the details
of TCP/IP networking.

Every architecture diagram ever drawn has boxes and arrows, like the
ones in Figure 4.1. Like a lot of other things we work with, this arrow
is an abstraction for a network connection. Really, though, that means
it’s an abstraction for an abstraction. A network “connection” is a logi-
cal construct—an abstraction—in its own right. All you will ever see on
the network itself are packets.? This is the Internet Protocol (IP) part
of TCP/IP. Transmission Control Protocol (TCP) is an agreement about
how to make something that looks like a continuous connection out of
discrete packets. Figure 4.2, on the next page shows the “three-way
handshake” that TCP defines to open a connection. The connection
starts when the caller (the client in this scenario, even though it is
itself a server for other applications) sends a SYN packet to a port on
the remote server. If nobody is listening to that port, the remote server
immediately sends back a TCP “reset” packet to indicate that nobody’s
home. The calling application then gets an exception or a bad return
value. All this happens very quickly, in less than ten milliseconds if
both machines are plugged into the same switch.

If there is an application listening to the destination port, then the
remote server sends back a SYN/ACK packet, indicating its willingness
to accept the connection. The caller gets the SYN/ACK and sends back

2. Of course, a “packet” is an abstraction, too. On the wire, it’s just electrons. Between
electrons and a TCP connection, there are many layers of abstraction. Fortunately, we
get to choose whichever level of abstraction is useful at any given point in time.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=48

INTEGRATION POINTS < 49

Local Server Remote Server
time
1. SYN
- - -
Calling .2 S.YN/éCK. Remote
Application 3. ACK Application

Figure 4.2: Three-Way Handshake

its own ACK. These three packets have now established the “connec-
tion,” and the applications can send data back and forth.3

Suppose, though, that the remote application is listening to the port
but is absolutely hammered with connection requests, until it cannot
service the incoming connections. The port itself has a listen queue that
defines how many pending connections (SYN sent, but no SYN/ACK
replied) are allowed by the network stack. Once that listen queue is full,
further connection attempts are refused quickly. The listen queue is
the worst place to be. While the socket is in that partially formed state,
whichever thread called open() is blocked inside the OS kernel until
the remote application finally gets around to accepting the connection
or until the connection attempt times out. Connection timeouts vary
from one operating system to another, but they are usually measured
in minutes! The calling application’s thread could be blocked waiting for
the remote server to respond for ten minutes!

Nearly the same thing happens when the caller can connect and send
its request but the server takes a long time to read the request and send
a response. The read() call will just block until the server gets around
to responding. In Java, the default is to block forever. You have to call
Socket.setSoTimeout() if you want to break out of the blocking call. In that
case, be prepared for an IOException.

3. TCP also defines the “simultaneous open” handshake, in which both machines send
SYN packets to each other before a SYN/ACK. This is relatively rare in systems that are
based on client/server interactions.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=49

INTEGRATION PoINTS < 50

Networks failures can hit you in two ways: fast or slow. Fast network
failures cause immediate exceptions in the calling code. “Connection
refused” is a very fast failure; it takes a few milliseconds to come back
to the caller. Slow failures, such as a dropped ACK, let threads block for
minutes before throwing exceptions. The blocked thread can’t process
other transactions, so overall capacity is reduced. If all threads end
up getting blocked, then for all practical purposes, the server is down.
Clearly, a slow response is a lot worse than no response.

The 5 a.m. Problem

One of the sites I launched developed this very nasty pattern of hang-
ing completely at almost exactly 5 a.m. every day. This was running
on around thirty different instances, so something was happening to
make all thirty different application server instances hang within a five-
minute window (the resolution of our URL pinger). Restarting the appli-
cation servers always cleared it up, so there was some transient effect
that tipped the site over at that time. Unfortunately, that was just when
traffic started to ramp up for the day. From midnight to 5 a.m., there
were only about 100 transactions per hour of interest, but the num-
bers ramped up quickly once the East Coast started to come online
(one hour ahead of us Central Time folks). Restarting all the applica-
tion servers just as people started to hit the site in earnest was what
you'd call a suboptimal approach.

On the third day this occurred, I took thread dumps from one of the
afflicted application servers. The instance was up and running, but all
request-handling threads were blocked inside the Oracle JDBC library,
specifically inside of OCI calls. (We were using the thick-client driver for
its superior failover features.) In fact, once I eliminated the threads that
were just blocked trying to enter a synchronized method, it looked as if
the active threads were all in low-level socket read or write calls.

The next step was tcpdump and ethereal.* The odd thing was how little
that showed. A handful of packets were being sent from the application
servers to the database servers, but with no replies. Also nothing was
coming from the database to the application servers. Yet, monitoring
showed that the database was alive and healthy. There were no blocking
locks, the run queue was at zero, and the I/O rates were trivial.

4. Ethereal has since been renamed Wireshark.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=50

INTEGRATION POINTS <« 51

( )

Packet Capture

Abstractions provide great conciseness of expression. We can
go much faster when we talk about fetching a document from
a URL than if we have to discuss the tedious details of con-
nection setup, packet framing, acknowledgments, receive win-
dows, and so on. With every abstraction, however, there comes
a time when you must peel the onion, shed some tears, and
see what’s really going on—usually when something is going
wrong. Whether for problem diagnosis or performance tuning,
packet capture tools are the only way to understand what is
really happening on the network.

tcpdump is @ common UNIX tool for capturing packets from a
network interface. Running it in “promiscuous” mode instructs
the network interface card (NIC) to receive all packets that
cross its wire—even those addressed to other computers. (In a
data center, the NIC is almost certainly connected to a switch
port that is assigned to a virtual LAN (VLAN). In that case, the
switch guarantees that the NIC receives packets bound for
addresses only in that VLAN. This is an important security mea-
sure, because it prevents bad guys from doing exactly what
we're doing: sniffing the wire to look for “interesting” bits of infor-
mation.) Wireshark* is a combination sniffer and protocol ana-
lyzer. It can sniff packets on the wire, as tcpdump does. Wire-
shark goes farther, though, by unpacking the packets for us.
Through its history, Wireshark has experienced numerous secu-
rity flaws—some frivial, some serious. At one point, a specially
crafted packet sent across the wire (by a piece of malware on
a compromised desktop machine, for example) could trigger
a buffer overflow and execute arbitrary code of the attacker’s
choice. Since Wireshark must run as root to put the NIC info
promiscuous mode—as any packet capture ufility must—that
exploit allowed the attacker to gain root access on a network
administrator’s machine.

Beyond the security issues, Wireshark is a big, heavy GUI pro-
gram. On UNIX, it requires a bunch of X libraries (which might
not even be installed on a headless system). On any host, it
takes up a lot of RAM and CPU cycles to parse and display the
packets. That is a burden that should not be on the production
servers. For these reasons, it is best to capture packets nonin-
teractively using tcpdump and then move the capture file to a
nonproduction environment for analysis.

*. http://www.wireshark.org

L J



http://www.wireshark.org
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=51

INTEGRATION POINTS < 52

Packet Capture (cont.)

The screenshot below shows Ethereal analyzing a capture from
my home network. The first packet shows an address routing
protocol (ARP) request. This happens to be a question from
my wireless bridge to my cable modem. The next packet was
a surprise: an HTTP query to Google, asking for a URL called
/safebrowsing/lookup with some query parameters. The next two
packets show a DNS query and response, for the “michaelny-
gard.dyndns.org” hosthname. Packets five, six, and seven are
the three-phase handshake for a TCP connection sefup. We
can frace the entire conversation between my web browser
and server. Note that the pane below the packet trace shows
the layers of encapsulation that the TCP/IP stack created
around the HTTP request in the second packet. The outermost
frame is an Ethernet packet. The Ethernet packet contains an
IP packet, which in turn contains a TCP packet. Finally, the pay-
load of the TCP packet is an HTTP request. The exact bytes of
the entire packet appear in the third pane.

Ble Edt Mew Go Capture Anshze Statistics Help

By ERx@d e-2oF L EE QR @#¥EX B

] rilter: w | 4 Expression... Yo Clear o Apply

Na. . Tirewe Source Destination Pratacel info =
1 0. 000000 Cisco-L1_06:2b:87 Broadcast APP who has 192,160.1.17 Tell 152.160.1.2

' GET_/saf ebrowsing/lookup?sourceidsfirefox- antiphi shaf

3 3319537 192, 168.1.698 24,159, 222.40 DS Standard query A michaslnygard.dyndns.org
4 3.356678  24.158.222.40 182.168.1.58 DHS. Standard query response A G8.117.46. 209
5 3.361154 192.168.1.98 68.117.46. 209 TP 56776 = 8818 [SYN] Seq=0 Len=0 MSS=1460 TSV=83308526
6 3,265003  68.117.46.200 162,168.1.58 TCP 8818 = 56776 [SYN, ACK] Seq=0 Ack=1 Win=S752 Len=0 M5
7 3.365131  192,168,1.98 68,117, 46, 209 TCP 56776 > 8818 [AK] Seqsl Acksl Win=5840 Lens=0 TSV=833
B 3365475 192.168.1.98 6R. 117, 46, 209 =] [TCP segment of a reassembled POU]
9 3.365210 68.117.46.200 192.160.1.50 TCP 8818 = S6776 [ACK] Sege=l Ack=44€ Win=S@54 Len=0 TSV=2
10 3.372435 65.249.081,147 152.160.1.58 TCR http = 37023 [AK] Seq=0 Ack=985 Win=7225 Len=0
11 2378224 68.117.48.209 192, 168, 1, G =] [TcP segment of 4 oled PoU]

5 Ack=1449 Winsg736 LensD TS

12 3.376343 192, 168.1.98 8. 117. 46, 208 (=] SE776 = BRIE [ACK]

14 3.377065 68.117.46.200 192.168.1.98 TR [TOP segment of a reassemblad POU]

15 3.377053 192.168.1.98 68,117,468, 200 TR SE77E = BO18 [ACK] Seq=448 Ack=285T Win=11832 Len=0 T
16 3.379142  68.117.465.209 192,168, 1.58 =2 [TcP segment of a reassembled PoU)

17 3.379166 192, 168.1.98 B8, 117, 465, 208 (=2} SE776 = BRIE [ACK] Seqeads Ack=434% Wins=14538 Lens0 T
18 3.375030 66.240.01.147 192.160.1.59 HITR HITR/1.1 200 O

19 3.375241 192.168.1.98 66,249,081, 147 TR 37023 = http [ACK] Seq=085 Ack=12% Win=B576 Len=0 -

b Frame 2 (1010 bytes on wire, 1019 bytes captured)

b Ethermet II, Sre: Intel_ac:Sa:fd (00:07:e9:ac:Sa:fd), Dst: Cisco-Li_40:86:ea [00:0f:66:40:06:ea)

b Internet Protocol, Sre: 192.168.1.98 (192.168.1.98), Dst: 65.249.81.147 (65.249.81.147)

¢ Transmission Control Protecol, Src Port: 37023 (37023), Dst Port: http (80}, Seq:; 0, Ack; O, Len; 565
b Hypertext Transfer Protocol

0000 00 Of 65 45 B85 ea 00 07 €9 ac Sa fd 08 00 45 00
0010 03 ad Gb 24 40 OO 40 05
o020 51 93 50 sf oo S0 1c f5 B 5E 2
0030 1d 50 2f a1 00 00 47 45 S

0040 72 &6f 77 73 68 6a 67 of
ooso &f 7S 72 63 65 65 84 3d
0060 61 Ga 74 65 70 68 65 73 63 25 66 65 61 7
(0070 &5 7 52 61 6o Gb 26 63 6¢ 69
ooa0 6o 59 65 68 74 2d 61 75

Fila: *mpjathery X X XMPXYCk® 108 KB 00:00:17 B 248 D: 248 M: 0 Drops: 0

| strongly recommend keeping a copy of The TCP/IP
Guide ( ) or TCP/IP lllustrated ( ) open beside you for
this type of activity!



/safebrowsing/lookup
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=52

INTEGRATION PoINTS < 53

By this time, we had to restart the application servers. Our first priority
is restoring service. We do data collection when we can, but not at the
risk of breaking an SLA. Any deeper investigation would have to wait service-evel agreement:
until it happened again. None of us doubted that it would happen again. { raual obigation

to provide a service to a
measurable, quantitative

Sure enough, the pattern repeated itself the next morning. Application level Financial penaities
servers locked up tight as a drum, with the threads inside the JDBC Zﬁiimggy fhe vitation
driver. This time, I was able to look at traffic on the databases’ network.
Zilch. Nothing at all. The utter absence of traffic on that side of the
firewall was like Sherlock Holmes’ dog that didn’t bark in the night—
the absence of activity was the biggest clue. I had a hypothesis. Quick
decompilation of the application server’s resource pool class confirmed

that my hypothesis was plausible.

I said before that socket connections are an abstraction. They exist
only as objects in the memory of the computers at the endpoints. Once
established, a TCP connection can exist for days without a single packet
being sent by either side.? As long as both computers have that socket
state in memory, the “connection” is still valid. Routes can change, and
physical links can be severed and reconnected. It doesn’t matter; the
“connection” persists as long as the two computers at the endpoints
think it does.

There was a time when that all worked beautifully well. These days,
a bunch of paranoid little bastions have broken the philosophy and
implementation of the whole Net. I'm talking about firewalls, of course.

A firewall is nothing but a specialized router. It routes packets from
one set of physical ports to another. Inside each firewall, a set of access
control lists define the rules about which connections it will allow. The
rules say such things as “connections originating from 192.0.2.0/24 to
192.168.1.199 port 80 are allowed.” When the firewall sees an incom-
ing SYN packet, it checks it against its rule base. The packet might be
allowed (routed to the destination network), rejected (TCP reset packet
sent back to origin), or ignored (dropped on the floor with no response at
all). If the connection is allowed, then the firewall makes an entry in its
own internal table that says something like “192.0.2.98:32770 is con-
nected to 192.168.1.199:80.” Then all future packets, in either direc-
tion, that match the endpoints of the connection are routed between
the firewall’s networks.

5. Assuming you set suitably perverse timeouts in the kernel.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=53

INTEGRATION POINTS < 54

Local Firewall Remote
Server 1. SYN 5 SYN Server time
--------- »| check ruleset LR
4. SYN/ACK]
< ---------
5. ACK 6. ACK
--------- > R
8. data
--------- = R
--------- = R
10. data/ACK 9. data/ACK|
€ --------- € ---------
1 hour idle time expunge cxn idle time
11. data
--------- > drop packet
on floor

Figure 4.3: Idle Connection Dropped by Firewall

So far, so good. How is this related to my 5 a.m. wake-up calls?

The key is that table of established connections inside the firewall. It’s
finite. Therefore, it does not allow infinite duration connections, even
though TCP itself does allow them. Along with the endpoints of the
connection, the firewall also keeps a “last packet” time. If too much
time elapses without a packet on a connection, the firewall assumes
that the endpoints are dead or gone. It just drops the connection from
its table, as shown in Figure 4.3. But, TCP was never designed for that
kind of intelligent device in the middle of a connection. There’s no way
for a third party to tell the endpoints that their connection is being torn
down. The endpoints assume their connection is valid for an indefinite
length of time, even if no packets are crossing the wire.

After that point, any attempt to read or write from the socket on either
end does not result in a TCP reset or an error due to a half-open socket.
Instead, the TCP/IP stack sends the packet, waits for an ACK, doesn’t
get one, and retransmits. The faithful stack tries and tries to reestab-
lish contact, and that firewall just keeps dropping the packets on the
floor, without so much as an “ICMP destination unreachable” message.
(That could let bad guys probe for active connections by spoofing source
addresses.) My Linux system, running on a 2.6 series kernel, has its
tcp_retries2 set to the default value of 15, which results in a twenty-


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=54

INTEGRATION PoINTS < 55

minute timeout before the TCP/IP stack informs the socket library that
the connection is broken. The HP-UX servers we were using at the time
had a thirty-minute timeout. That application’s one-line call to write to
a socket could block for thirty minutes! The situation for reading from
the socket is even worse. It could block forever.

When I decompiled the resource pool class, I saw that it used a last-in,
first-out strategy. During the slow overnight times, traffic volume was
light enough that one single database connection would get checked out
of the pool, used, and checked back in. Then the next request would
get the same connection, leaving the thirty-nine others to sit idle until
traffic started to ramp up. They were idle well over the one-hour idle
connection timeout configured into the firewall.

Once traffic started to ramp up, those thirty-nine connections per appli-
cation server would get locked up immediately. Even if the one connec-
tion was still being used to serve pages, sooner or later it would be
checked out by a thread that ended up blocked on a connection from
one of the other pools. Then the one good connection would be held by
a blocked thread. Total site hang.

Once we understood all the links in that chain of failure, we had to find
a solution. The resource pool has the ability to test JDBC connections
for validity before checking them out. It checked validity by executing a
SQL query like SELECT SYSDATE FROM DUAL. Well, that would just
make the request-handling thread hang anyway. We could also have
the pool keep track of the idle time of the JDBC connection and discard
any that were older than one hour. Unfortunately, that involves sending
a packet to the database server to tell it that the session is being torn
down. Hang.

We were starting to look at some really hairy complexities, such as
creating a “reaper” thread to find connections that were close to getting
too old and tearing them down before they timed out. Fortunately, a
sharp DBA recalled just the thing. Oracle has a feature called dead
connection detection that you can enable to discover when clients have
crashed. When enabled, the database server sends a ping packet to
the client at some periodic interval. If the client responds, then the
database knows it is still alive. If the client fails to respond after a few
retries, the database server assumes the client has crashed and frees
up all the resources held by that connection.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=55

INTEGRATION POINTS < 56

We weren’t that worried about the client crashing, but the ping packet
itself would be enough to reset the firewall’s “last packet” time for the
connection, keeping the connection alive. Dead connection detection
kept the connection alive, which let me sleep through the night.

Next, you’ll look at problems with HTTP-based protocols, including web
services.

HTTP Protocols

Service-oriented architectures are a hot topic these days, certainly if
you listen to application server vendors. One reason to pursue SOA
is the renewed hope of getting the reusability that RPC, OOP, CORBA,
and EJB have not delivered on. Another commonly cited reason is more
efficient use of data center resources by providing shared hardware for
commonly used services. Other organizations desire the flexibility and
nimbleness that SOA promises.

Whether based on the WS-I family of protocols, SOAP, XML-RPC, or
REST, the common feature of service-oriented architecture is HTTP.®
All of these ultimately involve shipping some chunk of XML as an HTTP
request and waiting for an HTTP response.

Of course, all HTTP-based protocols use sockets so are vulnerable to
all of the problems described previously. HTTP adds its own flavor
of issue, mainly centered around the client library. Any Java devel-
oper has a built-in HTTP client available through the jova.net.URL and
java.net.URLConnection classes.
tnel  URL url = new URL("http://www.google.com/search?q=foo");

- URLConnection conn = url.openConnection();
HttpURLConnection httpConnection = (HttpURLConnection)conn;

- httpConnection.setRequestProperty("User-Agent",

5 "Mozilla/5.0 (Macintosh; U; PPC Mac 0S X Mach-0; en-US; rv:1.8.0.1) " +

"Gecko/20060111 Firefox/1.5.0.1");
InputStream response = httpConnection.getInputStream();

Java’s highly generic URL class tries to hide the differences between
HTTP, HTTPS, FTP, and other protocols. In line 1 we construct a query
URL to hit Google. Opening the connection on line 2 doesn’t actually
send the request; it just acts as a factory method to create the concrete
subclass of URLConnection that does the real work. We have to downcast

6. Technically, SOAP and the WS-I protocols allow for other message transports, but, in
practice, only TIBCO and IBM MQ devotees are using them. More people should be using
asynchronous message transport.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=56

INTEGRATION POINTS < 57

the returned URLConnection to that specific class to call the setRequest-
Property() on line 4.7 Finally, in line 7, the HttpURLConnection actually
opens a socket to the remote host, sends the HTTP request, waits for
and parses the HTTP response, and returns an InputStream on the bytes
of the response body.

There’s a lot going on in line 7. It’s one big blocking call, with no chance
to set any parameters. If you wanted to set the socket timeout by call-
ing Socket.setSoTimeout(), for example, you'd have to install a Socketim-
plFactory that would affect all sockets, not just the ones for this HTTP
interaction. Also, notice that there’s no timeout on the getinputStream()
call. The remote system could dribble back one byte per second for the
next ten years, and your thread would still be stuck on that one call.

A cynical system would never put up with such an unprotected call.
Fortunately, other available HTTP clients allow much more control.
For example, the Apache Jakarta Common’s HttpClient package offers
granular control over both the connection and read timeouts, not to
mention request headers, response headers, and cookie policies.

Vendor API Libraries

It would be nice to think that enterprise software vendors must have
hardened their software against bugs, just because they've sold it and
deployed it for lots of clients. That might be true of the server software
they sell, but it’s rarely true for their client libraries. Usually, software
vendors provide client API libraries that have a lot of problems and often
have hidden stability risks. These libraries are just code, coming from
regular developers. They have all the variability in quality, style, and
safety that you see from any other random sampling of code.

The worst part about these libraries is that you have so little control
over them. About the best thing you can do is decompile the code, find
issues, and report them as bugs. If you have enough clout to apply pres-
sure to the vendor, then you might be able to get a bug fix to their client
library, assuming, of course, that you are on the latest version of their
software. In the past, I have been known to fix their bugs and recompile
my own version for temporary use while waiting for the patched version
from the vendor.

7. We have to lie about our user agent, or else Google will return a 403 “Forbidden”
response!


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=57

INTEGRATION PoINTS <« 58

The prime stability killer with vendor API libraries is all about blocking.
Whether it’s an internal resource pool, socket read calls, HTTP con-
nections, or just plain old Java serialization, vendor API libraries are
peppered with unsafe coding practices.

Here’s a classic example. Whenever you have threads that need to syn-
chronize on multiple resources, you have the potential for deadlock.
Thread 1 holds lock A and needs lock B, while thread 2 has lock B and
needs lock A. The classic recipe for avoiding this deadlock is to make
sure you always acquire the locks in the same order and release them in
the reverse order. Of course, this helps only if you know that the thread
will be acquiring both locks and you can control the order in which they
are acquired. Let’s take an example in Java. This illustration could be
from some kind of message-oriented middleware library:

Download code/stability_anti_patterns/UserCallback.java

public interface UserCallback {
public void messageReceived(Message msg);

}

Download code/stability_anti_patterns/Connection.java

public interface Connection {
public void registerCallback(UserCallback callback);

public void send(Message msg);

}

I'm sure this looks quite familiar. Is it safe? No idea. Without knowing
what thread messageReceived() gets called on, you cannot be sure what
monitors the thread will be holding. It could have a dozen synchronized
methods on the stack already. Deadlock minefield.

In fact, even though the UserCallback interface does not declare mes-
sageReceived() as synchronized (you can’t declare an interface method
as synchronized), the implementation might make it synchronized.
Depending on the threading model inside the client library and how
long your callback method takes, synchronizing the callback method
could block threads inside the client library. Like a plugged drain, those
blocked threads can cause threads calling send() to block. Odds are that
means request-handling threads will be tied up. As always, once all the
request-handling threads are blocked, your application might as well
be down.


http://media.pragprog.com/titles/mnee/code/code/stability_anti_patterns/UserCallback.java
http://media.pragprog.com/titles/mnee/code/code/stability_anti_patterns/Connection.java
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=58

INTEGRATION POINTS < 59

Countering Integration Point Problems

A stand-alone system that doesn’t integrate with anything is rare, not
to mention almost useless. What can you do to make integration points
safer? The most effective patterns to combat integration point failures
are Circuit Breaker and Decoupling Middleware.

Testing helps, too. Cynical software should
handle violations of form and function, such Combat integration

as badly formed headers or abruptly closed point failures with the
connections. To make sure your software is Cjrcuit Breaker and
cynical enough, you should make a test har- Decoupling Middleware
ness—a simulator that provides controllable
behavior—for each integration test. Setting the
test harness to spit back canned responses facilitates functional test-
ing. It also provides isolation from the target system when you are test-
ing. Finally, each such test harness should also allow you to simulate
various kinds of system and network failure.

patterns.

This test harness will immediately help with functional testing. To test
for stability, you also need to flip all the switches on the harness while
the system is under considerable load. This load can come from a
bunch of workstations running JMeter or Marathon, but it definitely
requires much more than a handful of testers clicking around on their
desktops.

B=5F Remember This

Beware this necessary evil
Every integration point will eventually fail in some way, and you
need to be prepared for that failure.

Prepare for the many forms of failure
Integration point failures take several forms, ranging from vari-
ous network errors to semantic errors. You will not get nice error
responses delivered through the defined protocol; instead, you’ll
see some kind of protocol violation, slow response, or outright
hang.

Know when to open up abstractions
Debugging integration point failures usually requires peeling back
a layer of abstraction. Failures are often difficult to debug at the
application layer, because most of them violate the high-level pro-
tocols. Packet sniffers and other network diagnostics can help.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=59

INTEGRATION PoINTS < 60

Failures propagate quickly
Failure in a remote system quickly becomes your problem, usually
as a cascading failure when your code isn’t defensive enough.

Apply patterns to avert Integration Points problems
Defensive programming via Circuit Breaker, Timeouts, Decoupling
Middleware, and Handshaking will all help you avoid the dangers
of Integration Points.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=60

CHAIN REAcTIONS < 61

4.2 Chain Reactions

In Section 8.1, Defining Capacity, on page 161, I'll talk a lot about the
M two main flavors of scalability: horizontal and vertical scaling. Hori-
zontal scaling refers to adding capacity by adding servers. This is the
Google and Amazon approach. A web farm is an example of horizontal
scaling—each server adds nearly the same amount of capacity as the
previous server. The alternative, vertical scaling, means building bigger
and bigger servers: replacing x86 pizza boxes with four-way, eight-way,
and then thirty-two-way servers. This is the approach Oracle would
love to see you use. Each type of scaling works best under different
circumstances.

If your system scales horizontally, then you will have load-balanced
farms or clusters where each server runs the same applications. The
multiplicity of machines provides you with fault tolerance through
redundancy. A single machine or process can completely bonk while
the remainder continues serving transactions.

Still, even though horizontal clusters are not susceptible to single

points of failure (except in the case of attacks of self-denial, see Antipat- singie point of aiture
tern 4.6, Attacks of Self-Denial, on page 88), they can exhibit a load- . s e
related failure mode. When one node in a load-balanced group fails, ;’l’;ec’zrr:;;;’;ﬁll’jf:gfs;”
the other nodes must pick up the slack. For example, in the eight- targer system. For

example, a server with

server farm shown in Figure 4.4, on the next page, each node handles oy one power supply
12.5% of the total load. and a network switch

with no redundancy are
. . . . . both SPOFs.
After one server pops off, you have the distribution shown in Figure 4.5,

on page 64. Each of the remaining seven servers must handle about
14.3% of the total load. Even though each server has to take only 1.8%
more of the total workload, that server’s load increases by about 15%.
In the degenerate case of a failure in a two-node cluster, the survivor’s
workload doubles. It has its original load (50% of the total) plus the
dead node’s load (50% of the total).

If the first server failed because of some load-related condition, such
as a memory leak or intermittent race condition, the surviving nodes
become more likely to fail. With each additional server that goes dark,
the remaining stalwarts get more and more burdened and therefore are
more and more likely to also go dark.

A chain reaction occurs when there is some defect in an application—
usually a resource leak or a load-related crash. We're already talking
about a homogeneous layer, so that defect is going to be in each of the
servers. That means the only way you can eliminate the chain reaction


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=61

CHAIN REACTIONS < 62
@

A\

Load Balancer /
Cluster Manager
A7 / \ A
Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7 Server 8
12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%

Figure 4.4: Eight-Way Horizontal Farm

is to fix the underlying defect. Splitting a layer into multiple pools—
as in the Bulkhead pattern—can sometimes help by splitting a single
chain reaction into two separate chain reactions that occur at different
rates.

What effect could a chain reaction have on the rest of the system? Well,
for one thing, a chain reaction failure in one layer can easily lead to a
cascading failure in a calling layer.

Chain reactions are sometimes caused by blocked threads. This hap-
pens when all the request-handling threads in an application get
blocked and that application stops responding. Incoming requests will
then get distributed out to the applications on other servers in the same
layer, increasing their chance of failure.

B3¢ Remember This

One server down jeopardizes the rest
A chain reaction happens because the death of one server makes
the others pick up the slack. The increased load makes them more
likely to fail. A chain reaction will quickly bring an entire layer
down. Other layers that depend on it must protect themselves, or
they will go down in a cascading failure.

Hunt for resource leaks
Most of the time, a chain reaction happens when your applica-
tion has a memory leak. As one server runs out of memory and
goes down, the other servers pick up the dead one’s burden. The
increased traffic means they leak memory faster.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=62

CHAIN REACTIONS < 63

Searching...

| was dealing with a retailer’s primary online brand. It has a
huge catalog—half a million SKUs in 100 different categories.
For its site, search isnt just useful; it's necessary. To handle all
the customers during the holidays, the retailer was running a
dozen search engines sitting behind a hardware load balancer.
The application servers were configured to connect to a virtual
IP address* instead of specific search engines. The load bal-
ancer then distributed the application servers’ queries out to
the search engines. It also performed health checks to discover
which servers were dlive and responsive so it could make sure
to send queries only to search engines that were alive.

Those health checks turned out to be useful. The search engine
had some bug that caused a memory leak. Under regular traf-
fic (not a holiday season), the search engines would start to
go dark right around noon. Because each engine had been
taking the same proportion of load throughout the morning,
they would all crash at about the same time. As each search
engine went dark, the load balancer would send their share of
the queries to the remaining servers, causing them fo run out
of memory even faster. When | looked at a chart of their “last
response” time stamps, | could see an accelerating pattern of
crashes very clearly. The gap between the first crash and the
second would be five or six minutes. Between the second and
third would be just three or four minutes. The last two would go
down within seconds of each other.

This particular system also suffered from cascading failures and
blocked threads. Losing the last search server caused the entire
front end to lock up completely.

Until we got an effective patch from the vendor (which took
months), we had to follow a daily regime of restarts that brack-
eted the peak hours: 11 a.m., 4 p.m.,and 9 p.m.

x. See Section 11.3, Virtual IP Addresses, on page 223 for more about load
balancing and virtual IP addresses.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=63

CHAIN REACTIONS <« 64
@

A\

Load Balancer /
Cluster Manager

» / \ P T .
Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7 : Server 8 i
14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% : 0.00% i

Figure 4.5: Formerly an eight-way cluster

Hunt for obscure timing bugs
Obscure race conditions can also be triggered by traffic. Again,
if one server goes down to a deadlock, the increased load on the
others makes them more likely to hit the deadlock too.

Defend with Bulkheads
Partitioning servers, with Bulkheads, can prevent Chain Reactions
from taking out the entire service—though they won’'t help the
callers of whichever partition does go down. Use Circuit Breaker
on the calling side for that.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=64

CASCADING FAILURES < 65

4.3 Cascading Failures

The standard system architecture for enterprise systems, including
websites and web services, comprises a collection of functionally dis-
tinct farms or clusters that are interconnected through some form of
load balancing. We usually refer to the individual farms as layers—
for example, as in Figure 4.6, on the following page—even though they
might not really be a single stack.

In a service-oriented architecture, these look even less like traditional
layers and more like a directed, acyclic graph.

System failures start with a crack. That crack comes from some fun-
damental problem. Various mechanisms can retard or stop the crack,
which are the topics of the next chapter. Absent those mechanisms, the
crack can progress and even be amplified by some structural problems.
A cascading failure occurs when a crack in one layer triggers a crack in
a calling layer.

An obvious example is a database failure. If
an entire database cluster goes dark, then any A cascading failure
application that calls the database is going to occurs when problems
experience problems of some kind. If it handles in one layer cause

the problems badly, then the application layer problems in callers.
will start to fail. One system I saw would tear
down any JDBC connection that ever threw a SQLException. Each page
request would attempt to create a new connection, get a SQLException,
try to tear down the connection, get another SQLException, and then
vomit a stack trace all over the user.

Cascading failures require some mechanism to transmit the failure
from one layer to another. The failure “jumps the gap” when bad behav-
ior in the calling layer gets triggered by the failure condition in the
called layer.

Cascading failures often result from resource pools that get drained
because of a failure in a lower layer. Integration Points without Time-
outs is a surefire way to create Cascading Failures.

Just as integration points are the number-one source of cracks, cas-
cading failures are the number-one crack accelerator. Preventing cas-
cading failures is the very key to resilience. The most effective patterns
to combat cascading failures are Circuit Breaker and Timeouts.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=65

CASCADING FAILURES < 66

.com Web
Servers

Commerce

Application
Commerce Order Queues Inventory Service
Database

)
N/

N/

' '

Order
Management

Inventory

System Database

Figure 4.6: Layers Often Found in Commerce Systems

w Remember This
Stop cracks from jumping the gap
A cascading failure occurs when cracks jump from one system or
layer to another, usually because of insufficiently paranoid inte-
gration points. A cascading failure can also happen after a chain
reaction in a lower layer. Your system surely calls out to other
enterprise systems; make sure you can stay up when they go
down.

Scrutinize resource pools
A cascading failure often results from a resource pool, such as
a connection pool, that gets exhausted when none of its calls
return. The threads that get the connections block forever; all
other threads get blocked waiting for connections. Safe resource
pools always limit the time a thread can wait to check out a
resource.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=66

CASCADING FAILURES <« 67

7 A

H Ti
The layerjumping mechanism often takes the form of blocked
threads, but I've also seen the reverse—an overly aggressive
thread. In one case, the calling layer would get a quick error,
but, because of a historical precedent, it would assume that
the error was just an irreproducible, fransient error in the lower
layer. At some point, the lower layer was suffering from a race
condifion that would make it kick out an error once in a while
for no good reason. The upstream developer decided to retfry
the call when that happened. Unfortunately, the lower layer
didn’t provide enough detail to distinguish between the fran-
sient error and a more serious one. As a result, once the lower
layer started to have some real problems (losing packets from
the database because of a failed switch), the caller started to
pound it more and more. The more the lower layer whined and
cried, the more the upper layer yelled, *I'll give you something
to cry about!” and hammered it even harder. Ultimately, the
calling layer was using 100% of its CPU making calls to the lower
layer and logging failures in calls to the lower layer. A circuit
breaker would really have helped here.

Defend with Timeouts and Circuit Breaker
A cascading failure happens after something else has already gone
wrong. Circuit Breaker protects your system by avoiding calls out
to the troubled integration point. Using Timeouts ensures that you
can come back from a call out to the troubled one.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=67

Users <« 68

4.4 Users

Users are a terrible thing.® Systems would be infinitely more stable
without them. The human users of a system have this knack for cre-
ative destruction. When your system is teetering on the brink of disaster
like a car on a cliff in a movie, some user will be the seagull landing on
the hood. Down she goes! Human users have a gift for doing exactly the
worst possible thing at the worst possible time.

Worse yet, other systems that call ours march
Users are a terrible thing. remorselessly forward like an army of Termi-
nators, utterly unsympathetic about how close

we are to crashing.

Traffic

Every user consumes some system resources. Unless you are building
a peer-to-peer system such as BitTorrent, your system’s capacity is
limited. It scales with the amount of hardware and bandwidth you've
bought, not the number of users you've attracted.

As traffic grows, it will eventually surpass your capacity.® Then comes
the biggest question: How does your system react to excessive demand?

Remember the definition of capacity from Section 8.1, Defining Capac-
ity, on page 161: when transactions take too long to execute, it means
that the demand on your system has exceeded its capacity. Internally
to your system, however, there are some harder limits. Passing those
limits makes cracks in the system, and cracks always propagate faster
under stress.

One such hard limit is memory available, particularly in Java or J2EE
systems. Excess traffic can stress the memory system in several ways.
First and foremost, in web systems, every user has a session. The ses-
sion stays resident in memory for a certain length of time after the last
request from that user. Every additional user means more memory.

8. Obviously, I'm being somewhat tongue-in-cheek. Although users do present numer-
ous risks to stability, they are also the reason our systems exist.
9. If traffic isn’t growing, then you have other problems to worry about!


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=68

Users < 69

Ii Session Active 4|‘ Dead Time 4|
W AT_L )

First Last Session
Request Request Timeout

During that dead time, the session still occupies valuable memory. A
session is not a magic “Bag of Holding.”'® Every object you put into
the session sits there in memory, tying up precious bytes that could be
serving some other user.

When memory gets short, a large number of
very surprising things can happen. Probably Every user consumes
the least offensive is throwing an OutOfMemo- mMore memory.

ryError exception at the user. If things are really
bad, the logging system might not even be able to log the error. For
example, Log4j and java.util.logging both create objects to represent a
log event. If no memory is available to create the log event, then nothing
gets logged. (This, by the way, is a great argument for external moni-
toring in addition to log file scraping.) A supposedly recoverable low-
memory situation will rapidly turn into a serious stability problem. In
fact, if you are making any native calls, then a low-memory condition
will cause “malloc” to fail in the native code, for example, inside a Type
2 JDBC driver. It seems that few programmers of native code do good
error checking, because I've seen JVM crashes result from native calls
during a memory crisis.

Your best bet is to keep as little in the session as possible. For example,
it's a bad idea to keep an entire set of search results in the session
for pagination. It’s better if you requery the search engine for each new
page of results. For every object you put in the session, consider that
it might never be used again. It could spend the next thirty minutes
uselessly taking up memory and putting your system at risk.

10. In case you didn’t play Dungeons & Dragons, a Bag of Holding was much bigger on
the inside than on the outside. Things you put into it were available but weighed almost
nothing. It was a convenient explanation for characters that could keep two broadswords,
a mace, full-plate armor, and half a million gold pieces with them all the time.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=69

Users «d 70

Expensive
Object

SoftReference

Figure 4.7: SoftReference and Its Payload
I
It would be wonderful if there was a way to keep things in the session
(therefore in memory) when memory is plentiful but automatically be
more frugal when memory is tight. Good news! There is a way to do
exactly that. jova.lang.ref SoftReference objects hold a reference to some
other payload object.

You construct a SoftReference with the large or expensive object as an
argument. The SoftReference object actually is a Bag of Holding. It keeps
the payload for later use.

MagicBean hugeExpensiveResult = ...; SoftReference ref = new
SoftReference(hugeExpensiveResult);

session.setAttribute(EXPENSIVE_BEAN_HOLDER, ref);

This is not a transparent change. Any JSPs or servlets that access this
object will know that they are going through a layer of indirection. If
memory gets low, the garbage collector is allowed to reclaim the payload
of a SoftReference, so long as there is no hard reference to that payload.

Reference reference = (Reference)session.getAttribute(EXPENSIVE_BEAN_HOLDER);
MagicBean bean = (MagicBean) reference.get();

What is the point of adding this level of indirection? When memory gets
low, the garbage collector is allowed to reclaim any “softly reachable”
objects. An object is softly reachable if the only references to it are held
by SoftReference objects. The expensive object in Figure 4.7 is softly
reachable. The expensive object in Figure 4.8, on the next page, on the
other hand, not softly reachable. It is strongly reachable because of the
hard reference from the servlet.

The actual decision about when to reclaim softly reachable objects, how
many of them to reclaim, and how many to spare is totally up to the
garbage collector. The only guarantee is this: all softly reachable objects
will be reclaimed before an OutOfMemoryError is thrown.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=70

USErs «d 71

Expensive
Object

SoftReference

direct reference

Some
Servlet

Figure 4.8: Strongly Reachable Payload Object

In other words, the garbage collector will take advantage of all the help
you give it before it gives up. Be careful to note that it is the pay-
load object that gets garbage collected, not the SoftReference itself. After
the payload gets garbage collected, any calls to SoftReference.get() will
return null. Any code that uses the payload object must be prepared to
deal with a null payload, as shown in Figure 4.9, on the following page.
It can choose to recompute the expensive result, redirect the user to
some other activity, or take any other protective action.

SoftReference is a useful way to respond to changing memory conditions,
but it does add complexity. Generally, it’s best to just keep things out
of the session. Use the SoftReference approach when you cannot keep
large or expensive objects out of the session. SoftReferences let you serve
more users with the same amount of memory.

Expensive to Serve

Some users are way more demanding than others. Ironically, these are
usually the ones you want more of. For example, in a retail system,
users who browse a couple of pages, maybe do a search, and then go
away are both the bulk of users and the easiest to serve. Their con-
tent can usually be cached (however, see Pattern 10.2, Use Caching
Carefully, on page 208 for important cautions about caching). Serving
their pages usually does not involve external integration points. You
will likely do some personalization, maybe some clickstream tracking,
and that’s about it.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=71

USErRs «d 72

payload

SoftReference

Figure 4.9: SoftReference After Payload Is Garbage Collected

But then there’s that user who actually wants to buy something. Unless
you've licensed the one-click checkout patent, checkout probably takes
four or five pages. That's already as many pages as a typical user’s
entire session. On top of that, checking out can involve several of those
troublesome integration points: credit card authorization, sales tax cal-
culation, address standardization, inventory lookups, and shipping. In
fact, more buyers don’t just increase the stability risk for the front-end
system, they can place back-end or downstream systems at risk too.
(See Antipattern 4.8, Unbalanced Capacities, on page 96.) Increasing
the conversion rate might be good for the profit-and-loss statement,
but it is definitely hard on the systems.

There is no effective defense against expensive users. They are not a
direct stability risk, but the increased stress they produce increases
the likelihood of triggering cracks elsewhere in the system. Still, I don’t
recommend measures to keep them off the system, since they are usu-
ally the ones who generate revenue. So, what should you do?

The best thing you can do about expensive users is test aggressively.

Identify whatever your most expensive transactions are, and double or

triple the proportion of those transactions. If your retail system expects

a 2% conversion rate (which is about standard for retailers), then your conversion rate: the
load tests should test for a 4%, 6%, or 10% conversion rate. pereeniage of ste

visitors who actually buy
something.

Unwanted Users
We would all sleep easier if the only users to worry about were the
ones handing us their credit card numbers. In keeping with the gen-

eral theme of “weird, bad things happen in the real world,” there are
definitely weird, bad users out there.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=72

Users «d 73

7 N

Total Conversion

If a little is good, then a lot must be better, right? In other words,
why not test for a 100% conversion rate? As a stability test, that’s
not a bad idea. | wouldn’t use the results to plan capacity for
regular production traffic, though. By definition, these are the
most expensive transactions. Therefore, the average stress on
the system is guaranteed to be less than what this test pro-
duces. Build the system to handle nothing but the most expen-
sive transactions, and you will spend ten fimes too much on
hardware.

Some of them don’t mean to be bad. For example, I've seen badly config-

ured proxy servers start re-requesting a user’s last URL over and over

again. I was able to identify the user’s session by its cookie and then

trace the session back to the registered customer. Logs showed that the

user was legitimate. For some reason, fifteen minutes after the user’s

last request, the request started reappearing in the logs. At first, these

requests were coming in every thirty seconds. They kept accelerating,

though. Ten minutes later, we were getting four or five requests every

second. These requests had the user’s identifying cookie but not his

session cookie. So, each request was creating a new session. It strongly

resembled a DDoS attack except that it came from one particular proxy poos: distributed
server on one Navy base. denial-of-service attack.

Many computers ganging
up on a site with the

Once again, we see that sessions are the Achilles heel of web applica- pupose of saturating the
tions. Want to bring down nearly any dynamic web application? Pick a iiﬁ;;;d;}hipg}grs
deep link from the site, and start requesting it, without sending cook- >"°* ﬂigﬁ&’ﬁshm
ies. Don’t even wait for the response; just drop the socket connection

as soon as you've sent the request. Web servers never tell the appli-

cation servers that the end user stopped listening for an answer. The

application server just keeps on processing the request. It sends the

response back to the web server, which funnels it into the bit bucket.

In the meantime, the 100 bytes of the HTTP request causes the applica-

tion server to create a session (which may consume several kilobytes of

memory in the application server). Even a desktop machine on a broad-

band connection can generate hundreds of thousands of sessions on

the application servers.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=73

USErs d 74

In extreme cases, such as the flood of sessions originating from the
Navy base, you can run into problems worse than just heavy memory
consumption. In our case, the business users wanted to know how
often their most loyal customers came back. The developers wrote a
little interceptor that would update the “last login” time whenever a
user’s profile got loaded into memory from the database. During these
session floods, though, the request presented a user ID cookie but no
session cookie. That meant each request was treated like a new login,
loading the profile from the database and attempting to update the “last
login” time.

Imagine 100,000 transactions all trying to update the same row of the
same table in the same database. Somebody is bound to get dead-
locked. Once a single transaction with a lock on the user’s profile got
hung (because of the need for a connection from a different resource
pool), all the other database transactions on that row got blocked.
Pretty soon, every single request-handling thread got used up with
these bogus logins. As soon as that happens, the site is down.

So, one kind of bad user just blunders around leaving disaster in his
wake. There are more crafty sorts, however, who deliberately do abnor-
mal things that just happen to have undesirable effects. The first group
isn’t deliberately malicious; they just do damage inadvertently. This
next group belongs in its own category.

There is an entire parasitic industry that exists by consuming resources
from other companies’ websites. Collectively known as competitive intel-
ligence companies, these outfits leech data out of your system one web
page at a time.

These companies will argue that their service is no different from a
grocery store sending someone into a competing store with a list and
a clipboard. There is a big difference, though. Given the rate that they
can request pages, it’s more like sending a battalion of people into the
store with clipboards. They would crowd out the aisles so legitimate
shoppers could not get in.

Worse yet, these rapid-fire screen scrapers do not honor session cook-
ies, so if you are not using URL rewriting to track sessions, each new
page request will create a new session. Like a flash mob, pretty soon
the capacity problem will turn into a stability problem. The battalion of
price checkers could actually knock down the store.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=74

Users d 75

( )

eSO aCkIng
HTTP is a singularly unlikely protocol. If you were tasked with cre-
ating a protocol to facilitate arts, sciences, commerce, free
speech, words, pictures, sound, and video, one that could
weave the vastness of human knowledge and creativity into
a single web, it is unlikely that you would arrive at HTTR HTTP
is stateless, for one thing. To the server, each new requester
emerges from the swirling fog and makes some demand like
“GET /site/index.jsp.” Once answered, they disappear back into
the fog without so much as a “thank you.” Should one of these
rude, demanding clients reappear, the server, in perfectly egal-
itarian ignorance, does not recognize it has seen them before.

Some clever folks at Netscape found a way to graft an extra bit
of data into the protocol. Netscape originally conceived this
data, called cookies (for no compelling reason), as a way to
pass state back and forth from client to server, and vice versa.
Cookies are a clever hack. They allowed all kinds of new appli-
cations, such as personalized portals (a big deal back then)
and shopping sites. Security-minded application developers
quickly realized, however, that unencrypted cookie data was
open to manipulation by hostile clients. After all, just because
some browser sends a User-Agent string that says “Mozilla,” that
doesn’t mean it actually is Mozilla. (As of version 7 beta 1, Inter-
net Explorer still claims to be Mozilla and probably always will.
Its User-Agent string is “Moxzilla/4.0 (compatible; MSIE 7.0b; Win-
dows NT 6.0).”) So, security dictates that the cookie either can-
not contain actual data or must be encrypted. At the same
time, high-volume sites found that passing real state in cookies
uses up lots of expensive bandwidth and CPU time. Encrypting
the cookies was right out.

So, cookies started being used for smaller pieces of data, just
enough to fag a user with a persistent cookie or a temporary
cookie to identify a session.

A session is an abstraction that makes building applications
easier. All the user really sends are a series of HTTP requests. The
web server receives these and, through a series of machina-
tions, returns an HTTP response. There is no “begin a session”
request by which the web browser can indicate it is about to
start sending requests, and there is no “session finished” request.
(The web server could not trust that such an indicator would be
sent anyway.)



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=75

Users d 76

{ 3

Session Tracking (cont.)

Sessions are all about caching data in memory. Early CGl appli-
cations had no need for a session, since they would fire up a
new process (usually a Perl script) for each new request. That
worked fine. There’s nothing quite as safe as the “fork, run,
and die” model. To reach higher volumes, however, developers
and vendors turned to long-running application servers, such
as Java application servers and long-running Perl processes
via mod_perl. Instead of waiting for a process fork on each
request, the server is always running, waiting for requests. With
the long-running server, you can cache state from one request
to another, reducing the number of hits to the database. Then,
you need some way to identify a request as part of a session.
Cookies work well for this.

Application servers handle all the cookie machinery for you,
presenting a nice programmatic interface with some resem-
blance to a Map or Dictionary. As usual, though, the trouble with
invisible machinery is that it can go horribly wrong when mis-
used. When that invisible machinery involves layers of kludges
meant to make HTTP look like a real application protocol, it can
redlly tip over badly. For example, home-brew shopping bots
do not handle session cookies properly. Each request creates
a new session, consuming memory for no good reason. If the
web server is configured to ask the application server for every
URL, not just ones within a mapped context, then sessions can
get created by requests for nonexistent pages. As you will see
in Capacity Killers, keeping a tight reign on your sessions is vital
to scalability.

Keeping out legitimate robots is fairly easy through the use of the
robots.ixt file.!! Keep in mind, though, that robots.txt is nothing but a
request from your site to the incoming robot. The robot has to ask for
the file and choose to respect your wishes. It’s a social convention—not
even a standard—and definitely not enforceable. Some sites also choose
to redirect robots and spiders, based on the User-Agent header. In the
best cases, these agents get redirected to a static copy of the product
catalog, or the site generates pages without prices. (The idea is to be
searchable by the big search engines but not reveal pricing. That way,

11. See http://www.w3.0org/TR/html4/appendix/notes.ntmli#h-B.4.1.1.


http://www.w3.org/TR/html4/appendix/notes.html#h-B.4.1.1
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=76

USErs d 77

you can personalize the prices, run trial offers, partition the country or
the audience to conduct market tests, and so on.) In the worst case, the
site just sends the agent into a dead end.

The Spider Trap

Around 1998, when AltaVista was the big thing, I saw a site get brought
down by a developer’s bad case of “clever.” He built what he called a
spider trap. It was a page with some randomly generated links. The link
text was some plausible-sounding phrase from a Markov chain-based
generator. The URL had a big random hash in it, but effectively, it led
back to the same page. So, the indexer kept seeing pages with differing
content leading to new links. He thought that by tying up the spider in
this spider trap, he would keep it off of the rest of his site, thereby
keeping his content from being deep-linked from search engines. Just to
be sure the spider would stay trapped, he put five of these random links
on each page.

The trap worked like a charm. Once AltaVista hit the site, the spider kept
requesting page after page of random links. In fact, they appeared to run
multiple threads, because we’d see the number of requests increase
geometrically. And there was the problem. Just accept this fact as an
absolute law of the Net. Search engines always have more bandwidth
than you. The indexer used up all of the company’s bandwidth. It blew
right through the committed rate, used up the allowed burst rate, and
pegged against the bandwidth cap. By the time we discovered why our
users were complaining about the site being slow, the spider trap had
cost us more than $10,000 in bandwidth charges. The spider trap is like a
Rube Goldberg machine set up to pull the trigger on a shotgun. It is really
nothing more than an elaborate way to DDoS yourself. (See Antipattern
4.6, Attacks of Self-Denial, on page 88.)

I think he ended up selling the Markov chain text generator as a business
plan writer.

So, the robots most likely to respect robofs.txt are the ones that might
actually generate traffic (and revenue) for you, while the leeches will
ignore it completely.

I've seen only two approaches work.

The first is technical. Once you identify a screen scraper, block it from
your network. If you're using a content distribution network such as
Akamali, this is a service it can provide for you. Otherwise, you can do
it at the outer firewalls. Some of the leeches are honest. Their requests
come from legitimate IP addresses with real reverse DNS entries. ARIN
(http://www.arin.net) is your friend here. Blocking the honest ones is easy.


http://www.arin.net
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=77

USErs d 78

Others stealthily mask their source addresses or make requests from
dozens of different addresses. Some of these even go so far as to change
their User-Agent strings around from one request to the next. (When a
single IP address claims to be running Internet Explorer on Windows,
Opera on Mac, and Firefox on Linux in the same five-minute window,
something is up. Sure, it could be an ISP-level supersquid or somebody
running a whole bunch of virtual emulators. When these requests are
sequentially spidering an entire product category, it's more likely to be
a screen scraper.) You may end up blocking quite a few subnets, so
it’s good idea to periodically expire old blocks to keep your firewalls
performing well. This is a form of Circuit Breaker.

The second approach is legal. Write some “terms of use” for your site
that say users can view content only for personal or noncommercial
purposes. Then, when the screen scrapers start hitting your site, sic
the lawyers on them. (Obviously, this requires enough legal firepower
to threaten them effectively.) Neither of these is a permanent solutions.
Consider it pest control—once you stop, the infestation will resume.

Malicious Users

The final group of undesirable users are the truly malicious. These
bottom-feeding mouth breathers just live to kill your baby. Nothing
excites them more than destroying the very thing you’'ve put blood,
sweat, and tears into building. Personally, I think they were the kids
who always got their sand castles kicked over when they were little.
That deep-seated bitterness compels them to do the same thing to oth-
ers that was done to them.

Truly talented crackers who can analyze your defenses, develop a cus-

tomized attack, and infiltrate your systems without being spotted are

blessedly rare. You may be targeted by such a cracker for a variety of

reasons, but the odds are against it. You usually have to incur their

wrath for some reason or another. The overwhelming majority of mali-

cious users are script kiddies. Don’t let the diminutive name fool you. script kiddie: an
Script kiddies are dangerous because of their sheer numbers. Although ke who does not

the odds are low that you will be targeted by a true cracker, your sys- atacks but downloads

and employs tools

tems are probably being probed by script kiddies right now. created by *real”

crackers.
This book is not about information security or online warfare. A robust
approach to defense and deterrence is beyond the scope of this book.
I will restrict my discussion to the intersection of security and sta-
bility as it pertains to system and software architecture. The primary


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=78

Users «d 79

risk to stability is the now-classic distributed denial-of-service (DDoS)
attack. The attacker causes many computers, widely distributed across
the Net, to start generating load on your site.'? Sometimes this load
takes the form of raw TCP connections, with no application-level proto-
col involved. Other attacks attempt to cripple your network devices by
breaking the TCP/IP protocol in devious ways. Well-configured, modern
network gear can guard against these attacks.

Newer attacks vector in against the applications rather than the net-
work gear. These force you to saturate your own outbound bandwidth,
denying service to legitimate users, and racking up huge bandwidth
charges.

As you have seen before, session management is the most vulnerable
point of a J2EE- or Rails-based web application. Application servers are
particularly fragile when hit with a DDoS, so saturating the bandwidth
might not even be the worst issue you have to deal with. A specialized
Circuit Breaker can help to limit the damage done by any particular
host. This also helps protect you from the accidental traffic floods too.

Cisco, Juniper, CheckPoint, and other network vendors all have prod-
ucts that detect and mitigate DDoS attacks. Configuring and monitor-
ing of these products properly is essential. For instance, many admin-
istrators set a limit of fifteen connections per minute from a single
source IP address (based on an example used in Cisco’s documenta-
tion). By that definition, every AJAX application is a denial-of-service
attack. (Given some of the abusive applications I've seen slap-happy
AJAX developers create, that may not be far from the truth.)

B=5F Remember This

Users consume memory
Each user’s session requires some memory. Minimize that mem-
ory to improve your capacity. Use a session only for caching so
you can purge the session’s contents if memory gets tight.

12. The load typically comes from a botnet, or network of compromised computers. A
daemon on the compromised computer subscribes to an IRC channel, through which
the botnet master issues commands. Some script kiddies have been found to control
botnets with tens of thousands of nodes, and there are rumors of nets with a million
compromised nodes. Most of these are personal Windows machines running outdated
operating systems.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=79

Users <« 80

Users do weird, random things
Users in the real world do things that you won’t predict (or some-
times understand). If there’s a weak spot in your application,
they’ll find it through sheer numbers. Test scripts are useful for
functional testing but too predictable for stability testing. Hire a
bunch of chimpanzees to hammer on keyboards for more realistic
testing.

Malicious users are out there
Become intimate with your network design; it should help avert
attacks. Make sure your systems are easy to patch—you’ll be
doing a lot of it. Keep your frameworks up-to-date, and keep your-
self educated. There’s no excuse for a successful SQL injection
attack in 2007.

Users will gang up on you
Sometimes they come in really, really big mobs. Picture the
Slashdot editors giggling as they point toward your site, saying,
“Release the legions!” Large mobs can trigger hangs, deadlocks,
and obscure race conditions. Run special stress tests to hammer
deep links or hot URLs.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=80

BLOCKED THREADS <« 81

Blocked Threads

Interpreted languages such as Java and Ruby almost never really
crash. Sure, they get application errors, but it’s relatively rare to see
the interpreter or virtual machine crash. I still remember when a rogue
pointer in C could reduce the whole machine to a navel-gazing heap.
(Anyone else remember Amiga’s “Guru Meditation” errors?) Here’s the
catch about interpreted languages, though. The interpreter can be run-
ning, and the application can still be totally deadlocked, doing nothing
useful.

As often happens, adding complexity to solve one problem creates the
risk of entirely new failure modes. Multithreading makes application
servers scalable enough to handle the web’s largest sites, but it also
introduces the possibility of concurrency errors. The most common
failure mode for applications built in these languages is naval-gazing—
a happily running interpreter with every single thread sitting around
waiting for Godot. Multithreading is complex enough that entire books
are written about it.!® Moving away from the “fork, run, and die” exe-
cution model brings you vastly higher capacity but only by introducing
a new risk to stability.

The majority of system failures I've dealt with do not involve outright
crashes. The process runs and runs but does nothing because every
thread available for processing transactions is blocked waiting on some
impossible outcome.

Blocked threads can happen anytime you check resources out of a con-
nection pool, deal with caches or object registries, or make calls to
external systems. If the code is structured properly, a thread will occa-
sionally block whenever two (or more) threads try to access the same
critical section at the same time. This is normal. Assuming that the
code was written by someone sufficiently skilled in multithreaded pro-
gramming, then you can always guarantee that the threads will even-
tually unblock and continue. If this describes you, then you are in a
highly skilled minority.

The problem has four parts:

¢ Error conditions and exceptions create too many permutations to
test exhaustively.

13. The only book Java programmers actually need, however, is the excellent Concurrent
Programming in Java [ I, by Doug Lea.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=81

BLOCKED THREADS <« 82

7 A

The System Isn’t Down! It's Just in a Funk!

I"'ve probably tried 100 times to explain the distinction between
saying “The system crashed” and “The system is hung.” | finally
gave up when | realized that it’s a distinction only an engineer
bothers with. It’s like a physicist trying to explain where the pho-
ton goes in the two-slit experiment from quantum mechanics.
Only one observable variable really matters—whether the sys-
tem is able to process transactions or not. The business sponsor
would frame this question, “Is it generating revenue?”

From the user’s perspective, a system they can’t use might as
well be a smoking crater in the earth. The simple fact that the
server process is running doesn’t help the user get work done,
books bought, flights found, and so on.

That is why | advocate supplementing internal monitors (such
as log file scraping, process monitoring, and port monitoring)
with external monitoring. A mock client somewhere (noft in the
same data center) can run synthetic fransactions on a regular
basis. That client experiences the same view of the system that
real users experience. When that client cannot process the syn-
thetic transactions, then there is a problem, whether or not the
server process is running.

* Unexpected interactions can introduce problems in previously
safe code.

¢ Timing is crucial. The probability that the app will hang goes up
with the number of concurrent requests.

* Developers never hit their application with 10,000 concurrent
requests.

Taken together, these conditions mean that it is very, very hard to find
hangs during development. You cannot rely on “testing them out of the
system.” The best way to improve your chances is to carefully craft your
code. Use a small set of primitives in known patterns. It’s best if you
download a well-crafted, proven library.!'4

14. If you are using Java 5 and you are not using the primitives in java.util.concurrent,
then shame on you. If you are not using Java 5, then download the util.concurrent
library from http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html. It's
the same library before adoption into the JCP.


http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=82

BLOCKED THREADS <« 83

Incidentally, this is another reason why I oppose anyone rolling their
own connection pool class. It is always more difficult than you think to
make a reliable, safe, high-performance connection pool. If you've ever
tried writing unit tests to prove safe concurrency, you know how hard
it is to achieve confidence in the pool. Once you start trying to expose
metrics, as I discuss in Section 17.2, Designing for Transparency, on
page 275, rolling your own connection pool goes from a fun Computer
Science 101 exercise to a tedious grind.

If you find yourself synchronizing methods
on your domain objects, you should proba- Distrust synchronized
bly rethink the design. Find a way that each methods on domain
thread can get its own copy of the object in objects.

question. This is important for two reasons.
First, if you are synchronizing the methods to ensure data integrity,
then your application will break when it runs on more than one server.
In-memory coherence doesn’t matter if there’s another server out there
changing the data. Second, your application will scale better if request-
handling threads never block each other.

Spot the Blocking
Can you find the blocking call in the following code?

String key = (String)request.getParameter (PARAM_ITEM_SKU);
AvailabiTlity avl = globalObjectCache.get(key);

You might suspect that globalObjectCache is a likely place to find some
synchronization. You would be correct, but the point is that nothing
in the calling code tells you that one of these calls is blocking and the
other is not. In fact, the interface that globalObjectCache implemented
didn’t say anything about synchronization either.

In Java, it is possible for a subclass to declare a method synchronized
that is unsynchronized in its superclass or interface definition. Object-
oriented purists will tell you that this violates the Liskov Substitution
principle. They are correct.

You cannot transparently replace an instance of the superclass with
the synchronized subclass. This might seem like nit-picking, but it can
be vitally important.

The basic implementation of the GlobalObjectCache interface is a rela-
tively straightforward object registry:


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=83

BLOCKED THREADS < 84

7 A

Synchronizati | the Liskov Substitution Principl

In object theory, the Liskov Substitution principle (see Family Val-
ues: A Behavioral Notion of Subtyping ( )) states that any
property that is true about objects of a type T should also be
frue for objects of any subtype of T. In other words, a method
without side effects in a base class should also be free of side
effects in derived classes. A method that throws the exception
E in base classes should throw only exceptions of type E (or sub-
types of E) in derived classes.

Java does not allow other declared violations of the substitu-
tion principle. It is not clear whether the ability to add synchro-
nization in a subclass was a deliberate weakening of Liskov or
whether it was just an oversight.

public synchronized Object get(String id) {
Object obj = items.get(id);
if(obj == null) {
obj = create(id);
items.put(id, obj);
}

return obj;

}

You should hear mental alarm bells when you see the “synchronized”
keyword on a method. While one thread is executing this method, any
other callers of the method will be blocked. In this case, synchronizing
the method is the right thing to do.!® It executes quickly, and even if
there is some contention between threads trying to get into this method,
they should all be served fairly quickly. (A word of caution, however.
GlobalObjectCache could easily become a capacity constraint if every
transaction uses it heavily. See Antipattern 9.1, Resource Pool Con-
tention, on page 176 for an example of the effect that blocked requests
have on throughput.)

15. Some of you Java programmers might have seen an idiom called the double-checked
lock that is meant to avoid synchronizing the whole method. Unfortunately, it just doesn’t
work. See http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html for a
complete rundown of why it doesn’t work and why all the attempts to fix the pattern also
don’t work.


http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=84

BLOCKED THREADS <« 85

Part of the system needed to check the in-store availability of items
by making expensive inventory availability queries to a remote system.
These external calls took a few seconds to execute. The results were
known to be valid for at least fifteen minutes because of the way the
inventory system worked. Since nearly 25% of the inventory lookups
were on the week’s “hot items” and there could be as many as 4,000
(worst case) concurrent requests against the undersized, overworking
inventory system, the developer decided to cache the resulting Availabil-
ity object.

The developer decided that the right metaphor was a read-through
cache. On a hit, it would return the cached object. On a miss, it would
do the query, cache the result, and then return it. Following good object
orientation principles, the developer decided to create an extension of
GlobalObjectCache, overriding the create() method to make the remote
call. It was a textbook design. The new RemoteAvailabilityCache was
a cache proxy, as described in Pattern Languages of Program Design
2 |, pages 111-112. It even had a time stamp on the cached
entries so they could be expired when the data became too stale. This
was an elegant design, but it wasn’t enough.

The problem with this design had nothing to do with the functional
behavior. Functionally, RemoteAvailabilityCache was a nice piece of work.
In times of stress, however, it had a nasty failure mode. The inventory
system was undersized (see Antipattern 4.8, Unbalanced Capacities,
on page 96), so when the front end got busy, the back end would be
flooded with requests. Eventually, it crashed. At that point, any thread
calling RemoteAvailabilityCache.gef() would block, because one single
thread was inside the create() call, waiting for a response that would
never come. There they sit, Estragon and Vladimir, waiting endlessly
for Godot.

This example shows how these antipatterns
interact perniciously to accelerate the growth NO one designed this
of cracks. The conditions for failure were cre- failure mode in, but no
ated by the blocking threads and unbalanced one designed
capacities. The lack of timeouts in the inte- it out either.

gration points caused the failure in one layer
to become a cascading failure. Ultimately, this combination of forces
brought down the entire site.

Obviously, the business sponsors would laugh if you asked them,
“Should the site crash if it can’t check availability for in-store pickup?”


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=85

BLOCKED THREADS <« 86

If you asked the architects or developers, “Will the site crash if it can’t
check availability?” they would assert that it would not. Even the devel-
oper of RemoteAvailabilityCache would not expect the site to hang if
the inventory system stopped responding. No one designed this failure
mode into the combined system, but no one designed it out either.

Third-Party Libraries

Third-party libraries are notorious sources of blocking threads. Iron-
ically, client libraries for enterprise-class software often do their own
resource pooling inside the library. These often make request threads
block forever when there is a problem. Of course, these never allow you
to configure their failure modes, like what to do when all connections
are tied up waiting for replies that will never come.

Your first problem with these libraries is determining exactly how they
behave. I recommend writing some small test cases that deliberately
try to break the library. Have the test case connect to a really devious
test harness (see Pattern 5.7, Test Harness, on page 136) that ties up
all connections, and then see what the vendor’s library does with calls
from more and more threads. Try issuing the same query or call twenty
times in parallel, and see what happens. If the vendor library is doing
its own connection pooling, then you will see a drop in throughput once
the number of requests exceeds the size of the connection pool. (Take
a look at Antipattern 9.1, Resource Pool Contention, on page 176 to see
what that looks like.) You will probably be able to provoke a deadlock
inside the vendor library. It is a sad fact of the universe, however, that
you cannot prove a negative. Even if you can’t force a deadlock in the
library during testing, it might still be vulnerable.

If the library breaks easily, you need to protect your request-handling
threads. If the library allows you to set timeouts, use them. If not,
you might have to resort to some complex structure such as a pool of
worker threads external to the vendor library that the request-handling
thread can ask to execute the dangerous operation. If the call makes
it through the library in time, then the worker thread and the original
request handling-thread rendezvous on a result object. If the call does
not complete in time, the request-handling thread abandons the call,
even though the worker thread might eventually complete. Once you're
in this territory, beware. Here there be dragons. You'll need a good com-
mand of concurrent programming, thread pooling, and your language’s
specific threading model to pull this off, and it will still be a kludge.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=86

BLOCKED THREADS <« 87

Before you go down this path, spend some time beating up your vendor
for a better client library.

A blocked thread is often found near an integration point. They can
quickly lead to chain reactions. Blocked threads and slow responses
can create a positive feedback loop, amplifying a minor problem into a
total failure.

BE=5F Remember This

The Blocked Threads antipattern is the proximate cause of most
failures
Application failures nearly always relate to Blocked Threads in
one way or another, including the ever-popular “gradual slow-
down” and “hung server.” The Blocked Threads antipattern leads
to Chain Reactions and Cascading Failures.

Scrutinize resource pools
Like Cascading Failures, the Blocked Threads antipattern usually
happens around resource pools, particularly database connection
pools. A deadlock in the database can cause connections to be lost
forever, and so can incorrect exception handling.

Use proven primitives
Learn and apply safe primitives. It might seem easy to roll your
own producer/consumer queue; it isn’t. Any library of concur-
rency utilities has more testing than your newborn queue.

Defend with Timeouts
You cannot prove that your code has no deadlocks in it, but you
can make sure that no deadlock lasts forever. Avoid Java’s infinite
wait() method; use the version that takes a timeout parameter.
Always use Timeouts, even if it means you have to catch Interrupt-
edException.

Beware the code you cannot see
All manner of problems can lurk in the shadows of third-party
code. Be very wary. Test it yourself. Whenever possible, acquire
and investigate the code for surprises and failure modes. ¢

16. You might also prefer open source libraries to closed source for this very reason. I do.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=87

ATTACKS OF SELF-DENIAL < 88

4.6 Attacks of Self-Denial

§), Self-denial is only occasionally a virtue in people and never in systems.
‘ ® A self-denial attack describes any situation in which the system—or the
extended system that includes humans—conspires against itself.

The classic example of a self-denial attack is the email from marketing
to a “select group of users” that contains some privileged information
or offer. These things replicate faster than the Anna Kournikova Trojan
(or the Morris worm if you're really old-school). Any special offer meant
for a group of 10,000 users is guaranteed to attract millions. The com-
munity of networked bargain hunters can detect and share a reusable
coupon code in milliseconds.

One great instance of self-denial occurred when the Xbox 360 was just
becoming available for preorder. It was clear that demand would far out-
strip supply in the United States, so when a major electronics retailer
sent out an email promoting preorders, it helpfully included the exact
date and time that the preorder would open. This email hit FatWallet,
TechBargains, and probably other big deal-hunter sites the same day.
It also thoughtfully included a deep link that accidentally bypassed
Akamai, guaranteeing that every image, JavaScript file, and style sheet
would be pulled directly from the origin servers.

One minute before the appointed time, the entire site lit up like
Chernobyl chocolate milk, and then it went dark. It was gone in sixty
seconds.

Amazon ran into trouble with the Xbox 360, too. In November 2006,
Amazon decided to offer 1,000 units for just $100. News of the offer
spread far and wide. Not surprisingly, the 1,000 units sold within five
minutes. Unfortunately, nothing else sold during that time, because
millions of visitors hammered on their Reload buttons, trying to load
the special offer page and score a huge discount on the hot console.

Apparently, Amazon had not created a dedicated cluster of servers to
handle the special offer (see Pattern 5.3, Bulicheads, on page 119). The
special offer, probably intended as a loss leader or traffic generator,
generated more bad publicity than it did revenue. I can only hope Ama-
zon got some good information about weak spots in its architecture—
though finding out about them the day before Black Friday hardly
seems worth it.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=88

ATTACKS OF SELF-DENIAL < 89

Everyone who has ever worked a retail site has a story like this. Some-
times it's the coupon code that gets reused a thousand times or the
pricing error that makes one SKU get ordered as many times as all
other products combined. As Paul Lord says, “Good marketing can kill
you at any time.”

Not every self-inflicted wound can be blamed
on the marketing department (although we G00d marketing can Kill
sure can try). In a horizontal layer that has you at any time.

some shared resources, it is possible for a sin-

gle rogue server to damage all the others. For example, in an ATG-
based!” infrastructure, there is always one lock manager that handles
distributed lock management to ensure cache coherency. (Any server
that wants to update a Repositoryltem with distributed caching enabled
must acquire the lock, update the item, release the lock, and then
broadcast a cache invalidation for the item.) This lock manager is a
singular resource. As the site scales horizontally, the lock manager
becomes a bottleneck and then finally a risk. If a popular item is inad-
vertently modified (because of a programming error, for example), then
you can end up with thousands of request-handling threads on hun-
dreds of servers all serialized waiting for a write lock on one item.

You can avoid machine-induced self-denial by building a “shared-
nothing” architecture. (See the sidebar on page 94.) Where that is
impractical, apply decoupling middleware to reduce the impact of
excessive demand, or make the shared resource itself horizontally scal-
able through redundancy and a backside synchronization protocol. You
can also design a fallback mode for the system to use when the shared
resource is not available or responding. For example, if a lock manager
that provides pessimistic locking is not available, the application can

fall back to using optimistic locking. Optimistic locking:
Modify objects freely,

If you have plenty of time to prepare and are using hardware load @ detect collisions
when saving them.

balancing for traffic management, you can set aside a portion of your Pessimistic locking:
Require positive locks on

infrastructure to handle the promotion or traffic surge. Of course, this opjects before modifying
works only if the extraordinary traffic is directed at a portion of the ¢ Fessimsic is

safer, but it’s slower and

system. (Think promotional pricing or lingerie fashion show.) In this requires more

coordination.

case, even if the dedicated portion melts down, at least the rest of the
system’s regular behavior is available.

17. ATG Commerce Suite, a competing J2EE application server and commerce frame-
work. See http://www.atg.com.


http://www.atg.com
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=89

ATTACKS OF SELF-DENIAL < 90

In this case, when the dedicated servers go dark, be sure to apply Fail
Fast. That way, at least other front-end resources, such as web server
and load balancer connections, are not tied up waiting for a useless or
nonexistent response.

As for the human-facilitated attacks, training, education, and commu-
nication are the keys. At the very least, if you keep the lines of commu-
nication open, you might have a chance to protect the systems from the
coming surge. You might even be able to help them achieve their goals
without jeopardizing the system.

B3¢ Remember This

Keep the lines of communication open

Attacks of Self-Denial originate inside your own organization,
when clever marketers cause self-inflicted wounds by creating
their own flash mobs and traffic spikes. You can aid and abet these
marketing efforts and protect your system at the same time, but
only if you know what’s coming. Make sure nobody sends mass
emails with deep links. Create static “landing zone” pages for the
first click from these offers. Watch out for embedded session IDs
in URLs.

Protect shared resources
Programming errors, unexpected scaling effects, and shared
resources all create risks when traffic surges. Watch out for Fight
Club bugs, where increased front-end load causes exponentially
increasing back-end processing.

Expect rapid redistribution of any cool or valuable offer
Anybody who thinks they’ll release a special deal for limited dis-
tribution is asking for trouble. There’s no such thing as limited
distribution. Even if you limit the number of times a fantastic
deal can be redeemed, you'll still get crushed with people hoping
beyond hope that they, too, can get an Xbox 360 for $99.8

18. If you're reading this after the Xbox 360 gets down to $99 dollars, then substitute the
next “next-gen” game console.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=90

SCALING EFFEcTs < 91

Environment

Environment

( Dev Server : ( QA Server 1 A QA Server 2
|
|
|

App 1 | App 1 App 2

|
|

\ | \ y, \
|
|
|

Development : QA / Test

|

Figure 4.10: Point-to-Point Communication in Development and Test

Scaling Effects

In biology, the square-cube law explains why we’ll never see elephant-
, sized spiders. The bug’s weight scales with volume, so it goes as O(n"\3).
" The strength of the leg scales with the area of the cross section, so it
goes as O(n"\2). If you make the critter ten times as large, that makes
the strength-to-weight ratio one-tenth of the small version, and the legs
just won’t hold it up.

We run into scaling effects all the time. Anytime you have a “many-
to-one” or “many-to-few” relationship, you can be hit by scaling effects
when one side increases. For instance, a database server that holds
up just fine when two application servers call it might crash miserably
when you add the next eight application servers.

In the development environment, every application looks like one
server. In QA, pretty much every system looks like one or two servers.
When you get to production, though, some applications are really, really
small, and some are medium, large, or humongous. Because the devel-
opment and test environments rarely replicate production sizing, it can
be hard to see where scaling effects will bite you.

Point-to-Point Communications

One of the worst places that scaling effects will bite you is with point-
to-point communication. Point-to-point communication between appli-
cation servers probably works just fine when there are only one or two
instances communicating, as in Figure 4.10.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=91

SCALING EFFECcTs < 92

Ve

A 4 A ( A

Prod Server 1 Prod Server 2 Prod Server n

Production
Environment

Figure 4.11: Point-to-Point Communication in Production—Ouch!

With point-to-point connections, each instance has to talk directly to
every other instance, as in Figure 4.11. The total number of connections
goes up as the square of the number of instances. Scale that up to a
hundred instances, and the O(n”2) scaling becomes quite painful. This
is a multiplier effect driven by the number of application instances.
Depending on the eventual size of your system, O(n”2) scaling might be
fine. Either way, you should know about this effect before your system
hits production.

Unfortunately, unless you are Microsoft or Google, it is unlikely that
you can build a test farm the same size as your production environ-
ment. This type of defect cannot be tested out; it must be designed out.

This is one of those times where there is no “best” choice, just a good
choice for a particular set of circumstances. If the application will only
ever have two servers, then point-to-point communication is perfectly
fine.!® As the number of servers grows, then a different communication
strategy is needed. Depending on your infrastructure, you can replace
point-to-point communication with the following:

e UDP broadcasts
e TCP or UDP multicast

* Publish/subscribe messaging

19. As long as the communication is written so it won’t block when the other server dies!
(See Antipattern 4.5, Blocked Threads, on page 81.)


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=92

SCALING EFFEcTs < 93
( App 1 App 2 App 3 ( App 4 App 5 App 6 )

Common
SerV|ce

Figure 4.12: Many-to-One Dependencies

* Message queues

Broadcasts do the job but are not bandwidth efficient. They also cause
some additional load on servers that are not interested in the mes-
sages, since the servers’ NIC gets the broadcast and must notify the
TCP/IP stack. Multicasts are more efficient, since they permit only the
interested servers to receive the message. Publish/subscribe messag-
ing is better still, since a server can pick up a message even if it wasn’t
listening at the precise moment the message was sent. Of course, pub-
lish/subscribe messaging often brings in some serious infrastructure
cost. This is a great time to apply the XP principle that says, “Do the
simplest thing that will work.”

Shared Resources

Another scaling effect that can jeopardize stability is the “shared
resource” effect. Commonly seen in the guise of a service-oriented
architecture or “common services” project, the shared resource is some
facility that all members of a horizontally scalable layer need to use.
With some application servers, the shared resource will be a cluster
manager or lock manager. When the shared resource gets overloaded,
it will become a bottleneck limiting capacity (see Section 8.1, Defining
Capacity, on page 161). Figure 4.12 should give you an idea of how the
callers can put a hurting on the shared resource.

When the shared resource is redundant and nonexclusive—meaning it
can service several of its consumers at once—then there is no problem.
If it saturates, you can add more, thus scaling the bottleneck.

Too often, though, the shared resource will be allocated for exclusive


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=93

SCcALING EFFEcTs < 94

{ 3

“Shared Nothing”

The most scalable architecture is the shared-nothing architec-
ture. Each server operates independently, without need for
coordination or calls to any centralized services. In a shared
nothing architecture, capacity scales more or less linearly with
the number of servers.

The frouble with a shared nothing architecture is that it might
scale better at the cost of failover. For example, consider ses-
sion failover. A user’s session resides in memory on an applica-
tion server. When that server goes down, the next request from
the user will be directed to another server. Obviously, we would
like that transition to be invisible to the user, so the user’s session
should be loaded into the new application server. That requires
some kind of coordination between the original application
server and some other device. Perhaps the application server
sends the user’s session to a session backup server after each
page request. Maybe it serializes the session info a database
table or shares its sessions with another designated applico-
tion server. There are numerous strategies for session failover, but
they all involve getting the user’s session off the original server.
Most of the time, that implies some level of shared resources.

You can approximate a shared-nothing architecture by reduc-
ing the fan in of shared resources, that is, cutting down the num-
ber of servers calling on the shared resource. In the example of
session failover, you could do this by designating pairs of appli-
cation servers that each act as the failover server for the other.

use while a client is processing some unit of work. In these cases, the
probability of contention scales with the number of transactions pro-
cessed by the layer and the number of clients in that layer. (See Antipat-
tern 9.1, Resource Pool Contention, on page 176 for an illustration of the
effect that contention has on throughput.) When the shared resource
saturates, you get a connection backlog. When the backlog exceeds the
listen queue, you get failed transactions. At that point, nearly anything
can happen. It depends on what function the caller needs the shared
resource to provide. Particularly in the case of cache managers (provid-
ing coherency for distributed caches), failed transactions lead to stale
data or, worse, loss of data integrity.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=94

ScALING EFFEcTs < 95

B3¢ Remember This

Examine production versus QA environments to spot Scaling
Effects
You get bitten by Scaling Effects when you move from small one-
to-one development and test environments to full-sized production
environments. Patterns that work fine in small environments or
one-to-one environments might slow down or fail completely when
you move to production sizes.

Watch out for point-to-point communication
Point-to-point communication scales badly, since the number of
connections increases as the square of the number of participants.
Consider how large your system can grow while still using point-
to-point connections—it might be sufficient. Once you're dealing
with tens of servers, you will probably need to replace it with some
kind of one-to-many communication.

Watch out for shared resources
Shared resources can be a bottleneck, a capacity constraint, and
a threat to stability. If your system must use some sort of shared
resource, stress test it heavily. Also, be sure its clients will keep

working if the shared resource gets slow or locks up.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=95

UNBALANCED CAPACITIES <« 96

Unbalanced Capacities

The trade press is bursting with stories about utility computing. The
concept is fabulous: as demand on your application changes, it auto-
matically gets more CPU, memory, and I/O resources assigned to it.
Who does the assigning? Some entity in the infrastructure monitors

your application’s performance and adds resources whenever it sees
that performance doesn’t meet the required service levels. This “mas-
ter control program” lurks in the background, measuring your system’s
performance and dynamically reallocating resources. It is supposed to
guarantee that you will never have a resource crunch again. Of course,
it also bills you according to your usage—the same way you pay for
water, sewer, and electrical utilities. It sounds fantastic, as in “it’s a
fantasy.” The trade magazines are in cahoots with the vendors, who
sense that they can sell a whole lot of products to make all this hap-
pen. True utility computing centers are on the horizon, but right now,
the only real ones are a pale approximation of this vision.

In the world that the other 99.9% of us inhabit, production systems are
deployed to some relatively fixed set of resources. Applications run on
operating systems, which run on hardware.?? The hardware contains
network interfaces, which have cables plugged into them. The other
end of the cable plugs into a switch. In a traditional data center, adding
capacity to a production system requires weeks. (Validate the hardware
request; check port availability, cooling capacity, power capacity, and
rack space; procure the hardware; file change tickets; rack, stack, and
cable the device; install the operating system; update the asset man-
agement database; allocate LUNs on the SAN; configure filesystems;
deploy applications; and add applications to the cluster.) In a crisis, it
can be done in days, particularly if you can rob someone else’s servers
for a while, thereby skipping the whole procurement and installation
phase. Three years ago, I saw six extra servers get recabled, reinstalled,
and reconfigured with new applications, all in a single heroic 36-hour
marathon by one rock-star engineer. Todd, my hat is off to you. Those
six extra servers rescued the launch and turned it from an unmitigated
disaster to simply a mitigated disaster.

20. Increasingly, the “hardware” may be a virtual machine. Nevertheless, in practice,
adding, removing, or migrating virtual machines in response to changes in demand hap-
pens much slower than you might think. The most aggressive operations team I know of
rebalances virtual machines only daily—and they expect that to slow down because vir-
tual machine migration is being brought under a more rigorous change control process.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=96

UNBALANCED CAPACITIES <« 97

Front End
Back End
I 6 Hosts
20 Hosts 6 Instances
75 Instances 450 Threads
3,000 Threads

Figure 4.13: Unbalanced Capacities

All of which is to say that—barring crises of the most extreme sort—
you are more or less stuck with the amount of resources you have. It is
infeasible to add resources for demand spikes of short duration (that is,
a few hours or days). Although the system’s capacity can change over
time because of code releases, tuning, optimization, network reconfig-
uration, or architecture changes, at any particular point in time, it is
essentially static.

This produces the potential for a failure mode
in multitiered systems or systems that rely on Over short periods of
other applications in the enterprise. fime, your hardware

In Figure 4.13, the front-end website has capacity is fixed.
3,000 request-handling threads available.
During peak usage, the majority of these will be serving product catalog
pages or search results. Some smaller number will be in various corpo-
rate “telling” pages. A few will be involved in a checkout process. Of the
threads serving a checkout-related page, a tiny fraction will be querying
the scheduling system to see whether the item can be installed in the
customer’s home by a local service team. You can do some math and
science to predict how many threads could be making simultaneous
calls to the scheduling system. The math is not hard, though it does
rely on statistics and numerous assumptions, which is a notoriously
easy-to-manipulate combination. But, as long as the scheduling sys-
tem can service enough simultaneous requests to meet that demand
prediction, then you’d think it should be sufficient.

Not necessarily.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=97

UNBALANCED CAPACITIES <« 98

Suppose marketing executes an attack of self-denial by offering the
free installation of any big-ticket appliance for one day only. Suddenly,
instead of a tiny fraction of a fraction of front-end threads involving
scheduling queries, you could see two times, four times, or ten times as
many. The fact is that the front end always has the ability to overwhelm
the back end, because their capacities are not balanced.

It might be impractical to evenly match capacity in each system for a
lot of reasons. In this example, it would be a gross misuse of capital to
build up the scheduling system to the same size as the website, just on
the off chance that it will someday need it. The infrastructure would be
99% idle except for one day out of five years!

So if you can’t build the scheduling system large enough to meet the
potentially overwhelming demand from the front end, then you must
build both the front and back ends to be resilient in the face of a
tsunami of requests. For the front end, Circuit Breaker will help by
relieving the pressure on the back end when responses get slow or con-
nections get refused. For the back end, use Handshaking to inform the
front end to throttle back on the requests. Also consider Bulkheads to
reserve capacity on the back end for other transaction types.

Drive Out Through Testing

Unbalanced capacities is another problem rarely observed during QA.
The main reason is that QA for every system is usually scaled down to
just two servers. So during integration testing, there are two servers
representing the front-end system and two servers representing the
back-end system, resulting in a one-to-one ratio.

In production, where the big budget gets allocated, the ratio could be
ten to one or worse.

Should you should make QA an exact scale replica of the entire enter-
prise? It would be nice, wouldn't it? Of course, you can’t do that. You
can apply a test harnesses, though. (See Pattern 5.7, Test Harness, on
page 136.) By mimicking a back-end system wilting under load, the test
harness helps you verify that your front-end system degrades grace-
fully.

On the flip side, if you provide the back-end system, you probably
expect a “normal” workload. That is, you reasonably expect that today’s
distribution of demand and transaction types will closely match yester-
day’s workload. If all else remains unchanged, then that is a reasonable


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=98

UNBALANCED CAPACITIES <« 99

assumption. Many factors can change the workload coming at your
system, though: marketing campaigns; publicity; new code releases in
the front-end systems; and even links on “funnel” sites such as Slash-
dot, Fark, and Digg. As a back-end system provider, you are even fur-
ther removed from the marketers who would deliberately cause these
traffic changes. Surges in publicity are even less predictable.

So, what can you do if your system serves such unpredictable callers?
Be ready for anything. First, use capacity modeling to make sure you're
at least in the ballpark. Three thousand threads calling into seventy-five
threads is not in the ballpark. Second, don’t just test your system with
normal workloads. See what happens if you take the number of calls the
front end could possibly make, double it, and direct it all against your
most expensive transaction. If your system is resilient, it might slow
down—even start to Fail Fast if it can’t process transactions within the
allowed time—but it should recover once the load goes down. Crashing,
hung threads, empty responses, or nonsense replies all indicate that
your system won’t survive and might just start a cascading failure.

B=5F Remember This

Examine server and thread counts
In development and QA, your system probably looks like one or
two servers, and so do all the QA versions of the other systems
you call. In production, the ratio might be more like ten to one
instead of one to one. Check the ratio of front-end to back-end
servers, along with the number of threads each side can handle,
in production compared to QA.

Observe near scaling effects and users
Unbalanced Capacities is a special case of Scaling Effects: one
side of a relationship scales up much more than the other side. A
change in traffic patterns—seasonal, market-driven, or publicity-
driven—can cause a usually benign front-end system to suddenly
flood a back-end system, in much the same way as a Slashdot or
Digg post causes traffic to suddenly flood websites.

Stress both sides of the interface
If you provide the back-end system, see what happens if it sud-
denly gets ten times the highest ever demand, hitting the most
expensive transaction. Does it fail completely? Does it slow down
and recover? If you provide the front-end system, see what hap-
pens if calls to the back end stop responding or get very slow.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=99

SLow RESPONSES <« 100

Slow Responses

i), As you saw in Section 4.1, Socket-Based Protocols, on page 46, gener-
/M ating a slow response is worse than refusing a connection or returning
an error, particularly in the context of middle-layer services in an SOA.

A quick failure allows the calling system to finish processing the trans-
action rapidly. Whether that is ultimately a success or a failure depends
on the application logic. A slow response, on the other hand, ties up
resources in the calling system and the called system.

Slow responses usually result from excessive demand. When all avail-
able request handlers are already working, there is no slack to accept
new requests. They can also happen as a symptom of some underly-
ing problem. Memory leaks often manifest via Slow Responses, as the
virtual machine works harder and harder to reclaim enough space to
process a transaction. This will appear as a high CPU utilization, but
it is all due to garbage collection, not work on the transactions them-
selves. I have occasionally seen Slow Responses resulting from network
congestion. This is relatively rare inside a LAN but can definitely hap-
pen across a WAN—especially if the protocol is too chatty. More fre-
quently, however, I see applications letting their socket’s send buffers
get drained and their receive buffers get full, causing a TCP stall. This
usually happens in a hand-rolled, low-level socket protocol, in which
the read() routine does not loop until the receive buffer is drained.

Slow responses tend to propagate upward from layer to layer in a grad-
ual form of cascading failure.

If you give your system the ability to monitor its own performance (see
Chapter 17, Transparency, on page 265), then it can also tell when
it isn’t meeting its service-level agreement. Suppose that your system
is a service provider that is required to respond within one hundred
milliseconds. When a moving average over the last twenty transactions
exceeds one hundred milliseconds, your system could start refusing
requests. This could be at the application layer, in which the system
would return an error response within the defined protocol. Or, it could
be at the connection layer, by refusing new socket connections. Of
course, any such refusal to provide service must be well-documented
and expected by the callers. (Since the developers of that system will
surely have read this book, they will already be prepared for failures,
and their system will handle them gracefully.)


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=100

SLow RESPONSEs <« 101

B3¢ Remember This

Slow Responses triggers Cascading Failures
Upstream systems experiencing Slow Responses will themselves
slow down and might be vulnerable to stability problems when
the response times exceed their own timeouts.

For websites, Slow Responses causes more traffic
Users waiting for pages frequently hit the Reload button, generat-
ing even more traffic to your already overloaded system.

Consider Fail Fast
If your system tracks its own responsiveness,?! then it can tell
when it is getting slow. Consider sending an immediate error
response when the average response time exceeds the system’s
allowed time (or at the very least, when the average response time
exceeds the caller’s timeout!).

Hunt for memory leaks or resource contention
Contention for an inadequate supply of database connections
produces Slow Responses. Slow Responses also aggravates that
contention, leading to a self-reinforcing cycle. Memory leaks
cause excessive effort in the garbage collector, resulting in slow
response. Inefficient low-level protocols can cause network stalls,
also resulting in slow response.

21. See Chapter 17, Transparency, on page 265.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=101

SLA INVERSION <« 102

4.10 SLA Inversion

A service-level agreement (SLA) is a contractual agreement about how
P8 well the organization must deliver its services. These are quantita-
tive measures of service delivery with financial penalties if the service
provider does not meet them. A number of trends are combining to
make SLAs increasingly important. Outsourcing—of people, infrastruc-
ture, and operations—is a major driver. Increased awareness of the IT
Infrastructure Library (ITIL, soon to be ratified as ISO 20000)?? and
the IT Service Management Framework (itSMF)?? also drives interest in
SLAs. Beyond those, however, there is a general trend in IT operations
toward higher degrees of professionalism. IT managers regard them-
selves as providers of a critical service, necessary for their organiza-
tions to continue functioning. They need quantitative SLAs so they can
allocate resources according to business need rather than responding
to the generic complaint, “My application is too slow; make it faster.”

In the Figure 4.14, on the following page, a company’s new website—
Project Frammitz—is built for high availability. It's mission critical, so
redundancy is built in at every level: power, network, storage, server
hardware, and applications. It uses a shared-nothing (see the sidebar
on page 94) architecture to allow maximum horizontal scalability with-
out bottlenecks. Frammitz is required to meet a 99.99% availability
SLA. That’s slightly more than four minutes of downtime allowed per
month.

Despite the careful engineering, Frammitz can meet that SLA only
through sheer luck.

The system itself is designed for high availability, but it relies on
numerous other services. A stand-alone web system with no links to
settlement, accounting, fulfillment, or inventory systems probably can’t
sell much. Add fraud detection, channel partner integration, outsourc-
ing of key services, spam cannons, geocoding services, address verifi-
cation, and credit card authorization, and you've got a real spiderweb.
Each of those dependencies is vulnerable to the SLAs on the other end
of the connection. Figure 4.15, on page 104 shows the systems that
Frammitz depends upon, and their respective SLAs.

22. See http://www.itil.co.uk/.
23. See http://www.itsmf.com/.


http://www.itil.co.uk/
http://www.itsmf.com/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=102

SLA INVERSION <« 103

Load
Balancer

Web 1 Web 2

App 1 App 2

Clustered
‘ DB 1 H DB 2 ’ <—J

Figure 4.14: Project Frammitz Architecture
I

For every service, inside your company or outside, your system depends
on transport layer availability, naming services (DNS), and application-
level protocols. Any one of those layers for any one of the external con-
nections can fail. Unless every one of your dependencies is engineered
for the same SLA you must provide, then the best you can possibly
do is the SLA of the worst of your service providers. In the case of
Project Frammitz, because it depends on partner 1 and pricing and
promotions, neither of which offer any SLA at all, then strictly speak-
ing, Project Frammitz cannot offer an availability SLA.

According to the laws of probability, the situation is even worse. If built
naively, the probability of failure in Project Frammitz is the joint prob-
ability of a failure in any component or service. That is, a single failure
in a dependency is enough to make Frammitz fail; therefore, P(frammitz
up) = (1 - P(internal failure)) * P(partner 1 up) * P(inventory up) ... ]. If
Frammitz requires five external services that each have a 99.9% avail-
ability, then the best Frammitz can possibly do is 99.5%.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=103

SLA INVERSION <« 104

Partner 1's
DNS
99%

Partner 1's
Application
No SLA

Message Message
Queues Broker
99.99% 99%

Inventory Frammitz Pricing and

99.9% 99.99%

Promotions
No SLA

Corporate MTA Corporate DNS SpamCannon's SpamCannon's
99.999% 99.9% DNS Applications
e e 98.5% 99%

Figure 4.15: Project Frammitz External Dependencies

If Frammitz were perfectly decoupled from all external systems, then
the probability of failure is just P(internal failure). Most systems will
fall somewhere in between.

This is an SLA inversion: a system that must

When calling third meet a high-availability SLA depends on sys-
parties, service levels tems of lower availability. You have to operate
only decrease. on wishful thinking to commit to that high-

availability SLA. There are two basic responses
to an SLA inversion. First, you can decouple from the lower-SLA sys-
tem. Make sure your application can continue to function without the
remote system. Degrade gracefully. Decoupling middleware is an excel-
lent approach to decoupling, but depending on the nature of the remote
service, it might not be an option. At the least, employ circuit break-
ers to protect your application from each of the allies/potential ene-
mies. Second, be careful when crafting your service-level agreements.
Do not simply state “99.99% availability.” (See Chapter 13, Availability,
on page 229.)


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=104

SLA INVERSION <« 105

Instead, reorient the discussion around the availability of specific func-
tions or features in the system. Features that do not depend on any
external parties can have your maximum SLA. Features that require
third-party services can have only whatever service-level agreement the
third party offers, degraded by the probability of a failure in your own
system. This is the IT equivalent of the Second Law of Thermodynam-
ics:2* service levels only go down.

B=5F Remember This

Don’t make empty promises
An SLA inversion means you are operating on wishful thinking:
you've committed to a service level that you can achieve only
through luck.

Examine every dependency
SLA Inversion lurks in unexpected places, particularly in the net-
work infrastructure. For example, what is the SLA on your cor-
porate DNS cluster? (I hope it’s a cluster, anyway.) How about on
the SMTP service? Message queues and brokers? Enterprise SAN?
SLA dependencies are everywhere.

Decouple your SLAs
Be sure you can maintain service even when your dependencies
go down. If you fail whenever they do, then it’s a mathematical
certainty that your availability will always be less than theirs.

24. Entropy always increases.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=105

UNBOUNDED RESULT SETS <« 106

Unbounded Result Sets

4§, Design with skepticism, and you will achieve resilience. Ask, “What can
/M system X do to hurt me?” and then design a way to dodge, duck, dip,
dive, and dodge whatever wrench your supposed ally throws.

If your application is like most, it probably treats its database server
with far too much trust. 'm going to try to convince you that a healthy
dose of skepticism will help your application dodge a bullet or two.

A common structure in the code goes like this: send a query to the
database, and then loop over the result set, processing each row. Often,
processing a row means adding a new data object to a collection. What
happens when the database suddenly returns five million rows instead
of the usual hundred or so? Unless your application explicitly limits the
number of results it is willing to process, it can end up exhausting its
memory or spinning in a while loop long after the user loses interest.

Black Monday

Have you ever had a surprising discovery about an old friend? You
know, like the most boring guy in the office suddenly tells you he’s
into BASE jumping? That happened to me about my favorite commerce
server. One day, with no warning, every instance in the farm—more
than 100 hundred individual, load-balanced instances—started behav-
ing badly. It seemed almost random. An instance would be fine, but
then a few minutes later it would start using 100% of the CPU. Three
or four minutes later, it would crash with a HotSpot memory error. The
operations team was restarting them as fast as they could, but it took
a few minutes to start up and preload cache. Sometimes, they would
start crashing before they were even finished starting. We could not
keep more than 25% of our capacity up and running.

Imagine (or recall, if you've been there) trying to debug a totally novel
failure mode while also participating in a 5 a.m. (with no coffee) confer-
ence call with about twenty people. Some of them are reporting the cur-
rent status, some are trying to devise a short-term response to restore
service, others are digging into root cause, and some of them are just
spreading disinformation.

We sent a system admin and a network engineer to go looking for
denial-of-service attacks. Our DBA reported that the database was
healthy but under heavy load. That made sense, because at start-up,
each instance would issue hundreds of queries to warm up its caches
before accepting requests. Some of the instances would crash before


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=106

UNBOUNDED RESULT SETS <« 107

they started accepting requests, which told me it was not related to
incoming requests. The high CPU condition looked like garbage collec-
tion to me, so I told the team I would start looking for memory problems.
Sure enough, when I watched the “heap available” on one instance, I
saw it heading toward zero. Shortly after it hit zero, the JVM got a
HotSpot error.

Usually, when a JVM runs out of memory, it throws an OutOfMemoryEr
ror. It crashes only if it is executing some native code that doesn’t check
for NULL after calling malloc(). The only native code I knew of was in
the Type 2 JDBC driver.2® Type 2 drivers use a thin layer of Java to call
out to the database vendor’s native API library. Sure enough, dumping
the stack showed execution deep inside the database driver.

But what was the server doing with the database? For that, I asked
our DBA to trace queries from the application servers. Soon enough,
we had another instance crash, so we could see what a doomed server
did before it went into the twilight zone. The queries all looked totally
innocuous, though. Routine stuff. None of the hand-coded SQL mon-
sters that I had seen elsewhere (eight-way unions with five joins in each
subquery, and so on). The last query I saw was just hitting a message
table that the server used for its database-backed implementation of
JMS. The instances mainly used it to tell each other when to flush their
caches. This table should never have more than 1,000 rows, but our
DBA saw that it topped the list of most expensive queries.

For some reason, that usually tiny table had more than ten million
rows. Because the app server was written to just select all the rows
from the table, each instance would try to receive all ten-million-plus
messages. This put a lock on the rows, since the app server issued a
“select for update” query. As it tried to make objects out of the mes-
sages, it would use up all available memory, eventually crashing. Once
the app server crashed, the database would roll back the transaction,
releasing the lock. Then the next app server would step off the cliff by
querying the table.

We did an extraordinary amount of hand-holding and manual work to
compensate for the lack of a LIMIT clause on the app server’s query. By
the time we had stabilized the system, Black Monday was done...it was
Tuesday.

25. For non-Java programmers, native code just means fully compiled instructions for
the host processor. Typically, this is C or C++ code in dynamically linked libraries. Native
code is notorious as a source of crashes under stress.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=107

UNBOUNDED RESULT SETS <« 108

We did eventually find out why there were more than ten million mes-
sages in that table, but that’s a different story.

This failure mode can occur when querying databases, access dis-
tributed objects, or web services. It can also occur via AJAX requests to
web servers.

A common form of this happens when traversing master/detail links.
Because datasets in development tend to be small, the application
developers may never experience negative outcomes. After a system is
in production for a year, however, even a traversal such as “fetch cus-
tomer’s orders” can return huge result sets.

In the abstract, an unbounded result set occurs when the caller allows
the other system to dictate terms. It is a failure in handshaking. In
any API or protocol, the caller should always indicate how much of a
response it is prepared to accept. TCP does this in the “window” header
field. Search engine APIs allow the caller to specify how many results
to return and what the starting offset should be.

There is no standard SQL syntax to specify result set limits. ORM tools
(such as Hibernate and iBatis) support query parameters that can limit
results returned from a query but do not usually limit results when
following an association (such as container to contents). Therefore,
beware any relationship that can accumulate unlimited children, such
as orders to order lines or user profiles to site visits. Entities that keep
an audit trail of changes are also suspect.

If you are handcrafting your own SQL, use one of these recipes to limit
the number of rows to fetch:

-- Microsoft SQL Server
SELECT TOP 15 colspec FROM tablespec

-- Oracle (since 8i)
SELECT colspec FROM tablespec
WHERE rownum <= 15

-- MySQL and PostgreSQL
SELECT colspec FROM tablespec
LIMIT 15

An incomplete solution (but better than nothing) would be to query
for the full results but break out of the processing loop after reaching
the maximum number of rows. Although this does provide some added
stability on the application server, it does so at the expense of wasted
database capacity.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=108

UNBOUNDED RESULT SETS < 109

Unbounded result sets are a common cause of slow responses. They
can result from violation of steady state.

BE=5F Remember This

Use realistic data volumes
Typical development and test data sets are too small to exhibit
this problem. You need production-sized data sets to see what
happens when your query returns a million rows that you turn
into objects. As a side benefit, you'll also get better information
from your performance testing when you use production-sized test
data.

Don'’t rely on the data producers

Even if you think a query will never have more than a handful
of results, beware: it could change without warning because of
some other part of the system. The only sensible numbers are
“zero,” “one,” and “lots,” so unless your query selects exactly one
row, it has the potential to return too many. Don’t rely on the
data producers to create a limited amount of data. Sooner or later,
they’ll go berserk and fill up a table for no reason, and then where
will you be?

Put limits into other application-level protocols
Web service calls, RMI, DCOM, XML-RPC: all are vulnerable to
returning huge collections of objects, thereby consuming too
much memory.



http://books.pragprog.com/titles/mnee/errata/add?pdf_page=109

Chapter

Now that you've seen some antipatterns to avoid, you'll look at the flip
side. In this chapter, you’ll examine some patterns that are the inverse
of the killers from the last chapter. These eight healthy patterns provide
architecture and design guidance to reduce, eliminate, or mitigate the
effects of cracks in the system. Not one of these will help your software
pass QA, but they will help you get a full night’s sleep, or an uninter-
rupted dinner with your family, once your software launches.

Don’t make the mistake of assuming that a system that includes more
of these patterns is superior to one with less of them. “Count of pat-
terns applied” is never a good quality metric. Instead, I want you to
develop a recovery-oriented mind-set. At the risk of sounding like a
broken record, I'll say it again: expect failures. Apply these patterns
wisely to reduce the damage done by an individual failure.



Use TIMEOUTS <111

5.1 Use Timeouts

In the early days, networking issues affected only programmers work-
ing on low-level software: operating systems, network protocols, remote
. filesystems, and so on. Today, all but the most trivial applications deal
" with networks, in some form or another, thus exposing every appli-
cation to the fundamental rule of networks: networks are fallible. The
wire could be broken, some switch or router along the way could be
broken, or the computer you are addressing could be broken. Even if
you've already established communication, any of these elements could
become broken at any time. When that happens, your code can’t just
wait forever for a response that might never come; sooner or later, it
needs to give up. Hope is not a design method.

The timeout is a simple mechanism allowing
you to stop waiting for an answer once you Now and forever,
think it will not come. networks will always be

I once had a project to port the BSD sockets unreliable.
library to a mainframe-based UNIX environ-
ment. I attacked the project with a stack of RFCs and a dusty pile request for comments:
of source code for UNIX System V Release 4. Two issues nagged at Me . poecs s ot
throughout the entire project. First, heavy use of “#ifdef” blocks for dif- standard

ferent architectures made it look less like a portable operating system

than twenty different operating systems intermingled. Second, the net-

working code was absolutely riddled with error handling for different

flavors of timeouts. By the project’s end, I had grown to understand

and appreciate the significance of timeouts.

Well-placed timeouts provide fault isolation; a problem in some other
system, subsystem, or device does not have to become your problem.
Unfortunately, at higher and higher levels of abstraction, away from the
dirty world of hardware, good placement of timeouts becomes increas-
ingly rare. Indeed, many high-level APIs have few or no explicit timeout
settings. Vendor -provided client libraries are notoriously devoid of time-
outs. API libraries often handle socket communication on behalf of the
application. When these libraries hide the actual socket from the appli-
cation, they also prevent the application from setting vital timeouts.

Timeouts can also be relevant within a single application. Any resource
pool can be exhausted. Conventional usage dictates that the calling
thread should be blocked until one of the resources is checked in. (See
Antipattern 4.5, Blocked Threads, on page 81.)


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=111

Use TIMEOUTS <112

( )

l’z Joe Asks...

J

= __Is All This Clutter Really Necessary?
You may think, as | did when porting the sockets library, that
handling all the possible timeouts creates undue complexity
in your code. It certainly adds complexity. You may find that
half your code is devoted to error handling instead of provid-
ing features. | argue, however, that the essence of aiming for
production—instead of aiming for QA—is handling the slings
and arrows of outrageous fortune. That error-handling code, if
done well, adds resilience. Your users may not thank you for it,
because nobody notices when a system doesn’t go down, but
you will sleep better at night.

It is essential that any resource pool that blocks threads must have a
timeout to ensure threads are eventually unblocked whether resources
become available or not.

Also beware of java.lang.Object.wait(). Use the form that takes a timeout
argument, instead of the simpler no-argument form. The same goes for
classes in the new! java.uti.concurrent library. Always use the form of
poll(), offer(), or tryLock() that can take a timeout argument. If you don'’t,
you might end up waiting forever.

An approach to dealing with pervasive timeouts is to organize long-
running operations into a set of primitives that you can reuse in many
places. For example, suppose you need to check out a database connec-
tion from a resource pool, run a query, turn the ResultSet into objects,
and then check the database connection back into the pool. At least
three points in that interaction could hang indefinitely. Instead of cod-
ing that sequence of interactions dozens of places, with all the asso-
ciated handling of timeouts (not to mention other kinds of errors),
create a QueryObject (see Patterns of Enterprise Application Architec-
ture [ ]) to represent the part of the interaction that changes.

1. Added in Java 5. In earlier versions of Java, you can download the “util-concurrent”
library. Substitute package names appropriately.


http://books.pragprog.com/titles/mnee/errata/add?pdf_page=112

Uske TIMEoUuTs <113

Use a generic Gateway to provide the template for connection handling,
error handling, query execution, and result processing. (See Spring’s
JdbcTemplate.2) Collecting this common interaction pattern into a single
class also makes it easier to apply the Circuit Breaker pattern.

Timeouts are often observed together with retries. Under the philos-
ophy of “best effort,” the software attempts to repeat an operation
that timed out. Immediately retrying an operation after a failure has
a number of consequences, but only some of them are beneficial. If the
operation failed because of any significant problem, it is likely to fail
again if retried immediately. Some kinds of transient failures might be
overcome with a retry (for example, dropped packets over a wireless
WAN). Within the walls of a data center, however, the failure is prob-
ably because of something wrong with the other end of a connection.
Despite Cisco’s advertisements about “self-healing networks,” my expe-
rience has been that problems on the network, or with other servers,
tend to last for a while. Thus, fast retries are very likely to fail again.

From the client’s perspective, making me wait longer is a very bad thing.
If you cannot complete an operation because of some timeout, it is
better for you to return a result. It can be a failure, a success, or a note
that you've queued the work for later execution (if I should care about
the distinction). In any case, just come back with an answer. Making
me wait while you retry the operation might push your response time
past my timeout.

On the other hand, queuing the work for a slow retry later is a very
good thing, making the system much more robust. Imagine if every
mail server between the sender and receiver had to be online, ready to
process your mail, and had to respond within sixty seconds in order
for email to make it through. The store-and-forward approach obvi-
ously makes much more sense. In the case of failure in a remote server,
queue-and-retry ensures that once the remote server is healthy again,
the overall system will recover. Work does not need to be lost com-
pletely just because part of the larger system is not functioning. How
fast is fast enough? It depends on your application and your users. For
a website using service-oriented architectures, “fast enough” is proba-
bly anything less than 250 milliseconds. Beyond that, you will start to
lose capacity and customers.

2. See http://static.springframework.org/spring/docs/1.2.x/api/org/springframework/jdbc/core/JdbcTemplate.html.


http://static.springframework.org/spring/docs/1.2.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=113

Use TIMEOUTS <114

Timeouts have natural synergy with circuit breakers. A circuit breaker
can tabulate timeouts, tripping to the “off” state if too many occur.

The Timeouts and Fail Fast patterns both address latency problems.
The Timeouts pattern is useful when you need to protect your system
from someone else’s failure. Fail Fast is useful when you need to report
why you won't be able to process some transaction. Fail Fast applies to
incoming requests, whereas the Timeouts pattern applies primarily to
outbound requests. They're two sides of the same coin.

Timeouts can also help with unbounded result sets by preventing the
client from processing the entire result set, but they aren’t the most
effective approach to that particular problem. I'd consider that a stop-
gap but not much more than that.

Timeouts apply to a general class of problems. As such, they help sys-
tems recover from unanticipated events.

B=5F Remember This

Apply to Integration Points, Blocked Threads, and Slow Responses
The Timeouts pattern prevents calls to Integrat