

BEGINNING FLUTTER®

INTRODUCTION. . xxi

▸▸ PART I	 THE FOUNDATIONS OF FLUTTER PROGRAMMING

CHAPTER 1	 Introducing Flutter and Getting Started. . 3

CHAPTER 2	 Creating a Hello World App . . 25

CHAPTER 3	 Learning Dart Basics . . 43

CHAPTER 4	 Creating a Starter Project Template. . 65

CHAPTER 5	 Understanding the Widget Tree. . 77

▸▸ PART II	 INTERMEDIATE FLUTTER: FLESHING OUT AN APP

CHAPTER 6	 Using Common Widgets. . 103

CHAPTER 7	 Adding Animation to an App. . 151

CHAPTER 8	 Creating an App’s Navigation. . 177

CHAPTER 9	 Creating Scrolling Lists and Effects . . 221

CHAPTER 10	 Building Layouts. . 253

CHAPTER 11	 Applying Interactivity . . 267

CHAPTER 12	 Writing Platform-Native Code. . 307

▸▸ PART III	 CREATING PRODUCTION-READY APPS

CHAPTER 13	 Saving Data with Local Persistence. . 327

CHAPTER 14	 Adding the Firebase and Firestore Backend 375

CHAPTER 15	 Adding State Management to the Firestore Client App. 411

CHAPTER 16	 Adding BLoCs to Firestore Client App Pages 453

INDEX. . 489

BEGINNING

Flutter®

BEGINNING

Flutter®

A HANDS ON GUIDE TO APP DEVELOPMENT

Marco L. Napoli

Beginning Flutter®: A Hands On Guide To App Development

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-55082-2
ISBN: 978-1-119-55087-7 (ebk)
ISBN: 978-1-119-55085-3 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019940772

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Flutter is a registered trademark of Google, LLC. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in
this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

To God; my wife Carla; my children, Michael, Timothy,

and Joseph; and you, the reader.

ABOUT THE AUTHOR

Marco L. Napoli  is the CEO of Pixolini, Inc., and an experienced mobile, web, and desktop
app developer. He has a strong proven record in developing visually elegant and simple-to-use
systems. He wrote his first native iOS app in 2008. His work and published apps can be seen at
www.pixolini.com.

He has loved computers from an early age. His dad noticed and bought him a PC, and he has been
developing software since. He attended the University of Miami for an architecture degree, but he had
already started his own business, and after four years he decided architecture was not for him. He
developed systems for a diverse mix of industries including banking, healthcare, real estate, education,
trucking, entertainment, and horizontal markets. Later, a leading banking software company acquired
his MLN Enterprises, Inc., company. The main products were mortgage banking, processing, and
marketing software.

Next, he started consulting and later created IdeaBlocks, Inc., with the purpose of software devel-
opment consulting. He developed for a client that sold hospitality software for mobile, desktop,
and web platforms. The main product focus was on hotel sales, catering, webspace, guest service,
and maintenance software. The products synced via cloud servers using Microsoft SQL Server with
encryption applied to sensitive data. His client’s customers included Hyatt Place and Summerfield,
Hilton Hotel, Holiday Inn, Hampton Inn, Marriott, Best Western, Radisson Hotel, Sheraton Hotels,
Howard Johnson, Embassy Suites, and many more. Once his contract was done, he closed IdeaBlocks.

Today, his focus is running Pixolini. He develops mobile, desktop, and web apps for iOS, Mac,
Android, Windows, and the Web. He also teaches a course at Udemy using a web app that he devel-
oped for analyzing real estate investment calculations. He has developed and published more than 10
apps in each respective store.

He was interviewed by Hillel Coren for the “It’s All Widgets Flutter Podcast” on November 27,
2018, and the episode can be found at https://itsallwidgets.com/podcast/episodes/1/
marco-napoli.

“I cannot code without espresso, cappuccino, or coffee, and I love martial arts.”

Marco is married to Carla, and they have three amazing children.

http://www.pixolini.com
https://itsallwidgets.com/podcast/episodes/1/marco-napoli
https://itsallwidgets.com/podcast/episodes/1/marco-napoli

ABOUT THE TECHNICAL EDITOR

Zeeshan Chawdhary is an avid technologist, with 14 years of experience in the industry. Having
started his career with mobile development with J2ME, he soon ventured into web development,
creating robust and scalable web applications. As a chief technology officer, he has led teams to build
web and mobile apps for companies such as Nokia, Motorola, Mercedes, GM, American Airlines, and
Marriott. He is currently director of development on an international team, serving clients with tech-
nologies like Magento, WordPress, WooCommerce, Laravel, NodeJS, Google Puppeteer, ExpressJS,
ReactJS, and .NET. He has also authored books on iOS, Windows Phone, and iBooks.

Zeeshan is based in Mumbai, India. He can be reached at imzeeshanc@gmail.com or on Twitter
@imzeeshan, and he maintains a Medium publication at https://medium.com/@imzeeshan.

mailto:imzeeshanc@gmail.com
https://medium.com/@imzeeshan

ACKNOWLEDGMENTS

I want to thank the talented team at Wiley, including all of the editors, managers, and many people
behind the scenes who helped to get this book published. My thanks to Devon Lewis for recogniz-
ing early on that Flutter is having a major impact on the industry, to Candace Cunningham for her
project editing skills and her insights, to Zeeshan Chawdhary for his technical input and suggestions,
to Barath Kumar Rajasekaran and his team for getting the production of the book ready, and to Pete
Gaughan for always being available.

A special thanks to the Flutter team at Google, especially Tim Sneath, Ray Rischpater, and Filip
Hráček, for their kindness and invaluable feedback.

A thank-you to my wife and children who have patiently listened and given feedback for the projects
created in this book.

CONTENTS

INTRODUCTION	 xxi

PART I: THE FOUNDATIONS OF FLUTTER PROGRAMMING

CHAPTER 1: INTRODUCING FLUTTER AND GETTING STARTED	 3

Introducing Flutter	 4
Defining Widgets and Elements	 5

Understanding Widget Lifecycle Events	 5
The StatelessWidget Lifecycle	 6
The StatefulWidget Lifecycle	 6

Understanding the Widget Tree and the Element Tree	 8
Stateless Widget and Element Trees	 9
Stateful Widget and Element Trees	 10

Installing the Flutter SDK	 13
Installing on macOS	 13

System Requirements	 13
Get the Flutter SDK	 13
Check for Dependencies	 14
iOS Setup: Install Xcode	 14
Android Setup: Install Android Studio	 14
Set Up the Android Emulator	 15

Installing on Windows	 15
System Requirements	 15
Get the Flutter SDK	 16
Check for Dependencies	 16
Install Android Studio	 16
Set Up the Android Emulator	 17

Installing on Linux	 17
System Requirements	 17
Get the Flutter SDK	 18
Check for Dependencies	 19
Install Android Studio	 19
Set Up the Android Emulator	 19

Configuring the Android Studio Editor	 20
Summary	 20

CONTENTS

xvi

CHAPTER 2: CREATING A HELLO WORLD APP	 25

Setting Up the Project	 25
Using Hot Reload	 30
Using Themes to Style Your App	 33

Using a Global App Theme	 33
Using a Theme for Part of an App	 35

Understanding Stateless and Stateful Widgets	 37
Using External Packages	 38

Searching for Packages	 39
Using Packages	 40

Summary	 41

CHAPTER 3: LEARNING DART BASICS	 43

Why Use Dart?	 43
Commenting Code	 44
Running the main() Entry Point	 45
Referencing Variables	 45
Declaring Variables	 46

Numbers	 47
Strings	 47
Booleans	 47
Lists	 47
Maps	 48
Runes	 48

Using Operators	 49
Using Flow Statements	 51

if and else	 51
ternary operator	 52
for Loops	 52
while and do-while	 53
while and break	 54
continue	 54
switch and case	 55

Using Functions	 55
Import Packages	 57
Using Classes	 57

Class Inheritance	 60
Class Mixins	 60

Implementing Asynchronous Programming	 61
Summary	 62

xvii

CONTENTS

CHAPTER 4: CREATING A STARTER PROJECT TEMPLATE	 65

Creating and Organizing Folders and Files	 65
Structuring Widgets	 69
Summary	 74

CHAPTER 5: UNDERSTANDING THE WIDGET TREE	 77

Introduction to Widgets	 77
Building the Full Widget Tree	 79
Building a Shallow Widget Tree	 85

Refactoring with a Constant	 86
Refactoring with a Method	 86
Refactoring with a Widget Class	 91

Summary	 99

PART II: INTERMEDIATE FLUTTER: FLESHING OUT AN APP

CHAPTER 6: USING COMMON WIDGETS	 103

Using Basic Widgets	 103
SafeArea	 107
Container	 108
Text	 112
RichText	 112
Column	 114
Row	 115

Column and Row Nesting	 115
Buttons	 119

FloatingActionButton	 119
FlatButton	 121
RaisedButton	 121
IconButton	 122
PopupMenuButton	 123
ButtonBar	 126

Using Images and Icons	 130
AssetBundle	 130
Image	 131
Icon	 132

Using Decorators	 135
Using the Form Widget to Validate Text Fields	 139
Checking Orientation	 143
Summary	 149

CONTENTS

xviii

CHAPTER 7: ADDING ANIMATION TO AN APP	 151

Using AnimatedContainer	 152
Using AnimatedCrossFade	 155
Using AnimatedOpacity	 160
Using AnimationController	 164

Using Staggered Animations	 170
Summary	 175

CHAPTER 8: CREATING AN APP’S NAVIGATION	 177

Using the Navigator	 178
Using the Named Navigator Route	 188

Using Hero Animation	 188
Using the BottomNavigationBar	 193
Using the BottomAppBar	 199
Using the TabBar and TabBarView	 203
Using the Drawer and ListView	 207
Summary	 217

CHAPTER 9: CREATING SCROLLING LISTS AND EFFECTS	 221

Using the Card	 222
Using the ListView and ListTile	 223
Using the GridView	 230

Using the GridView.count	 230
Using the GridView.extent	 232
Using the GridView.builder	 233

Using the Stack	 237
Customizing the CustomScrollView with Slivers	 243
Summary	 250

CHAPTER 10: BUILDING LAYOUTS	 253

A High-Level View of the Layout	 253
Weather Section Layout	 256
Tags Layout	 256
Footer Images Layout	 257
Final Layout	 257

Creating the Layout	 257
Summary	 265

xix

CONTENTS

CHAPTER 11: APPLYING INTERACTIVITY	 267

Setting Up GestureDetector: The Basics	 267
Implementing the Draggable and Dragtarget Widgets	 275
Using the GestureDetector for Moving and Scaling	 278
Using the InkWell and InkResponse Gestures	 289
Using the Dismissible Widget	 296
Summary	 303

CHAPTER 12: WRITING PLATFORM-NATIVE CODE	 307

Understanding Platform Channels	 307
Implementing the Client Platform Channel App	 309
Implementing the iOS Host Platform Channel	 313
Implementing the Android Host Platform Channel	 318
Summary	 322

PART III: CREATING PRODUCTION-READY APPS

CHAPTER 13: SAVING DATA WITH LOCAL PERSISTENCE	 327

Understanding the JSON Format	 328
Using Database Classes to Write, Read, and Serialize JSON	 330
Formatting Dates	 331
Sorting a List of Dates	 332
Retrieving Data with the FutureBuilder	 333
Building the Journal App	 335

Adding the Journal Database Classes	 339
Adding the Journal Entry Page	 344
Finishing the Journal Home Page	 359

Summary	 371

CHAPTER 14: ADDING THE FIREBASE AND FIRESTORE BACKEND	 375

What Are Firebase and Cloud Firestore?	 376
Structuring and Data Modeling Cloud Firestore	 377
Viewing Firebase Authentication Capabilities	 380
Viewing Cloud Firestore Security Rules	 381

Configuring the Firebase Project	 383
Adding a Cloud Firestore Database and Implementing Security	 391
Building the Client Journal App	 395

CONTENTS

xx

Adding Authentication and Cloud Firestore Packages to the Client App	 395
Adding Basic Layout to the Client App	 403
Adding Classes to the Client App	 406

Summary	 409

CHAPTER 15: ADDING STATE MANAGEMENT TO
THE FIRESTORE CLIENT APP	 411

Implementing State Management	 412
Implementing an Abstract Class	 414
Implementing the InheritedWidget	 415
Implementing the Model Class	 416
Implementing the Service Class	 417
Implementing the BLoC Pattern	 417
Implementing StreamController, Streams, Sinks, and StreamBuilder	 419

Building State Management	 421
Adding the Journal Model Class	 422
Adding the Service Classes	 424
Adding the Validators Class	 430
Adding the BLoC Pattern	 432

Adding the AuthenticationBloc	 432
Adding the AuthenticationBlocProvider	 435
Adding the LoginBloc	 436
Adding the HomeBloc	 441
Adding the HomeBlocProvider	 443
Adding the JournalEditBloc	 444
Adding the JournalEditBlocProvider	 447

Summary	 449

CHAPTER 16: ADDING BLOCS TO FIRESTORE CLIENT APP PAGES	 453

Adding the Login Page	 454
Modifying the Main Page	 460
Modifying the Home Page	 465
Adding the Edit Journal Page	 472
Summary	 484

INDEX	 489

INTRODUCTION

Flutter was unveiled at the 2015 Dart Developer Summit under the name Sky. Eric Seidel (engineer
director for Flutter at Google) opened his talk by saying that he was there to speak about Sky, which
was an experimental project presented as “Dart on mobile.” He had built and published a demo on
the Android Play Store, and he started the demo by stating that there was no Java drawing this appli-
cation, meaning it was native. The first feature Eric showed was a square spinning. Driving the device
at 60 Hertz was Dart, which was the first goal for the system: to be fast and responsive. (He wanted
to go much faster [i.e., 120 Hertz], but he was restricted by the capability of the device he was using.)
Eric went on to show multitouch, fast scrolling, and other features. Sky provided the best mobile
experience (for users and developers); the developers took lessons from working on the Web, and they
thought they could do better. The user interface (UI) and the business logic were both written in Dart.
The goal was to be platform-agnostic.

Fast-forward to 2019, and Flutter now is powering Google’s smart display platform including the
Google Home Hub and is the first step toward supporting desktop apps with Chrome OS. The result
is that Flutter supports desktop apps running on Mac, Windows, and Linux. Flutter is described as
a portable UI framework for all screens like mobile, web, desktop, and embedded devices from a
single codebase.

This book teaches you how to develop mobile applications for iOS and Android from a single code-
base by using the Flutter framework and Dart as the programming language. As Flutter is expanding
beyond mobile, you can take the knowledge that you learn in this book and apply it to other plat-
forms. You don’t need to have previous programming experience; the book starts with the basics and
progresses to developing production-ready applications.

I wrote this book in a simple, down-to-earth style to teach you each concept. You can follow the “Try
It Out” practice-style exercises to implement what you learn and create feature-focused applications.

Each chapter builds upon the previous ones and adds new concepts to advance your knowledge for
building fast, beautiful, animated, and functional apps. By the end of this book, you’ll be able to take
the knowledge and techniques you have learned and apply them to develop your own applications.
In the last four chapters of the book, you’ll create a journal app with the ability to save data locally
and a second journal app that adds mood tracking with state management, authentication, and
multidevice data cloud syncing capabilities including offline sync, which is a must for today’s mobile
applications. I have made every effort to teach you the techniques using a friendly and commonsense
approach so you can learn the basics all the way to advanced concepts needed for the workplace.

From the first time I saw Google presenting Flutter, it has captured my attention. What especially
attracted me to Flutter was the widgets concept. You take widgets and nest (composition) them
together to create the UI needed, and best of all, you can easily create your own custom widgets. The
other major item that attracted me to Flutter was the ability to develop for iOS and Android from a
single codebase; this is something I had been needing for a long time and never found a great solution
until Flutter. Flutter is declarative; it’s a modern reactive framework where widgets handle what the
UI should look like according to their current state.

Introduction

xxii

My passion for developing with Flutter and Dart keeps growing, and I decided to write this book
to share my experiences and expertise with others. I firmly believe the book teaches everyone from
beginners to knowledgeable developers, giving them the tools and knowledge to build and advance as
a multiplatform developer. This book is full of tips, insights, what-if scenarios, diagrams, screenshots,
sample code, and exercises. All of the project source code is available for download on this book’s
web page at www.wiley.com/go/beginningflutter.

WHO THIS BOOK IS FOR

This book is for everyone who wants to learn how to program mobile, multiplatform applications by
using Flutter and Dart. It is for absolute beginners who want to learn to develop modern, fast native
performance, and reactive mobile applications for iOS and Android. However, it also takes you from
absolute beginner to learning the advanced concepts required to develop production-ready applica-
tions. It’s also for people who are familiar with programming who want to learn the Flutter frame-
work and the Dart language.

This book is written with the assumption of having no prior programming, Flutter, or Dart experi-
ence. If you have programmed in other languages or are familiar with Flutter and Dart, you’ll simply
get a deeper understanding of each concept and technique.

WHAT THIS BOOK COVERS

The early chapters introduce and cover the architecture of the Flutter framework, the Dart language,
and steps for creating a new project. You’ll use that knowledge to create new projects for each exer-
cise in the book. Each chapter is written to advance your knowledge by focusing on new concepts.
The chapters are also written to be reference material to refresh your knowledge of each concept.

Starting in Chapter 2, as you learn each concept and technique, you’ll follow the “Try It Out”
practice-style exercises and create new application projects to put into practice what you’ve learned.
As you move forward, each chapter is designed to teach you more advanced topics. The last four
chapters focus on creating two production-ready applications by applying previously learned materi-
als and implementing new advanced concepts. You can also find these exercises as part of the code
downloads on this book’s page at www.wiley.com/go/beginningflutter.

HOW THIS BOOK IS STRUCTURED

This book is divided into 16 chapters. Although each chapter builds upon the previous concepts,
they are also self-contained and written for you to be able to jump to a particular interest to learn or
refresh that topic.

http://www.wiley.com/go/beginningflutter
http://www.wiley.com/go/beginningflutter

Introduction

xxiii

Part I: The Foundations of Flutter Programming
In the first part of the book, you’ll get to know the core aspects of Flutter so you have a solid founda-
tion to build on.

Chapter 1: Introducing Flutter and Getting Started—You’ll learn how the Flutter framework
works behind the scenes and about the benefits of the Dart language. You’ll see how Widget,
Element, and RenderObject are related, and you’ll get an understanding of how they form
the widget tree, element tree, and render tree. You’ll get an introduction to StatelessWidget
and StatefulWidget and their lifecycle events. You’ll learn that Flutter is declarative, mean-
ing Flutter builds the UI to reflect the state of the app. You’ll learn how to install the Flutter
framework, Dart, editor, and plugins on macOS, Windows, or Linux.

Chapter 2: Creating a Hello World App—You’ll learn how to create your first Flutter project
to get familiarized with the process. By writing this minimal example, you’ll learn the basic
structure of an application, how to run the app on the iOS simulator and the Android emula-
tor, and how to make changes to the code. At this point, do not worry about understanding
the code yet; I’ll walk you through it step-by-step in later chapters.

Chapter 3: Learning Dart Basics—Dart is the foundation of learning to develop Flutter
applications, and in this chapter you’ll understand Dart’s basic structure. You’ll learn how to
comment your code, how the main() function starts the app, how to declare variables, and
how to use the List to store an array of values. You’ll learn about the operator symbols and
how to use them to perform arithmetic, equality, logical, conditional, and cascade notation.
You’ll learn how to use external packages and classes and how to use the import statement.
You’ll learn how to implement asynchronous programming by using a Future object. You’ll
learn how to create classes to group code logic and use variables to hold data and how to
define functions to execute logic.

Chapter 4: Creating a Starter Project Template—You’ll learn the steps to create a new project
that you’ll use and replicate to create all of the exercises in this book. You’ll learn how to
organize files and folders in your project. You’ll create the most commonly used names to
group your widgets, classes, and files by the type of action needed. You’ll learn how to struc-
ture widgets and import external packages and libraries.

Chapter 5: Understanding the Widget Tree—The widget tree is the result of composing (nest-
ing) widgets to create simple and complex layouts. As you start nesting widgets, the code
can become harder to follow, so good practice is to try to keep the widget tree as shallow as
possible. You’ll get an introduction to the widgets that you’ll use in this chapter. You’ll get an
understanding of the effects of a deep widget tree, and you’ll learn how to refactor it into a
shallow widget tree, resulting in more manageable code. You’ll learn three ways to create a
shallow widget tree by refactoring with a constant, with a method, and with a widget class.
You’ll learn the benefits and cons of each technique.

Part II: Intermediate Flutter: Fleshing Out an App
In Part II of the book, you’ll get your hands dirty, stepping through how to add functionality that cre-
ates great user experiences.

Introduction

xxiv

Chapter 6: Using Common Widgets—You’ll learn how to use the most common widgets,
which are the base building blocks for creating beautiful UI and user experience (UX). You’ll
learn how to load images from the application’s asset bundle and over the Web via a uniform
resource locator (URL). You’ll learn how to use the included Material Components icons and
how to apply decorators to enhance the look and feel of widgets or use them as input guides
to entry fields. You’ll learn how to use the Form widget to validate text field entry widgets
as a group. You’ll learn different ways to detect orientation to lay out widgets accordingly
depending on whether the device is in portrait or landscape mode.

Chapter 7: Adding Animation to an App—You’ll learn how to add animation to an app to
convey action. When animation is used appropriately, it improves the UX, but too many or
unnecessary animations can make the UX worse. You’ll learn how to create Tween anima-
tions. You’ll learn how to use the built-in animations by using the AnimatedContainer,
AnimatedCrossFade, and AnimatedOpacity widgets. You’ll learn how to create custom
animations by using the AnimationController and AnimatedBuilder classes. You’ll learn
how to create staggered animations by using multiple Animation classes. You’ll learn how to
use the CurvedAnimation class for nonlinear effects.

Chapter 8: Creating an App’s Navigation—You’ll learn that good navigation creates a great
UX, making it easy to access information. You’ll learn that adding animation while navigat-
ing to another page can also improve the UX as long as it conveys an action, rather than
being a distraction. You’ll learn how to use the Navigator widget to manage a stack of
routes to move between pages. You’ll learn how to use the Hero widget to convey a naviga-
tion animation to move and size a widget from one page to another. You’ll learn different
ways to add navigation by using the BottomNavigationBar, BottomAppBar, TabBar, Tab-
BarView, and Drawer widgets. You’ll also learn how to use the ListView widget together
with the Drawer widget to create a list of navigational menu items.

Chapter 9: Creating Scrolling Lists and Effects—You’ll learn how to use different widgets to
create a scrolling list to help users view and select information. You’ll learn how to use the
Card widget to group information used in conjunction with the scrolling list widgets. You’ll
learn how to use the ListView widget to build a linear list of scrollable widgets. You’ll learn
how to use the GridView to display tiles of scrollable widgets in a grid format. You’ll learn
how to use the Stack widget to overlap, position, and align its children widgets in conjunc-
tion with a scrolling list. You’ll learn how to implement the CustomScrollView to create
custom scrolling effects like parallax animation by using sliver widgets like SliverSafeArea,
SliverAppBar, SliverList, SliverGrid, and more.

Chapter 10: Building Layouts—You’ll learn how to nest widgets to build professional
layouts. This concept is a major part of creating beautiful layouts, and it’s known as com-
position. Basic and complex layouts are mostly based on vertical or horizontal widgets
or a combination of both. This chapter’s goal is to create a journal entry page displaying
details like a header image, title, diary detail, weather, (journal location) address, tags, and
footer images. To lay out the page, you’ll use widgets such as SingleChildScrollView,
SafeArea, Padding, Column, Row, Image, Divider, Text, Icon, SizedBox, Wrap, Chip, and
CircleAvatar.

Chapter 11: Applying Interactivity—You’ll learn how to add interactivity to an app by using
gestures. In mobile applications, gestures are the heart of listening to user interaction, and
making use of gestures can result in an app with a great UX. However, overusing gestures

Introduction

xxv

without adding value by conveying an action can create a poor UX. You’ll learn how to use
the GestureDetector gestures such as the tap, double tap, long press, pan, vertical drag,
horizontal drag, and scale. You’ll learn how to use the Draggable widget to drag over the
DragTarget widget to create a drag-and-drop effect to change the widget color. You’ll learn
how to implement the InkWell and InkResponse widgets that respond to touch and visually
show a splash animation. You’ll learn how to implement the Dismissible widget that is
dismissed by dragging. You’ll learn how to use the Transform widget and the Matrix4 class
to scale and move widgets.

Chapter 12: Writing Platform-Native Code—In some cases, you need to access specific iOS or
Android API functionality, and you’ll learn how to use platform channels to send and receive
messages between the Flutter app and the host platform. You’ll learn how to use the Method-
Channel to send messages from the Flutter app (client side) and the FlutterMethodChannel
on iOS and MethodChannel on Android to receive calls (host side) and send back results.

Part III: Creating Production-Ready Apps
For the final four chapters of the book, you’ll move into more advanced territory and prepare to
release your sample apps to production.

Chapter 13: Saving Data with Local Persistence—You’ll learn how to build a journal app.
You’ll learn how to persist data over app launches by using the JSON file format and sav-
ing the file to the local iOS and Android filesystem. JavaScript Object Notation (JSON) is a
common open-standard and language-independent file data format with the benefits of being
human-readable text. You’ll learn how to create database classes to write, read, and serialize
JSON files. You’ll learn how to format a list and sort it by date.

In a mobile application, it’s important not to block the UI while processing, and you’ll learn
how to use the Future class and the FutureBuilder widget. You’ll learn how to present a
date-selection calendar, validate user entry data, and move focus between entry fields.

You’ll also learn how to delete records using the Dismissible widget by dragging or flinging
on an entry. To sort entries by date, you’ll learn how to use the List().sort method and
the Comparator function. To navigate between pages, you’ll use the Navigator widget, and
you’ll learn how to use the CircularProgressIndicator widget to show that an action
is running.

Chapter 14: Adding the Firebase and Firestore Backend —Spanning this chapter, Chapter 15,
and Chapter 16, you’ll use techniques that you have learned in previous chapters along with
new concepts and tie them together to create a production-level mood journaling app. In a
production-level app, how would you combine what you learned, improve performance by
redrawing only the widgets with data changes, pass state between pages and up the widget
tree, handle the user authentication credentials, sync data between devices and the cloud, and
create classes that handle platform-independent logic between mobile and web apps? These
are the reasons why these last three chapters will teach you how to apply the previous tech-
niques you learned along with new important ones to develop a production-level mobile app.

In these last three chapters, you’ll learn how to implement app-wide and local-state manage-
ment and maximize platform code sharing by implementing the Business Logic Component
(BLoC) pattern.

Introduction

xxvi

You’ll learn how to use authentication and persist data to a cloud database by using Google’s
Firebase backend server infrastructure, Firebase Authentication, and Cloud Firestore. You’ll
learn that Cloud Firestore is a NoSQL document database to store, query, and sync data with
offline support for mobile and web apps. You’ll be able to synchronize data between multiple
devices. You’ll learn how to set up and build serverless applications.

Chapter 15: Adding State Management to the Firestore Client App—You’ll continue to edit
the mood journaling app created in Chapter 14. You’ll learn how to create app-wide and
local-state management that uses the InheritedWidget class as a provider to manage and
pass State between widgets and pages.

You’ll learn how to use the BLoC pattern to create BLoC classes, for example, managing
access to the Firebase Authentication and Cloud Firestore database service classes. You’ll
learn how to use the InheritedWidget class to pass a reference between the BLoC and
pages. You’ll learn how to use the reactive approach by using StreamBuilder, StreamCon-
troller, and Stream to populate and refresh data.

You’ll learn how to create service classes to manage the Firebase Authentication API and
the Cloud Firestore database API. You’ll create and take advantage of an abstract class to
manage user credentials. You’ll learn how to create a data model class to handle the mapping
of the Cloud Firestore QuerySnapshot to individual records. You’ll learn how to create a
class to manage a list of mood icons, description, and icon rotation position according to the
selected mood. You’ll use the intl package and learn how to create a date formatting class.

Chapter 16: Adding BLoCs to Firestore Client App Pages—You’ll continue to edit the mood
journaling app created in Chapter 14 with the additions from Chapter 15.

You’ll learn how to apply the BLoC, service, provider, model, and utility classes to the UI
widget pages. The benefit of using the BLoC pattern allows for separation of the UI widgets
from the business logic. You’ll learn how to use dependency injection to inject service classes
into the BLoC classes. By using dependency injection, the BLoCs remain platform-agnostic.
This concept is extremely important since the Flutter framework is expanding beyond mobile
and onto web, desktop, and embedded devices.

You’ll learn how to apply app-wide authentication state management by implementing
classes that apply the BLoC pattern. You’ll learn how to create a login page that implements
the BLoC pattern class to validate emails, passwords, and user credentials. You’ll learn how
to pass state between pages and the widget tree by implementing provider classes (Inherit-
edWidget). You’ll learn how to modify the home page to implement and create BLoC pattern
classes to handle login credentials validation, create a journal entries list, and add and delete
individual entries. You’ll learn how to create the journal edit page that implements the BLoC
pattern classes to add, modify, and save existing entries.

WHAT YOU NEED TO USE THIS BOOK

You’ll need to install the Flutter framework and Dart to create the example projects. This book uses
Android Studio as its primary development tool, and all projects compile for iOS and Android. For
compiling iOS applications, you’ll need a Mac computer with Xcode installed. You can also use other

Introduction

xxvii

editors like Microsoft Visual Studio Code or IntelliJ IDEA. For the last major project, you’ll need to
create a free Google Firebase account to take advantage of cloud authentication and data syncing,
including offline support.

The source code for the samples is available for download from www.wiley.com/go/begin-
ningflutter.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT	 You should work through all the Try It Out exercises in the book.

1.	 These exercises consist of a set of numbered steps.
2.	 Follow the steps with your copy of the database.

HOW IT WORKS

At the end of each Try It Out, the code you’ve typed will be explained in detail.

As for styles in the text:

➤➤ We italicize new terms and important words when we introduce them.

➤➤ We show keyboard strokes like this: Ctrl+A.

➤➤ We show filenames, URLs, and code within the text like so:

persistence.properties

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
 context or to show changes from a previous code snippet.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time, you will be helping us provide even higher-
quality information.

http://www.wiley.com/go/beginningflutter
http://www.wiley.com/go/beginningflutter

Introduction

xxviii

To find the errata page for this book, go to this the book’s page at www.wiley.com/go/beginning-
flutter and click the Errata link. On this page, you can view all errata that have been submitted for
this book and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, please email our customer service team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.” We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

http://www.wiley.com/go/beginningflutter
http://www.wiley.com/go/beginningflutter
mailto:wileysupport@wiley.com

The Foundations of Flutter
Programming

▸▸ CHAPTER 1: Introducing Flutter and Getting Started

▸▸ CHAPTER 2: Creating a Hello World App

▸▸ CHAPTER 3: Learning Dart Basics

▸▸ CHAPTER 4: Creating a Starter Project Template

▸▸ CHAPTER 5: Understanding the Widget Tree

PART I

1
Introducing Flutter and
Getting Started

WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ What the Flutter framework is

➤➤ What Flutter’s benefits are

➤➤ How Flutter and Dart work together

➤➤ What a Flutter Widget is

➤➤ What an Element is

➤➤ What a RenderObject is

➤➤ What type of Flutter widgets are available

➤➤ What the stateless and stateful Widget lifecycle is

➤➤ How the widget tree and element tree work together

➤➤ How to install the Flutter SDK

➤➤ How to install Xcode on macOS and Android Studio on macOS,
Windows, and Linux

➤➤ How to configure an editor

➤➤ How to install the Flutter and Dart plugins

In this chapter, you’ll learn how the Flutter framework works behind the scenes. Flutter uses
widgets to create the user interface (UI), and Dart is the language used to develop the applica-
tions. Once you understand how Flutter handles and implements widgets, it will help you in
architecting your apps.

4  ❘  CHAPTER 1   Introducing Flutter and Getting Started

You’ll learn how to install the Flutter SDK on macOS, Windows, and Linux. You’ll configure Android
Studio to install the Flutter plugin to run, debug, and use hot reload. You’ll install the Dart plugin for
code analysis, code validation, and code completion.

INTRODUCING FLUTTER

Flutter is Google’s portable UI framework for building modern, native, and reactive applications
for iOS and Android. Google is also working on Flutter desktop embedding and Flutter for the Web
(Hummingbird) and embedded devices (Raspberry Pi, home, automotive, and more). Flutter is an
open-source project hosted on GitHub with contributions from Google and the community. Flutter
uses Dart, a modern object-oriented language that compiles to native ARM code and production-
ready JavaScript code. Flutter uses the Skia 2D rendering engine that works with different types of
hardware and software platforms and is also used by Google Chrome, Chrome OS, Android, Mozilla
Firefox, Firefox OS, and others. Skia is sponsored and managed by Google and is available for any-
one to use under the BSD Free Software License. Skia uses a CPU-based path render and also sup-
ports the OpenGL ES2-accelerated backend.

Dart is the language that you’ll use to develop your Flutter applications, and you’ll learn more about
it in Chapter 3, “Learning Dart Basics.” Dart is ahead-of-time (AOT) compiled to native code, making
your Flutter application fast. Dart is also just-in-time (JIT) compiled, making it fast to display your
code changes such as via Flutter’s stateful hot reload feature.

Flutter uses Dart to create your user interface, removing the need to use separate languages like
Markup or visual designers. Flutter is declarative; in other words, Flutter builds the UI to reflect
the state of the app. When the state (data) changes, the UI is redrawn, and Flutter constructs a new
instance of the widget. In the “Understanding the Widget Tree and the Element Tree” section of this
chapter, you’ll learn how widgets are configured and mounted (rendered) creating the widget tree and
element tree, but under the hood, the render tree (a third tree) uses the RenderObject, which com-
putes and implements the basic layout and paint protocols. (You won’t need to interact directly with
the render tree or the RenderObject, and I won’t discuss them further in this book.)

Flutter is fast, and the rendering runs at 60 frames per second (fps) and 120fps for capable devices.
The higher the fps, the smoother the animations and transitions.

Applications made in Flutter are built from a single codebase, are compiled to native ARM code, use
the graphics processing unit (GPU), and can access specific iOS and Android APIs (like GPS location,
image library) by communicating via platform channels. You’ll learn more about platform channels in
Chapter 12, “Writing Platform-Native Code.”

Flutter provides the developer with tools to create beautiful and professional-looking applications
and with the ability to customize any aspect of the application. You’ll be able to add smooth anima-
tions, gesture detection, and splash feedback behavior to the UI. Flutter applications result in native
performance for both iOS and Android platforms. During development, Flutter uses hot reload to
refresh the running application in milliseconds when you change the source code to add new features
or modify existing ones. Using hot reload is a great way to see the changes you make to your code on
the simulator or device while keeping the application’s state, the data values, on the screen.

Understanding Widget Lifecycle Events  ❘  5

Defining Widgets and Elements
The Flutter UI is implemented by using widgets from a modern reactive framework. Flutter uses its
own rendering engine to draw widgets. In Chapter 5, “Understanding the Widget Tree,” you’ll get
an introduction to widgets, and in Chapter 6, “Using Common Widgets,” you’ll learn how to imple-
ment widgets.

You might be asking, what is a widget? Widgets can be compared to LEGO blocks; by adding blocks
together, you create an object, and by adding different kinds of blocks, you can alter the look and
behavior of the object. Widgets are the building blocks of a Flutter app, and each widget is an immu-
table declaration of the user interface. In other words, widgets are configurations (instructions) for
different parts of the UI. Placing the widgets together creates the widget tree. For example, say an
architect draws a blueprint of a house; all of the objects like walls, windows, and doors in the house
are the widgets, and all of them work together to create the house or, in this case, the application.

Since widgets are the configuration pieces of the UI and together they create the widget tree, how
does Flutter use these configurations? Flutter uses the widget as the configuration to build each ele-
ment, which means the element is the widget that is mounted (rendered) on the screen. The elements
that are mounted on the screen create the element tree. You’ll learn more about the widget tree and
element tree in the next section, “Understanding the Widget Tree and the Element Tree.” You’ll also
learn to manipulate the widget tree in detail in Chapter 5.

Here’s a brief look at the wide array of widgets at your disposal:

➤➤ Widgets with structuring elements such as a list, grid, text, and button

➤➤ Widgets with input elements such as a form, form fields, and keyboard listeners

➤➤ Widgets with styling elements such as font type, size, weight, color, border, and shadow

➤➤ Widgets to lay out the UI such as row, column, stack, centering, and padding

➤➤ Widgets with interactive elements that respond to touch, gestures, dragging, and dismissible

➤➤ Widgets with animation and motion elements such as hero animation, animated container,
animated crossfade, fade transition, rotation, scale, size, slide, and opacity

➤➤ Widgets with elements like assets, images, and icons

➤➤ Widgets that can be nested together to create the UI needed

➤➤ Custom widgets you can create yourself

UNDERSTANDING WIDGET LIFECYCLE EVENTS

In programming, you have different lifecycle events that usually happen in a linear mode, one
after another as each stage is completed. In this section, you’ll learn the widget lifecycle events and
their purpose.

To build the UI, you use two main types of widgets, StatelessWidget and StatefulWidget. A
stateless widget is used when the values (state) do not change, and the stateful widget is used when

6  ❘  CHAPTER 1   Introducing Flutter and Getting Started

values (state) change. In Chapter 2, “Creating a Hello World App,” you’ll learn in detail when to use
a StatelessWidget or a StatefulWidget. Each stateless or stateful widget has a build method
with a BuildContext that handles the location of the widget in the widget tree. The BuildContext
objects are actually Element objects, an instantiation of the Widget at a location in the tree.

The StatelessWidget Lifecycle
A StatelessWidget is built based on its own configuration and does
not change dynamically. For example, the screen displays an image with
a description and will not change. The stateless widget is declared with
one class, and you’ll learn about classes in Chapter 3. The build (the UI
portions) method of the stateless widget can be called from three different
scenarios. It can be called the first time the widget is created, when the
widget’s parent changes, and when an InheritedWidget has changed.
In Chapter 15, “Adding State Management to the Firestore Client App,”
you’ll learn how to implement the InheritedWidget.

The following sample code shows a StatelessWidget base structure,
and Figure 1.1 displays the widget’s lifecycle.

class JournalList extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

The StatefulWidget Lifecycle
A StatefulWidget is built based on its own configuration but can change dynamically. For example,
the screen displays an icon with a description, but values can change based on the user’s interaction,
like choosing a different icon or description. This type of widget has a mutable state that can change
over time. The stateful widget is declared with two classes, the StatefulWidget class and the State
class. The StatefulWidget class is rebuilt when the widget’s configuration changes, but the State
class can persist (remain), enhancing performance. For example, when the state changes, the widget is
rebuilt. If the StatefulWidget is removed from the tree and then inserted back into the tree some-
time in the future, a new State object is created. Note that under certain circumstances and restric-
tions, you can use a GlobalKey (unique key across entire app) to reuse (not re-create) the State
object; however, global keys are expensive, and unless they’re needed, you might want to consider not
using them. You call the setState() method to notify the framework that this object has changes,
and the widget’s build method is called (scheduled). You would set the new state values inside the
setState() method. In Chapter 2, you’ll learn how to call the setState() method.

The following example shows a StatefulWidget base structure, and Figure 1.2 displays the
widget’s lifecycle. You have two classes, the JournalEdit StatefulWidget class and the _Journal­
EditState class.

class JournalEdit extends StatefulWidget {
 @override
 _ JournalEditState createState() => _ JournalEditState();

StatelessWidget

Constructor

build

FIGURE 1.1:  Stateless-
Widget lifecycle

Understanding Widget Lifecycle Events  ❘  7

}

class _JournalEditState extends State<JournalEdit> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

You can override different portions of the StatefulWidget to customize and manipulate data at dif-
ferent points of the widget lifecycle. Table 1.1 shows some of the stateful widget main overrides, and
the majority of the time you’ll use the initState(), didChangeDependencies(), and dispose()
methods. You’ll use the build() method all of the time to build your UI.

State

initState

StatefulWidget

Constructor

build

dispose

didUpdateWidget setState

didChangeDependencies
createState

clean

dirty

FIGURE 1.2:  StatefulWidget lifecycle

TABLE 1.1:  StatefulWidget lifecycle

METHOD DESCRIPTION SAMPLE CODE

initState() Called once when
this object is inserted
into the tree.

@override
void initState() {
 super.initState();
 print('initState');
}

dispose() Called when this
object is removed
from the tree
permanently.

@override
void dispose() {
 print('dispose');
 super.dispose();
}

continues

8  ❘  CHAPTER 1   Introducing Flutter and Getting Started

UNDERSTANDING THE WIDGET TREE AND THE ELEMENT TREE

In the previous section, you learned that widgets contain the instructions to create the UI, and when
you compose (nest) widgets together, they create the widget tree. The Flutter framework uses the
widgets as the configurations for each element that is mounted (rendered) on the screen. The mounted

TABLE 1.1 (continued)

METHOD DESCRIPTION SAMPLE CODE

didChangeDependencies() Called when
this State
object changes.

@override
void didChangeDependencies() {

 super.didChangeDependencies();
 print('didChangeDependencies');
}

didUpdateWidget­

(Contacts oldWidget)
Called when the
widget configuration
changes.

@override
void didUpdateWidget(Contacts
oldWidget) {

super.didUpdateWidget(oldWidget);
print('didUpdateWidget:
$oldWidget');
}

deactivate() Called when this
object is removed
from the tree.

@override
void deactivate() {

 print('deactivate');
 super.deactivate();
}

build(BuildContext

context)
Can be called
multiple times to
build the UI, and
the BuildContext
handles the location
of this widget in the
widget tree.

@override
Widget build(BuildContext
context) {
 print('build');
 return Container();
}

setState()
Notifies the
framework that the
state of this object
has changed to
schedule calling
the build for this
State object.

setState(() {
 name = _newValue;
});

Understanding the Widget Tree and the Element Tree  ❘  9

elements displayed on the screen create the element
tree. You now have two trees, the widget tree that
has the widget configurations and the element tree
that represents the rendered widgets on the screen
(Figure 1.3).

When the application starts, the main() function
calls the runApp() method, usually taking a State­
lessWidget as the argument, and is mounted as the
root element for the application. The Flutter framework processes through all of the widgets,
and each corresponding element is mounted.

The following is sample code that starts a Flutter application, and the runApp() method
inflates the MyApp StatelessWidget, meaning the main application itself is a widget. As you
can see, just about everything in Flutter is a widget.

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter App',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: MyHomePage(title: 'Home'),
);
 }
}

Elements have a reference to the widget and are responsible for comparing the widget differ-
ences. If a widget is responsible for building child widgets, then elements are created for each
child widget. When you see the use of BuildContext objects, they are the Element objects.
To discourage direct manipulation of the Element objects, the BuildContext interface is used
instead. The Flutter framework uses BuildContext objects to discourage you from manipulat-
ing the Element objects. In other words, you’ll be using widgets to create your UI layouts, but
it’s good to know how the Flutter framework is architected and how it works behind the scenes.

As noted earlier, there is a third tree called the render tree that is a low-level layout and paint-
ing system that inherits from the RenderObject. The RenderObject computes and implements
the basic layout and paint protocols. You won’t need to interact directly with the render tree,
however, and will be using the widgets.

Stateless Widget and Element Trees
A stateless widget has the configuration to create a stateless element. Each stateless widget has a
corresponding stateless element. The Flutter framework calls the createElement method (cre-
ate an instance), and the stateless element is created and mounted to the element tree. In other

• JournalList

Widget Tree

widgets

Element Tree

•
Stateless
Element

elements

FIGURE 1.3:  Widget tree and element tree

10  ❘  CHAPTER 1   Introducing Flutter and Getting Started

words, the Flutter framework makes a request from the
widget to create an element and then mounts (adds) the
element to the element tree. Each element contains a refer-
ence back to the widget. The element calls the widget’s
build method to check for children widgets, and each
child widget (like an Icon or Text) creates its own element
and is mounted to the element tree. This process results in
two trees: the widget tree and the element tree.

Figure 1.4 shows the JournalList StatelessWidget
that has Row, Icon, and Text widgets representing the
widget tree. The Flutter framework asks each widget to
create the element, and each element has a reference back
to the widget. This process happens for each widget down
the widget tree and creates the element tree. The widget
contains the instructions to build the element mounted on
the screen. Note that you the developer create the widgets, and the Flutter framework handles mount-
ing the elements, creating the element tree.

// Simplified sample code
class JournalList extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 Icon(),
 Text(),
],
);
 }
}

Stateful Widget and Element Trees
A stateful widget has the configuration to create a stateful element. Each stateful widget has a cor-
responding stateful element. The Flutter framework calls the createElement method to create
the stateful element, and the stateful element is mounted to the element tree. Since this is a stateful
widget, the stateful element requests that the widget create a state object by calling the Stateful­
Widget class’s createState method.

The stateful element now has a reference to the state object and the widget at the given location in
the element tree. The stateful element calls the state object widget’s build method to check for child
widgets, and each child widget creates its own element and is mounted to the element tree. This
process results in two trees: the widget tree and the element tree. Note that if a child widget display-
ing the state (journal note) is a stateless widget like the Text widget, then the element created for this
widget is a stateless element. The state object maintains a reference to the widget (StatefulWidget

• JournalList

Widget Tree Element Tree

•
Stateless
Element

• Row

• Icon

• Text

•
Stateless
Element

•
Stateless
Element

•
Stateless
Element

FIGURE 1.4:  StatelessWidget widget tree
and element tree

Understanding the Widget Tree and the Element Tree  ❘  11

class) and also handles the construction for the Text widget with the latest value. Figure 1.5 shows
the widget tree, the element tree, and the state object. Note that the stateful element has a reference to
the stateful widget and the state object.

To update the UI with new data, you call the setState() method that you learned about in the “The
StatefulWidget Lifecycle” section. To set new data (properties/variables) values, call the setState()
method to update the state object, and the state object marks the element as dirty (has changed) and
causes the UI to be updated (scheduled). The stateful element calls the state object’s build method
to rebuild the children widgets. A new widget is created with the new state value, and the old widget
is removed.

For example, you have a StatefulWidget JournalEntry class, and in the State object class you
call the setState() method to change the Text widget description from 'Trip A' to 'Trip B' by
setting the note variable value to 'Trip B'. The state object note variable is updated to the 'Trip
B' value, the state object marks the element as dirty, and the build method rebuilds the UI children
widgets. The new Text widget is created with the new 'Trip B' value, and the old Text widget with
the 'Trip A' value is removed (Figure 1.6).

// Simplified sample code
class JournalEdit extends StatefulWidget {
 @override
 _JournalEditState createState() => _JournalEditState();
}

class _JournalEditState extends State<JournalEdit> {
 String note = 'Trip A';

 void _onPressed() {
 setState(() {
 note = 'Trip B';
 });
 }

• JournalEdit

Widget Tree

•
Text
(‘Trip A’)

•
Icon
(‘Rome’)

Element Tree State Object

•
Stateful
Element

• Column •
Stateless
Element

•
Stateless
Element

•
Stateless
Element

JournalEdit State
(icon: ‘Rome’)
(note: ‘Trip A’)

FIGURE 1.5:  StatefulWidget widget tree, the element tree, and the state object

12  ❘  CHAPTER 1   Introducing Flutter and Getting Started

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 Icon(),
 Text('$note'),
 FlatButton(
 onPressed: _onPressed,
),
],
);
 }
}

Since both the old and new widgets are both Text widgets, the existing element updates its reference
to the new widget, and the element stays in the element tree. The Text widget is a stateless widget,
and the corresponding element is a stateless element; although the Text widget has been replaced, the
state is maintained (persists). State objects have a long life span and remain attached to the element
tree as long as the new widget is the same type as the old widget.

Let’s continue with the previous example; the old Text widget with the 'Trip A' value is removed
and replaced by the new Text widget with the 'Trip B' value. Since both the old and new widgets
are of the same type of Text widgets, the element stays on the element tree with the updated reference
to the new Text 'Trip B' widget (Figure 1.7).

• JournalEdit

Widget Tree

•
Text
(‘Trip A’)

•
Text
(’Trip B’)

5

New Text widget

widgets

Element Tree State Object

•
Stateless
Element

setState() updates note
to ‘Trip B’ and state
object marks the
element as dirty

•
Stateful
Element JournalEdit State

(icon: ‘Rome’)
(note: ‘Trip B’)elements

4
3

1

2

build

FIGURE 1.6:  Updating the state process

• JournalEdit

Widget Tree

•
Text
(‘Trip B’)

widgets

Element Tree State Object

•
Stateless
Element

•
Stateful
Element JournalEdit State

(icon: ‘Rome’)
(note: ‘Trip B’)elements

FIGURE 1.7:  Updated state for the widget tree and element tree

Installing the Flutter SDK  ❘  13

INSTALLING THE FLUTTER SDK

Installing the Flutter SDK requires downloading the current version, which is 1.5.4 at the time of
writing (your version might be higher), of the SDK from the Flutter website. This chapter includes
sections for installing on macOS, Windows, and Linux. (Note that targeting and compiling for the
iOS platform requires a Mac computer and Xcode, Apple’s development environment). Do not get
discouraged by the number of steps; you’ll do this the first time you install only.

You’ll be using the Terminal window to run installation and configuration commands.

Installing on macOS
Before starting the installation, you need to make sure your Mac supports the minimum hardware
and software requirements.

System Requirements
➤➤ macOS (64-bit)

➤➤ 700 MB of disk space (does not include disk space for the integrated development environ-
ment and other tools)

➤➤ The following command-line tools:

➤➤ Bash

➤➤ mkdir

➤➤ rm

➤➤ git

➤➤ curl

➤➤ unzip

➤➤ which

Get the Flutter SDK
The latest installation details are available online on the Flutter website at https://flutter
.dev/docs/get-started/install/macos/. Execute steps 2 and following from your Mac’s
Terminal window.

1.	 Download the following installation file to get the latest release, v1.7.8 (your version might
be higher), of the Flutter SDK:

https://storage.googleapis.com/flutter_infra/releases/stable/macos/

flutter_macos_v1.7.8+hotfix.4-stable.zip.

2.	 Extract the file in the desired location by using the Terminal window.

cd ~/development
unzip ~/Downloads/flutter_macos_v1.7.8+hotfix.4-stable.zip

https://flutter.dev/docs/get-started/install/macos/
https://flutter.dev/docs/get-started/install/macos/
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.7.8+hotfix.4-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.7.8+hotfix.4-stable.zip

14  ❘  CHAPTER 1   Introducing Flutter and Getting Started

3.	 Add the Flutter tool to your path (pwd means present working directory; in your case, it will
be the development folder).

export PATH="$PATH:`pwd`/flutter/bin"

4.	 Update the path permanently.

a.	 Get the path that you used in step 3. For example, replace MacUserName with your
path to the development folder.

/Users/MacUserName/development/flutter/bin

b.	 Open or create $HOME/.bash_profile. Your file path or filename might be different
on your computer.

c.	 Edit .bash_profile (will open a command-line editor).

d.	 Type nano .bash_profile.

e.	 Type export PATH=/Users/MacUserName/development/flutter/bin:$PATH.

f.	 Save by pressing ^X (Control+X), confirm by pressing Y (Yes), and press Enter to
accept the filename.

g.	 Close the Terminal window.

h.	 Reopen the Terminal window and type echo $PATH to verify that the path has been
added. Then type flutter to make sure the path is working. If the command is not
recognized, something went wrong with the PATH. Check to make sure you have the
correct username for your computer in the path.

Check for Dependencies
Run the following command from the Terminal window to check for dependencies that need to be
installed to finish the setup:

flutter doctor

View the report and check for other software that may be needed.

iOS Setup: Install Xcode
A Mac with Xcode 10.0 or newer is required.

1.	 Open App Store and install Xcode.

2.	 Configure the Xcode command-line tools by running sudo xcode-select --switch /
Applications/Xcode.app/Contents/Developer from the Terminal window.

3.	 Confirm that the Xcode license agreement is signed by running sudo xcodebuild
-license from the terminal.

Android Setup: Install Android Studio
Full installation details are available at https://flutter.dev/docs/get-started/install/
macos#android-setup. Flutter requires a full installation of Android Studio for the Android plat-
form dependencies. Keep in mind that Flutter apps can be written in different editors such as Visual
Code or IntelliJ IDEA.

https://flutter.dev/docs/get-started/install/macos#android-setup
https://flutter.dev/docs/get-started/install/macos#android-setup

Installing the Flutter SDK  ❘  15

1.	 Download and install Android Studio from https://developer.android.com/studio/.

2.	 Start Android Studio and follow the Setup Wizard, which installs all of the Android SDKs
required by Flutter. If it asks you to import previous settings, you can click Yes to use the cur-
rent settings or No to start with the default settings.

Set Up the Android Emulator
You can view details on how to create and manage virtual devices at https://developer.android
.com/studio/run/managing-avds.

1.	 Enable VM acceleration on your machine. Directions are available at https://developer
.android.com/studio/run/emulator-acceleration.

2.	 If this is your first time installing Android Studio, to access the AVD Manager, you need to
create a new project. Launch Android Studio, click Start A New Android Studio Project,
and give it any name and accept the defaults. Once the project is created, continue with
these steps.

Currently, Android Studio requires an open Android project before you can access the
Android submenu.

3.	 From Android Studio, select Tools ➪ Android ➪ AVD Manager ➪ Create Virtual Device.

4.	 Select a device of your choice and click Next.

5.	 Select an x86 or x86_64 image for the Android version to emulate.

6.	 If available, make sure you select Hardware – GLES 2.0 to enable hardware acceleration.
This hardware acceleration will make the Android emulator run faster.

7.	 Click the Finish button.

8.	 To check that the emulator image has been installed correctly, select Tools ➪ AVD Manager
and then click the Run button (play icon).

Installing on Windows
Before starting the installation, you need to make sure your Windows supports the minimum hard-
ware and software requirements.

System Requirements
➤➤ Windows 7 SP1 or later (64-bit)

➤➤ 400 MB of disk space (does not include disk space for an integrated development environ-
ment and other tools)

➤➤ The following command-line tools:

➤➤ PowerShell 5.0 or newer

➤➤ Git for Windows (Git from the Windows Command Prompt)

https://developer.android.com/studio/
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration

16  ❘  CHAPTER 1   Introducing Flutter and Getting Started

Get the Flutter SDK
The latest installation details are available at https://flutter.dev/docs/get-started/
install/windows/.

1.	 Download the following installation file to get the latest release, v1.7.8 at the time of writing
(your version might be higher), of the Flutter SDK:

https://storage.googleapis.com/flutter_infra/releases/stable/windows/

flutter_windows_v1.7.8+hotfix.4-stable.zip.

2.	 Extract the file in the desired location.

Replace WindowsUserName with your own Windows username. Do not install Flutter in
directories that require elevated privileges like C:\Program Files\. I used the following
folder location:

C:\Users\WindowsUserName\flutter

3.	 Look in C:\Users\WindowsUserName\flutter and double-click the flutter_con­
sole.bat file.

4.	 Update the path permanently (the following is for Windows 10):

a.	 Open Control Panel and drill down to Desktop App ➪ User Accounts ➪ User
Accounts ➪ Change My Environment Variables.

b.	 Under User Variables for WindowsUserName, select the Path variable and click the Edit
button. If the Path variable is missing, skip to the next substep, c.

i.	 In the Edit environment variable, click the New button.

ii.	 Type the path C:\Users\WindowsUserName\flutter\bin.

iii.	 Click the OK button and then close the Environment Variables screen.

c.	 Under User Variables for WindowsUserName, if the Path variable is missing, then click
the New button instead and type Path for the Variable name and C:\Users\
WindowsUserName\flutter\bin for the Variable value.

5.	 Reboot Windows to apply the changes.

Check for Dependencies
Run the following command from the Windows command prompt to check for dependencies that
need to be installed to finish the setup:

flutter doctor

View the report and check for other software that may need to be installed.

Install Android Studio
Full installation details are available at https://flutter.dev/docs/get-started/install/
windows#android-setup. Flutter requires a full installation of Android Studio for the Android plat-
form dependencies. Keep in mind that Flutter apps can be written in different editors like Visual Code
or IntelliJ IDEA.

https://flutter.dev/docs/get-started/install/windows/
https://flutter.dev/docs/get-started/install/windows/
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.7.8+hotfix.4-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.7.8+hotfix.4-stable.zip
https://flutter.dev/docs/get-started/install/windows#android-setup
https://flutter.dev/docs/get-started/install/windows#android-setup

Installing the Flutter SDK  ❘  17

1.	 Download and install Android Studio from https://developer.android.com/studio/.

2.	 Start Android Studio and follow the Setup Wizard, which installs all of the Android SDKs
required by Flutter. If it asks you to import previous settings, you can click Yes to use the cur-
rent settings or No to start with the default settings.

Set Up the Android Emulator
You can view details on how to create and manage virtual devices at https://developer.android.
com/studio/run/managing-avds.

1.	 Enable VM acceleration on your machine. Directions are available at https://developer
.android.com/studio/run/emulator-acceleration.

2.	 If this is your first time installing Android Studio, to access the AVD Manager, you need to
create a new project. Launch Android Studio and click Start A New Android Studio project
and give it any name and accept the defaults. Once the project is created, continue with
these steps.

Currently, Android Studio requires an open Android project before you can access the
Android submenu.

3.	 From Android Studio, select Tools ➪ Android ➪ AVD Manager ➪ Create Virtual Device.

4.	 Select a device of your choice and click Next.

5.	 Select an x86 or x86_64 image for the Android version to emulate.

6.	 If available, make sure you select Hardware – GLES 2.0 to enable hardware acceleration.
This hardware acceleration will make the Android emulator run faster.

7.	 Click the Finish button.

8.	 To check that the emulator image has been installed correctly, select Tools ➪ AVD Manager
and then click the Run button (play icon).

Installing on Linux
Before starting the installation, you need to make sure your Linux supports the minimum hardware
and software requirements.

System Requirements
➤➤ Linux (64-bit)

➤➤ 600 MB of disk space (does not include disk space for an integrated development environ-
ment and other tools)

➤➤ The following command-line tools:

➤➤ Bash

➤➤ curl

➤➤ git 2.x

https://developer.android.com/studio/
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration

18  ❘  CHAPTER 1   Introducing Flutter and Getting Started

➤➤ mkdir

➤➤ rm

➤➤ unzip

➤➤ which

➤➤ xz-utils

➤➤ The libGLU.so.1 shared library provided by mesa packages (e.g., libglu1-mesa on
Ubuntu/Debian)

Get the Flutter SDK
The latest installation details are available at https://flutter.dev/docs/get-started/
install/linux/.

1.	 Download the following installation file to get the latest release, which is v1.7.8 at the time
of writing (your version might be higher), of the Flutter SDK:

https://storage.googleapis.com/flutter_infra/releases/stable/linux/

flutter_linux_v1.7.8+hotfix.4-stable.tar.xz.

2.	 Extract the file in the desired location by using the Terminal window:

cd ~/development
tar xf ~/Downloads/flutter_linux_v1.7.8+hotfix.4-stable.tar.xz

3.	 Add the Flutter tool to your path (pwd means present working directory; in your case, it will
be the development folder).

export PATH="$PATH:`pwd`/flutter/bin"

4.	 Update the path permanently.

a.	 Get the path that you used in step 3. For example, replace PathToDev with your path
to the development folder.

/PathToDev/development/flutter/bin

b.	 Open or create $HOME/.bash_profile. Your file path or filename might be different
on your computer.

c.	 Edit .bash_profile (will open a command-line editor).

d.	 Add the following line and make sure you replace the PathToDev with your path:
export PATH="$PATH :/PathToDev/development/flutter/bin" .

e.	 Run source $HOME/.bash_profile to refresh the current window.

f.	 In the Terminal window, type echo $PATH to verify that the path is added. Then type
flutter to make sure the path is working. If the command is not recognized, some-
thing went wrong with the PATH. Check to make sure you have the correct path.

https://flutter.dev/docs/get-started/install/linux/
https://flutter.dev/docs/get-started/install/linux/
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.7.8+hotfix.4-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.7.8+hotfix.4-stable.tar.xz

Installing the Flutter SDK  ❘  19

Check for Dependencies
Run the following command from the Terminal window to check for dependencies that need to be
installed to finish the setup:

flutter doctor

View the report and check for other software that may be needed.

Install Android Studio
Full installation details are available at https://flutter.dev/docs/get-started/install/
linux#android-setup. Flutter requires a full installation of Android Studio for the Android plat-
form dependencies. Keep in mind that Flutter apps can be written in different editors like Visual Code
or IntelliJ IDEA.

1.	 Download and install Android Studio from https://developer.android.com/studio/.

2.	 Start Android Studio and follow the Setup Wizard, which installs all of the Android SDKs
required by Flutter. If it asks you to import previous settings, you can click Yes to use current
settings or No to start with default settings.

Set Up the Android Emulator
You can view details on how to create and manage virtual devices at https://developer.android
.com/studio/run/managing-avds.

1.	 Enable VM acceleration on your machine. Directions are available at https://developer
.android.com/studio/run/emulator-acceleration.

2.	 If this is your first time installing Android Studio, to access the AVD Manager, you need to
create a new project. Launch Android Studio, click Start A New Android Studio Project,
and give it any name and accept the defaults. Once the project is created, continue with
these steps.

Currently, Android Studio requires an open Android project before you can access the
Android submenu.

3.	 From Android Studio, select Tools ➪ Android ➪ AVD Manager ➪ Create Virtual Device.

4.	 Select a device of your choice and click Next.

5.	 Select an x86 or x86_64 image for the Android version to emulate.

6.	 If available, make sure you select Hardware – GLES 2.0 to enable hardware acceleration.
This hardware acceleration will make the Android emulator run faster.

7.	 Click the Finish button.

8.	 To check that the emulator image has been installed correctly, select Tools ➪ AVD Manager
and then click the Run button (play icon).

https://flutter.dev/docs/get-started/install/linux#android-setup
https://flutter.dev/docs/get-started/install/linux#android-setup
https://developer.android.com/studio/
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration

20  ❘  CHAPTER 1   Introducing Flutter and Getting Started

CONFIGURING THE ANDROID STUDIO EDITOR

The editor you’ll be using is Android Studio. Android Studio is the official integrated development
environment for Google’s Android operating system and is specifically designed for Android develop-
ment. It’s also a great development environment for developing apps with Flutter. Before starting to
build an app, the editor needs the Flutter and Dart plugins installed to make it easier to write code.
(Other editors that support these plugins are IntelliJ or Visual Studio Code.) The editor plugins give
code completion, syntax highlighting, run and debug support, and more. Using a plain-text editor to
write your code without any plugins would also work, but without the use of plugin features is not
recommended.

Instructions for setting up different code editors are available at https://flutter.dev/docs/
get-started/editor/. To support Flutter development, install the following plugins:

➤➤ Flutter plugin for developer workflows such as running, debugging, and hot reload

➤➤ Dart plugin for code analysis such as instant code validation and code completion

Follow these steps to install the Flutter and Dart plugins:

1.	 Start Android Studio.

2.	 Click Preferences ➪ Plugins (on macOS) or File ➪ Settings ➪ Plugins (on Windows
and Linux).

3.	 Click Browse Repositories, select the Flutter plug-in, and click the Install button.

4.	 Click Yes when prompted to install the Dart plugin.

5.	 Click Restart when prompted.

SUMMARY

In this chapter, you learned how the Flutter framework architecture works behind the scenes. You
learned that Flutter is a great portable UI framework to build mobile applications for iOS and
Android. Flutter also plans on supporting development for desktop, web, and embedded devices. You
learned that Flutter applications are built from a single codebase that uses widgets to create the UI
and that you develop with the Dart language. You learned that Flutter uses the Skia 2D rendering
engine that works with different types of hardware and software.

You learned that the Dart language is AOT compiled to native code, resulting in fast performance for
your applications. You learned that Dart is JIT compiled, making it fast to display code changes with
Flutter’s stateful hot reload.

You learned that widgets are the building blocks for composing the UI, and each widget is an immu-
table declaration of the UI. Widgets are the configuration to create elements. Elements are the widgets
made concrete, meaning mounted and painted on the screen. You learned that the RenderObject
implements the basic layout and paint protocols.

https://flutter.dev/docs/get-started/editor/
https://flutter.dev/docs/get-started/editor/

Summary  ❘  21

You learned about the lifecycle events for the stateless and stateful widgets. You learned that the
stateless widget is declared by a single class that extends (inherits) from the StatelessWidget class.
You learned that the stateful widget is declared with two classes, the StatefulWidget class and the
State class.

You learned that Flutter is declarative and the UI rebuilds itself when the state changes. You learned
that widgets are the building blocks of a Flutter app and that widgets are the configurations
for the UI.

You learned that nesting (composition) widgets results in creating the widget tree. The Flutter frame-
work uses the widget as the configuration to build each element, resulting in creating the element
tree. The element is the widget that is mounted (rendered) on the screen. The previous process results
in creating the render tree that is a low-level layout and painting system. You’ll be using widgets and
will not need to interact directly with the render tree. You learned that stateless widgets have the
configuration to create stateless elements. You learned that stateful widgets have the configuration to
create stateful elements and the stateful element requests from the widget to create a state object.

You learned how to install the Flutter SDK, Xcode for compiling for iOS, and Android Studio for
compiling for Android devices. When Android Studio is installed on a Mac, it handles compiling for
both iOS (via Xcode) and Android devices. You learned how to install the Flutter and Dart plugins to
help developer workflows such as code completion, syntax highlighting, run, debug, hot reload, and
code analysis.

In the next chapter, you’ll learn how to create your first app and use hot reload to view changes
immediately. You’ll also learn how to use themes to style the app, when to use stateless or stateful
widgets, and how to use external packages to add features such as GPS and charts quickly.

22  ❘  CHAPTER 1   Introducing Flutter and Getting Started

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Flutter Flutter is a portable UI framework to build modern, native, and
reactive mobile applications for iOS and Android from a single
codebase. Flutter has also expanded development for desktop,
web, and embedded devices.

Skia Flutter uses the Skia 2D rendering engine that works with different
hardware and software platforms.

Dart Dart is the language used to develop Flutter applications. Dart is
ahead-of-time (AOT) compiled to native code for fast performance.
Dart is just-in-time (JIT) compiled to quickly display code changes
via Flutter’s stateful hot reload.

Declarative user
interface (UI)

Flutter is declarative and builds the UI to reflect the state of the
app. When the state changes, the UI is redrawn. Flutter uses Dart
to create the UI.

Widget Widgets are the building blocks of a Flutter app, and each widget is
an immutable declaration of the user interface (UI). Widgets are the
configuration to create an element.

Element Elements are widgets that are mounted (rendered) on the screen.
Elements are created by the widget’s configuration.

RenderObject The RenderObject is an object in the render tree that computes
and implements the basic layout and paint protocols.

Widgets lifecycle events Each stateless or stateful widget has a build method with a
BuildContext that handles the location of the widget in the
widget tree. The BuildContext objects are Element objects,
meaning an instantiation of the Widget at a location in the tree.

StatelessWidget The StatelessWidget is built based on its own configuration and
does not change dynamically. The stateless widget is declared with
one class.

StatefulWidget The StatefulWidget is built based on its own configuration but
can change dynamically. The stateful widget is declared with two
classes, the StatefulWidget class and the State class.

Widget tree The widget tree is created when you compose (nest) widgets; this is
known as composition. Three trees are created: the widget tree, the
element tree, and the render tree.

Element tree The element tree represents each element mounted (rendered) on
the screen.

Summary  ❘  23

TOPIC KEY CONCEPTS

Render tree The render tree is a low-level layout and painting system that
inherits from the RenderObject. The RenderObject implements
the basic layout and paint protocols. You’ll be using widgets and
will not need to interact directly with the render tree.

Flutter SDK and Dart The mobile software development kit has expanded to desktop,
web, and embedded devices.

Xcode and Android Studio Development tools to build iOS and Android Mobile applications.

Flutter plugin This plugin helps with developer workflows such as running,
debugging, and hot reload.

Dart plugin This plugin helps with code analysis such as instance code
validation and code completion.

Creating a Hello World App
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to create a new Flutter mobile app

➤➤ How to refresh the running app with hot reload

➤➤ How to style the app with themes

➤➤ When to use a stateless or stateful widget

➤➤ How to add external packages

A great way to learn a new development language is to write a basic app. In programming,
Hello World is the most basic program to write. It simply displays the words Hello World on
the screen. In this chapter, you’ll learn the main steps of how to develop this basic program as
a Flutter app. Do not worry about understanding the code yet; I’ll walk you through it step-by-
step later in this book.

Writing this minimal example helps you learn the basic structure of a Flutter app, how to run
the app on the iOS simulator and the Android emulator, and how to make changes to the code.

SETTING UP THE PROJECT

The initial project setup for each app is the same. I’m using Android Studio to create the sample
apps in this book, but you can choose a different editor such as IntelliJ or Visual Studio Code.
An overview of the process in Android Studio is as follows: you create a new Flutter project,
select the Flutter application as the project type (template), and enter the project name. The
Flutter software development kit (SDK) then creates the project for you, including creating a
project directory with the same name as the project name. Within the project directory, the lib
folder contains the main.dart file with the source code (in other words, project_name/lib/
main.dart). You’ll also have an android folder for the Android app, the ios folder for the iOS
app, and a test folder for unit testing.

2

26  ❘  CHAPTER 2   Creating a Hello World App

In this chapter, the lib folder and the main.dart file are your primary focus. In Chapter 4, “Creating
a Starter Project Template,” you will learn how to create a Flutter starter project and how to structure
code into separate files.

By default, the Flutter app uses Material Components widgets based on Material Design. Material
Design is a system of best-practice guidelines for user interface design. The components in a Flutter
project include visual, behavioral, and motion widgets. Flutter projects also include unit testing for
widgets, which are files that contain individual code to test whether the logic performs as designed.

Flutter applications are built with the Dart programming language, and you will learn the basics of
Dart in Chapter 3, “Learning Dart Basics.”

TRY IT OUT	 Creating a New App

In this exercise, you will be creating a new Flutter app named ch2_my_counter. The app name is the
same as the project name. This app uses the minimal default Flutter project template and includes a float-
ing action button (the + button) that appears at the bottom right of the device screen. Every time this
button is tapped, a counter increases by one.

The current Flutter template creates the basic app that has a counter and a + button (the floating action
button). In future Flutter releases, there might be other template options available. Why did the Flutter
team decide to use a counter as the template? It’s clever because it shows how to take data, manipulate it,
and maintain state (the counter value) with hot reload.

1.	 Start Android Studio.

2.	 If you have a project open, click the menu bar and select File ➪ New ➪ New Flutter Project. If no
project is open, click Start A New Flutter Project.

Setting Up the Project  ❘  27

3.	 Select Flutter Application.

4.	 The customary naming convention is to separate words with an underscore, so enter the project
name ch2_my_counter and click Next. Note that the Flutter SDK path is the installation folder you
have chosen in Chapter 1. You can optionally change the project location and description.

28  ❘  CHAPTER 2   Creating a Hello World App

5.	 Enter your company name in the Company Domain field, and format it like domainname.com. Use
any unique name if you do not have a company name.

Setting Up the Project  ❘  29

6.	 On the same screen as step 5 for the Platform Channel Language, select both the options for Kotlin
and Swift.

These choices will ensure that you are using the latest programming languages for both Android
(Kotlin) and iOS (Swift). Using the platform channel—a way for communicating between the
app’s Dart code and platform-specific code—allows you to use Android and iOS platform-specific
application programming interfaces (APIs) by writing code in each native language, such as writing
native code in Kotlin (Android) and Swift (iOS) to handle playing audio while the app is in back-
ground mode. You will take a closer look at platform channels, Kotlin, and Swift in Chapter 12,
“Writing Platform-Native Code.”

7.	 Click the Finish button.

30  ❘  CHAPTER 2   Creating a Hello World App

How It Works
A Flutter project is created with the folder name ch2_my_counter, the same as the project name. It uses
the standard Flutter project template, which shows how to update a counter by tapping the + button.
By default, Android’s Material Design components are used. In a Flutter project, these include visual,
behavioral, and motion widgets. For each project you create, there is a directory called lib, and the
main.dart file will be first executed when the app runs. The main.dart file contains Dart code with the
main() function that starts the app. The goal of creating this app is to familiarize you with how a Flutter
application is created and structured.

Chapter 3 covers Dart basics, and Chapter 4 covers the main.dart file in more detail, particularly how
you structure and separate code logic.

USING HOT RELOAD

Flutter’s hot reload helps you see code and user interface changes immediately while retaining state
to an app running the Dart virtual machine. In other words, every time you make code changes, you
don’t need to reload the app, because the current page shows the changes immediately. This is an
incredible time-saving feature for any developer.

In Flutter, the State class stores mutable (changeable) data. For example, the app starts with the
counter value set to zero, but each time you tap the + button, the counter value increases by one.
When the + button is tapped three times, the counter value shows a value of three. The counter value
is mutable, so it can change over time. By using hot reload, you can make code logic changes, and the
app’s counter state (value) does not reset to zero but instead retains the current value of three.

TRY IT OUT	 Running the App

To see how hot reload works, you’ll start the emulator/simulator, make changes to the page title, save
them, and see the changes happen immediately.

From Chapter 1, the iOS simulator was automatically created when you installed Xcode, and you manu-
ally created the Android emulator. The iOS simulator is available only if running Android Studio on a
Mac computer because it requires Apple’s Xcode to be installed. It’s assumed that you have both the iOS
simulator and Android emulator installed. If not, use the Android emulator.

1.	 From Android Studio, click the Flutter device selection button on the right of the toolbar. A
drop-down list shows the available iOS simulator and Android emulator.

2.	 Select either the iOS simulator or the Android emulator.

3.	 Click the Run icon in the toolbar.

Using Hot Reload  ❘  31

Target Selector Debug Stop

Run Reload

4.	 You should see the ch2_my_counter app in the simulator. Follow step 2 to run the app on both the
iOS simulator (if available) and the Android emulator. Running the app on both iOS and Android,
it is apparent that it looks the same but inherits the traits from each mobile operating system. Note
in the iOS simulator that the app title is centered, but in the Android emulator, the title is
on the left.

5.	 Click the + floating action button on the bottom right, and you will see the counter increase each
time you click it.

6.	 In the main.dart file, change MyHomePage(title: 'Flutter Demo Home Page') to
MyHomePage(title: 'Hello World') and save by pressing (in Windows). Immediately you
will see that the app bar title changes and the state of the counter remains the same, without
resetting to zero. This instant change is called hot reload, and you’ll use it often to improve your
productivity.

32  ❘  CHAPTER 2   Creating a Hello World App

How It Works
Hot reload is an incredible time-saving feature to view the results of source code changes immediately
while keeping the current state. While the Dart virtual machine is running, hot reload injects the updated
source code, and the Flutter framework rebuilds the widget tree. (The widget tree will be covered in
detail in Chapter 5, “Understanding the Widget Tree.”)

Using Themes to Style Your App  ❘  33

USING THEMES TO STYLE YOUR APP

The theme widgets are a great way to style and define global colors and font styles for your app.
There are two ways to use theme widgets—to style the look and feel globally or to style just a por-
tion of the app. For instance, you can use themes to style the color brightness (light text on a dark
background or vice versa); the primary and accent colors; the canvas color; and the color of app bars,
cards, dividers, selected and unselected options, buttons, hints, errors, text, icons, and so on. The
beauty of Flutter is that most items are widgets, and just about everything is customizable. In fact,
customizing the ThemeData class allows you to change the color and typography of widgets. (You’ll
learn more about widgets in detail in Chapter 5, “Understanding the Widget Tree,” and Chapter 6,
“Using Common Widgets.”)

Using a Global App Theme
Let’s take the new ch2_my_counter app and modify the primary color. The current color is blue, so
let’s change it to light green. Add a new line below the primarySwatch and add code to change the
background color (canvasColor) to lightGreen.

primarySwatch: Colors.blue,
// Change it to
primarySwatch: Colors.lightGreen,
canvasColor: Colors.lightGreen.shade100,

Save by pressing (in Windows). Hot reload is invoked, so the app bar and the canvas are now
both a light shade of green.

To show a little Flutter awesomeness, add a platform property of TargetPlatform.iOS after the
canvasColor property, and run the app from the Android emulator. Suddenly, the iOS traits are run-
ning on Android. The app bar’s title is not left aligned but changed to the center, which is the custom-
ary iOS style (Figure 2.1).

primarySwatch: Colors.blue,
// Change it to
primarySwatch: Colors.lightGreen,
canvasColor: Colors.lightGreen.shade100,
platform: TargetPlatform.iOS

This can be done in reverse by using TargetPlatform. Specifically, to show Android traits on iOS,
change the platform property to TargetPlatform.android and run the app from the iOS simula-
tor. The app bar’s title is not center aligned but has changed to be left aligned, which is the customary
Android style (Figure 2.2). Once navigation with multiple pages is implemented, this will be even
more apparent. In iOS when navigating to a new page, you usually slide the next page from the right
side of the screen towards the left. In Android when navigating to a new page, you usually slide the
next page from bottom to top. TargetPlatform has three choices: Android, Fuchsia (the operating
system under development from Google), and iOS.

primarySwatch: Colors.blue,
// Change it to
primarySwatch: Colors.lightGreen,
canvasColor: Colors.lightGreen.shade100,
platform: TargetPlatform.android

34  ❘  CHAPTER 2   Creating a Hello World App

Here’s another example of using a global app theme: if you have a red debug banner on the upper
right of the emulator, you can turn it off with the following code. Google intended to let developers
know that the app performance is not in release mode. Flutter builds a debug version of the app, and
performance is slower. Using release (device only) mode, it creates an app with speed optimization.
Add the debugShowCheckedModeBanner property and set the value to false, and the red debug ban-
ner is removed. Turning off the red debug banner is for aesthetic purposes only; you are still running
a debug version of the app.

return new MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'My Counter',
 theme: new ThemeData(
 ...

FIGURE 2.1:  iOS traits running in Android

Using Themes to Style Your App  ❘  35

Using a Theme for Part of an App
To override the app-wide theme, you can wrap widgets in a Theme widget. This method will com-
pletely override the app ThemeData instance without inheriting any styles.

In the previous section, you changed primarySwatch and canvasColor to lightGreen, which
affected all widgets in the app. What if you want only one widget on a page to have a different color
scheme and the rest of the widgets to use the default global app theme? You override the default
theme with a Theme widget that uses the data property to customize ThemeData (such as card-
Color, primaryColor, and canvasColor), and the child widget uses the data property to customize
the colors.

body: Center(
 child: Theme(
 // Unique theme with ThemeData - Overwrite

FIGURE 2.2:  Android traits running in iOS

36  ❘  CHAPTER 2   Creating a Hello World App

 data: ThemeData(
 cardColor: Colors.deepOrange,
),
 child: Card(
 child: Text('Unique ThemeData'),
),
),
),

I recommend extending the app parent theme, changing only the properties needed and inheriting
the rest. Use the copyWith method to create a copy of the app parent theme and replace only the
properties that you need to change. Breaking it down, Theme.of(context).copyWith() extends the
parent Theme, and you can override the properties needed inside copyWith(cardColor: Colors.
deepOrange).

body: Center(
 child: Theme(
 // copyWith Theme - Inherit (Extended)
 data: Theme.of(context).copyWith(cardColor: Colors.deepOrange),
 child: Card(
 child: Text('copyWith Theme'),
),
),
),

The following sample code shows how to change the default Card color to deepOrange with Theme
overwritten (ThemeData()) and extended (Theme.of().copyWith()) to produce the same result. The
two Theme widgets are wrapped inside a Column widget to align them vertically. At this point, do not
worry about the Column widget, as it’s covered in Chapter 6.

body: Column(
 children: <Widget>[
 Theme(
 // Unique theme with ThemeData - Overwrite
 data: ThemeData(
 cardColor: Colors.deepOrange,
),
 child: Card(
 child: Text('Unique ThemeData'),
),
),
 Theme(
 // copyWith Theme - Inherit (Extended)
 data: Theme.of(context).copyWith(cardColor: Colors.deepOrange),
 child: Card(
 child: Text('copyWith Theme'),
),
),
],
),

Understanding Stateless and Stateful Widgets  ❘  37

UNDERSTANDING STATELESS AND STATEFUL WIDGETS

Flutter widgets are the building blocks for designing the user interface (UI). Widgets are built using a
modern react-style framework. The UI is created by nesting widgets together into a widget tree.

Flutter’s react-style framework means it observes when the state of a widget changes and then com-
pares it to the previous state to determine the least number of changes to make. Flutter manages the
relationship between the state and the UI and rebuilds only those widgets when the state changes.

In this section, you’ll compare stateless and stateful widgets and learn how to implement each class
and most importantly which one to use depending on the requirement. In later chapters, you’ll create
apps for each scenario. The appropriate class is extended (making it a subclass) by using the keyword
extends followed by either StatelessWidget or StatefulWidget.

StatelessWidget is used when data does not change, and it relies on the initial information. It’s a
widget without state, and the values are final. Some examples are Text, Button, Icon, and Image.

class Instructions extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Text('When using a StatelessWidget...');
 }
}

StatefulWidget is used when data changes. It’s a widget with state that might change over time,
requiring two classes. For changes to propagate to the UI, making a call to the setState() method is
necessary.

➤➤ StatefulWidget class—This creates an instance of the State class.

➤➤ State class—This is for data that can be read synchronously when the widget is built and
might change over time.

➤➤ setState()—From within the State class, you make a call to the setState() method to
refresh changed data, telling the framework that the widget should redraw because the state
has changed. For all the variables that need changes, modify the values in setState(() {
_ myValue += 50.0;}). Any variable values modified outside the setState() method will
not refresh the UI. Therefore, it is best to place calculations that do not need state changes
outside the setState() method.

Consider the example of a page that shows your maximum bid on a product. Every time the Increase
Bid button is tapped, your bid increases by $50. You begin by creating a MaximumBid class that
extends the StatefulWidget class. Create a _MaximumBidState class that extends the state of the
MaximumBid class.

In the _MaximumBidState class, you declare a variable named _maxBid. The _increaseMyMaxBid()
method calls the setState() method, which increments the _maxBid value by $50. The UI consists

38  ❘  CHAPTER 2   Creating a Hello World App

of a Text widget that shows the 'My Maximum Bid: $_maxBid' value and a FlatButton with an
onPressed property that calls the _increaseMyMaxBid() method. The _increaseMyMaxBid()
method executes the setState() method, which adds $50 to the _maxBid variable, and the Text
widget amount is redrawn.

class MaximumBid extends StatefulWidget {
 @override
 _MaximumBidState createState() => _MaximumBidState();
}

class _MaximumBidState extends State<MaximumBid> {
 double _maxBid = 0.0;

 void _increaseMyMaxBid() {
 setState(() {
 // Add $50 to my current bid
 _maxBid += 50.0;
 });
 }

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 Text('My Maximum Bid: $_maxBid'),
 FlatButton.icon(
 onPressed: () => _increaseMyMaxBid(),
 icon: Icon(Icons.add_circle),
 label: Text('Increse Bid'),
),
],
);
 }
}

USING EXTERNAL PACKAGES

Sometimes it’s not worth building a widget from scratch. Flutter supports third-party packages for the
Flutter and Dart ecosystems. Packages contain the source code logic and are easily shared. There are
two types of packages, Dart and plugin.

➤➤ Dart packages are written in Dart and may contain Flutter-specific dependencies.

➤➤ Plugin packages are written in Dart (with the Dart code exposing the API) but are combined
with platform-specific code implementations for Android (Java or Kotlin) and/or iOS
(Objective-C or Swift). Most plugin packages aim to support both Android and iOS.

Using External Packages  ❘  39

Let’s say you are looking to add functionality to your app such as showing some charts, accessing a
device’s GPS locations, playing background audio, or accessing a database like Firebase. There are
packages for all that.

Searching for Packages
In the app, say you need to store the user preferences on both iOS and Android and want to find a
package to do that for you.

1.	 Start your web browser and navigate to https://pub.dartlang.org/flutter. Packages
are published at this location often by other developers and Google.

2.	 Click the Search Flutter Packages search bar. Enter shared preferences, and the results will be
sorted by relevance.

3.	 Click the link for the shared_preferences package. (The direct link is https://pub.dart-
lang.org/packages/shared_preferences.)

4.	 Details on how to install and use the shared_preferences package are available at this
location. The Flutter team authors this particular package. Click the Installing tab for
detailed instructions. Each package has instructions on how to install and use it. Most of the
packages’ installation is similar, but they differ on how to use and implement the code. The
instructions are located on the home page of each package.

TRY IT OUT	 Installing Packages

You’ve learned how to find third-party packages. Next you’ll learn how to implement the shared_pref-
erences external package in your app.

1.	 Open the ch2_my_counter app with Android Studio.

2.	 Open the pubspec.yaml file by double-clicking.

3.	 In the dependencies: section, add shared_preferences: ^0.5.1+1. (Your version might
be higher.)

4.	 Save the file, and the package will install. If you do not see the process automatically run, you can
manually invoke it by entering flutter packages get in your Terminal window in Android
Studio. Once finished, the message will say Process finished with exit code 0.

https://pub.dartlang.org/flutter
https://pub.dartlang.org/packages/shared_preferences
https://pub.dartlang.org/packages/shared_preferences

40  ❘  CHAPTER 2   Creating a Hello World App

5.	 Import the package in the main.dart file after the material.dart import line, located at the top
of the file. Save the changes.

import 'package:flutter/material.dart';
import 'package:shared_preferences/shared_preferences.dart';

How It Works
By adding the shared_preference dependencies in the pubspec.yaml file, the dependencies are
downloaded to the local project. Use the import statement to make the shared_preference package
available.

Using Packages
Each package has its unique way of being implemented. It’s always good to read the documentation.
For the shared_preferences package, you need to add a few lines to implement it. Please remember
the main point here is not how to use this package but how to add external packages to your app
in general.

TRY IT OUT	 Implementing and Initializing a Package

In the _MyHomePageState class, add a function called _updateSharedPreferences().

class _MyHomePageState extends State<MyHomePage> {
 // ...
 void _updateSharedPreferences() async {
 SharedPreferences prefs = await SharedPreferences.getInstance();
 int counter = (prefs.getInt('counter') ?? 0) + 1;

Summary  ❘  41

 print('Pressed $counter times.');
 await prefs.setInt('counter', counter);
 }
 // ...
}

How It Works
This package saves users’ preferences in both iOS and Android with a few lines of Dart code, which is
extremely powerful. There’s no need to write native code for iOS or Android. This is the power of using
packages, but be careful of overdoing it because you are relying on the authors of the packages to keep
them up-to-date.

SUMMARY

In this chapter, you learned how to create your first app and use hot reload to view changes instanta-
neously. You also saw how to use themes to style apps, when to use stateless and stateful widgets, and
how to add external packages to save yourself from reinventing the wheel. You now have a general
understanding of the main ideas behind Flutter app development. Do not worry about understanding
the actual code yet. You’ll learn all about it throughout the book.

In the next chapter, you’ll learn the basics of the Dart language that is used to create Flutter apps.

42  ❘  CHAPTER 2   Creating a Hello World App

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Creating a
Flutter app

You can now code a basic app and lay out widgets.

Using hot reload Hot reload shows code changes immediately in a running app while
maintaining state.

Applying a theme Themes set the style and colors throughout an app.

Using
external packages

External packages search for and install third-party packages to add
functionalities such as GPS, charting, and more.

Learning Dart Basics
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ Why you use Dart

➤➤ How to comment code

➤➤ How to use the top-level main() function

➤➤ How to reference variables such as numbers, strings, Booleans, lists,
maps, and runes

➤➤ How common flow statements (such as if, for, while, and the ternary operator),
loops, and switch and case work

➤➤ How functions are used to group reusable logic

➤➤ How to use the import statement for external packages, libraries or classes

➤➤ How to create classes

➤➤ How to use asynchronous programming to avoid blocking the user interface

Dart is the foundation of learning to develop Flutter projects. In this chapter, you’ll start
understanding Dart’s basic structure. In future chapters, you’ll create apps that implement these
concepts. All the sample code is in the ch3_dart_basics folder. (In the sample code, don’t
worry about how it’s laid out; just take a look so you can see how Dart code is written. Tap the
floating action button located on the bottom right to see log results.)

WHY USE DART?

Before you can start developing Flutter apps, you need to understand the programming lan-
guage used, namely, Dart. Google created Dart and uses it internally with some of its big
products such as Google AdWords. Made available publicly in 2011, Dart is used to build

3

44  ❘  CHAPTER 3   Learning Dart Basics

mobile, web, and server applications. Dart is productive, fast, portable, approachable, and most of
all reactive.

Dart is an object-oriented programming (OOP) language, has a class-based style, and uses a
C-style syntax. If you are familiar with the C#, C++, Swift, Kotlin, and Java/JavaScript languages,
you will be able to start developing in Dart quickly. But don’t worry—even if you are not familiar
with these other languages, Dart is a straightforward language to learn, and you can get started
relatively quickly.

What are some of the benefits of using Dart?

➤➤ Dart is ahead-of-time (AOT) compiled to native code, making your Flutter app fast. In
other words, there’s no intermediary to interpret one language to another, and there are no
bridges. AOT compilation is used when compiling your app for release mode (such as to the
Apple App Store and Google Play).

➤➤ Dart also is just-in-time (JIT) compiled, making it fast to display your code changes such as
via Flutter’s stateful hot reload feature. JIT compilation is used when debugging your app by
running it in the simulator/emulator.

➤➤ Since Flutter uses Dart, all the sample user interface (UI) code in this book is written
in Dart, removing the need to use separate languages (markup, visual designer) to cre-
ate the UI.

➤➤ Flutter rendering runs at 60 frames per second (fps) and 120fps (for capable devices of
120Hz). The more fps, the smoother the app.

COMMENTING CODE

In any app, comments help the readability of the code, as long as they’re not overdone. Comments
can be used to describe the logic and dependencies of the app.

There are three types of comments: single-line, multiline, and documentation comments. Single-line
comments are commonly used to add a short description. Multiline comments are best suited for long
descriptions that span multiple lines. Documentation comments are used to fully document a piece of
code logic, usually giving detailed explanations and sample code in the comments.

Single-line comments begin with //, and the Dart compiler ignores everything to the end of the line.

// Retrieve from the database the list filtered by company
_listOrders.get(...

Multiline comments begin with /* and end with */. The Dart compiler ignores everything between
the slashes.

/*
 * Allow users to filter by multiple options
 _listOrders.get(filterBy: _userFilter...
*/

Documentation comments begin with ///, and the Dart compiler ignores everything to the end of
the line unless enclosed in brackets. Using brackets, you can refer to classes, methods, fields, top-level

Referencing Variables  ❘  45

variables, functions, and parameters. In the following example, the generated documentation,
[FilterBy], becomes a link to the API documentation for the class. You can use the SDK’s documen-
tation generation tool (dartdoc) to parse Dart code and generate HTML documentation.

/// Multiple filter options
///
/// Different [FilterBy]
enum FilterBy {
 COMPANY,
 CITY,
 STATE
}

RUNNING THE MAIN() ENTRY POINT

Every app must have a top-level main() function, which is the entry point to the app. The main()
function is where the app execution starts and returns a void with an optional List<String> param-
eter for arguments. Each function can return a value, and for the main() function the data return
type is a void (empty, contains nothing), meaning that it does not return a value.

In the following code, you see three different ways to use the main() function, but in all the exam-
ple projects in this book, you will be using the first example—the arrow syntax void main() =>
runApp(MyApp());. All three ways to call the main() function are acceptable, but I prefer using the
arrow syntax since it keeps the code on one line for better readability. However, the main reason to
use the arrow syntax is that in all the example projects there is no need to call multiple statements.
The arrow syntax => runApp(MyApp()) is the same as { runApp(MyApp()); }.

// arrow syntax
void main() => runApp(MyApp());

// or
void main() {
 runApp(MyApp());
}

// or with a List of Strings parameters
void main(List<Strings> filters) {
 print('filters: $filters');
}

REFERENCING VARIABLES

In the previous section, you learned that main() is the top-level entry to an app, and before you
start writing code, it’s important to learn about Dart variables. Variables store references to a value.
Some of the built-in variable types are numbers, strings, Booleans, lists, maps, and runes. You can use
var to declare (you will learn declaring variables in the next section) a variable without specifying the
type. Dart infers the type of variable automatically. Although there is nothing wrong with using var,
as a personal preference, I usually stay away from using it unless I need to do so. Declaring the

46  ❘  CHAPTER 3   Learning Dart Basics

variable type makes for better code readability, and it’s easier to know which type of value is
expected. Instead of using var, use the variable type expected: double, String, and so on. (The vari-
able types are covered in the “Declaring Variables” section.)

An uninitialized variable has a value of null. When declaring a variable without giving it an initial
value, it’s called uninitialized. For example, a variable of type String is declared like String book-
Title; and is uninitialized because the bookTitle value equals null (no value). However, if you
declare it with an initial value of String bookTitle = 'Beginning Flutter', the bookTitle
value equals 'Beginning Flutter'.

Use final or const when the variable is not intended to change the initial value. Use const for vari-
ables that need to be compile-time constants, meaning the value is known at compile time.

DECLARING VARIABLES

Now you know that variables store references to a value. Next, you’ll learn different options for
declaring variables.

In Dart, all variables are declared public (available to all) by default, but by starting the variable
name with an underscore (_), you can declare it as private. By declaring a variable private, you are
saying it cannot be accessed from outside classes/functions; in other words, it can be used only from
within the declaration class/function. (You will learn about classes and functions in the “Functions”
and “Classes” sections later in this chapter.) Note some built-in Dart variable types are lowercase like
double and some uppercase like String.

What if the value of a variable doesn’t need to change? Begin the declaration of the variable with
final or const. Use final when the value is assigned at runtime (can be changed by the user). Use
const when the value is known at compile time (in code) and will not change at runtime.

// Declared without specifying the type - Infers type
var filter = 'company';

// Declared by type
String filter = 'company';

// Uninitialized variable has an initial value of null
String filter;

// Value will not change
final filter = 'company';

// or
final String filter = 'company';

// or
const String filter = 'company';

// or
const String filter = 'company' + filterOption;

Declaring Variables  ❘  47

// Public variable (variable name starts without underscore)
String userName = 'Sandy';

// Private variable (variable name starts with underscore)
String _userID = 'XW904';

Numbers
Declaring variables as numbers restricts the values to numbers only. Dart allows numbers to be int
(integer) or double. Use the int declaration if your numbers do not require decimal point preci-
sion, like 10 or 40. Use the double declaration if your numbers require decimal point precision, like
50.25 or 135.7521. Both int and double allow for positive and negative numbers, and you can enter
extremely large numbers and decimal precision since they both use 64-bit (computer memory) values.

// Integer
int counter = 0;
double price = 0.0;
price = 125.00;

Strings
Declaring variables as String allows values to be entered as a sequence of text characters. To add a
single line of characters, you can use single or double quotes like 'car' or "car". To add multiline
characters, use triple quotes, like "'car"'. Strings can be concatenated (combined) by using the plus
(+) operator or by using adjacent single or double quotes.

// Strings
String defaultMenu = 'main';

// String concatenation
String combinedName = 'main' + ' ' + 'function';
String combinedNameNoPlusSign = 'main' ' ' 'function';

// String multi-line
String multilineAddress = '''
 123 Any Street
 City, State, Zip
''';

Booleans
Declaring variables as bool (Boolean) allows a value of true or false to be entered.

// Booleans
bool isDone = false;
isDone = true;

Lists
Declaring variables as List (comparable to arrays) allows multiple values to be entered; a List is an
ordered group of objects. In programming, an array is an iterable (accessed sequentially) collection of
objects, with each element accessible by the index position or a key. To access elements, the List uses

48  ❘  CHAPTER 3   Learning Dart Basics

zero-based indexing, where the first element index is at 0, and the last element is at the List length
(number of rows) minus 1 (since the first index is 0, not 1).

A List can be of fixed length or growable, depending on your needs. By default, a List is created as
growable by using List() or []. To create a fixed-length List, you add the number of rows required
by using this format: List(25). The following example uses string interpolation for the print state-
ment: print('filter: $filter'). The $ sign before the variable converts the expression value to
a string.

// List Growable
List contacts = List();

// or
List contacts = [];
List contacts = ['Linda', 'John', 'Mary'];

// List fixed-length
List contact = List(25);

// Lists - In Dart List is an array
List listOfFilters = ['company', 'city', 'state'];
listOfFilters.forEach((filter) {
 print('filter: $filter');
});
// Result from print statement
// filter: company
// filter: city
// filter: state

Maps
Maps are invaluable in associating a List of values by a Key and a Value. Mapping allows recalling
values by their Key ID. The Key and Value can be any type of object, such as String, Number, and so
on. Keep in mind that the Key needs to be unique since the Value is retrieved by the Key.

// Maps - An object that associates keys and values.
// Key: Value - 'KeyValue': 'Value'
Map mapOfFilters = {'id1': 'company', 'id2': 'city', 'id3': 'state'};

// Change the value of third item with Key of id3
mapOfFilters['id3'] = 'my filter';

print('Get filter with id3: ${mapOfFilters['id3']}');
// Result from print statement
// Get filter with id3: my filter

Runes
In Dart, declaring variables as Runes are the UTF-32 code points of a String. Emojis, anyone?

Unicode defines a numeric value for each letter, digit, and symbol. Dart uses the sequence of UTF-16
code units to represent a 32-bit Unicode value from a string require a special syntax (\uXXXX).
A Unicode code point is \uXXXX, where XXXX is a four-digit hexadecimal value. Runes return the

Using Operators  ❘  49

integer value of the Unicode; then you use String.fromCharCodes() to allocate a new String for
the specified charCode.

// Emoji smiling angel Unicode is u+1f607
// Remove the Plus sign and replace with curly brackets
Runes myEmoji = Runes('\u{1f607}');
print(myEmoji);
// Result from print statement
// (128519)

print(String.fromCharCodes(myEmoji));
// Result from print statement
//

USING OPERATORS

An operator is a symbol used to perform arithmetic, equality, relational, type test, assignment, logical,
conditional, and cascade notation. Tables 3.1 through 3.7 go over some of the common operators.
For the sample code, I use the values directly to simplify the examples instead of using variables.

TABLE 3.1:  Arithmetic operators

OPERATOR DESCRIPTION SAMPLE CODE

+ Add 7 + 3 = 10

- Subtract 7 - 3 = 4

* Multiply 7 * 3 = 21

/ Divide 7 / 3 = 2.33

TABLE 3.2:  Equality and relational operators

OPERATOR DESCRIPTION SAMPLE CODE

== Equal 7 == 3 = false

!= Not equal 7 != 3 = true

> Greater than 7 > 3 = true

< Less than 7 < 3 = false

>= Greater than or equal to 7 >= 3 = true

4 >= 4 true

<= Less than or equal to 7<= 3 = false

4 <= 4 = true

50  ❘  CHAPTER 3   Learning Dart Basics

TABLE 3.3:  Type test operators

OPERATOR DESCRIPTION SAMPLE CODE

as Typecast like import library prefixes. import 'travelpoints

.dart' as travel;

is If the object contains the specified type, it
evaluates to true.

if (points is

Places) = true

is!
If the object contains the specified type, it
evaluates to false (not usually used).

if (points is!

Places) = false

TABLE 3.4:  Assignment operators

OPERATOR DESCRIPTION SAMPLE CODE

= Assigns value 7 = 3 = 3

??= Assigns value only if variable being assigned to
has a value of null

Null ??= 3 = 3

7 ??= 3 = 7

+= Adds to current value 7 += 3 = 10

-= Subtracts from current value 7 -= 3 = 4

*= Multiplies from current value 7 *= 3 = 21

/= Divides from current value 7 /= 3 = 2.33

TABLE 3.5:  Logical operators

OPERATOR DESCRIPTION SAMPLE CODE

! ! is a logical 'not'. Returns the opposite value
of the variable/expression.

if (!(7 > 3)) = false

&& && is a logical 'and'. Returns true if the values
of the variable/expression are all true.

if ((7 > 3) &&

(3 < 7)) = true

if ((7 > 3) &&

(3 > 7)) = false

!!
!! is a logical 'or'. Returns true if at least one
value of the variable/expression is true.

if ((7 > 3) ||

(3 > 7)) = true

if ((7 < 3) ||

(3 > 7)) = false

Using Flow Statements  ❘  51

USING FLOW STATEMENTS

To control the logic flow of the Dart code, take a look at the following flow statements:

➤➤ if and else are the most common flow statements; they decide which code to run by com-
paring multiple scenarios.

➤➤ The ternary operator is similar to the if and else statements but used when only two
choices are needed.

➤➤ for loops allow iterating a List of values.

➤➤ while and do-while are a common pair. Use the while loop to evaluate the condition
before running the loop, and use do-while to evaluate the condition after the loop.

➤➤ while and break are useful if you need to stop evaluating the condition in the loop.

➤➤ continue is for when you need to stop the current loop and start the next loop iteration.

➤➤ switch and case are alternatives to the if and else statements, but they require a
default clause.

if and else
The if statement compares an expression, and if true, it executes the code logic. The expression is
wrapped by open and close parentheses followed by the code logic wrapped in braces. The if state-
ment also supports multiple optional else statements, which are used to evaluate multiple scenarios.
There are two types of else statements: else if and else. You can use multiple else if state-
ments, but you can have only one else statement, usually used as a catchall scenario.

TABLE 3.6:  Conditional expressions

OPERATOR DESCRIPTION SAMPLE CODE

condition

? value1 :

value2

If the condition evaluates to true, it returns
value1. If the condition evaluates to false, it
returns value2. The value can also be obtained
by calling methods.

(7 > 3) ? true :

false = true

(7 < 3) ? true :

false = false

TABLE 3.7:  Cascade notation (..)

OPERATOR DESCRIPTION SAMPLE CODE

.. The cascade notation is represented by double
dots (..) and allows you to make a sequence of
operations on the same object.

Matrix4.identity()

..scale(1.0, 1.0)

..translate(30,

30);

52  ❘  CHAPTER 3   Learning Dart Basics

In the following example, the if statement is checking whether the store is open or closed and
whether items are out of stock or nothing matched. isClosed, isOpen, and isOutOfStock are bool
variables. The first if statement checks whether the isClosed variable is true, and if yes, it prints
to the log 'Store is closed'. How does it know you are checking for true or false without the
equality operator? When checking for bool values, the if statement checks by default if the variable
is true; this is the equivalent of isClosed == true. To check whether a variable is false, you can
use the not equal (!=) operator like isClosed != true or the equality (==) operator like isClosed
== false. The else if statement (isOpen) checks whether the isOpen variable equals true, and it’s
the same for the else if (isOutOfStock) variable. The last else statement does not have a condi-
tion; it’s a catchall scenario if none of the other conditions is met.

// If and else
if (isClosed) {
 print('Store is closed');
}
else if (isOpen) {
 print('Store is open');
}
else if (isOutOfStock) {
 print('Item is out of stock');
}
else {
 print('Nothing matched');;
}

ternary operator
The ternary operator takes three arguments, and it’s usually used when only two actions are needed.
The ternary operator checks the first argument for comparison, the second is the action if the argu-
ment is true, and the third is the action if the argument is false (see Table 3.8).

This will look familiar to you from the “Operators” section’s conditional expressions because it’s used
often to make code flow decisions.

// Shorter way of if and else statement
isClosed ? askToOpen() : askToClose();

for Loops
The standard for loop allows you to iterate a List of values. Values are obtained by restricting the
number of loops by a defined length. An example is to loop through the top three values, which
means you specify the number of times to execute the loop. Using a List of values also allows you to
use the for-in type of Iteration. The Iteration class needs to be of type Iterable (a collection

TABLE 3.8:  ternary operator

COMPARISON TRUE FALSE

isClosed ? askToOpen() : askToClose()

Using Flow Statements  ❘  53

of values), and the List class conforms to this type. Unlike the standard for loop, the for-in loop
iterates through every object in the List, exposing each object’s properties values.

Let’s take a look at two examples showing how to use the standard for loop and the for-in loops.
In the first example, you’ll use the standard for loop and iterate through a List of String values
with the listOfFilters variable. The standard for loop takes three parameters.

➤➤ The first parameter initializes the variable i as an int variable counting each loop executed.
Since the List uses zero-based indexing, the i variable is initialized with 0 and not 1.

➤➤ The second parameter controls how many times to loop through the List by comparing the
current number of loops (i) to the total number of loops (listOfFilters.length) to exe-
cute. Since the List uses zero-based indexing, the i variable value has to be less than the
number of rows in the List.

➤➤ The third parameter increases the number of loops executed by increasing the i variable
with each loop. Inside the loop, the print statement is used to show each value from the
listOfFilters List.

// Standard for loop
List listOfFilters = ['company', 'city', 'state'];
for (int i = 0; i < listOfFilters.length; i++) {
 print('listOfFilters: ${listOfFilters[i]}');
}
// Result from print statement
// listOfFilters: company
// listOfFilters: city
// listOfFilters: state

In the following example, you’ll use the for-in loop and iterate through a List of int values with
the listOfNumbers variable. The for-in loop takes one parameter that exposes the object (listOf-
Numbers) properties. You declare the int number variable to access the properties of the listOfNum-
bers List. Inside the loop, the print statement is used to show each value from listOfNumbers by
using the number variable value.

// or for-in loop
List listOfNumbers = [10, 20, 30];
for (int number in listOfNumbers) {
 print('number: $number');
}
// Result from print statement
// number: 10
// number: 20
// number: 30

while and do-while
Both the while and do-while loops evaluate a condition and continue to loop as long as the condi-
tion returns a value of true. The while loop evaluates the condition before the loop is executed.
The do-while loop evaluates the condition after the loop is executed at least once. Let’s look at two
examples that show how to use the while and do-while loops.

54  ❘  CHAPTER 3   Learning Dart Basics

In both examples, the askToOpen() method is called in the loop, executing logic that sets the
isClosed variable as a bool value of true or false. Use the while loop if you already have enough
information to evaluate the condition (isClosed) before the loop is executed. Use the do-while
if you need to execute the loop first before you have enough information to evaluate the condition
(isClosed).

In the first example, you’ll use the while loop and iterate as long as the isClosed variable returns a
value of true. In this case, the loop continues to execute as long as the isClosed variable is true and
continues to loop. Once the isClosed variable returns false, the while stops from executing the
next loop.

// While - evaluates the condition before the loop
while (isClosed){
 askToOpen();
}

In the second example, you’ll use the do-while loop and iterate as long as the isClosed variable
returns a value of true, like the first example. The loop is first executed at least once; then the condi-
tion is evaluated, and as long as it returns true, it continues to loop. Once the isClosed variable
returns false, do-while stops from executing the next loop.

// Do While - evaluates the condition after the loop
do {
 askToOpen();
} while (isClosed);

while and break
Using the break statement allows you to stop looping by evaluating a condition inside the
while loop.

In this example, the askToOpen() method is called inside the loop by the if statement, executing
logic that returns a bool value of true or false. As long as the value returned is false, the loop
continues as normal by calling the checkForNewOrder() method. But once askToOpen() returns a
value of true, the break statement is executed, stopping the loop. The checkForNewOrder() method
is not called, and the entire while statement stops from running again.

// Break - to stop loop
while (isClosed) {
 if (askToOpen()) break;
 checkForNewOrder();
}

continue
By using the continue statement, you can stop at the current loop location and skip to the start of
the next loop iteration.

In this example, the for statement loops through a List of numbers from 10 to 80. Inside the loop,
the if statement checks whether the number is less than 30 and greater than 50, and if the condition
is met, the continue statement stops the current loop and starts the next iteration. Using the print
statement, you see that only the numbers 30, 40, and 50 are printed to the log.

Using Functions  ❘  55

// Continue - skip to the next loop iteration
List listOfNumbers = [10, 20, 30, 40, 50, 60, 70, 80];
for (int number in listOfNumbers) {
 if (number < 30 || number > 50) {
 continue;
 }
 print('number: $number'); // Will print number 30, 40, 50
}

switch and case
The switch statement compares integer, string, or compile-time constants using == (equality). The
switch statement is an alternative to the if and else statements. The switch statement evaluates
an expression and uses the case clause to match a condition and executes code inside the matching
case. Each case clause ends by placing a break statement as the last line. It’s not commonly used,
but if you have an empty (no code) case clause, the break statement is not needed since Dart allows
it to fall through. If you need a catchall scenario, you can use the default clause to execute code that
is not matched by any of the case clauses, placed after all the case clauses. The default clause does
not require a break statement. Make sure that the last case is a default clause that executes logic if
no previous case clause has a match.

In our example, we have the String coffee variable initialized to the 'espresso' value. The
switch statement uses the coffee variable expression where each case clause needs to match the
coffee variable value. When the case clause matches the correct value, the code associated with the
clause is executed. If none of the case clauses matches the coffee variable value, the default clause
is selected and executes the associated code.

// switch and case
String coffee = 'espresso';
switch (coffee) {
 case 'flavored':
 orderFlavored();
 break;
 case 'dark-roast':
 orderDarkRoast();
 break;
 case 'espresso':
 orderEspresso();
 break;
 default:
 orderNotAvailable();
}

USING FUNCTIONS

Functions are used to group reusable logic. A function can optionally take parameters and return
values. I love this feature. Because Dart is an object-oriented language, functions can be assigned to
variables or passed as arguments to other functions. If the function executes a single expression, you
can use the arrow (=>) syntax. All functions return a value by default, and if no return statement

56  ❘  CHAPTER 3   Learning Dart Basics

is specified, Dart automatically appends to the function body the return null statement, which is
implicitly added for you.

Since all functions return a value, you start each function by specifying the return type expected.
When calling a function and a return value is not needed, then start the function with the void type,
meaning nothing. Using the void type is not required, but it’s recommended for readability. But when
the function is expected to return a value, start the function with the type of data being passed back
(bool, int, String, List. . .) and use the return statement to pass a value.

The following examples show different ways to create/call functions and return different types of
values. The first example shows that the app’s main() is a function with void as the return type.

// Functions - Our main() is a function
void main() => runApp(new MyApp());

The second example has a void as the return type, but the function takes an int as a parameter, and
when the code is executed, the print statement shows the value to the log terminal. Since the func-
tion is expecting a parameter, you call it by passing the value like orderEspresso(3).

// Function - pass value
void orderEspresso(int howManyCups) {
 print('Cups #: $howManyCups');
}
orderEspresso(3);
// Result from print statement
// Cups #: 3

The third example builds upon the second example of receiving a parameter and returns a bool value
as a return type. Just after the function, a bool isOrderDone variable is initialized by calling the
function and passing a value of three; then the print statement shows the bool value sent back by
the function.

// Function - pass value and return value
bool orderEspresso(int howManyCups) {
 print('Cups #: $howManyCups');
 return true;
}
bool isOrderDone = orderEspresso(3);
print('Order Done: $isOrderDone');
// Result from print statement
// Cups #: 3
// Order Done: true

The fourth example builds upon the third example by making the function parameter optional by
wrapping the [int howManyCups] variable inside square brackets.

// Function - pass optional value and return value
// Optional value is enclosed in square brackets []
bool orderEspresso1([int howManyCups]) {
 print('Cups #: $howManyCups');
 bool ordered = false;
 if (howManyCups != null) {
 ordered = true;
 }
 return ordered;

Using Classes  ❘  57

}
bool isOrderDone1 = orderEspresso1();
print('Order Done1: $isOrderDone1');
// Result from print statement
// Cups #: null
// Order Done: false

IMPORT PACKAGES

To use an external package, library or an external class, use the import statement. Separating code
logic into different class files allows you to separate and group code into manageable objects. The
import statement allows access to external packages and classes. It requires only one argument,
which specifies the uniform resource identifier (URI) of the class/library. If the library is created by
a package manager, then you specify the package: scheme before the URI. If importing a class, you
specify the location and class name or the package: directive.

// Import the material package
import 'package:flutter/material.dart';

// Import external class
import 'charts.dart';

// Import external class in a different folder
import 'services/charts_api.dart';

// Import external class with package: directive
import 'package:project_name/services/charts_api.dart';

USING CLASSES

All classes descend from Object, the base class for all Dart objects. A class has members (variables and
methods) and uses a constructor to create an object. If a constructor is not declared, a default construc-
tor will be provided automatically. The default constructor provided for you has no arguments.

What is a constructor, and why is it needed? A constructor has the same name as the class, with
optional parameters. The parameters serve as getters of values when initializing a class for the first
time. Dart uses syntactic sugar to make it easy to access values by using the this keyword, referring
to the current state in the class.

// Getter
this.type = type;

// Syntactic Sugar
this.type;

A basic class with a constructor would have this simple layout:

class Fruit {
 String type;

 // Constructor - Same name as class
 Fruit(this.type);
}

58  ❘  CHAPTER 3   Learning Dart Basics

The previous example uses a constructor with syntactic sugar, Fruit(this.type), and the construc-
tor is called in this manner: Fruit = Fruit('apple');. To use named parameters, enclose the
parameter in curly brackets, Fruit({this.type}), and call the constructor in this manner: Fruit =
Fruit(type: 'Apple');. Imagine passing three or four parameters; I prefer to use named param-
eters to keep the code readable. Each parameter is optional unless you specify with @required that it
is a required parameter.

// Required parameter
Fruit({@required this.type});

// Constructor - With optional parameter name at init
Fruit({this.type});

In addition to marking a parameter @required, you can add the assert statement to show an error
if a value is missing. The assert statement throws an error during development (debug) mode and
has no effect in production code (release).

// Constructor - Required parameter plus assert
class Fruit {
 String type;

 Fruit({@required this.type}) : assert(type != null);
}

// Call the Fruit class
Fruit fruit = Fruit(type: 'Apple');
print('fruit.type: ${fruit.type}');

In a class, methods are functions that provide logic for an object. Methods can return a value or void
(no return value, empty).

// Method in the class
calculateFruitCalories() {
 // Logic to calculate calories
}

Let’s look at one example of a class without a constructor and two examples of a class with a con-
structor and a named constructor.

First let’s look at creating a class that does not define a constructor and declares two variables to
hold the barista’s name and experience. Since the example does not declare a constructor, a default
constructor without any arguments is provided for you. What does this mean? Inside the class, it’s
the same as if you had typed BaristaNoConstructor();, which is a default constructor without
arguments. You create an instance of the class by declaring a BaristaNoConstructor baristaNo-
Constructor variable initialized with BaristaNoConstructor(), which is the default constructor
provided for you. By taking the baristaNoConstructor variable, you can use the dot operator like
baristaNoConstructor.experience and give it a value of 10.

// Declare Classes

// Class Default No Arguments Constructor
class BaristaNoConstructor {
 String name;
 int experience;
}

Using Classes  ❘  59

// Class Default No Arguments Constructor
BaristaNoConstructor baristaNoConstructor = BaristaNoConstructor();
baristaNoConstructor.experience = 10;
print('baristaNoConstructor.experience: ${baristaNoConstructor.experience}');
// baristaNoConstructor.experience: 10

Next let’s look at creating a class that defines a constructor with named parameters that hold the
barista name and experience. This example shows how to add a method whatIsTheExperience()
that returns the class’s experience variable value. You create an instance of the class by declaring a
BaristaWithConstructor barista variable initialized with the BaristaWithConstructor(name:
'Sandy', experience: 10) constructor. The benefits are immediately obvious when creating a class
with a constructor. You can initialize each class’s variables by passing the values via the constructor.
You can still use the dot operator to modify any of the variables, such as barista.experience.

// Class Named Constructor
class BaristaWithConstructor {
 String name;
 int experience;

 // Constructor - Named parameters by using { }
 BaristaWithConstructor({this.name, this.experience});

 // Method - return value
 int whatIsTheExperience() {
 return experience;
 }
}

// Class Named Constructor and return value
BaristaWithConstructor barista = BaristaWithConstructor(name: 'Sandy', experience: 10);
int experienceByProperty = barista.experience;
int experienceByFunction = barista.whatIsTheExperience();
print('experienceByProperty: $experienceByProperty');
print('experienceByFunction: $experienceByFunction');
// experienceByProperty: 10
// experienceByFunction: 10

Named constructors allow you to implement multiple constructors for a class and provide clear inten-
tions of initialized data.

Now let’s look at creating a class that defines a named constructor that holds the barista name and
experience. In this example, you’ll build upon the previous example and add a second constructor—
to be precise, a named constructor. You declare it by using the class name, the dot operator, and
the name of the constructor, like BaristaNamedConstructor.baristaDetails(name: 'Sandy',
experience: 10), giving you a named constructor using named parameters. You can still use the dot
operator to modify any of the variables, such as barista.experience.

// Class with additional named constructor
class BaristaNamedConstructor {
 String name;
 int experience;

60  ❘  CHAPTER 3   Learning Dart Basics

 // Constructor - Named parameters { }
 BaristaNamedConstructor({this.name, this.experience});

 // Named constructor - baristaDetails - With named parameters
 BaristaNamedConstructor.baristaDetails({this.name, this.experience});
}

BaristaNamedConstructor barista = BaristaNamedConstructor.baristaDetails(name:
'Sandy', experience: 10);
print('barista.name: ${barista.name} - barista.experience: ${barista.experience}');
// barista.name: Sandy - barista.experience: 10

Class Inheritance
In programming, inheritance allows objects to share traits. To inherit from other classes, use the
extends keyword. Use the super keyword to refer to the superclass (the parent class). Constructors
are not inherited in the subclass.

In this example, you’ll take the previous BaristaNamedConstructor class and use inheritance to
create a new class that inherits the parent class traits. Declare a new class with the name BaristaIn-
heritance using the extends keyword and the name of the class you are extending, which here is
BaristaNamedConstructor. The inherited class constructor looks just a little bit different than the
previous declarations; at the end of the constructor, you add a colon (:) and super(), referring to the
superclass. When the BaristaInheritance class is initialized, it inherits the parent class traits, mean-
ing it can access variables and methods (class functions) from BaristaNamedConstructor.

// Class inheritance
class BaristaInheritance extends BaristaNamedConstructor {
 int yearsOnTheJob;

 BaristaInheritance({this.yearsOnTheJob}) : super();
}

// Init Inherited Class
BaristaInheritance baristaInheritance = BaristaInheritance(yearsOnTheJob: 7);
// Assign Parent Class variable
baristaInheritance.name = 'Sandy';
print('baristaInheritance.yearsOnTheJob: ${baristaInheritance.yearsOnTheJob}');
print('baristaInheritance.name: ${baristaInheritance.name}');

Class Mixins
Mixins are used to add features to a class and allow you to reuse the class code in different classes. In
other words the mixins allow you to access class code between unrelated classes. To use a mixin, you
add the with keyword followed by one or more mixin names. Place the with keyword right after the
class name declaration. The class that implements a mixin does not declare a constructor. Usually the
mixin class is a collection of methods. In Chapter 7, “Adding Animation to an App,” you’ll create two
animation apps that use mixins. For example, using AnimationController relies on TickerProvider
StateMixin.

Implementing Asynchronous Programming  ❘  61

In the following example, the mixin class BaristaMixinNoConstructor has a method called
findBaristaFromLocation(String location) that returns a String. This method calls the
locateBarista() service and returns the barista name in a specified location. Usually, you would
have multiple methods in the class that perform different code logic.

The class BaristaWithMixin uses the BaristaMixinNoConstructor mixin class via the
with keyword. Classes that use a mixin can declare constructors. In this class, you have
the method retrieveBaristaNameFromLocation() that calls the mixin class method
findBaristaFromLocation(this.location) to retrieve the barista name from a location.
Notice that you call findBaristaFromLocation(this.location) without specifying the class it
belongs to.

// Mixin Class declared without a constructor
class BaristaMixinNoConstructor {

 String findBaristaFromLocation(String location) {
 // Call service to find barista
 String baristaName = BaristaLocator().locateBarista(location);
 return baristaName;
 }
}

// Class using a mixin
class BaristaWithMixin with BaristaMixinNoConstructor {
 String location;

 // Constructor
 BaristaWithMixin({this.location});

 // The power of mixin we have full access to BaristaNamedConstructor
 String retrieveBaristaNameFromLocation() {
 return findBaristaFromLocation(this.location);
 }
}

// Mixin
BaristaWithMixin baristaWithMixin = BaristaWithMixin();
String name = baristaWithMixin.findBaristaFromLocation('Huston');
print('baristaWithMixin name: $name');
// baristaWithMixin name: Sandy

IMPLEMENTING ASYNCHRONOUS PROGRAMMING

In a mobile application, you will use a lot of asynchronous, or async, programming. Async functions
perform time-consuming operations without waiting for the operation to complete. In Dart, to not
block the UI, you use functions that return Future or Stream objects.

A Future object represents a value that will be available at some point in the future. For example,
calling a web service to retrieve values might be fast or take a long time, and you do not want to stop
the user from using the app while the process is running. By using a Future object, as the function
retrieves values, it returns control to the UI, and the user continues to use the app. Once the values

62  ❘  CHAPTER 3   Learning Dart Basics

are retrieved, it will update the UI with the new data. In Chapter 13, “Local Persistence: Saving
Data,” you’ll look at how to use Stream objects, which allow data to be added or returned in the
future. To accomplish this, Dart uses StreamController and Stream.

The async and await keywords are used in conjunction. Mark the function as async and place the
await keyword before the function that will return data in the future. Note that functions marked
async must have a return type assignable to Future.

In this example, the totalCookiesCount() function implements a Future object that returns an int
value. To implement a Future object, you start the function with Future<int> (int or any valid data
type), the function name, and the async keyword. The code inside the function that returns a future
value is marked with the await keyword. The lookupTotalCookiesCountDatabase() method
represents a call to a web server to retrieve data and is preceded by the await keyword. The await
keyword allows the request to be made, and instead of waiting for the data to come back, it continues
executing the next block of code. Once the data is retrieved, the code continues to finish the function
and returns the value.

// Async and await Function with Future - return value of integer
Future<int> totalCookiesCount() async {
 int cookiesCount = await lookupTotalCookiesCountDatabase(); // Returns 33
 return cookiesCount;
}

// Async method to call web server
Future<int> lookupTotalCookiesCountDatabase() async {
 // In a real world app we call the web server to retrieve live data
 return 33;
}

// User pressed button
totalCookiesCount()
 .then((count) {
 print('cookiesCount: ${count}');
 });
print('This will print before cookiesCount');
// This will print before cookiesCount
// cookiesCount: 33

SUMMARY

This chapter covered the basics of the Dart language. You learned how to comment your code for
better readability and how to use the main() function that starts the app. You learned how to declare
variables to reference different kinds of values such as numbers, strings, Booleans, lists, and more.
You used the List to store an array of filters and learned how to iterate through each value. You
looked at operator symbols commonly used to perform arithmetic, equality, logical, conditional, and
cascade notation. The cascade notation is a powerful operator to make multiple sequence calls on the
same object such as scaling and translating (positioning) an object.

Summary  ❘  63

To use external packages, libraries and classes, you used the import statement. You looked at an
example of how to use asynchronous programming with a Future object. The example called a simu-
lated web server to look up a total cookie count in the background while the user continued to use
the app without interruptions.

Finally, you learned how to use classes to group code logic that used variables to hold data such as a
barista name and experience. Classes also define functions that execute code logic such as looking up
the barista experience.

In the next chapter, you’ll create a starter app. This starter app is the basic template used to start
every new project.

64  ❘  CHAPTER 3   Learning Dart Basics

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Commenting the code There are single-line, multiline, and documentation comments.

Accessing main() main() is the top-level function.

Using variables You can store values such as numbers, strings, Booleans, lists, maps,
and runes.

Using operators An operator is a symbol used to perform arithmetic, equality,
relational, type test, assignment, logical, conditional, and cascade
notation.

Using flow statements Flow statements include if and else, the ternary operator, for
loops, while and do-while, while and break, continue, and
switch and case.

Using functions Functions are used to group reusable logic.

Importing packages You can use the import statement to import external packages,
libraries or classes.

Using classes You can create classes to separate code logic.

Implementing asynchronous
programming

You can use asynchronous programming so as to not block the
user interface.

Creating a Starter
Project Template

WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to create folders in the project, grouping them by file types

➤➤ How to separate and structure widgets into different files

In this chapter, you will learn how to create a Flutter starter project and how to structure the
widgets. (I’ll cover widgets in depth in the next three chapters.) In future chapters, every time
you start a new example, I’ll refer to this chapter, which contains the steps to create a new
starter project. Like when building a home, the foundation is the most critical factor, and the
same is true when creating new apps.

CREATING AND ORGANIZING FOLDERS AND FILES

All the example apps created in this book start with the same steps in this chapter for creating a
starter project, so I’ll refer to this process often. To keep the project code organized, you’ll cre-
ate different folders and files to group similar logic together and to structure the widgets.

TRY IT OUT	 Creating the Folder Structure

Create a new Flutter project by following the steps in Chapter 2, “Creating a Hello World App.”

1.	 In step 4 of the “Creating a New App” section, enter ch4_starter_exercise for the project
name and click Next. This app is the sample exercise to structure future projects. Note that
the Flutter SDK path is the installation folder you have chosen in Chapter 1. You can option-
ally change the project location and description.

4

66  ❘  CHAPTER 4   Creating a Starter Project Template

It’s time to create the folder structure to keep you organized. This structure is my personal prefer-
ence, and depending on the project complexity, you might require more or fewer folders. At the
very least, for every new project, create the pages folder. It contains all the new pages created for
the app, keeping them separate for maintainability.

2.	 Click the Terminal button at the bottom of the Android Studio window.

Creating and Organizing Folders and Files  ❘  67

3.	 To create the folder structures, execute the mkdir -p folder/subfolder command. This mkdir
command creates a folder, and the -p parameter creates a folder and subfolder in one run. The last
parameter you pass is the folder/subfolder structure.

4.	 Run each mkdir command in the Terminal window to create each folder structure. For example,
run the mkdir -p assets/images command to create the assets/images folders. Repeat the
mkdir command for each folder structure listed here. For your convenience, I’ve listed the com-
mands for both Mac and Windows.

// From Terminal enter below commands
Mac:starter_exercise marco$ mkdir -p assets/images
Mac:starter_exercise marco$ mkdir -p lib/pages
Mac:starter_exercise marco$ mkdir -p lib/models
Mac:starter_exercise marco$ mkdir -p lib/utils
Mac:starter_exercise marco$ mkdir -p lib/widgets
Mac:starter_exercise marco$ mkdir -p lib/services

// From Windows Command Prompt enter below commands
F:\Pixolini\Flutter\starter_exercise>mkdir assets\images
F:\Pixolini\Flutter\starter_exercise>mkdir lib\pages
F:\Pixolini\Flutter\starter_exercise>mkdir lib\models
F:\Pixolini\Flutter\starter_exercise>mkdir lib\utils
F:\Pixolini\Flutter\starter_exercise>mkdir lib\widgets
F:\Pixolini\Flutter\starter_exercise>mkdir lib\services

Take a look at the new folder structures. Not every project will use all of them, but it’s a great way to
stay organized. The assets and lib folders are located at the root folder of the project. The assets
folder contains items such as images, data files, and fonts, and the lib folder contains all the source code
logic, including the UI.

68  ❘  CHAPTER 4   Creating a Starter Project Template

➤➤ assets/images: The assets folder holds subfolders such as images, fonts, and configuration files.

➤➤ lib/pages: The pages folder holds user interface (UI) files such as logins, lists of items, charts,
and settings.

➤➤ lib/models: The models folder holds classes for your data such as customer information and
inventory items.

➤➤ lib/utils: The utils folder holds helper classes such as date calculations and data conversion.

➤➤ lib/widgets: The widgets folder holds different Dart files separating widgets to reuse
through the app.

➤➤ lib/services: The services folder holds classes that help to retrieve data from services over the
Internet. A great example is when using Google Cloud Firestore, Cloud Storage, Realtime Data-
base, Authentication, or Cloud Functions. You can retrieve data from social media accounts, data-
base servers, and so on. In Chapters 14, 15, and 16, you will learn how to use state management to
authenticate users, retrieve and sync database records from the cloud by using Cloud Firestore.

How It Works
Using either the Mac Terminal or the Windows command prompt, run the mkdir command with the
folder name parameter. The mkdir command creates the folder structure at the location specified.

Structuring Widgets  ❘  69

STRUCTURING WIDGETS

Before you start developing an app, it’s important to create your structure; like when building a
house, the foundation is created first. (In Chapter 5, “Understanding the Widget Tree,” you’ll explore
widgets in more detail.) Structuring widgets in an organized manner improves the code’s readability
and maintainability. When creating a new Flutter project, the software development kit (SDK) does
not automatically create the separate home.dart file, which contains the main presentation page
when the app starts. Therefore, to have code separation, you must manually create the pages folder
and the home.dart file inside it. The main.dart file contains the main() function that starts the app
and calls the Home widget in the home.dart file.

TRY IT OUT	 Creating the Dart Files and Widgets

A great way to learn how Flutter works is to start from a blank slate. Delete all the contents of the main.
dart file. The main.dart file has three main sections.

➤➤ The import package/file

➤➤ The main() function

➤➤ A class that extends a StatelessWidget widget and returns the app as a widget (like I said before,
just about everything is a widget)

Note for the import package that you’ll be using Google’s Material Design. All the examples in the book
import and use Material Design. In Chapter 2, you learned that Material Design is a system of best-prac-
tice guidelines for user interface design. The Material Design components in a Flutter project are visual,
behavioral, and motion widgets. Cupertino can also be used to adhere to Apple’s iOS design language
that supports iOS-style widgets. You can use both standards in different parts of your app. Right off the
bat, Flutter is smart enough to show the native actions in both operating systems without you having to
worry about it.

For example, by importing the cupertino.dart library, you can mix some of the Cupertino widgets
with Material Design. The date and time picker work differently in Android and iOS, and you can specify
in the code which widget to show depending on the operating system. However, you’ll need to choose up
front either Material Design or Cupertino for the entire look and feel of the app. Why? Well, the base of
your app needs to be either a MaterialApp widget or a CupertinoApp widget because this determines
the availability of widgets. In step 3 of this exercise, you’ll learn how to use the MaterialApp widget.

Let’s start by adding the code to the main.dart file and saving it.

1.	 Import the package/file. The default import is the material.dart library to allow the use of
Material Design. (To use the Cupertino iOS-style widgets, you import the cupertino.dart library
instead of material.dart. For the apps in this book, I’ll use Material Design.) Then import the
home.dart page located in the pages folder.

import 'package:flutter/material.dart';
import 'package:ch4_starter_exercise/pages/home.dart';

70  ❘  CHAPTER 4   Creating a Starter Project Template

2.	 After the two import statements, leave a blank line and enter the main() function listed next. The
main() function is the entry point to the app and calls the MyApp class.

void main() => runApp(MyApp());

3.	 Type the MyApp class that extends StatelessWidget.

The MyApp class returns a MaterialApp widget declaring title, theme, and home properties. There
are many other MaterialApp properties available. Notice that the home property calls the Home()
class, which is created later in the home.dart file.

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'Starter Template',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: Home(),
);
 }
}

Android Studio shows a red squiggly line under the import statement pages/home.dart as well as
the Home() method, which has this error: The method "Home" isn't defined for the class
'MyApp'. By hovering your mouse over pages/home.dart and Home(), you can read each error.

Structuring Widgets  ❘  71

This is normal since you have not created the home.dart file containing the home page. This name
can be anything you like, but it’s always good to have a descriptive name for each page.

4.	 Create a new Dart file in the pages folder. Right-click the pages folder, select New ⇨ Dart File,
enter home.dart, and click the OK button to save.

5.	 Like in step 1, import the material.dart package/file. As a reminder, I’ll be using Material Design
for all the example apps.

import 'package:flutter/material.dart';

6.	 Start typing st and—wow—the autocompletion help opens. As you type the abbreviation for a
StatefulWidget class, the Android Studio Live Templates automatically fills in the Flutter widget’s
basic structure. Select the stful abbreviation.

7.	 Now all you need to do is to give the StatefulWidget class its name: Home. Since it’s a class, the
naming convention is to start the word with an uppercase letter.

// home.dart
import 'package:flutter/material.dart';

class Home extends StatefulWidget {
 @override
 _HomeState createState() => _HomeState();
}

class _HomeState extends State<Home> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

You’re using StatefulWidget for the Home class because in a real-world application most likely
a state would be kept for data. An example of when you would need a state is a PopupMenuItem

72  ❘  CHAPTER 4   Creating a Starter Project Template

widget on the AppBar widget showing a selected date used by multiple pages. If the Home class does
not need to keep state, then use StatelessWidget.

class Home extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

8.	 Replace the Container() widget with a Scaffold widget. The Scaffold widget implements the
basic Material Design visual layout, allowing the simple addition of AppBar, BottomAppBar,
FloatingActionButton, Drawer, SnackBar, BottomSheet, and more. (If this were a
CupertinoApp, you could use either CupertinoPageScaffold or CupertinoTabScaffold.)

class _HomeState extends State<Home> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Home'),
),
 body: Container(),
);
 }
}

The following is the full source code for both the main.dart and home.dart files:

// main.dart
import 'package:flutter/material.dart';
import 'package:ch4_starter_exercise/pages/home.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'Starter Template',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: Home(),
);
 }
}

// home.dart
import 'package:flutter/material.dart';

class Home extends StatefulWidget {
 @override

Structuring Widgets  ❘  73

 _HomeState createState() => _HomeState();
}

class _HomeState extends State<Home> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Home'),
),
 body: Container(),
);
 }
}

Go ahead and run the project and see how your app is looking.

Notice that I added the following to Scaffold and AppBar: Container (this can be a TabController,
PageController, and so on) and FloatingActionButton.

74  ❘  CHAPTER 4   Creating a Starter Project Template

How It Works
To keep your code readable and maintainable, you structure appropriate widgets in their own classes and
Dart files. You structure your starting projects with the main.dart file containing the main() function
that starts the app. The main() function calls the Home widget in the home.dart file. The Home widget
is the main presentation page shown when the app starts. For example, the Home widget might contain a
TabBar or BottomNavigationBar widget.

SUMMARY

In this chapter, you learned how to create the starter project you’ll use for all future apps in this book.
You created folders with the mkdir command and named them accordingly to group the logic. You
also created two Dart files: main.dart for the main() function that starts the app and home.dart to
contain the code for the Home widget.

In the next chapter, we analyze the widget tree. Flutter works by nesting widgets together, and we find
out quickly that readability and maintainability takes a hit quickly. We take a look at an example of
how to flatten the widget tree.

Summary  ❘  75

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

mkdir This is the command to create folders by name.

main.dart The main() function starts the app and returns either a MaterialApp (Android)
or CupertinoApp (iOS).

home.dart This contains widgets that show the first page’s layout, or home page.

Understanding the Widget Tree
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ The fundamentals of widgets

➤➤ How to use a full widget tree

➤➤ How to use a shallow widget tree

The widget tree is how you create your UI; you position widgets within each other to build
simple and complex layouts. Since just about everything in the Flutter framework is a widget,
and as you start nesting them, the code can become harder to follow. A good practice is to try
to keep the widget tree as shallow as possible. To understand the full effects of a deep tree,
you’ll look at a full widget tree and then refactor it into a shallow widget tree, making
the code more manageable. You’ll learn three ways to create a shallow widget tree by refactor-
ing: with a constant, with a method, and with a widget class.

INTRODUCTION TO WIDGETS

Before analyzing the widget tree, let’s look at the short list of widgets that you will use for this
chapter’s example apps. At this point, do not worry about understanding the functionality for
each widget; just focus on what happens when you nest widgets and how you can separate
them into smaller sections. In Chapter 6, “Using Common Widgets,” you’ll take a deeper look
at using the most common widgets by functionality.

As I mentioned in Chapter 4, “Creating a Starter Project Template,” this book uses Material
Design for all the examples. The following are the widgets (usable only with Material Design)
that you’ll use to create the full and shallow widget tree projects for this chapter:

➤➤ Scaffold—Implements the Material Design visual layout, allowing the use of Flutter’s
Material Components widgets

➤➤ AppBar—Implements the toolbar at the top of the screen

5

78  ❘  CHAPTER 5   Understanding the Widget Tree

➤➤ CircleAvatar—Usually used to show a rounded user profile photo, but you can use it
for any image

➤➤ Divider—Draws a horizontal line with padding above and below

If the app you are creating is using Cupertino, you can use the following widgets instead. Note that
with Cupertino you can use two different scaffolds, a page scaffold or a tab scaffold.

➤➤ CupertinoPageScaffold—Implements the iOS visual layout for a page. It works with
CupertinoNavigationBar to provide the use of Flutter’s Cupertino iOS-style widgets.

➤➤ CupertinoTabScaffold—Implements the iOS visual layout. This is used to navigate mul-
tiple pages, with the tabs at the bottom of the screen allowing you to use Flutter’s Cupertino
iOS-style widgets.

➤➤ CupertinoNavigationBar—Implements the iOS visual layout toolbar at the top of
the screen.

Table 5.1 summarizes a short list of the different widgets to use based on platform.

The following widgets can be used with both Material Design and Cupertino:

➤➤ SingleChildScrollview—This adds vertical or horizontal scrolling ability to a single
child widget.

➤➤ Padding—This adds left, top, right, and bottom padding.

➤➤ Column—This displays a vertical list of child widgets.

➤➤ Row—This displays a horizontal list of child widgets.

➤➤ Container—This widget can be used as an empty placeholder (invisible) or can specify
height, width, color, transform (rotate, move, skew), and many more properties.

➤➤ Expanded—This expands and fills the available space for the child widget that belongs to a
Column or Row widget.

➤➤ Text—The Text widget is a great way to display labels on the screen. It can be configured
to be a single line or multiple lines. An optional style argument can be applied to change
the color, font, size, and many other properties.

TABLE 5.1:  Material Design vs. Cupertino Widgets

MATERIAL DESIGN CUPERTINO

Scaffold CupertinoPageScaffold

CupertinoTabScaffold

AppBar CupertinoNavigationBar

CircleAvatar n/a

Divider n/a

Building the Full Widget Tree  ❘  79

➤➤ Stack—What a powerful widget! Stack lets you stack widgets on top of each other and use
a Positioned (optional) widget to align each child of the Stack for the layout needed. A
great example is a shopping cart icon with a small red circle on the upper right to show the
number of items to purchase.

➤➤ Positioned—The Positioned widget works with the Stack widget to control child posi-
tioning and size. A Positioned widget allows you to set the height and width. You can
also specify the position location distance from the top, bottom, left, and right sides of the
Stack widget.

You’ve learned about each widget that you will implement for the rest of this chapter. You’ll now cre-
ate a full widget tree, and then you’ll learn how to refactor it to a shallow widget tree.

BUILDING THE FULL WIDGET TREE

To show how a widget tree can start to expand quickly, you’ll use a combination of Column, Row,
Container, CircleAvatar, Divider, Padding, and Text widgets. You’ll take a closer look at these
widgets in Chapter 6. The code that you’ll write is a simple example, and you can immediately see
how the widget tree can grow quickly (Figure 5.1).

FIGURE 5.1:  Full widget tree view

80  ❘  CHAPTER 5   Understanding the Widget Tree

TRY IT OUT	 Creating the Full Widget Tree

Create a new Flutter project called ch5_widget_tree. You can follow the instructions from Chapter 4.
For this project, you need to create the pages folder only. You can view the full widget tree at the end of
the steps.

1.	 Open the home.dart file.

2.	 Add to the Scaffold body property a SafeArea widget with the child property set to a
SingleChildScrollview. Add a Padding widget as a child of the SingleChildScrollView. Set
the padding property to EdgeInsets.all(16.0).

body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
),
),
),

3.	 Add to the Padding child property a Column widget with the children property set to a Row.

body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 Row(
 children: <Widget>[
],
),
],
),
),
),
),

4.	 Add to the Row children widgets in this order: Container, Padding, Expanded, Padding,
Container, and Padding. You are not done adding widgets; in the next step, you’ll add a Row
widget with multiple nested widgets.

Row(
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Expanded(
 child: Container(
 color: Colors.amber,
 height: 40.0,

Building the Full Widget Tree  ❘  81

 width: 40.0,
),
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.brown,
 height: 40.0,
 width: 40.0,
),
],
),

5.	 Add a Padding widget to create a space before the next Row widget.

Padding(padding: EdgeInsets.all(16.0),),

6.	 Add a Row widget with the children property set to a Column. Add to the Column children a
Container, Padding, Container, Padding, Container, Divider, Row, Divider and Text. You are
still not done adding widgets, and in the next step, you’ll add another Row widget with multiple
nested widgets.

Row(
 children: <Widget>[
 Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 60.0,
 width: 60.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.brown,
 height: 20.0,
 width: 20.0,
),
 Divider(),
 Row(
 children: <Widget>[
 // Next step we'll add more widgets
],
),
 Divider(),
 Text('End of the Line'),
],
),
],
),

82  ❘  CHAPTER 5   Understanding the Widget Tree

7.	 Modify the last Row widget (from step 6) and set the children property to a CircleAvatar with a
child as a Stack. Add to the Stack children property three Container widgets.

Row(
 children: <Widget>[
 CircleAvatar(
 backgroundColor: Colors.lightGreen,
 radius: 100.0,
 child: Stack(
 children: <Widget>[
 Container(
 height: 100.0,
 width: 100.0,
 color: Colors.yellow,
),
 Container(
 height: 60.0,
 width: 60.0,
 color: Colors.amber,
),
 Container(
 height: 40.0,
 width: 40.0,
 color: Colors.brown,
),
],
),
),
],
),

8.	 After the Stack widget (from step 7), add a Divider widget and then a Text widget with a string
of ‘End of the Line’.

Divider(),
Text('End of the Line'),

You’ve added a lot of nested widgets to build a complex layout. The full code is shown next. In a real-
world app, this is common. Immediately you’ll start to see how the widget tree can grow, making the
code unreadable and unmanageable. To keep the example focused on how quickly the widget tree can
grow, here you used basic widgets. In a production-level app, you would have even more widgets such as
text fields to allow the user to enter text.

import 'package:flutter/material.dart';

class Home extends StatefulWidget {
 @override
 _HomeState createState() => _HomeState();
}

class _HomeState extends State<Home> {
 @override
 Widget build(BuildContext context) {

Building the Full Widget Tree  ❘  83

 return Scaffold(
 appBar: AppBar(
 title: Text('Widget Tree'),
),
 body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 Row(
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Expanded(
 child: Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.brown,
 height: 40.0,
 width: 40.0,
),
],
),
 Padding(padding: EdgeInsets.all(16.0),),
 Row(
 children: <Widget>[
 Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 60.0,
 width: 60.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),

84  ❘  CHAPTER 5   Understanding the Widget Tree

 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.brown,
 height: 20.0,
 width: 20.0,
),
 Divider(),
 Row(
 children: <Widget>[
 CircleAvatar(
 backgroundColor: Colors.lightGreen,
 radius: 100.0,
 child: Stack(
 children: <Widget>[
 Container(
 height: 100.0,
 width: 100.0,
 color: Colors.yellow,
),
 Container(
 height: 60.0,
 width: 60.0,
 color: Colors.amber,
),
 Container(
 height: 40.0,
 width: 40.0,
 color: Colors.brown,
),
],
),
),
],
),
 Divider(),
 Text('End of the Line'),
],
),
],
),
],
),
),
),
),
);
 }
}

The following image shows the page layout resulting from the widget tree.

Building a Shallow Widget Tree  ❘  85

How It Works
To create a page layout, you nest widgets to create a custom UI. The result of adding widgets together is
called the widget tree. As the number of widgets increases, the widget tree starts to expand quickly and
makes the code hard to read and manage.

BUILDING A SHALLOW WIDGET TREE

To make the example code more readable and maintainable, you’ll refactor major sections of the
code into separate entities. You have multiple refactor options, and the most common techniques are
constants, methods, and widget classes.

86  ❘  CHAPTER 5   Understanding the Widget Tree

Refactoring with a Constant
Refactoring with a constant initializes the widget to a final variable. This approach allows you to
separate widgets into sections, making for better code readability. When widgets are initialized with a
constant, they rely on the BuildContext object of the parent widget.

What does this mean? Every time the parent widget is redrawn, all the constants will also redraw
their widgets, so you can’t do any performance optimization. In the next section, you’ll take a detailed
look at refactoring with a method instead of a constant. The benefits of making the widget tree shal-
lower are similar with both techniques.

The following sample code shows how to use a constant to initialize the container variable as final
with the Container widget. You insert the container variable in the widget tree where needed.

final container = Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
);

Refactoring with a Method
Refactoring with a method returns the widget by calling the method name. The method can return a
value by a general widget (Widget) or a specific widget (Container, Row, and others).

The widgets initialized by a method rely on the BuildContext object of the parent widget. There
could be unwanted side effects if these kinds of methods are nested and call other nested methods/
functions. Since each situation is different, do not assume that using methods is not a good choice.
This approach allows you to separate widgets into sections, making for better code readability. How-
ever, like when refactoring with a constant, every time the parent widget is redrawn, all the methods
will also redraw their widgets. That means the widget tree is not optimizable for performance.

The following sample code shows how to use a method to return a Container widget. This first
method returns the Container widget as a general Widget, and the second method returns the
Container widget as a Container widget. Both approaches are acceptable. You insert the
 _buildContainer() method name in the widget tree where needed.

// Return by general Widget Name
Widget _buildContainer() {
 return Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
);
}

// Or Return by specific Widget like Container in this case
Container _buildContainer() {
 return Container(
 color: Colors.yellow,
 height: 40.0,

Building a Shallow Widget Tree  ❘  87

 width: 40.0,
);
}

Let’s look at an example that refactors by using methods. This approach improves code readability
by separating the main parts of the widget tree into separate methods. The same approach could be
taken by refactoring with a constant.

What is the benefit of using the method approach? The benefit is pure and simple code readability,
but you lose the benefits of Flutter’s subtree rebuilding: performance.

TRY IT OUT	 Refactoring with a Method to Create a Shallow Widget Tree

To refactor the widgets, use the method pattern to flatten the widget tree.

1.	 Open the home.dart file.

2.	 Place the cursor on the first Row widget and right-click.

3.	 Select Refactor ➪ Extract ➪ Method and click Method.

88  ❘  CHAPTER 5   Understanding the Widget Tree

4.	 In the Extract Method dialog, enter _buildHorizontalRow for the method name. Notice the
underscore before build; this lets Dart know that it is a private method. Notice that the entire Row
widget and the children are highlighted to make it easy to view the affected code.

5.	 The Row widget is replaced with the _buildHorizontalRow() method. Scroll to the bottom of the
code, and the method and widgets are nicely refactored.

Row _buildHorizontalRow() {
 return Row(
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Expanded(
 child: Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.brown,

Building a Shallow Widget Tree  ❘  89

 height: 40.0,
 width: 40.0,
),
],
);
}

6.	 Continue and refactor the other Rows and the Row and Stack widgets.

The full source code for home.dart is shown next. Notice how the widget tree is flattened, making
it easier to read. Deciding on how shallow to make the widget tree depends on each circumstance
and your personal preference. For example, say you are working on your code and you start notic-
ing that you are doing a lot of scrolling vertically or horizontally to make changes. This is a good
indication that you can refactor portions of the code into separate sections.

// home.dart
import 'package:flutter/material.dart';

class Home extends StatefulWidget {
 @override
 _HomeState createState() => _HomeState();
}

class _HomeState extends State<Home> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Widget Tree'),
),
 body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 _buildHorizontalRow(),
 Padding(padding: EdgeInsets.all(16.0),),
 _buildRowAndColumn(),
],
),
),
),
),
);
 }

 Row _buildHorizontalRow() {
 return Row(
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
),

90  ❘  CHAPTER 5   Understanding the Widget Tree

 Padding(padding: EdgeInsets.all(16.0),),
 Expanded(
 child: Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.brown,
 height: 40.0,
 width: 40.0,
),
],
);
 }

 Row _buildRowAndColumn() {
 return Row(
 children: <Widget>[
 Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 60.0,
 width: 60.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
 Padding(padding: EdgeInsets.all(16.0),),
 Container(
 color: Colors.brown,
 height: 20.0,
 width: 20.0,
),
 Divider(),
 _buildRowAndStack(),
 Divider(),
 Text('End of the Line'),
],
),
],
);
 }

 Row _buildRowAndStack() {
 return Row(
 children: <Widget>[

Building a Shallow Widget Tree  ❘  91

 CircleAvatar(
 backgroundColor: Colors.lightGreen,
 radius: 100.0,
 child: Stack(
 children: <Widget>[
 Container(
 height: 100.0,
 width: 100.0,
 color: Colors.yellow,
),
 Container(
 height: 60.0,
 width: 60.0,
 color: Colors.amber,
),
 Container(
 height: 40.0,
 width: 40.0,
 color: Colors.brown,
),
],
),
),
],
);
 }

}

How It Works
Creating a shallow widget tree means each widget is separated into its own method by functionality.
Keep in mind that how you separate widgets will be different depending on the functionality needed.
Separating widgets by method improves code readability, but you lose the performance benefits of Flut-
ter’s subtree rebuilding. All the widgets in the method rely on the parent’s BuildContext, meaning every
time the parent is redrawn, the method is also redrawn.

In this example, you created the _buildHorizontalRow() method to build the horizontal Row widget
with child widgets. The _buildRowAndColumn() method is an excellent example of flattening it even
more by calling the _buildRowAndStack() method for one of the Column children widgets. Separating
_buildRowAndStack() is done to keep the widget tree flat because the _buildRownAndStack() method
builds a widget with multiple children widgets.

Refactoring with a Widget Class
Refactoring with a widget class allows you to create the widget by subclassing the StatelessWidget
class. You can create reusable widgets within the current or separate Dart file and initiate them
anywhere in the application. Notice that the constructor starts with a const keyword, which allows
you to cache and reuse the widget. When calling the constructor to initiate the widget, use the const

92  ❘  CHAPTER 5   Understanding the Widget Tree

keyword. By calling with the const keyword, the widget does not rebuild when other widgets change
their state in the tree. If you omit the const keyword, the widget will be called every time the parent
widget redraws.

The widget class relies on its own BuildContext, not the parent like the constant and method
approaches. BuildContext is responsible for handling the location of a widget in the widget tree.
In Chapter 7, “Adding Animation to an App,” you’ll build an example that refactors and separates
widgets with multiple StatefulWidgets instead of the StatelessWidget class.

What does this mean? Every time the parent widget is redrawn, all the widget classes will not redraw.
They are built only once, which is great for performance optimization.

The following sample code shows how to use a widget class to return a Container widget. You insert
the const ContainerLeft() widget in the widget tree where needed. Note the use of the const key-
word to take advantage of caching.

class ContainerLeft extends StatelessWidget {
 const ContainerLeft({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
);
 }
}

// Call to initialize the widget and note the const keyword
const ContainerLeft(),

Let’s look at an example that refactors by using widget classes (a Flutter widget). This approach
improves code readability and performance by separating the main parts of the widget tree into sepa-
rate widget classes.

What is the benefit of using the widget classes? It’s pure and simple performance during screen
updates. When calling a widget class, you need to use the const declaration; otherwise, it will be
rebuilt every time, without caching. An example of refactoring with a widget class is when you have a
UI layout where only specific widgets change state and others stay the same.

TRY IT OUT	 Refactoring with a Widget Class to Create a Shallow Widget Tree

To refactor the widgets, use the widget class pattern to flatten the widget tree.

Create a new Flutter project called ch5_widget_tree_performance. You can follow the instructions
from Chapter 4. For this project, you need to create the pages folder only. To keep this example simple,

Building a Shallow Widget Tree  ❘  93

you’ll create the widget classes in the home.dart file, but in Chapter 7 you’ll learn how to separate them
into separate files.

1.	 Open the home.dart file. Copy the original full widget tree in home.dart (from the “Building the
Full Widget Tree” section of this chapter) to this project’s home.dart file.

2.	 Place the cursor on the first Row widget and right-click.

3.	 Select Refactor ➪ Extract ➪ Flutter Widget.

4.	 In the Extract Widget dialog, enter RowWidget for the widget name.

94  ❘  CHAPTER 5   Understanding the Widget Tree

5.	 The Row widget is replaced with the RowWidget() widget class. Since the Row widget will not
change state, add the const keyword before calling the RowWidget() class. Scroll to the bottom of
the code, and the widgets are nicely refactored into the RowWidget (StatelessWidget) class.

class RowWidget extends StatelessWidget {
 const RowWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 print('RowWidget');

 return Row(
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
),
 Padding(
 padding: EdgeInsets.all(16.0),
),

Building a Shallow Widget Tree  ❘  95

 Expanded(
 child: Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
),
 Padding(
 padding: EdgeInsets.all(16.0),
),
 Container(
 color: Colors.brown,
 height: 40.0,
 width: 40.0,
),
],
);
 }
}

6.	 Continue and refactor the other Rows (RowAndColumnWidget class) and the Row and Stack
(RowAndStackWidget class) widgets.

The full source code for home.dart is listed next. Notice how the widget tree is flattened, making it
easier to read. Deciding on how shallow to make the widget tree depends on each circumstance and your
personal preference.

// home.dart
import 'package:flutter/material.dart';

class Home extends StatefulWidget {
 @override
 _HomeState createState() => _HomeState();
}

class _HomeState extends State<Home> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Widget Tree'),
),
 body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 const RowWidget(),
 Padding(
 padding: EdgeInsets.all(16.0),
),
 const RowAndColumnWidget(),
],
),

96  ❘  CHAPTER 5   Understanding the Widget Tree

),
),
),
);
 }
}

class RowWidget extends StatelessWidget {
 const RowWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 40.0,
 width: 40.0,
),
 Padding(
 padding: EdgeInsets.all(16.0),
),
 Expanded(
 child: Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
),
 Padding(
 padding: EdgeInsets.all(16.0),
),
 Container(
 color: Colors.brown,
 height: 40.0,
 width: 40.0,
),
],
);
 }
}

class RowAndColumnWidget extends StatelessWidget {
 const RowAndColumnWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 Column(
 crossAxisAlignment: CrossAxisAlignment.start,

Building a Shallow Widget Tree  ❘  97

 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Container(
 color: Colors.yellow,
 height: 60.0,
 width: 60.0,
),
 Padding(
 padding: EdgeInsets.all(16.0),
),
 Container(
 color: Colors.amber,
 height: 40.0,
 width: 40.0,
),
 Padding(
 padding: EdgeInsets.all(16.0),
),
 Container(
 color: Colors.brown,
 height: 20.0,
 width: 20.0,
),
 Divider(),
 const RowAndStackWidget(),
 Divider(),
 Text('End of the Line. Date: ${DateTime.now()}'),
],
),
],
);
 }
}

class RowAndStackWidget extends StatelessWidget {
 const RowAndStackWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 CircleAvatar(
 backgroundColor: Colors.lightGreen,
 radius: 100.0,
 child: Stack(
 children: <Widget>[
 Container(
 height: 100.0,
 width: 100.0,
 color: Colors.yellow,
),
 Container(
 height: 60.0,

98  ❘  CHAPTER 5   Understanding the Widget Tree

 width: 60.0,
 color: Colors.amber,
),
 Container(
 height: 40.0,
 width: 40.0,
 color: Colors.brown,
),
],
),
),
],
);
 }
}

How It Works
Creating a shallow widget tree means each widget is separated into its own widget class by functionality.
Keep in mind that how you separate widgets will be different depending on the functionality needed.

In this example, you created the RowWidget() widget class to build the horizontal Row widget with
children widgets. The RowAndColumnWidget() widget class is an excellent example of flattening it even
more by calling the RowAndStackWidget() widget class for one of the Column children widgets. Sepa-
rating by adding the additional RowAndStackWidget() is done to keep the widget tree flat because the
RowAndStackWidget() class builds a widget with multiple children.

In the project source code, I added for your convenience a button that increases a counter value,
and each widget class uses a print statement to show each time each is called when the state for the
counter changes.

The following is the log file showing every time a widget is called. When the button is tapped, the
CounterTextWidget widget is redrawn to show the new counter value, but notice that the RowWidget,
RowAndColumnWidget, and RowAndStackWidget widgets are called only once and do not redraw when
the state changes. By using the widget class technique, only the widgets that need redrawing are called,
improving the overall performance.

// App first loaded
flutter: RowWidget
flutter: RowAndColumnWidget
flutter: RowAndStackWidget
flutter: CounterTextWidget 0

// Increase value button is called and notice the row widgets are not redrawn
flutter: CounterTextWidget 1
flutter: CounterTextWidget 2
flutter: CounterTextWidget 3

Summary  ❘  99

SUMMARY

In this chapter, you learned that the widget tree is the result of nested widgets. As the number of
widgets increases, the widget tree expands quickly and lessens code readability and manageability.
I call this the full widget tree. To improve code readability and manageability, you can separate wid
gets into their own widget class, creating a shallower widget tree. In each app, you should strive to
keep the widget tree shallow.

By refactoring with a widget class, you can take advantage of Flutter’s subtree rebuilding, which
improves performance.

In the next chapter, you’ll look at using basic widgets. You’ll learn how to implement different types
of buttons, images, icons, decorators, forms with text field validation and orientation.

100  ❘  CHAPTER 5   Understanding the Widget Tree

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Nesting widgets You learned about the available widgets for Material Design and Cupertino
and how to nest widgets to compose the UI layout.

The basic widgets we covered for Material Design were Scaffold, AppBar,
CircleAvatar, Divider, SingleChildScrollView, Padding, Column,
Row, Container, Expanded, Text, Stack, and Positioned.

The basic widgets we covered for Cupertino were
CupertinoPageScaffold, CupertinoTabScaffold, and
CupertinoNavigationBar.

Creating a full
widget tree

A full widget tree is the result of nesting widgets to create the page UI. The
more widgets added, the harder the code is to read and manage.

Creating
a shallow
widget tree

A shallow widget tree is the result of separating widgets into manageable
sections to accomplish each task. The widgets can be separated by a
constant variable, method, or widget class. The goal is to keep the widget
tree shallow to improve code readability and manageability.

To improve performance, you can refactor by using the widget class that
takes advantage of Flutter’s subtree rebuilding.

Intermediate Flutter: Fleshing
Out an App

▸▸ CHAPTER 6: Using Common Widgets

▸▸ CHAPTER 7: Adding Animation to an App

▸▸ CHAPTER 8: Creating an App’s Navigation

▸▸ CHAPTER 9: Creating Scrolling Lists and Effects

▸▸ CHAPTER 10: Building Layouts

▸▸ CHAPTER 11: Applying Interactivity

▸▸ CHAPTER 12: Writing Platform-Native Code

PART II

Using Common Widgets
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to use basic widgets such as Scaffold, AppBar, SafeArea, Container, Text,
RichText, Column, and Row, as well as different types of buttons

➤➤ How to nest the Column and Row widgets together to create different UI layouts

➤➤ Ways to include images, icons, and decorators

➤➤ How to use text field widgets to retrieve, validate, and manipulate data

➤➤ How to check your app’s orientation

In this chapter, you’ll learn how to use the most common widgets. I call them our base building
blocks for creating beautiful UIs and UXs. You’ll learn how to load images locally or over the
Web via a uniform resource locator (URL), use the included rich Material Components icons,
and apply decorators to enhance the look and feel of widgets or use them as input guides to
entry fields. You’ll also explore how to take advantage of the Form widget to validate text field
entry widgets as a group, not just individually. Additionally, to account for the variety of device
sizes, you’ll see how using the MediaQuery or OrientationBuilder widget is a great way to
detect orientation—because using the device orientation and layout widgets accordingly based
on portrait or landscape is extremely important. For example, if the device is in portrait mode,
you can show a row of three images, but when the device is turned to landscape mode, you can
show a row of five images since the width is a larger area than in portrait mode.

USING BASIC WIDGETS

When building a mobile app, you’ll usually implement certain widgets for the base structure.
Being familiar with them is necessary.

6

104  ❘  CHAPTER 6   Using Common Widgets

Scaffold  As you learned in Chapter 4, “Creating a Starter Project Template,” the Scaf­
fold widget implements the basic Material Design visual layout, allowing you to easily add
various widgets such as AppBar, BottomAppBar, FloatingActionButton, Drawer, Snack­
Bar, BottomSheet, and more.

AppBar  The AppBar widget usually contains the standard title, toolbar, leading, and
actions properties (along with buttons), as well as many customization options.

title  The title property is typically implemented with a Text widget. You can cus-
tomize it with other widgets such as a DropdownButton widget.

leading  The leading property is displayed before the title property. Usually this is an
IconButton or BackButton.

actions  The actions property is displayed to the right of the title property. It’s a list
of widgets aligned to the upper right of an AppBar widget usually with an IconButton or
PopupMenuButton.

flexibleSpace  The flexibleSpace property is stacked behind the Toolbar or TabBar
widget. The height is usually the same as the AppBar widget’s height. A background image
is commonly applied to the flexibleSpace property, but any widget, such as an Icon,
could be used.

SafeArea  The SafeArea widget is necessary for today’s devices such as the iPhone X or
Android devices with a notch (a partial cut-out obscuring the screen usually located on
the top portion of the device). The SafeArea widget automatically adds sufficient padding
to the child widget to avoid intrusions by the operating system. You can optionally pass a
minimum amount of padding or a Boolean value to not enforce padding on the top, bottom,
left, or right.

Container  The Container widget is a commonly used widget that allows customization
of its child widget. You can easily add properties such as color, width, height, padding,
margin, border, constraint, alignment, transform (such as rotating or sizing the widget),
and many others. The child property is optional, and the Container widget can be used as
an empty placeholder (invisible) to add space between widgets.

Text  The Text widget is used to display a string of characters. The Text constructor takes
the arguments string, style, maxLines, overflow, textAlign, and others. A constructor is
how the arguments are passed to initialize and customize the Text widget.

RichText  The RichText widget is a great way to display text using multiple styles. The
RichText widget takes TextSpans as children to style different parts of the strings.

Column  A Column widget displays its children vertically. It takes a children property con-
taining an array of List<Widget>, meaning you can add multiple widgets. The children align
vertically without taking up the full height of the screen. Each child widget can be embedded
in an Expanded widget to fill the available space. CrossAxisAlignment, MainAxisAlign­
ment, and MainAxisSize can be used to align and size how much space is occupied on the
main axis.

Row  A Row widget displays its children horizontally. It takes a children property containing
an array of List<Widget>. The same properties that the Column contains are applied to the
Row widget with the exception that the alignment is horizontal, not vertical.

Buttons  There are a variety of buttons to choose from for different situations such as
RaisedButton, FloatingActionButton, FlatButton, IconButton, PopupMenuButton, and
ButtonBar.

Using Basic Widgets  ❘  105

TRY IT OUT	 Adding AppBar Widgets

Create a new Flutter project and name it ch6_basics; you can follow the instructions in Chapter 4. For
this project, you need to create only the pages folder. The goal of this app is to provide a look at how to
use the basic widgets, not necessarily to design the best-looking UI. In Chapter 10, “Building Layouts,”
you’ll focus on building complex and beautiful layouts.

1.	 Open the main.dart file. Change the primarySwatch property from blue to lightGreen.

primarySwatch: Colors.lightGreen,

2.	 Open the home.dart file. Start by customizing the AppBar widget properties.

bottomflexibleSpace

title

Title

actionsleading

3.	 Add to the AppBar a leading IconButton. If you override the leading property, it is usually an
IconButton or BackButton.

leading: IconButton(
 icon: Icon(Icons.menu),
 onPressed: () { },
),

4.	 The title property is usually a Text widget, but it can be customized with other widgets such as a
DropdownButton. By following the instructions from Chapter 4, you have already added the Text
widget to the title property; if not, add the Text widget with a value of 'Home'.

title: Text('Home'),

5.	 The actions property takes a list of widgets; add two IconButton widgets.

actions: <Widget>[
 IconButton(
 icon: Icon(Icons.search),
 onPressed: () {},
),
 IconButton(
 icon: Icon(Icons.more_vert),
 onPressed: () {},
),
],

6.	 Because you are using an Icon for the flexibleSpace property, let’s add a SafeArea and an Icon
as a child.

flexibleSpace: SafeArea(
 child: Icon(

106  ❘  CHAPTER 6   Using Common Widgets

 Icons.photo_camera,
 size: 75.0,
 color: Colors.white70,
),
),

No SafeArea

With SafeArea

7.	 Add a PreferredSize for the bottom property with a Container for a child.

bottom: PreferredSize(
 child: Container(
 color: Colors.lightGreen.shade100,
 height: 75.0,
 width: double.infinity,
 child: Center(
 child: Text('Bottom'),
),
),
 preferredSize: Size.fromHeight(75.0),
),

Using Basic Widgets  ❘  107

How It Works
You learned how to customize the AppBar widget by using widgets to set the title, toolbar, leading,
and actions properties. All the properties that you learned about in this example are related to custom-
izing the AppBar.

In Chapter 9, “Creating Scrolling Lists and Effects” you’ll learn to use the SliverAppBar widget, which
is an AppBar embedded in a sliver using a CustomScrollView, making any app come to life with
pinpoint customizations such as parallax animation. I absolutely love using slivers because they add an
extra layer of customization.

In the next section, you’ll learn how to customize the Scaffold body property by nesting widgets to
build the page content.

SafeArea
The SafeArea widget is a must for today’s devices such as the iPhone X or Android devices with a
notch (a partial cut-out obscuring the screen usually located on the top portion of the device). The
SafeArea widget automatically adds sufficient padding to the child widget to avoid intrusions by the
operating system. You can optionally pass minimum padding or a Boolean value to not enforce pad-
ding on the top, bottom, left, or right.

TRY IT OUT	 Adding a SafeArea to the Body

Continue modifying the home.dart file.

Add a Padding widget to the body property with a SafeArea as a child. Because this example packs
in different uses of widgets, add a SingleChildScrollView as a child of the SafeArea. The Single­
ChildScrollView allows the user to scroll and view hidden widgets; otherwise, the user sees a yellow
and black bar conveying that the widgets are overflowing.

body: Padding(
 padding: EdgeInsets.all(16.0),

108  ❘  CHAPTER 6   Using Common Widgets

 child: SafeArea(
 child: SingleChildScrollView(
 child: Column(
 children: <Widget>[

],
),
),
),
),

Sample Wrap Widget Tip
There is a great way to wrap a current widget as a child of another widget. Place your cursor on top of
the current widget to wrap and then press Option+Enter on your keyboard. The Dart/quick assist pops
up. Choose the Wrap with new widget option.

Do not add the following steps to your project; this is a tip on how to quickly wrap a widget
with another.

1.	 Place the cursor on the widget to wrap.
2.	 Press Option+Enter (Alt+Enter in Windows). The Dart/quick assist pops up.

3.	 Select a Wrap with new widget option such as body: widget(child: Container()),.
4.	 Rename the widget to SafeArea and notice that child: is automatically the Container() widget.

Make sure you add a comma after the Container() widget, as shown here. Placing a comma after
every property ensures correct Flutter formatting over multiple lines.

body: SafeArea(child: Container(),),

How It Works
Adding the SafeArea widget automatically adjusts padding for devices that have a notch. Any SafeArea
child widgets are constrained to the correct padding.

Container
The Container widget has an optional child widget property and can be used as a decorated widget
with a custom border, color, constraint, alignment, transform (such as rotating the widget), and more.
This widget can be utilized as an empty placeholder (invisible), and if a child is omitted, it sizes to the
full available screen size.

Using Basic Widgets  ❘  109

TRY IT OUT	 Adding a Container

Continue modifying the home.dart file. Since you want to keep your code readable and manageable,
you’ll create widget classes to build each body widget section of the Column list of widgets.

1.	 Add to the body property a Padding widget with the child property set to a SafeArea widget.
Add to the SafeArea child a SingleChildScrollView. Add to the SingleChildScrollView
child a Column. For the Column children, add the call to the
ContainerWithBoxDecorationWidget() widget class, which you will create next. Make sure the
widget class uses the const keyword to take advantage of caching (performance).

body: Padding(
 padding: EdgeInsets.all(16.0),
 child: SafeArea(
 child: SingleChildScrollView(
 child: Column(
 children: <Widget>[
 const ContainerWithBoxDecorationWidget(),
],
),
),
),
),

2.	 Create the ContainerWithBoxDecorationWidget() widget class after class Home extends
StatelessWidget {...}. The widget class will return a Widget. Note that when you refactor by
creating widget classes, they are of type StatelessWidget unless you specify to use a
StatefulWidget.

class ContainerWithBoxDecorationWidget extends StatelessWidget {
 const ContainerWithBoxDecorationWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 Container(),
],
);
 }
}

3.	 Start adding properties to the Container by adding a height of 175.0 pixels. Note the comma after
the number, which separates properties and helps to keep the Dart code formatted. Go to the next
line to add the decoration property, which accepts a BoxDecoration class. The BoxDecoration
class provides different ways to draw a box, and in this case, you are adding a BorderRadius class
to the bottomLeft and bottomRight of the Container.

Container(
 height: 100.0,
 decoration: BoxDecoration(),
),

110  ❘  CHAPTER 6   Using Common Widgets

4.	 Using the named constructor BorderRadius.only() allows you to control the sides to draw round
corners. I purposely made the bottomLeft radius much bigger than the bottomRight to show the
custom shapes you can create.

BoxDecoration(
 borderRadius: BorderRadius.only(
 bottomLeft: Radius.circular(100.0),
 bottomRight: Radius.circular(10.0),
),
),

The BoxDecoration also supports a gradient property. You are using a LinearGradient, but you
could also have used a RadialGradient. The LinearGradient displays the gradient colors linearly, and
the RadialGradient displays the gradient colors in a circular manner. The begin and end properties
allow you to choose the start and end positions for the gradient by using the AlignmentGeometry class.
AlignmentGeometry is a base class for Alignment that allows direction-aware resolution. You have
many directions to choose from such as Alignment.bottomLeft, Alignment.centerRight, and more.

begin: Alignment.topCenter,
end: Alignment.bottomCenter,

The colors property requires a List of Color types, List<Color>. The list of Colors is entered within
square brackets separated by commas.

colors: [
 Colors.white,
 Colors.lightGreen.shade500,
],

Here’s the full gradient property source code:

gradient: LinearGradient(
 begin: Alignment.topCenter,
 end: Alignment.bottomCenter,
 colors: [
 Colors.white,
 Colors.lightGreen.shade500,
],

),

5.	 The boxShadow property is a great way to customize a shadow, and it takes a list of BoxShadows,
called List<BoxShadow>. For the BoxShadow, set the color, blurRadius, and offset properties.

boxShadow: [
 BoxShadow(
 color: Colors.white,
 blurRadius: 10.0,
 offset: Offset(0.0, 10.0),
)
],

The last part of the Container is to add a child Text widget wrapped by a Center widget. The Center
widget allows you to center the child widget on the screen.

Using Basic Widgets  ❘  111

child: Center(
 child: Text('Container'),
),

6.	 Add a Center widget as a child of the Container, and add to the Center widget child a Text
widget with the string Container. (In the next section, I’ll go over the Text widget in detail.)

child: Center(
 child: Text('Container'),
),

Here’s the full ContainerWithBoxDecorationWidget() widget class source code:

class ContainerWithBoxDecorationWidget extends StatelessWidget {
 const ContainerWithBoxDecorationWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 Container(
 height: 100.0,
 decoration: BoxDecoration(
 borderRadius: BorderRadius.only(
 bottomLeft: Radius.circular(100.0),
 bottomRight: Radius.circular(10.0),
),
 gradient: LinearGradient(
 begin: Alignment.topCenter,
 end: Alignment.bottomCenter,
 colors: [
 Colors.white,
 Colors.lightGreen.shade500,
],
),
 boxShadow: [
 BoxShadow(
 color: Colors.grey,
 blurRadius: 10.0,
 offset: Offset(0.0, 10.0),
),
],
),
 child: Center(
 child: RichText(
 text: Text('Container'),),
),
],
);
 }
}

112  ❘  CHAPTER 6   Using Common Widgets

How It Works
Containers can be powerful widgets full of customization. By using decorators, gradients, and shadows,
you can create beautiful UIs. I like to think of containers as enhancing an app in the same way a great-
looking frame adds to a painting.

Text
You’ve already used the Text widget in the preceding examples; it’s an easy widget to use but also
customizable. The Text constructor takes the arguments string, style, maxLines, overflow, text­
Align, and others.

Text(
 'Flutter World for Mobile',
 style: TextStyle(
 fontSize: 24.0,
 color: Colors.deepPurple,
 decoration: TextDecoration.underline,
 decorationColor: Colors.deepPurpleAccent,
 decorationStyle: TextDecorationStyle.dotted,
 fontStyle: FontStyle.italic,
 fontWeight: FontWeight.bold,
),
 maxLines: 4,
 overflow: TextOverflow.ellipsis,
 textAlign: TextAlign.justify,
),

RichText
The RichText widget is a great way to display text using multiple styles. The RichText widget takes
TextSpan as children to style different parts of the strings (Figure 6.1).

Using Basic Widgets  ❘  113

TRY IT OUT	 Replacing Text with a RichText Child Container

Instead of using the previous Container Text widget to show a plain-text property, you can use a
RichText widget to enhance and emphasize the words in your string. You can change each word’s color
and styles.

1.	 Find the Container child Text widget and delete Text('Container').

child: Center(
 child: Text('Container'),
),

2.	 Replace the Container child’s Text widget with a RichText widget. The RichText text property
is a TextSpan object (class) that is customized by using a TextStyle for the style property. The
TextSpace has a children list of TextSpan where you place different TextSpan objects to format
different portions of the entire RichText.

By using the RichText widget and combining different TextSpan objects, you create rich-text
formatting like with a word processor.

child: Center(
 child: RichText(
 text: TextSpan(
 text: 'Flutter World',
 style: TextStyle(
 fontSize: 24.0,
 color: Colors.deepPurple,
 decoration: TextDecoration.underline,
 decorationColor: Colors.deepPurpleAccent,
 decorationStyle: TextDecorationStyle.dotted,
 fontStyle: FontStyle.italic,
 fontWeight: FontWeight.normal,
),
 children: <TextSpan>[
 TextSpan(
 text: ' for',
),
 TextSpan(
 text: ' Mobile',
 style: TextStyle(
 color: Colors.deepOrange,
 fontStyle: FontStyle.normal,
 fontWeight: FontWeight.bold),
),
],
),
),
),

FIGURE 6.1:  RichText with TextSpan

114  ❘  CHAPTER 6   Using Common Widgets

How It Works
RichText is a powerful widget when combined with the TextSpan object (class). There are two main
parts to styling, the default text property and the children list of TextSpan. The text property using
a TextSpan sets the default styling for the RichText. The children list of TextSpan allows you to use
multiple TextSpan objects to format different strings.

Column
A Column widget (Figures 6.2 and 6.3) displays its children
vertically. It takes a children property containing an array
of List<Widget>. The children align vertically without tak-
ing up the full height of the screen. Each child widget can be
embedded in an Expanded widget to fill available space. You
can use CrossAxisAlignment, MainAxisAlignment, and
MainAxisSize to align and size how much space is occupied
on the main axis.

Column(
 crossAxisAlignment: CrossAxisAlignment.center,
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Text('Column 1'),
 Divider(),
 Text('Column 2'),
 Divider(),
 Text('Column 3'),
],
),

widgetsVertically Aligned

Column

FIGURE 6.2:  Column widget

Using Basic Widgets  ❘  115

Row
A Row widget (Figures 6.4 and 6.5) displays its children hori-
zontally. It takes a children property containing an array of
List<Widget>. The same properties that the Column contains
are applied to the Row widget with the exception that the
alignment is horizontal, not vertical.

Row(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisAlignment: MainAxisAlignment.
spaceEvenly,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Row(
 children: <Widget>[
 Text('Row 1'),
 Padding(padding: EdgeInsets.all(16.0),),
 Text('Row 2'),
 Padding(padding: EdgeInsets.all(16.0),),
 Text('Row 3'),
],
),
],
),

Column and Row Nesting
A great way to create unique layouts is to combine Column and Row widgets for individual needs.
Imagine having a journal page with Text in a Column with a nested Row containing a list of images
(Figures 6.6 and 6.7).

FIGURE 6.3:  Column widget rendered in app

widgetsHorizontally Aligned

Row

FIGURE 6.4:  Row widget

116  ❘  CHAPTER 6   Using Common Widgets

Add a Row widget inside the Column widget. Use mainAxis­
Alignment: MainAxisAlignment.spaceEvenly and add
three Text widgets.

Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisAlignment: MainAxisAlignment.
spaceEvenly,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Text('Columns and Row Nesting 1',),
 Text('Columns and Row Nesting 2',),
 Text('Columns and Row Nesting 3',),
 Padding(padding: EdgeInsets.all(16.0),),
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Text('Row Nesting 1'),
 Text('Row Nesting 2'),
 Text('Row Nesting 3'),
],
),
],
),

columnrow

Column with Row

FIGURE 6.6:  Column and Row nesting

FIGURE 6.5:  Row widget rendered in app

Using Basic Widgets  ❘  117

TRY IT OUT	 Adding Column, Row, and Nesting the Row and Column
together as Widget Classes

You’ll add three widget classes to the body property section of the Column list of widgets. Between each
widget class, you’ll add a simple Divider() widget to draw separation lines between sections.

1.	 Add the widget class names ColumnWidget(), RowWidget(), and ColumnAndRowNestingWidget()
to the Column children widget list. The Column widget is located in the body property. Add a
Divider() widget between each widget class name. Make sure each widget class uses the
const keyword.

body: Padding(
 padding: EdgeInsets.all(16.0),
 child: SafeArea(
 child: SingleChildScrollView(
 child: Column(
 children: <Widget>[
 const ContainerWithBoxDecorationWidget(),
 Divider(),
 const ColumnWidget(),
 Divider(),
 const RowWidget(),
 Divider(),
 const ColumnAndRowNestingWidget(),
],
),
),
),
),

FIGURE 6.7:  Column and Row widgets rendered in app

118  ❘  CHAPTER 6   Using Common Widgets

2.	 Create the ColumnWidget() widget class after the ContainerWithBoxDecorationWidget()
widget class.

class ColumnWidget extends StatelessWidget {
 const ColumnWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Column(
 crossAxisAlignment: CrossAxisAlignment.center,
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Text('Column 1'),
 Divider(),
 Text('Column 2'),
 Divider(),
 Text('Column 3'),
],
);
 }
}

3.	 Create the RowWidget() widget class after the ColumnWidget() widget class.

class RowWidget extends StatelessWidget {
 const RowWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Row(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Row(
 children: <Widget>[
 Text('Row 1'),
 Padding(padding: EdgeInsets.all(16.0),),
 Text('Row 2'),
 Padding(padding: EdgeInsets.all(16.0),),
 Text('Row 3'),
],
),
],
);
 }
}

Using Basic Widgets  ❘  119

4.	 Create the ColumnAndRowNestingWidget() widget class after the RowWidget() widget class.

class ColumnAndRowNestingWidget extends StatelessWidget {
 const ColumnAndRowNestingWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 mainAxisSize: MainAxisSize.max,
 children: <Widget>[
 Text('Columns and Row Nesting 1',),
 Text('Columns and Row Nesting 2',),
 Text('Columns and Row Nesting 3',),
 Padding(padding: EdgeInsets.all(16.0),),
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Text('Row Nesting 1'),
 Text('Row Nesting 2'),
 Text('Row Nesting 3'),
],
),
],
);
 }
}

How It Works
Column and Row are handy widgets to lay out either vertically or horizontally. Nesting the Column and
Row widgets creates flexible layouts needed for each circumstance. Nesting widgets is at the heart of
designing Flutter UI layouts.

Buttons
There are a variety of buttons to choose from, depending on the situation, such as FloatingAction­
Button, FlatButton, IconButton, RaisedButton, PopupMenuButton, and ButtonBar.

FloatingActionButton
The FloatingActionButton widget is usually placed on the bottom right or center of the main
screen in the Scaffold floatingActionButton property. Use the FloatingActionButtonLocation
widget to either dock (notch) or float above the navigation bar. To dock a button to the navigation

120  ❘  CHAPTER 6   Using Common Widgets

bar, use the BottomAppBar widget. By default, it’s a circular button but can be customized to a
stadium shape by using the named constructor FloatingActionButton.extended. In the example
code, I commented out the stadium shape button for you to test.

floatingActionButtonLocation: FloatingActionButtonLocation.endDocked,
floatingActionButton: FloatingActionButton(
 onPressed: () {},
 child: Icon(Icons.play_arrow),
 backgroundColor: Colors.lightGreen.shade100,
),
// or
// This creates a Stadium Shape FloatingActionButton
// floatingActionButton: FloatingActionButton.extended(
// onPressed: () {},
// icon: Icon(Icons.play_arrow),
// label: Text('Play'),
//),
bottomNavigationBar: BottomAppBar(
 hasNotch: true,
 color: Colors.lightGreen.shade100,
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Icon(Icons.pause),
 Icon(Icons.stop),
 Icon(Icons.access_time),
 Padding(
 padding: EdgeInsets.all(32.0),
),
],
),
),

Figure 6.8 shows the FloatingActionButton widget on the bottom right of the screen with the
notch enabled.

FIGURE 6.8:  FloatingActionButton with notch

Using Basic Widgets  ❘  121

FlatButton
The FlatButton widget is the most minimalist button used; it displays a text label without any
borders or elevation (shadow). Since the text label is a widget, you could use an Icon widget instead
or another widget to customize the button. color, highlightColor, splashColor, textColor, and
other properties can be customized.

// Default - left button
FlatButton(
 onPressed: () {},
 child: Text('Flag'),
),

// Customize - right button
FlatButton(
 onPressed: () {},
 child: Icon(Icons.flag),
 color: Colors.lightGreen,
 textColor: Colors.white,
),

Figure 6.9 shows the default FlatButton widget on the left and the customized FlatButton widget
on the right.

RaisedButton
The RaisedButton widget adds a dimension, and the elevation (shadow) increases when the user
presses the button.

// Default - left button
RaisedButton(
 onPressed: () {},
 child: Text('Save'),
),

FIGURE 6.9:  FlatButton

122  ❘  CHAPTER 6   Using Common Widgets

// Customize - right button
RaisedButton(
 onPressed: () {},
 child: Icon(Icons.save),
 color: Colors.lightGreen,
),

Figure 6.10 shows the default RaisedButton widget on the left and the customized RaisedButton
widget on the right.

IconButton
The IconButton widget uses an Icon widget on a Material Component widget that reacts to touches
by filling with color (ink). The combination creates a nice tap effect, giving the user feedback that an
action has started.

// Default - left button
IconButton(
 onPressed: () {},
 icon: Icon(Icons.flight),
),

// Customize - right button
IconButton(
 onPressed: () {},
 icon: Icon(Icons.flight),
 iconSize: 42.0,
 color: Colors.white,
 tooltip: 'Flight',
),

Figure 6.11 shows the default IconButton widget on the left and the customized IconButton widget
on the right.

FIGURE 6.10:  RaisedButton

Using Basic Widgets  ❘  123

PopupMenuButton
The PopupMenuButton widget displays a list of menu items. When a menu item is pressed, the value
passes to the onSelected property. A common use of this widget is placing it on the top right of the
AppBar widget for the user to select different menu options. Another example is to place the Popup­
MenuButton widget in the middle of the AppBar widget showing a list of search filters.

TRY IT OUT	 Creating the PopupMenuButton and the Items’ Class and List

Before you add the PopupMenuButton widgets, let’s create the Class and List necessary to build the
items to be displayed. Usually, the TodoMenuItem (model) class would be created in a separate Dart file,
but to keep the example focused, you’ll add it to the home.dart file. In the final three chapters of this
book, you’ll separate classes into their own files.

1.	 Create a TodoMenuItem class. When you create this class, make sure it’s not inside another class.
Create the class and list at the end of the file after the last closing curly bracket, }. The
TodoMenuItem class contains a title and an icon.

class TodoMenuItem {
 final String title;
 final Icon icon;

 TodoMenuItem({this.title, this.icon});
}

2.	 Create a List of TodoMenuItem. This List<TodoMenuItem> will be called foodMenuList and will
contain a List (array) of TodoMenuItems.

// Create a List of Menu Item for PopupMenuButton
List<TodoMenuItem> foodMenuList = [
 TodoMenuItem(title: 'Fast Food', icon: Icon(Icons.fastfood)),
 TodoMenuItem(title: 'Remind Me', icon: Icon(Icons.add_alarm)),
 TodoMenuItem(title: 'Flight', icon: Icon(Icons.flight)),
 TodoMenuItem(title: 'Music', icon: Icon(Icons.audiotrack)),
];

FIGURE 6.11:  IconButton

124  ❘  CHAPTER 6   Using Common Widgets

3.	 Create a PopupMenuButton. You will use an itemBuilder to build the List of TodoMenuItems. If
you do not set an icon for the PopupMenuButton, a default menu icon is used by default. The
onSelected will retrieve the item selected on the list. Use the itemBuilder to build a list of
foodMenuList and map to TodoMenuItem. A PopupMenuItem is returned for each item in the
foodMenuList. For the PopupMenuItem child, you use a Row widget to show the Icon and Text
widgets together.

PopupMenuButton<TodoMenuItem>(
 icon: Icon(Icons.view_list),
 onSelected: ((valueSelected) {
 print('valueSelected: ${valueSelected.title}');
 }),
 itemBuilder: (BuildContext context) {
 return foodMenuList.map((TodoMenuItem todoMenuItem) {
 return PopupMenuItem<TodoMenuItem>(
 value: todoMenuItem,
 child: Row(
 children: <Widget>[
 Icon(todoMenuItem.icon.icon),
 Padding(padding: EdgeInsets.all(8.0),),
 Text(todoMenuItem.title),
],
),
);
 }).toList();
 },

),

4.	 Modify the AppBar bottom property by adding the widget class name:
PopupMenuButtonWidget().

bottom: PopupMenuButtonWidget(),

5.	 Create the PopupMenuButtonWidget() widget class after the ColumnAndRowNestingWidget()
widget class. Since the bottom property is expecting a PreferredSizeWidget, you use the key-
word implements PreferredSizeWidget in the class declaration. The class extends the
StatelessWidget and implements the PreferredSizeWidget.

After the widget build, implement the @override preferredSize getter; this is a required step because
the purpose of PreferredSizeWidget is to provide the size for the widget; in this example, you’ll set the
height property. Without this step, we’d have no size specified.

@override
// implement preferredSize
Size get preferredSize => Size.fromHeight(75.0);

Using Basic Widgets  ❘  125

The following is the entire PopupMenuButtonWidget widget class. Note that the Container widget’s
height property uses the preferredSize.height property that you set in the PreferredSize­
Widget getter.

class PopupMenuButtonWidget extends StatelessWidget implements PreferredSizeWidget {
 const PopupMenuButtonWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Container(
 color: Colors.lightGreen.shade100,
 height: preferredSize.height,
 width: double.infinity,
 child: Center(
 child: PopupMenuButton<TodoMenuItem>(
 icon: Icon(Icons.view_list),
 onSelected: ((valueSelected) {
 print('valueSelected: ${valueSelected.title}');
 }),
 itemBuilder: (BuildContext context) {
 return foodMenuList.map((TodoMenuItem todoMenuItem) {
 return PopupMenuItem<TodoMenuItem>(
 value: todoMenuItem,
 child: Row(
 children: <Widget>[
 Icon(todoMenuItem.icon.icon),
 Padding(
 padding: EdgeInsets.all(8.0),
),
 Text(todoMenuItem.title),
],
),
);
 }).toList();
 },
),
),
);
 }

 @override
 // implement preferredSize
 Size get preferredSize => Size.fromHeight(75.0);
}

How It Works
The PopupMenuButton widget is a great widget to display a List of items such as menu choices.
For the list of items, you created a TodoMenuItem Class to hold a title and icon. You created the

126  ❘  CHAPTER 6   Using Common Widgets

foodMenuList, which is a List of each TodoMenuItem. In this case, the List items are hard-coded, but
in a real-world app, the values can be read from a web service. In Chapters 14, 15 and 16, you’ll imple-
ment Cloud Firestore to access data from a web server.

ButtonBar
The ButtonBar widget (Figure 6.12) aligns buttons horizontally. In this example, the ButtonBar
widget is a child of a Container widget to give it a background color.

Container(
 color: Colors.white70,
 child: ButtonBar(
 alignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 IconButton(
 icon: Icon(Icons.map),
 onPressed: () {},
),
 IconButton(
 icon: Icon(Icons.airport_shuttle),
 onPressed: () {},
),
 IconButton(
 icon: Icon(Icons.brush),
 onPressed: () {},
),
],
),
),

FIGURE 6.12:  ButtonBar

Using Basic Widgets  ❘  127

TRY IT OUT	 Adding Buttons as Widget Classes

You’ve looked at the FloatingActionButton, FlatButton, RaisedButton, IconButton, PopupMenu­
Button, and ButtonBar widgets. Here you’ll create two widget classes to organize the buttons’ layout.

1.	 Add the widget class names ButtonsWidget() and ButtonBarWidget() to the Column children
widget list. The Column is located in the body property. Add a Divider() widget between each
widget class name. Make sure each widget class uses the const keyword.

body: Padding(
 padding: EdgeInsets.all(16.0),
 child: SafeArea(
 child: SingleChildScrollView(
 child: Column(
 children: <Widget>[
 const ContainerWithBoxDecorationWidget(),
 Divider(),
 const ColumnWidget(),
 Divider(),
 const RowWidget(),
 Divider(),
 const ColumnAndRowNestingWidget(),
 Divider(),
 const ButtonsWidget(),
 Divider(),
 const ButtonBarWidget(),
],
),
),
),
),

2.	 Create the ButtonsWidget() widget class after the ColumnAndRowNestingWidget() widget class.
The class returns a Column with three Row widgets for the children list of Widget. Each Row
children list of Widget contains different buttons such as the FlatButton, RaisedButton, and
IconButton buttons.

class ButtonsWidget extends StatelessWidget {
 const ButtonsWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 Row(
 children: <Widget>[
 Padding(padding: EdgeInsets.all(16.0)),
 FlatButton(
 onPressed: () {},

128  ❘  CHAPTER 6   Using Common Widgets

 child: Text('Flag'),
),
 Padding(padding: EdgeInsets.all(16.0)),
 FlatButton(
 onPressed: () {},
 child: Icon(Icons.flag),
 color: Colors.lightGreen,
 textColor: Colors.white,
),
],
),
 Divider(),
 Row(
 children: <Widget>[
 Padding(padding: EdgeInsets.all(16.0)),
 RaisedButton(
 onPressed: () {},
 child: Text('Save'),
),
 Padding(padding: EdgeInsets.all(16.0)),
 RaisedButton(
 onPressed: () {},
 child: Icon(Icons.save),
 color: Colors.lightGreen,
),
],
),
 Divider(),
 Row(
 children: <Widget>[
 Padding(padding: EdgeInsets.all(16.0)),
 IconButton(
 icon: Icon(Icons.flight),
 onPressed: () {},
),
 Padding(padding: EdgeInsets.all(16.0)),
 IconButton(
 icon: Icon(Icons.flight),
 iconSize: 42.0,
 color: Colors.lightGreen,
 tooltip: 'Flight',
 onPressed: () {},
),
],
),

Using Basic Widgets  ❘  129

 Divider(),
],
);
 }
}

3.	 Create the ButtonBarWidget() widget class after the ButtonsWidget() widget class. The class
returns a Container with a ButtonBar as a child. The ButtonBar children list of Widget
contains three IconButton widgets.

class ButtonBarWidget extends StatelessWidget {
 const ButtonBarWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Container(
 color: Colors.white70,
 child: ButtonBar(
 alignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 IconButton(
 icon: Icon(Icons.map),
 onPressed: () {},
),
 IconButton(
 icon: Icon(Icons.airport_shuttle),
 onPressed: () {},
),
 IconButton(
 icon: Icon(Icons.brush),
 highlightColor: Colors.purple,
 onPressed: () {},
),
],
),
);
 }
}

How It Works
The FloatingActionButton, FlatButton, RaisedButton, IconButton, PopupMenuButton, and
ButtonBar widgets are configurable by setting the properties icon, iconSize, tooltip, color,
text, and more.

130  ❘  CHAPTER 6   Using Common Widgets

USING IMAGES AND ICONS

Images can make an app look tremendous or ugly depending on the quality of the artwork. Images,
icons, and other resources are commonly embedded in an app.

AssetBundle
The AssetBundle class provides access to custom resources such as images, fonts, audio, data files,
and more. Before a Flutter app can use a resource, you must declare it in the pubspec.yaml file.

// pubspec.yaml file to edit
To add assets to your application, add an assets section, like this:

Using Images and Icons  ❘  131

assets:
 —assets/images/logo.png
 —assets/images/work.png
 —assets/data/seed.json

Instead of declaring each asset, which can get very long, you can declare all the assets in each direc-
tory. Make sure you end the directory name with a forward slash, /. Throughout the book, I’ll use
this approach when adding assets to the projects.

// pubspec.yaml file to edit
To add assets to your application, add an assets section, like this:
assets:
 —assets/images/
 —assets/data/

Image
The Image widget displays an image from a local or URL (web) source. To load an Image widget,
there are a few different constructors to use.

➤➤ Image()—Retrieves image from an ImageProvider class

➤➤ Image.asset()—Retrieves image from an AssetBundle class using a key

➤➤ Image.file()—Retrieves image from a File class

➤➤ Image.memory()—Retrieves image from a Uint8List class

➤➤ Image.network()—Retrieves image from a URL path

Press Ctrl+Spacebar to invoke the code completion for the available options (Figure 6.13).

As a side note, the Image widget also supports animated GIFs.

The following sample uses the default Image constructor to initialize the image and fit arguments.
The image argument is set by using the AssetImage() constructor with the default bundle loca-
tion of the logo.png file. You can use the fit argument to size the Image widget with the BoxFit
options, such as contain, cover, fill, fitHeight, fitWidth, or none (Figure 6.14).

FIGURE 6.13:  Image code completion

132  ❘  CHAPTER 6   Using Common Widgets

// Image - on the left side
Image(
 image: AssetImage("assets/images/logo.png"),
 fit: BoxFit.cover,
),

// Image from a URL - on the right side
Image.network(
'https://flutter.io/images/catalog-widget-placeholder.png',

),

If you add color to the image, it colorizes the image portion
and leaves any transparencies alone, giving a silhouette look
(Figure 6.15).

// Image
 Image(
 image: AssetImage("assets/images/logo.png"),
 color: Colors.deepOrange,
 fit: BoxFit.cover,
),

Icon
The Icon widget is drawn with a glyph from a font described in IconData. Flutter’s icons.dart file
has the full list of icons available from the font MaterialIcons. A great way to add custom icons
is to add to the AssetBundle fonts containing glyphs. Once example is Font Awesome, which has a
high-quality list of icons and a Flutter package. Of course, there are many other high-quality icons
available from other sources.

The Icon widget allows you to change the Icon widget’s color, size, and other properties
(Figure 6.16).

Icon(
 Icons.brush,
 color: Colors.lightBlue,
 size: 48.0,
),

Image(),
Load Image Locally

Image.network(),
Load Image from URL

FIGURE 6.14:  Images loaded locally and from network (web)

FIGURE 6.15:  Silhouette-style image

Using Images and Icons  ❘  133

TRY IT OUT	 Creating the Images Project; Adding Assets; and Loading Images,
Icons, and Decorators

Create a new Flutter project and name it ch6_images; you can follow the instructions in Chapter 4. For
this project, you need to create only the pages and assets/images folders. Create the Home class as a
StatelessWidget. The goal of this app is to provide a look at how to use the Image and Icon widgets.

In this example, you’ll customize the width property of the two Image widgets according to the device
screen size. To obtain the device screen size, you can use the MediaQuery.of() method.

1.	 Open the pubspec.yaml file to add resources. In the assets section, add the assets/images/
folder declaration. I like to create an assets folder at the root of the project and add subfolders
for each type of resource, as shown in Chapter 4.

 # To add assets to your application, add an assets section, such as this:
 assets:
 - assets/images/

Add the folder assets and subfolder images at the project’s root and then copy the logo.png file
to the images folder. Click the Save button, and depending on the editor you are using, it automati-
cally runs flutter packages get. Once finished, it shows this message: Process finished with
exit code 0. If it does not automatically run the command for you, open the Terminal window
(located at the bottom of your editor) and type flutter packages get.

2.	 Open the home.dart file and modify the body property. Add a SafeArea widget to the body
property with a SingleChildScrollView as a child of the SafeArea widget. Add Padding as a
child of SingleChildScrollView and then add a Column as a child of the Padding.

body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
],
),
),
),
),

FIGURE 6.16:  Icons with custom sizes

134  ❘  CHAPTER 6   Using Common Widgets

3.	 Add the widget class name ImagesAndIconWidget() to the Column children widget list. The
Column is located in the body property.

body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 const ImagesAndIconWidget(),
],
),
),
),
),

4.	 Add the ImagesAndIconWidget() widget class after class Home extends StatelessWidget
{...}. In the widget class, a local image is loaded by the AssetImage class. Using the Image.
network constructor an image is loaded by a URL string. The Image widget’s width property uses
the MediaQuery.of(context).size.width / 3 to calculate the width value as one-third of the
device width.

class ImagesAndIconWidget extends StatelessWidget {
 const ImagesAndIconWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Image(
 image: AssetImage("assets/images/logo.png"),
 //color: Colors.orange,
 fit: BoxFit.cover,
 width: MediaQuery.of(context).size.width / 3,
),
 Image.network(
 'https://flutter.io/images/catalog-widget-placeholder.png',
 width: MediaQuery.of(context).size.width / 3,
),
 Icon(
 Icons.brush,
 color: Colors.lightBlue,
 size: 48.0,
),
],
);
 }
}

Using Decorators  ❘  135

How It Works
By declaring your assets in the pubspec.yaml file, they are accessible by the AssetImage class from an
AssetBundle. The Image widget through the image property loads a local image with the AssetBundle
class. To load an image over a network (such as the Web), you use the Image.network constructor by
passing a URL string. The Icon widget uses the MaterialIcons font library, which draws a glyph from
the font described in the IconData class.

USING DECORATORS

Decorators help to convey a message depending on the user’s action or customize the look and feel of
a widget. There are different types of decorators for each task.

➤➤ Decoration—The base class to define other decorations.

➤➤ BoxDecoration—Provides many ways to draw a box with border, body, and boxShadow.

➤➤ InputDecoration—Used in TextField and TextFormField to customize the border, label,
icon, and styles. This is a great way to give the user feedback on data entry, specifying a
hint, an error, an alert icon, and more.

A BoxDecoration class (Figure 6.17) is a great way to customize a Container widget to create
shapes by setting the borderRadius, color, gradient, and boxShadow properties.

// BoxDecoration
Container(
 height: 100.0,
 width: 100.0,
 decoration: BoxDecoration(
 borderRadius: BorderRadius.all(Radius.
circular(20.0)),
 color: Colors.orange,
 boxShadow: [
 BoxShadow(
 color: Colors.grey,
 blurRadius: 10.0,
 offset: Offset(0.0, 10.0),
)
],
),

),

The InputDecoration class (Figure 6.18) is used with a Text­
Field or TextFormField to specify labels, borders, icons, hints,
errors, and styles. This is helpful in communicating with the user as
they enter data. For the border property shown here, I am imple-
menting two ways to customize it, with UnderlineInputBorder
and with OutlineInputBorder:

// TextField
TextField(

FIGURE 6.17:  BoxDecoration applied to
a Container

FIGURE 6.18:  InputDecoration
with OutlineInputBorder and
default border

136  ❘  CHAPTER 6   Using Common Widgets

 keyboardType: TextInputType.text,
 style: TextStyle(
 color: Colors.grey.shade800,
 fontSize: 16.0,
),
 decoration: InputDecoration(
 labelText: "Notes",
 labelStyle: TextStyle(color: Colors.purple),
 //border: UnderlineInputBorder(),
 border: OutlineInputBorder(),

),
),

// TextFormField
TextFormField(
 decoration: InputDecoration(
 labelText: 'Enter your notes',
),
),

TRY IT OUT	 Continuing the Images Project by Adding Decorators

Still editing the home.dart file, you’ll add the BoxDecoratorWidget() and InputDecoratorsWidget()
widget classes.

1.	 Add the widget class names BoxDecoratorWidget() and InputDecoratorsWidget() after the
ImagesAndIconWidget() widget class. Add a Divider() widget between each widget class name.

body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 const ImagesAndIconWidget(),
 Divider(),
 const BoxDecoratorWidget(),
 Divider(),
 const InputDecoratorsWidget(),
],
),
),
),
),

2.	 Add the BoxDecoratorWidget() widget class after the ImagesAndIconWidget() widget class. The
widget class returns a Padding widget with the Container widget as a child. The Container
decoration property uses the BoxDecoration class. Using the BoxDecoration borderRadius,
color, and boxShadow properties, you create a rounded button shape such as the one in
Figure 6.17.

class BoxDecoratorWidget extends StatelessWidget {
 const BoxDecoratorWidget({

Using Decorators  ❘  137

 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Padding(
 padding: EdgeInsets.all(16.0),
 child: Container(
 height: 100.0,
 width: 100.0,
 decoration: BoxDecoration(
 borderRadius: BorderRadius.all(Radius.circular(20.0)),
 color: Colors.orange,
 boxShadow: [
 BoxShadow(
 color: Colors.grey,
 blurRadius: 10.0,
 offset: Offset(0.0, 10.0),
)
],
),
),
);
 }
}

3.	 Add the InputDecoratorsWidget() widget class after the BoxDecoratorWidget() widget class.
You take a TextField and use TextStyle to change the color and fontSize properties. The
InputDecoration class is used to set the labelText, labelStyle, border, and enabledBorder
values to customize the border properties. I am using the OutlineInputBorder here, but you
could also use the UnderlineInputBorder class instead. I left border UnderlineInputBorder
and enabledBorder OutlineInputBorder() commented out, allowing you to test both classes.

The following code adds two TextField widgets customized by two different decorations. The
first TextField customizes different InputDecoration properties to show a purple notes label
with the OutlineInputBorder(). The second TextField widget uses the decoration without
customizing the border property.

class InputDecoratorsWidget extends StatelessWidget {
 const InputDecoratorsWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 TextField(
 keyboardType: TextInputType.text,
 style: TextStyle(
 color: Colors.grey.shade800,
 fontSize: 16.0,
),
 decoration: InputDecoration(

138  ❘  CHAPTER 6   Using Common Widgets

 labelText: "Notes",
 labelStyle: TextStyle(color: Colors.purple),
 //border: UnderlineInputBorder(),
 //enabledBorder: OutlineInputBorder(borderSide: BorderSide(color.
Colors.purple)),
 border: OutlineInputBorder(),
),
),
 Divider(
 color: Colors.lightGreen,
 height: 50.0,
),
 TextFormField(
 decoration: InputDecoration(labelText: 'Enter your notes'),
),
],
);
 }

}

Using the Form Widget to Validate Text Fields  ❘  139

How It Works
Decorators are invaluable to enhance the look and feel of widgets. The BoxDecoration provides many
ways to draw a box with border, body, and boxShadow. The InputDecoration is used in either a Text­
Field or TextFormField. Not only does it allow the customization of the border, label, icon, and
styles, but it also gives users feedback on data entry with hints, errors, icons, and more.

USING THE FORM WIDGET TO VALIDATE TEXT FIELDS

There are different ways to use text field widgets to retrieve, validate, and manipulate data. The Form
widget is optional, but the benefits of using a Form widget are to validate each text field as a group.
You can group TextFormField widgets to manually or automatically validate them. The TextForm­
Field widget wraps a TextField widget to provide validation when enclosed in a Form widget.

If all text fields pass the FormState validate method, then it returns true. If any text fields contain
errors, it displays the appropriate error message for each text field, and the FormState validate
method returns false. This process gives you the ability to use FormState to check for any valida-
tion errors instead of checking each text field for errors and not allowing the posting of invalid data.

The Form widget needs a unique key to identify it and is created by using GlobalKey. This
GlobalKey value is unique across the entire app.

In the next example, you’ll create a form with two TextFormFields (Figure 6.19) to enter an item
and quantity to order. You’ll create an Order class to hold the item and quantity and fill the order
once the validation passes.

FIGURE 6.19:  The Form and TextFormField layout

140  ❘  CHAPTER 6   Using Common Widgets

TRY IT OUT	 Creating the Form Validation App

Create a new Flutter project and name it ch6_form_validation. You can follow the instructions in
Chapter 4. For this project, you need to create only the pages folder. The goal of this app is to show how
to validate data entry values.

1.	 Open the home.dart file and add to the body a SafeArea widget with Column as a child. In the
Column children, add the Form() widget, which you modify in step 7.

body: SafeArea(
 child: Column(
 children: <Widget>[
 Form(),
],
),
),

2.	 Create the Order class after class _HomeState extends State<Home> {...}. The Order class
will hold item as a String value and quantity as an int value.

class _HomeState extends State<Home> {
 //...
}

class Order {
 String item;
 int quantity;
}

3.	 After the class _HomeState extends State<Home> declaration and before @override, add the
variables _formStateKey for the GlobalKey value and _order to initiate the Order class.

Create the unique key for the form by using GlobalKey<FormState> and mark it final since it
will not change.

class _HomeState extends State<Home> {
 final GlobalKey<FormState> _formStateKey = GlobalKey<FormState>();

 // Order to Save
 Order _order = Order();

4.	 Create the _validateItemRequired(String value) method that accepts a String value. Use the
ternary operator to check whether the value is set to isEmpty, and if yes, then return 'Item
Required'. Otherwise, return null.

String _validateItemRequired(String value) {
 return value.isEmpty ? 'Item Required' : null;
}

5.	 Create the _validateItemCount(String value) method that accepts a String value. Use the
ternary operator to convert String to int. Then check whether int is greater than zero; if it’s not,
return 'At least one Item is Required'.

String _validateItemCount(String value) {
 // Check if value is not null and convert to integer

Using the Form Widget to Validate Text Fields  ❘  141

 int _valueAsInteger = value.isEmpty ? 0 : int.tryParse(value);
 return _valueAsInteger == 0 ? 'At least one Item is Required' : null;
}

6.	 Create the _submitOrder() method called by the FlatButton widget to check whether all
TextFormField fields pass validation and call Form save() to gather values from all
TextFormFields to the Order class.

void _submitOrder() {
 if(_formStateKey.currentState.validate()) {
 _formStateKey.currentState.save();
 print('Order Item: ${order.item}');
 print('Order Quantity: ${order.quantity}');
 }
}

7.	 Add to the Form() widget a private key variable called _formStateKey, set autovalidate to
true, add Padding for the child property, and add Column as a child of Padding.

Setting autovalidate to true allows the Form() widget to check validation for all fields as the
user enters information and to display an appropriate message. If autovalidate is set to false,
no validation happens until the _formStateKey.currentState.validate() method is manu-
ally called.

Form(
 key: _formStateKey,
 autovalidate: true,
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[

],
),
),
),

8.	 Add two TextFormField widgets to the Column children list of Widget. The first
TextFormField is an item description, and the second TextFormField is a quantity of
items to order.

9.	 Add an InputDecoration class with hintText and labelText for each TextFormField.

hintText: 'Espresso',
labelText: 'Item',

10.	 Add a call for the validator and onSaved methods. The validator method is called to validate
characters as they are entered, and the onSaved method is called by the Form save() method to
gather values from each TextFormField.

For the validator, pass the value entered in the TextFormField widget by naming the
variable value inside parentheses and use the fat arrow syntax (=>) to call the method
_validateItemRequired(value). The fat arrow syntax is shorthand for { return mycustomex­
pression; }.

validator: (value) => _validateItemRequired(value),

142  ❘  CHAPTER 6   Using Common Widgets

Note that in step 2 you created an Order class to hold the item and quantity values to be col-
lected by the onSaved methods. When the Form save() method is called, all of the TextField­
Form onSaved methods are called, and values are collected in the Order class such as order.
item = value.

 onSaved: (value) => order.item = value,

The following code shows both TextFormFields:

TextFormField(
 decoration: InputDecoration(
 hintText: 'Espresso',
 labelText: 'Item',
),
 validator: (value) => _validateItemRequired(value),
 onSaved: (value) => order.item = value,
),
TextFormField(
 decoration: InputDecoration(
 hintText: '3',
 labelText: 'Quantity',
),
 validator: (value) => _validateItemCount(value),
 onSaved: (value) => order.quantity = int.tryParse(value),
),

Notice that you use int.tryParse() to convert the quantity value from String to int.

11.	 Add a Divider and a RaisedButton after the last TextFormField. For the onPressed, call the
_submitOrder() method created in step 6.

Divider(height: 32.0,),
RaisedButton(
 child: Text('Save'),
 color: Colors.lightGreen,
 onPressed: () => _submitOrder(),

),

Checking Orientation  ❘  143

How It Works
When retrieving data from input fields, the Form widget is an incredible helper, and you used the
GlobalKey class to assign a unique key to identify it. Use the Form widget to group TextFormField
widgets to manually or automatically validate them. The FormState validate method validates data,
and if it passes, it returns true. If the FormState validate method fails, it returns false, and each text
field displays the appropriate error message. Each TextFormField validator property has a method to
check for the appropriate value. Each TextFormField onSaved property passes the currently entered
value to the Order class. In a real-world app, you would take the Order class values and save them to
a database locally or on a web server. In Chapters 14, 15 and 16, you’ll learn how to implement Cloud
Firestore to access data from a web server.

CHECKING ORIENTATION

Under certain scenarios, knowing the device orientation helps in laying out the appropriate UI.
There are two ways to figure out orientation, MediaQuery.of(context).orientation and
OrientationBuilder.

A huge note on OrientationBuilder: it returns the amount of space available to the parent to
figure out orientation. This means it does not guarantee the actual device orientation. I prefer using
MediaQuery to obtain the actual device orientation because of its accuracy.

TRY IT OUT	 Creating the Orientation App

Create a new Flutter project and name it ch6_orientation. You can follow the instructions in Chap-
ter 4. For this project, you only need to create the pages folder.

In this example, the UI layout will change depending on orientation. When the device is in portrait mode,
it will show one Icon, and when in landscape mode, it will show two Icons. You’ll take a look at a
Container widget that will grow in size and change color, and you’ll use a GridView widget to show
two or four columns. Lastly, I added the OrientationBuilder widget to show that when the Orienta­
tionBuilder is not a parent widget, the correct orientation is not calculated correctly. But if you place
the OrientationBuilder as a parent, it works correctly; note that using SafeArea does not affect the
outcome. The following image shows the final project.

144  ❘  CHAPTER 6   Using Common Widgets

1.	 Open the home.dart file and add to the body a SafeArea with SingleChildScrollView as a
child. Add Padding as a child of the SingleChildScrollView. Add a Column as a child of the
Padding. In the Column children property, add the widget class called
OrientationLayoutIconsWidget(), which you will create next. Make sure you add the const
keyword before the widget class name to take advantage of caching to improve performance.

body: SafeArea(
 child: SingleChildScrollView(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 const OrientationLayoutIconsWidget(),
],
),
),
),
),

2.	 Add the OrientationLayoutIconsWidget() widget class after class Home extends
StatelessWidget {...}. The first variable to initialize is the current orientation by calling
MediaQuery.of() after Widget build(BuildContext context).

class OrientationLayoutIconsWidget extends StatelessWidget {
 const OrientationLayoutIconsWidget({
 Key key,
 }) : super(key: key);

Checking Orientation  ❘  145

 @override
 Widget build(BuildContext context) {
 Orientation _orientation = MediaQuery.of(context).orientation;
 return Container();
 }
}

3.	 Based on the current Orientation, you return a different layout of Icon widgets. Use a ternary
operator to check whether Orientation is portrait, and if so, return a single Row icon. If
Orientation is landscape, return a Row of two Icon widgets. Replace the current return
Container() with the following code:

return _orientation == Orientation.portrait
 ? Row(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(
 Icons.school,
 size: 48.0,
),
],
)
 : Row(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(
 Icons.school,
 size: 48.0,
),
 Icon(
 Icons.brush,
 size: 48.0,
),
],
);

4.	 Putting all of the code together, you get the following:

class OrientationLayoutIconsWidget extends StatelessWidget {
 const OrientationLayoutIconsWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 Orientation _orientation = MediaQuery.of(context).orientation;
 return _orientation == Orientation.portrait
 ? Row(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(
 Icons.school,
 size: 48.0,
),
],

146  ❘  CHAPTER 6   Using Common Widgets

)
 : Row(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(
 Icons.school,
 size: 48.0,
),
 Icon(
 Icons.brush,
 size: 48.0,
),
],
);
 }

}

5.	 After OrientationLayoutIconsWidget(), add a Divider widget and the
OrientationLayoutWidget() widget class to create.

The steps are similar to the earlier ones, but instead of using rows and icons, you are using contain-
ers: obtain the Orientation mode and for portrait return a yellow Container widget with a width
of 100.0 pixels. When the device is rotated, the landscape returns a green Container widget with a
width of 200.0 pixels.

class OrientationLayoutWidget extends StatelessWidget {
 const OrientationLayoutWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 Orientation _orientation = MediaQuery.of(context).orientation;

 return _orientation == Orientation.portrait
 ? Container(
 alignment: Alignment.center,

Checking Orientation  ❘  147

 color: Colors.yellow,
 height: 100.0,
 width: 100.0,
 child: Text('Portrait'),
)
 : Container(
 alignment: Alignment.center,
 color: Colors.lightGreen,
 height: 100.0,
 width: 200.0,
 child: Text('Landscape'),
);
 }
}

6.	 After OrientationLayoutWidget(), add a Divider widget and the GridViewWidget() widget
class that you will create.

Although you will take a closer look at the GridView widget in Chapter 9, it is appropriate to use
it now since it’s the closest to a real-world example. In portrait mode, the GridView widget shows
two columns, and in landscape mode, it shows four columns.

There are a few items to note here. Since the GridView widget is inside a Column widget, set the
GridView.count constructor shrinkWrap argument to true or it will break the constraints. I
also set the physics argument to NeverScrollableScrollPhysics() or the GridView will scroll
its children from within. Remember, you have all these widgets inside a SingleChildScrollView.

class GridViewWidget extends StatelessWidget {
 const GridViewWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 Orientation _orientation = MediaQuery.of(context).orientation;

 return GridView.count(
 shrinkWrap: true,
 physics: NeverScrollableScrollPhysics(),
 crossAxisCount: _orientation == Orientation.portrait ? 2 : 4,
 childAspectRatio: 5.0,
 children: List.generate(8, (int index) {
 return Text("Grid $index", textAlign: TextAlign.center,);
 }),
);
 }
}

7.	 After GridViewWidget(), add a Divider widget and the OrientationBuilderWidget() widget
class that you will create.

As mentioned previously, I use MediaQuery.of() to obtain orientation because it’s more accurate,
but it’s good to know how to use OrientationBuilder.

148  ❘  CHAPTER 6   Using Common Widgets

OrientationBuilder requires a builder property to be passed and cannot be null. The builder
property takes two parameters: BuildContext and Orientation.

builder: (BuildContext context, Orientation orientation) {}

The steps and result are the same as with _buildOrientationLayout(). Use the ternary operator
to check for the orientation, and for portrait, and return a yellow Container widget with a width
of 100.0 pixels. When the device is rotated, the landscape returns a green Container widget with a
width of 200.0 pixels.

Note that OrientationBuilder runs the risk of not detecting the orientation mode correctly
because it is a child widget and relies on the parent screen size instead of the device orientation.
Because of this, I recommend using MediaQuery.of() instead.

// OrientationBuilder as a child does not give correct Orientation. i.e Child
of Column...
// OrientationBuilder as a parent gives correct Orientation
class OrientationBuilderWidget extends StatelessWidget {
 const OrientationBuilderWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return OrientationBuilder(
 builder: (BuildContext context, Orientation orientation) {
 return orientation == Orientation.portrait
 ? Container(
 alignment: Alignment.center,
 color: Colors.yellow,
 height: 100.0,
 width: 100.0,
 child: Text('Portrait'),
)
 : Container(
 alignment: Alignment.center,
 color: Colors.lightGreen,
 height: 100.0,
 width: 200.0,
 child: Text('Landscape'),
);
 },
);
 }
}

Summary  ❘  149

How It Works
You can detect device orientation by calling MediaQuery.of(context).orientation, which returns
either a portrait or landscape value. There is also OrientationBuilder, which returns the amount of
space available to the parent to figure out the orientation. I recommend using MediaQuery to retrieve the
correct device orientation.

SUMMARY

In this chapter, you learned about the most commonly used (basic) widgets. These basic widgets are
the building blocks to designing mobile apps. You also explored different types of buttons to choose
depending on the situation. You learned how to add assets to your app via AssetBundle by listing
items in the pubspec.yaml file. You used the Image widget to load images from the local device or a
web server through a URL string. You saw how the Icon widget gives you the ability to load icons by
using the MaterialIcons font library.

To modify the appearance of widgets, you learned how to use BoxDecoration. To improve giving
users feedback on data entry, you implemented InputDecoration. Validating multiple text field data
entries can be cumbersome, but you can use the Form widget to manually or automatically validate
them. Lastly, using MediaQuery to find out the current device orientation is extremely powerful in
any mobile app to lay out widgets depending on the orientation.

In the next chapter, you’ll learn how to use animations. You’ll start by using widgets such as Animat­
edContainer, AnimatedCrossFade, and AnimatedOpacity and finish with the powerful Anima­
tionController for custom animation.

150  ❘  CHAPTER 6   Using Common Widgets

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Using
basic widgets

You learned to use Scaffold, SafeArea, AppBar, Container, Text,
RichText, Column, Row, Column and Row Nesting, Buttons,
FloatingActionButton, FlatButton, RaisedButton, IconButton,
PopupMenuButton, and ButtonBar.

Using images You learned to use AssetBundle, Image, and Icon.

Using
decorators

You learned to use Decoration, BoxDecoration, and InputDecoration.

Using forms
for text field
validation

You learned to use the Form widget to validate each TextFormField
as a group.

Detecting
orientation

You learned to use MediaQuery.of(context).orientation and
OrientationBuilder to detect device orientation.

Adding Animation to an App
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to use AnimatedContainer to gradually change values over time

➤➤ How to use AnimatedCrossFade to cross-fade between two children widgets

➤➤ How to use AnimatedOpacity to show or hide widget visibility by animated
fading over time

➤➤ How to use the AnimationController to create custom animations

➤➤ How to use the AnimationController to control staggered animations

In this chapter, you’ll learn how to add animation to an app to convey action, which can
improve the user experience (UX) if appropriately used. Too many animations without convey-
ing the appropriate action can make the UX worse. Flutter has two types of animation: physics-
based and Tween. This chapter will focus on Tween animations.

Physics-based animation is used to mimic real-world behavior. For example, when an object
is dropped and hits the ground, it will bounce and continue to move forward, but with each
bounce, it continues to slow down with smaller rebounds and eventually stop. As the object
gets closer to the ground with each bounce, the velocity increases, but the height of the bounce
decreases.

Tween is short for “in-between,” meaning that the animation has beginning and ending points, a
timeline, and a curve that specifies the timing and speed of the transition. The beauty is that the
framework automatically calculates the transition from the beginning to end point.

7

152  ❘  CHAPTER 7   Adding Animation to an App

USING ANIMATEDCONTAINER

Let’s start with a simple animation by using the AnimatedContainer widget. This is a Container
widget that gradually changes values over a period of time. The AnimatedContainer constructor
has arguments called duration, curve, color, height, width, child, decoration, transform, and
many others.

TRY IT OUT	 Creating the AnimatedContainer App

In this project, you’ll animate the width of a Container widget by tapping it. For example, you could use
this type of animation to animate a horizontal bar chart.

1.	 Create a new Flutter project and name it ch7_animations. You can follow the instructions in
Chapter 4, “Creating a Starter Project Template.” For this project, you need to create only the
pages and widgets folders.

2.	 Create a new Dart file in the widgets folder. Right-click the widgets folder, select New ➪ Dart
File, enter animated_container.dart, and click the OK button to save.

3.	 Import the material.dart library, add a new line, and then start typing st. The autocompletion
help opens. Select the stful abbreviation and give it a name of AnimatedContainerWidget.

4.	 After the class _AnimatedContainerWidgetState extends State<AnimatedContainerWidget>
and before @override, add the variables _height and _width and the _increaseWidth()
method.

The _height and _width variables are of type double.

double _height = 100.0;

The _increaseWidth() method calls the setState() method to notify the framework that the
_width value has changed and schedules a build for the state of this object to redraw the subtree.
If you do not call setState(), the _width value still changes, but the AnimatedContainer widget
will not redraw with the new value.

class _AnimatedContainerWidgetState extends State<AnimatedContainerWidget> {
 double _height = 100.0;
 double _width = 100.0;

 _increaseWidth() {
 setState(() {
 _width = _width >= 320.0 ? 100.0 : _width += 50.0;
 });
 }    

 @override
 Widget build(BuildContext context) {

When the page loads, the _height and _width variables are initiated with values of 100.0 pixels.
When the FlatButton is tapped, the onPressed property calls the _increaseWidth() method.

Using AnimatedContainer  ❘  153

Here you’ll use 320.0 pixels as the maximum allowed width, but this could have been the device
width instead. With each tap event, you increase the current width by 50.0 pixels starting from
100.0 pixels. As the width increases, once it goes above 320.0 pixels, you reset the size to 100.0
pixels. To calculate AnimatedContainer’s new _width, use the ternary operator. If the _width
is greater than or equal to 320.0 pixels, then set _width to the original 100.0 pixels. This will
animate AnimatedContainer back to the original size. Otherwise, take the current _width value
and add 50.0 pixels. Note that the plus and equal signs (+=) are used to take the current value and
add to it.

Notice that the height and width values are private variables, _height and _width, since you are
leading them with the underscore symbol.

The FlatButton child is the label that shows the message “Tap to Grow Width.” I am using \n to
continue the text on the next line and using the $ sign to pass the _width value.

Once the FlatButton is pressed, you add a call to the method _increaseWidth() in the
onPressed property. Ignore the code editor’s red squiggly lines since you have not created the vari-
ables and method yet.

The duration argument takes a Duration() object to specify the type of time to use such as
microseconds, milliseconds, seconds, minutes, hours, and days.

duration: Duration(milliseconds: 500),

The curve argument takes a Curves class and uses Curves.elasticOut. Some of the types of
Curves available are bounceIn, bounceInOut, bounceOut, easeIn, easeInOut, easeOut, elas-
ticIn, elasticInOut, and elasticOut.

curve: Curves.elasticOut,

Here’s the full _AnimatedContainerWidget() widget class:

import 'package:flutter/material.dart';

class AnimatedContainerWidget extends StatefulWidget {
 const AnimatedContainerWidget({
 Key key,
 }) : super(key: key);

 @override
 _AnimatedContainerWidgetState createState() => _AnimatedContainerWidgetState();
}

class _AnimatedContainerWidgetState extends State<AnimatedContainerWidget> {
 double _height = 100.0;
 double _width = 100.0;

 void _increaseWidth() {
 setState(() {
 _width = _width >= 320.0 ? 100.0 : _width += 50.0;
 });
 }

154  ❘  CHAPTER 7   Adding Animation to an App

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 AnimatedContainer(
 duration: Duration(milliseconds: 500),
 curve: Curves.elasticOut,
 color: Colors.amber,
 height: _height,
 width: _width,
 child: FlatButton(
 child: Text('Tap to\nGrow Width\n$_width'),
 onPressed: () {
 _increaseWidth();
 },
),
),
],
);
 }
}

5.	 Open the home.dart file and import the animated_container.dart file to the top of the page.

import 'package:flutter/material.dart';
import 'package:ch7_animations/widgets/animated_container.dart';

6.	 Add to the body a SafeArea widget with Column as a child. In the Column children, add the call
to the widget class AnimatedContainerWidget().

body: SafeArea(
 child: Column(
 children: <Widget>[
 AnimatedContainerWidget(),
],
),
),

Using AnimatedCrossFade  ❘  155

How It Works
The AnimatedContainer constructor takes a duration argument, and you use the Duration
class to specify 500 milliseconds. The 500 milliseconds equals half a second. The curve argument gives
the animation a spring effect by using Curves.elasticOut. The onPressed argument calls the
_increaseWidth() method to change the _width variable dynamically. The setState() method
notifies the Flutter framework that the internal state of the object changed and causes the framework to
schedule a build for this State object. The AnimatedContainer widget automatically animates between
the old _width value and the new _width value.

USING ANIMATEDCROSSFADE

The AnimatedCrossFade widget provides a great cross-fade between two children widgets. The
AnimatedCrossFade constructor takes duration, firstChild, secondChild, crossFadeState,
sizeCurve, and many other arguments.

TRY IT OUT	 Adding the AnimatedCrossFade Widget

This example creates a cross-fade between colors and size by tapping the widget. The widget will cross-
fade the changing size and color from yellow to green.

1.	 Create a new Dart file in the widgets folder. Right-click the widgets folder, select New ➪ Dart
File, enter animated_cross_fade.dart, and click the OK button to save.

2.	 Import the material.dart library, add a new line, and start typing st. The autocompletion help
opens. Select the stful abbreviation and give it a name of AnimatedCrossFadeWidget.

3.	 After the class _AnimatedCrossFadeWidgetState extends State<AnimatedCrossFadeWidget>
and before @override, add a variable for _crossFadeStateShowFirst and the _crossFade()
method.

The _crossFadeStateShowFirst variable is of type Boolean (bool).

bool _crossFadeStateShowFirst = true;

The _crossFade() method calls setState() to notify the framework that the _crossFadeState-
ShowFirst value has changed and schedules a build for the state of this object to redraw the sub-
tree. If you do not call setState(), the _width value still changes, but the AnimatedCrossFade
widget will not redraw with the new value.

class _AnimatedCrossFadeWidgetState extends State<AnimatedCrossFadeWidget> {
 bool _crossFadeStateShowFirst = true;

156  ❘  CHAPTER 7   Adding Animation to an App

 void _crossFade() {
 setState(() {
 _crossFadeStateShowFirst = _crossFadeStateShowFirst ? false : true;
 });
 }

 @override
 Widget build(BuildContext context) {

When the page is loaded, the _crossFadeStateShowFirst variable is initiated with a value of
true. When FlatButton is tapped, the onPressed property calls the _crossFade() method.

To track which child (firstChild, secondChild) the AnimatedCrossFade widget should
show and animate, use the ternary operator. If the _crossFadeStateShowFirst is true, then
set the _crossFadeStateShowFirst value to false. Otherwise, set it to true since the current
value is false.

4.	 To keep the UI clean, add each animation widget in a separate Row. Embed the
AnimatedCrossFade widget in a Row with a Stack as a child. The reason to use a Stack is to add
a FlatButton over the AnimatedCrossFade widget to give it a label and an onPressed event. You
could also use a GestureDetector widget.

@override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 Stack(
 alignment: Alignment.center,
 children: <Widget>[
 AnimatedCrossFade(
 duration: Duration(milliseconds: 500),
 sizeCurve: Curves.bounceOut,
 crossFadeState: _crossFadeStateShowFirst ? CrossFadeState.showFirst :
CrossFadeState.showSecond,
 firstChild: Container(
 color: Colors.amber,
 height: 100.0,
 width: 100.0,
),
 secondChild: Container(
 color: Colors.lime,
 height: 200.0,
 width: 200.0,
),
),
 Positioned.fill(
 child: FlatButton(
 child: Text('Tap to\nFade Color & Size'),
 onPressed: () {
 _crossFade();
 },
),
),
],

Using AnimatedCrossFade  ❘  157

),
],
);
 }

5.	 Use a duration of 500 milliseconds like in the previous animation.

duration: Duration(milliseconds: 500),

6.	 For sizeCurve, use Curves.bounceOut to see how the Curves class affects animations.

sizeCurve: Curves.bounceOut,

7.	 To decide which Container widget to show when the animation is completed, set the cross-
FadeState argument value by using the ternary operator to check whether the _crossFadeState-
ShowFirst value is true; then show CrossFadeState.showFirst; otherwise, show
CrossFadeState.showSecond.

crossFadeState: _crossFadeStateShowFirst ? CrossFadeState.showFirst :
CrossFadeState.showSecond,

8.	 The animation will cross-fade between colors and sizes; for firstChild and secondChild, use a
Container. The firstChild Container has a Colors.amber color property and height and
width values of 100.0 pixels. The secondChild Container has a Colors.lime color property and
height and width values of 200.0 pixels.

firstChild: Container(
 color: Colors.amber,
 height: 100.0,
 width: 100.0,
),
secondChild: Container(
 color: Colors.lime,
 height: 200.0,
 width: 200.0,
),

9.	 Add the second Stack child and call the Positioned.fill constructor with a child of
FlatButton. Using Positioned.fill allows the FlatButton widget to resize itself to the maxi-
mum size of the Stack widget. For the onPressed property, add a call to the _cross-
Fade() method.

Positioned.fill(
 child: FlatButton(
 child: Text('Tap to\nFade Color & Size'),
 onPressed: () {
 _crossFade();
 },
),
),

Here’s the full_AnimatedCrossFadeWidget() widget class:

import 'package:flutter/material.dart';

class AnimatedCrossFadeWidget extends StatefulWidget {
 const AnimatedCrossFadeWidget({

158  ❘  CHAPTER 7   Adding Animation to an App

 Key key,
 }) : super(key: key);

 @override
 _AnimatedCrossFadeWidgetState createState() => _AnimatedCrossFadeWidgetState();
}

class _AnimatedCrossFadeWidgetState extends State<AnimatedCrossFadeWidget> {
 bool _crossFadeStateShowFirst = true;

 void _crossFade() {
 setState(() {
 _crossFadeStateShowFirst = _crossFadeStateShowFirst ? false : true;
 });
 }

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 Stack(
 alignment: Alignment.center,
 children: <Widget>[
 AnimatedCrossFade(
 duration: Duration(milliseconds: 500),
 sizeCurve: Curves.bounceOut,
 crossFadeState: _crossFadeStateShowFirst ? CrossFadeState.showFirst :
CrossFadeState.showSecond,
 firstChild: Container(
 color: Colors.amber,
 height: 100.0,
 width: 100.0,
),
 secondChild: Container(
 color: Colors.lime,
 height: 200.0,
 width: 200.0,
),
),
 Positioned.fill(
 child: FlatButton(
 child: Text('Tap to\nFade Color & Size'),
 onPressed: () {
 _crossFade();
 },
),
),
],
),
],
);
 }
}

Using AnimatedCrossFade  ❘  159

10.	 Continue editing the home.dart file and import the animated_cross_fade.dart file to the top
of the page.

import 'package:flutter/material.dart';
import 'package:ch7_animations/widgets/animated_container.dart';
import 'package:ch7_animations/widgets/animated_cross_fade.dart';

	11.	 Just after the AnimatedContainerWidget() widget class, add a Divider() widget. On the next
line, add a call to the widget class AnimatedCrossFadeWidget().

body: SafeArea(
 child: Column(
 children: <Widget>[
 AnimatedContainerWidget(),
 Divider(),
 AnimatedCrossFadeWidget(),
],
),
),

Notice how clean the code looks and how it improves the readability by separating each major section of
the widget tree. More importantly, only the widget class running is being rebuilt, and the other animation
widget classes are not, giving you great performance.

How It Works
The AnimatedCrossFade constructor takes a duration argument, and you use the Duration class to
specify 500 milliseconds. The sizeCurve argument gives the animation between the two children’s size a
spring effect by using Curves.bounceOut. The crossFadeState argument sets the child widget to be
shown once the animation is completed. By using the _crossFadeStateShowFirst variable, the cor-
rect crossFadeState child is displayed. The firstChild and secondChild arguments hold the two
widgets to animate.

160  ❘  CHAPTER 7   Adding Animation to an App

USING ANIMATEDOPACITY

If you need to hide or partially hide a widget, AnimatedOpacity is a great way to animate fading
over time. The AnimatedOpacity constructor the takes duration, opacity, curve, and child
arguments. For this example, you do not use a curve; since you want a smooth fade-out and fade-in,
it’s not necessary.

TRY IT OUT	 Adding the AnimatedOpacity Widget

The example uses opacity to partially fade out a Container widget. The widget will animate the opac-
ity value from fully visible to almost faded out.

1.	 Create a new Dart file in the widgets folder. Right-click the widgets folder, select New ➪ Dart
File, enter animated_opacity.dart, and click the OK button to save.

2.	 Import the material.dart library, add a new line, and then start typing st. The autocompletion
help opens. Select the stful abbreviation and give it a name of AnimatedOpacityWidget.

3.	 After the class _AnimatedOpacityWidgetState extends State<AnimatedOpacityWidget> and
before @override, add the variable for _opacity and the _animatedOpacity() method.

The _opacity variable is of type double.

double _opacity = 1.0;

The _animatedOpacity() method calls setState() to notify the framework that the _opacity
value has changed and schedules a build for the state of this object to redraw the subtree. If you do
not call setState(), the _opacity value still changes, but the AnimatedOpacity widget does not
redraw with the new value.

class _AnimatedOpacityWidgetState extends State<AnimatedOpacityWidget> {
 double _opacity = 1.0;

 void _animatedOpacity() {
 setState(() {
 _opacity = _opacity == 1.0 ? 0.3 : 1.0;
 });
 }

 @override
 Widget build(BuildContext context) {

When the page is loaded, the _opacity variable is initiated with a value of 1.0, which is fully vis-
ible. When the FlatButton widget is tapped, the onPressed property calls the _animatedOpac-
ity() method.

To calculate the widget opacity, use the ternary operator. If the _opacity value is 1.0, then set
_opacity to 0.3. Otherwise, set it to 1.0 since the current value is 0.3.

Using AnimatedOpacity  ❘  161

4.	 To keep the UI clean, add each animation widget in a separate Row. Embed the AnimatedOpacity
widget in a Row.

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 AnimatedOpacity(
 duration: Duration(milliseconds: 500),
 opacity: _opacity,
 child: Container(
 color: Colors.amber,
 height: 100.0,
 width: 100.0,
 child: FlatButton(
 child: Text('Tap to Fade'),
 onPressed: () {
 _animatedOpacity();
 },
),
),
),
],
);
 }

5.	 Use a duration of 500 milliseconds like in the previous animations.

duration: Duration(milliseconds: 500),

6.	 The animation animates the opacity value of the AnimatedOpacity child widget, which is a
Container in this case. Depending on the value of opacity, the Container widget fades out or
fades in. An opacity value of 1.0 is fully visible, and an opacity value of 0.0 is invisible. You are
going to animate the _opacity variable from 1.0 to 0.3, and vice versa.

opacity: _opacity,

7.	 Add a Container widget as a child of the AnimatedOpacity widget. Add a FlatButton widget as
a child of the Container widget with onPressed calling the _animatedOpacity() method.

child: Container(
 color: Colors.amber,
 height: 100.0,
 width: 100.0,
 child: FlatButton(
 child: Text('Tap to Fade'),
 onPressed: () {
 _animatedOpacity();
 },
),
),

162  ❘  CHAPTER 7   Adding Animation to an App

Here’s the full _buildAnimatedOpacity() widget class:

import 'package:flutter/material.dart';

class AnimatedOpacityWidget extends StatefulWidget {
 const AnimatedOpacityWidget({
 Key key,
 }) : super(key: key);

 @override
 _AnimatedOpacityWidgetState createState() => _AnimatedOpacityWidgetState();
}

class _AnimatedOpacityWidgetState extends State<AnimatedOpacityWidget> {
 double _opacity = 1.0;

 void _animatedOpacity() {
 setState(() {
 _opacity = _opacity == 1.0 ? 0.3 : 1.0;
 });
 }

 @override
 Widget build(BuildContext context) {
 return Row(
 children: <Widget>[
 AnimatedOpacity(
 duration: Duration(milliseconds: 500),
 opacity: _opacity,
 child: Container(
 color: Colors.amber,
 height: 100.0,
 width: 100.0,
 child: FlatButton(
 child: Text('Tap to Fade'),
 onPressed: () {
 _animatedOpacity();
 },
),
),
),
],
);
 }
}

	 8.	 Continue editing the home.dart file and import the animated_opacity.dart file to the top
of the page.

import 'package:flutter/material.dart';
import 'package:ch7_animations/widgets/animated_container.dart';

Using AnimatedOpacity  ❘  163

import 'package:ch7_animations/widgets/animated_cross_fade.dart';
import 'package:ch7_animations/widgets/animated_opacity.dart';

	 9.	 Just after the AnimatedCrossFadeWidget() widget class, add a Divider() widget. On the next
line, add the call to the widget class AnimatedOpacityWidget().

body: SafeArea(
 child: Column(
 children: <Widget>[
 AnimatedContainerWidget(),
 Divider(),
 AnimatedCrossFadeWidget(),
 Divider(),
 AnimatedOpacityWidget(),
],
),
),

Again, notice how clean the code looks and how it improves the readability by separating each major
section of the widget tree.

How It Works
The AnimatedOpacity widget takes a duration parameter, and you use the Duration class to specify
500 milliseconds. The opacity parameter is a value from 0.0 to 1.0. The opacity value of 1.0 is fully
visible, and as the value changes toward zero, it starts to fade away. Once it reaches zero, it’s invisible.

164  ❘  CHAPTER 7   Adding Animation to an App

USING ANIMATIONCONTROLLER

The AnimationController class gives you increased flexibility in animation. The animation can
be played forward or reverse, and you can stop it. The fling animation uses a physics simulation
like a spring.

The AnimationController class produces linear values for a giving duration, and it tries to display
a new frame at around 60 frames per second. The AnimationController class needs a Ticker-
Provider class by passing the vsync argument in the constructor. The vsync prevents off-screen
animations from consuming unnecessary resources. If the animation needs only one AnimationCon-
troller, use SingleTickerProviderStateMixin. If the animation needs multiple AnimationCon-
trollers, use TickerProviderStateMixin. The Ticker class is driven by the ScheduleBinding.
scheduleFrameCallback reporting once per animation frame. It is trying to sync the animation to be
as smooth as possible.

The AnimationController default object ranges from 0.0 to 1.0, but if you need a different range,
you can use the Animation class (using Tween) to accept a different type of data. The Animation
class is initiated by setting the Tween class (in-betweening) begin and end property values. For exam-
ple, you have a balloon that floats from the bottom to the top of the screen, and you would set the
Tween class begin value of 400.0, the bottom of the screen and the end value of 0.0, the top of the
screen. Then you can chain the Tween animate method, which returns an Animation class. Simply
put, it animates the Tween based on the animation, such as a CurvedAnimation class.

The AnimationController class at first can seem complex to use because of the different classes
needed. The following are the basic steps that you take to create a custom animation (shown in
Figure 7.1) or, eventually in the example, multiple animations running at the same time.

1.	 Add AnimationController.

2.	 Add Animation.

3.	 Initiate AnimationController with Duration (milliseconds, seconds, and so on).

4.	 Initiate Animation with Tween with begin and end values and chain the animate method
with a CurvedAnimation (for this example).

5.	 Use the AnimatedBuilder with Animation using a Container with a balloon to start
Animation by calling the AnimationController.forward() and .reverse() to run the
animation backward. The AnimatedBuilder widget is used to create a widget that performs
a reusable animation.

As you can see, once you break down the steps, it becomes more manageable and less complicated.

Using AnimationController  ❘  165

TRY IT OUT	 Creating the AnimationController App

In this project, you’ll animate a balloon that starts small at the bottom of the screen, and as it inflates, it
floats toward the top, giving some nice spring animations. By using a GestureDetector tap on the bal-
loon, the animation reverses, showing the balloon deflating and floating downward to the bottom of the
screen. Every time the balloon is tapped, the animation starts again.

1.	 Create a new Flutter project and name it ch7_animation_controller. You can follow the
instructions in Chapter 4. For this project, you need to create only the pages, widgets, and
assets/images folders.

FIGURE 7.1:  What you’re building with AnimationController

166  ❘  CHAPTER 7   Adding Animation to an App

2.	 Open the pubspec.yaml file, and in assets add the images folder.

To add assets to your application, add an assets section, like this:
assets:
 - assets/images/

Add the folder assets and subfolder images at the project’s root and then copy the Beginning-
GoogleFlutter-Balloon.png file to the images folder.

3.	 Click the Save button, and depending on the editor you are using, this automatically runs flutter
packages get. Once finished, it shows a message of Process finished with exit code 0. It does
not automatically run the command for you, though. Open the Terminal window (located at the
bottom of your editor) and type flutter packages get.

4.	 Create a new Dart file in the widgets folder. Right-click the widgets folder, select New ➪ Dart
File, enter animated_balloon.dart, and click the OK button to save.

5.	 Import the material.dart library, add a new line, and then start typing st. The autocompletion
help opens. Select the stful abbreviation and give it a name of AnimatedBalloonWidget.

6.	 It is appropriate to create the AnimationController and Animation variables before you can
reference them in your code. Declare TickerProviderStateMixin to the _Animated
BalloonWidgetState class by adding with TickerProviderStateMixin. The Animation
Controller vsync argument will use it. The vsync is referenced by this, meaning this reference
of the _AnimatedBalloonWidgetState class.

class _AnimatedBalloonWidgetState extends State<AnimatedBalloonWidget> with
TickerProviderStateMixin {

7.	 After the class _AnimatedBalloonWidgetState extends State<AnimatedBalloonWidget> and
before @override, create two AnimationControllers to handle the duration of the balloon
floating upward and the inflation of the balloon inflating. Create two Animations to handle the
actual movement range and inflation size. Override the initState() and dispose() methods to
initiate AnimationController and dispose of them when the page closes.

An important note about using two AnimationControllers is that you could have used one
AnimationController and made use of the Interval() curve to stagger Animation. A stag-
gered animation uses Interval() to begin and end animations sequentially or to overlap one
another. In the “Using Staggered Animations” section of this chapter, you’ll create a staggered
animation app.

class _AnimatedBalloonWidgetState extends State<AnimatedBalloonWidget> with
TickerProviderStateMixin {
 AnimationController _controllerFloatUp;
 AnimationController _controllerGrowSize;
 Animation<double> _animationFloatUp;
 Animation<double> _animationGrowSize;

 @override
 void initState() {
 super.initState();

Using AnimationController  ❘  167

 _controllerFloatUp = AnimationController(duration: Duration(seconds: 4),
vsync: this);
 _controllerGrowSize = AnimationController(duration: Duration(seconds: 2),
vsync: this);
 }

 @override
 void dispose() {

 _controllerFloatUp.dispose();
 _controllerGrowSize.dispose();
 super.dispose();
 }

Note that in the initState() method you could call the Animation class after the Animation-
Controller to start the animation as the page loads, but you are going to place the Animation
class in Widget build(BuildContext context) instead. The reason for this is to use the Media
Query class to obtain the screen size to place and size the balloon accordingly. The initState()
method does not contain the Widget context object that MediaQuery requires. However, as
Widget build(BuildContext context) is called, the animation starts on page load. If the user
rotates the device, Widget build(BuildContext context) is called again, and the balloon will
resize itself accordingly and run the animation if the balloon is located at the bottom of the screen.

8.	 After Widget build(BuildContext context), create the balloon height, width, and page bottom
position by using MediaQuery.of(context).size. I arrived at the following formulas for calcu-
lating the dimensions by testing different options to get the best look depending on different
devices’ screen size and orientation:

Widget build(BuildContext context) {
 double _balloonHeight = MediaQuery.of(context).size.height / 2;
 double _balloonWidth = MediaQuery.of(context).size.height / 3;
 double _balloonBottomLocation = MediaQuery.of(context).size.height -
_balloonHeight;

Create the Animation class by declaring a Tween with a CurvedAnimation. For the _animation-
FloatUp value, the begin property is the _balloonBottomLocation variable with the end prop-
erty at 0.0. This means the floating-upward animation starts at the bottom of the screen and moves
all the way to the top.

For the _animationGrowSize value, the begin property is 50.0 pixels. Set the end value to the
_balloonWidth variable. This means you can start the balloon width at 50.0 pixels and increase it
to the maximum _balloonWidth value calculated by MediaQuery. Use the elasticInOut curve to
give it a beautiful spring animation that looks like a quick inflation of air.

9.	 Call both _controllerFloatUp.forward() and _controllerGrowSize.forward() to start the
animation.

 _animationFloatUp = Tween(begin: _balloonBottomLocation, end: 0.0).
animate(CurvedAnimation(parent: _controllerFloatUp, curve: Curves.fastOutSlowIn));
 _animationGrowSize = Tween(begin: 50.0, end: _balloonWidth).
animate(CurvedAnimation(parent: _controllerGrowSize, curve: Curves.elasticInOut));

168  ❘  CHAPTER 7   Adding Animation to an App

 _controllerFloatUp.forward();
 _controllerGrowSize.forward();
}

10.	 Create AnimatedBuilder and let’s take a look at a high-level structural breakdown for the
AnimatedBuilder arguments that show how AnimatedBuilder child (GestureDetector with
Image) is passed to the builder, which is the widget to receive the animation.

return AnimatedBuilder(
 animation: _animationFloatUp,
 builder: (context, child) {
 return Container(
 child: child,
);
 },
 child: GestureDetector(/* Image*/) */
);

The AnimatedBuilder constructor passes the animation argument _animationFloatUp. For the
builder argument, return a Container widget with the child property of child. I know that
sounds weird for the child property, but this is the way the builder smartly redraws the child
control being animated. The child widget being passed is declared next, and it will contain a Ges-
tureDetector widget and a child widget of Image (balloon).

The AnimatedBuilder constructor has the animation, builder, and child arguments.

Add to the GestureDetector() widget the onTap property. For the GestureDetector() widget,
the onTap property checks for _controllerFloatUp.isCompleted (meaning the animation is
done), and if yes, it starts the animation in reverse. This will deflate the balloon and start floating
it down to the bottom of the page. The else portion handles the balloon already at the bottom of
the screen and starts the animation forward by floating upward and inflating the balloon back to
normal size.

11.	 Add to the GestureDetector child property a call to the Image.asset() constructor that loads
the BeginningGoogleFlutter-Balloon.png file and sets height to _balloonHeight and width
to _balloonWidth.

return AnimatedBuilder(
 animation: _animationFloatUp,
 builder: (context, child) {
 return Container(
 child: child,
 margin: EdgeInsets.only(
 top: _animationFloatUp.value,
),

Using AnimationController  ❘  169

 width: _animationGrowSize.value,
);
 },
 child: GestureDetector(
 onTap: () {
 if (_controllerFloatUp.isCompleted) {
 _controllerFloatUp.reverse();
 _controllerGrowSize.reverse();
 }
 else {
 _controllerFloatUp.forward();
 _controllerGrowSize.forward();
 }
 },
 child: Image.asset(
 'assets/images/BeginningGoogleFlutter-Balloon.png',
 height: _balloonHeight,
 width: _balloonWidth),
),
);

12.	 Open the home.dart file and import the animated_balloon.dart file to the top of the page.

import 'package:flutter/material.dart';
import 'package:ch7_animation_controller/widgets/animated_balloon.dart';

13.	 Add to the body a SafeArea with SingleChildScrollView as a child.

14.	 Add Padding as a child of the SingleChildScrollView.

15.	 Add a Column as a child of Padding.

16.	 In the Column children, add the call to the widget class AnimatedBalloonWidget(). Note I am
using the NeverScrollableScrollPhysics() to stop the SingleChildScrollView to
scroll content.

body: SafeArea(
 child: SingleChildScrollView(
 physics: NeverScrollableScrollPhysics(),
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 AnimatedBalloonWidget(),
],
),
),
),
),

170  ❘  CHAPTER 7   Adding Animation to an App

How It Works
Declaring TickerProviderStateMixin to the AnimatedBalloonWidget widget class allowed you to
set the AnimationController vsync argument. You added AnimationController and declared the
_controllerFloatUp variable to animate the floating upward and downward action. You declared the
AnimationController _controllerGrowSize variable to animate the inflating and deflating actions.
You declared the _animationFloatUp variable to hold the value from the Tween animation to show the
balloon floating either upward or downward by setting the top margin of the Container widget. You
declared the _animationGrowSize variable to hold the value from the Tween animation to show the bal-
loon either inflating or deflating by setting the width value of the Container widget.

The AnimatedBuilder constructor takes the animation, builder, and child arguments. Next, you
passed the _animationFloatUp animation to the AnimatedBuilder constructor. The AnimatedBuilder
builder argument returns a Container widget with the child as an Image widget wrapped in a Ges-
tureDetector widget.

In the preceding example, I showed how you can use multiple AnimationControllers to run at the
same time with different Duration values. In the next section, you’ll use one AnimationController
for a staggered animation.

Using Staggered Animations
A staggered animation triggers visual changes in sequential order. The animation changes can occur
one after the other; they can have gaps without animations and overlap each other. One Anima-
tionController class controls multiple Animation objects that specify the animation in a timeline
(Interval). Now you’ll walk through an example of using one AnimationController class and the
Interval() curve property to start different animations at different times. As noted in the preced-
ing section, a staggered animation uses Interval() to begin and end animations sequentially or to
overlap one another.

Using AnimationController  ❘  171

TRY IT OUT	 Creating the Staggered Animations App

In this project, you’ll re-create the balloon animation to duplicate the previous example but use only one
AnimationController to take advantage of staggered animations. By using Interval(), you mark each
animation’s begin and end time to stagger the animations.

Like the previous project, you’ll animate a balloon that starts small at the bottom of the screen, and as it
inflates, it floats toward the top, giving some nice spring animations. By using a GestureDetector tap
on the balloon, the animation reverses, showing the balloon deflating and floating downward to the bot-
tom of the screen. Every time the balloon is tapped, the animation starts again.

1.	 Create a new Flutter project and name it ch7_ac_staggered_animations. You can follow the
instructions in Chapter 4. For this project, you need to create only the pages, widgets, and
assets/images folders.

2.	 Open the pubspec.yaml file, and under assets, add the images folder.

To add assets to your application, add an assets section, like this:
assets:
 - assets/images/

Add the folder assets and subfolder images at the project’s root and then copy the Beginning-
GoogleFlutter-Balloon.png file to the images folder.

3.	 Create a new Dart file under the widgets folder. Right-click the widgets folder, select New ➪ Dart
File, enter animated_balloon.dart, and click the OK button to save. Import the material.dart
library, add a new line, and then start typing st. The autocompletion help opens. Select the stful
abbreviation and give it a name of AnimatedBalloonWidget.

4.	 It is appropriate to create the AnimationController and Animation variables before you can
reference them in the code. Declare SingleTickerProviderStateMixin to the _HomeState class
by adding with SingleTickerProviderStateMixin. The AnimationController constructor
takes the vsync argument. The vsync argument is referenced by this, meaning this reference of
the _HomeState class.

class _AnimatedBalloonWidgetState extends State<AnimatedBalloonWidget> with
SingleTickerProviderStateMixin {

5.	 Create one AnimationController only to handle the animation duration. Create two Animations
to handle the actual movement range and growing size. Override the initState() and dispose()
methods to initiate the AnimationController and dispose of them when the page closes.

class _HomeState extends State<Home> with SingleTickerProviderStateMixin {
 AnimationController _controller;
 Animation<double> _animationFloatUp;
 Animation<double> _animationGrowSize;

 @override
 void initState() {
 super.initState();

172  ❘  CHAPTER 7   Adding Animation to an App

 _controller = AnimationController(duration: Duration(seconds: 4), vsync: this);
 }

 @override
 void dispose() {

 _controller.dispose();
 super.dispose();
 }

Note as stated in the previous section, in the initState() method you could call the Animation
only after the AnimationController only to start the animation as page loads, but you are going
to place it in the _animatedBalloon() method instead. The reason is to use the MediaQuery class
to obtain the screen size to place and size the balloon accordingly. The initState() method does
not contain the Widget context object that MediaQuery requires. However, as the _animate-
Balloon() method is called, the animation starts on page load. If the user rotates the device, the
_animateBalloon() method is called again, and the balloon resizes itself accordingly and runs the
animation if the balloon is located at the bottom of the screen.

6.	 After Widget build(BuildContext context), create the balloon height, width, and page bottom
position by using MediaQuery.of(context).size. I arrived at the following formulas for calcu-
lating the dimensions by testing different options to get the best aesthetic look depending on
different devices’ screen size and orientation.

Widget build(BuildContext context) {
 double _balloonHeight = MediaQuery.of(context).size.height / 2;
 double _balloonWidth = MediaQuery.of(context).size.height / 3;
 double _balloonBottomLocation = MediaQuery.of(context).size.height -
_balloonHeight;

Creating an animation Tween is almost the same as the previous example except the CurvedAnima-
tion parent is the _controller. The curve uses Interval() to mark each animation’s begin and
end time. Zero means begin, and 1.0 animation means end.

The _controller duration value is four seconds, _animationGrowSize Interval begin is 0.0,
and end is 0.5. This means the balloon starts inflating as soon as the animation starts but finishes
at 0.5, meaning two seconds. You can think of Interval begin and end as a percentage of the
total duration of the animation.

void _animationFloatUp = Tween(begin: _balloonBottomLocation, end: 0.0).animate(
 CurvedAnimation(
 parent: _controller,
 curve: Interval(0.0, 1.0, curve: Curves.fastOutSlowIn),
),
);

Using AnimationController  ❘  173

void _animationGrowSize = Tween(begin: 50.0, end: _balloonWidth).animate(
 CurvedAnimation(
 parent: _controller,
 curve: Interval(0.0, 0.5, curve: Curves.elasticInOut),
),
);

7.	 Create the AnimatedBuilder only, and let’s look at the high-level structural breakdown for the
AnimatedBuilder constructor that shows how the AnimatedBuilder child (GestureDetector
with Image) argument is passed to the builder, which is the widget to receive the anima-
tion argument.

return AnimatedBuilder(
 animation: _animationFloatUp,
 builder: (context, child) {
 return Container(
 child: child,
);
 },
 child: GestureDetector(/* Image*/) */
);

Using the AnimatedBuilder is almost the same as the previous example with the difference that
you use only one AnimationController only to start animation in forward or reverse with the
_controller variable.

The AnimatedBuilder constructor takes the animation, builder, and child arguments.

Add to the GestureDetector() widget the onTap property. For GestureDetector(), the onTap
property callback checks for _controllerFloatUp.isCompleted (the animation is done), and if
yes, it starts the animation in reverse. This will deflate the balloon and have it start floating down
to the bottom of the page. The else portion handles the balloon already at the bottom of the
screen; it starts the animation by floating the balloon upward and inflating it back to normal size.
You’ll notice that since you have only one AnimationController, you use the _controller vari-
able to reverse or forward the animation.

8.	 Add to the GestureDetector child a call to the Image.asset() constructor that loads the
BeginningGoogleFlutter-Balloon.png file and sets the height value to _balloonHeight and
the width value to _balloonWidth.

return AnimatedBuilder(
 animation: _animationFloatUp,
 builder: (context, child) {
 return Container(
 child: child,
 margin: EdgeInsets.only(
 top: _animationFloatUp.value,
),

174  ❘  CHAPTER 7   Adding Animation to an App

 width: _animationGrowSize.value,
);
 },
 child: GestureDetector(
 onTap: () {
 if (_controller.isCompleted) {
 _controller.reverse();
 } else {
 _controller.forward();
 }
 },
 child: Image.asset('assets/images/BeginningGoogleFlutter-Balloon.png',
 height: _balloonHeight, width: _balloonWidth),
),
);

9.	 Open the home.dart file and import the animated_balloon.dart file to the top of the page.:

import 'package:flutter/material.dart';
import 'package:ch7_ac_staggered_animations/widgets/animated_balloon.dart';

10.	 Add to the body a SafeArea widget with SingleChildScrollView as a child.

11.	 Add Padding as a child of SingleChildScrollView. Add a Column widget as a child of Padding.

12.	 In the Column children, add the call to the method _animateBalloon(). Note that I am using
NeverScrollableScrollPhysics() to stop the SingleChildScrollView to scroll content.

body: SafeArea(
 child: SingleChildScrollView(
 physics: NeverScrollableScrollPhysics(),
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[
 AnimatedBalloonWidget(),
],
),
),
),
),

How It Works
Declaring SingleTickerProviderStateMixin to the AnimatedBalloonWidget widget class allows
you to set the AnimationController vsync argument. The SingleTickerProviderStateMixin allows
only one AnimationController. You added AnimationController and declared the _controller
variable to animate both the floating upward or downward and the inflation or deflation of the balloon.

You declared the _animationFloatUp variable to hold the value from the Tween animation to show the
balloon either floating upward or downward by setting the top margin of the Container widget. You
also declared the _animationGrowSize variable to hold the value from the Tween animation to show the
balloon either inflating or deflating by setting the width value of the Container widget.

 Summary  ❘  175

The AnimatedBuilder constructor takes animation, builder, and child arguments. Next, you passed
the _animationFloatUp animation to the AnimatedBuilder constructor. The AnimatedBuilder
builder argument returns a Container widget with the child as an Image wrapped in a GestureDetec-
tor widget.

SUMMARY

In this chapter, you learned how to add animations to your app to improve the UX. You implemented
AnimatedContainer to animate the width of a Container widget with a beautiful spring effect
by using Curves.elasticOut. You added the AnimatedCrossFade widget to cross-fade between
two children widgets. The color is animated from amber to green while at the same time the widget
increased or decreased in width and height. To fade a widget in, out, or partially, you added the
AnimatedOpacity widget. The AnimatedOpacity widget uses the opacity property passed over a
period of time (Duration) to fade the widget. The AnimationController class allows the creation of
custom animations.

You learned to use multiple AnimationControllers with different durations. You used two Anima-
tion classes to control the floating upward or downward and the inflation and deflation of the bal-
loon at the same time. The animation is created by using Tween with begin and end values. You also
used different CurvedAnimation class for a nonlinear effect like Curves.fastOutSlowIn to float
upward or downward and Curves.elasticInOut to inflate or deflate the balloon. Lastly, you used
one AnimationController class with multiple Animation classes to create staggered animations,
which give a similar effect as the previous example.

In the next chapter, you’ll learn the many ways of using navigation such as Navigator, Hero Anima-
tion, BottomNavigationBar, BottomAppBar, TabBar, TabBarView, and Drawer.

176  ❘  CHAPTER 7   Adding Animation to an App

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

AnimatedContainer This gradually changes values over time.

AnimatedCrossFade This cross-fades between two child widgets.

AnimatedOpacity This shows or hides widget visibility by animating fading over time.

AnimatedBuilder This is used to create a widget that performs a reusable animation.

AnimationController This creates custom animations by using
TickerProviderStateMixin, Single
TickerProviderStateMixin, AnimationController,
Animation, Tween, and CurvedAnimation.

Creating an App’s Navigation
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to use the Navigator widget to navigate between pages

➤➤ How hero animation allows a widget transition to fly into place from one page
to another

➤➤ How to display a horizontal list of BottomNavigationBarItems containing an icon
and a title at the bottom of the page

➤➤ How to enhance the look of a bottom navigation bar with the BottomAppBar
widget, which allows enabling a notch

➤➤ How to display a horizontal row of tabs with TabBar

➤➤ How to use TabBarView in conjunction with TabBar to display the page of the
selected tab

➤➤ How Drawer allows the user to slide a panel from left or right

➤➤ How to use the ListView constructor to build a short list of items quickly

➤➤ How to use the ListView constructor with the Drawer widget to show a menu list

In this chapter, you’ll learn that navigation is a major component in a mobile application. Good
navigation creates a great user experience (UX) by making it easy to access information. For
example, imagine making a journal entry, and when trying to select a tag, it’s not available, so
you need to create a new one. Do you close the entry and go to Settings ➪ Tags to add a new
one? That would be clunky. Instead, the user needs the ability to add a new tag on the fly and
appropriately navigate to select or add a tag from their current position. When designing an
app, always keep in mind how the user would navigate to different parts of the app with the
least number of taps.

8

178  ❘  CHAPTER 8   Creating an App’s Navigation

Animation while navigating to different pages is also important if it helps to convey an action, rather
than simply being a distraction. What does this mean? Just because you can show fancy animations
does not mean you should. Use animations to enhance the UX, not frustrate the user.

USING THE NAVIGATOR

The Navigator widget manages a stack of routes to move between pages. You can optionally pass
data to the destination page and back to the original page. To start navigating between pages, you use
the Navigator.push, pushNamed, and pop methods. (You’ll learn how to use the pushNamed method
in the “Using the Named Navigator Route” section of this chapter.) Navigator is incredibly smart; it
shows native navigation on iOS or Android. For example, in iOS when navigating to a new page, you
usually slide the next page from the right side of the screen toward the left. In Android when navigat-
ing to a new page, you typically slide the next page from the bottom of the screen toward the top. To
summarize, in iOS, the new page slides in from the right, and in Android, it slides in from the bottom.

The following example shows you how to use the Navigator.push method to navigate to the
About page. The push method passes the BuildContext and Route arguments. To push a new
Route argument, you create an instance of the MaterialPageRoute class that replaces the
screen with the appropriate platform (iOS or Android) animation transition. In the example, the
fullscreenDialog property is set to true to present the About page as a full-screen modal dialog.
By setting the fullscreenDialog property to true, the About page app bar automatically includes
a close button. In iOS, the modal dialog transition presents the page by sliding from the bottom of
the screen toward the top, and this is also the default for Android.

Navigator.push(
 context,
 MaterialPageRoute(
 fullscreenDialog: true,
 builder: (context) => About(),
),
);

The following example shows how to use the Navigator.pop method to close the page and
navigate back to the previous page. You call the Navigator.pop(context) method by passing the
BuildContext argument, and the page closes by sliding from the top of the screen toward the bot-
tom. The second example shows how to pass a value back to the previous page.

// Close page
Navigator.pop(context);

// Close page and pass a value back to previous page
Navigator.pop(context, 'Done');

TRY IT OUT	 Creating the Navigator App, Part 1—The About Page

The project has a main home page with a FloatingActionButton to navigate to a gratitude page by
passing a default selected Radio button value. The gratitude page shows three Radio buttons to select
a value and then pass it back to the home page and update the Text widget with the appropriate value.

Using the Navigator  ❘  179

The AppBar has an actions IconButton that navigates to the about page by passing a fullscreenDi­
alog argument set to true to create a full-screen modal dialog. The modal dialog shows a close button
at the upper left of the page and animates from the bottom. In this first part, you’ll develop the naviga-
tion from the main page to the About page and back.

1.	 Create a new Flutter project and name it ch8_navigator. Refer to the instructions in Chapter 4,
“Creating a Starter Project Template.” For this project, you need to create only the pages folder.

2.	 Open the home.dart file and add an IconButton to the AppBar actions Widget list.

The IconButton onPressed property will call the method _openPageAbout() and pass context
and fullscreenDialog arguments. Do not worry about the squiggly red lines under the method
name; you’ll create that method in later steps. The context argument is needed by the Navigator
widget, and the fullscreenDialog argument is set to true to show the About page as a full-
screen modal. If you set the fullscreenDialog argument to false, the About page shows a back
arrow instead of a close button icon.

appBar: AppBar(
 title: Text('Navigator'),
 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.info_outline),

180  ❘  CHAPTER 8   Creating an App’s Navigation

 onPressed: () => _openPageAbout(
 context: context,
 fullscreenDialog: true,
),
),
],
),

3.	 Add a SafeArea with Padding as a child to the body.

body: SafeArea(
 child: Padding(),
),

4.	 In the Padding child, add a Text() widget, with the text 'Grateful for: $_howAreYou'. Notice
the $_howAreYou variable, which will contain the returned value when navigating back
(Navigator.pop) from the gratitude page. Add a TextStyle class with a fontSize value of
32.0 pixels.

body: SafeArea(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Text('Grateful for: $_howAreYou', style: TextStyle(fontSize: 32.0),),
),
),

5.	 To the Scaffold floatingActionButton property, add a FloatingActionButton() widget with
an onPressed that calls the method _openPageGratitude(context: context), which passes the
context argument.

6.	 For the FloatingActionButton() child, add the icon called sentiment_satisfied, and for the
tooltip, add the 'About' description.

floatingActionButton: FloatingActionButton(
 onPressed: () => _openPageGratitude(context: context),
 tooltip: 'About',
 child: Icon(Icons.sentiment_satisfied),
),

7.	 On the first line after the _HomeState class definition, add a String variable called _howAreYou
with a default value of '...'.

String _howAreYou = "...";

8.	 Continue by adding the _openPageAbout() method that accepts BuildContext and bool named
parameters with the default values set to false.

void _openPageAbout({BuildContext context, bool fullscreenDialog = false}) {}

9.	 In the openPageAbout() method, add a Navigator.push() method with a context and a second
argument of MaterialPageRoute().The MaterialPageRoute() class passes the fullscreen­
Dialog argument and a builder that calls the About() page that you’ll create in later steps.

void _openPageAbout({BuildContext context, bool fullscreenDialog = false}) {
 Navigator.push(

Using the Navigator  ❘  181

 context,
 MaterialPageRoute(
 fullscreenDialog: fullscreenDialog,
 builder: (context) => About(),
),
);
}

10.	 On top of the home.dart page, import the about.dart page that you’ll create next.

import 'about.dart';

Navigator is simple to use but also powerful. Let’s examine how it works. Navigator.push() passes
two arguments: context and MaterialPageRoute. For the first argument, you pass the context argu-
ment. The second argument, MaterialPageRoute(), gives you the horsepower to navigate to another
page using platform-specific animation. Only the builder is required to navigate with the optional
fullscreenDialog argument.

	11.	 Create a new file called about.dart in the lib/pages folder. Since this page only displays infor-
mation, create a StatelessWidget class called About.

	12.	 For the body, add the usual SafeArea with Padding and the child property as a Text widget.

// about.dart
import 'package:flutter/material.dart';

class About extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('About'),
),
 body: SafeArea(
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: Text('About Page'),
),
),
);
 }
}

How It Works
You add to the AppBar an IconButton under the actions property. The icon property for the Icon­
Button is set to Icons.info_outline, the _openPageAbout() method passes the context, and the
fullscreenDialog argument is set to true. You also add to the Scaffold a FloatingActionButton
that calls the _openPageGratitude() method. The _openPageAbout() method uses the Navigator.
push() method to pass the context and the MaterialPageRoute. The MaterialPageRoute passes
the fullscreenDialog argument set to true, and the builder calls the About() page. The About
page class is a StatelessWidget with a Scaffold and AppBar; the body property has a SafeArea
with Padding as a child that shows a Text widget with the “About Page” text.

182  ❘  CHAPTER 8   Creating an App’s Navigation

TRY IT OUT	 Creating the Navigator App, Part 2—The Gratitude Page

The second part of the app is to navigate to the gratitude page by passing a default value to select the
appropriate Radio button. Once you navigate back to the home page, the newly selected Radio button
value is passed back and displayed in the Text widget.

1.	 Open the home.dart file, and after the _openPageAbout() method, add the _openPage­
Gratitude() method. The _openPageGratitude() method takes two parameters: a context and
a fullscreenDialog bool variable with a default value of false. In this case, the gratitude page
is not a fullscreenDialog. Like the previous MaterialPageRoute, the builder opens the page.
In this case, it is the gratitude page.

Note that when passing data to the gratitude page and waiting to receive a response, the method is
marked as async to wait a response from Navigator.push by using the await keyword.

void _openPageGratitude(
 {BuildContext context, bool fullscreenDialog = false}) async {
 final String _gratitudeResponse = await Navigator.push(

The MaterialPageRoute builder builds the contents of the route. In this case, the content is the
gratitude page, which accepts a radioGroupValue int parameter with a value of −1. The −1 value
tells the Gratitude class page not to select any Radio buttons. If you pass a value like 2, it selects
the appropriate Radio button that corresponds to this value.

builder: (context) => Gratitude(
 radioGroupValue: -1,
),

Once the user dismisses the gratitude page, the _gratitudeResponse variable is populated. Use
the ?? (double question marks if null) operator to check the _gratitudeResponse for a valid
value (not null) and populate the _howAreYou variable. The Text widget is populated with the
_howAreYou value on the home page with the appropriate selected gratitude value or an empty
string. In other words, if the _gratitudeResponse value is not null the _howAreYou variable is
populated with the_gratitudeResponse value; otherwise the _howAreYou variable is populated
by an empty string.

_howAreYou = _gratitudeResponse ?? '';

Here’s the full _openPageGratitude() method code:

void _openPageGratitude(
 {BuildContext context, bool fullscreenDialog = false}) async {
 final String _gratitudeResponse = await Navigator.push(
 context,
 MaterialPageRoute(
 fullscreenDialog: fullscreenDialog,
 builder: (context) => Gratitude(
 radioGroupValue: -1,
),

Using the Navigator  ❘  183

),
);
 _howAreYou = _gratitudeResponse ?? '';
}

2.	 At the top of the home.dart page, add the gratitude.dart page that you’ll create next.

import 'gratitude.dart';

3.	 Create a new file named gratitude.dart in the lib/pages folder. Since this page will modify
data (state), create a StatefulWidget class called Gratitude.

To receive data passed from the home page, modify the Gratitude class by adding a final int
variable named radioGroupValue. Note the final variable does not start with an underscore. Cre-
ate a named constructor requiring this parameter. The radioGroupValue variable is accessed by
the class _GratitudeState extends State<Gratitude> by calling widget.radioGroupValue.

class Gratitude extends StatefulWidget {
 final int radioGroupValue;

 Gratitude({Key key, @required this.radioGroupValue}) : super(key: key);

 @override
 _GratitudeState createState() => _GratitudeState();
}

4.	 For the Scaffold AppBar, add an IconButton to the actions list of Widget. Set the IconButton
icon to Icons.check with the onPressed property calling the Navigator.pop, which returns the
_selectedGratitude to the home page.

appBar: AppBar(
 title: Text('Gratitude'),
 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.check),
 onPressed: () => Navigator.pop(context, _selectedGratitude),
),
],
),

5.	 For the body, add the usual SafeArea and Padding with child property as a Row.

The Row children list of Widget contains three alternating Radio and Text widgets. The Radio
widget takes the value, groupValue, and onChanged properties. The value property is the ID
value for the Radio button. The groupValue property holds the value of the currently selected
Radio button. The onChanged passes the selected index value to the custom method _radio­
OnChanged() that handles which Radio button is currently selected. Following each Radio button,
there is a Text widget that acts as a label for the Radio button.

184  ❘  CHAPTER 8   Creating an App’s Navigation

Here’s the full body source code:

body: SafeArea(
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: Row(
 children: <Widget>[
 Radio(
 value: 0,
 groupValue: _radioGroupValue,
 onChanged: (index) => _radioOnChanged(index),
),
 Text('Family'),
 Radio(
 value: 1,
 groupValue: _radioGroupValue,
 onChanged: (index) => _radioOnChanged(index),
),
 Text('Friends'),
 Radio(
 value: 2,
 groupValue: _radioGroupValue,
 onChanged: (index) => _radioOnChanged(index),
),
 Text('Coffee'),
],
),
),
),

6.	 On the first line after the _HomeState class definition, add three variables—_gratitudeList,
_selectedGratitude, and _radioGroupValue—and the _radioOnChanged() method.

➤➤ _gratitudeList is a List of String values.

List<String> _gratitudeList = List();

➤➤ _selectedGratitude is a String variable containing the selected Radio button value.

String _selectedGratitude;

➤➤ _radioGroupValue is an int containing the ID of the selected Radio button value.

int _radioGroupValue;

7.	 Create the _radioOnChanged() method taking an int for the selected index of the Radio button.
In the method, call setState() to have the Radio widgets update with the selected value. The
_radioGroupValue variable is updated with the index. The _selectedGratitude variable
(example value Coffee) is updated by taking the _gratitudeList[index] list value by the
selected index (position in the list).

void _radioOnChanged(int index) {
 setState(() {
 _radioGroupValue = index;
 _selectedGratitude = _gratitudeList[index];
 print('_selectedRadioValue $_selectedGratitude');
 });
}

Using the Navigator  ❘  185

8.	 Override initState() to initialize the _gratitudeList. Since the _radioGroupValue is passed
from the home page, initialize it with widget.radioGroupValue, which is the final variable passed
from the home page.

_gratitudeList..add('Family')..add('Friends')..add('Coffee');
_radioGroupValue = widget.radioGroupValue;

The following is the code that declares all variables and methods:

class _GratitudeState extends State<Gratitude> {
 List<String> _gratitudeList = List();
 String _selectedGratitude;
 int _radioGroupValue;

 void _radioOnChanged(int index) {
 setState(() {
 _radioGroupValue = index;
 _selectedGratitude = _gratitudeList[index];
 print('_selectedRadioValue $_selectedGratitude');
 });
 }

 @override
 void initState() {
 super.initState();

 _gratitudeList..add('Family')..add('Friends')..add('Coffee');
 _radioGroupValue = widget.radioGroupValue;
 }

Here’s the entire gratitude.dart file source code:

import 'package:flutter/material.dart';

class Gratitude extends StatefulWidget {
 final int radioGroupValue;

 Gratitude({Key key, @required this.radioGroupValue}) : super(key: key);

 @override
 _GratitudeState createState() => _GratitudeState();
}

class _GratitudeState extends State<Gratitude> {
 List<String> _gratitudeList = List();
 String _selectedGratitude;
 int _radioGroupValue;

 void _radioOnChanged(int index) {
 setState(() {
 _radioGroupValue = index;
 _selectedGratitude = _gratitudeList[index];
 print('_selectedRadioValue $_selectedGratitude');
 });
 }

186  ❘  CHAPTER 8   Creating an App’s Navigation

 @override
 void initState() {
 super.initState();

 _gratitudeList..add('Family')..add('Friends')..add('Coffee');
 _radioGroupValue = widget.radioGroupValue;
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Gratitude'),
 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.check),
 onPressed: () => Navigator.pop(context, _selectedGratitude),
),
],
),
 body: SafeArea(
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: Row(
 children: <Widget>[
 Radio(
 value: 0,
 groupValue: _radioGroupValue,
 onChanged: (index) => _radioOnChanged(index),
),
 Text('Family'),
 Radio(
 value: 1,
 groupValue: _radioGroupValue,
 onChanged: (index) => _radioOnChanged(index),
),
 Text('Friends'),
 Radio(
 value: 2,
 groupValue: _radioGroupValue,
 onChanged: (index) => _radioOnChanged(index),
),
 Text('Coffee'),
],
),
),
),
);
 }
}

Using the Navigator  ❘  187

How It Works
You have the entire app created with a home page that can navigate to the about page as a full­
screenDialog. The fullscreenDialog gives the about page a default close action button. By tapping
the home page’s FloatingActionButton, the Navigator MaterialPageRoute builder builds the con-
tents for the route, in this case the gratitude page. Through the Gratitude constructor, data is passed
to unselected Radio buttons. From the gratitude page, a list of Radio buttons gives a choice to select a
gratitude. By tapping the AppBar action button (checkbox IconButton), the Navigator.pop method
passes the selected gratitude value back to the Home Text widget. From the home page, you called the
Navigator.push method by using the await keyword, and the method has been waiting to receive a
value. Once the About page’s Navigator.pop method is called, it returns a value to the home page’s
_gratitudeResponse variable. Using the await keyword is a powerful and straightforward feature to
implement.

188  ❘  CHAPTER 8   Creating an App’s Navigation

Using the Named Navigator Route
An alternate way to use Navigator is to refer to the page that you are navigating to by the route
name. The route name starts with a slash, and then comes the route name. For example, the About
page route name is '/about'. The list of routes is built into the MaterialApp() widget. The
routes have a Map of String and WidgetBuilder where the String is the route name, and the
WidgetBuilder has a builder to build the contents of the route by the Class name (About) of the
page to open.

routes: <String, WidgetBuilder>{
 '/about': (BuildContext context) => About(),
 '/gratitude': (BuildContext context) => Gratitude(),
},

To call the route, the Navigator.pushNamed() method is called by passing two arguments. The first
argument is context, and the second is the route name.

Navigator.pushNamed(context, '/about');

USING HERO ANIMATION

The Hero widget is a great out-of-the-box animation to convey the navigation action of a widget
flying into place from one page to another. The hero animation is a shared element transition (anima-
tion) between two different pages.

To visualize the animation, imagine seeing a superhero flying into action. For example, you have a list
of journal entries with a photo thumbnail, the user selects an entry, and you see the photo thumbnail
transition to the detail page by moving and growing to full size. The photo thumbnail is the super-
hero, and when tapped, it flies into action by moving from the list page to the detail page and lands
perfectly on the correct location at the top of the detail page showing the full photo. When the detail
page is dismissed, the Hero widget flies back to the original page, position, and size. In other words,
the animation shows the photo thumbnail moving and growing into place from the list page to the
detail page, and once the detail page is dismissed, the animation and size are reversed. The Hero
widget has all of these features built in; there’s no need to write custom code to handle the size and
animation between pages.

To continue with the previous scenario, you wrap the list page Image widget as a child of the Hero
widget and assign a tag property name. Repeat the same steps for the detail page and make sure the
tag property value is the same in both pages.

// List page
Hero(
 tag: 'photo1',
 child: Image(
 image: AssetImage("assets/images/coffee.png"),
),
),

// Detail page
Hero(

Using Hero Animation  ❘  189

 tag: 'photo1',
 child: Container(
 child: Image(
 image: AssetImage("assets/images/coffee.png"),
),
),
),

The Hero child widget is marked for hero animation. When the Navigator pushes or pops a Page­
Route, the entire screen’s content is replaced. This means during the animation transition the Hero
widget is not shown in the original position in both the old and new routes, but it moves and resizes
from one page to another. Each Hero tag must be unique and match on both the originating and
landing pages.

TRY IT OUT	 Creating the Hero Animation App

In this example, the Hero widget has an Icon as a child wrapped in a GestureDetector. An InkWell
could also be used instead of the GestureDetector to show a material tap animation. The InkWell
widget is a Material Component that responds to touch gestures by displaying a splash (ripple) effect.
You’ll take a more in-depth look at GestureDetector and InkWell in Chapter 11, “Applying Interac-
tivity.” When the Icon is tapped, Navigator.push is called to navigate to the detail screen, called Fly.
Since the Hero widget animation is like a superhero flying, the detail screen is named Fly.

1.	 Create a new Flutter project and name it ch8_hero_animation. Again, you can follow the instruc-
tions in Chapter 4. For this project, you need to create only the pages folder.

2.	 Open the home.dart file and add to the body a SafeArea with Padding as a child.

body: SafeArea(
 child: Padding(),
),

3.	 In the Padding child, add the GestureDetector() widget, which you will create next.

body: SafeArea(
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: GestureDetector(),
),
),

4.	 Add to the GestureDetector child a Hero widget with tag 'format_paint'; tag can be any
unique ID. The Hero widget child is a format_paint icon with lightGreen color and a size
value of 120.0 pixels. Note you could have used an InkWell() widget instead of
GestureDetector(). The InkWell() widget shows a splash feedback where tapped, but the
GestureDetector() widget will not show the touch feedback. For the onTap property, you call
Navigator.push to open the detail page called Fly.

GestureDetector(
 child: Hero(
 tag: 'format_paint',

190  ❘  CHAPTER 8   Creating an App’s Navigation

 child: Icon(
 Icons.format_paint,
 color: Colors.lightGreen,
 size: 120.0,
),
),
 onTap: () {
 Navigator.push(
 context,
 MaterialPageRoute(builder: (context) => Fly()),
);
 },
),

5.	 At the top of the home.dart page, import the fly.dart page that you will create next.

import 'fly.dart';

Here’s the entire Home.dart file source code:

import 'package:flutter/material.dart';
import 'fly.dart';

class Home extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Hero Animation'),
),
 body: SafeArea(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: GestureDetector(
 child: Hero(
 tag: 'format_paint',
 child: Icon(
 Icons.format_paint,
 color: Colors.lightGreen,
 size: 120.0,
),
),
 onTap: () {
 Navigator.push(
 context,
 MaterialPageRoute(builder: (context) => Fly()),
);
 },
),
),
),
);
 }
}

Using Hero Animation  ❘  191

6.	 Create a new file called fly.dart in the lib/pages folder. Since this page only displays informa-
tion, create a StatelessWidget class called Fly. For the body, add the usual SafeArea with a
child set to the Hero() widget.

body: SafeArea(
 child: Hero(),
),

7.	 To calculate the width of the Icon, after Widget build(BuildContext context) {, add a
double variable called _width set by MediaQuery.of(context).size.shortestSide / 2. The
shortestSide property returns the lesser of the width or height of the screen, and you divide by
two to make it half the size.

The reason you calculate the width is only to resize the Icon width according to device size and
orientation. If you used an Image instead, this calculation would not be necessary; it can be done
by using BoxFit.fitWidth.

double _width = MediaQuery.of(context).size.shortestSide / 2;

8.	 Add to the Hero widget a tag of 'format_paint' with a Container for the child. Note for the
Hero widget to work properly, the tag needs to be the same name you gave in the
GestureDetector child Hero widget in the home.dart file. The Container child is a format_
paint icon with lightGreen color and a size value of the width variable. For the Container
alignment property, use Alignment.bottomCenter. You can experiment using different
Alignment values to see the hero animation variations at work.

Hero(
 tag: 'format_paint',
 child: Container(
 alignment: Alignment.bottomCenter,
 child: Icon(
 Icons.format_paint,
 color: Colors.lightGreen,
 size: _width,
),
),
)

Here’s the entire Fly.dart file source code:

import 'package:flutter/material.dart';

class Fly extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 double _width = MediaQuery.of(context).size.shortestSide / 2;

 return Scaffold(
 appBar: AppBar(
 title: Text('Fly'),
),

192  ❘  CHAPTER 8   Creating an App’s Navigation

 body: SafeArea(
 child: Hero(
 tag: 'format_paint',
 child: Container(
 alignment: Alignment.bottomCenter,
 child: Icon(
 Icons.format_paint,
 color: Colors.lightGreen,
 size: _width,
),
),
),
),
);
 }
}

How It Works
The hero animation is a powerful built-in animation to convey an action by automatically animating a
widget from one page to another to the correct size and position. On the home page, you declare a
GestureDetector with the Hero widget as the child widget. The Hero widget sets an Icon as the
child. The onTap calls the Navigator.push() method, which navigates to the page Fly. All you need to
do on the Fly page is to declare the widget you’re animating to as a child of the Hero widget. When you
navigate back to the home page, the Hero animates the Icon to the original position.

Using the BottomNavigationBar  ❘  193

USING THE BOTTOMNAVIGATIONBAR

BottomNavigationBar is a Material Design widget that displays a list of BottomNavigation­
BarItems that contains an icon and a title at the bottom of the page (Figure 8.1). When the
BottomNavigationBarItem is selected, the appropriate page is built.

TRY IT OUT	 Creating the BottomNavigationBar App

In this example, BottomNavigationBar has three BottomNavigationBarItems that replace the current
page with the selected one. There are different ways to display the selected page; you use a Widget class
as a variable.

FIGURE 8.1:  Final BottomNavigationBar with icons and titles

194  ❘  CHAPTER 8   Creating an App’s Navigation

1.	 Create a new Flutter project and name it ch8_bottom_navigation_bar. As always, you can
follow the instructions in Chapter 4. For this project, you need to create only the pages folder.

2.	 Open the home.dart file, and add to the body a SafeArea with Padding as a child.

body: SafeArea(
 child: Padding(),
),

3.	 In the Padding child, add the variable Widget _currentPage, which you will create next. Note
this time you are using a Widget class to create the _currentPage variable that holds each page
that is selected, either the Gratitude, Reminders, or Birthdays StatelessWidget class.

body: SafeArea(
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: _ currentPage,
),
),

4.	 Add to the Scaffold bottomNavigationBar property a BottomNavigationBar widget. For the
currentIndex property, use the _currentIndex variable, which will be created later.

bottomNavigationBar: BottomNavigationBar(
 currentIndex: _currentIndex,

The items property is a List of BottomNavigationBarItems. Each BottomNavigationBarItem
takes an icon property and a title property.

5.	 Add to the items property three BottomNavigationBarItems with icon cake,
sentiment_satisfied, and access_alarm. The titles are 'Birthdays', 'Gratitude', and
'Reminders'.

items: [
 BottomNavigationBarItem(
 icon: Icon(Icons.cake),
 title: Text('Birthdays'),
),

6.	 For the onTap property, the callback returns the current index of the active item. Name the
variable selectedIndex.

onTap: (selectedIndex) => _changePage(selectedIndex),

Here’s the entire BottomNavigationBar code:

bottomNavigationBar: BottomNavigationBar(
 currentIndex: _currentIndex,
 items: [
 BottomNavigationBarItem(
 icon: Icon(Icons.cake),
 title: Text('Birthdays'),
),

Using the BottomNavigationBar  ❘  195

 BottomNavigationBarItem(
 icon: Icon(Icons.sentiment_satisfied),
 title: Text('Gratitude'),
),
 BottomNavigationBarItem(
 icon: Icon(Icons.access_alarm),
 title: Text('Reminders'),
),
],
 onTap: (selectedIndex) => _changePage(selectedIndex),
),

7.	 Add the _changePage(int selectedIndex) method after Scaffold(). The _changePage()
method accepts an int value of the selected index. The selectedIndex is used with the
setState() method to set the _currentIndex and _currentPage variables.

The _currentIndex equals the selectedIndex, and the _currentPage equals the page from the
List _listPages that corresponds to the selected index.

It’s important to note that the Widget _currentPage variable displays each page selected without
the need for a Navigator widget. This is a great example of the power of customizing widgets to
your needs.

void _changePage(int selectedIndex) {
 setState(() {
 _currentIndex = selectedIndex;
 _currentPage = _listPages[selectedIndex];
 });
}

8.	 On the first line after the _HomeState class definition, add the variables _currentIndex,
_listPages, and _currentPage. The _listPages List holds each page’s Class name.

int _currentIndex = 0;
List _listPages = List();
Widget _currentPage;

9.	 Override initState() to add each page to the _listPages List and initialize the _currentPage
with the Birthdays() page. Note the use of cascade notation; the double dots allow you to
perform a sequence of operations on the same object.

@override
void initState() {
 super.initState();

 _listPages
 ..add(Birthdays())
 ..add(Gratitude())
 ..add(Reminders());
 _currentPage = Birthdays();
}

196  ❘  CHAPTER 8   Creating an App’s Navigation

10.	 Add to the top of the home.dart file the imports for each page that will be created next.

import 'package:flutter/material.dart';
import 'gratitude.dart';
import 'reminders.dart';
import 'birthdays.dart';

Here’s the entire home.dart file:

import 'package:flutter/material.dart';
import 'gratitude.dart';
import 'reminders.dart';
import 'birthdays.dart';

class Home extends StatefulWidget {
 @override
 _HomeState createState() => _HomeState();
}

class _HomeState extends State<Home> {
 int _currentIndex = 0;
 List _listPages = List();
 Widget _currentPage;

 @override
 void initState() {
 super.initState();

 _listPages
 ..add(Birthdays())
 ..add(Gratitude())
 ..add(Reminders());
 _currentPage = Birthdays();
 }

 void _changePage(int selectedIndex) {
 setState(() {
 _currentIndex = selectedIndex;
 _currentPage = _listPages[selectedIndex];
 });
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('BottomNavigationBar'),
),
 body: SafeArea(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: _currentPage,
),
),

Using the BottomNavigationBar  ❘  197

 bottomNavigationBar: BottomNavigationBar(
 currentIndex: _currentIndex,
 items: [
 BottomNavigationBarItem(
 icon: Icon(Icons.cake),
 title: Text('Birthdays'),
),
 BottomNavigationBarItem(
 icon: Icon(Icons.sentiment_satisfied),
 title: Text('Gratitude'),
),
 BottomNavigationBarItem(
 icon: Icon(Icons.access_alarm),
 title: Text('Reminders'),
),
],
 onTap: (selectedIndex) => _changePage(selectedIndex),
),
);
 }
}

11.	 Create three StatelessWidget pages and call them Birthdays, Gratitude, and Reminders. Each
page will have a Scaffold with Center() for the body. The Center child is an Icon with a size
value of 120.0 pixels and a color property. Here are the three Dart files, birthdays.dart,
gratitude.dart, and reminders.dart:

// birthdays.dart
import 'package:flutter/material.dart';

class Birthdays extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(
 child: Icon(
 Icons.cake,
 size: 120.0,
 color: Colors.orange,
),
),
);
 }
}

// gratitude.dart
import 'package:flutter/material.dart';

class Gratitude extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(
 child: Icon(
 Icons.sentiment_satisfied,

198  ❘  CHAPTER 8   Creating an App’s Navigation

 size: 120.0,
 color: Colors.lightGreen,
),
),
);
 }
}

// reminders.dart
import 'package:flutter/material.dart';

class Reminders extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(
 child: Icon(
 Icons.access_alarm,
 size: 120.0,
 color: Colors.purple,
),
),
);
 }
}

How It Works
The BottomNavigationBar items property has a List of three BottomNavigationBarItems. For
each BottomNavigationBarItem, you set an icon property and a title property. The Bottom­

Using the BottomAppBar  ❘  199

NavigationBar onTap passes the selected index value to the _changePage method. The _changePage
method uses setState() to set the _currentIndex and _currentPage to display. The _currentIndex
sets the selected BottomNavigationBarItem, and the _currentPage sets the current page to display
from the _listPages List.

USING THE BOTTOMAPPBAR

The BottomAppBar widget behaves similarly to the BottomNavigationBar, but it has an optional
notch along the top. By adding a FloatingActionButton and enabling the notch, the notch provides
a nice 3D effect so it looks like the button is recessed into the
navigation bar (Figure 8.2). For example, to enable the notch,
you set the BottomAppBar shape property to a Notched­
Shape class like the CircularNotchedRectangle() class and
set the Scaffold floatingActionButtonLocation property
to FloatingActionButtonLocation.endDocked or center­
Docked. Add to the Scaffold floatingActionButton prop-
erty a FloatingActionButton widget, and the result shows
the FloatingActionButton embedded into the BottomApp­
Bar widget, which is the notch.

BottomAppBar(
 shape: CircularNotchedRectangle(),
)

floatingActionButtonLocation: FloatingActionButtonLocation.endDocked,
floatingActionButton: FloatingActionButton(
 child: Icon(Icons.add),
),

TRY IT OUT	 Creating the BottomAppBar App

In this example, the BottomAppBar has a Row as a child with three IconButtons to show selection items.
The main objective is to use a FloatingActionButton to dock it to the BottomAppBar with a notch.
The notch is enabled by the BottomAppBar shape property set to CircularNotchedRectangle().

1.	 Create a new Flutter project and name it ch8_bottom_app_bar. Again, you can follow the instruc-
tions in Chapter 4. For this project, you only need to create the pages folder.

2.	 Open the home.dart file, and add to the body a SafeArea with a Container as a child.

body: SafeArea(
 child: Container(),
),

3.	 Add a BottomAppBar() widget to the Scaffold bottomNavigationBar property.

bottomNavigationBar: BottomAppBar(),

FIGURE 8.2:  BottomAppBar with
embedded FloatingActionButton
creating a notch

200  ❘  CHAPTER 8   Creating an App’s Navigation

4.	 To enable the notch, you set two properties.

➤➤ First set the BottomAppBar shape property to CircularNotchedRectangle(). Set the
color property to Colors.blue.shade200 and add a Row as a child.

➤➤ Next set floatingActionButtonLocation, which you will handle in step 7.

bottomNavigationBar: BottomAppBar(
 color: Colors.blue.shade200,
 shape: CircularNotchedRectangle(),
 child: Row(),
),

5.	 Continue by adding to the Row a mainAxisAlignment property as MainAxisAlignment.space­
Around. The spaceAround constant allows the IconButtons to have even spacing between them.

bottomNavigationBar: BottomAppBar(
 color: Colors.blue.shade200,
 shape: CircularNotchedRectangle(),
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: <Widget>[
],
),
),

6.	 Add three IconButtons to the Row children list. After the last IconButton, add a Divider() to
add an even space to the right since FloatingActionButton is docked on the right side of the
BottomAppBar. Instead of a Divider(), you could have used a Container with a width property.

bottomNavigationBar: BottomAppBar(
 color: Colors.blue.shade200,
 shape: CircularNotchedRectangle(),
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: <Widget>[
 IconButton(
 icon: Icon(Icons.access_alarm),
 color: Colors.white,
 onPressed: (){},
),
 IconButton(
 icon: Icon(Icons.bookmark_border),
 color: Colors.white,
 onPressed: (){},
),
 IconButton(
 icon: Icon(Icons.flight),
 color: Colors.white,
 onPressed: (){},
),
 Divider(),
],
),
),

Using the BottomAppBar  ❘  201

7.	 Set the notch location of the floatingActionButtonLocation property to
FloatingActionButtonLocation.endDocked. You could also set it to centerDocked.

floatingActionButtonLocation: FloatingActionButtonLocation.endDocked,

8.	 Add a FloatingActionButton to the floatingActionButton property.

floatingActionButton: FloatingActionButton(
 backgroundColor: Colors.blue.shade200,
 onPressed: () {},
 child: Icon(Icons.add),
),

Here’s the entire home.dart file source code:

import 'package:flutter/material.dart';

class Home extends StatefulWidget {
 @override
 _HomeState createState() => _HomeState();
}

class _HomeState extends State<Home> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('BottomAppBar'),
),
 body: SafeArea(
 child: Container(),
),
 bottomNavigationBar: BottomAppBar(
 color: Colors.blue.shade200,
 shape: CircularNotchedRectangle(),
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: <Widget>[
 IconButton(
 icon: Icon(Icons.access_alarm),
 color: Colors.white,
 onPressed: (){},
),
 IconButton(
 icon: Icon(Icons.bookmark_border),
 color: Colors.white,
 onPressed: (){},
),
 IconButton(
 icon: Icon(Icons.flight),
 color: Colors.white,
 onPressed: (){},
),
 Divider(),
],

202  ❘  CHAPTER 8   Creating an App’s Navigation

),
),
 floatingActionButtonLocation: FloatingActionButtonLocation.endDocked,
 floatingActionButton: FloatingActionButton(
 backgroundColor: Colors.blue.shade200,
 onPressed: () {},
 child: Icon(Icons.add),
),
);
 }
}

Using the TabBar and TabBarView  ❘  203

How It Works
To enable the notch, two properties need to be set for the Scaffold widget. The first is to use a
BottomAppBar with the shape property set to CircularNotchedRectangle(). The second is to set
the floatingActionButtonLocation property to FloatingActionButtonLocation.endDocked or
centerDocked.

USING THE TABBAR AND TABBARVIEW

The TabBar widget is a Material Design widget that displays a horizontal row of tabs. The tabs
property takes a List of Widgets, and you add tabs by using the Tab widget. Instead of using the
Tab widget, you could create a custom widget, which shows the power of Flutter. The selected Tab is
marked with a bottom selection line.

The TabBarView widget is used in conjunction with the TabBar widget to display the page of the
selected tab. Users can swipe left or right to change content or tap each Tab.

Both the TabBar (Figure 8.3) and TabBarView widgets
take a controller property of TabController. The Tab­
Controller is responsible for syncing tab selections between
a TabBar and a TabBarView. Since the TabController
syncs the tab selections, you need to declare the Single­
TickerProviderStateMixin to the class. In Chapter 7,
“Adding Animation to an App,” you learned how to imple-
ment the Ticker class that is driven by the Schedule­
Binding.scheduleFrameCallback reporting once per
animation frame. It is trying to sync the animation to be
as smooth as possible.

TRY IT OUT	 Creating the TabBar and TabBarView App

In this example, the TabBar widget is the child of a bottomNavigationBar property. This places the
TabBar at the bottom of the screen, but you could also place it in the AppBar or a custom location. When
you use a TabBar in combination with the TabBarView, once a Tab is selected, it automatically displays
the appropriate content. In this project, the content is represented by three separate pages. You’ll create
the same three pages as you did in the BottomNavigationBar project.

1.	 Create a new Flutter project and name it ch8_tabbar. Once more, you can follow the instructions
in Chapter 4. For this project, you need to create only the pages folder.

2.	 Open the home.dart file, and add to the body a SafeArea with TabBarView as a child. The
TabBarView controller property is a TabController variable called _tabController. Add to
the TabBarView children property the Birthdays(), Gratitude(), and Reminders() pages that
you’ll create in step 3.

body: SafeArea(
 child: TabBarView(

FIGURE 8.3:  TabBar in the Scaffold
bottomNavigationBar property

204  ❘  CHAPTER 8   Creating an App’s Navigation

 controller: _tabController,
 children: [
 Birthdays(),
 Gratitude(),
 Reminders(),
],
),
),

3.	 This time you’ll create the pages that you are navigating to first. Like in the BottomNavigationBar
app, create three StatelessWidget pages and call them Birthdays, Gratitude, and Reminders.
Each page has a Scaffold with Center() for the body. The Center child is an Icon with the
size of 120.0 pixels and a color.

The following are the three Dart files, birthdays.dart, gratitude.dart, and reminders.dart:

// birthdays.dart
import 'package:flutter/material.dart';

class Birthdays extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(
 child: Icon(
 Icons.cake,
 size: 120.0,
 color: Colors.orange,
),
),
);
 }
}

// gratitude.dart
import 'package:flutter/material.dart';

class Gratitude extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(
 child: Icon(
 Icons.sentiment_satisfied,
 size: 120.0,
 color: Colors.lightGreen,
),
),
);
 }
}

// reminders.dart
import 'package:flutter/material.dart';

Using the TabBar and TabBarView  ❘  205

class Reminders extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(
 child: Icon(
 Icons.access_alarm,
 size: 120.0,
 color: Colors.purple,
),
),
);
 }
}

4.	 Import each page in the home.dart file.

import 'package:flutter/material.dart';
import 'birthdays.dart';
import 'gratitude.dart';
import 'reminders.dart';

5.	 Declare the TickerProviderStateMixin to the _HomeState class by adding with
TickerProviderStateMixin. The AnimationController vsync argument will use it.

class _HomeState extends State<Home> with SingleTickerProviderStateMixin {...}

6.	 Declare a TabController variable by the name of _tabController. Override the initState()
method to initialize the _tabController with the vsync argument and a length value of 3. The
vsync is referenced by this, meaning this reference of the _HomeState class. The length repre-
sents the number of Tabs to show. Add a Listener to the _tabController to catch when a Tab is
changed. Then override the dispose() method for when the page closes to properly dispose of the
_tabController.

Note in the _tabChanged method you check for indexIsChanging before showing which Tab is
tapped. If you do not check for indexIsChanging, then the code runs twice.

class _HomeState extends State<Home> with SingleTickerProviderStateMixin {
 TabController _tabController;

 @override
 void initState() {
 super.initState();

 _tabController = TabController(vsync: this, length: 3);
 _tabController.addListener(_tabChanged);
 }

 @override
 void dispose() {
 super.dispose();

 @override
 void dispose() {
 _tabController.dispose();

206  ❘  CHAPTER 8   Creating an App’s Navigation

 super.dispose();
 }
 _tabController.dispose();
 }

 void _tabChanged() {
 // Check if Tab Controller index is changing, otherwise we get the notice twice
 if (_tabController.indexIsChanging) {
 print('tabChanged: ${_tabController.index}');
 }
 }

7.	 Add a TabBar as a child of the bottomNavigationBar Scaffold property.

bottomNavigationBar: SafeArea(
 child: TabBar(),
),

8.	 Pass the _tabController for the TabBar controller property. I customized the labelColor and
unselectedLabelColor by using, respectively, Colors.black54 and Colors.black38, but feel
free to experiment using different colors.

bottomNavigationBar: SafeArea(
 child: TabBar(
 controller: _tabController,
 labelColor: Colors.black54,
 unselectedLabelColor: Colors.black38,
),
),

9.	 Add three Tab widgets to the tabs widget list. Customize each Tab icon and text.

bottomNavigationBar: SafeArea(
 child: TabBar(
 controller: _tabController,
 labelColor: Colors.black54,
 unselectedLabelColor: Colors.black38,
 tabs: [
 Tab(
 icon: Icon(Icons.cake),
 text: 'Birthdays',
),
 Tab(
 icon: Icon(Icons.sentiment_satisfied),
 text: 'Gratitude',
),
 Tab(
 icon: Icon(Icons.access_alarm),
 text: 'Reminders',
),
],
),
),

Using the Drawer and ListView  ❘  207

How It Works
When TabBar and TabBarView are used together, the correct associated page is automatically loaded.
When the user swipes the TabBarView left or right, it scrolls to the correct page and selects the corre-
sponding tab in the TabBar. All of these powerful features are built in; no custom coding is necessary.

How does it know which page belongs to which tab? The TabController is responsible for syncing tab
selections between a TabBar and a TabBarView. Since the TabController syncs the tab selections, you
need to declare the SingleTickerProviderStateMixin to the class.

Both the TabBar and TabBarView use the same TabController. The TabController is initiated by
passing a vsync argument and a length argument. The length argument is the number of tabs to show.
An optional TabController Listener is added to listen to Tab changes and take appropriate action if
necessary, perhaps saving data before a Tab is switched. Each Tab is added to the TabBar tabs widget list
by customizing each icon and text.

TabBarView is responsible for loading the appropriate page when Tab selection changes. The page views
are listed as the children property of the TabBarView widget.

USING THE DRAWER AND LISTVIEW

You might be wondering why I’m covering the ListView in this navigation chapter. Well, it works
great with the Drawer widget. ListView widgets are used quite often for selecting an item from a list
to navigate to a detailed page.

208  ❘  CHAPTER 8   Creating an App’s Navigation

Drawer is a Material Design panel that slides horizontally from the left or right edge of the Scaffold,
the device screen. Drawer is used with the Scaffold drawer (left-side) property or endDrawer (right-
side) property. Drawer can be customized for each individual need but usually has a header to show
an image or fixed information and a ListView to show a list of navigable pages. Usually, a Drawer is
used when the navigation list has many items.

To set the Drawer header, you have two built-in options, the UserAccountsDrawerHeader or the
DrawerHeader. The UserAccountsDrawerHeader is intended to display the app’s user details by
setting the currentAccountPicture, accountName, accountEmail, otherAccountsPictures, and
decoration properties.

// User details
UserAccountsDrawerHeader(
 currentAccountPicture: Icon(Icons.face,),
 accountName: Text('Sandy Smith'),
 accountEmail: Text('sandy.smith@domainname.com'),
 otherAccountsPictures: <Widget>[
 Icon(Icons.bookmark_border),
],
 decoration: BoxDecoration(
 image: DecorationImage(
 image: AssetImage('assets/images/home_top_mountain.jpg'),
 fit: BoxFit.cover,
),
),
),

DrawerHeader is intended to display generic or custom information by setting the padding, child,
decoration, and other properties.

// Generic or custom information
DrawerHeader(
 padding: EdgeInsets.zero,
 child: Icon(Icons.face),
 decoration: BoxDecoration(color: Colors.blue),
),

The standard ListView constructor allows you to build a short list of items quickly. The next chapter
will go into more depth on how to use the ListView. See Figure 8.4.

Using the Drawer and ListView  ❘  209

TRY IT OUT	 Creating the Drawer App

In this example, the Drawer is added to the drawer or endDrawer property of the Scaffold. The drawer
and endDrawer properties slide the Drawer from either left to right (TextDirection.ltr) or right to left
(TextDirection.rtl). In this example, you’ll add both the drawer and the endDrawer to show how
to use both. You use the UserAccountsDrawerHeader to the drawer (left-side) property and the
DrawerHeader to the endDrawer (right-side) property.

You use the ListView to add the Drawer content and ListTile to align text and icons for the menu
list easily. In this project, you use the standard ListView constructor since you have a small list of
menu items.

1.	 Create a new Flutter project and name it ch8_drawer, following the instructions in Chapter 4. For
this project, you need to create the pages, widgets, and assets/images folders. Copy the
home_top_mountain.jpg image to the assets/images folder.

2.	 Open the pubspec.yaml file and under assets add the images folder.

To add assets to your application, add an assets section, like this:
assets:
 - assets/images/

FIGURE 8.4:  Drawer and ListView

210  ❘  CHAPTER 8   Creating an App’s Navigation

3.	 Add the folder assets and subfolder images at the project’s root and then copy the home_top_
mountain.jpg file to the images folder.

4.	 Click the Save button; depending on the editor you are using, it automatically runs the flutter
packages get. Once finished, it shows a message of Process finished with exit code 0.

If it does not automatically run the command for you, open the Terminal window (located at the
bottom of your editor) and type flutter packages get.

5.	 Create the pages that you are navigating to first. Create three StatelessWidget pages and call
them Birthdays, Gratitude, and Reminders. Each page has a Scaffold with Center() for the
body. The Center child is an Icon with the size value of 120.0 pixels and a color property.

class Birthdays extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(
 child: Icon(
 Icons.cake,
 size: 120.0,
 color: Colors.orange,
),
),
);
 }
}

6.	 Add the AppBar to the Scaffold, which is needed for navigating back to the home page. The
following shows the three Dart files, birthdays.dart, gratitude.dart, and reminders.dart:

// birthdays.dart
import 'package:flutter/material.dart';

class Birthdays extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Birthdays'),
),
 body: Center(
 child: Icon(
 Icons.cake,
 size: 120.0,
 color: Colors.orange,
),
),
);
 }
}

Using the Drawer and ListView  ❘  211

// gratitude.dart
import 'package:flutter/material.dart';

class Gratitude extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Gratitude'),
),
 body: Center(
 child: Icon(
 Icons.sentiment_satisfied,
 size: 120.0,
 color: Colors.lightGreen,
),
),
);
 }
}

// reminders.dart
import 'package:flutter/material.dart';

class Reminders extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Reminders'),
),
 body: Center(
 child: Icon(
 Icons.access_alarm,
 size: 120.0,
 color: Colors.purple,
),
),
);
 }
}

7.	 The left and right Drawer widgets share the same menu list, and you’ll write it first. Create a new
Dart file in the widgets folder. Right-click the widgets folder and then select New ➪ Dart File,
enter menu_list_tile.dart, and click the OK button to save.

8.	 Import the material.dart, birthdays.dart, gratitude.dart, and reminders.dart classes
(pages). Add a new line and then start typing st; the autocompletion help opens, so select the stful
abbreviation and give it a name of MenuListTileWidget.

import 'package:flutter/material.dart';
import 'package:ch8_drawer/pages/birthdays.dart';
import 'package:ch8_drawer/pages/gratitude.dart';
import 'package:ch8_drawer/pages/reminders.dart';

212  ❘  CHAPTER 8   Creating an App’s Navigation

9.	 The Widget build(BuildContext context) returns a Column. The Column children widget list
contains multiple ListTiles representing each menu item. Add a Divider widget with the color
property set to Colors.grey before the last ListTile widget.

@override
Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 ListTile(),
 ListTile(),
 ListTile(),
 Divider(color: Colors.grey),
 ListTile(),
],
);
}

10.	 For each ListTile, set the leading property as an Icon and the title property as a Text. For
the onTap property, you first call Navigator.pop() to close the open Drawer and then call
Navigator.push() to open the selected page.

@override
Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 ListTile(
 leading: Icon(Icons.cake),
 title: Text('Birthdays'),
 onTap: () {
 Navigator.pop(context);
 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => Birthdays(),
),
);
 },
),
 ListTile(
 leading: Icon(Icons.sentiment_satisfied),
 title: Text('Gratitude'),
 onTap: () {
 Navigator.pop(context);
 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => Gratitude(),
),
);
 },
),
 ListTile(
 leading: Icon(Icons.alarm),
 title: Text('Reminders'),

Using the Drawer and ListView  ❘  213

 onTap: () {
 Navigator.pop(context);
 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => Reminders(),
),
);
 },
),
 Divider(color: Colors.grey),
 ListTile(
 leading: Icon(Icons.settings),
 title: Text('Setting'),
 onTap: () {
 Navigator.pop(context);
 },
),
],
);
}

11.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter left_drawer.dart, and click the OK button to save.

12.	 Import the material.dart library and the menu_list_tile.dart class.

import 'package:flutter/material.dart';
import 'package:ch8_drawer/widgets/menu_list_tile.dart';

13.	 Add a new line and then start typing st; the autocompletion help opens. Select the stful abbrevia-
tion and give it a name of LeftDrawerWidget.

class LeftDrawerWidget extends StatelessWidget {
 const LeftDrawerWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Drawer();
 }
}

14.	 The Widget build(BuildContext context) returns a Drawer. The Drawer child is a ListView
children list widget of a UserAccountsDrawerHeader widget and a call to the const
MenuListTileWidget() widget class. To fill the entire Drawer space, you set the ListView
padding property to EdgeInsets.zero.

@override
Widget build(BuildContext context) {
 return Drawer(
 child: ListView(
 padding: EdgeInsets.zero,

214  ❘  CHAPTER 8   Creating an App’s Navigation

 children: <Widget>[
 UserAccountsDrawerHeader(),
 const MenuListTileWidget(),
],
),
);
}

15.	 For the UserAccountsDrawerHeader, set the currentAccountPicture, accountName, account­
Email, otherAccountsPictures, and decoration properties.

@override
Widget build(BuildContext context) {
 return Drawer(
 child: ListView(
 padding: EdgeInsets.zero,
 children: <Widget>[
 UserAccountsDrawerHeader(
 currentAccountPicture: Icon(
 Icons.face,
 size: 48.0,
 color: Colors.white,
),
 accountName: Text('Sandy Smith'),
 accountEmail: Text('sandy.smith@domainname.com'),
 otherAccountsPictures: <Widget>[
 Icon(
 Icons.bookmark_border,
 color: Colors.white,
)
],
 decoration: BoxDecoration(
 image: DecorationImage(
 image: AssetImage('assets/images/home_top_mountain.jpg'),
 fit: BoxFit.cover,
),
),
),
 const MenuListTileWidget(),
],
),
);
}

16.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter right_drawer.dart, and click the OK button to save. Import the material.dart
library and the menu_list_tile.dart class.

import 'package:flutter/material.dart';
import 'package:ch8_drawer/widgets/menu_list_tile.dart';

Using the Drawer and ListView  ❘  215

17.	 Add a new line and then start typing st; the autocompletion help opens. Select the stful abbrevia-
tion and give it a name of RightDrawerWidget.

class RightDrawerWidget extends StatelessWidget {
 const RightDrawerWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Drawer();
 }
}

18.	 The Widget build(BuildContext context) returns a Drawer. The Drawer child is a ListView
children list of a DrawerHeader widget and a call to the const MenuListTileWidget() widget
class. To fill the entire Drawer space, you set the ListView padding property to EdgeInsets.zero.

@override
Widget build(BuildContext context) {
 return Drawer(
 child: ListView(
 padding: EdgeInsets.zero,
 children: <Widget>[
 DrawerHeader(),
 const MenuListTileWidget(),
],
),
);
}

19.	 For the DrawerHeader, set the padding, child, and decoration properties.

@override
Widget build(BuildContext context) {
 return Drawer(
 child: ListView(
 padding: EdgeInsets.zero,
 children: <Widget>[
 DrawerHeader(
 padding: EdgeInsets.zero,
 child: Icon(
 Icons.face,
 size: 128.0,
 color: Colors.white54,
),
 decoration: BoxDecoration(color: Colors.blue),
),
 const MenuListTileWidget(),
],
),
);
}

216  ❘  CHAPTER 8   Creating an App’s Navigation

20.	 Open the home.dart file and import the material.dart, birthdays.dart, gratitude.dart, and
reminders.dart classes.

import 'package:flutter/material.dart';
import 'birthdays.dart';
import 'gratitude.dart';
import 'reminders.dart';

21.	 Add to the body a SafeArea with a Container as a child.

body: SafeArea(
 child: Container(),
),

22.	 Add to the Scaffold drawer property a call to the LeftDrawerWidget() widget class and for the
endDrawer property a call to the RightDrawerWidget() widget class.

Note that you use the const keyword before calling each widget class to take advantage of caching
and subtree rebuilding for better performance.

return Scaffold(
 appBar: AppBar(
 title: Text('Drawer'),
),
 drawer: const LeftDrawerWidget(),
 endDrawer: const RightDrawerWidget(),
 body: SafeArea(
 child: Container(),
),
);

Summary  ❘  217

How It Works
To add a Drawer to an app, you set the Scaffold drawer or endDrawer property. The drawer and
endDrawer properties slide the Drawer from either left to right (TextDirection.ltr) or right to left
(TextDirection.rtl).

The Drawer widget takes a child property, and you passed a ListView. Using a ListView allows you
to create a scrollable menu list of items. For the ListView children widget list, you created two widget
classes, one to build the Drawer header and one to build the list of menu items. To set the Drawer header,
you have two options, UserAccountsDrawerHeader or DrawerHeader. These two widgets easily allow
you to set header content depending on the requirements. You looked at two examples for the Drawer
header by calling the appropriate widget class LeftDrawerWidget() or RightDrawerWidget().

For the menu items list, you used the MenuListTileWidget() widget class. This class returns a Column
widget that uses the ListTile to build your menu list. The ListTile widget allows you to set the
leading Icon, title, and onTap properties. The onTap property calls Navigator.pop() to close
Drawer and calls Navigator.push() to navigate to the selected page.

This app is an excellent example of creating a shallow widget tree by using widget classes and separat-
ing them into individual files for maximum reuse. You also nested widget classes with the left and right
widget classes both calling the menu list class.

SUMMARY

In this chapter, you learned to use the Navigator widget to manage a stack of routes so as to allow
navigation between pages. You optionally passed data to the navigation page and back to the original
page. The hero animation allows a widget transition to fly into place from one page to another. The
widget to animate from and to is wrapped in a Hero widget by a unique key.

You used the BottomNavigationBar widget to display a horizontal list of BottomNavigation­
BarItems containing an icon and a title at the bottom of the page. When the user taps each
BottomNavigationBarItem, the appropriate page is displayed. To enhance the look of a bottom
navigation bar, you used the BottomAppBar widget and enabled the optional notch. The notch is the
result of embedding a FloatingActionButton to a BottomAppBar by setting the BottomAppBar
shape to a CircularNotchedRectangle() class and setting the Scaffold floatingActionButton­
Location property to FloatingActionButtonLocation.endDocked.

The TabBar widget displays a horizontal row of tabs. The tabs property takes a List of widgets,
and tabs are added by using the Tab widget. The TabBarView widget is used in conjunction with the
TabBar widget to display the page of the selected tab. Users can swipe left or right to change content
or tap each Tab. The TabController class handled the syncing of the TabBar and selected TabBar­
View. The TabController requires the use of with SingleTickerProviderStateMixin in the class.

The Drawer widget allows the user to slide a panel from left or right. The Drawer widget is added by
setting the Scaffold drawer or endDrawer property. To easily align menu items in a list, you pass a

218  ❘  CHAPTER 8   Creating an App’s Navigation

ListView as a child of the Drawer. Since this menu list is short, you use the standard ListView con-
structor instead of a ListView builder, which is covered in the next chapter. You have two prebuilt
drawer header options, UserAccountsDrawerHeader or DrawerHeader. When the user taps one of
the menu items, the onTap property calls Navigator.pop() to close Drawer and calls Navigator.
push() to navigate to the selected page.

In the next chapter, you’ll learn to use different types of lists. You will take a look at the ListView,
GridView, Stack, Card, and my favorite—CustomScrollView to use Slivers.

Summary  ❘  219

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Navigator The Navigator widget manages a stack of routes to move
between pages.

Hero animation The Hero widget is used to convey a navigation animation and
size for a widget to fly into place from one page to another. When
the second page is dismissed, the animation is reversed to the
originating page.

BottomNavigationBar BottomNavigationBar displays a horizontal list of
BottomNavigationBarItem items containing an icon and a title
at the bottom of the page.

BottomAppBar The BottomAppBar widget behaves like the
BottomNavigationBar, but it has an optional notch
along the top.

TabBar The TabBar widget displays a horizontal row of tabs. The tabs
property takes a list of widgets, and tabs are added by using the
Tab widget.

TabBarView The TabBarView widget is used in conjunction with the TabBar
widget to display the page of the selected tab.

Drawer The Drawer widget allows the user to slide a panel from
left or right.

ListView The standard ListView constructor allows you to build a short list
of items quickly.

Creating Scrolling Lists
and Effects

WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How Card is a great way to group information with the container having rounded
corners and a drop shadow

➤➤ How to build a linear list of scrollable widgets with ListView

➤➤ How to display tiles of scrollable widgets in a grid format with GridView

➤➤ How Stack lets you overlap, position, and align its children widgets

➤➤ How to create custom scrolling effects using CustomScrollView and slivers

In this chapter, you’ll learn to create scrolling lists that help users view and select information.
You’ll start with the Card widget in this chapter because it is commonly used in conjunction
with list-capable widgets to enhance the user interface (UI) and group data. In the previous
chapter, you took a look at using the basic constructor for the ListView, and in this chapter,
you’ll use the ListView.builder to customize the data. The GridView widget is a fantastic
widget that displays a list of data by a fixed number of tiles (groups of data) in the cross axis.
The Stack widget is commonly used to overlap, position, and align widgets to create a custom
look. A good example is a shopping cart with the number of items to purchase on the upper-
right side.

The CustomScrollView widget allows you to create custom scrolling effects by using a list of
slivers widgets. Slivers are handy, for instance, if you have a journal entry with an image on
the top of the page and the diary description below. When the user swipes to read more, the
description scrolling is faster than the image scrolling, creating a parallax effect.

9

222  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

USING THE CARD

The Card widget is part of the Material Design and has minimal rounded corners and shadows. To
group and lay out data, the Card is a perfect widget to enhance the look of the UI. The Card
widget is customizable with properties such as elevation, shape, color, margin, and others. The
elevation property is a value of double, and the higher the number, the larger the shadow that
is cast. You learned in Chapter 3, “Learning Dart Basics,” that a double is a number that requires
decimal point precision, such as 8.50. To customize the shape and borders of the Card widget,
you modify the shape property. Some of the shape properties are StadiumBorder, Underline­
InputBorder, OutlineInputBorder, and others.

Card(
 elevation: 8.0,
 color: Colors.white,
 margin: EdgeInsets.all(16.0),
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Text('
 'Barista',
 textAlign: TextAlign.center,
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 48.0,
 color: Colors.orange,
),
 '),
 Text(
 'Travel Plans',
 textAlign: TextAlign.center,
 style: TextStyle(color: Colors.grey),
),
],
),
),

The following are a few ways to customize the Card’s shape property (Figure 9.1):

// Create a Stadium Border
shape: StadiumBorder(),

// Create Square Corners Card with a Single Orange Bottom Border
shape: UnderlineInputBorder(borderSide: BorderSide(color: Colors.deepOrange)),

// Create Rounded Corners Card with Orange Border
shape: OutlineInputBorder(borderSide: BorderSide(color: Colors.deepOrange.
withOpacity(0.5)),),

Using the ListView and ListTile  ❘  223

USING THE LISTVIEW AND LISTTILE

The constructor ListView.builder is used to create an on-demand linear scrollable list of widgets
(Figure 9.2). When you have a large set of data, the builder is called only for visible widgets, which
is great for performance. Within the builder, you use the itemBuilder callback to create the list of
children widgets. Keep in mind the itemBuilder is called only if the itemCount argument is greater
than zero, and it is called as many times as the itemCount value. Remember, the List starts at row 0,
not 1. If you have 20 items in the List, it loops from row 0 to 19. The scrollDirection argument
defaults to Axis.vertical but can be changed to Axis.horizontal.

FIGURE 9.1:  Card customizations

224  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

The ListTile widget is commonly used with the
ListView widget to easily format and organize icons, titles,
and descriptions in a linear layout. Among the main proper-
ties are leading, trailing, title, and subtitle proper-
ties, but there are others. You can also use the onTap and
onLongPress callbacks to execute an action when the user
taps the ListTile. Usually the leading and trailing prop-
erties are implemented with icons, but you can add any type
of widget.

In Figure 9.2, the first three ListTiles show an icon for the
leading property, but for the trailing property, a Text
widget shows a percentage value. The remaining ListTiles
show both the leading and trailing properties as icons.
Another scenario is to use the subtitle property to show a
progress bar instead of additional text description since these
properties accept widgets.

The first code example here shows a Card with the child
property as a ListTile to give it a nice frame and shadow
effect. The second example shows a base ListTile.

// Card with a ListTile widget
Card(
 child: ListTile(
 leading: Icon(Icons.flight),
 title: Text('Airplane $index'),
 subtitle: Text('Very Cool'),
 trailing: Text('${index * 7}%'),
 onTap: ()=> print('Tapped on Row $index'),
),
);

// ListTile
ListTile(
 leading: Icon(Icons.directions_car),
 title: Text('Car $index'),
 subtitle: Text('Very Cool'),
 trailing: Icon(Icons.bookmark),
 onTap: ()=> print('Tapped on Row $index'),
);

TRY IT OUT	 Creating the ListView App

In this example, the ListView widget uses the builder to display a Card for the header and two varia-
tions of the ListTile for the data list. The ListTile can display leading and trailing widgets. The
leading property shows an Icon but could have displayed an Image. For the trailing property, the
first type of ListTile shows data as a percentage, and the second ListTile shows a selected or unse-
lected bookmark Icon. You also set a title and subtitle, and for the onTap you use the print state-
ment to show the tapped row index value.

FIGURE 9.2:  ListView linear layout
using the ListTile

Using the ListView and ListTile  ❘  225

1.	 Create a new Flutter project and name it ch9_listview. You can follow the instructions in
Chapter 4, “Creating a Starter Project Template.” For this project, you need to create only the
pages and widgets folders. Create the Home Class as a StatelessWidget since the data does not
require changes.

2.	 Open the home.dart file and add to the body a SafeArea with ListView.builder() as a child.

body: SafeArea(
 child: ListView.builder(),
),

3.	 Set the ListView.builder with the itemCount argument set to 20. For this example, you specify
20 rows of data. For the itemBuilder callback, it passes the BuildContext and the widget index
as an int value.

To show how to create different types of widgets to list each row of data, let’s check the first row
for the index value of zero and call the HeaderWidget(index: index) widget class. This class
shows a Card with the text “Barista Travel Plan.”

For the first, second, and third rows, the widget class RowWithCardWidget(index: index)
is called to show a ListTile as a child of a Card. For the rest of the rows, you call the
RowWidget(index: index) widget class to show a default ListTile.

It’s important to understand that the widget classes you call from the itemBuilder create a unique
widget with the index value passed. The itemBuilder loops the itemCount value, in this exam-
ple 20 times.

You’ll create the three widget classes in step 5.

body: SafeArea(
 child: ListView.builder(
 itemCount: 20,
 itemBuilder: (BuildContext context, int index) {
 if (index == 0) {
 return HeaderWidget(index: index);
 } else if (index >= 1 && index <= 3) {
 return RowWithCardWidget(index: index);
 } else {
 return RowWidget(index: index);
 }
 },
),
),

4.	 Add to the top of the file the import statements for the header.dart, row_with_card.dart, and
row.dart widget classes that you’ll create next.

import 'package:flutter/material.dart';
import 'package:ch9_listview/widgets/header.dart';
import 'package:ch9_listview/widgets/row_with_card.dart';
import 'package:ch9_listview/widgets/row.dart';

5.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter header.dart, and click the OK button to save.

226  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

6.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion help
opens, so select the stless (StatelessWidget) abbreviation and give it a name of HeaderWidget.

7.	 Modify the HeaderWidget widget class to return a Container. Import the material.dart library.

The Container child is a Card with an elevation of 8.0 to show a deep shadow. The Card
children list of widgets returns two Text widgets. I purposely left three shape types commented
out for you to test and see how they change the shape and borders of the Card.

I wanted to point out that the ListView itemBuilder in the main.dart file calls this class, the
HeaderWidget(index: index) for each row item. For every row, a Widget is created and added to
the widget tree.

Note I commented out three different ways to customize the default Card shape for your testing.

import 'package:flutter/material.dart';

class HeaderWidget extends StatelessWidget {
 const HeaderWidget({
 Key key,
 @required this.index,
 }) : super(key: key);

 final int index;

 @override
 Widget build(BuildContext context) {
 return Container(
 padding: EdgeInsets.all(16.0),
 height: 120.0,
 child: Card(
 elevation: 8.0,
 color: Colors.white,
 //shape: StadiumBorder(),
 //shape: UnderlineInputBorder(borderSide: BorderSide(color: Colors
.deepOrange)),
 //shape: OutlineInputBorder(borderSide: BorderSide(color:
Colors.deepOrange.withOpacity(0.5)),),
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Text(
 'Barista',
 textAlign: TextAlign.center,
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 48.0,
 color: Colors.orange,
),
),
 Text(
 'Travel Plans',
 textAlign: TextAlign.center,
 style: TextStyle(color: Colors.grey),
),
],

Using the ListView and ListTile  ❘  227

),
),
);
 }
}

8.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter row_with_card.dart, and click the OK button to save.

9.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion
help opens, so select the stless (StatelessWidget) abbreviation and give it a name of
RowWithCardWidget.

10.	 Modify the RowWithCardWidget class widget to return a Card. Import the material.dart library.

The Card child is a ListTile, which is great to align content easily. For the leading property,
return an Icon. The trailing property returns a Text widget with string interpolation that takes
the index times seven to obtain a number. The title property returns a Text widget with the
index value. The subtitle property returns a Text widget. For the onTap property, you use a
print statement to show the tapped row index.

As a reminder, a widget is created and added to the widget tree for each row.

import 'package:flutter/material.dart';

class RowWithCardWidget extends StatelessWidget {
 const RowWithCardWidget({
 Key key,
 @required this.index,
 }) : super(key: key);

 final int index;

 @override
 Widget build(BuildContext context) {
 return Card(
 child: ListTile(
 leading: Icon(
 Icons.flight,
 size: 48.0,
 color: Colors.lightBlue,
),
 title: Text('Airplane $index'),
 subtitle: Text('Very Cool'),
 trailing: Text(
 '${index * 7}%',
 style: TextStyle(color: Colors.lightBlue),
),
 //selected: true,
 onTap: () {
 print('Tapped on Row $index');
 },
),
);
 }
}

228  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

11.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter row.dart, and click the OK button to save.

12.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion
help opens, so select the stless (StatelessWidget) abbreviation and give it a name of
RowWidget.

13.	 Modify the RowWidget widget class to return a ListTile. Import the material.dart library.

14.	 For the leading property, return an Icon. For the trailing property, you return either a book­
mark_border or a bookmark Icon. To randomize which Icon to return, use a ternary operator to
calculate the index modulus (%) of 3 and check whether it’s an even number. If the number is even
or odd, the appropriate Icon is shown. The title property returns a Text widget with the index
value. The subtitle property returns a Text widget.

For the onTap, you use a print statement to show the tapped row index.

Note that for each row a widget is added to the widget tree.

import 'package:flutter/material.dart';

class RowWidget extends StatelessWidget {
 const RowWidget({
 Key key,
 @required this.index,
 }) : super(key: key);

 final int index;

 @override
 Widget build(BuildContext context) {
 return ListTile(
 leading: Icon(
 Icons.directions_car,
 size: 48.0,
 color: Colors.lightGreen,
),
 title: Text('Car $index'),
 subtitle: Text('Very Cool'),
 trailing: (index % 3).isEven
 ? Icon(Icons.bookmark_border)
 : Icon(Icons.bookmark),
 selected: false,
 onTap: () {
 print('Tapped on Row $index');
 },
);
 }
}

Using the ListView and ListTile  ❘  229

HOW IT WORKS

The ListView.builder constructor takes an itemCount and uses the itemBuilder to build a widget
for each child record. Each child widget is added to the widget tree with the appropriate values. As each
child widget is added, you can customize the ListView rows according to app specs.

Using the ListTile makes it extremely easy to align widgets. The ListTile takes a leading, trailing,
title, subtitle, onTap, and other properties.

230  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

USING THE GRIDVIEW

The GridView (Figure 9.3) displays tiles of scrollable
widgets in a grid format. The three constructors that I focus
on are GridView.count, GridView.extent, and
GridView.builder.

The GridView.count and GridView.extent are usually
used with a fixed or smaller data set. Using these constructors
means that all of the data, not just visible widgets, is loaded
at init. If you have a large set of data, the user does not see
the GridView until all data is loaded, which is not a great user
experience (UX). Usually you use the GridView.count when
you need a layout with a fixed number of tiles in the cross-
axis. For example, it shows three tiles in portrait and land-
scape modes. You use the GridView.extent when you need
a layout with the tiles that need a maximum cross-axis extent.
For example, two to three tiles fit in portrait mode, and five to
six tiles fit in landscape mode; in other words, it fits as many
tiles that it can depending on screen size.

The GridView.builder constructor is used with a larger,
infinite, or unknown size set of data. Like our ListView.
builder, when you have a large set of data, the builder is
called only for visible widgets, which is great for performance.
Within the builder, you use the itemBuilder callback
to create the list of children widgets. Keep in mind the
itemBuilder is called only if the itemCount argument is greater than zero, and it is called as many
times as the itemCount value. Remember, the List starts at row 0, not 1. If you have 20 items in the
List, it loops from row 0 to 19. The scrollDirection argument defaults to Axis.vertical but
can be changed to Axis.horizontal (Figure 9.3).

Using the GridView.count
The GridView.count requires setting the crossAxisCount and the children argument. The
crossAxisCount sets the number of tiles to display (Figure 9.4), and children is a list of widgets.
The scrollDirection argument sets the main axis direction for the Grid to scroll, either Axis
.vertical or Axis.horizontal, and the default is vertical.

For the children, you use the List.generate to create your sample data, a list of values. Within the
children argument, I added a print statement to show that the entire list of values is built at the
same time, not just the visible rows like the GridView.builder. Note for the following sample code,
7,000 records are generated to show that the GridView.count does not show any data until all of
the records are processed first.

GridView.count(
 crossAxisCount: 3,
 padding: EdgeInsets.all(8.0),

FIGURE 9.3:  GridView layout

Using the GridView  ❘  231

 children: List.generate(7000, (index) {
 print('_buildGridView $index');

 return Card(
 margin: EdgeInsets.all(8.0),
 child: InkWell(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(
 _iconList[0],
 size: 48.0,
 color: Colors.blue,
),
 Divider(),
 Text(
 'Index $index',
 textAlign: TextAlign.center,
 style: TextStyle(
 fontSize: 16.0,
),
)
],
),
 onTap: () {
 print('Row $index');
 },
),
);
 },),
)

FIGURE 9.4:  GridView count with three tiles in portrait and landscape mode

232  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

Using the GridView.extent
The GridView.extent requires you to set the maxCrossAxisExtent and children argument. The
maxCrossAxisExtent argument sets the maximum size of each tile for the axis. For example, in
portrait, it can fit two to three tiles, but when rotating to landscape, it can fit five to six depending on
the screen size (Figure 9.5). The scrollDirection argument sets the main axis direction for the grid
to scroll, either Axis.vertical or Axis.horizontal, and the default is vertical.

For the children, you use List.generate to create your sample data, which is a list of values.
Within the children argument, I added a print statement to show that the entire list of values is
built at the same time, not just the visible rows like the GridView.builder.

GridView.extent(
 maxCrossAxisExtent: 175.0,
 scrollDirection: Axis.horizontal,
 padding: EdgeInsets.all(8.0),
 children: List.generate(20, (index) {
 print('_buildGridViewExtent $index');

 return Card(
 margin: EdgeInsets.all(8.0),
 child: InkWell(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(
 _iconList[index],
 size: 48.0,
 color: Colors.blue,
),

FIGURE 9.5:  GridView extent showing the maximum number of tiles that can fit according to screen size

Using the GridView  ❘  233

 Divider(),
 Text(
 'Index $index',
 textAlign: TextAlign.center,
 style: TextStyle(
 fontSize: 16.0,
),
)
],
),
 onTap: () {
 print('Row $index');
 },
),
);
 }),
)

Using the GridView.builder
The GridView.builder requires you to set the itemCount, gridDelegate, and itemBuilder
arguments. The itemCount sets the number of tiles to build. The gridDelegate is a SilverGrid­
Delegate responsible for laying out the children list of widgets for the GridView. The gridDelegate
argument cannot be null; you need to pass the maxCrossAxisExtent size, for example, 150.0 pixels.

For example, to display three tiles across the screen you specify the gridDelegate argument with the
SliverGridDelegateWithFixedCrossAxisCount class to create a grid layout with a fixed number
of tiles for the cross axis. If you need to display tiles that have a maximum width of 150.0 pixels, you
specify the gridDelegate argument with the SliverGridDelegateWithMaxCrossAxisExtent class to
create a grid layout with tiles that have a maximum cross-axis extent, the maximum width of each tile.

The GridView.builder is used when you have a large set of data because the builder is called only
for visible tiles, which is great for performance. Using the GridView.builder constructor results in
lazily building a list for visible tiles, and when the user scrolls to the next visible tiles they are lazily
built as needed.

TRY IT OUT	 Creating the GridView.builder App

In this example, the GridView widget uses the builder to display a Card that shows each Grid item
with an Icon and a Text showing the index location. The onTap will print the index of the tapped
Grid item.

1.	 Create a new Flutter project and name it ch9_gridview, following the instructions in Chapter 4.
For this project, you need to create only the pages, classes, and widgets folders. Create the Home
Class as a StatelessWidget since the data does not require changes.

2.	 Open the home.dart file and add to the body a SafeArea with the GridViewBuilderWidget()
widget class as a child.

body: SafeArea(
 child: const GridViewBuildWidget(),
),

234  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

3.	 Add to the top of the file the import statement for the gridview_builder.dart widget class that
you’ll create next.

import 'package:flutter/material.dart';
import 'package:ch9_gridview/widgets/gridview_builder.dart';

4.	 Create a new Dart file in the widgets folder. Right-click the classes folder and then select New ➪
Dart File, enter grid_icons.dart, and click the OK button to save.

5.	 Import the material.dart library, add a new line, and create the GridIcons Class. The
GridIcons Class holds a List of IconData called iconList.

6.	 Create the getIconList() method that creates the List of IconData that is used later in the
GridView.builder.

class GridIcons {
 List<IconData> iconList = [];

 List<IconData> getIconList() {
 iconList
 ..add(Icons.free_breakfast)
 ..add(Icons.access_alarms)
 ..add(Icons.directions_car)
 ..add(Icons.flight)
 ..add(Icons.cake)
 ..add(Icons.card_giftcard)
 ..add(Icons.change_history)
 ..add(Icons.face)
 ..add(Icons.star)
 ..add(Icons.headset_mic)
 ..add(Icons.directions_walk)
 ..add(Icons.sentiment_satisfied)
 ..add(Icons.cloud_queue)
 ..add(Icons.exposure)
 ..add(Icons.gps_not_fixed)
 ..add(Icons.child_friendly)
 ..add(Icons.child_care)
 ..add(Icons.edit_location)
 ..add(Icons.event_seat)
 ..add(Icons.lightbulb_outline);
 return iconList;
 }
}

7.	 Create a new Dart file under the widgets folder. Right-click the widgets folder and then select
New ➪ Dart File, enter gridview_builder.dart, and click the OK button to save.

8.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion
help opens, so select the stless (StatelessWidget) abbreviation and give it a name of
GridViewBuilderWidget.

9.	 Modify the GridViewBuilderWidget widget class to return a GridView.builder with the
itemCount argument set to 20. For this example, you specify to list 20 rows of data.

Using the GridView  ❘  235

10.	 For the gridDelegate argument, use SliverGridDelegateWithMaxCrossAxisExtent(maxCross
AxisExtent: 150.0). Your other option is to use the
SliverGridDelegateWithFixedCrossAxisCount instead, which works in the same manner as the
GridView.count constructor, where you pass the number of tiles to display.

11.	 For the itemBuilder callback, it passes the BuildContext and the widget index as an int value.
In the itemBuilder first line, place a print statement to show each item index being built accord-
ing to the visible space.

12.	 Return a Card with the child as an InkWell. The InkWell onTap has a print statement to show
the tapped Card item, with the Row selected.

13.	 For the InkWell child property, pass a Column with these children: Icon, Divider, and Text
widgets. Note that the itemBuilder is called for each row item. For every row, a Widget is created
and added to the widget tree.

The onTap will print the index of the tapped Grid item.

14.	 Add to the top of the file the import statement for the grid_icons.dart class.

import 'package:flutter/material.dart';
import 'package:ch9_gridview/classes/grid_icons.dart';

class GridViewBuilderWidget extends StatelessWidget {
 const GridViewBuilderWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 List<IconData> _iconList = GridIcons().getIconList();

 return GridView.builder(
 itemCount: 20,
 padding: EdgeInsets.all(8.0),
 gridDelegate: SliverGridDelegateWithMaxCrossAxisExtent(maxCrossAxisExtent:
150.0),
 itemBuilder: (BuildContext context, int index) {
 print('_buildGridViewBuilder $index');

 return Card(
 color: Colors.lightGreen.shade50,
 margin: EdgeInsets.all(8.0),
 child: InkWell(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(
 _iconList[index],
 size: 48.0,
 color: Colors.lightGreen,
),
 Divider(),
 Text(

236  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

 'Index $index',
 textAlign: TextAlign.center,
 style: TextStyle(
 fontSize: 16.0,
),
)
],
),
 onTap: () {
 print('Row $index');
 },
),
);
 },
);
 }
}

HOW IT WORKS

The GridView.builder constructor takes an itemCount and uses the itemBuilder to build a widget
for each child record. Each child widget is added to the widget tree with the appropriate values. As each
child widget is added, you can customize the rows according to app specs. In this example, you used
a Card to give each Grid Row item a nice look and used an InkWell to use the Material Design tap
animation and the onTap property. The InkWell child is a Column, and its children items show an
Icon and Text.

Using the Stack  ❘  237

USING THE STACK

The Stack widget is commonly used to overlap, position, and align widgets to create a custom look.
A good example is a shopping cart with the number of items to purchase on the upper-right side. The
Stack children list of the widget is either positioned or nonpositioned. When you use a Positioned
widget, each child widget is placed at the appropriate location.

The Stack widget resizes itself to accommodate all of the nonpositioned children. The nonpositioned
children are positioned to the alignment property (Top-Left or Top-Right depending on the left-to-
right or right-to-left environment). Each Stack child widget is drawn in order from bottom to top,
like stacking pieces of paper on top of each other. This means the first widget drawn is at the bottom
of the Stack, and then the next widget is drawn above the previous widget and so on. Each child
widget is positioned on top of each other in the order of the Stack children list. The RenderStack
class handles the stack layout.

To align each child in the Stack, you use the Positioned widget. By using the top, bottom, left,
and right properties, you align each child widget within the Stack. The height and width proper-
ties of the Positioned widget can also be set (Figure 9.6).

You’ll also learn how to implement the FractionalTranslation class to position a widget fraction-
ally outside the parent widget. You set the translation property with the Offset(dx, dy) (double
type value for x-and y-axis) class that’s scaled to the child’s size, resulting in moving and positioning
the widget. For example, to show a favorite icon moved a third of the way to the upper right of the
parent widget, you set the translation property with the Offset(0.3, -0.3) value.

The following example (Figure 9.7) shows a Stack widget with a background image, and by using
the FractionalTranslation class, you set the translation property to the Offset(0.3, -0.3)
value, placing the star icon one-third to the right of the x-axis and a negative one-third (move icon
upward) on the y-axis.

Stack(
 children: <Widget>[
 Image(image: AssetImage('assets/images/dawn.jpg')),
 Positioned(

FIGURE 9.6:  Stack layout showing Image and Text widgets stacked over the background image

238  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

 top: 0.0,
 right: 0.0,
 child: FractionalTranslation(
 translation: Offset(0.3, -0.3),
 child: CircleAvatar(
 child: Icon(Icons.star),
),
),
),
 Positioned(/* Eagle Image */),
 Positioned(/* Bald Eagle */),
],
),

TRY IT OUT	 Creating the Stack App

In this example, the Stack widget children list of widgets lays out a background Image and two
Positioned widgets with CircleAvatar and Text widgets. To show an alternate layout, you use the
same previous Stack layout and add a Positioned widget with the child property as a Fractional­
Translation class to show a CircleAvatar pinned to the upper-right corner halfway outside the Stack.
A ListView is used to create the sample list, and each row displays an alternate Stack widget.

1.	 Create a new Flutter project and name it ch9_stack. Again, follow the instructions in Chapter 4.
For this project, you need to create the pages, widgets, and assets/images folders. Create the
Home Class as a StatelessWidget since your data does not require changes.

2.	 Open the pubspec.yaml file to add resources. In the assets section, add the assets/
images/ folder.

FIGURE 9.7:  FractionalTranslation class showing favorite icon moved to the upper right

Using the Stack  ❘  239

To add assets to your application, add an assets section, like this:
assets:
 - assets/images/

3.	 Click the Save button, and depending on the editor you are using, it automatically runs the
flutter packages get, and once finished, it will show a message of Process finished with
exit code 0. If it does not automatically run the command for you, open the Terminal window
(located at the bottom of your editor) and type flutter packages get.

4.	 Add the folder assets and subfolder images at the project’s root, and then copy the dawn.jpg,
eagle.jpg, lion.jpg, and tree.jpg files to the images folder.

5.	 Open the home.dart file and add to the body a SafeArea with ListView.builder() as a child.

body: SafeArea(
 child: ListView.builder(),
),

6.	 Add to the top of the file the import statement for the stack.dart and stack_favorite.dart
widget classes that you’ll create next.

import 'package:flutter/material.dart';
import 'package:ch9_stack/widgets/stack.dart';
import 'package:ch9_stack/widgets/stack_favorite.dart';

7.	 Add to the ListView.builder the itemCount argument with a value set to 7. For this example,
you specify to list seven rows of data. For the itemBuilder callback, it passes the BuildContext
and the widget index as an int value.

With each Stack layout, you alternate between them by checking whether the index value is even
or odd and then call the widget classes StackWidget() and StackFavoriteWidget(), respectively.

I wanted to show that you can customize which widgets you present to the user. Let’s say you have
an app that you distribute as freeware and every ten records you show an advertisement or a tip
embedded in the list. This technique is not as intrusive as a pop-up while the user views records.

body: SafeArea(
 child: ListView.builder(
 itemCount: 7,
 itemBuilder: (BuildContext context, int index) {
 if (index.isEven) {
 return const StackWidget();
 } else {
 return const StackFavoriteWidget();
 }
 },
),
),

8.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter stack.dart, and click the OK button to save.

9.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion
help opens, where you can select the stless (StatelessWidget) abbreviation and give it a name
of StackWidget.

240  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

10.	 Modify the StackWidget widget class to return a Stack. The Stack children list of widgets
consists of an Image with the AssetImage tree.jpg.

11.	 Add a Positioned widget with bottom and left properties with a value of 10.0. The child is a
CircleAvatar with a radius of 48.0 and has the backgroundImage property set to
AssetImage lion.jpg.

12.	 Add another Positioned widget with bottom and right properties with a value of 16.0. The
child is a Text widget with a string value of Lion, and it has a style property with a TextStyle
class with a fontSize set to 32.0 pixels, color set to white30, and fontWeight set to bold.

import 'package:flutter/material.dart';

class StackWidget extends StatelessWidget {
 const StackWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Stack(
 children: <Widget>[
 Image(
 image: AssetImage('assets/images/tree.jpg'),
),
 Positioned(
 bottom: 10.0,
 left: 10.0,
 child: CircleAvatar(
 radius: 48.0,
 backgroundImage: AssetImage('assets/images/lion.jpg'),
),
),
 Positioned(
 bottom: 16.0,
 right: 16.0,
 child: Text(
 'Lion',
 style: TextStyle(
 fontSize: 32.0,
 color: Colors.white30,
 fontWeight: FontWeight.bold,
),
),
),
],
);
 }
}

13.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter stack_favorite.dart, and click the OK button to save.

14.	 Import the material.dart library, add a new line, and then start typing st; autocompletion help
opens, so select the stless (StatelessWidget) abbreviation and give it a name of
StackFavoriteWidget.

Using the Stack  ❘  241

15.	 Modify the StackFavoriteWidget widget class to return a Container. Use a Container to set
color to black87 and for the child use a Padding with EdgeInsets.all(16.0). This will create
a dark frame effect around the Stack.

16.	 For the Stack children list of widgets, add an Image set to AssetImage dawn.jpg.

17.	 Add a Positioned widget with bottom and right properties with the values 0.0. The child is a
FractionalTranslation class with a translation property of Offset(0.3,-0.3). The child is
a CircleAvatar, and by using the Offset, it shows it pinned to the upper-right corner halfway
outside of the Stack.

18.	 Add a Positioned widget with bottom and right properties with a value of 10.0. The child is a
CircleAvatar with a radius of 48.0 and backgroundImage with the AssetImage eagle.jpg.

19.	 Add another Positioned widget with bottom and right properties that have values of 16.0. The
child is a Text widget with a string value of Bald Eagle, and it has a style property with a
TextStyle with fontSize set to 32.0 pixels, color set to white30, and fontWeight set to bold.

import 'package:flutter/material.dart';

class StackFavoriteWidget extends StatelessWidget {
 const StackFavoriteWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Container(
 color: Colors.black87,
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: Stack(
 children: <Widget>[
 Image(
 image: AssetImage('assets/images/dawn.jpg'),
),
 Positioned(
 top: 0.0,
 right: 0.0,
 child: FractionalTranslation(
 translation: Offset(0.3, -0.3),
 child: CircleAvatar(
 radius: 24.0,
 backgroundColor: Colors.white30,
 child: Icon(
 Icons.star,
 size: 24.0,
 color: Colors.white,
),
),
),
),
 Positioned(
 bottom: 10.0,

242  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

 right: 10.0,
 child: CircleAvatar(
 radius: 48.0,
 backgroundImage: AssetImage('assets/images/eagle.jpg'),
),
),
 Positioned(
 bottom: 16.0,
 left: 16.0,
 child: Text(
 'Bald Eagle',
 style: TextStyle(
 fontSize: 32.0,
 color: Colors.white30,
 fontWeight: FontWeight.bold,
),
),
),
],
),
),
);
 }
}

HOW IT WORKS

The Stack takes a children list of widgets and sizes itself to accommodate all of the nonpositioned
widgets. When you use nonpositioned widgets in the Stack, they are automatically positioned to the
setting of alignment (Top-Left or Top-Right depending on environment). Each Stack child widget is
drawn in order from bottom to top, meaning each child widget is positioned on top of each other.

Customizing the CustomScrollView with Slivers  ❘  243

Using the Positioned widget allows each child widget to be aligned by using the top, bottom, left, and
right properties. You learned how to position the favorite icon to the upper right of the parent widget
by using the FractionalTranslation class’s translation property with the Offset(0.3,-03) value.

CUSTOMIZING THE CUSTOMSCROLLVIEW WITH SLIVERS

The CustomScrollView widget creates custom scrolling effects by using a list of slivers. Slivers
are a small portion of something larger. For example, slivers are placed inside a view port like the
CustomScrollView widget. In the previous sections, you learned how to implement the ListView
and GridView widgets separately. But what if you needed to present them together in the same list?
The answer is that you can use a CustomScrollView with the slivers property list of widgets set
to the SliverSafeArea, SliverAppBar, SliverList, and SliverGrid widgets (slivers). The order
in which you place them in the CustomScrollView slivers property is the order in which they are
rendered. Table 9.1 shows commonly used slivers and sample code.

TABLE 9.1:  Slivers

SLIVER DESCRIPTION CODE

SliverSafeArea Adds padding to avoid
the device notch usually
located on the top of
the screen

SliverSafeArea(
 sliver: SliverGrid(),
)

SliverAppBar Adds an app bar SliverAppBar(
 expandedHeight: 250.0,
 flexibleSpace: FlexibleSpaceBar(
 title: Text('Parallax'),
),
)

SliverList Creates a linear
scrollable list of widgets

SliverList(
 delegate: SliverChildListDelegate(
 List.generate(3, (int index) {
 return ListTile();
 }),
),
)

SliverGrid Displays tiles of
scrollable widgets in a
grid format

SliverGrid(
 delegate: SliverChildBuilderDelegate(
 (BuildContext context, int
index) {
 return Card();
 },
 childCount: _rowsCount,
),
 gridDelegate: SliverGridDelegateWithF
ixedCrossAxisCount(crossAxisCount: 3),
)

244  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

The SliverList and SliverGrid slivers use delegates to build the list of children explicitly or lazily.
An explicit list builds all of the items first then displays them on the screen. A lazily built list only
builds the visible items on the screen and when the user scrolls the next visible items are built (lazily)
resulting in better performance. The SliverList has a delegate property and the SliverGrid has a
delegate and a gridDelegate property.

The SliverList and SliverGrid delegate property can use the SliverChildListDelegate
to build an explicit list or use the SliverChildBuilderDelegate to lazily build the list. The
SliverGrid has an additional gridDelegate property to specify the size and position of the
grid tiles. Specify the gridDelegate property with the SliverGridDelegateWithFixed­
CrossAxisCount class to create a grid layout with a fixed number of tiles for the cross axis;
for example, show three tiles across. Specify the gridDelegate property with the SliverGrid­
DelegateWithMaxCrossAxisExtent class to create a grid layout with tiles that have a maxi-
mum cross-axis extent, the maximum width of each tile; for example, 150.0 pixels maximum
width for each tile.

Table 9.2 shows the SliverList and SliverGrid delegates to help you build lists.

TABLE 9.2:  Sliver Delegates

SLIVER DESCRIPTION CODE

SliverList SliverChildListDelegate
builds a list of known
number of rows (explicit).
SliverChildBuilderDelegate
lazily builds a list of unknown
number of rows.

SliverList(
 delegate:
SliverChildListDelegate(<Widget>[
 ListTile(title: Text('One')),
 ListTile(title: Text('Two')),
 ListTile(title: Text('Three')),
]),
)

or
SliverList(
 delegate: SliverChildListDelegate(
 List.generate(30, (int index) {
 return ListTile();
 }),
),
)

or
SliverList(
 delegate: SliverChildBuilderDeleg
ate((BuildContext context,
int index) {
 return ListTile();
 },
 childCount: _rowsCount,
),
)

Customizing the CustomScrollView with Slivers  ❘  245

The SliverAppBar widget can have a parallax (Figure 9.8) effect by using the expandedHeight and
flexibleSpace properties. The parallax effect scrolls a background image slower than the content in
the foreground. If you need to show the CustomScrollView initially scrolled at a particular position,
use a controller and set the ScrollController.initialScrollOffset property. For example, you
would set the initialScrollOffset by initializing the controller = ScrollController(ini­
tialScrollOffset: 10.0).

SLIVER DESCRIPTION CODE

SliverGrid SliverChildListDelegate
builds an explicit list.
SliverChildBuilderDelegate
lazily builds a list of unknown
number of tiles. The
gridDelegate property controls
the position and size of the
children widgets.

SliverGrid(
 delegate: SliverChildListDelegate­
(<Widget>[
 Card(),
 Card(),
 Card(),
]),
 gridDelegate:
SliverGridDelegateWithFixedCrossAxis­
Count(crossAxisCount: 3),
)

or
SliverGrid(
 delegate: SliverChildListDelegate(
 List.generate(30, (int index) {
 return Card();
 }),
),
 gridDelegate:
SliverGridDelegateWithFixedCross­
AxisCount(crossAxisCount: 3),
)

or
SliverChildBuilderDelegate(
 (BuildContext context,
int index) {
 return Card();
 },
 childCount: _rowsCount,
),
 gridDelegate:
 SliverGridDelegateWithFixedCross­
AxisCount(crossAxisCount: 3),
)

246  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

TRY IT OUT	 Creating the CustomScrollView Slivers App

In this example, the CustomScrollView children list of widgets contains a SliverAppBar, SliverList,
SliverSafeArea, and SliverGrid. The SliverAppBar widget uses the flexibleSpace with a back-
ground Image that has a parallax effect while scrolling. The SliverList generates three items with the
List.generate constructor. To account for the device notch, you use a SliverSafeArea to wrap the
SliverGrid, and you generate 12 (sample value can be more or less) items.

1.	 Create a new Flutter project and name it ch9_customscrollview_slivers; you can follow the
instructions in Chapter 4. For this project, you only need to create the pages and assets/images
folders. Create the Home Class as a StatelessWidget since the data does not require changes.

2.	 Open the pubspec.yaml file to add resources. In the assets section, add the assets/
images/ folder.

To add assets to your application, add an assets section, like this:
assets:
 - assets/images/

3.	 Click the Save button, and depending on the editor you are using, it automatically runs flutter
packages get. Once finished, it will show a message of Process finished with exit code 0. If it
does not automatically run the command for you, open the Terminal window (located at the
bottom of your editor) and type flutter packages get.

4.	 Add the folder assets and subfolder images at the project’s root and then copy the desk.jpg file
to the images folder.

5.	 Open the home.dart file and add to the body a CustomScrollView(). For this project, set the
AppBar elevation property to 0.0 because you enable the SliverAppBar shadow instead.

return Scaffold(
 appBar: AppBar(
 title: Text('CustomScrollView - Slivers'),
 elevation: 0.0,
),

FIGURE 9.8:  SliverAppBar scrolling parallax effect

Customizing the CustomScrollView with Slivers  ❘  247

 body: CustomScrollView(
 slivers: <Widget>[
],
),
);

6.	 Add to the top of the file the import statement for the sliver_app_bar.dart, sliver_list.
dart, and sliver_grid.dart widget classes that you’ll create next.

import 'package:flutter/material.dart';
import 'package:ch9_customscrollview_slivers/widgets/sliver_app_bar.dart';
import 'package:ch9_customscrollview_slivers/widgets/sliver_list.dart';
import 'package:ch9_customscrollview_slivers/widgets/sliver_grid.dart';

7.	 Add calls to the SliverAppBarWidget(), SliverListWidget(), and SliverGridWidget()
widget classes to the CustomScrollView() slivers property. Make sure the calls to the widget
classes use the const keyword to take advantage of caching for performance gain.

return Scaffold(
 appBar: AppBar(
 title: Text('CustomScrollView - Slivers'),
 elevation: 0.0,
),
 body: CustomScrollView(
 slivers: <Widget>[
 const SliverAppBarWidget(),
 const SliverListWidget(),
 const SliverGridWidget(),
],
),
);

8.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter sliver_app_bar.dart, and click the OK button to save.

9.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion
help opens, so select the stless (StatelessWidget) abbreviation and give it a name of
SliverAppBarWidget.

10.	 Modify the SliverAppBarWidget widget class to return a SliverAppBar.

11.	 To show a shadow at the bottom of the bar, set the forceElevated property to true.

12.	 To create a parallax effect while scrolling, set expandedHeight to 250.0 pixels and flexible­
Space to FlexibleSpaceBar.

13.	 For the FlexibleSpaceBar background property, use the Image widget with the desk.jpg file
and set fit to BoxFit.cover.

import 'package:flutter/material.dart';

class SliverAppBarWidget extends StatelessWidget {
 const SliverAppBarWidget({
 Key key,
 }) : super(key: key);

248  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

 @override
 Widget build(BuildContext context) {
 return SliverAppBar(
 backgroundColor: Colors.brown,
 forceElevated: true,
 expandedHeight: 250.0,
 flexibleSpace: FlexibleSpaceBar(
 title: Text(
 'Parallax Effect',
),
 background: Image(
 image: AssetImage('assets/images/desk.jpg'),
 fit: BoxFit.cover,
),
),
);
 }
}

14.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter sliver_list.dart, and click the OK button to save.

15.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion
help opens, so select the stless (StatelessWidget) abbreviation and give it a name of
SliverListWidget.

16.	 Modify the SliverListWidget widget class to return a SliverList. For the SliverList del­
egate property, pass the SliverChildListDelegate.

17.	 Use the List.generate constructor to build your sample data list. The constructor takes two
arguments: the length of the list and the index. Return a ListTile with a leading
CircleAvatar with the child as a Text widget with string interpolation set with ${index + 1}.

18.	 Also, set the ListTile title, subtitle, and trailing properties.

import 'package:flutter/material.dart';

class SliverListWidget extends StatelessWidget {
 const SliverListWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return SliverList(
 delegate: SliverChildListDelegate(
 List.generate(3, (int index) {
 return ListTile(
 leading: CircleAvatar(
 child: Text("${index + 1}"),
 backgroundColor: Colors.lightGreen,
 foregroundColor: Colors.white,
),
 title: Text('Row ${index + 1}'),

Customizing the CustomScrollView with Slivers  ❘  249

 subtitle: Text('Subtitle Row ${index + 1}'),
 trailing: Icon(Icons.star_border),
);
 }),
),
);
 }
}

19.	 Create a new Dart file in the widgets folder. Right-click the widgets folder and then select New ➪
Dart File, enter sliver_grid.dart, and click the OK button to save.

20.	 Import the material.dart library, add a new line, and then start typing st; the autocompletion
help opens, so select the stless (StatelessWidget) abbreviation and give it a name of
SliverGridWidget.

21.	 Modify the SliverGridWidget widget class to return a SliverSafeArea. Since the SliverGrid
does not handle the device notch automatically, you wrap it in a SliverSafeArea. The SliverGrid
delegate property is a SliverChildBuilderDelegate taking the BuildContext and int index.

22.	 From the SliverChildBuilderDelegate, return a Card with the child as a Column. The Column
children list of Widget has Icon, Divider, and Text widgets.

23.	 For the childCount property, pass 12 representing how many items the builder creates. The
gridDelegate property is set to SliverGridDelegateWithFixedCrossAxisCount(cross­
AxisCount: 3) showing three tiles.

import 'package:flutter/material.dart';

class SliverGridWidget extends StatelessWidget {
 const SliverGridWidget({
 Key key,
 }) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return SliverSafeArea(
 sliver: SliverGrid(
 delegate: SliverChildBuilderDelegate(
 (BuildContext context, int index) {
 return Card(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Icon(Icons.child_friendly, size: 48.0, color: Colors.amber,),
 Divider(),
 Text('Grid ${index + 1}'),
],
),
);
 },
 childCount: 12,
),
 gridDelegate:

250  ❘  CHAPTER 9   Creating Scrolling Lists and Effects

 SliverGridDelegateWithFixedCrossAxisCount(crossAxisCount: 3),
),
);
 }
}

HOW IT WORKS

To create a custom scrolling effect, the CustomScrollView uses a list of slivers. You used the
SliverAppBar to create a parallax scrolling effect by using a FlexibleSpaceBar. You also created a
SliverList and set the delegate property to the SliverChildListDelegate class. To handle the
device notch, the SliverGrid is wrapped in a SliverSafeArea widget. The SliverGrid delegate
property uses the SliverChildBuilderDelegate, which takes a BuildContext and int index.

SUMMARY

In this chapter, you learned to use the Card to group information with the container having rounded
corners and a shadow. You used the ListView to build a list of scrollable widgets and to align
grouped data with the ListTile, and you used the GridView to display data in tiles, using the Card
to group the data. You embedded a Stack in a ListView to show an Image as a background and
stacked different widgets with the Positioned widget to overlap and position them at the appropri-
ate locations by using the top, bottom, left, and right properties.

In the next chapter, you’ll learn to build custom layouts by using SingleChildScrollView, SafeArea,
Padding, Column, Row, Image, Divider, Text, Icon, SizedBox, Wrap, Chip, and CircleAvatar. You’ll
learn to take a high-level view as well as a detailed view to separate and nest widgets to create a custom UI.

Summary  ❘  251

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Card This groups and organizes information into a container with rounded
corners and casts a drop shadow.

ListView
and ListTile

This is a linear list of scrollable widgets with either vertical or horizontal
scrolling. To easily format how the list of records is displayed in rows,
you took advantage of the ListTile widget to align grouped data
with leading and trailing icons.

GridView This displays tiles of scrollable widgets in a grid format. Scrolling can be
vertical or horizontal.

Stack This is commonly used to overlap, position, and align its children
widgets to create a custom look.

CustomScrollView
and slivers

This allows you to create custom scrolling effects by using a list of
slivers widgets like a SliverSafeArea, SliverAppBar, SliverList,
SliverGrid, and more.

Building Layouts
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to create simple and complex layouts

➤➤ How to combine and nest widgets

➤➤ How to combine vertical and horizontal widgets to create a custom layout

➤➤ How to build the UI layout by using widgets such as SingleChildScrollView,
SafeArea, Padding, Column, Row, Image, Divider, Text, Icon, SizedBox, Wrap,
Chip, and CircleAvatar

In this chapter, you’ll learn how to take individual widgets and nest them to build a professional
layout. This concept is known as composition and is a huge part of creating Flutter mobile
apps. Most of the time you can build simple or complex layouts either using vertical or horizon-
tal widgets or using a combination of both.

A HIGH-LEVEL VIEW OF THE LAYOUT

This chapter’s goal is to create a journal entry page displaying details from top to bottom. The
journal page shows the header image, title, diary detail, weather, (journal location) address, tags,
and footer images. The weather, tags, and footer images sections are built by nesting widgets to
build a custom layout (Figure 10.1).

10

254  ❘  CHAPTER 10   Building Layouts

Starting with a high-level view, let’s break down the main parts of the layout that forms the founda-
tion. A great way to start laying out the journal entry is to add layers from the bottom toward the
top, the same way you stack paper. Figure 10.2 shows the journal page layout structure.

1.	 Since mobile devices are available in different sizes, the layout starts by adding a Single-
ChildScrollView to automatically handle scrolling for portions of the screen that are cut
off by smaller devices.

2.	 Next a Column widget is used to align widgets vertically from the top toward the bottom of
the screen.

FIGURE 10.1:  Journal detail page layout

A High-Level View of the Layout  ❘  255

3.	 For the wrapped gift image, the Image widget is added as the first child of the first Column,
allowing the image to fill the full width of the device.

4.	 The first Column child is a SafeArea widget to handle the device notch for the journal
entry content.

5.	 Add to the SafeArea child a second Column with children widgets composed of a Text
widget for the journal entry title and a Text widget for the journal entry details.

6.	 Continue adding to the second Column children a Row widget that will contain the weather
icon, the weather temperature, and the journal entry location address. In the “Weather
Section Layout” section of this chapter, you will learn to add widgets to create the
detailed layout.

7.	 Continue by adding to the second Column children a Wrap widget displaying the Chip widg-
ets. You’ll learn to add layout widgets in the “Tags Layout” section.

8.	 Lastly, you’ll add to the second Column a Row widget to display images and icons, and you’ll
learn how to add layout widgets in the “Footer Images Layout” section of this chapter.

FIGURE 10.2:  High-level view

256  ❘  CHAPTER 10   Building Layouts

Weather Section Layout
Each journal entry records the weather, temperature, and location at the time of entry to recall the
details at a later time. To provide that information, you’re including a journal entry weather section.
Using a Row, you add two Column widgets and one SizedBox widget. The first Column contains an
Icon to show the weather symbol. The second Column contains two Row widgets. The first Row has a
Text showing the weather temperature and description. The second Row has a Text showing the loca-
tion address of the journal entry (Figure 10.3).

Tags Layout
To organize each journal entry and facilitate searching, you use tags to add categories to the entry.
Tags are items such as movie, family, birthday, vacation, and so on. The tags section uses a Wrap
widget with a children list of Chip widgets. When you have a list of items that can be of different
lengths and an unknown number of items, nesting them in a Wrap widget lays out each child auto-
matically according to available space (Figure 10.4).

The Chip widget is a great way to group information and customize the presentation look and feel.
Setting the label property is the only requirement but most of the time it’s used by setting the avatar
property with an Icon or an Image widget. By default the Chip widget is a gray stadium (rectangle
with large semicircles on the ends at opposite sides) shape but you can customize it by using the shape
property and the backgroundColor property. The following sample code shows a customized Chip
widget that displays the label and avatar in a rectangular shape with small rounded corners. The
RoundedRectangleBorder class returns the rectangular border with rounded corners.

FIGURE 10.3:  Weather section

FIGURE 10.4:  Tags section

Creating the Layout  ❘  257

Chip(
 label: Text('Vacation'),
 avatar: Icon(Icons.local_airport),
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(4.0),
 side: BorderSide(color: Colors.grey),
),
 backgroundColor: Colors.grey.shade100,
);

Footer Images Layout
It is said that a picture is worth a thousand words, and the footer section allows you to add photos
to each journal entry to bring back memories. The footer sections use a Row with a CircleAvatar
widget showing different images. At the end of the Row, a SizedBox is used to space the child Column
to the end. The Column shows vertically aligned Icons (Figure 10.5).

Final Layout
You looked at how to lay out each section of the journal detail page. By nesting widgets, you build
custom or complex layouts known as composition. The power of nesting widgets to create beautiful
UIs is limited only by your imagination. Figure 10.6 shows the journal detail page and the three main
customized sections for the weather, tags, and footer images.

CREATING THE LAYOUT

When creating the layout, it's good to start from a high-level view and then work your way down to
each detailed section. By taking each section of the page, you start to analyze the requirements and
format as needed. For example, if a particular section lays out the items horizontally, you start with a
Row; if the section’s layout is vertical, you start with a Column. Then you look at the display require-
ments and start breaking down data into its own sections by nesting widgets.

FIGURE 10.5:  Footer section

258  ❘  CHAPTER 10   Building Layouts

TRY IT OUT	 Creating the Layout App

In our example, the main body contains a SingleChildScrollView with the child as a Column. The
Column list of widgets contains a header Image followed by a SafeArea with Padding as a child. The
Image fits the entire width of the device, but the journal entries are contained in the SafeArea with a
Padding to format the entry.

The Padding child is a Column with a list of widgets breaking down each section of the journal entry
separated by a Divider widget. Each separate section is called by the _buildJournalHeaderImage(),
_buildJournalEntry(), _buildJournalWeather(), _buildJournalTags(), and _buildJournal-
FooterImages() methods.

You are creating a journal entry page displaying details from top to bottom. The journal page shows the
header image, title, diary detail, weather, address, tags, and footer images. The weather, tags, and footer
images sections are built by nesting widgets to build a custom layout.

In this example, to keep the widget tree shallow, you’ll use methods instead of widget classes. This is a
great example of using the appropriate technique for each situation. The purpose of the journal entry is
to view the details, and it does not require changes, which is why you use methods to keep the widget

FIGURE 10.6:  Final layout

Creating the Layout  ❘  259

tree shallow. But if this page requires refreshing portions of the screen based on outside data changes,
then using widget classes could be the better solution, because only the portion of the screen that changes
is rebuilt.

1.	 Create a new Flutter project and name it ch10_layouts. You can follow the instructions in
Chapter 4, “Creating a Starter Project Template.” For this project, you need to create only the
pages and assets/images folders. Create the Home Class as a StatelessWidget since the
data does not require changes.

2.	 Open the pubspec.yaml file to add resources. In the assets section, add the assets/
images/ folder.

 # To add assets to your application, add an assets section, like this:
 assets:
 - assets/images/

3.	 Click the Save button, and depending on the Editor you are using, it automatically runs flutter
packages get, and once finished, it will show a message of Process finished with exit code 0.
If it does not automatically run the command for you, open the Terminal window (located at the
bottom of your editor) and type flutter packages get.

4.	 Add the folder assets and subfolder images at the project’s root, and then copy the present.jpg,
salmon.jpg, asparagus.jpg, and strawberries.jpg files to the images folder. Since this
example focuses on how to lay out a screen, the images are included in the assets/images folder,
but in an actual application, the user would choose the images and they would be saved to the
device instead.

5.	 Open the home.dart file and add to the body the _buildBody() method. For this project, custom-
ize the AppBar widget by changing the backgroundColor, iconTheme, brightness, leading, and
actions properties, as shown in the following code. Making the AppBar changes is purely cosmetic
to make the app look great. In Chapter 6, “Using Common Widgets,” you learned that the Icon
widget is drawn with a glyph from a font described in the IconData. You have available a full list
of icons from the MaterialIcons font.

 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(
 'Layouts',
 style: TextStyle(color: Colors.black87),
),
 backgroundColor: Colors.white,
 iconTheme: IconThemeData(color: Colors.black54),
 brightness: Brightness.light,
 leading: IconButton(icon: Icon(Icons.menu), onPressed: () {}),
 actions: <Widget>[
 IconButton(icon: Icon(Icons.cloud_queue), onPressed: () {})
],
),
 body: _buildBody(),
);
 }

260  ❘  CHAPTER 10   Building Layouts

6.	 Add the _buildBody() widget method after Widget build(BuildContext context) {...}.

7.	 Return a SingleChildScrollView with the child as a Column. The Column children list of
widgets is calling all the methods to create each section of the page. Note that the first method,
_buildJournalHeaderImage(), is positioned before the SafeArea and Padding, allowing the
Image to fill the full width of the device.

8.	 Add a Column as a child of the Padding and then call the _buildJournalEntry(), _buildJour-
nalWeather(), _buildJournalTags(), and _buildJournalFooterImages() methods.

 Widget _buildBody() {
 return SingleChildScrollView(
 child: Column(
 children: <Widget>[
 _buildJournalHeaderImage(),
 SafeArea(
 child: Padding(
 padding: EdgeInsets.all(16.0),
 child: Column(

Creating the Layout  ❘  261

 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 _buildJournalEntry(),
 Divider(),
 _buildJournalWeather(),
 Divider(),
 _buildJournalTags(),
 Divider(),
 _buildJournalFooterImages(),
],
),
),
),
],
),
);
 }

9.	 Create the _buildJournalHeaderImage() method, which returns an Image. The image property
uses AssetImage present.jpg with fit set to BoxFit.cover, allowing the Image to fill the full
width of the device.

 Image _buildJournalHeaderImage() {
 return Image(
 image: AssetImage('assets/images/present.jpg'),
 fit: BoxFit.cover,
);
 }

10.	 Create the _buildJournalEntry() method, which returns a Column. The Column children list of
widgets contains two Text widgets and one Divider() widget.

 Column _buildJournalEntry() {
 return Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 Text(
 'My Birthday',
 style: TextStyle(
 fontSize: 32.0,
 fontWeight: FontWeight.bold,
),
),
 Divider(),
 Text(
 'It’s going to be a great birthday. We are going out for dinner at my
favorite place, then watch a movie after we go to the gelateria for ice cream and
espresso.',
 style: TextStyle(color: Colors.black54),
),
],
);
 }

262  ❘  CHAPTER 10   Building Layouts

11.	 Create the _buildJournalWeather() method, which returns a Row. The Row children list of
widgets contains a Column, a SizedBox, and another Column. The second Column list of widgets
contains two Row widgets.

 Row _buildJournalWeather() {
 return Row(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 Icon(
 Icons.wb_sunny,
 color: Colors.orange,
),
],
),
 SizedBox(width: 16.0,),
 Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 Row(
 children: <Widget>[
 Text(
 '81º Clear',
 style: TextStyle(color: Colors.deepOrange),
),
],
),
 Row(
 children: <Widget>[
 Text(
 '4500 San Alpho Drive, Dallas, TX United States',
 style: TextStyle(color: Colors.grey),
),
],
),
],
),
],
);
 }

Creating the Layout  ❘  263

12.	 Create the _buildJournalTags() method, which returns a Wrap. The Wrap children use the
List.generate constructor to build the sample data list to show seven sample tag values. The
constructor takes two arguments, the length of the list and the index.

 Wrap _buildJournalTags() {
 return Wrap(
 spacing: 8.0,
 children: List.generate(7, (int index) {
 return Chip(
 label: Text(
 'Gift ${index + 1}',
 style: TextStyle(fontSize: 10.0),
),
 avatar: Icon(
 Icons.card_giftcard,
 color: Colors.blue.shade300,
),
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(4.0),
 side: BorderSide(color: Colors.grey),
),
 backgroundColor: Colors.grey.shade100,
);
 }),
);
 }

13.	 Create the _buildJournalFooterImages() method, which returns a Row. The Row children list
of widgets contains three CircleAvatars and a SizedBox. The SizedBox child is a Column with
a children list of Widget of three Icons. The main purpose of the SizedBox is adding extra spacing
between the CircleAvatar and the vertically placed Icons.

264  ❘  CHAPTER 10   Building Layouts

 Row _buildJournalFooterImages() {
 return Row(
 mainAxisAlignment: MainAxisAlignment.spaceBetween,
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 CircleAvatar(
 backgroundImage: AssetImage('assets/images/salmon.jpg'),
 radius: 40.0,
),
 CircleAvatar(
 backgroundImage: AssetImage('assets/images/asparagus.jpg'),
 radius: 40.0,
),
 CircleAvatar(
 backgroundImage: AssetImage('assets/images/strawberries.jpg'),
 radius: 40.0,
),
 SizedBox(
 width: 100.0,
 child: Column(
 crossAxisAlignment: CrossAxisAlignment.end,
 children: <Widget>[
 Icon(Icons.cake),
 Icon(Icons.star_border),
 Icon(Icons.music_note),
 //Icon(Icons.movie),
],
),
),
],
);
 }

Summary  ❘  265

HOW IT WORKS

You first created a high-level view by breaking down the main sections of the page. At the base you used
a SingleChildScrollView and consecutively built on top a Column, header Image, SafeArea, Padding,
and a Column with a children list of Widget that build each section separately. You broke them down
to four separate sections and built them by calling the _buildJournalEntry(), _buildJournal-
Weather(), _buildJournalTags(), and _buildJournalFooterImages() methods. Each of these
methods creates a custom layout by nesting widgets.

SUMMARY

In this chapter, you learned how to envision a high-level custom layout and break it down into its
main sections. Then you took each main section and built the layout needed by nesting widgets.

In the next chapter, you’ll learn to add interactivity by using the GestureDetector, Draggable,
DragTarget, InkWell, and Dismissable widgets.

266  ❘  CHAPTER 10   Building Layouts

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Getting a high-level view Break down the page into main sections.

Creating simple and
complex layouts

Separate and nest widgets.

Creating a custom layout Lay out and use widgets such as SingleChildScrollView,
SafeArea, Padding, Column, Row, Image, Divider, Text, Icon,
SizedBox, Wrap, Chip, and CircleAvatar.

Applying Interactivity
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to use GestureDetector, which recognizes gestures such as tap, double tap,
long press, pan, vertical drag, horizontal drag, and scale.

➤➤ How to use the Draggable widget that is dragged to a DragTarget.

➤➤ How to use the DragTarget widget that receives data from a Draggable.

➤➤ How to use the InkWell and InkResponse widgets. You will learn that InkWell
is a rectangular area that responds to touch and clips splashes within its area.
You’ll learn that InkResponse responds to touch and that splashes expand out-
side its area.

➤➤ How to use the Dismissible widget that is dismissed by dragging.

In this chapter, you’ll learn how to add interactivity to an app by using gestures. In a mobile
application, gestures are the heart of listening to user interaction. Making use of gestures can
define an app with a great UX. Overusing gestures when they don’t add value or convey an
action creates a poor UX. You’ll take a closer look at how to find a balance by using the correct
gesture for the task at hand.

SETTING UP GESTUREDETECTOR: THE BASICS

The GestureDetector widget detects gestures such as tap, double tap, long press, pan, verti-
cal drag, horizontal drag, and scale. It has an optional child property, and if a child widget is
specified, the gestures apply only to the child widget. If the child widget is omitted, then the
GestureDetector fills the entire parent instead. If you need to catch vertical drag and horizon-
tal drag at the same time, use the pan gesture. If you need to catch a single-axis drag, then use
either the vertical drag or horizontal drag gesture.

11

268  ❘  CHAPTER 11   Applying Interactivity

If you try to use vertical drag, horizontal drag, and pan gestures at the same time, you’ll receive an
Incorrect GestureDetector Arguments error. However, if you use either vertical or horizontal
drag with a pan gesture, you’ll not receive any errors. The reason you receive the error is that simul-
taneously having a vertical and horizontal drag gesture and a pan gesture results in the pan gesture
being ignored since the other two (vertical and horizontal drag) will first catch all of the drags
(Figure 11.1).

You’ll get the same kind of error if you try to use vertical drag, horizontal drag, and scale gestures at
the same time. However, if you use either vertical or horizontal drag with a scale gesture, you won’t
receive any errors.

FIGURE 11.1:  Vertical, horizontal, and pan gestures error

Setting Up GestureDetector: The Basics  ❘  269

Each pan, vertical drag, horizontal drag, and scale property has a callback for each start, update, and
end drag. (See Table 11.1.) Each callback has access to the details object containing values about
the gesture, which is rich in information and provides the touch position.

For example, to check whether a user dragged on the screen from either left or right, you use the
onHorizontalDragEnd callback that has access to the DragEndDetails details object. You use the
details.primaryVelocity value to check whether it’s negative, 'Dragged Right to Left', or if
it’s positive, 'Dragged Left to Right'.

onHorizontalDragEnd: (DragEndDetails details) {
 print('onHorizontalDragEnd: $details');

 if (details.primaryVelocity < 0) {
 print('Dragged Right to Left: ${details.primaryVelocity}');
 } else if (details.primaryVelocity > 0) {
 print('Dragged Left to Right: ${details.primaryVelocity}');
 }
},

// print statement results
flutter: onHorizontalDragEnd: DragEndDetails(Velocity(-2313.4, -110.3))
flutter: Dragged Right to Left: -2313.4407865184226
flutter: onHorizontalDragEnd: DragEndDetails(Velocity(3561.4, 123.2))
flutter: Dragged Left to Right: 3561.4258553699615

TABLE 11.1:  GestureDetector Callbacks

PROPERTY/CALLBACK DETAILS OBJECT FOR CALLBACK

onPanStart DragStartDetails

onVerticalDragStart DragStartDetails

onHorizontalDragStart DragStartDetails

onScaleStart ScaleStartDetails

onPanUpdate DragUpdateDetails

onVerticalDragUpdate DragUpdateDetails

onHorizontalDragUpdate DragUpdateDetails

onScaleUpdate ScaleUpdateDetails

onPanEnd DragEndDetails

onVerticalDragEnd DragEndDetails

onHorizontalDragEnd DragEndDetails

onScaleEnd ScaleEndDetails

270  ❘  CHAPTER 11   Applying Interactivity

The following are the GestureDetector gestures that you can listen for and take appropriate action:

➤➤ Tap

➤➤ onTapDown

➤➤ onTapUp

➤➤ onTap

➤➤ onTapCancel

➤➤ Double tap

➤➤ onDoubleTap

➤➤ Long press

➤➤ onLongPress

➤➤ Pan

➤➤ onPanStart

➤➤ onPanUpdate

➤➤ onPanEnd

➤➤ Vertical drag

➤➤ onVerticalDragStart

➤➤ onVerticalDragUpdate

➤➤ onVerticalDragEnd

➤➤ Horizontal drag

➤➤ onHorizontalDragStart

➤➤ onHorizontalDragUpdate

➤➤ onHorizontalDragEnd

➤➤ Scale

➤➤ onScaleStart

➤➤ onScaleUpdate

➤➤ onScaleEnd

Setting Up GestureDetector: The Basics  ❘  271

TRY IT OUT	 Creating the Gesture, Drag-and-Drop App

In this section, you’ll build the gesture area that catches drag events. To make the gesture area visible,
you’ll use a light green color and place an alarm clock icon for visual purposes only. In the next section,
you’ll add another area to this app to handle dragging capabilities.

In this example, the Column widget will vertically display a GestureDetector listening for the onTap,
onDoubleTap, onLongPress, and onPanUpdate gestures. It will also display a Draggable widget and
a DragTarget widget. The Draggable Icon will pass a Color to the DragTarget displaying a Text
widget changing to the passed Color. In this example, to keep the widget tree shallow, you’ll use methods
instead of widget classes.

1.	 Create a new Flutter project and name it ch11_gestures_drag_drop. You can follow the instruc-
tions in Chapter 4, “Creating a Starter Project Template.” For this project, you need to create only
the pages folder.

2.	 Open the main.dart file. Change the primarySwatch property from blue to lightGreen.

 primarySwatch: Colors.lightGreen,

3.	 Open the home.dart file and add to the body a SafeArea with a SingleChildScrollView as a
child. The reason for using a SingleChildScrollView is to handle device rotation and automati-
cally be able to scroll to view hidden content. Add a Column as a child of the
SingleChildScrollView. For the Column children list of Widget, add a method call to
_buildGestureDetector(), _buildDraggable(), and _buildDragTarget() with Divider
widgets between them.

Note that you will implement _buildDraggable() and _buildDragTarget() in the next
section. You can comment these methods out if you would like to test the project with just the
GestureDetector.

 body: SafeArea(
 child: SingleChildScrollView(
 child: Column(
 children: <Widget>[
 _buildGestureDetector(),
 Divider(
 color: Colors.black,

272  ❘  CHAPTER 11   Applying Interactivity

 height: 44.0,
),
 _buildDraggable(),
 Divider(
 height: 40.0,
),
 _buildDragTarget(),
 Divider(
 color: Colors.black,
),
],
),
),
),

4.	 Add the _buildGestureDetector() GestureDetector method after the Widget
build(BuildContext context) {...}.

5.	 Return a GestureDetector listening to the onTap, onDoubleTap, onLongPress, and
onPanUpdate gestures.

6.	 To view captured gestures, add a Container as a child of the GestureDetector. The Container
child is a Column displaying an Icon and a Text widget showing the gesture detected and
pointer location on the screen. I have also added the onVerticalDragUpdate and
onHorizontalDragUpdate gestures (properties) but commented them out for you to experiment.

Remember when using the Pan gesture that you can listen to only onHorizontalDragUpdate or
onVerticalDragUpdate, not both, or you will receive an error (refer to Figure 11.1).

7.	 To update the screen with the pointer location and to have code reuse, create the
_displayGestureDetected(String gesture) method. Each gesture passes the String
representation of the gesture. The onPanUpdate, onVerticalDragUpdate, and
onHorizontalDragUpdate gestures (properties) listen to DragUpdateDetails.

In this example, I’m using onPanUpdate, but I have left the onVerticalDragUpdate,
onHorizontalDragUpdate, and onHorizontalDragEnd gestures (properties) commented
out for you to experiment.

 GestureDetector _buildGestureDetector() {
 return GestureDetector(
 onTap: () {
 print('onTap');
 _displayGestureDetected('onTap');
 },
 onDoubleTap: () {
 print('onDoubleTap');

Setting Up GestureDetector: The Basics  ❘  273

 _displayGestureDetected('onDoubleTap');
 },
 onLongPress: () {
 print('onLongPress');
 _displayGestureDetected('onLongPress');
 },
 onPanUpdate: (DragUpdateDetails details) {
 print('onPanUpdate: $details');
 _displayGestureDetected('onPanUpdate:\n$details');
 },
 //onVerticalDragUpdate: ((DragUpdateDetails details) {
 // print('onVerticalDragUpdate: $details');
 // _displayGestureDetected('onVerticalDragUpdate:\n$details');
 //}),
 //onHorizontalDragUpdate: (DragUpdateDetails details) {
 // print('onHorizontalDragUpdate: $details');
 // _displayGestureDetected('onHorizontalDragUpdate:\n$details');
 //},
 //onHorizontalDragEnd: (DragEndDetails details) {
 // print('onHorizontalDragEnd: $details');
 // if (details.primaryVelocity < 0) {
 // print('Dragging Right to Left: ${details.velocity}');
 // } else if (details.primaryVelocity > 0) {
 // print('Dragging Left to Right: ${details.velocity}');
 // }
 //},
 child: Container(
 color: Colors.lightGreen.shade100,
 width: double.infinity,
 padding: EdgeInsets.all(24.0),
 child: Column(
 children: <Widget>[
 Icon(
 Icons.access_alarm,
 size: 98.0,
),
 Text('$_gestureDetected'),
],
),
),
);
 }

 void _displayGestureDetected(String gesture) {
 setState(() {
 _gestureDetected = gesture;
 });
 }

274  ❘  CHAPTER 11   Applying Interactivity

HOW IT WORKS

The GestureDetector listens to onTap, onDoubleTap, onLongPress, and onPanUpdate and for the app
the optional onVerticalDragUpdate and onHorizontalDragUpdate gestures (properties). As the
user taps and drags over the screen, the GestureDetector updates where the pointer begins and ends,
and while moving. To limit the area of detecting the gestures, you passed a Container as a child of the
GestureDetector.

Implementing the Draggable and DragTarget Widgets  ❘  275

IMPLEMENTING THE DRAGGABLE AND DRAGTARGET WIDGETS

To implement a drag-and-drop feature, you drag the Draggable widget to a DragTarget widget. You
use the data property to pass any custom data and use the child property to display a widget like
an Icon and remains visible while not being dragged as long as the childWhenDragging property is
null. Set the childWhenDragging property to display a widget while dragging. Use the feedback
property to display a widget showing the user visual feedback where the widget is being dragged.
Once the user lifts their finger on top of the DragTarget, the target can accept the data. To reject
accepting the data, the user moves away from the DragTarget without releasing touch. If you need
to restrict the dragging vertically or horizontally, you optionally set the Draggable axis property. To
catch a single axis drag, you set the axis property to either Axis.vertical or Axis.horizontal.

The DragTarget widget listens for a Draggable widget and receives data if dropped. The DragTarget
builder property accepts three parameters: the BuildContext, List<dynamic> acceptedData
(candidateData), and List<dynamic> of rejectedData. The acceptedData is the data passed from
the Draggable widget, and it expects it to be a List of values. The rejectedData contains the List of
data that will not be accepted.

TRY IT OUT	 Gestures: Adding Drag and Drop

In this section you’re going to add to the previous app an additional drag area that catches drag events.
You’ll create two widgets: a palette Icon widget that is draggable around the screen and a Text widget
that receives data by accepting a drag gesture. When the Text widget receives data, it will change its text
color from a light gray to a deep orange color but only if the drag is released on top of it.

To keep the example clean, the Draggable data property passes the deep color orange as an integer
value. The DragTarget accepting an integer value checks whether a Draggable is over it. If not, a
default label shows the message “Drag To and see the color change.” If Draggable is over it and data
has a value, you see a label with the data passed. The ternary operator (conditional statement) is used to
check whether the data is passed.

Continuing with the previous gestures project, let’s add the Draggable and DragTarget methods.

1.	 Create the _buildDraggable() method, which returns a Draggable integer. The Draggable
child is a Column with the children list of Widget consisting of an Icon and a Text widget. The
feedback property is an Icon, and the data property passes the Color as an integer value. The

276  ❘  CHAPTER 11   Applying Interactivity

data property can be any custom data needed, but to keep it simple, you are passing the integer
value of the Color.

 Draggable<int> _buildDraggable() {
 return Draggable(
 child: Column(
 children: <Widget>[
 Icon(
 Icons.palette,
 color: Colors.deepOrange,
 size: 48.0,
),
 Text(
 'Drag Me below to change color',
),
],
),
 childWhenDragging: Icon(
 Icons.palette,
 color: Colors.grey,
 size: 48.0,
),
 feedback: Icon(
 Icons.brush,
 color: Colors.deepOrange,
 size: 80.0,
),
 data: Colors.deepOrange.value,
);
 }

2.	 Create the _buildDragTarget() method, which returns a DragTarget integer. To accept data,
set the DragTarget onAccept property value to colorValue and set the _paintedColor variable
to the Color(colorValue). The Color(colorValue) constructs (converts) the integer value
to a color.

3.	 Set the builder property to accept three parameters: BuildContext, List<dynamic>
acceptedData, and List<dynamic> of rejectedData. Note that the data is a List, and to obtain
the Color integer value, you read the first-row value by using acceptedData[0].

Use the arrow syntax with the ternary operator to check for acceptedData.isEmpty. If it’s
empty, it means no dragging over the DragTarget and shows a Text widget instructing the user to
“Drag To and see color change.” Otherwise, if there is dragging over, the DragTarget shows the
Text widget displaying the 'Painting Color: $acceptedData'. For the same Text widget, set
the color style property to the Color(acceptedData[0]) giving the user visual feedback of
the color.

 DragTarget<int> _buildDragTarget() {
 return DragTarget<int>(
 onAccept: (colorValue) {

Implementing the Draggable and DragTarget Widgets  ❘  277

 _paintedColor = Color(colorValue);
 },
 builder: (BuildContext context, List<dynamic> acceptedData, List<dynamic>
rejectedData) => acceptedData.isEmpty
 ? Text(
 'Drag To and see color change',
 style: TextStyle(color: _paintedColor),
)
 : Text(
 'Painting Color: $acceptedData',
 style: TextStyle(
 color: Color(acceptedData[0]),
 fontWeight: FontWeight.bold,
),
),
);
 }

HOW IT WORKS

The DragTarget widget listens for a Draggable widget to drop. If the user releases over the DragTarget,
the onAccept is called, as long as the data is acceptable. The builder property accepts three parameters:
BuildContext, List<dynamic> acceptedData (candidateData), and List<dynamic> of rejected-
Data. Using the arrow syntax with a ternary operator, you check for acceptedData.isEmpty. If it’s
empty, no data is passed, and a Text widget displays instructions. If data is valid and accepted, a Text
widget is displayed with the data value and uses the style property to set the appropriate color.

278  ❘  CHAPTER 11   Applying Interactivity

USING THE GESTUREDETECTOR FOR MOVING AND SCALING

Now you’ll build upon what you learned in the “Setting Up GestureDetector: The Basics” section,
and by taking a more in-depth look, you’ll learn how to scale widgets by using single or multitouch
gestures. The goal is to learn how to implement multitouch scaling of an image by zooming in/out,
double tap to increase zoom, and long press to reset the image to original size. The GestureDetector
gives you the ability to accomplish scaling by using
onScaleStart and onScaleUpdate. Use onDoubleTap to
increase the zoom, and use onLongPress to reset the zoom to
the original default size.

When the user taps the image, the image can be dragged
around to change position or scaled by zooming in/out. To
accomplish both requirements, you’ll use the Transform
widget. Use the Transform.scale constructor to resize the
image, and use the Transform.translate constructor to
move the image (Figure 11.2).

The Transform widget applies a transformation before the
child is painted. Using the Transform default construc-
tor, the transform argument is set by using the Matrix4 (4D
Matrix) class, and this transformation matrix is applied to
the child during painting. The benefits of using the default
constructor are to use the Matrix4 to execute multiple cascad-
ing (..scale()..translate()) transformations. The double
dots (..) are used to cascade multiple transformations. In
Chapter 3, “Learning Dart Basics,” you learned that the cas-
cade notation allows you to make a sequence of operations on
the same object. The following sample code shows how to use
the Matrix4 class with the cascade notation to apply a scale
and a translate transform to the same object:

Matrix4.identity()
 ..scale(1.0, 1.0)
 ..translate(30, 30);

The Transform widget has four different constructors.

➤➤ Transform: Default constructor taking a Matrix4 for the transform argument.

➤➤ Transform.rotate: Constructor to rotate a child widget around the center by using an
angle. The angle argument rotates clockwise by radians. To rotate counterclockwise, pass
a negative radian.

➤➤ Transform.scale: Constructor to evenly scale a child widget on the x-axis and y-axis.
The widget is scaled by its center alignment. The scale argument value of 1.0 is the original
widget size. Any values above 1.0 scale the widget larger, and values below 1.0 scale
the widget smaller. A value of 0.0 makes the widget invisible.

FIGURE 11.2:  Moving and scaling
an image

Using the GestureDetector for Moving and Scaling  ❘  279

➤➤ Transform.translate: Constructor to move/position a child widget by using a translation,
an offset. The offset argument takes the Offset(double dx, double dy) class by posi-
tioning the widget on the x-axis and y-axis.

TRY IT OUT	 Creating an App with Gestures for Moving and Scaling

In this example, the app presents a page showing an image that’s the full device width. Imagine if this is
a journal app and the user navigated to this page to view the selected image with the ability to zoom for
more details. The image is moved by a single touch drag and can be zoomed in/out (pinching) by using
multitouch. Double tapping allows the image to zoom in at the tapped location, and a single long press
resets the image location and zoom level back to default values.

This example is the first part of the app where you lay out the widgets that handle the gestures moving
and scaling the image. In the next exercise, you’ll concentrate on adding the logic to handle the calcula-
tions necessary to keep track of the location and scale of the image.

The GestureDetector is the body (property) base widget and is listening for the onScaleStart,
onScaleUpdate, onDoubleTap, and onLongPress gestures (properties). The GestureDetector child
is a Stack that shows the image and a gesture status bar display. To apply the moving and scaling of the
image, use the Transform widget. To show different ways to apply changes to a widget, you make use of
three different Transform constructors: default, scale, and translate.

You’ll take a look at two techniques to accomplish the same moving and scaling results. The first tech-
nique (beginning with step 13) involves nesting the scale and translate constructors. The second
technique (starting at step 16) uses the default constructor with the Matrix4 to apply transformations.

280  ❘  CHAPTER 11   Applying Interactivity

Note in this example to keep the widget tree shallow, you’ll use methods instead of widget classes.

1.	 Create a new Flutter project and name it ch11_gestures_scale. As usual, you can follow the
instructions in Chapter 4. For this project, you need to create only the pages and assets/
images folders.

2.	 Create the Home Class as a StatefulWidget since the data (state) requires changes.

3.	 Open the pubspec.yaml file to add resources. Under the assets section, add the assets/
images/ folder.

 # To add assets to your application, add an assets section, like this:
 assets:
 - assets/images/

4.	Click the Save button, and depending on the Editor you are using, it automatically runs the
flutter packages get; once finished, it will show a message of Process finished with exit
code 0. If it does not automatically run the command for you, open the Terminal window (located
at the bottom of your editor) and type flutter packages get.

5.	 Add the folder assets and subfolder images at the project’s root, and then copy the elephant.
jpg file to the images folder.

6.	 Open the home.dart file and add to the body a call to the _buildBody(context) method. The
context is received by the _buildBody() method as a parameter for the method’s MediaQuery to
obtain the device width.

 body: _buildBody(context),

7.	 Below the class _HomeState extends State<Home> and above @override, add the variables
for _startLastOffset, _lastOffset, _currentOffset, _lastScale, and _currentScale.

The _startLastOffset, _lastOffset, and _currentOffset variables are of type Offset initial-
ized to a value of Offset.zero. The Offset.zero is the same as Offset(0.0, 0.0), meaning the
default position for the image. These variables are used to keep track of the image position while
it’s dragged.

The _lastScale and _currentScale variables are of type double. They are initialized to a
value of 1.0, which is normal zoom size. These variables are used to keep track of the image
while it’s scaled. Values greater than 1.0 scale the image bigger, and values less than 1.0 scale the
image smaller.

 class _HomeState extends State<Home> {
 Offset _startLastOffset = Offset.zero;
 Offset _lastOffset = Offset.zero;
 Offset _currentOffset = Offset.zero;
 double _lastScale = 1.0;
 double _currentScale = 1.0;

 @override
 Widget build(BuildContext context) {

Using the GestureDetector for Moving and Scaling  ❘  281

8.	 Add the _buildBody(BuildContext context) Widget method after the Widget
build(BuildContext context) {...}. Return a GestureDetector with the child as a Stack.
Note that the GestureDetector is at the root of the body property to intercept all gestures
anywhere on the screen.

To show the image and the top gesture status bar display, you’ll use the Stack widget.

9.	 Set the Stack fit property to StackFit.expand to expand to the biggest size allowed.

10.	 For the Stack children list of Widget, add three methods and name them _transformScale
AndTranslate(), _transformMatrix4(), and _positionedStatusBar(context). The
_positionedStatusBar method passes the context for the MediaQuery to obtain the full width
of the device.

11.	 Comment out the _transformMatrix4() method since you will be testing with the
_transformScaleAndTranslate() first.

12.	 Add to the GestureDetector the onScaleStart, onScaleUpdate, onDoubleTap, and
onLongPress gestures (properties) to listen for each gesture. Respectively pass the _onScaleStart,
_onScaleUpdate, _onDoubleTap, and _onLongPress methods.

 Widget _buildBody(BuildContext context) {
 return GestureDetector(
 child: Stack(
 fit: StackFit.expand,
 children: <Widget>[
 _transformScaleAndTranslate(),
 //_transformMatrix4(),
 _positionedStatusBar(context),
],
),
 onScaleStart: _onScaleStart,
 onScaleUpdate: _onScaleUpdate,
 onDoubleTap: _onDoubleTap,
 onLongPress: _onLongPress,
);
 }

13.	 In this step you implement the first technique (moving and scaling) by nesting the scale and
translate constructors. Add the _transformScaleAndTranslate() Transform method after
Widget build(BuildContext context) {...}. Return a Transform by nesting the scale and
translate constructors.

14.	 For the Transform.scale constructor’s scale argument, enter the variable _currentScale and
set the child argument to the Transform.translate constructor.

15.	 For the Transform.translate constructor’s offset argument, enter the variable _current_
offset and set the child argument to an Image. This child widget is the image that is dragged
around and scaled by nesting the two Transform widgets.

282  ❘  CHAPTER 11   Applying Interactivity

 Transform _transformScaleAndTranslate() {
 return Transform.scale(
 scale: _currentScale,
 child: Transform.translate(
 offset: _currentOffset,
 child: Image(
 image: AssetImage('assets/images/elephant.jpg'),
),
),
);
 }

16.	 In this step, you implement the second technique (moving and scaling) by using the default
constructor. Add the _transformMatrix4() Transform method. Return a Transform by using
the default constructor.

17.	 For the Transform constructor’s transform argument, use the Matrix4. Using the Matrix4.
identity() creates the matrix from zero and sets default values. It is actually making a call to
Matrix4.zero()..setIdentity(). From the identity constructor, use the double dots to
cascade the scale and translate transformations. With this technique, there’s no need to use multiple
Transform widgets—you use only one and execute multiple transformations.

18.	 For the scale method, pass the _currentScale for both the x- and y-axes. The x-axis is manda-
tory, but the y-axis is optional. Since the image is scaled proportionally, both the x-axis and y-axis
values are utilized.

19.	 For the translate method, pass the _currentOffset.dx for the x-axis and _currentOffset.dy
for the y-axis. The x-axis is mandatory, but the y-axis is optional. In this app, the image is being
dragged (moved) without restrictions, and both the x-axis and y-axis values are utilized.

20.	 To keep the image center-aligned during scaling, set the alignment property to use the
FractionalOffset.center. If the center alignment is not used while the image scales, the trans-
late _currentOffset moves the image. By keeping the image in the same location during scaling, it
creates a great UX. If the image is moving away from the current location during scaling, that
would not be a good UX.

Set the child property to an Image widget. The image property uses the AssetImage
elephant.jpg.

 Transform _transformMatrix4() {
 return Transform(
 transform: Matrix4.identity()
 ..scale(_currentScale, _currentScale)
 ..translate(_currentOffset.dx, _currentOffset.dy,),
 alignment: FractionalOffset.center,
 child: Image(
 image: AssetImage('assets/images/elephant.jpg'),
),
);
 }

Using the GestureDetector for Moving and Scaling  ❘  283

21.	 Add the _positionedStatusBar(BuildContext context) Positioned method. Return a
Positioned by using the default constructor. The purpose of this Positioned widget is to show
a gesture status bar display on the top of the screen with the current scale and position.

22.	 Set the top property to 0.0 to position it on the top of the screen in the Stack widget. Set the
width property by using the MediaQuery width to expand the full width of the device. The child
is a Container with the color property set to a shade of Colors.white54. Set the Container
height property to 50.0. Set the Container child to a Row with the mainAxisAlignment of
MainAxisAlignment.spaceAround. For the Row children list of Widget, use two Text widgets.
The first Text widget shows the current scale by using the _currentScale variable. To show only
up to four decimal points precision, use _currentScale.toStringAsFixed(4). The second Text
widget shows the current location by using the _currentOffset variable.

 Positioned _positionedStatusBar(BuildContext context) {
 return Positioned(
 top: 0.0,
 width: MediaQuery.of(context).size.width,
 child: Container(
 color: Colors.white54,
 height: 50.0,
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: <Widget>[
 Text(
 'Scale: ${_currentScale.toStringAsFixed(4)}',
),
 Text(
 'Current: $_currentOffset',
),
],
),
),
);
 }

HOW IT WORKS

The GestureDetector listens to the onScaleStart, onScaleUpdate, onDoubleTap, and onLongPress
gestures (properties). As the user taps and drags over the screen, the GestureDetector updates where
the pointer begins and ends, as well as updating its location while moving. To maximize the gesture
detecting area, the GestureDetector fills the entire screen by setting the child Stack widget fit prop-
erty to StackFit.expand to expand to the biggest size allowed. Note that the GestureDetector fills the
entire screen only if no child widget is used.

The _startLastOffset, _lastOffset, and _currentOffset variables are of type Offset and are used
to track the image position. The _lastScale and _currentScale variables are of type double and are
used to track the image scale.

Using the Stack widget allows you to place the Image and a Positioned widget to overlap each other.
The Positioned widget is placed as the last widget in the Stack to allow the gesture status bar display
to stay over the Image.

284  ❘  CHAPTER 11   Applying Interactivity

The Transform widget is used to move and scale the Image by implementing two different tech-
niques. The first technique makes use of nesting the Transform.scale and Transform.translate
constructors. The second technique uses the Transform default constructor by using the Matrix4
to apply transformations. Both methods accomplish the same results.

TRY IT OUT	 Adding Logic and Calculations to the Moving and Scaling Project

Continue with the previous moving and scaling project and start adding the logic and calculations to
handle the GestureDetector gestures. The onScaleStart and onScaleUpdate are responsible for
handling moving and scaling gestures. The onDoubleTap is responsible for handling the double tapping
gesture to increase the zoom. The onLongPress is responsible for handling a long press gesture to reset
the zoom to the original default value.

1.	 Create the _onScaleStart(ScaleStartDetails details) method. This gesture is called once
when the user starts to move or scale the image. This method populates the _startLastOffset,
_lastOffset, and _lastScale variables, and the image position and scale calculations are based
on these values.

 void _onScaleStart(ScaleStartDetails details) {
 print('ScaleStartDetails: $details');

 _startLastOffset = details.focalPoint;
 _lastOffset = _currentOffset;
 _lastScale = _currentScale;
 }

2.	 Create the _onScaleUpdate(ScaleUpdateDetails details) method. This gesture is called when
the user is either moving or scaling the image.

By using the details (ScaleUpdateDetails from callback) object, different values such as the
scale, rotation, and focalPoint (Offset of the contact position on the device screen) can be
checked. The goal is to check whether the user is either moving or scaling the image by checking
the details.scale value.

 void _onScaleUpdate(ScaleUpdateDetails details) {
 print('ScaleUpdateDetails: $details - Scale: ${details.scale}');
 }

3.	 Set up an if statement to check whether the user is scaling the image by evaluating details.
scale != 1.0. If the details.scale is greater or less than 1.0, it means the image is scaling.
With values greater than 1.0, the image is scaling larger, and with values less than 1.0, the image is
scaling smaller.

 void _onScaleUpdate(ScaleUpdateDetails details) {
 print('ScaleUpdateDetails: $details - Scale: ${details.scale}');

 if (details.scale != 1.0) {
 // Scaling
 }
 }

Using the GestureDetector for Moving and Scaling  ❘  285

4.	 To calculate the current scale, create a local variable called currentScale of type double and
calculate the value by taking the _lastScale * details.scale. The _lastScale was previously
calculated from the _onScaleStart() method, and the details.scale is the current scale as the
user continues to zoom the image.

 double currentScale = _lastScale * details.scale;

5.	 To restrict the image not to scale down to more than half its size, check whether the currentScale
is less than 0.5 (half the original size) and reset the value to 0.5.

 if (currentScale < 0.5) {
 currentScale = 0.5;
 }

6.	 To have the Image widget refresh the current zoom, add the setState() method and populate the
_currentScale value with the local currentScale variable. Remember that the setState()
method tells the Flutter framework that the widget should redraw because the state has changed. It
is recommended to place calculations that do not need state changes outside the setState()
method. This best practice is why you created a local variable called currentScale.

 setState(() {
 _currentScale = currentScale;
 });

The following is the current _onScaleUpdate() method:

 void _onScaleUpdate(ScaleUpdateDetails details) {
 print('ScaleUpdateDetails: $details - Scale: ${details.scale}');

 if (details.scale != 1.0) {
 // Scaling
 double currentScale = _lastScale * details.scale;
 if (currentScale < 0.5) {
 currentScale = 0.5;
 }
 setState(() {
 _currentScale = currentScale;
 });
 print('_scale: $_currentScale - _lastScale: $_lastScale');
 }
 }

7.	 Continue adding to the _onScaleUpdate() method the logic to move the image around the screen.

8.	 Add an else if statement to check whether the details.scale is equal to 1.0. If the scaling is
1.0, it means the image is moving, not scaling.

 } else if (details.scale == 1.0) {

Before the image can be moved, you need to take into account the current scale since it affects the
Offset (position).

286  ❘  CHAPTER 11   Applying Interactivity

9.	 Create the local offsetAdjustedForScale variable as of type Offset. This variable holds the last
offset by taking into consideration the scale factor. Take the _startLastOffset and subtract the
_lastOffset; then divide the result by the _lastScale.

 // Calculate offset depending on current Image scaling.
 Offset offsetAdjustedForScale = (_startLastOffset - _lastOffset) / _lastScale;

10.	 Create the local currentOffset variable of type Offset. This variable holds the current offset
(position) of the image. The currentOffset is calculated by taking the details.focalPoint
minus the offsetAdjustedForScale times the _currentScale.

 Offset currentOffset = details.focalPoint - (offsetAdjustedForScale *
_currentScale);

11.	 To have the Image widget refresh the current position, add the setState() method and populate
the _currentOffset value with the local currentOffset variable.

 setState(() {
 _currentOffset = currentOffset;
 });

The following is the full _onScaleUpdate() method:

 void _onScaleUpdate(ScaleUpdateDetails details) {
 print('ScaleUpdateDetails: $details - Scale: ${details.scale}');

 if (details.scale != 1.0) {
 // Scaling
 double currentScale = _lastScale * details.scale;
 if (currentScale < 0.5) {
 currentScale = 0.5;
 }
 setState(() {
 _currentScale = currentScale;
 });
 print('_scale: $_currentScale - _lastScale: $_lastScale');
 } else if (details.scale == 1.0) {
 // We are not scaling but dragging around screen
 // Calculate offset depending on current Image scaling.
 Offset offsetAdjustedForScale = (_startLastOffset - _lastOffset) /
_lastScale;
 Offset currentOffset = details.focalPoint - (offsetAdjustedForScale *
_currentScale);
 setState(() {
 _currentOffset = currentOffset;
 });
 print('offsetAdjustedForScale: $offsetAdjustedForScale - _currentOffset:
$_currentOffset');
 }
 }

Using the GestureDetector for Moving and Scaling  ❘  287

12.	 Create the _onDoubleTap() method. This gesture is called when the user is double tapping the
screen. When a double tap is detected, the image is scaled twice as large.

13.	 Create the local currentScale variable of type double. The currentScale is calculated by taking
the _lastScale times 2.0 (twice the size).

 double currentScale = _lastScale * 2.0;

14.	 Add an if statement that checks whether the currentScale is greater than 16.0 (16 times the
original size); then reset currentScale to 1.0. Add a call to the _resetToDefaultValues()
(created in step 19) method that resets all variables to their default values. The result is that the
image is recentered and scaled to the original size.

15.	 After the if statement, set the _lastScale variable to the local currentScale variable.

16.	 To have the Image widget refresh the current scale, add the setState() method and populate the
_currentScale value with the local currentScale variable.

 void _onDoubleTap() {
 print('onDoubleTap');

 // Calculate current scale and populate the _lastScale with currentScale
 // if currentScale is greater than 16 times the original image, reset scale
to default, 1.0
 double currentScale = _lastScale * 2.0;
 if (currentScale > 16.0) {
 currentScale = 1.0;
 _resetToDefaultValues();
 }
 _lastScale = currentScale;

 setState(() {
 _currentScale = currentScale;
 });
 }

17.	 Create the _onLongPress() method. This gesture is called when the user is pressing and holding
on the screen. When a long press is detected, the image is reset to its original position and scale.

18.	 To have the Image widget refresh to the default position and scale, add the setState() method
and call the _resetToDefaultValues() method.

 void _onLongPress() {
 print('onLongPress');

 setState(() {
 _resetToDefaultValues();
 });
 }

288  ❘  CHAPTER 11   Applying Interactivity

19.	 Create the _resetToDefaultValues() method. The purpose of this method is to reset all values to
default with the Image widget centered on the screen and scaled back to original size. Creating this
method is a great way to share code reuse from anywhere in the page.

 void _resetToDefaultValues() {
 _startLastOffset = Offset.zero;
 _lastOffset = Offset.zero;
 _currentOffset = Offset.zero;
 _lastScale = 1.0;
 _currentScale = 1.0;
 }

HOW IT WORKS

The _onScaleStart() method is called when a touch first begins to move or scale the image. The
_startLastOffset, _lastOffset, and _lastScale variables are populated with values needed to prop-
erly position and scale the image by the _onScaleUpdate() method.

The _onScaleUpdate() method is called when the user is either moving or scaling the image. The details
(ScaleUpdateDetails) object contains values such as the scale, rotation, and focalPoint. By using
the details.scale value, you check whether the image is moving or scaling. If the details.scale
is greater than 1.0, the image is scaling larger, and if the details.scale is less than 1.0, the image is
scaling smaller. If the details.scale is equal to 1.0, the image is moving.

The _onDoubleTap() method is called when the user is double tapping the screen. With each double tap,
the image is scaled twice as large, and once it reaches 16 times the original size, the scale is reset to 1.0,
the original size.

Using the InkWell and InkResponse Gestures  ❘  289

The _onLongPress() method is called when the user is pressing and holding on the screen. When
this gesture is detected, the image is reset to its original position and scale by calling the
_resetToDefaultValues() method.

The _resetToDefaultValues() method is responsible for resetting all values back to default. The
Image widget is moved back to the center of the screen and scaled to the original size.

USING THE INKWELL AND INKRESPONSE GESTURES

Both the InkWell and InkResponse widgets are Material Components that respond to touch ges-
tures. The InkWell class extends (subclass) the InkResponse class. The InkResponse class extends
a StatefulWidget class.

For the InkWell, the area that responds to touch is rectangular in shape and shows a “splash”
effect—though it really looks like a ripple. The splash effect is clipped to the rectangular area of the
widget (so as not go outside it). If you need to expand the splash effect outside the rectangular area,
the InkResponse has a configurable shape. By default, the InkResponse shows a circular splash
effect that can expand outside its shape (Figure 11.3).

FIGURE 11.3:  InkWell and InkResponse splash

290  ❘  CHAPTER 11   Applying Interactivity

Tapping the InkWell shows how the splash effect incrementally appears (Figure 11.4). In this sce-
nario, the user tapped the left button, and it shows the splash effect gradually changing the button
color from gray to a blue. The splash color stays inside the button’s rectangular area.

Tapping the InkResponse shows how the splash effect incrementally appears (Figure 11.5). In this
scenario the user tapped the right button, and it shows the circular splash effect gradually changing
the button color from gray to a blue. The splash color circularly expands outside the button’s rectan-
gular area.

The following are the InkWell and InkResponse gestures that you can listen for and take appropri-
ate action. The gestures captured are taps on the screen except for the onHighlightChanged prop-
erty, which is called when part of the material starts or stops being highlighted.

➤➤ Tap

➤➤ onTap

FIGURE 11.5:  InkResponse gradual splash outside rectangular area

FIGURE 11.4:  InkWell gradual splash inside rectangular area

Using the InkWell and InkResponse Gestures  ❘  291

➤➤ onTapDown

➤➤ onTapCancel

➤➤ Double tap

➤➤ onDoubleTap

➤➤ Long press

➤➤ onLongPress

➤➤ Highlight changed

➤➤ onHighlightChanged

TRY IT OUT	 Adding InkWell and InkResponse to the Gesture Status Bar

Continuing with the previous gestures project to compare how each widget performs, you’ll add an
InkWell and InkResponse to the current gesture status bar display.

1.	 In the _buildBody(BuildContext context) method, add a call to the
_positionedInkWellAndInkResponse(context) method. Place this call after the
_positionedStatusBar(context)
method.

 Widget _buildBody(BuildContext context) {
 return GestureDetector(
 child: Stack(
 fit: StackFit.expand,
 children: <Widget>[

292  ❘  CHAPTER 11   Applying Interactivity

 //_transformScaleAndTranslate(),
 _transformMatrix4(),
 _positionedStatusBar(context),
 _positionedInkWellAndInkResponse(context),
],
),
 onScaleStart: _onScaleStart,
 onScaleUpdate: _onScaleUpdate,
 onDoubleTap: _onDoubleTap,
 onLongPress: _onLongPress,
);
 }

2.	 Create the _positionedInkWellAndInkResponse(BuildContext context) Positioned
method after the _positionedStatusBar(BuildContext context) method. Return a
Positioned by using the default constructor. The purpose of this Positioned widget is to add to
the current gesture status bar display the InkWell and InkResponse widgets.

3.	 Set the top property to 50.0 to position it below the previous Positioned widget (gesture status
bar display) in the Stack widget.

4.	 Set the width property by using the MediaQuery width to expand the full width of the device. The
child is a Container with the color property set to a shade of Colors.white54.

5.	 Set the Container height property to 56.0. Set the Container child to a Row with the mainAx-
isAlignment of MainAxisAlignment.spaceAround.

 Positioned _positionedInkWellAndInkResponse(BuildContext context) {
 return Positioned(
 top: 50.0,
 width: MediaQuery.of(context).size.width,
 child: Container(
 color: Colors.white54,
 height: 56.0,
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: <Widget>[

],
),
),
);
 }

Using the InkWell and InkResponse Gestures  ❘  293

6.	 Add to the Row children list of Widget an InkWell and InkResponse. Since both widgets have
the same properties, follow the same instructions for the InkWell and the InkResponse.

7.	 Set the child property to a Container with the height property set to 48.0, the width property
set to 128.0, and the color property set to a light shade of Colors.black12. Set the child
property to the Icons.touch_app with the size property of 32.0.

8.	 To customize the splash color, set the splashColor property to Colors.lightGreenAccent and
the highlightColor property to Colors.lightBlueAccent. The splashColor is displayed where
the pointer first touched the screen, and the highlightColor is the splash (ripple) effect.

9.	 Add to the InkWell and InkResponse the onTap, onDoubleTap, and onLongPress to listen for
each gesture. Respectively pass the _setScaleSmall, _setScaleBig, and _onLongPress methods.

 Positioned _positionedInkWellAndInkResponse(BuildContext context) {
 return Positioned(
 top: 50.0,
 width: MediaQuery.of(context).size.width,
 child: Container(
 color: Colors.white54,
 height: 56.0,
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: <Widget>[
 InkWell(
 child: Container(
 height: 48.0,
 width: 128.0,
 color: Colors.black12,
 child: Icon(
 Icons.touch_app,
 size: 32.0,
),
),
 splashColor: Colors.lightGreenAccent,
 highlightColor: Colors.lightBlueAccent,
 onTap: _setScaleSmall,
 onDoubleTap: _setScaleBig,
 onLongPress: _onLongPress,
),
 InkResponse(
 child: Container(

294  ❘  CHAPTER 11   Applying Interactivity

 height: 48.0,
 width: 128.0,
 color: Colors.black12,
 child: Icon(
 Icons.touch_app,
 size: 32.0,
),
),
 splashColor: Colors.lightGreenAccent,
 highlightColor: Colors.lightBlueAccent,
 onTap: _setScaleSmall,
 onDoubleTap: _setScaleBig,
 onLongPress: _onLongPress,
),
],
),
),
);
 }

10.	 Create the _setScaleSmall() and _setScaleBig() methods after the _resetToDefault
Values() method. For the _setScaleSmall() method, add a setState() to modify the
_currentScale variable to 0.5. When the onTap gesture is captured, it will decrease the image’s
size to half of the original size.

For the _setScaleBig() method, add a setState() to modify the _currentScale variable to
16.0. When the onDoubleTap gesture is captured, it will increase the image size to 16 times the
original size.

 void _setScaleSmall() {
 setState(() {
 _currentScale = 0.5;
 });
 }

 void _setScaleBig() {
 setState(() {
 _currentScale = 16.0;
 });
 }

Using the InkWell and InkResponse Gestures  ❘  295

HOW IT WORKS

Both the InkWell and InkResponse widgets listen to the same gesture callbacks. The widgets capture the
onTap, onDoubleTap, and onLongPress gestures (properties).

When a single tap is captured, the onTap calls the _setScaleSmall() method to scale the image to half
the original size.

296  ❘  CHAPTER 11   Applying Interactivity

When a double tap is captured, the onDoubleTap calls the _setScaleBig() method to scale the image
to 16 times the original size.

When a long press is captured, the onLongPress calls the _onLongPress() method to reset all values to
the original positions and sizes.

The main benefits of using the InkWell and InkResponse are to capture taps on the screen and have a
beautiful splash. This kind of reaction makes for a good UX, correlating an animation to a user’s action.

USING THE DISMISSIBLE WIDGET

The Dismissible widget is dismissed by a dragging gesture. The direction of the drag can be
changed by using DismissDirection for the direction property. (See Table 11.2 for DismissDi-
rection options.) The Dismissible child widget slides out of view and automatically animates the
height or width (depending on dismiss direction) down to zero. This animation happens in two steps;
first the Dismissible child slides out of view, and second, the size animates down to zero. Once the
Dismissible is dismissed, you can use the onDismissed callback to perform any necessary actions
such as removing a data record from the database or marking a to-do item complete (Figure 11.6).
If you do not handle the onDismissed callback, you’ll receive the error “A dismissed Dismissi-
ble widget is still part of the tree.” For example, if you use a List of items, once the Dismissible
is removed you need to remove the item from the List by implementing the onDismissed callback.
You’ll take a detailed look at how to handle this in step 9 of the next exercise.

FIGURE 11.6:  Dismissible widget showing the swiped row dismissed animation to complete the item

Using the Dismissible Widget  ❘  297

TRY IT OUT	 Creating the Dismissible App

In this example, you’ll build a list of vacation trips, and when you drag from left to right, the
Dismissible shows a checkbox icon with a green background to mark the trip completed. When swip-
ing from right to left, the Dismissible shows a delete icon with a red background to remove the trip.

The Dismissible handles all the animations such as sliding, resizing to remove the selected row, and
sliding the next item on the list upward.

You’ll create a Trip class to hold the vacation details with an id, tripName, and tripLocation vari-
ables. You load a List to track the vacations by adding individual Trip details. The body property uses
a ListView.builder that returns a Dismissible widget. You set the Dismissible child property to
a ListTile, and the background and secondaryBackground properties return a Container with the
child as a Row with a children list of Widget with an Icon.

Note that in this example to keep the widget tree shallow, you’ll use methods instead of widget classes.

TABLE 11.2:  DismissDirection Dismiss Options

DIRECTION DISMISSED WHEN. . .

startToEnd Dragging left to right.*

endToStart Dragging right to left.*

horizontal Dragging either left or right.

up Dragging up.

down Dragging down.

vertical Dragging either up or down.

* Assuming reading direction is left to right; when reading direction is right to left, these work the
opposite ways.

298  ❘  CHAPTER 11   Applying Interactivity

1.	 Create a new Flutter project and name it ch11_dismissible. Again, you can follow the instruc-
tions from Chapter 4. For this project, you only need to create the pages and classes folders.
Create the Home Class as a StatefulWidget since the data (state) requires changes.

2.	 Open the home.dart file and add to the body a ListView.builder().

 body: ListView.builder(),

3.	 Add to the top of the file the import trip.dart package that you’ll create next.

 import 'package:flutter/material.dart';
 import 'package:ch11_dismissible/classes/trip.dart';

4.	 Create a new Dart file under the classes folder. Right-click the classes folder, select New ➪ Dart
File, enter trip.dart, and click the OK button to save.

5.	 Create the Trip Class. The Trip Class holds the vacation details with an id, tripName, and
tripLocation String variables. Create the Trip constructor with named parameters by entering
the variable names this.id, this.tripName, and this.tripLocation inside the curly
brackets ({}).

 class Trip {
 String id;
 String tripName;
 String tripLocation;

 Trip({this.id, this.tripName, this.tripLocation});
 }

6.	 Edit the home.dart file and after the class _HomeState extends State<Home> and before
@override, add the List variable _trips initialized by an empty Trip List.

 List _trips = List<Trip>();

7.	 Override the initState() to initialize the _trips List. You are going to add 11 items to the
_trips List. Usually, this data would be read from a local database or a web server.

 @override
 void initState() {
 super.initState();
 _trips..add(Trip(id: '0', tripName: 'Rome', tripLocation: 'Italy'))
 ..add(Trip(id: '1', tripName: 'Paris', tripLocation: 'France'))
 ..add(Trip(id: '2', tripName: 'New York', tripLocation: 'USA - New York'))
 ..add(Trip(id: '3', tripName: 'Cancun', tripLocation: 'Mexico'))
 ..add(Trip(id: '4', tripName: 'London', tripLocation: 'England'))
 ..add(Trip(id: '5', tripName: 'Sydney', tripLocation: 'Australia'))
 ..add(Trip(id: '6', tripName: 'Miami', tripLocation: 'USA - Florida'))
 ..add(Trip(id: '7', tripName: 'Rio de Janeiro', tripLocation: 'Brazil'))
 ..add(Trip(id: '8', tripName: 'Cusco', tripLocation: 'Peru'))
 ..add(Trip(id: '9', tripName: 'New Delhi', tripLocation: 'India'))
 ..add(Trip(id: '10', tripName: 'Tokyo', tripLocation: 'Japan'));
 }

Using the Dismissible Widget  ❘  299

8.	 Create two methods that simulate marking a Trip item completed or deleted in the database.
Create the _markTripCompleted() and _deleteTrip() methods that act as placeholders to write
to a database.

 void _markTripCompleted() {
 // Mark trip completed in Database or web service
 }

 void _deleteTrip() {
 // Delete trip from Database or web service
 }

9.	 Set the ListView.builder constructor with the itemCount argument set to _trips.length,
which is the number of rows in the _trips List. For the itemBuilder argument, it takes the
BuildContext and the widget index as an int value.

 itemCount: _trips.length,

The itemBuilder returns a Dismissible with the key property as Key(_trips[index].id).
The Key is the identifier for each widget and must be unique, which is why you use the _trips id
item. The child property is set to the _buildListTile(index) method, which passes the current
widget index.

 key: Key(_trips[index].id),

10.	 The Dismissible has a background (drag left to right) and the secondaryBackground (drag left
to right) properties. Set the background property to the _buildCompleteTrip() method and set
the secondaryBackground to the _buildRemoveTrip() method. Note that the Dismissible has
an optional direction property that can set the restrictions on which direction to use.

 child: _buildListTile(index),
 background: _buildCompleteTrip(),
 secondaryBackground: _buildRemoveTrip(),

The onDismissed callback (property) is called when the widget is dismissed, providing a function
to run code by removing the dismissed widget item from the _trips List. In a real-world sce-
nario, you would also update the database.

It’s important that once the item is dismissed, it is removed from the _trips List or it will
cause an error.

 // A dismissed Dismissible widget is still part of the tree.
 // Make sure to implement the onDismissed handler and to immediately remove the
Dismissible
 // widget from the application once that handler has fired.

This makes sense since the item has been dismissed and removed. All of this is possible by using the
unique key property.

The onDismissed passes the DismissDirection where you check with a ternary operator whether
the direction is startToEnd and call the _markTripCompleted() method or otherwise call the

300  ❘  CHAPTER 11   Applying Interactivity

_deleteTrip() method. The next step is to use the setState to remove the dismissed item from
the _trips List by using the _trips.removeAt(index).

 body: ListView.builder(
 itemCount: _trips.length,
 itemBuilder: (BuildContext context, int index) {
 return Dismissible(
 key: Key(_trips[index].id),
 child: _buildListTile(index),
 background: _buildCompleteTrip(),
 secondaryBackground: _buildRemoveTrip(),
 onDismissed: (DismissDirection direction) {

direction == DismissDirection.startToEnd ? _markTripCompleted() : _deleteTrip();
 // Remove item from List
 setState(() {
 _trips.removeAt(index);
 });
 },
);
 },
),

11.	 Add the _buildListTile(int index) Widget method after the Widget build(BuildContext
context) {...}. Return a ListTile and set the title, subtitle, leading, and trailing
properties.

12.	 Set the title property as a Text widget that shows the tripName and set the subtitle to
tripLocation. Set the leading and trailing properties as Icons.

 ListTile _buildListTile(int index) {
 return ListTile(
 title: Text('${_trips[index].tripName}'),
 subtitle: Text(_trips[index].tripLocation),
 leading: Icon(Icons.flight),
 trailing: Icon(Icons.fastfood),
);
 }

13.	 Add the _buildCompleteTrip() Widget method to return a Container with the color as green
and the child property as a Padding. The Padding child is a Row with the alignment set to
start (on the left side for left-to-right languages) with a children list of Widget of an Icon.

The background property is revealed when the user drags the item, and it’s important to convey
what action will take place. In this case, you are completing a trip, and you show a done (check-
box) Icon with a green background convening the action.

Using the Dismissible Widget  ❘  301

 Container _buildCompleteTrip() {
 return Container(
 color: Colors.green,
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: Row(
 mainAxisAlignment: MainAxisAlignment.start,
 children: <Widget>[
 Icon(
 Icons.done,
 color: Colors.white,
),
],
),
),
);
 }

14.	 Add the _buildRemoveTrip() Widget method to return a Container with the color as red and
the child property as a Padding. The Padding child is a Row with the alignment set to end (on
the right side for left-to-right languages) with a children list of Widget of an Icon.

The secondaryBackground property is revealed when the user drags the item, and it’s important
to convey what action will take place. In this case, you are deleting a trip, and you show a delete
(trash can) Icon with a red background convening the action.

 Container _buildRemoveTrip() {
 return Container(
 color: Colors.red,

302  ❘  CHAPTER 11   Applying Interactivity

 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: Row(
 mainAxisAlignment: MainAxisAlignment.end,
 children: <Widget>[
 Icon(
 Icons.delete,
 color: Colors.white,
),
],
),
),
);
 }

HOW IT WORKS

You used a ListView to build a list of Trip details. The ListView itemBuilder returns a Dismissible
with a key property set by using the Key class as a unique identifier for each widget. Using the key prop-
erty is extremely important because the Dismissible uses it when it replaces one widget with another in
the widget tree.

To convey the appropriate action when the user is dragging (left to right), you customized the
background property to reveal a green background with a done Icon. When the user is dragging
(right to left), you customized the secondaryBackground property to reveal a red background with a
delete Icon.

Summary  ❘  303

You used the onDismissed callback (property) to check for the DismissDirection and take appropri-
ate action. By using the ternary operator, you checked whether the direction was from startToEnd,
and you called the _markTripCompleted() method; otherwise, you called the _deleteTrip() method.
Next, you used the setState to remove the current item from the _trips List.

SUMMARY

In this chapter, you learned how to use a GestureDetector to handle onTap, onDoubleTap,
onLongPress, and onPanUpdate gestures. The onPanUpdate is suitable to use when you need to
track dragging in any direction. You took an in-depth look at using the GestureDetector to move,
scale by zooming in/out, double tap to increase zoom, and long press to reset the elephant image to
original size. For example, these techniques would be applied to a journaling app when a user selected
an image and wanted to look closer at details. To accomplish this goal, you used the onScaleStart
and onScaleUpdate to scale the image. Use the onDoubleTap to increase the zoom and onLongPress
to reset the zoom to the original default size.

You learned two different techniques to scale and move the image when a gesture is detected. With
the first technique, you used the Transform widget by nesting the Transform.scale constructor
to resize the image and the Transform.translate constructor to move the image. For the second
technique, you used the Transform default constructor by using the Matrix4 to apply the trans-
formations. By using the Matrix4, you executed multiple cascading transformations (..scale()..
translate()) without the need to nest multiple Transform widgets.

You used the InkWell and InkResponse to respond to touch gestures like tap, double tap, and long
press. Both widgets are Material Components (Flutter material design widgets) that display a splash-
ing effect when tapped.

You implemented the drag-and-drop feature by using the Draggable and DragTarget widgets. These
widgets are used in conjunction. The Draggable widget has a data property that passes information
to the DragTarget widget. The DragTarget widget can accept or refuse the data, which gives you
the ability to check for the correct data format. In this example, you dragged the paint palette Icon
(Draggable) over the Text (DragTarget) widget, and once you let go, the Text color changes to red.

The Dismissible widget listens to vertical and horizontal dragging gestures. By using the
DismissDirection for the direction property, you can limit which dragging gestures you listen to,
such as restricting to horizontal-only gestures. In this example, you created a List of Trip items that
are displayed with the ListView.builder. When the user drags an item on the list from left to right,
a green background with a checkbox Icon is revealed to convey the action that is about to be per-
formed, completing the trip. But if the user drags on the list item from right to left, a red background
with a trash can Icon is revealed to convey the action that the trip is going to be deleted. How does

304  ❘  CHAPTER 11   Applying Interactivity

the Dismissible know which item to delete? By using the Dismissible key property, you passed
a unique identifier for each item on the list, and once the onDismissed (callback) property is called,
you checked the direction of the drag and took appropriate action. You then used the setState to
make sure the dismissed item is removed from the _trips list. It is important to handle the
onDismissed callback or you will receive the error “A dismissed Dismissible widget is still part of
the tree.”

In the next chapter, you’ll learn how to write iOS and Android platform-specific code. You’ll be using
Swift for iOS and Kotlin for Android. These platform channels give you the ability to use native
features such as accessing the device GPS location, local notifications, local file system, sharing, and
many more.

Summary  ❘  305

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Implementing GestureDetector This widget recognizes gestures such as tap, double tap,
long press, pan, vertical drag, horizontal drag, and scale.

Implementing Draggable This widget is dragged to a DragTarget.

Implementing DragTarget This widget receives data from a Draggable.

Implementing InkWell and
InkResponse

The InkWell is a rectangular area that responds
to touch and clips splashes within its area. The
InkResponse responds to touch, and the splashes
expand outside its area.

Implementing Dismissible This widget is dismissed by dragging.

Writing Platform-Native Code
WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to use platform channels to send and receive messages from the Flutter app to
iOS and Android to access specific API functionality

➤➤ How to write native platform code in iOS Swift and Android Kotlin to access device
information

➤➤ How to use MethodChannel to send messages from the Flutter app (on the
client side)

➤➤ How to use FlutterMethodChannel on iOS and MethodChannel on Android to
receive calls and send back results (on the host side)

Platform channels give you the ability to use native features such as accessing the device
information, GPS location, local notifications, local file system, sharing, and many more. In the
“External Packages” section of Chapter 2, “Creating a Hello World App,” you learned how to
use third-party packages to add functionality to your apps. In this chapter, instead of relying
on third-party packages, you’ll learn how to add custom functionality to your apps by using
platform channels and writing the API code yourself. You’ll build an app that asks the iOS and
Android platforms to return the device information.

UNDERSTANDING PLATFORM CHANNELS

When you need to access platform-specific APIs for iOS and Android, you use platform chan-
nels to send and receive messages. The Flutter app is the client, and the platform-native code for
iOS and Android is the host. If needed, it is also possible to have the platform-native code to act
as a client to call methods written in the Flutter app dart code.

The messages between the client and host are asynchronous, making sure that the UI remains
responsive and not blocked. In Chapter 3, “Learning Dart Basics,” you learned that async func-
tions perform time-consuming operations without waiting for those operations to complete.

12

308  ❘  CHAPTER 12   Writing Platform-Native Code

For the client side (Flutter app), you use the MethodChannel from an async method to send messages
that contain the method call to be executed by the host side (iOS and Android). Once the host sends
the response back, you can update the UI to display the information received.

For the host side, you use the FlutterMethodChannel on iOS and the MethodChannel on Android.
Once the client call is received by the host, the native platform code executes the called method and
then sends back the result (Figure 12.1).

Android Platform Code

MethodChannel

FlutterMethodChannel MethodChannel

Flutter App
Client

FlutterView

Activity

Android Host

iOS Platform Code

FlutterViewController

AppDelegate

iOS Host

FIGURE 12.1:  Platform channel messages

Implementing the Client Platform Channel App  ❘  309

IMPLEMENTING THE CLIENT PLATFORM CHANNEL APP

To start communication from the Flutter client app to the iOS and Android platforms, you use the
MethodChannel. A MethodChannel uses asynchronous method calls, and the channel requires a
unique name. The channel name needs to be the same for the client as for the iOS and Android
host. I suggest when you’re creating a unique name for the channel that you use the app name, a
domain prefix, and a descriptive name for the task such as platformchannel.companyname.com/
deviceinfo.

// Name template
appname.domain.com/taskname
// Channel name
platformchannel.companyname.com/deviceinfo

At first, it seems that you are going overboard naming the channel, so why is it important for the
name to be unique? If you have multiple named channels and they share the same name, they will
cause conflicts with each other’s messages.

To implement a channel, you create the MethodChannel through the default constructor by pass-
ing the unique channel name. The default constructor takes two arguments: the first is the channel
name, and the second (which is optional) declares the default MethodCodec. The MethodCodec is the
StandardMethodCodec, which uses Flutter’s standard binary encoding; this means the serialization of
data sent between the client and the host is automatically handled. Since you know the name of the
channel at compile time and it will not change, you create the MethodChannel to a static const
variable. Make sure you use the static keyword, or you will receive the error “Only static fields can
be declared as const.”

static const platform = const
MethodChannel('platformchannel.companyname.com/deviceinfo');

Table 12.1 displays the supported value types for Dart, iOS, and Android.

TABLE 12.1:  StandardMessageCodec-Supported Value Types

DART iOS ANDROID

null nil null

bool NSNumber numberWithBool: java.lang.Boolean

int NSNumber numberWithInt: java.lang.Integer

int (bigger
than 32 bits)

NSNumber numberWithLong: java.lang.Long

double NSNumber numberWithDouble: java.lang.Double

String NSString java.lang.String

Uint8List FlutterStandardTypedData

typedDataWithBytes:
byte[]

continues

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo
http://appname.domain.com/taskname
http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo

310  ❘  CHAPTER 12   Writing Platform-Native Code

To call and specify which method to execute on the iOS and Android host, you use the invoke­
Method constructor to pass the method name as a String. The invokeMethod is called from inside a
Future method since the call is asynchronous.

String deviceInfo = await platform.invokeMethod('getDeviceInfo');

Once the client and the iOS and Android platform channels are implemented, the Flutter client side of
the app will display the appropriate device information depending on the device (Figure 12.2).

TRY IT OUT	 Creating the Client Platform Channel App

In this example, you want to display the running device information such as the manufacturer, device
model, name, operating system, and a few other details. The Flutter app client is written in Dart (as
usual) and implements the MethodChannel to initiate a call to the iOS and Android host.

➤➤ The iOS host is written in Swift to access the platform API call to the UIDevice to query the
device information and uses the FlutterMethodChannel to receive and return the requested
information.

➤➤ The Android host is written in Kotlin to access the platform API call to the Build to query the
device information and uses the MethodChannel to receive and return the requested information.

This app is divided into three different “Try It Out” exercises. In this first one, you’ll concentrate on
creating the client-side request. In the second one, “Creating the iOS Host Platform Channel,” you’ll
build the iOS Host Platform Channel, and in the third exercise, “Creating the Android Host Platform
Channel,” you’ll build the Android Host Platform Channel. If you run the app after this first section is
completed, you will receive the error “Failed to get device info” since you have not written the iOS and
Android host code yet. Note that the iOS and Android projects are independent of each other, and you
can target both or only one, and you will receive the error on the platform that you run.

DART iOS ANDROID

Int32List FlutterStandardTypedData

typedDataWithInt32:
int[]

Int64List FlutterStandardTypedData

typedDataWithInt64:
long[]

Float64List FlutterStandardTypedData

typedDataWithFloat64:
double[]

List NSArray java.

util.ArrayList

Map
NSDictionary

java.util.HashMap

TABLE 12.1:  (continued)

Implementing the Client Platform Channel App  ❘  311

1.	 Create a new Flutter project and name it ch12_platform_channel; as always, you can follow the
instructions in Chapter 4, “Creating a Starter Project Template.” For this project, you need to create
only the pages folder.

2.	 Open the home.dart file and add to the body a SafeArea with the child as a ListTile.
 body: SafeArea(
 child: ListTile(),
),

3.	 After the class _HomeState extends State<Home> and before @override, add the
static const variable _methodChannel initialized by the MethodChannel with the name
platformchannel.companyname.com/deviceinfo.

 static const _methodChannel = const MethodChannel('platformchannel.companyname.
com/deviceinfo');

4.	 Declare the _deviceInfo String variable that will receive the device information from the iOS
and Android host call.

 // Get device info
 String _deviceInfo = '';

5.	 Create the _getDeviceInfo() async call that uses the _methodChannel.invokeMethod() to
initiate the call to the iOS and Android host. This method is declared as a Future<void> and
marked as async.

 Future<void> _getDeviceInfo() async {
 }

6.	 Create the local deviceInfo String variable that receives the device information.
 String deviceInfo;

It’s good practice to use the try-catch exception handling when calling the methodChannel
.invokeMethod('getDeviceInfo') just in case the call fails. The invokeMethod takes the
getDeviceInfo method name that needs to be the same one that you declare in both the iOS and
Android host code.

 try {
 deviceInfo = await methodChannel.invokeMethod('getDeviceInfo');
 } on PlatformException catch (e) {
 deviceInfo = "Failed to get device info: '${e.message}'.";
 }

7.	 Add the setState() method that populates the _deviceInfo (available class-wide) variable from
the local deviceInfo value. In Chapter 3, “Learning Dart Basics,” in the “Asynchronous
Programming” section, you learned how to use the Future object.

 Future<void> _getDeviceInfo() async {
 String deviceInfo;
 try {
 deviceInfo = await _methodChannel.invokeMethod('getDeviceInfo');
 } on PlatformException catch (e) {
 deviceInfo = "Failed to get device info: '${e.message}'.";
 }

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo

312  ❘  CHAPTER 12   Writing Platform-Native Code

 setState(() {
 _deviceInfo = deviceInfo;
 });
 }

8.	 Override the initState() to call the _getDeviceInfo() method. Once the app starts, it makes
the _getDeviceInfo() call start retrieving device information.

 @override
 void initState() {
 super.initState();
 _getDeviceInfo();
 }

9.	 Let’s go back to the body property and finish the ListTile widget to display the device informa-
tion. For the title property, add a Text widget to show the Device Info heading, and set the
TextStyle to fontSize 24.0 and FontWeight.bold.

10.	 For the subtitle property, add a Text widget with the _deviceInfo variable that shows the
actual device information, and set the TextStyle to fontSize 18.0 and FontWeight.bold.

11.	 Add a contentPadding property to the ListTile, and set the EdgeInsets.all() to 16.0 to add
some nice padding around the information.

 body: SafeArea(
 child: ListTile(
 title: Text(
 'Device info:',
 style: TextStyle(
 fontSize: 24.0,
 fontWeight: FontWeight.bold,
),
),
 subtitle: Text(
 _deviceInfo,
 style: TextStyle(
 fontSize: 18.0,
 fontWeight: FontWeight.bold,
),
),
 contentPadding: EdgeInsets.all(16.0),
),
),

HOW IT WORKS

In this client section of the app, you created the MethodChannel with a unique name to a static const
_methodChannel variable. The methodChannel is used to communicate between the client and the host
using the asynchronous method call. Using the _getDeviceInfo() Future<void> method, the
_methodChannel.invokeMethod('getDeviceInfo') calls the host to execute the getDeviceInfo
method in the iOS and Android platforms. Once the data is returned, the setState() method populates
the _deviceInfo variable, and the ListTile subtitle is updated with the device information.

Implementing the iOS Host Platform Channel  ❘  313

IMPLEMENTING THE iOS HOST PLATFORM CHANNEL

The host is responsible for listening to incoming messages from the client. Once a message is received,
the channel checks for a matching method name, executes the call method, and returns the appropri-
ate result. In iOS, you use the FlutterMethodChannel for listening to incoming messages that take
two parameters. The first parameter is the same platform channel name—'platformchannel.
companyname.com/deviceinfo'—as the client. The second is the FlutterViewController, which is
the main rootViewController of an iOS app. The rootViewController is the root view controller
for the iOS app window that provides the content view of the window.

FIGURE 12.2:  iOS and Android device information

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo

314  ❘  CHAPTER 12   Writing Platform-Native Code

let flutterViewController: FlutterViewController = window?.rootViewController as!
FlutterViewController
let deviceInfoChannel = FlutterMethodChannel(name: "platformchannel.companyname.
com/deviceinfo", binaryMessenger: controller)

You then use the setMethodCallHandler (Future handler) to set up a callback for a matching
method name that executes the iOS native platform code. Once completed, it sends back the result to
the client.

deviceInfoChannel.setMethodCallHandler({
 (call: FlutterMethodCall, result: FlutterResult) -> Void in
 // Check for incoming method call name and return a result
})

Both the FlutterMethodChannel and the setMethodCallHandler will be placed in the
didFinishLaunchingWithOptions method of the iOS app AppDelegate.swift file. The
didFinishLaunchingWithOptions is responsible for notifying the app delegate that the app
launch process is almost done.

override func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?
) -> Bool {
 // Code
}

TRY IT OUT	 Creating the iOS Host Platform Channel

In this example, you want to retrieve the running device information such as the manufacturer,
device model, name, operating system, and a few other details. The iOS host is written in Swift to
access the platform API call to the UIDevice object to query the device information and uses the
FlutterMethodChannel to receive communication from the client. Once the message is received, the
setMethodCallHandler handles the request and returns the result.

In this section, you’ll open Xcode and edit the native iOS Swift code.

1.	 If you closed the Flutter project ch12_platform_channel, reopen it. Click the Android Studio
Tools menu bar and select Flutter ➪ Open iOS module in Xcode. Note that this menu item selec-
tion opens the Xcode app with the iOS project, but you can also open the iOS project manually by
double-clicking the Runner.xcworkspace file located in the ios folder. A Mac computer with
Xcode installed is required to edit the iOS host project.

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo

Implementing the iOS Host Platform Channel  ❘  315

2.	 On the navigator area (left side), expand the Runner folder by clicking the arrow and then select
the AppDelegate.swift file.

316  ❘  CHAPTER 12   Writing Platform-Native Code

3.	 Edit the didFinishLaunchingWithOptions method; you’ll be adding code before the line
GeneratedPluginRegistrant call. Declare the flutterViewController variable as a
FlutterViewController and initiate it with the window?.rootViewController as!
FlutterViewController.

 let flutterViewController: FlutterViewController = window?.rootViewController
as! FlutterViewController

4.	 In the next line, declare the deviceInfoChannel variable by initiating it with the
FlutterMethodChannel.

5.	 For the FlutterMethodChannel’s first parameter, name, pass the Flutter channel name,
the same one declared in the client. The second parameter, binaryMessenger, takes the
flutterViewController variable.

 let deviceInfoChannel = FlutterMethodChannel(name: "platformchannel
.companyname.com/deviceinfo", binaryMessenger: flutterViewController)

6.	 Add the deviceInfoChannel.setMethodCallHandler to set up a callback that matches the
incoming method name of getDeviceInfo by using an if-else statement. If the call.method
matches (==) the getDeviceInfo, then you call the self.getDeviceInfo(result: result)
method (that you create in the next step) that retrieves the device information.

If the call.method does not match the incoming method name, the else statement returns the
result(FlutterMethodNotImplemented). The FlutterMethodNotImplemented is a constant
that responds to the call that the method is unknown, or not implemented.

 deviceInfoChannel.setMethodCallHandler({
 (call: FlutterMethodCall, result: FlutterResult) -> Void in
 if (call.method == "getDeviceInfo") {
 self.getDeviceInfo(result: result)
 }
 else {
 result(FlutterMethodNotImplemented)
 }
 })

7.	 After the didFinishLaunchingWithOptions method, add the getDeviceInfo(result:
FlutterResult) method that uses the iOS Swift UIDevice.current to query and retrieve the
current device information.

8.	 Declare the let device variable by initializing it with the UIDevice.current. The let keyword
is similar to the Dart final keyword, telling the compiler the value will not change. Declare the
deviceInfo String variable and initialize it to an empty string by using double quotes ("").

To format the result to the deviceInfo variable, you use the \n characters to start a new line for
each piece of information. By using string concatenation, you use the =+ sign to add each line to
the deviceInfo variable. In Swift, inside a String, you use the \() character combination to
extract the value of the expression inside.

 private func getDeviceInfo(result: FlutterResult) {
 let device = UIDevice.current
 var deviceInfo: String = ""
 deviceInfo = "\nName: \(device.name)"

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo
http://device.name

Implementing the iOS Host Platform Channel  ❘  317

 deviceInfo += "\nModel: \(device.model)"
 deviceInfo += "\nSystem: \(device.systemName) \(device.systemVersion)"
 deviceInfo += "\nProximity Monitoring Enabled: \(device.
isProximityMonitoringEnabled)"
 deviceInfo += "\nMultitasking Supported: \(device.isMultitaskingSupported)"
 result(deviceInfo)
 }

HOW IT WORKS

In the iOS host section of the app, you are listening for incoming messages by using the
FlutterMethodChannel. The FlutterMethodChannel expects two parameters, the name and the
binaryMessenger. The name parameter is the Flutter channel name declared in the client app
platformchannel.companyname.com/deviceinfo. The binaryMessenger parameter is the
FlutterViewController initiated by the iOS app window?.rootViewController.

http://platformchannel.companyname.com/deviceinfo

318  ❘  CHAPTER 12   Writing Platform-Native Code

You set up a callback with the setMethodCallHandler to match the incoming method name of
getDeviceInfo by using an if-else statement. If the call.method matched the method name, you call
the getDeviceInfo method to retrieve the device information and return a result. The device informa-
tion is obtained by querying the UIDevice.current object. If the call.method does not match the
incoming method name, the else statement returns the FlutterMethodNotImplemented.

IMPLEMENTING THE ANDROID HOST PLATFORM CHANNEL

The host is responsible for listening for incoming messages from the client. Once a message is
received, the channel checks for a matching method name, executes the call method, and returns the
appropriate result. In Android, you use the MethodChannel to listen to incoming messages that take
two parameters. The first parameter is the FlutterView, which extends the Activity of an Android
app screen and, by using the flutterView variable as the parameter, is the same as calling the
getFlutterView() (FlutterView) method from the FlutterActivity class. The second parameter
is the same platform channel name platformchannel.companyname.com/deviceinfo as the client.

private val DEVICE_INFO_CHANNEL = "platformchannel.companyname.com/deviceinfo"
val methodChannel = MethodChannel(flutterView, DEVICE_INFO_CHANNEL)

You then use the setMethodCallHandler (Future handler) to set up a callback for a matching
method name that executes the Android native platform code. Once completed, it sends the result to
the client.

methodChannel.setMethodCallHandler { call, result ->
 // Check for incoming method call name and return a result
}

Both the MethodChannel and the setMethodCallHandler are placed in the onCreate method of the
Android app’s MainActivity.kt file. The onCreate is called when the activity is first created.

 override fun onCreate(savedInstanceState: Bundle?) {
 // Code
 }

TRY IT OUT	 Creating the Android Host Platform Channel

In this example, you want to retrieve the running device information such as the manufacturer, device
model, name, operating system, and a few other details. The Android host is written in Kotlin to access
the platform API call to the Build class to query the device information and uses the MethodChannel
to receive communication from the client. Once the message is received, the setMethodCallHandler
handles the request and returns the result.

In this section, you’ll open another instance of Android Studio and edit the native Android Kotlin code.

1.	 If you closed the Flutter project ch12_platform_channel, reopen it. Click on the Android Studio
Tools menu bar and select Flutter ➪ Open for Editing in Android Studio.

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo

Implementing the Android Host Platform Channel  ❘  319

2.	 On the tool window area (on the left side), expand the app folder by clicking the arrow, open the
java folder, open the com.domainname.ch12platformchannel folder, and then select the
MainActivity.kt file. Note the domainname might be different depending on the name that you
chose when creating the Flutter project.

320  ❘  CHAPTER 12   Writing Platform-Native Code

3.	 Add two import statements before the MainActivity class. The first import statement adds
support for the MethodChannel, and the second adds support to use the Build to query for the
device information.

 import io.flutter.plugin.common.MethodChannel
 import android.os.Build

4.	 Edit the onCreate method, and you’ll be adding code after the GeneratedPluginRegistrant call.
Declare the deviceInfoChannel variable by initiating it with the MethodChannel.

5.	 For the MethodChannel’s first parameter, BinaryMessenser, pass the flutterView variable; note
that you did not declare this variable. You do not need to declare it since it’s the same as calling the
getFlutterView() method from the FlutterActivity class.

6.	 For the second parameter, pass the Flutter channel name platformchannel.companyname.com/
deviceinfo, the same one declared in the client.

 val deviceInfoChannel = MethodChannel(flutterView, "platformchannel
.companyname.com/deviceinfo")

7.	 Add the deviceInfoChannel.setMethodCallHandler to set up a callback that matches the
incoming method name of getDeviceInfo by using an if-else statement. If the call.method
matches (==) the getDeviceInfo, then you call the getDeviceInfo() method (that you create in
the next step) that retrieves the device information, and the result is saved to the deviceInfo
variable. If the call.method does not match the incoming method name, the else statement
returns the result.notImplemented(). The notImplemented()method responds to the call that
the method is unknown, or not implemented.

 deviceInfoChannel.setMethodCallHandler { call, result ->
 if (call.method == "getDeviceInfo") {
 val deviceInfo = getDeviceInfo()
 result.success(deviceInfo)
 } else {
 result.notImplemented()
 }
 }

8.	 After the onCreate method, add the getDeviceInfo(): String method that uses the Android
Build to query and retrieve the current device information.

To format the result, you use the \n characters to start a new line for each piece of information. By
using string concatenation, you use the + sign to add each line and return the formatted result. The
entire string concatenation is enclosed in open and close parentheses ("...").

 private fun getDeviceInfo(): String {
 return ("\nDevice: " + Build.DEVICE
 + "\nManufacturer: " + Build.MANUFACTURER
 + "\nModel: " + Build.MODEL
 + "\nProduct: " + Build.PRODUCT
 + "\nVersion Release: " + Build.VERSION.RELEASE
 + "\nVersion SDK: " + Build.VERSION.SDK_INT
 + "\nFingerprint : " + Build.FINGERPRINT)
 }

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo

Implementing the Android Host Platform Channel  ❘  321

HOW IT WORKS

In the Android host section of the app, you are listening for incoming messages by using the
MethodChannel. The MethodChannel expects two parameters, the binaryMessenger and the name. The
binaryMessenger parameter is the flutterView, which is the getFlutterView() method from the
FlutterActivity class that extends the Activity of an Android app screen. The name parameter is the
Flutter channel name declared in the client app platformchannel.companyname.com/deviceinfo.

You set up a callback with the setMethodCallHandler to match the incoming method name of
getDeviceInfo by using an if-else statement. If the call.method matched the method name, you call
the getDeviceInfo method to retrieve the device information and return a result. The device informa-
tion is obtained by querying the Build class. If the call.method does not match the incoming method
name, the else statement returns the result.notImplemented().

http://platformchannel.companyname.com/deviceinfo

322  ❘  CHAPTER 12   Writing Platform-Native Code

SUMMARY

In this chapter, you learned how to access and communicate with iOS and Android platform-specific
API code by implementing platform channels. Platform channels are a way for the Flutter app (client)
to communicate (messages) with iOS and Android (host) to request and receive results specific to the
operating system (OS). For the UI to remain responsive and not blocked, the messages between the
client and host are asynchronous.

To start communicating from the Flutter app (client), you learned to use the MethodChannel that
sends messages that contain method calls to be executed by the iOS and Android (host) side. Once the
host processes the method requested, it then sends back a response to the client, and you update the
UI to display the information. The MethodChannel uses a unique name, and you used a combination
of the app name, the domain prefix, and the task name like platformchannel.companyname.com/
deviceinfo. To start the call from the client and specify which method to execute on the host, you
learned to use the invokeMethod constructor, and it is called from inside a Future method since calls
are asynchronous.

For the iOS and Android host, you learned to use the Flutter FlutterMethodChannel on iOS and the
MethodChannel on Android to start receiving communications from the client. The host is responsi-
ble for listening to incoming messages from the client. You used the setMethodCallHandler to set
up a callback for an incoming matching method name that executes on the native platform-specific
API code. Once the method completes, it sends the result to the client.

In the next chapter, you’ll learn to use local persistence to save data locally to the device storage area.

http://platformchannel.companyname.com/deviceinfo
http://platformchannel.companyname.com/deviceinfo

Summary  ❘  323

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Implementing
MethodChannel (client)

This enables communication from the Flutter app (client) by
sending messages that contain method calls to be executed by
the iOS and Android (host).

Implementing
invokeMethod (client)

This initiates (invokes) and specifies which method call to execute
on the host side.

Implementing
FlutterMethodChannel
(iOS host)

Implementing
MethodChannel
(Android host)

This enables communication from the host to receive method
calls to execute platform-specific API code.

Implementing
setMethodCallHandler
(iOS and Android host)

This sets up a callback for incoming matching method names to
execute platform-specific API code.

Creating Production-Ready Apps

▸▸ CHAPTER 13: Saving Data with Local Persistence

▸▸ CHAPTER 14: �Adding the Firebase and Firestore Backend

▸▸ CHAPTER 15: �Adding State Management to the Firestore
Client App

▸▸ CHAPTER 16: Adding BLoCs to Firestore Client App Pages

PART III

Saving Data with Local
Persistence

WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to persist saving and reading data locally

➤➤ How to structure data by using the JSON file format

➤➤ How to create model classes to handle JSON serialization

➤➤ How to access local iOS and Android filesystem locations using the
path provider package

➤➤ How to format dates by using the internationalization package

➤➤ How to use the Future class with the showDatePicker to present a
calendar to choose dates

➤➤ How to use the Future class to save, read, and parse JSON files

➤➤ How to use the ListView.separated constructor to section
records with a Divider

➤➤ How to use List().sort to sort journal entries by date

➤➤ How to use textInputAction to customize keyboard actions

➤➤ How to use FocusNode and FocusScope with the keyboard
onSubmitted to move the cursor to the next entry’s TextField

➤➤ How to pass and receive data in a class by using the Navigator

In this chapter, you’ll learn how to persist data—that is, save data on the device’s local storage
directory—across app launches by using the JSON file format and saving the file to the local
iOS and Android filesystem. JavaScript Object Notation (JSON) is a common open-standard

13

328  ❘  CHAPTER 13   Saving Data with Local Persistence

and language-independent file data format with the benefit of being human-readable text. Persisting
data is a two-step process; first you use the File class to save and read data, and second, you parse
the data from and to a JSON format. You’ll create a class to handle saving and reading the data file
that uses the File class. You’ll also create a class to parse the full list of data by using json.encode
and json.decode and a class to extract each record. And you’ll create another class to handle pass-
ing an action and an individual journal entry between pages.

You’ll build a journal app that saves and reads JSON data to the local iOS NSDocumentDirectory
and Android AppData filesystem. The app uses a ListView to display a list of journal entries sorted
by date, and you’ll create a data entry screen to enter a date, mood, and note.

UNDERSTANDING THE JSON FORMAT

The JSON format is text-based and is independent of programming languages, meaning any of them
can use it. It’s a great way to exchange data between different programs because it is human-readable
text. JSON uses the key/value pair, and the key is enclosed in quotation marks followed by a colon
and then the value like "id":"100". You use a comma (,) to separate multiple key/value pairs.
Table 13.1 shows some examples.

The types of values you can use are Object, Array, String, Boolean, and Number. Objects are declared
by curly ({}) brackets, and inside you use the key/value pair and arrays. You declare arrays by
using the square ([]) brackets, and inside you use the key/value or just the value. Table 13.2 shows
some examples.

TABLE 13.1:  Key/Value Pairs

KEY COLON VALUE

"id" : "100"

"quantity" : 3

"in_stock"
:

true

TABLE 13.2:  Objects and Arrays

TYPE SAMPLE

Object {
 "id": "100",
 "name": "Vacation"
}

Array with values only ["Family", "Friends", "Fun"]

Understanding the JSON Format  ❘  329

The following is an example of the JSON file that you’ll create for the journal application. The JSON
file is used to save and read the journal data from the device local storage area, resulting in data
persistence over app launches. You have the opening and closing curly brackets declaring an object.
Inside the object, the journal’s key contains an array of objects separated by a comma. Each object
inside the array is a journal entry with key/value pairs declaring the id, date, mood, and note. The id
key value is used to uniquely identify each journal entry and isn’t displayed in the UI. How the value
is obtained depends on the project requirement; for example, you can use sequential numbers or cal-
culate a unique value by using characters and numbers (universally unique identifier [UUID]).

TYPE SAMPLE

Array with key/value [
 {
 "id": "100",
 "name": "Vacation"
 },
 {
 "id": "102",
 "name": "Birthday"
 }
]

Object with array {
 "id": "100",
 "name": "Vacation",
 "tags": ["Family", "Friends", "Fun"]
}

Multiple objects with arrays {
 "journals":[
 {
 "id":"4710827",
 "mood":"Happy"
 },
 {
 "id":"427836",
 "mood":"Surprised"
 },
],
 "tags":[
 {
 "id": "100",
 "name": "Family"
 },
 {
 "id": "102",
 "name": "Friends"
 }
]
}

330  ❘  CHAPTER 13   Saving Data with Local Persistence

{
 "journals":[
 {
 "id":"470827",
 "date":"2019-01-13 00:27:10.167177",
 "mood":"Happy",
 "note":"Cannot wait for family night."
 },
 {
 "id":"427836",
 "date":"2019-01-12 19:54:18.786155",
 "mood":"Happy",
 "note":"Great day watching our favorite shows."
 },
],
}

USING DATABASE CLASSES TO WRITE, READ, AND
SERIALIZE JSON

To create reusable code to handle the database routines such as writing, reading, and serializing
(encoding and decoding) data, you’ll place the logic in classes. You’ll create four classes to handle
local persistence, with each class responsible for specific tasks.

➤➤ The DatabaseFileRoutines class uses the File class to retrieve the device local document
directory and save and read the data file.

➤➤ The Database class is responsible for encoding and decoding the JSON file and mapping it
to a List.

➤➤ The Journal class maps each journal entry from and to JSON.

➤➤ The JournalEdit class is used to pass an action (save or cancel) and a journal entry bet-
ween pages.

The DatabaseFileRoutines class requires you to import the dart:io library to use the File class
responsible for saving and reading files. It also requires you to import the path_provider package
to retrieve the local path to the document directory. The Database class requires you to import the
dart:convert library to decode and encode JSON objects.

The first task in local persistence is to retrieve the directory path where the data file is located on
the device. Local data is usually stored in the application documents directory; for iOS, the folder
is called NSDocumentDirectory, and for Android it’s AppData. To get access to these folders, you
use the path_provider package (Flutter plugin). You’ll be calling the getApplicationDocuments
Directory() method, which returns the directory giving you access to the path variable.

Future<String> get _localPath async {
 final directory = await getApplicationDocumentsDirectory();

 return directory.path;
}

Formatting Dates  ❘  331

Once you retrieve the path, you append the data filename by using the File class to create a
File object. You import the dart:io library to use the File class, giving you a reference to the
file location.

final path = await _localPath;
Final file = File('$path/local_persistence.json');

Once you have the File object, you use the writeAsString() method to save the file by passing the
data as a String argument. To read the file, you use the readAsString() method without any argu-
ments. Note that the file variable contains the documents folder’s path and the data filename.

// Write the file
file.writeAsString('$json');
// Read the file
String contents = await file.readAsString();

As you learned in the “Understanding the JSON Format” section, you use a JSON file to save
and read data from the device local storage. The JSON file data is stored as plain text (strings). To
save data to the JSON file, you use serialization to convert an object to a string. To read data
from the JSON file, you use deserialization to convert a string to an object. You use the json
.encode() method to serialize and the json.decode() method to deserialize the data. Note that
both the json.encode() and json.decode() methods are part of the JsonCodec class from the
dart:convert library.

To serialize and deserialize JSON files, you import the dart:convert library. After calling the read
AsString() method to read data from the stored file, you need to parse the string and return the
JSON object by using the json.decode() or jsonDecode() function. Note that the jsonDecode()
function is shorthand for json.decode().

// String to JSON object
final dataFromJson = json.decode(str);
// Or
final dataFromJson = jsonDecode(str);

To convert values to a JSON string, you use the json.encode() or jsonEncode() function. Note
that jsonEncode() is shorthand for json.encode(). It’s a personal preference deciding which
approach to use; in the exercises, you’ll be using json.decode() and json.encode().

// Values to JSON string
json.encode(dataToJson);
// Or
jsonEncode(dataToJson);

FORMATTING DATES

To format dates, you use the intl package (Flutter plugin) providing internationalization and locali-
zation. The full list of available date formats is available on the intl package page site at https://
pub.dev/packages/intl. For our purposes, you’ll use the DateFormat class to help you N format
and parse dates. You’ll use the DateFormat named constructors to format the date according to the
specification. To format a date like Jan 13, 2019, you use the DateFormat.yMMD() constructor, and

https://pub.dev/packages/intl
https://pub.dev/packages/intl

332  ❘  CHAPTER 13   Saving Data with Local Persistence

then you pass the date to the format argument, which expects a DateTime. If you pass the date as a
String, you use DateTime.parse() to convert it to a DateTime format.

// Formatting date examples
print(DateFormat.d().format(DateTime.parse('2019-01-13')));
print(DateFormat.E().format(DateTime.parse('2019-01-13')));
print(DateFormat.y().format(DateTime.parse('2019-01-13')));
print(DateFormat.yMEd().format(DateTime.parse('2019-01-13')));
print(DateFormat.yMMMEd().format(DateTime.parse('2019-01-13')));
print(DateFormat.yMMMMEEEEd().format(DateTime.parse('2019-01-13')));

I/flutter (19337): 13
I/flutter (19337): Sun
I/flutter (19337): 2019
I/flutter (19337): Sun, 1/13/2019
I/flutter (19337): Sun, Jan 13, 2019
I/flutter (19337): Sunday, January 13, 2019

To build additional custom date formatting, you can chain and use the add_*() methods (substitute
the * character with the format characters needed) to append and compound multiple formats. The
following sample code shows how to customize the date format:

// Formatting date examples with the add_* methods
print(DateFormat.yMEd().add_Hm().format(DateTime.parse('2019-01-13 10:30:15')));
print(DateFormat.yMd().add_EEEE().add_Hms().format(DateTime.parse('2019-01-13
10:30:15')));

I/flutter (19337): Sun, 1/13/2019 10:30
I/flutter (19337): 1/13/2019 Sunday 10:30:15

SORTING A LIST OF DATES

You learned how to format dates easily, but how would you sort dates? The journal app that you’ll
create requires you to show a list of entries, and it would be great to be able to display the list sorted
by date. In particular, you want to sort dates to show the newest first and oldest last, which is known
as DESC (descending) order. Our journal entries are displayed from a List, and to sort them, you call
the List().sort() method.

The List is sorted by the order specified by the function, and the function acts as a Comparator, com-
paring two values and assessing whether they are the same or whether one is larger than the other—
such as the dates 2019-01-20 and 2019-01-22 in Table 13.3. The Comparator function returns an
integer as negative, zero, or positive. If the comparison—for example, 2019-01-20 > 2019-01-22—is
true, it returns 1, and if it’s false, it returns -1. Otherwise (when the values are equal), it returns 0.

Retrieving Data with the FutureBuilder  ❘  333

Let’s take a look by running the following sort with actual DateTime values sorted by DESC date.
Note to sort by DESC, you start with the second date, comparing it to the first date like this:
comp2.date.compareTo(comp1.date).

_database.journal.sort((comp1, comp2) => comp2.date.compareTo(comp1.date));

// Results from print() to the log
I/flutter (10272): -1 - 2019-01-20 15:47:46.696727 - 2019-01-22 17:02:47.678590
I/flutter (10272): -1 - 2019-01-19 15:58:23.013360 - 2019-01-20 15:47:46.696727
I/flutter (10272): -1 - 2019-01-19 13:04:32.812748 - 2019-01-19 15:58:23.013360
I/flutter (10272): 1 - 2019-01-22 17:21:12.752577 - 2018-01-01 16:43:05.598094
I/flutter (10272): 1 - 2019-01-22 17:21:12.752577 - 2018-12-25 02:40:55.533173
I/flutter (10272): 1 - 2019-01-22 17:21:12.752577 - 2019-01-16 02:40:13.961852

I wanted to show you the longer way to the previous code’s sort() to show how the compare result
is obtained.

_database.journal.sort((comp1, comp2) {
 int result = comp2.date.compareTo(comp1.date);
 print('$result - ${comp2.date} - ${comp1.date}');
 return result;
});

If you would like to sort the dates by ASC (ascending) order, you can switch the compare statement
to start with comp1.date to comp2.date.

_database.journal.sort((comp1, comp2) => comp1.date.compareTo(comp2.date));

RETRIEVING DATA WITH THE FUTUREBUILDER

In mobile applications, it is important not to block the UI while retrieving or processing data. In
Chapter 3, “Learning Dart Basics,” you learned how to use a Future to retrieve a possible value that
is available sometime in the future. A FutureBuilder widget works with a Future to retrieve the
latest data without blocking the UI. The three main properties that you set are initialData, future,
and builder.

➤➤ initialData: Initial data to show before the snapshot is retrieved.

TABLE 13.3:  Sorting Dates

COMPARE TRUE SAME FALSE

date2.compareTo(date1) 1 0 -1

2019-01-20 > 2019-01-22 -1

2019-01-20 < 2019-01-22 1

2019-01-22 = 2019-01-22
0

334  ❘  CHAPTER 13   Saving Data with Local Persistence

Sample code:

[]

➤➤ future: Calls a Future asynchronous method to retrieve data.

Sample code:

_ loadJournals()

➤➤ builder: The builder property provides the BuildContext and AsyncSnapshot (data
retrieved and connection state). The AsyncSnapshot returns a snapshot of the data, and you
can also check for the ConnectionState to get a status on the data retrieval process.

Sample code:

(BuildContext context, AsyncSnapshot snapshot)

➤➤ AsyncSnapshot: Provides the most recent data and connection status. Note that the data
represented is immutable and read-only. To check whether data is returned, you use the
snapshot.hasData. To check the connection state, you use the snapshot.connectionState
to see whether the state is active, waiting, done, or none. You can also check for errors by
using the snapshot.hasError property.

Sample code:

builder: (BuildContext context, AsyncSnapshot snapshot) {

return !snapshot.hasData

? CircularProgressIndicator()

: _ buildListView(snapshot);

},

The following is some FutureBuilder() sample code:

FutureBuilder(
 initialData: [],
 future: _loadJournals(),
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 return !snapshot.hasData
 ? Center(child: CircularProgressIndicator())
 : _buildListViewSeparated(snapshot);
 },
),

Building the Journal App  ❘  335

BUILDING THE JOURNAL APP

You’ll be building a journal app with the requirement of persisting data across app starts. The data
is stored as JSON objects with the requirements of tracking each journal entry’s id, date, mood, and
note (Figure 13.1). As you learned in the “Understanding the JSON Format” section, the id key value
is unique, and it’s used to identify each journal entry. The id key is used behind the scenes to select
the journal entry and is not displayed in the UI. The root object is a key/value pair with the key name
of 'journal' and the value as an array of objects containing each journal entry.

The app has two separate pages; the main presentation page uses a ListView sorted by DESC date,
meaning last entered record first. You utilize the ListTile widget to format how the List of records
is displayed. The second page is the journal entry details where you use a date picker to select a date
from a calendar and TextField widgets for entering the mood and note data. You’ll create a data-
base Dart file with classes to handle the file routines, database JSON parsing, a Journal class to
handle individual records, and a JournalEdit class to pass data and actions between pages.

Figure 13.2 shows a high-level view of the journal app detailing how the database classes are used in
the Home and Edit pages.

FIGURE 13.1:  Journal app

336  ❘  CHAPTER 13   Saving Data with Local Persistence

OVERVIEW OF JOURNAL APP

You’ll be creating this app over the course of four Try It Out exercises:

Laying the Foundations of the Journal App: In the first section you add the path_
provider and intl packages to your pubspec.yaml file and set up the home.dart
page with basic structure widgets.

Creating the Journal Database Classes: The second exercise focuses on creating the
database.dart file with your classes to handle the file routines, database parsing,
and Journal classes.

Creating the Journal Entry Page: The third exercise builds the edit_entry.dart file
to handle creating and editing journal entries and selecting dates from a date picker.

Finishing the Journal Home Page: The fourth exercise finishes the home.dart page,
which relies on the database.dart file by adding logic to build the ListView and
save, read, sort data, and pass data to the edit journal page.

Database Classes

DatabaseFileRoutines

Database

Journal

JournalEdit

JournalEdit

Journal

JournalEdit

Home Page Edit Page

FIGURE 13.2:  Journal app database classes’ relationship to the Home and Edit pages

Building the Journal App  ❘  337

TRY IT OUT	 Laying the Foundations of the Journal App

In this series of steps, you’ll do some essential setup for the journal app, which you’ll build on over the
remaining Try It Out sections in this chapter.

1.	 Create a new Flutter project and name it ch13_local_persistence. You can follow instructions
in Chapter 4, “Creating a Starter Project Template.” For this project, you need to create only the
pages and classes folders.

2.	 Open the pubspec.yaml file to add resources. In the dependencies: section, add the path_pro-
vider: ^1.1.0 and intl: ^0.15.8 declarations. Note that your version might be higher.

dependencies:
 flutter:
 sdk: flutter

 # The following adds the Cupertino Icons font to your application.
 # Use with the CupertinoIcons class for iOS style icons.
 cupertino_icons: ^0.1.2

 path_provider: ^1.1.0
 intl: ^0.15.8

3.	 Click the Save button. Depending on the editor you are using, it automatically runs flutter
packages get, and once finished, it will show a message of Process finished with exit code
0. If it does not automatically run the command for you, open the Terminal window (located at the
bottom of your editor) and type flutter packages get.

4.	 Open the main.dart file. Add to the ThemeData the bottomAppBarColor property and set the
color to Colors.blue.

return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'Local Persistence',
 theme: ThemeData(
 primarySwatch: Colors.blue,
 bottomAppBarColor: Colors.blue,
),
 home: Home(),
);

5.	 Open the home.dart file and add to the body a FutureBuilder(). The FutureBuilder()
initialData property is an empty List created with the open and close square brackets ([]). The
future property calls the _loadJournals() Future method that you create in the “Finishing the
Journal Home Page” exercise. For the builder property, you return a CircularProgress
Indicator() if the snapshot.hasData is false, meaning no data has returned yet. Otherwise,
you call the _buildListViewSeparated(snapshot) method to build the ListView showing the
journal entries.

As you learned in the “Retrieving Data with the FutureBuilder” section, the AsyncSnapshot
returns a snapshot of the data. The snapshot is immutable, meaning it’s read-only.

body: FutureBuilder(
 initialData: [],
 future: _loadJournals(),
 builder: (BuildContext context, AsyncSnapshot snapshot) {

338  ❘  CHAPTER 13   Saving Data with Local Persistence

 return !snapshot.hasData
 ? Center(child: CircularProgressIndicator())
 : _buildListViewSeparated(snapshot);
 },
),

6.	 After the body property, add the bottomNavigationBar property and set it to a BottomAppBar().
Set the shape to a CircularNotchedRectangle() and set the child to a Padding of 24.0 pixels.
Add the floatingActionButtonLocation property and set it to FloatingActionButton
Location.centerDocked.

bottomNavigationBar: BottomAppBar(
 shape: CircularNotchedRectangle(),
 child: Padding(padding: const EdgeInsets.all(24.0)),
),
floatingActionButtonLocation: FloatingActionButtonLocation.centerDocked,

7.	 Add the floatingActionButton property and set it to a FloatingActionButton(). Normally
the BottomAppBar() is used to show a row of widgets to make a selection, but for our app you are
using it for aesthetics looks by using it with the FloatingActionButton to show a notch. The
FloatingActionButton is responsible for adding new journal entries. Set the FloatingAction
Button() child property to Icon(Icons.add) to show a plus sign that conveys the action to add
a new journal entry.

floatingActionButton: FloatingActionButton(
 tooltip: 'Add Journal Entry',
 child: Icon(Icons.add),
),

8.	 Set the FloatingActionButton() onPressed property as an async callback that calls the
_addOrEditJournal() method. Add a call to the _addOrEditJournal() method that takes three
arguments: add, index, and journal. In “Finishing the Journal Home Page,” you’ll create the
method that relies on the database.dart file creation.

When the user taps this button, it’s to add a new entry, which is why you pass the arguments add
as true, index as -1, and journal as a blank Journal (class) entry. Because you also use the same
method to edit an entry (user taps the ListView, covered in the final exercise), you would pass
the arguments add as false, index as the entry index from the ListView, and journal as the
Journal selected.

bottomNavigationBar: BottomAppBar(
 shape: CircularNotchedRectangle(),
 child: Padding(padding: const EdgeInsets.all(24.0)),
),
floatingActionButtonLocation: FloatingActionButtonLocation.centerDocked,
floatingActionButton: FloatingActionButton(
 tooltip: 'Add Journal Entry',
 child: Icon(Icons.add),
 onPressed: () {
 _addOrEditJournal(add: true, index: -1, journal: Journal());
 },
),

Building the Journal App  ❘  339

HOW IT WORKS

You declared the path_provider and intl packages to your pubspec.yaml file. The path_provider
gives you access to the local iOS and Android filesystem locations, and the intl gives you the ability to
format dates. You added to the body property the FutureBuilder that calls a Future async method to
return data, and you’ll implement it in the fourth exercise, “Finishing the Journal Home Page.”

You added a BottomAppBar and used the FloatingActionButtonLocation to dock the FloatingAction-
Button on the bottom center. The FloatingActionButton onPressed() event is marked as async to call
the _addOrEditJournal() method to add a new journal entry. You’ll implement the _addOrEditJour-
nal() method in “Finishing the Journal Home Page.”

Adding the Journal Database Classes
You’ll create four separate classes to handle the database routines and serialization to manage the
journal data. Each class is responsible for handling specific code logic, resulting in code reusability.
Collectively the database classes are responsible for writing (saving), reading, encoding, and decoding
JSON objects to and from the JSON file.

➤➤ The DatabaseFileRoutines class handles getting the path to the device’s local documents
directory and saving and reading the database file by using the File class. The File class
is used by importing the dart:io library, and to obtain the documents directory path, you
import the path_provider package.

➤➤ The Database class handles decoding and encoding the JSON objects and converting them
to a List of journal entries. You call databaseFromJson to read and parse from JSON
objects. You call databaseToJson to save and parse to JSON objects. The Database class
returns the journal variable consisting of a List of Journal classes, List<Journal>. The
dart:convert library is used to decode and encode JSON objects.

➤➤ The Journal class handles decoding and encoding the JSON objects for each journal
entry. The Journal class contains the id, date, mood, and note journal entry fields stored
as Strings.

➤➤ The JournalEdit class handles the passing of individual journal entries between pages.
The JournalEdit class contains the action and journal variables. The action variable is
used to track whether the Save or Cancel button is pressed. The journal variable contains
the individual journal entry as a Journal class containing the id, date, mood, and note
variables.

340  ❘  CHAPTER 13   Saving Data with Local Persistence

TRY IT OUT	 Creating the Journal Database Classes

In this section, you’ll create the DatabaseFileRoutines, Database, Journal, and JournalEdit classes.
Note that the default constructors use curly brackets ({}) to implement named parameters.

1.	 Create a new Dart file under the classes folder. Right-click the classes folder, select New ➪ Dart
File, enter database.dart, and click the OK button to save.

2.	 Import the path_provider.dart package and the dart:io and dart:convert libraries. Add a
new line and create the DatabaseFileRoutines class.

import 'package:path_provider/path_provider.dart'; // Filesystem locations
import 'dart:io'; // Used by File
import 'dart:convert'; // Used by json

class DatabaseFileRoutines {

}

3.	 Inside the DatabaseFileRoutines class, add the _localPath async method that returns a
Future<String>, which is the documents directory path.

Future<String> get _localPath async {
 final directory = await getApplicationDocumentsDirectory();

 return directory.path;
}

4.	 Add the _localFile async method that returns a Future<File> with the reference to the local_
persistence.json file, which is the path, combined with the filename.

Future<File> get _localFile async {
 final path = await _localPath;

 return File('$path/local_persistence.json');
}

5.	 Add the readJournals() async method that returns a Future<String> containing the JSON
objects. You’ll use a try-catch just in case there is an issue with reading the file.

Future<String> readJournals() async {
 try {

 } catch (e) {

 }
}

6.	 Use file.existsSync() to check whether the file exists; if not, you create it by calling the
writeJournals('{"journals": []}') method by passing it an empty journals object. Next,
file.readAsString() is called to load the contents of the file.

Future<String> readJournals() async {
 try {
 final file = await _localFile;

 if (!file.existsSync()) {

Building the Journal App  ❘  341

 print("File does not Exist: ${file.absolute}");
 await writeJournals('{"journals": []}');
 }

 // Read the file
 String contents = await file.readAsString();

 return contents;
 } catch (e) {
 print("error readJournals: $e");
 return "";
 }
}

7.	 Add the writeJournals(String json) async method returning a Future<File> to save the
JSON objects to file.

Future<File> writeJournals(String json) async {
 final file = await _localFile;

 // Write the file
 return file.writeAsString('$json');
}

8.	 Following the DatabaseFileRoutines class, create two methods that call the Database class
to handle the JSON decode and encode for the entire database. Create the databaseFromJson
(String str) method returning a Database by passing it the JSON string. By using json
.decode(str), it parses the JSON string and returns a JSON object.

// To read and parse from JSON data - databaseFromJson(jsonString);
Database databaseFromJson(String str) {
 final dataFromJson = json.decode(str);
 return Database.fromJson(dataFromJson);
}

9.	 Create the databaseToJson(Database data) method returning a String. By using the json
.encode(dataToJson), it parses the values to a JSON string.

// To save and parse to JSON Data - databaseToJson(jsonString);
String databaseToJson(Database data) {
 final dataToJson = data.toJson();
 return json.encode(dataToJson);
}

10.	 Create the Database class, and the first item to declare is the journal variable of a
List<Journal> type, meaning it contains a list of journals. The Journal class contains each
record, and you’ll create it in step 13. Declare the Database constructor with the named parameter
this.journal variable. Note you are using curly brackets ({}) to declare the constructor named
parameter.

class Database {
 List<Journal> journal;

 Database({
 this.journal,
 });
}

342  ❘  CHAPTER 13   Saving Data with Local Persistence

11.	 To retrieve and map the JSON objects to a List<Journal> (list of Journal classes), create the
factory Database.fromJson() named constructor. Note that the factory constructor does not
always create a new instance but might return an instance from a cache. The constructor takes the
argument of Map<String, dynamic>, which maps the String key with a dynamic value, the
JSON key/value pair. The constructor returns the List<Journal> by taking the JSON 'journals'
key objects and mapping it from the Journal class that parses the JSON string to the Journal
object containing each field such as the id, date, mood, and note.

factory Database.fromJson(Map<String, dynamic> json) => Database(
 journal: List<Journal>.from(json["journals"].map((x) => Journal.fromJson(x))),
);

12.	 To convert the List<Journal> to JSON objects, create the toJson method that parses each
Journal class to JSON objects.

Map<String, dynamic> toJson() => {
 "journals": List<dynamic>.from(journal.map((x) => x.toJson())),
};

The following is the entire Database class:

class Database {
 List<Journal> journal;

 Database({
 this.journal,
 });

 factory Database.fromJson(Map<String, dynamic> json) => Database(
 journal: List<Journal>.from(json["journals"].map((x) => Journal.fromJson(x))),
);

 Map<String, dynamic> toJson() => {
 "journals": List<dynamic>.from(journal.map((x) => x.toJson())),
 };
}

13.	 Create the Journal class and declare as String types the id, date, mood, and note variables.
Declare the Journal constructor with the named parameters this.id , this.date, this.mood,
and this.note variables. Note that you are using curly ({}) brackets to declare the constructor
named parameters.

class Journal {
 String id;
 String date;
 String mood;
 String note;

 Journal({
 this.id,
 this.date,
 this.mood,
 this.note,
 });
}

Building the Journal App  ❘  343

14.	 To retrieve and convert the JSON object to a Journal class, create the factory Journal.fromJ-
son() named constructor. The constructor takes the argument of Map<String, dynamic>, which
maps the String key with a dynamic value, the JSON key/value pair.

factory Journal.fromJson(Map<String, dynamic> json) => Journal(
 id: json["id"],
 date: json["date"],
 mood: json["mood"],
 note: json["note"],
);

15.	 To convert the Journal class to a JSON object, create the toJson() method that parses the
Journal class to a JSON object.

Map<String, dynamic> toJson() => {
 "id": id,
 "date": date,
 "mood": mood,
 "note": note,
};

The following is the entire Journal class:

class Journal {
 String id;
 String date;
 String mood;
 String note;

 Journal({
 this.id,
 this.date,
 this.mood,
 this.note,
 });

 factory Journal.fromJson(Map<String, dynamic> json) => Journal(
 id: json["id"],
 date: json["date"],
 mood: json["mood"],
 note: json["note"],
);

 Map<String, dynamic> toJson() => {
 "id": id,
 "date": date,
 "mood": mood,
 "note": note,
 };
}

16.	 Create the JournalEdit class that is responsible for passing the action and a journal entry
between pages. Add a String action variable and a Journal journal variable. Add the default
JournalEdit constructor.

class JournalEdit {
 String action;

344  ❘  CHAPTER 13   Saving Data with Local Persistence

 Journal journal;

 JournalEdit({this.action, this.journal});
}

HOW IT WORKS

You created a database.dart file containing four classes to handle the local persistence serialization and
deserialization.

The DatabaseFileRoutines class handles locating the device’s local document directory path through
the path_provider package. You used the File class to handle the saving and reading of the data-
base file by importing the dart:io library. The file is text-based containing the key/value pair of
JSON objects.

The Database class uses json.encode and json.decode to serialize and deserialize JSON objects
by importing the dart:convert library. You use the Database.fromJson named constructor to
retrieve and map the JSON objects to a List<Journal>. You use the toJson() method to convert the
List<Journal> to JSON objects.

The Journal class is responsible for tracking individual journal entries through the String id, date,
mood, and note variables. You use the Journal.fromJson() named constructor to take the argument of
Map<String, dynamic>, which maps the String key with a dynamic value, the JSON key/value pair.
You use the toJson() method to convert the Journal class into a JSON object.

The JournalEdit class is used to pass data between pages. You declared a String action variable and
a Journal journal variable. The action variable passes an action to 'Save' or 'Cancel', editing an
entry. You learn’ll to use the JournalEdit class in the “Creating the Journal Entry Page” and “Finishing
the Home Page” exercises. The journal variable passes the journal entry values.

Adding the Journal Entry Page
The entry page is responsible for adding and editing a journal entry. You might ask, how does it know
when to add or edit a current entry? You created the JournalEdit class in the database.dart file
for this reason—to allow you to reuse the same page for multiple purposes. The entry page extends
a StatefulWidget with the constructor (Table 13.4) having the three arguments add, index, and
journalEdit. Note that the index argument is used to track the selected journal entry location in
the journal database list from the Home page. However, if a new journal entry is created, it does not
exist in the list yet, so a value of -1 is passed instead. Any index numbers zero and up would mean the
journal entry already exists in the list.

TABLE 13.4:  EditEntry Class Constructor Arguments

VARIABLE DESCRIPTION AND VALUE

final bool add If the add variable value is true, it means you are adding a new
journal. If the value is false, you are editing a journal entry.

final int index If the index variable value is -1, it means you are adding a new journal
entry. If the value is 0 or greater, you are editing a journal entry, and
you need to track the index position in the List<Journal>.

Building the Journal App  ❘  345

The entry page has Cancel and Save buttons that call an action with the onPressed() method
(Table 13.5). The onPressed() method sends back to the Home page the JournalEdit class with
appropriate values depending on which button is pressed.

To make it easy for the user to select a date, you use the built-in date picker that presents a calendar.
To show the calendar, you call the showDatePicker()function (Table 13.6) and pass four arguments:
context, initialDate, firstDate, and lastDate (Figure 13.3).

Once the date is retrieved, you’ll use the DateFormat.yMMMEd() constructor to show it in Sun, Jan
13, 2018 format. If you would like to show a time picker, call the showTimePicker() method and
pass the context and initialTime arguments.

VARIABLE DESCRIPTION AND VALUE

final JournalEdit

journalEdit

String action

Journal journal

The JournalEdit class passes two values. The action value is either
'Save' or 'Cancel'. The journal variable passes the entire Journal
class, consisting of the id, date, mood, and note values.

TABLE 13.5:  Save or Cancel FlatButton

ONPRESSED() RESULT

Cancel The JournalEdit action variable is set to 'Cancel', and the class is passed
back to the Home page with Navigator.pop(context, _journalEdit).

The Home page receives the values and does not take any action since the
editing was canceled.

Save The JournalEdit action variable is set to 'Save', and the journal variable
is set with the current Journal class values, the id, date, mood, and note. If
the add value is equal to true, meaning adding a new entry, a new id value
is generated. If the add value is equal to false, meaning editing an entry, the
current journal id is used.

The Home page receives the values and executes the 'Save' logic with
received values.

TABLE 13.6:  showDatePicker

PROPERTY VALUE

context You pass the BuildContext as the context.

initialDate You pass the journal date that is highlighted and selected in the calendar.

firstDate The oldest date range available to be picked in the calendar from today’s date.

lastDate The newest date range available to be picked in the calendar from today’s date.

346  ❘  CHAPTER 13   Saving Data with Local Persistence

In Chapter 6, “Using Common Widgets,” you learned how to use a Form with the TextFormField
to create an entry form. Now let’s use a different approach without a Form but use the TextField
with a TextEditingController. You’ll learn how to use the TextField TextInputAction with the
FocusNode to customize the keyboard action button to execute a custom action (Figure 13.4). The
keyboard action button is located to the right of the spacebar. You’ll also learn how to customize the
TextField capitalization options by using TextCapitalization that configures how the keyboard
capitalizes words, sentences, and characters; the settings are words, sentences, characters, or none
(default).

TRY IT OUT	 Creating the Journal Entry Page

In this section, you’ll create the EditEntry StatefulWidget with the constructor taking the arguments
add, index, and journalEdit. Note that the default constructors use the curly brackets ({}) to imple-
ment named parameters. The following graphic is the final journal entry page that you’ll create.

FIGURE 13.3:  Date picker calendar

Keyboard Action Button

FIGURE 13.4:  Keyboard action button for iOS and Android

Building the Journal App  ❘  347

1.	 Create a new Dart file under the pages folder. Right-click the pages folder, select New ➪ Dart File,
enter edit_entry.dart, and click the OK button to save.

2.	 Import the material.dart class, the database.dart class, the intl.dart package, and the
dart:math library. Add a new line and create the EditEntry class that extends a StatefulWidget.

import 'package:flutter/material.dart';
import 'package:ch13_local_persistence/classes/database.dart';
import 'package:intl/intl.dart'; // Format Dates
import 'dart:math'; // Random() numbers

class EditEntry extends StatefulWidget {
 @override
 _EditEntryState createState() => _EditEntryState();
}

class _EditEntryState extends State<EditEntry> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

348  ❘  CHAPTER 13   Saving Data with Local Persistence

3.	 After the class EditEntry extends StatefulWidget { and before the @override, add the three
variables bool add, int index, and JournalEdit journalEdit and mark them as final.

class EditEntry extends StatefulWidget {
 final bool add;
 final int index;
 final JournalEdit journalEdit;

 @override
 _EditEntryState createState() => _EditEntryState();
}

4.	 Add the EditEntry constructor with Key key, this.add, this.index, and this.journalEdit as
named parameters by enclosing them in curly brackets ({}).

class EditEntry extends StatefulWidget {
 final bool add;
 final int index;
 final JournalEdit journalEdit;

 const EditEntry({Key key, this.add, this.index, this.journalEdit})
 : super(key: key);

 @override
 _EditEntryState createState() => _EditEntryState();
}

5.	 Modify the _EditEntryState class and add the private JournalEdit _journalEdit, String
_title, and DateTime _selectedDate variables. Note that the private _journalEdit variable is
populated from the JournalEdit class value passed to the EditEntry constructor.

class _EditEntryState extends State<EditEntry> {
 JournalEdit _journalEdit;
 String _title;
 DateTime _selectedDate;

 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

6.	 The mood and note use the TextField widget, which requires the TextEditingController to
access and modify the values. Add _moodController and _noteController
TextEditingController variables and initialize them with the TextEditingController()
constructor. Note that this controller treats a null value as an empty string.

class _EditEntryState extends State<EditEntry> {
 JournalEdit _journalEdit;
 String _title;
 DateTime _selectedDate;
 TextEditingController _moodController = TextEditingController();
 TextEditingController _noteController = TextEditingController();

Building the Journal App  ❘  349

 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

7.	 Declare the _moodFocus and _noteFocus FocusNode variables and initialize them with the
FocusNode() constructor. You’ll use the FocusNode with the TextInputAction to customize the
keyboard action button in steps 30 and 31.

class _EditEntryState extends State<EditEntry> {
 JournalEdit _journalEdit;
 String _title;
 DateTime _selectedDate;
 TextEditingController _moodController = TextEditingController();
 TextEditingController _noteController = TextEditingController();
 FocusNode _moodFocus = FocusNode();
 FocusNode _noteFocus = FocusNode();

 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

8.	 Override the initState(), and let’s initialize the variables with values passed to the EditEntry
constructor and make sure you add the super.initState().

@override
void initState() {
 super.initState();
}

9.	 Initialize the _journalEdit variable by using the JournalEdit class constructor by defaulting the
action to 'Cancel' and the journal to widget.journalEdit.journal value. Note that you use the
widget to access the values from the EditEntry constructor. Also, note that you access the indi-
vidual journal entry from the JournalEdit class by using the dot operator and then choosing the
journal variable.

_journalEdit = JournalEdit(action: 'Cancel', journal: widget.journalEdit.journal);

10.	 Initialize the _title variable by using a ternary operator to check whether widget.add is true. If
it is, set the value to 'Add', and if false, set the value to 'Edit'. By using the _title variable,
you customize the AppBar’s title to the action the user is taking. It’s the little details that make an
app great.

_title = widget.add ? 'Add' : 'Edit';

11.	 Initialize the _journalEdit.journal variable from the widget.journalEdit.journal variable.

_journalEdit.journal = widget.journalEdit.journal;

12.	 To populate the entry fields on the page, add an if-else statement. If the widget.add value is
true, meaning adding a new journal record, then initialize the _selectedDate variable with the
current date by using the DateTime.now() constructor and initialize the _moodController.text

350  ❘  CHAPTER 13   Saving Data with Local Persistence

and _noteController.text to an empty string. If the widget.add value is false, meaning
editing a current journal record, then initialize the _selectedDate variable with the _journal-
Edit.journal.date and use the DateTime.parse to convert the date from String to a DateTime
format. Also initialize the _moodController.text with the _journalEdit.journal.mood and
the _noteController.text with the _journalEdit.journal.note. When you override the
initState() method, make sure you start the method with a call to super.initState().

@override
void initState() {
 super.initState();

 _journalEdit = JournalEdit(action: 'Cancel', journal: widget.
journalEdit.journal);
 _title = widget.add ? 'Add' : 'Edit';
 _journalEdit.journal = widget.journalEdit.journal;
 if (widget.add) {
 _selectedDate = DateTime.now();
 _moodController.text = '';
 _noteController.text = '';
 } else {
 _selectedDate = DateTime.parse(_journalEdit.journal.date);
 _moodController.text = _journalEdit.journal.mood;
 _noteController.text = _journalEdit.journal.note;
 }
}

13.	 Override dispose(), and let’s dispose the two TextEditingController and FocusNode; make
sure you add super.dispose(). When you override the dispose() method, make sure you end
the method with a call to super.dispose().

@override
dispose() {

 _moodController.dispose();
 _noteController.dispose();
 _moodFocus.dispose();
 _noteFocus.dispose();

 super.dispose();
}

14.	 Add the _selectDate(DateTime selectedDate) async method that returns a
Future<DateTime>. This method is responsible for calling the Flutter built-in showDatePicker()
that presents the user with a popup dialog displaying a Material Design calendar to choose dates.

// Date Picker
Future<DateTime> _selectDate(DateTime selectedDate) async {

}

15.	 Add the DateTime _initialDate variable and initialize it with the selectedDate variable passed
in the constructor.

DateTime _initialDate = selectedDate;

Building the Journal App  ❘  351

16.	 Add a final DateTime _pickedDate (the date the user picks from the calendar) variable and
initialize it by calling the await showDatePicker() constructor. Pass the context, initialDate,
firstDate, and lastDate arguments. Note that for the firstDate you use today’s date and
subtract 365 days, and for the lastDate, you add 365 days, which tells the calendar a selectable
dates range.

final DateTime _pickedDate = await showDatePicker(
 context: context,
 initialDate: _initialDate,
 firstDate: DateTime.now().subtract(Duration(days: 365)),
 lastDate: DateTime.now().add(Duration(days: 365)),
);

17.	 Add an if statement that checks that the _pickedDate (the date the user picked from the calen-
dar) variable does not equal null, meaning the user tapped the calendar’s Cancel button. If the user
did pick a date, then modify the selectedDate variable by using the DateTime() constructor and
pass the _pickedDate year, month, and day. For the time, pass the _initialDate hour, minute,
second, millisecond, and microsecond. Note that since you are only changing the date and not
the time, you use the original’s created date time.

if (_pickedDate != null) {
 selectedDate = DateTime(
 _pickedDate.year,
 _pickedDate.month,
 _pickedDate.day,
 _initialDate.hour,
 _initialDate.minute,
 _initialDate.second,
 _initialDate.millisecond,
 _initialDate.microsecond);
}

18.	 Add a return statement to send back the selectedDate.

return selectedDate;

The following is the entire _selectDate() method:

// Date Picker
Future<DateTime> _selectDate(DateTime selectedDate) async {
 DateTime _initialDate = selectedDate;

 final DateTime _pickedDate = await showDatePicker(
 context: context,
 initialDate: _initialDate,
 firstDate: DateTime.now().subtract(Duration(days: 365)),
 lastDate: DateTime.now().add(Duration(days: 365)),
);
 if (_pickedDate != null) {
 selectedDate = DateTime(
 _pickedDate.year,
 _pickedDate.month,
 _pickedDate.day,
 _initialDate.hour,
 _initialDate.minute,

352  ❘  CHAPTER 13   Saving Data with Local Persistence

 _initialDate.second,
 _initialDate.millisecond,
 _initialDate.microsecond);
 }
 return selectedDate;
}

19.	 In the Widget build() method, replace the Container() with the UI widgets Scaffold and
AppBar, and for the body property add a SafeArea() and SingleChildScrollView() with the
child property as a Column(). Note that the AppBar title uses the Text widget with the _title
variable to customize the title with either Add or Edit Entry.

@override
Widget build(BuildContext context) {]></line>
 return Scaffold(]
 appBar: AppBar(]
 title: Text('$_title Entry'),
 automaticallyImplyLeading: false,
),
 body: SafeArea(
 child: SingleChildScrollView(
 padding: EdgeInsets.all(16.0),
 child: Column(
 children: <Widget>[

],
),
),
),
);
}

20.	 Add to the Column children a FlatButton widget that is used to show the formatted selected
date, and when the user taps the button, it presents the calendar. Set the FlatButton padding
property to EdgeInsets.all(0.0) to remove padding for better aesthetics and add to the child
property a Row() widget.

FlatButton(
 padding: EdgeInsets.all(0.0),
 child: Row(
 children: <Widget>[
],
),
),

Building the Journal App  ❘  353

21.	 Add to the Row children property the Icons.calendar_day Icon with a size of 22.0 and a color
property set to Colors.black54.

Icon(
 Icons.calendar_today,
 size: 22.0,
 color: Colors.black54,
),

22.	 Add a SizedBox with a width property set to 16.0 to add a spacer.

SizedBox(width: 16.0,),

23.	 Add a Text widget and format the _selectedDate with the DateFormat.yMMMEd() constructor.

Text(DateFormat.yMMMEd().format(_selectedDate),
 style: TextStyle(
 color: Colors.black54,
 fontWeight: FontWeight.bold),
),

24.	 Add the Icons.arrow_drop_down Icon with the color property set to Colors.black54.

Icon(
 Icons.arrow_drop_down,
 color: Colors.black54,
),

25.	 Add the onPressed() callback and mark it async since calling the calendar is a Future event.

onPressed: () async {
},

26.	 Add to onPressed() the FocusScope.of().requestFocus() method call to dismiss the key-
board if any of the TextField widgets have focus. (This step is optional, but I wanted to show you
how it’s accomplished.)

FocusScope.of(context).requestFocus(FocusNode());

27.	 Add a DateTime _pickerDate variable initialized by calling the await _selectDate(_select-
edDate) Future method, which is why you add the await keyword. You added this method
in step 14.

28.	 Add setState() and inside the call modify the _selectedDate variable with the _pickerDate
value, which is the date selected from the calendar.

DateTime _pickerDate = await _selectDate(_selectedDate);
setState(() {
 _selectedDate = _pickerDate;
});

The following is the full FlatButton widget code:

FlatButton(
 padding: EdgeInsets.all(0.0),
 child: Row(

354  ❘  CHAPTER 13   Saving Data with Local Persistence

 children: <Widget>[
 Icon(
 Icons.calendar_today,
 size: 22.0,
 color: Colors.black54,
),
 SizedBox(width: 16.0,),
 Text(DateFormat.yMMMEd().format(_selectedDate),
 style: TextStyle(
 color: Colors.black54,
 fontWeight: FontWeight.bold),
),
 Icon(
 Icons.arrow_drop_down,
 color: Colors.black54,
),
],
),
 onPressed: () async {
 FocusScope.of(context).requestFocus(FocusNode());
 DateTime _pickerDate = await _selectDate(_selectedDate);
 setState(() {
 _selectedDate = _pickerDate;
 });
 },
),

29.	 Now it’s time to add the two TextField widgets for the mood and note fields. How do you set
which TextField belongs to the mood or note? It’s the controller, of course.
For the mood TextField, set the controller to _moodController, and set autofocus to true to
automatically set the focus and show the keyboard when the page opens.

TextField(
 controller: _moodController,
 autofocus: true,
),

30.	 Set textInputAction to TextInputAction.next telling the keyboard action button to move to
the next field.

textInputAction: TextInputAction.next,

31.	 Set the focusNode to _moodFocus and textCapitalization to TextCapitalization.words,
meaning every word is automatically capitalized.

focusNode: _moodFocus,
textCapitalization: TextCapitalization.words,

32.	 Set the decoration to InputDecoration with the labelText set to 'Mood' and the icon set to
Icons.mood.

decoration: InputDecoration(
 labelText: 'Mood',
 icon: Icon(Icons.mood),
),

Building the Journal App  ❘  355

33.	 For the onSubmitted property, enter the argument name as submitted and call the FocusScope
.of(context).requestFocus(_noteFocus) to have the keyboard action button change the focus
to the note TextField. Note that I named the argument submitted, but it can be any name, like
submittedValue or moodValue.

onSubmitted: (submitted) {
 FocusScope.of(context).requestFocus(_noteFocus);
},

The following is the full mood TextField widget:

TextField(
 controller: _moodController,
 autofocus: true,
 textInputAction: TextInputAction.next,
 focusNode: _moodFocus,
 textCapitalization: TextCapitalization.words,
 decoration: InputDecoration(
 labelText: 'Mood',
 icon: Icon(Icons.mood),
),
 onSubmitted: (submitted) {
 FocusScope.of(context).requestFocus(_noteFocus);
 },
),

34.	 For the note TextField, set the controller to _noteController, and set autofocus to true to
automatically set the focus and show the keyboard when the page opens.

TextField(
 controller: _noteController,
),

35.	 Set the textInputAction to TextInputAction.newline telling the keyboard action button to
insert a new line in the TextField.

textInputAction: TextInputAction.newline,

356  ❘  CHAPTER 13   Saving Data with Local Persistence

36.	 Set the focusNode to _noteFocus and textCapitalization to TextCapitalization
.sentences, meaning every first word of a sentence is automatically capitalized.

focusNode: _noteFocus,
textCapitalization: TextCapitalization.sentences,

37.	 Set the decoration to InputDecoration with the labelText set to 'Note' and the icon set to
Icons.subject.

decoration: InputDecoration(
 labelText: 'Note',
 icon: Icon(Icons.subject),
),

38.	 Set the maxLines property to null, allowing the TextField to grow vertically to show the entire
contents of the note. Using this technique is a great way to have a TextField automatically grow
to the size of the content without writing any code logic.

maxLines: null,

The following is the full note TextField widget:

TextField(
 controller: _noteController,

 textInputAction: TextInputAction.newline,
 focusNode: _noteFocus,
 textCapitalization: TextCapitalization.sentences,
 decoration: InputDecoration(
 labelText: 'Note',
 icon: Icon(Icons.subject),
),
 maxLines: null,
),

39.	 The last part for the entry page is to add Cancel and Save buttons. Add a Row and set
mainAxisAlignment to MainAxisAlignment.end to align buttons to the right side of the page.

Row(
 mainAxisAlignment: MainAxisAlignment.end,

Building the Journal App  ❘  357

 children: <Widget>[
],
),

40.	 Edit the Row children and add a FlatButton with the child set to a Text widget to display
'Cancel'. Set the color property to Colors.grey.shade100, making the button not the main
action focus.

FlatButton(
 child: Text('Cancel'),
 color: Colors.grey.shade100,
),

41.	 For the onPressed property, modify the _journalEdit.action to 'Cancel' and call the
Navigator.pop(context, _journalEdit) to dismiss the entry form and pass the value back to
the calling page. You’ll handle this action in the last Try It Out in this chapter (“Finishing the
Journal Home Page”).

FlatButton(
 child: Text('Cancel'),
 color: Colors.grey.shade100,
 onPressed: () {
 _journalEdit.action = 'Cancel';
 Navigator.pop(context, _journalEdit);
 },
),

42.	 Add a SizedBox with the width set to 8.0 to place a spacer between the two buttons.

SizedBox(width: 8.0),

43.	 Add the second FlatButton with the child set to a Text widget to display 'Save'. Set the color
property to Colors.lightGreen.shade100, making the button the main action focus.

FlatButton(
 child: Text('Save'),
 color: Colors.lightGreen.shade100,
),

44.	 For the onPressed property, modify the _journalEdit.action to 'Save'.

onPressed: () {
 _journalEdit.action = 'Save';
},

45.	 Since you are saving the entry, declare a String _id variable and use the ternary operator to check
that the widget.add variable is set to true and use the Random().nextInt(9999999) to generate
a random number. If the widget.add is false, then use the current _journalEdit.journal.id
since you are editing an existing entry.

Note that nextInt() sets the maximum number range from zero, and in our case, you set the
maximum to 9999999. Note that for our purposes this works great, but in a production environ-
ment, I suggest you use a UUID, which is a 128-bit number that includes alphanumeric characters.
A sample UUID looks like this: 409fg342-h34c-25c8-b311-51874523574e.

String _id = widget.add ? Random().nextInt(9999999).toString() : _journalEdit
.journal.id;

358  ❘  CHAPTER 13   Saving Data with Local Persistence

46.	 Modify the _journalEdit.journal value by using the Journal() class constructor and pass the
id property with the _id variable, the date with the _selectedDate.toString() (date is
saved as a String), the mood with the _moodController.text, and the note with the
_noteController.text.

_journalEdit.journal = Journal(
 id: _id,
 date: _selectedDate.toString(),
 mood: _moodController.text,
 note: _noteController.text,
);

47.	 Call the Navigator.pop(context, _journalEdit) to dismiss the entry form and pass the value
back to the calling page. You handle receiving this action in the “Finishing the Journal Home
Page” exercise.

FlatButton(
 child: Text('Save'),
 color: Colors.lightGreen.shade100,
 onPressed: () {
 _journalEdit.action = 'Save';
 String _id = widget.add ? Random().nextInt(9999999).toString() : _journalEdit
.journal.id;
 _journalEdit.journal = Journal(
 id: _id,
 date: _selectedDate.toString(),
 mood: _moodController.text,
 note: _noteController.text,
);
 Navigator.pop(context, _journalEdit);
 },
),

The following is the full Row widget code:

Row(
 mainAxisAlignment: MainAxisAlignment.end,
 children: <Widget>[
 FlatButton(
 child: Text('Cancel'),
 color: Colors.grey.shade100,
 onPressed: () {
 _journalEdit.action = 'Cancel';
 Navigator.pop(context, _journalEdit);
 },
),
 SizedBox(width: 8.0),
 FlatButton(
 child: Text('Save'),
 color: Colors.lightGreen.shade100,
 onPressed: () {
 _journalEdit.action = 'Save';
 String _id = widget.add ? Random().nextInt(9999999).toString() :
_journalEdit.journal.id;
 _journalEdit.journal = Journal(

Building the Journal App  ❘  359

 id: _id,
 date: _selectedDate.toString(),
 mood: _moodController.text,
 note: _noteController.text,
);
 Navigator.pop(context, _journalEdit);
 },
),
],
),

HOW IT WORKS

You created the edit_entry.dart file with the EditEntry class extending a StatefulWidget to handle
adding and editing journal entries. You customized the constructor to have the three arguments add,
index, and journalEdit. The add variable is responsible for handling whether you are adding or modi-
fying an entry; the index is -1 if adding a record or is the actual List index location if you are editing
an entry. The journalEdit variable has an action value for 'Cancel' or 'Save' and the Journal class
holding the journal entry values for the id, date, mood, and note values.

The showDatePicker() function displays a popup dialog that contains the Material Design date picker.
You pass the context, initialDate, firstDate, and lastDate arguments to customize the pickable
date range.

To format dates, you use the appropriate DateFormat named constructor. To further customize the date
format, you can use the add_*() methods (substitute the * character with the format characters needed)
to append and compound multiple formats.

The TextEditingController allows access to the value of the associated TextField widget. The
TextField TextInputAction allows you to customize the device keyboard action button. The Focus-
Node is associated to the TextField widget, which allows you to set focus on the appropriate Text-
Field programmatically. The TextCapitalization allows you to configure the TextField widget’s
capitalization by using words, sentences, and characters.

The JournalEdit class tracks the entry action and values. It uses the action variable to track whether
the Save or Cancel button is tapped. It uses the journal variable to hold the Journal class field values
for editing or creating new journal entries. The Navigator.pop() method returns the JournalEdit class
values to the Home page.

Finishing the Journal Home Page
The Home page is responsible for showing a list of journal entries. In Chapter 9, “Creating Scroll-
ing Lists and Effects,” you learned how to use the ListView.builder, but for this app, you’ll learn
how to use the ListView.separated constructor. By using the separated constructor, you have the
same benefits of the builder constructor because the builders are called only for the children who

360  ❘  CHAPTER 13   Saving Data with Local Persistence

are visible on the page. You might have noticed I said builders,
because you use two of them, the standard itemBuilder for the
List of children (journal entries) and the separatorBuilder
to show a separator between children. The separatorBuilder
is extremely powerful for customizing the separator; it could be
an Image, Icon, or custom widget, but for our purposes, you’ll
use a Divider widget. You’ll use the ListTile to format your
list of journal entries and customize the leading property with
a Column to show the date and day of the week, making it easier
to spot individual entries (Figure 13.5).

To delete journal entries, you’ll use a Dismissible, which you
learned about in Chapter 11, “Applying Interactivity.” Keep in
mind that for the Dismissible to work properly and delete the
correct journal entry, you’ll set the key property to the journal
entry id field by using the Key class, which takes a String value
like Key(snapshot.data[index].id).

You’ll learn how to use the FutureBuilder widget, which works with a Future to retrieve the
latest data without blocking the UI. You learned details in this chapter’s “Retrieving Data with the
FutureBuilder” section.

You’ll use a Future that you learned how to use in Chapters 3 and 12 (“Learning Dart Basics”
and “Writing Platform-Native Code”) to retrieve the journal entries. Retrieving the journal entries
requires multiple steps, and to help you manage them, you’ll use the database.dart file classes that
you created in the “Adding the Journal Database Classes” section of this chapter. The classes that you
use are DatabaseFileRoutines, Database, Journal, and JournalEdit.

1.	 You call the DatabaseFileRoutines calls to read the JSON file located in the device
documents folder.

2.	 You call the Database class to parse the JSON to a List format.

3.	 You use the List sort function to sort entries by DESC date.

4.	 The sorted List is returned to the FutureBuilder, and the ListView displays existing jour-
nal entries.

TRY IT OUT	 Finishing the Journal Home Page

In this section, you’ll finish the Home page by adding methods to load, add, modify, and save journal
entries. You’ll create a method to build and use the ListView.separated constructor to customize your
list of journal entries. In the ListView itemBuilder, you’ll add a Dismissible to handle deleting
journal entries.

You’ll import the database.dart file to utilize the database classes to help you to serialize the
JSON objects.

1.	 Import the edit_entry.dart, database.dart and intl.dart packages.

import 'package:flutter/material.dart';
import 'package:ch13_local_persistence/pages/edit_entry.dart';

FIGURE 13.5:  Journal entry list

Building the Journal App  ❘  361

import 'package:ch13_local_persistence/classes/database.dart';
import 'package:intl/intl.dart'; // Format Dates

2.	 After the class _HomeState extends State<Home> {, add the Database _database variable.
The _database variable holds the parsed JSON objects of the journal JSON object, which is your
list of journal entries.

class _HomeState extends State<Home> {
 Database _database;

3.	 Add the _loadJournals() async method that returns a Future<List<Journal>>, which is a
List of the Journal class entries.

Future<List<Journal>> _loadJournals() async {
}

4.	 Add the await DatabaseFileRoutines().readJournals() call and add with the dot notation a
call to then((journalsJson) {}).

What exactly is this call to then()? It registers a callback to be called when the Future com-
pletes. What this means is that once the readJournals() method completes and returns the value,
then() executes the code inside. Note that the journalsJson parameter receives the value from
the JSON objects read from the saved local_persistence.json file located in the device local
documents folder.

await DatabaseFileRoutines().readJournals().then((journalsJson) {
});

5.	 Inside the then() callback, modify the _database variable with the value from the call to databas
eFromJson(journalsJson).

The databaseFromJson method in the database.dart class uses json.decode() to parse the
JSON objects that are read from the saved file. Database.fromJson() is called, and it returns the
JSON objects as a Dart List, which is extremely powerful. At this point, it’s clear how separating
the code logic to handle your data into the database classes becomes useful and straightforward.

_database = databaseFromJson(journalsJson);

6.	 Continue inside the then() callback, and let’s sort the journal entries by DESC date, with newer
entries first and older last. Use _database.journal.sort() to compare dates and sort them.

_database.journal.sort((comp1, comp2) => comp2.date.compareTo(comp1.date));

7.	 After the then() callback, add a new line with the return statement returning the variable
_database.journal, which contains the sorted journal entries.

return _database.journal;

The following is the full _loadJournals() method:

Future<List<Journal>> _loadJournals() async {
 await DatabaseFileRoutines().readJournals().then((journalsJson) {
 _database = databaseFromJson(journalsJson);
 _database.journal.sort((comp1, comp2) => comp2.date.compareTo(comp1.date));
 });
 return _database.journal;
}

362  ❘  CHAPTER 13   Saving Data with Local Persistence

8.	 Add the _addOrEditJournal() method that handles presenting the edit entry page to either add
or modify a journal entry. You use Navigator.push() to present the entry page and wait for the
result of the user’s actions. If the user pressed the Cancel button, nothing happens, but if they
pressed Save, then you either add the new journal entry or save the changes to the current
edited entry.

_addOrEditJournal() is an async method taking the named parameters of bool add, int
index, and Journal journal. Refer to Table 13.4 for the arguments description. Initiate the
JournalEdit _journalEdit variable with the JournalEdit class with the action value set
to an empty string and the journal value set to the journal variable that is passed in from the
constructor.

void _addOrEditJournal({bool add, int index, Journal journal}) async {
 JournalEdit _journalEdit = JournalEdit(action: '', journal: journal);
}

9.	 Add a new line; you are going to use the Navigator to pass the constructor values to the edit entry
page by using the await keyword that passes the value back to the local _journalEdit variable.
For the MaterialPageRoute builder, pass the constructor values to the EditEntry() class and
set the fullscreenDialog property to true.

_journalEdit = await Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => EditEntry(
 add: add,
 index: index,
 journalEdit: _journalEdit,
),
 fullscreenDialog: true
),
);

Once the edit entry page is dismissed, the switch statement executes next, and you’ll take
appropriate action depending on the user’s selection. The switch statement evaluates the
_journalEdit.action to check whether the Save button was pressed and then checks whether
you are adding or saving the entry with an if-else statement.

switch (_journalEdit.action) {
}

10.	 Add the first switch case statement that checks for the 'Save' value.
If the add variable is set to true, meaning you are adding a new entry, then you use the
setState() and call the _database.journal.add(_journalEdit.journal) by passing the
journal values.

switch (_journalEdit.action) {
 case 'Save':
 if (add) {
 setState(() {
 _database.journal.add(_journalEdit.journal);
 });
 }
 break;
}

Building the Journal App  ❘  363

11.	 If the add variable is set to false, meaning you are saving an existing entry, then you use the
setState() and modify the value of the _database.journal[index] = _journalEdit
.journal. You are replacing the values from the current _database.journal[index] selected
journal entry by the index value and replacing it with the _journalEdit.journal value passed
from the edit entry page.

switch (_journalEdit.action) {
 case 'Save':
 if (add) {
 setState(() {
 _database.journal.add(_journalEdit.journal);
 });
 } else {
 setState(() {
 _database.journal[index] = _journalEdit.journal;
 });
 }
 break;
}

12.	 To save the journal entry values to the device local storage documents directory, you call
DatabaseFileRoutines().writeJournals(databaseToJson(_database)). Add the second
case statement that checks for the 'Cancel' value, but there’s no need to add any actions since the
user canceled editing.

switch (_journalEdit.action) {
 case 'Save':
 if (add) {
 setState(() {
 _database.journal.add(_journalEdit.journal);
 });
 } else {
 setState(() {
 _database.journal[index] = _journalEdit.journal;
 });
 }
 DatabaseFileRoutines().writeJournals(databaseToJson(_database));
 break;
 case 'Cancel':
 break;
}

13.	 Add the default check just in case something else happened, but you also do not take any fur-
ther action.

switch (_journalEdit.action) {
 case 'Save':
 if (add) {
 setState(() {
 _database.journal.add(_journalEdit.journal);
 });
 } else {
 setState(() {
 _database.journal[index] = _journalEdit.journal;
 });
 }

364  ❘  CHAPTER 13   Saving Data with Local Persistence

 DatabaseFileRoutines().writeJournals(databaseToJson(_database));
 break;
 case 'Cancel':
 break;
 default:
 break;
}

The following is the full _addOrEditJournal method:

void _addOrEditJournal({bool add, int index, Journal journal}) async {
 JournalEdit _journalEdit = JournalEdit(action: '', journal: journal);
 _journalEdit = await Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => EditEntry(
 add: add,
 index: index,
 journalEdit: _journalEdit,
),
 fullscreenDialog: true
),
);
 switch (_journalEdit.action) {
 case 'Save':
 if (add) {
 setState(() {
 _database.journal.add(_journalEdit.journal);
 });
 } else {
 setState(() {
 _database.journal[index] = _journalEdit.journal;
 });
 }
 DatabaseFileRoutines().writeJournals(databaseToJson(_database));
 break;
 case 'Cancel':
 break;
 default:
 break;
 }
}

14.	 Add the _buildListViewSeparated(AsyncSnapshot snapshot) method that takes the
AsyncSnapshot parameter, which is the List of journal entries. The method is called from the
FutureBuilder() in the body property. The way to read the journal entry List is by accessing the
snapshot data property by using snapshot.data. Each journal entry is accessed by using the index
like snapshot.data[index]. To access each field, you use the snapshot.data[index].date or
snapshot.data[index].mood and so on.

Widget _buildListViewSeparated(AsyncSnapshot snapshot) {
}

Building the Journal App  ❘  365

15.	 The method returns a ListView by using the separated() constructor. Set the itemCount
property to the snapshot.data.length and set the itemBuilder property to (BuildContext
context, int index).

Widget _buildListViewSeparated(AsyncSnapshot snapshot) {
 return ListView.separated(
 itemCount: snapshot.data.length,
 itemBuilder: (BuildContext context, int index) {
 },
);
}

16.	 Inside the itemBuilder, initialize the String _titleDate with the DateFormat.yMMMD()
constructor using the format() with the snapshot.data[index].date. Since the data is in a
String format, use the DateTime.parse() constructor to convert it to a date.

String _titleDate = DateFormat.yMMMd().format(DateTime.parse(snapshot
.data[index].date));

17.	 Initialize the String _subtitle with the mood and note fields by using string concatenation and
separate them with a blank line by using the '\n' character.

String _subtitle = snapshot.data[index].mood + "\n" + snapshot.data[index].note;

18.	 Add the return Dismissible(), and you’ll complete it in step 20.

return Dismissible();

19.	 Add the separatorBuilder that handles the separator line between journal entries by using a
Divider() with the color property set to Colors.grey.

Widget _buildListViewSeparated(AsyncSnapshot snapshot) {
 return ListView.separated(
 itemCount: snapshot.data.length,
 itemBuilder: (BuildContext context, int index) {
 String _titleDate = DateFormat.yMMMd().format(DateTime.parse(snapshot
.data[index].date));
 String _subtitle = snapshot.data[index].mood + "\n" + snapshot
.data[index].note;
 return Dismissible();
 },
 separatorBuilder: (BuildContext context, int index) {
 return Divider(
 color: Colors.grey,
);
 },
);
}

20.	 Finish the Dismissible() widget, which is responsible for deleting journal entries by swiping left
or right on the entry itself. Set the key property to Key(snapshot.data[index].id), which
creates a key from the journal entry id field.

return Dismissible(
 key: Key(snapshot.data[index].id),
);

366  ❘  CHAPTER 13   Saving Data with Local Persistence

21.	 The background property is shown when the user swipes from left to right, and the
secondaryBackground property is shown when the user swipes from right to left. For the
background property, add a Container with the color set to Colors.red, the alignment set to
Alignment.centerLeft, the padding set to EdgetInsets.only(left: 16.0), and the child
property set to Icons.delete with the color property set to Colors.white.

return Dismissible(
 key: Key(snapshot.data[index].id),
 background: Container(
 color: Colors.red,
 alignment: Alignment.centerLeft,
 padding: EdgeInsets.only(left: 16.0),
 child: Icon(
 Icons.delete,
 color: Colors.white,
),
),
);

22.	 For the secondaryBackground, use the same properties as the background but change the
alignment property to Alignment.centerRight.

return Dismissible(
 key: Key(snapshot.data[index].id),
 background: Container(
 color: Colors.red,
 alignment: Alignment.centerLeft,
 padding: EdgeInsets.only(left: 16.0),
 child: Icon(
 Icons.delete,
 color: Colors.white,
),
),
 secondaryBackground: Container(
 color: Colors.red,
 alignment: Alignment.centerRight,
 padding: EdgeInsets.only(right: 16.0),
 child: Icon(

Building the Journal App  ❘  367

 Icons.delete,
 color: Colors.white,
),
),
 child: ListTile(),
 onDismissed: (direction) {
 setState(() {
 _database.journal.removeAt(index);
 });
 DatabaseFileRoutines().writeJournals(databaseToJson(_database));
 },
);

23.	 Finish the ListTile() widget, which is responsible for displaying each journal entry. You are
going to customize the leading property to show the date’s day and weekday description. For the
leading property, add a Column() with the children list of two Text widgets.

child: ListTile(
 leading: Column(
 children: <Widget>[
 Text(),
 Text(),
],
),
),

24.	 The first Text widget shows the day; let’s format it with the DateFormat.d() constructor using
the format() with the snapshot.data[index].date. Since the data is in a String format, use
the DateTime.parse() constructor to convert it to a date.

Text(DateFormat.d().format(DateTime.parse(snapshot.data[index].date)),
),

25.	 Set the style property to TextStyle with a fontWeight of FontWeight.bold, fontSize of 32.0,
and color set to Colors.blue.

Text(DateFormat.d().format(DateTime.parse(snapshot.data[index].date)),
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 32.0,
 color: Colors.blue),
),

368  ❘  CHAPTER 13   Saving Data with Local Persistence

26.	 The second Text widget shows the weekday; let’s format it with the DateFormat.E() constructor
using the format() with the snapshot.data[index].date.
Since the data is in a String format, use the DateTime.parse() constructor to convert it
to a date.

Text(DateFormat.E().format(DateTime.parse(snapshot.data[index].date))),

27.	 Set the title property to a Text widget with the _titleDate variable and the style property to
TextStyle with the fontWeight set to FontWeight.bold.

title: Text(
 _titleDate,
 style: TextStyle(fontWeight: FontWeight.bold),
),

28.	 Set the subtitle property to a Text widget with the _subtitle variable.

subtitle: Text(_subtitle),

29.	 Add the onTap property that calls the _addOrEditJournal() method and pass the add property as
false, meaning not adding a new entry but modifying the current entry. Set the index property to
index, which is the current entry index in the List.
Set the journal property to the snapshot.data[index], which is the Journal class with the
entry details containing the id, date, mood, and note fields.

onTap: () {
 _addOrEditJournal(
 add: false,
 index: index,
 journal: snapshot.data[index],
);
},

The following is the full ListTile widget:

child: ListTile(
 leading: Column(
 children: <Widget>[
 Text(DateFormat.d().format(DateTime.parse(snapshot.data[index].date)),
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 32.0,
 color: Colors.blue),
),
 Text(DateFormat.E().format(DateTime.parse(snapshot.data[index].date))),
],
),
 title: Text(
 _titleDate,
 style: TextStyle(fontWeight: FontWeight.bold),
),
 subtitle: Text(_subtitle),
 onTap: () {
 _addOrEditJournal(
 add: false,
 index: index,

Building the Journal App  ❘  369

 journal: snapshot.data[index],
);
 },
),

The following is the full _buildListViewSeparated() method:

// Build the ListView with Separator
Widget _buildListViewSeparated(AsyncSnapshot snapshot) {
 return ListView.separated(
 itemCount: snapshot.data.length,
 itemBuilder: (BuildContext context, int index) {
 String _titleDate = DateFormat.yMMMd().format(DateTime.parse(snapshot
.data[index].date));
 String _subtitle = snapshot.data[index].mood + "\n" + snapshot
.data[index].note;
 return Dismissible(
 key: Key(snapshot.data[index].id),
 background: Container(
 color: Colors.red,
 alignment: Alignment.centerLeft,
 padding: EdgeInsets.only(left: 16.0),
 child: Icon(
 Icons.delete,
 color: Colors.white,
),
),
 secondaryBackground: Container(
 color: Colors.red,
 alignment: Alignment.centerRight,
 padding: EdgeInsets.only(right: 16.0),
 child: Icon(
 Icons.delete,
 color: Colors.white,
),
),
 child: ListTile(
 leading: Column(
 children: <Widget>[
 Text(DateFormat.d().format(DateTime.parse(snapshot.data[index].date)),
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 32.0,
 color: Colors.blue),
),
 Text(DateFormat.E().format(DateTime.parse(snapshot.data[index].date))),
],
),
 title: Text(
 _titleDate,
 style: TextStyle(fontWeight: FontWeight.bold),
),
 subtitle: Text(_subtitle),
 onTap: () {

370  ❘  CHAPTER 13   Saving Data with Local Persistence

 _addOrEditJournal(
 add: false,
 index: index,
 journal: snapshot.data[index],
);
 },
),
 onDismissed: (direction) {
 setState(() {
 _database.journal.removeAt(index);
 });
 DatabaseFileRoutines().writeJournals(databaseToJson(_database));
 },
);
 },
 separatorBuilder: (BuildContext context, int index) {
 return Divider(
 color: Colors.grey,
);
 },
);
}

Summary  ❘  371

HOW IT WORKS

You completed the home.dart file that is responsible for showing a list of journal entries with the ability
to add, modify, and delete individual records.

The FutureBuilder() calls the _loadJournals() method that retrieves journal entries, and while
the data is loading, a CircularProgressIndicator() is displayed, and when the data is returned, the
builder calls the _buildListViewSeparated(snapshot) method by passing the snapshot, which is
the journal entries List.

The _loadJournals() method retrieves journal entries by calling the database classes to read the local
database file, convert JSON objects to a List, sort the entries by DESC date, and return the List of
journal entries.

The _addOrEditJournal() method handles adding new entries or modifying a journal entry. The
constructor takes three named parameters to aid you if you are adding or modifying an entry. It uses
the JournalEdit database class to track the action to take depending on whether the user pressed the
Cancel or Save button. To show the edit entry page, you pass the constructor arguments by calling Navi-
gator.push() and use the await keyword to receive the action taken from the edit entry page to the
_journalEdit variable. The switch statement is used to evaluate the action taken to save the journal
entry or cancel the changes.

The _buildListViewSeparated(snapshot) method uses the ListView.separated() constructor
to build the list of journal entries. The itemBuilder returns a Dismissible() widget that handles delet-
ing journal entries by swiping left or right on the entry. The Dismissible() child property uses
ListTile() to format each journal entry in the ListView. The separatorBuilder returns the
Divider() widget to show a grey divider line between journal entries.

SUMMARY

In this chapter, you learned how to persist data by saving and reading locally to the iOS and Android
device filesystem. For the iOS device, you used the NSDocumentDirectory, and for the Android
device, you used the AppData directory. The popular JSON file format was used to store the journal
entries to a file. You created a journaling mood app that sorts the list of entries by DESC date and
allows adding and modifying records.

You learned how to create the database classes for handling local persistence to encode and decode
JSON objects and write and read entries to a file. You learned how to create the DatabaseFile
Routines class to obtain the path of the local device documents directory and save and read the
database file using the File class. You learned how to create the Database class handling decoding
and encoding JSON objects and converting them to a List of journal entries. You learned how to
use json.encode to parse values to a JSON string and json.decode to parse the string to a JSON
object. The Database class returns a List of Journal classes, List<Journal>. You learned how to
create the Journal class to handle decoding and encoding the JSON objects for each journal entry.
The Journal class contains the id, date, mood, and note fields stored as String type. You learned
how to create the JournalEdit class responsible for passing an action and individual Journal class
entries between pages.

372  ❘  CHAPTER 13   Saving Data with Local Persistence

You learned how to create a journal entry page that handles both adding and modifying an
existing journal entry. You learned how to use the JournalEdit class to receive a journal entry
and return it to the Home page with an action and the modified entry. You learned how to call
showDatePicker() to present a calendar to select a journal date. You learned to use the DateFormat
class with different formatting constructors to display dates like ‘Sun, Jan 13, 2019’. You learned
how to use DateTime.parse() to convert a date saved as String to a DateTime instance. You
learned how to use the TextField widget with the TextEditingController to access entry values.
You learned how to customize the keyboard action button by setting the TextField TextInput
Action. You learned how to move the focus between TextField widgets by using the FocusNode
and the keyboard action button.

You learned how to create the Home page to show a list of journal entries sorted by DESC date
separated by a Divider. You learned how to use the ListView.separated constructor to easily
separate each journal entry with a separator. ListView.separated uses two builders, and
you learned how to use the itemBuilder for showing the List of journal entries and the
separatorBuilder to add a Divider widget between entries. You used the ListTile to format the
List of journal entries easily. You learned how to customize the leading property with a Column to
show the day and weekday on the leading side of the ListTile. You used the Dismissible widget
to make it easy to delete journal entries by swiping left or right on the entry itself (ListTile). You
used the Key('id') constructor to set a unique key for each Dismissible widget to make sure the
correct journal entry is deleted.

In the next chapter, you’ll learn how to set up the Cloud Firestore backend NoSQL database. Cloud
Firestore allows you to store, query, and synchronize data across devices without setting up your
own servers.

Summary  ❘  373

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Database classes The four database classes collectively manage local
persistence by writing, reading, encoding, and decoding
JSON objects to and from the JSON file.

DatabaseFileRoutines class This handles the File class to retrieve the device’s local
document directory and save and read the data file.

Database class This handles decoding and encoding the JSON objects and
converting them to a List of journal entries.

Journal class This handles decoding and encoding the JSON objects for
each journal entry.

JournalEdit class This handles the passing of individual journal entries between
pages and the action taken.

showDatePicker This presents a calendar to select a date.

DateFormat This formats dates by using different formatting constructors.

DateTime.parse() This converts a String into a DateTime instance.

TextField This allows text editing.

TextEditingController This allows access to the value of the associated TextField.

TextInputAction The TextField TextInputAction allows the customization
of the keyboard action button.

FocusNode This moves the focus between TextField widgets.

ListView.separated This uses two builders, the itemBuilder and the
separatorBuilder.

Dismissible Swipe to dismiss by dragging. Use the onDismissed to call
custom actions such as deleting a record.

List().sort Sort a List by using a Comparator.

Navigator This is used to navigate to another page. You can pass and
receive data in a class by using the Navigator.

Future You can retrieve possible values available sometime in
the future.

FutureBuilder This works with a Future to retrieve the latest data without
blocking the UI.

374  ❘  CHAPTER 13   Saving Data with Local Persistence

TOPIC KEY CONCEPTS

CircularProgressIndicator This is a spinning circular progress indicator showing that an
action is running.

path_provider package You can access local iOS and Android filesystem locations.

intl package You can use DateFormat to format dates.

dart:io library You can use the File class.

dart:convert library You can decode and encode JSON objects.

dart:math This is used to call the Random() number generator.

Adding the Firebase and
Firestore Backend

WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to create a Firebase project

➤➤ How to register the iOS and Android projects to use Firebase

➤➤ How to add a Cloud Firestore database

➤➤ How to structure and create a data model for the Cloud Fire-
store database

➤➤ How to enable and add Firebase authentication

➤➤ How to create Firestore security rules

➤➤ How to create the Flutter client app base structure

➤➤ How to add Firebase to iOS and how to add the Android projects
with the Google service files

➤➤ How to add the Firebase and Cloud Firestore packages

➤➤ How to add the intl package to format dates

➤➤ How to customize the AppBar and BottomAppBar look and feel by
using the BoxDecoration and LinearGradient widgets

In this chapter, in Chapter 15, and in Chapter 16, you’ll use techniques that you have learned
in previous chapters along with new concepts and tie them together to create a production-level
mood-journaling app. In the previous chapters, you created many projects that taught you dif-
ferent ways to implement specific tasks and objectives. In a production-level app, you need to
combine what you have learned to improve performance by redrawing only the widgets with

14

376  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

data changes, pass state between pages and up the widget tree, handle the user authentication creden-
tials, sync data between devices and the cloud, and create classes that handle platform-independent
logic between mobile and web apps.

Because Google has open-sourced Flutter support for desktop and web apps, the Firebase backend
services can be used for Flutter desktop and web apps, not just mobile. That’s why in this chapter
you’ll learn how to develop a production-level mobile app.

Specifically, you’ll learn how to use authentication and persist data to a cloud database by using
Google’s Firebase (backend server infrastructure), Firebase Authentication, and Cloud Firestore.
You’ll learn how to create and set up a Firebase project using Cloud Firestore as the cloud database.
Cloud Firestore is a NoSQL document database to store, query, and sync data with offline support
for mobile and web apps. Did I say offline? Yes, I did. The ability of a mobile app to function while
an Internet connection is not available is a must-have feature that users expect. Another great feature
of using Cloud Firestore is the ability to synchronize live data between devices automatically. The
data syncing is fast, allowing collaboration between different devices and users. The amazing part of
using these powerful features is that you don’t have to deal with setting up and managing the server’s
infrastructure. This feature allows you to build serverless applications.

You’ll configure the Firebase backend authentication provider, database, and security rules to sync
data between multiple devices and platforms. To enable authentication and database services for the
client-side Flutter project, you’ll add the firebase_auth and cloud_firestore packages. In Chap-
ter 15 and Chapter 16 you’ll learn how to implement app-wide and local state management by using
the InheritedWidget class and maximize platform code sharing by implementing the Business Logic
Component pattern. You’ll use app-wide and local state management to request data from different
service classes.

WHAT ARE FIREBASE AND CLOUD FIRESTORE?

Before you start configuring, let’s take a look at what Firebase encompasses. Firebase consists of one
platform with a multitude of products that share and work together. Firebase handles the entire back-
end server infrastructure connecting iOS, Android, and web apps.

Build Apps

➤➤ Cloud Firestore—Store and sync NoSQL data in documents and collections between devices

➤➤ Real-time database—Store and sync NoSQL data as one large JSON tree between devices

➤➤ Cloud storage—Store and serve files

➤➤ Cloud functions—Run backend code

➤➤ Authentication—Secure user’s authentication

➤➤ Hosting—Deliver web app assets

What Are Firebase and Cloud Firestore?  ❘  377

Ensure App Quality

➤➤ Crashlytics—Real-time crash reports

➤➤ Performance monitoring—App performance

➤➤ Test lab—Test apps on devices hosted by Google

Grow Business

➤➤ In-app messaging—Send users messages

➤➤ Google Analytics—Perform app analytics

➤➤ Predictions—User segmentation based on behavior

➤➤ A/B testing—Optimize app experience

➤➤ Cloud messaging—Send messages and notifications

➤➤ Remote config—Modify the app without deploying a new version

➤➤ Dynamic links—App deep links

➤➤ App indexing—Drive search traffic to a mobile app

Wow, this sounds amazing, but does it cost a fortune? Actually no; Google offers the Spark Plan,
which gives you free access to the majority of the products, especially Cloud Firestore. You can view
the details and restrictions at https://firebase.google.com/pricing.

In this chapter, I’ll focus on using Cloud Firestore to store and sync data between devices. For general
information on Firebase, you can browse https://firebase.google.com.

What is Cloud Firestore? It stores data in documents organized in collections, similar to JSON. It can
scale complex and hierarchical data by using subcollections within documents. You’ll take a detailed
look at it in the next section, “Structuring and Data Modeling Cloud Firestore.” It offers offline sup-
port for iOS, Android, and web apps. For the iOS and Android platforms, the offline persistence is
enabled by default, but for the Web, the offline is disabled by default. To optimize querying data, it
supports indexed queries with sorting and filtering. It can use transactions that automatically repeat
until the task is completed. Data scaling is automatically handled for you. You use mobile SDKs to
integrate different features of Firebase products into your apps.

Structuring and Data Modeling Cloud Firestore
To understand the Cloud Firestore data structure, let’s compare it to a standard SQL Server database
(see Table 14.1). The SQL Server database is a relational database management system (RDBMS)
that supports table and row data modeling (Figure 14.1). The comparison is not a one-to-one but a
guideline since the data structures differ.

https://firebase.google.com/pricing
https://firebase.google.com

378  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

In Cloud Firestore, a collection can contain only
documents. A document is a key-value pair and
can optionally point to subcollections. Docu-
ments cannot point to another document and
must be stored in collections (Figure 14.2).

What is the collection’s responsibility? Collec-
tions are containers for documents; they hold
them the same way a folder holds pages.

What is the document’s responsibility? Docu-
ments hold data that is stored as a key-value
pair similar to JSON. Documents support extra
data types that JSON does not support. Each
document is identified by name, and they are
limited to 1MB in size (see Table 14.2).

TABLE 14.1:  Data structure comparison

SQL SERVER DATABASE CLOUD FIRESTORE

Table Collection

Row Document

Columns Data

Table

Columns

SQL Database

Rows

FIGURE 14.1:  SQL Server Database Data Model

Collection Document

Data

Cloud Firestore

FIGURE 14.2:  Cloud Firestore Data Model

What Are Firebase and Cloud Firestore?  ❘  379

Let’s take a look at the Cloud Firestore sample data as JSON objects and in the Cloud Firestore con-
sole (Figure 14.3). Notice that the document name is a unique ID that can be automatically created
by Cloud Firestore, or you can manually generate it.

{
 "journals":[
 {
 " R5NcTWAaWtHTttYtPoOd1":{
 "date": "2019-0202T13:41:12.537285",
 "mood":"Happy",
 "note":"Great movie."
 "uid": " F1GGeKiwp3jRpoCVskdBNmO4GUN4",
 }
 }
]
}

Cloud Firestore supports many data types such as array, Boolean, byte, date and time, floating-point
number, geographical point, integer, map, reference, text string, and null. One of the major advantages
of using Cloud Firestore is the automatic syncing of data between devices and the ability of the client
app to continue working offline while the Internet is not available.

TABLE 14.2:  Cloud Firestore sample data

TYPE VALUE

Collection journals

Document R5NcTWAaWtHTttYtPoOd

Document data as key-value pair date: "2019-0202T13:41:12.537285"

mood: "Happy"

note: "Great movie."

uid: "F1GGeKiwp3jRpoCVskdBNmO4GUN4"

FIGURE 14.3:  Collection and Document

380  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

Viewing Firebase Authentication Capabilities
Adding security to an app is extremely important in keeping the information private and safe. Fire-
base Authentication provides built-in backend services accessible from the client’s SDK to support full
authentication. The following is a list of the currently available authentication sign-in providers:

➤➤ Email/Password

➤➤ Phone

➤➤ Google

➤➤ Play Games (Google)

➤➤ Game Center (Apple)

➤➤ Facebook

➤➤ Twitter

➤➤ GitHub

➤➤ Anonymous

Each authentication sign-in provider is disabled by default, and you enable the providers needed
for your app specs (Figure 14.4). I’ll walk you through how to enable a sign-in provider later in
this chapter.

FIGURE 14.4:  Firebase Authentication’s Sign-In Providers

What Are Firebase and Cloud Firestore?  ❘  381

An important note on using the Anonymous provider is that if the user deletes the app from the
device and reinstalls it, a new anonymous user is created and will not have access to the previous
data. The data from the original anonymous user is still stored on the backend, but the client app has
no way of knowing the original anonymous user ID since the app was deleted from the device. One
example of using the Anonymous sign-in provider is to allow the user free access to the app and allow
a paid upgrade path to advanced features.

From your mobile app, you retrieve the user’s authentication credentials from any of the available
sign-in providers. You pass these credentials to the client Firebase Authentication SDK, and the Fire-
base backend services verify whether credentials are valid and return a response to the client app. If
the credentials are valid, you allow the user to access the data and pages in the app depending on the
security rules that you will learn about in the next section, “Viewing Cloud Firestore Security Rules.”

Once a particular sign-in provider is enabled, you use the Firebase Authentication SDK to create a
Firebase User object saved on the Firebase backend. The Firebase User object has a set of proper-
ties that you can customize, except for the unique ID. You can customize the primary email address,
name, and a photo URL (usually the user’s photo or an avatar). By using the Firebase User object’s
unique ID, you bind all the data that the user has created to the ID.

Viewing Cloud Firestore Security Rules
To secure access to collections and documents, you implement Cloud Firestore security rules. In the
previous section, you learned that you create a Firebase User object through the Firebase Authentica-
tion SDK. Once you have the Firebase User object’s unique ID, you use it with Cloud Firestore secu-
rity rules to secure and lock data to each user. The following code shows the security rules that you’ll
create for securing the Cloud Firestore database:

service cloud.firestore {
 match /databases/{database}/documents {
 match /journals/{document=**} {
 allow read, write: if resource.data.uid == request.auth.uid;
 allow create: if request.auth.uid != null;
 }
 }
}

The rules are editable from the database rules page on the Firebase console website. The rules consist
of using the match statements to identify documents, with the allow expressions to control access to
the documents. Every time you change the rules and save them, a history of changes is automatically
created, allowing you to revert changes if needed (Figure 14.5).

Let’s take a look at an example that requires rules to allow a user to read and write documents
assigned to them. The first match /databases/{database}/documents declaration tells the rules to
match any Cloud Firestore Database in the project.

match /databases/{database}/documents

The second and the main part of understanding is to use the match statement to point to the collec-
tion and expression to evaluate, as in match /journals/{document=**}. The journals declara-
tion is the container name, and the expression to evaluate is document=** (all documents for the

382  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

journals collection) wrapped inside curly brackets. Inside this particular match, you use the allow
expression for the read and write privileges by using the if statement to see whether the resource
.data.uid value equals the request.auth.uid. The resource.data.uid is the uid field inside the
document, and the request.auth.uid is the logged-in user’s unique ID.

match /journals/{document=**} {
 allow read, write: if resource.data.uid == request.auth.uid;
}

You can break down the rules even further by using a match statement for each read or write
action. For the read rule, it can be broken into get and list. For the write rule, it can be broken
into create, update, and delete.

// Read
allow get: if <condition>;
allow list: if <condition>;

// Write
allow create: if <condition>;
allow update: if <condition>;
allow delete: if <condition>;

FIGURE 14.5:  Cloud Firestore Rules

Configuring the Firebase Project  ❘  383

The following example uses the create rule to allow only authenticated users to add new records by
checking whether the request.auth.id value is not equal to a null value:

 allow create: if request.auth.uid != null;

CONFIGURING THE FIREBASE PROJECT

You now understand how Cloud Firestore stores data and the benefits of syncing multiple devices
with offline data persistence. The offline feature works by caching a copy of the app’s active data,
making it accessible when the device is offline. Before you can use Cloud Firestore in your app, you
need to create a Firebase project.

A Firebase project is backed by the Google Cloud Platform, which allows apps to scale. The Firebase
project is a container that supports sharing features such as the database, notifications, users, remote
config, crash reports, and analytics (many more) between the iOS, Android, and web apps. Each
account can have multiple projects, for example to separate different and unrelated applications.

TRY IT OUT	 Creating the Firebase Project

You need to create a Firebase project that sets up a container to start adding your Cloud Firestore
database and enabling authentication. You will start by adding the iOS app, and then you’ll continue by
adding the Android app.

1.	 Navigate to https://console.firebase.google.com and log in to Google Firebase with your
Google account. If you do not have a Google account, you can create one at https://accounts
.google.com/SignUp.

https://console.firebase.google.com
https://accounts.google.com/SignUp
https://accounts.google.com/SignUp

384  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

2.	 Click the Add Project button in Firebase; the Add A Project dialog will open. For the project name,
enter journal; the project ID is automatically created for you. Notice it takes the project name and
adds a unique identifier to it like journal-aa2f3. (Your ID will be different because each project
name must be unique.)

The location of the Cloud Firestore project is automatically selected for you, but you can change it
if you like. You will need to select each checkbox to accept the Google Analytics terms; then click
the Create Project button.

3.	 When you are presented with the dialog showing that the new project is ready, click the Continue
button.

Configuring the Firebase Project  ❘  385

IOS

4.	 From the main Firebase project page, click the iOS button to add Firebase to the iOS app that you
created in the section “Adding Authentication and Cloud Firestore Packages to the Client App.”

386  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

5.	 Enter the iOS bundle ID, as in com.domainname.journal. The bundle ID is the reverse domain
name, com.domainname, combined with the Flutter app name of journal.

6.	 Enter the optional app nickname Journal and skip the optional App Store ID since this is obtained
once an app is created from Apple’s iTunes Connect to submit an app for distribution approval.
Click the Register App button.

7.	 Click the Download GoogleService-Info.plist button. (You’ll add the downloaded GoogleService-
Info.plist file to your Xcode project in the section “Adding Authentication and Cloud Firestore
Packages to the Client App.”)

8.	 Click the Next button, and skip the Add Firebase SDK and Add Initialization Code steps. You are
skipping these steps because the Firebase SDK is added in the section “Adding Authentication and
Cloud Firestore Packages to the Client App.”

Configuring the Firebase Project  ❘  387

9.	 Click Skip This Step in the Run Your App To Verify Installation step.

388  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

10.	 On the main Firebase project page, click the Add App button.

ANDROID

11.	 Click the Android button to add Firebase to the Android project that you created in the section
“Adding Authentication and Cloud Firestore Packages to the Client App.”

12.	 Enter the Android package name, such as com.domainname.journal. The bundle ID is the reverse
domain name, com.domainname, combined with a Flutter app name of journal. You’ll create the
Flutter app in the section “Adding Authentication and Cloud Firestore Packages to the Client App.”

13.	 Enter the optional app nickname Journal and skip the step of optional debug signing certificate
SHA-1. Click the Register App button.

Configuring the Firebase Project  ❘  389

14.	 Click the Download googleservices.json button. (You’ll add the downloaded googleservices
.json file to your Android project in the section “Adding Authentication and Cloud Firestore
Packages to the Client App.”)

15.	 Click the Next button and skip the Add Firebase SDK step. You are skipping this step because the
Firebase SDK is added in the section “Adding Authentication and Cloud Firestore Packages to the
Client App.”

390  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

16.	 Click Skip This Step in the Run Your App To Verify Installation step.

Adding a Cloud Firestore Database and Implementing Security  ❘  391

You will be automatically brought to the main Firebase project page, showing the iOS and Android
projects you just added.

HOW IT WORKS

Navigate to the Firebase console panel at https://console.firebase.google.com to add or select
existing projects. When you add a project and give it a name, a unique project ID is automatically created
with the option to rename it. Once the project is created, the project ID cannot be changed. The server’s
location is automatically chosen, but you have the option to change it.

Once a Firebase project is created, you register the iOS and Android projects to use Firebase. To register
each project, you enter com.domainname.journal for the iOS bundle ID and the Android package name.
For the iOS project, you download the GoogleService-Info.plist file and for the Android project the
googleservices.json file. These files are added to the Flutter app in the Xcode and Android projects in
the section “Adding Authentication and Cloud Firestore Packages to the Client App.”

ADDING A CLOUD FIRESTORE DATABASE AND
IMPLEMENTING SECURITY

You’ve learned how to create a Firebase project, making it possible to add the Cloud Firestore data-
base and Firebase Authentication. You learned about the different available sign-in methods, and in
this section, you’ll walk through how to implement security rules and enable an authentication sign-in
method—specifically, an email/password authentication provider.

TRY IT OUT	 Creating the Cloud Firestore Database and Enabling Authentication

In this exercise, you’ll learn how to enable Firebase Authentication, create a Cloud Firestore database,
and implement security rules to keep the data private for each user.

1.	 Navigate to https://console.firebase.google.com and select the journal project.

2.	 From the menu on the left, click the Authentication link in the Develop section. If the Develop
section is closed, click the Develop link to open the submenu. Click the Sign-in Method tab
showing a list of available sign-in providers.

https://console.firebase.google.com
https://console.firebase.google.com

392  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

3.	 Click the Email/Password option, click Enable to turn on the feature, and click the Save button.

4.	 In the left menu, click the Database link and click the Create Database (Cloud Firestore) button.

Adding a Cloud Firestore Database and Implementing Security  ❘  393

5.	 In the Security Rules For Cloud Firestore dialog, leave the locked mode radio button selected and
click the Enable button. The locked mode creates the basic security rules with the access locked for
reading and writing privileges.

The following code shows the default security rules that are automatically created when you click
the Enable button. The current security rules deny all read and write requests, making it completely
safe but also inaccessible, which you will modify in step 6.

394  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

service cloud.firestore {
 match /databases/{database}/documents {
 match /{document=**} {
 allow read, write: if false;
 }
 }
}

6.	 Tap the Rules tab to edit the default locked rules and change match /{document=**} to match
/journals/{document=**}. {document=**} matches any document, but you are going to use a
granular approach by matching the journals collection and document to the logged-in user ID.
This approach allows you to restrict each document to each user ID, keeping the data secure for the
rightful owner of the data.

7.	 Change allow read, write: if false; to allow read, write: if resource.data.uid ==
request.auth.uid;, restricting the data field uid to match the logged-in uid. The resource
.data.uid is the uid field inside the document, and the request.auth.uid is the logged-in user
unique ID. Add allow create: if request.auth.uid != null; to allow creating new records
if the user is authenticated.

service cloud.firestore {
 match /databases/{database}/documents {
 match /journals/{document=**} {
 allow read, write: if resource.data.uid == request.auth.uid;
 allow create: if request.auth.uid != null;
 }
 }
}

Note that a history log of changes is automatically created, allowing the reverting of changes
if needed.

Building the Client Journal App  ❘  395

HOW IT WORKS

Navigate to https://console.firebase.google.com and select the journal project. Navigate to the
Authentication page and select the Sign-in Method tab to enable and disable sign-in providers. Navigate
to the Database page to create or edit databases and in this case Cloud Firestore. From the Database
page, select the Rules tab to view or modify current security rules. With every saved edit, the history of
changes is automatically created, making it easy to revert changes if needed.

BUILDING THE CLIENT JOURNAL APP

The process of creating the mood-journaling app spans from this chapter to Chapter 16. In this sec-
tion, you’ll create the base structure of the app and configure the iOS and Android projects to use
Firebase Authentication and the Cloud Firestore database. You’ll modify the basic look and feel of the
app by using color gradients.

The goal of the mood-journaling app is to have the ability to list, add, and modify journal entries by
collecting a date, a mood, a note, and the user’s ID. You’ll learn to create a login page to authenticate
users through the email/password Firebase Authentication sign-in provider. The main presentation
page implements a ListView widget by using the separated constructor sorted by DESC (descend-
ing) date, meaning last entered record first. The ListTile widget easily formats how you’ll display
the List of records. The journal entry page uses the showDatePicker widget to select a date from
a calendar, a DropdownButton widget to select from a list of moods, and a TextField widget to
enter the note.

Adding Authentication and Cloud Firestore Packages to the
Client App

It’s time to create the Flutter app and add the Firebase Authentication and Cloud Firestore SDKs
by installing the Firebase Flutter packages. The Flutter team authors the different Firebase pack-
ages, and like other packages, the full package source code is available on the appropriate package’s
GitHub page.

You’ll install the firebase_auth, cloud_firestore, and intl packages. You’ll download the
Google service files (config) for iOS and Android that contain properties needed to access the Firebase
products from the client app.

TRY IT OUT	 Creating the Journal App

In this example, you’ll build a production-level journal app similar to the one in Chapter 13, but instead,
it uses Firebase Authentication for security and the Cloud Firestore database for storing and syncing
data. The structure of how you read and save data is completely different. You’ll also add mood tracking
to each journal entry. You’ll use some new and familiar packages in this exercise.

➤➤ To add security to your journal app, you’ll use the firebase_auth package, which provides
authentication.

https://console.firebase.google.com

396  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

➤➤ To add data-storage capabilities, you’ll use the cloud_firestore package, which provides cloud
syncing and storing.

➤➤ To format dates, you’ll use the intl package, which provides internationalization and localization.
You learned how to use it in Chapter 13 in the “Formatting Dates” section.

1.	 Create a new Flutter project and name it journal. You can follow the instructions in Chapter 4,
“Creating a Starter Project Template.”

Note that since this app continues in the next two chapters, to keep things simple, the project name
does not start with the chapter number. Naming the project journal also results in the package
name com.domainname.journal, matching the iOS bundle ID and Android package name. Since
you are using Cloud Firestore, the package name must exactly match what you entered when you
registered the iOS and Android projects in the Firebase console. As a side note, you can also manu-
ally change the package name when creating a new Flutter project.

For this project, you need to create the pages, classes, services, models, and blocs folders.

2.	 Open the pubspec.yaml file to add resources. In the dependencies: section, add the firebase_
auth:^0.11.1+6 and cloud_firestore:^0.12.5 and intl:^0.15.8 declarations. Note that
your package’s version may be higher.

dependencies:
 flutter:
 sdk: flutter

 # The following adds the Cupertino Icons font to your application.
 # Use with the CupertinoIcons class for iOS style icons.
 cupertino_icons: ^0.1.2

 firebase_auth: ^0.11.1+6
 cloud_firestore: ^0.12.5
 intl: ^0.15.8

3.	 Click the Save button, and depending on the editor you are using, it automatically runs the
flutter packages get; once finished, it shows the message Process finished with exit
code 0. If it does not automatically run the command for you, open the Terminal window (located
at the bottom of your editor) and type flutter packages get.

4.	 From the Flutter project, open the iOS Xcode project to add Firebase. From Android Studio, click
the menu bar and select Tools ➪ Flutter ➪ Open iOS Module In Xcode.

Building the Client Journal App  ❘  397

5.	 Drag the downloaded GoogleService-Info.plist file to the Runner folder in the Xcode project.

398  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

6.	 In the next dialog, finish adding the GoogleService-Info.plist file and make sure Copy Items If
Needed is checked, the Create Folder References radio button is selected, and the Add To Targets ➪
Runner option is checked. The iOS Xcode project is now configured to handle Firebase and
Firestore. Once the file is copied, close Xcode.

7.	 From the Flutter project, open the Android Studio project to add Firebase. From Android Studio,
click the menu bar and select Tools ➪ Flutter ➪ Open For Editing In Android Studio.

Building the Client Journal App  ❘  399

8.	 Drag the downloaded google-services.json file to the App folder in the Android project. If you
do not see the App folder, make sure in the Android Studio tool window that the Project view (top
left) is selected, not the Android view.

9.	 Finish adding the google-services.json file and click the OK button.

10.	 For the Android project, you need to edit two files manually. For the first file, open the app-
level build.gradle file located at android/app/build.gradle. Add to the bottom of the
file the google-services gradle plugin by specifying apply plugin: 'com.google.gms.google-
services'. In this app-level build.gradle file, make sure you are using compileSdkVersion 28,
minSdkVersion 16, and targetSdkVersion 28 and save.

400  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

11.	 To avoid receiving “.dex file cannot exceed 64 error” when you try to run the Flutter app for
Android, you need to add the multiDexEnabled true in the defaultConfig section and save.
Note that this step may not be needed in future updates. You can review the Android Studio
multidex user guide page at https://developer.android.com/studio/build/multidex.

android {
 compileSdkVersion 28

 sourceSets {...}

 lintOptions {...}

 defaultConfig {
 applicationId "com.domainname.journal"
 minSdkVersion 16
 targetSdkVersion 28
 // ...
 // Enable if you get error in Flutter app - .dex file cannot exceed 64K
 multiDexEnabled true // Enable
 }

 buildTypes {...}
}

flutter {...}

dependencies {
 // ...}

// Add at the bottom of the file
apply plugin: 'com.google.gms.google-services'

https://developer.android.com/studio/build/multidex

Building the Client Journal App  ❘  401

12.	 For the second file, open the project-level build.gradle file located at android/build.gradle.
Add to the dependencies the classpath of the google-services plugin and save.

buildscript {
 // ...
 dependencies {
 // ...
 // Add the following line:
 classpath 'com.google.gms:google-services:4.2.0' // googleservices plugin
 }
}

402  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

13.	 To avoid receiving AndroidX errors, edit the project-level gradle.properties file by adding the
following two lines and save the file. Note that this manual step may not be needed in future
updates. Enabling AndroidX compatibility depends on the plugins requirement.

android.useAndroidX=true
android.enableJetifier=true

14.	 You will see a yellow bar with a notice that the gradle files have changed. Click the Sync Now
button, and once the process is done, close the Android project.

HOW IT WORKS

You declared the firebase_auth, cloud_firestore, and intl packages in your pubspec.yaml file. The
firebase_auth package gives you the ability to use Firebase Authentication to secure the application.
The cloud_firestore package gives you the ability to use the Cloud Firestore database to sync and store
data on the cloud. The intl package gives you the ability to format dates.

You used Xcode to import the GoogleService-info.plist file to the iOS project. You used Android
Studio to import the google-services.json file to the Android project. For the Android project, you
modified the project and app-level build.gradle files to enable the Firebase plugins. The Google service
files import all the properties needed to access the Firebase project products.

Building the Client Journal App  ❘  403

From the Firebase console, you registered the iOS and Android projects with the iOS bundle ID and
Android package name of com.domainname.journal, matching exactly the Flutter’s project package
name of com.domainname.journal.

Adding Basic Layout to the Client App
In the previous section, you learned how to add and configure Firebase Authentication and the Cloud
Firestore database. The next step is to work on the Flutter project to customize the look and feel of
the journal app.

You’ll customize the app’s background color by setting the MaterialApp canvasColor property to
a light shade of green. The AppBar and BottomAppBar customizations show a color gradient from
light green to a very light shade of green, merging with the app’s background color. To achieve the
color effect, set the BoxDecoration gradient property by using a LinearGradient widget that you
learned in Chapter 6, “Using Common Widgets.”

TRY IT OUT	 Adding a Basic Layout to the Journal App

In this section, continue to edit the journal project by customizing the app’s colors and look and feel,
giving it that professional look.

1.	 Open the main.dart file. Modify the MaterialApp title property to Journal and modify the
ThemeData primarySwatch property to Colors.lightGreen. Add the canvasColor property and
set the color to Colors.lightGreen.shade50. Add the bottomAppBarColor property and set the
color to Colors.lightGreen.

return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'Journal',
 theme: ThemeData(
 primarySwatch: Colors.lightGreen,
 canvasColor: Colors.lightGreen.shade50,
 bottomAppBarColor: Colors.lightGreen,
),
 home: Home(),
);

2.	 Open the home.dart file, set the AppBar title property’s Text widget to Journal, and set the
TextStyle color property to Colors.lightGreen.shade800.

3.	 To customize the AppBar background color with a gradient, remove the AppBar widget shadow by
setting the elevation property to 0.0. To increase the AppBar’s height, set the bottom property to
a PreferredSize widget with the child property as a Container widget and the preferredSize
property to Size.fromHeight(32.0).

4.	 Set the flexibleSpace property to a Container widget, with the decoration property set to a
BoxDecoration widget.

5.	 Set the BoxDecoration gradient property to a LinearGradient with the colors property set to
a list of [Colors.lightGreen, Colors.lightGreen.shade50].

404  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

6.	 Set the begin property to Alignment.topCenter and the end property to Alignment.bottom-
Center. The LinearGradient effect draws the AppBar color from a lightGreen and gradually
fades to a lightGreen.shade50 color.

 appBar: AppBar(
 title: Text('Journal',
 style: TextStyle(color: Colors.lightGreen.shade800)),
 elevation: 0.0,
 bottom: PreferredSize(
 child: Container(), preferredSize: Size.fromHeight(32.0)),
 flexibleSpace: Container(
 decoration: BoxDecoration(
 gradient: LinearGradient(
 colors: [Colors.lightGreen, Colors.lightGreen.shade50],
 begin: Alignment.topCenter,
 end: Alignment.bottomCenter,
),
),
),
),

7.	 Add an IconButton widget to the AppBar actions property. Set the icon property to Icons
.exit_to_app, with the color property set to Colors.lightGreen.shade800.

8.	 Add to the onPressed property a TODO: comment with a reminder to add a method to sign out the
current user.

 actions: <Widget>[
 IconButton(
 icon: Icon(
 Icons.exit_to_app,
 color: Colors.lightGreen.shade800,
),
 onPressed: () {
 // TODO: Add signOut method
 },
),
],

9.	 Add the Scaffold bottomNavigationBar property and set it to a BottomAppBar widget. To
customize the BottomAppBar background color with a gradient, remove the BottomAppBar widget
shadow by setting the elevation property to 0.0. Set the BottomAppBar child property to a
Container widget with the height property set to 44.0.

Building the Client Journal App  ❘  405

10.	 Set the Container decoration property to a BoxDecoration widget. Set the BoxDecoration
gradient property to a LinearGradient, with the colors property set to a list of [Colors
.lightGreen.shade50, Colors.lightGreen].

11.	 Set the begin property to Alignment.topCenter, and set the end property to Alignment
.bottomCenter. The LinearGradient effect draws the AppBar color from a lightGreen.
shade50 and gradually fades to a lightGreen color.

 bottomNavigationBar: BottomAppBar(
 elevation: 0.0,
 child: Container(
 height: 44.0,
 decoration: BoxDecoration(
 gradient: LinearGradient(
 colors: [Colors.lightGreen.shade50, Colors.lightGreen],
 begin: Alignment.topCenter,
 end: Alignment.bottomCenter,
),
),
),
),

12.	 Add the Scaffold floatingActionButtonLocation property and set it to
FloatingActionButtonLocation.centerDocked.

 floatingActionButtonLocation: FloatingActionButtonLocation.centerDocked,

13.	 The FloatingActionButton is responsible for adding new journal entries. Add the Scaffold
floatingActionButton property and set it to a FloatingActionButton widget, with the
tooltip property set to Add Journal Entry and with the backgroundColor property set to
Colors.lightGreen.shade300. Set the child property to Icons.add.

14.	 Add the FloatingActionButton onPressed property and mark it with the async keyword and a
TODO: comment with a reminder to add a method to add journal entries.

 floatingActionButton: FloatingActionButton(
 tooltip: 'Add Journal Entry',
 backgroundColor: Colors.lightGreen.shade300,
 child: Icon(Icons.add),
 onPressed: () async {
 // TODO: Add _addOrEditJournal method
 },
),

406  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

HOW IT WORKS

You modified the MaterialApp ThemeData canvasColor property to light green and a bottomAppBar
Color property to light green. You customized the home page AppBar and BottomAppBar widgets to
show a light green color gradient. You customized the BoxDecoration gradient property to use a Lin-
earGradient to achieve smooth gradient color shading. You added to the AppBar actions property an
IconButton that is used to log out a user. To dock the FloatingActionButton to the BottomAppBar
widget, you added a floatingActionButtonLocation property set to centerDocked. You added a
FloatingActionButton widget that is used to add a new journal entry.

Adding Classes to the Client App
You’ll need to create two classes to handle formatting dates and tracking the mood icons. The
FormatDates class uses the intl package to format dates. The MoodIcons class stores reference to
the mood icons title, color, rotation, and icon.

Building the Client Journal App  ❘  407

TRY IT OUT	 Adding the FormatDates and MoodIcons Classes

In this section, continue to edit the journal project by adding the FormatDates and MoodIcons classes.

1.	 Create a new Dart file in the classes folder. Right-click the classes folder, select New ➪ Dart
File, enter FormatDates.dart, and click the OK button to save.

2.	 Import the intl.dart package and create the FormatDates class. You learned how to use the
DateFormat class in Chapter 13’s “Formatting Dates” section. Add the dateFormatShortMonth-
DayYear, dateFormatDayNumber, and dateFormatShortDayName methods.

import 'package:intl/intl.dart';

class FormatDates {
 String dateFormatShortMonthDayYear(String date) {
 return DateFormat.yMMMd().format(DateTime.parse(date));
 }

 String dateFormatDayNumber(String date) {
 return DateFormat.d().format(DateTime.parse(date));
 }

 String dateFormatShortDayName(String date) {
 return DateFormat.E().format(DateTime.parse(date));
 }
}

3.	 Create a new Dart file in the classes folder. Right-click the classes folder, select New ➪ Dart
File, enter mood_icons.dart, and click the OK button to save. Import the material.dart
package and create the MoodIcons class.

class MoodIcons {
}

4.	 Add the title, color, rotation, and icon variables and mark them final. Depending on the
mood, each icon is shown by a different color and rotation; for example, the happy icon is rotated
toward the left, and the sad icon is rotated toward the right.

5.	 Add a new line and enter the MoodIcons constructor with named parameters by enclosing them in
the curly brackets ({}). Reference each title, color, rotation, and icon variable by using
syntactic sugar to access the values with the this keyword, referring to the current state in
the class.

class MoodIcons {
 final String title;
 final Color color;
 final double rotation;
 final IconData icon;

 const MoodIcons({this.title, this.color, this.rotation, this.icon});
}

408  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

6.	 You’ll finish adding methods to the MoodIcons class in step 8 because they need access to the
_moodIconsList variable containing the list of mood-setting icons. The list contains five mood
configurations containing title, color, rotation, and icon.

Add a line after the MoodIcons class and declare the _moodIconsList variable as a
List<MoodIcons> using the const keyword for performance gain since the list will not change.
Initialize the _moodIconsList with the list of MoodIcons using the const keyword.

7.	 Add five MoodIcons() classes using the const keyword and populate the constructor with the
following values:

const List<MoodIcons> _moodIconsList = const <MoodIcons>[
 const MoodIcons(title: 'Very Satisfied', color: Colors.amber, rotation: 0.4,
icon: Icons.sentiment_very_satisfied),
 const MoodIcons(title: 'Satisfied', color: Colors.green, rotation: 0.2, icon:
Icons.sentiment_satisfied),
 const MoodIcons(title: 'Neutral', color: Colors.grey, rotation: 0.0, icon: Icons.
sentiment_neutral),
 const MoodIcons(title: 'Dissatisfied', color: Colors.cyan, rotation: -0.2, icon:
Icons.sentiment_dissatisfied),
 const MoodIcons(title: 'Very Dissatisfied', color: Colors.red, rotation: -0.4,
icon: Icons.sentiment_very_dissatisfied),
];

8.	 Go back inside the MoodIcons class and add the getMoodIcons, getMoodColor, getMoodRota-
tion, and getMoodIconsList methods to retrieve the appropriate icon attribute values. The first
three methods use the List object’s indexWhere method to find the matching icon attributes. The
last method returns the full list of mood icons.

IconData getMoodIcon(String mood) {
 return _moodIconsList[_moodIconsList.indexWhere((icon) => icon.title == mood)]
.icon;
}

Color getMoodColor(String mood) {
 return _moodIconsList[_moodIconsList.indexWhere((icon) => icon.title == mood)]
.color;
}

double getMoodRotation(String mood) {
 return _moodIconsList[_moodIconsList.indexWhere((icon) => icon.title == mood)]
.rotation;
}

List<MoodIcons> getMoodIconsList() {
 return _moodIconsList;
}

Summary  ❘  409

SUMMARY

In this chapter, you learned how to persist and secure data over app launches by using Google’s
Firebase, Firebase Authentication, and Cloud Firestore. Firebase is the infrastructure that doesn’t
require the developer to set up or maintain backend servers. The Firebase platform allows you to con-
nect and share data between iOS, Android, and web apps. You configure the Firebase project with the
online web console. In this chapter, you registered both the iOS and Android projects with the com
.domainname.journal package name to connect the client app to the Firebase products.

You created a Cloud Firestore database that safely stores the client app’s data in a cloud database.
Cloud Firestore is a NoSQL document database to store, query, and sync data with offline support
for mobile and web apps. You structure and data model Cloud Firestore databases by using a collec-
tion to store documents that contain data as a key-value pair similar to JSON.

Securing the Cloud Firestore database is done by creating Cloud Firestore security rules. The secu-
rity rules consist of using the match statements to identify documents, with the allow expression to
control access.

Firebase Authentication provides built-in backend services that are accessible from the client’s SDK,
which supports full user authentication. Enabling the email/password authentication sign-in provider
allows users to register and log in to the app. By passing the user credentials (email/password) to the
client’s Firebase Authentication SDK, the Firebase backend services verify whether the credentials are
valid and return a response to the client app.

You created the base structure of the client mood-journaling app and connected it to the Firebase
services by installing the firebase_auth and cloud_firestore packages. You configured the client
iOS and Android projects to use Firebase. You added the GoogleService-Info.plist file to the iOS
project and the google-services.json file to the Android project. The Google service files contain
properties needed to access the Firebase products from the client app. You modified the base look and
feel of the app by using the BoxDecoration widget, with the gradient property set to a Linear
Gradient to create a smooth light green color gradient.

In the next chapter, you’ll learn how to implement app-wide and local state management by using the
InheritedWidget class and how to maximize platform code sharing and separation by implementing
the Business Logic Component pattern. You’ll use state management to implement Firebase Authenti-
cation, access the Cloud Firestore database, and implement service classes.

410  ❘  CHAPTER 14   Adding the Firebase and Firestore Backend

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Google’s Firebase Firebase consists of one platform with many products that work
together as a backend server infrastructure connecting iOS, Android,
and web apps.

Cloud Firestore You learned how to structure and data model the Cloud Firestore
database. Cloud Firestore is a NoSQL document database to store,
query, and sync data with offline support.

Firebase Authentication Firebase Authentication provides built-in backend services accessible
from the client’s SDK, supporting full authentication.

Cloud Firestore
Security Rules

To secure access to data, you learned how to implement Cloud
Firestore security rules. Rules consist of using the match statements to
identify documents with the allow expressions.

Cloud Firestore
collection

A collection can contain only documents.

Cloud Firestore
document

A document is a key-value pair and can optionally point to
subcollections. Documents cannot point to another document and
must be stored in collections.

firebase_auth
package

You learned how to add the firebase_auth package to enable
authentication in the Flutter app.

cloud_firestore
package

You learned how to add the cloud_firestore package to provide
database storing and cloud syncing in the Flutter app.

GoogleService-Info

.plist file
You learned how to add the google-services.json file to the iOS
Xcode project to connect the client app to the Firebase services.

google-services

.json file
You learned how to add the google-services.json file to the
Android project to connect the client app to the Firebase services.

For the Android project, you also learned how to modify the project
and app-level gradle files to use Firebase Authentication and Cloud
Firestore.

Flutter app base layout You learned how to use the BoxDecoration widget by setting the
gradient property to a LinearGradient list of colors to enhance
the look and feel of the app.

�

15
Adding State Management to
the Firestore Client App

WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to use state management to control Firebase Authentication
and the Cloud Firestore database

➤➤ How to use the BLoC pattern to separate business logic

➤➤ How to use the InheritedWidget class as a provider to manage
and pass state

➤➤ How to implement abstract classes

➤➤ How to use StreamBuilder to receive the latest data from Firebase
Authentication and the Cloud Firestore database

➤➤ How to use StreamController, Stream, and Sink to handle Fire-
base Authentication and Cloud Firestore data events

➤➤ How to create service classes to handle Firebase Authentication
and Cloud Firestore API calls with Stream and Future classes

➤➤ How to create a model class for individual journal entries and
convert Cloud Firestore QuerySnapshot and map it to the
Journal class

➤➤ How to use the optional Firestore Transaction to save data to the
Firestore database

➤➤ How to create a class to handle mood icons, descriptions,
and rotation

➤➤ How to create a class to handle date formatting

➤➤ How to use the ListView.separated named constructor

412  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

In this chapter, you’ll continue to edit the mood journaling app created in Chapter 14. For your con-
venience, you can use the ch14_final_journal project as your starting point and make sure you add
your GoogleService-Info.plist file to the Xcode project and the google-services.json file to
the Android project that you downloaded in Chapter 14 from your Firebase console.

You’ll learn how to implement app-wide and local-state management that uses the InheritedWidget
class as a provider to manage and pass State between widgets and pages.

You’ll learn how to use the Business Logic Component (BLoC) pattern to create BLoC classes, for
example managing access to the Firebase Authentication and Cloud Firestore database service classes.
You’ll learn how to use a reactive approach by using StreamBuilder, StreamController, and
Stream to populate and refresh data.

You’ll learn how to create a service class to manage the Firebase Authentication API by implement-
ing an abstract class that manages the user login credentials. You’ll create a separate service class
to handle the Cloud Firestore database API. You’ll learn how to create a Journal model class to
handle the mapping of the Cloud Firestore QuerySnapshot to individual records. You’ll learn how
to create a mood icons class to manage a list of mood icons, a description, and an icon rotation
position according to the selected mood. You’ll learn how to create a date formatting class using the
intl package.

IMPLEMENTING STATE MANAGEMENT

Before you dive into state management, let’s take a look at what state means. At its most basic, state
is data that is read synchronously and can change over time. For example, a Text widget value is
updated to show the latest game score, and the state for the Text widget is the value. State manage-
ment is the way to share data (state) between pages and widgets.

You can have app-wide state management to share the state between different pages. For example,
the authentication state manager monitors the logged-in user and when the user logs out, it takes the
appropriate action to redirect to the login page. Figure 15.1 shows the home page getting the state
from the main page; this is app-wide state management.

You can have local-state management confined to a single page or a single widget. For example, the
page displays a selected item, and the purchase button needs to be enabled only if the item is in-stock.
The button widget needs to access the state of the in-stock value. Figure 15.2 shows an Add button
getting state up the widget tree; this is local-state management.

There are many different techniques for handling state management, and there isn’t a right or wrong
answer on which approach to take because it depends on your needs and personal preference. The
beauty is that you can create a custom approach to state management. You have already mastered
one of the state-management techniques, the setState() method. In Chapter 2 you learned how to
use the StatefulWidget and call the setState() method to propagate changes to the UI. Using the
setState() method is the default way that a Flutter app manages state changes, and you have used
it for all of the example apps that you’ve created from this book.

Implementing State Management  ❘  413

Login() Home()

Main Page

Main()

AuthenticationBlocProvider()

HomeBlocProvider()

Home Page

Home()

AuthenticationBlocProvider.of()

HomeBlocProvider.of()

Get State

Widgets

Get State

FIGURE 15.1:  App-wide state management

Home Page

Home()

AppBar

Body

ListView Add Button

Bottom Navigation Bar

AuthenticationBlocProvider.of() HomeBlocProvider.of()

Get State Up
the Widget Tree

FIGURE 15.2:  Local-state management

414  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

To show different state management approaches, the journal app uses a combination of an abstract
class and an InheritedWidget class as providers, plus a service class, a mood utility class, a date util-
ity class, and the BLoC pattern to separate the business code logic from the UI.

Implementing an Abstract Class
One of the main benefits of using an abstract class is to separate the interface methods (called from
the UI) from the actual code logic. In other words, you declare the methods without any implemen-
tation (code). Another benefit is that the abstract class cannot be directly instantiated, meaning an
object cannot be created from it unless you define a factory constructor. Abstract classes help you
to program to interfaces, not the implementation. Concrete classes implement the methods of the
abstract class.

By default (concrete) classes define an interface containing all of the members and methods that it
implements. The following example shows the AuthenticationService class declaring a variable
and methods containing the code logic:

class AuthenticationService {
 final FirebaseAuth _firebaseAuth = FirebaseAuth.instance;

 Future<void> sendEmailVerification() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 user.sendEmailVerification();
 }

 Future<bool> isEmailVerified() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 return user.isEmailVerified;
 }
}

You are going to use an abstract class to define your authentication interface in this section. The
abstract class has callable methods without containing the actual code (implementation), and they
are called abstract methods. To declare an abstract class, you use the abstract modifier before
the class declaration like abstract class Authentication {}. The abstract methods work with
a class that implements one or more interfaces and is declared by using the implements clause like
this example: class AuthenticationService implements Authentication {}. Note that the
abstract method is declared by using a semicolon (;) instead of the body declared by curly brackets
({}). The code logic for the abstract methods is implemented (concrete implementation) in the class
that implements the abstract class.

The following example declares the Authentication class as an abstract class by using the
abstract modifier and contains two abstract methods. The AuthenticationService class uses the
implements clause to implement the methods declared by the Authentication class.

abstract class Authentication {
 Future<void> sendEmailVerification();
 Future<bool> isEmailVerified();
}

Implementing State Management  ❘  415

class AuthenticationService implements Authentication {
 final FirebaseAuth _firebaseAuth = FirebaseAuth.instance;

 Future<void> sendEmailVerification() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 user.sendEmailVerification();
 }

 Future<bool> isEmailVerified() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 return user.isEmailVerified;
 }
}

Why use an abstract class instead of declaring a class with variables and methods? Of course, you can
use the class without creating an abstract class for the interface since the class already declares them
by default. But one of the benefits of using an abstract class is to impose implementation and design
constraints.

For the journal app, the main benefits of using abstract classes are to use them in the BLoC classes,
and with dependency injection you inject the platform-dependent implementation classes, making
the BLoC classes platform-agnostic. Dependency injection is a way to make a class independent of its
dependencies. The class does not contain platform-specific code (libraries), but it is passed (injected)
at runtime. You’ll learn about the BLoC pattern in the “Implementing the BLoC Pattern” section of
this chapter.

Implementing the InheritedWidget
One of the ways to pass State between pages and the widget tree is to use the InheritedWidget
class as a provider. A provider holds an object and provides it to its child widgets. For example, you
use the InheritedWidget class as the provider of a BLoC class responsible for making API calls to
the Firebase Authentication API. As a reminder, the BLoC pattern is covered in the “Implementing
the BLoC Pattern” section. In the example we’ll go through now, I cover how to use the Inherited
Widget class with a BLoC class, but you could also use it with a regular service class instead. You’ll
learn how to create service classes in the “Implementing the Service Class” section.

For the journal app, the relationship between the InheritedWidget class and the BLoC class is one
to one, meaning one InheritedWidget class for one BLoC class. You’ll use the of(context) to
get a reference to the BLoC class; for example, AuthenticationBlocProvider.of(context).
authenticationBloc.

The following example shows the AuthenticationBlocProvider class that extends (subclasses) the
InheritedWidget class. The BLoC authenticationBloc variable is marked as final, which refer-
ences the AuthenticationBloc BLoC class. The AuthenticationBlocProvider constructor takes a
Key, Widget, and this.authenticationBloc variable.

// authentication_provider.dart
class AuthenticationBlocProvider extends InheritedWidget {
 final AuthenticationBloc authenticationBloc;

416  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

 const AuthenticationBlocProvider({Key key, Widget child, this.authenticationBloc})
: super(key: key, child: child);

 static AuthenticationBlocProvider of(BuildContext context) {
 return (context.inheritFromWidgetOfExactType(AuthenticationBlocProvider) as
AuthenticationBlocProvider);
 }

 @override
 bool updateShouldNotify(AuthenticationBlocProvider old) => authenticationBloc !=
old.authenticationBloc;
}

To access the AuthenticationBlocProvider class from a page, you use the of() method. When
a page loads, the InheritedWidget needs to be called from the didChangeDependencies method,
not the initState method. If the inherited values change, they would not be called again from
the initState, but to make sure the widget updates when the values change, you need to use the
didChangeDependencies method.

// page.dart
@override
void didChangeDependencies() {
 super.didChangeDependencies();
 _authenticationBloc = AuthenticationBlocProvider.of(context).authenticationBloc;
}

// Logout a user from a button widget
_authenticationBloc.logoutUser.add(true);

Implementing the Model Class
The model class is responsible for modeling the data structure. The data model represents the data
structure for how the data is stored in the database or data storage. The data structure declares the
data type for each variable as a String or Boolean. You can also implement methods that perform a
specific function like mapping data from one format to another.

The following example shows a model class declaring the data structure and a method to map and
convert data:

class Journal {
 String documentID;
 String date;

 Journal({
 this.documentID,
 this.date
 });

 factory Journal.fromDoc(dynamic doc) => Journal(
 documentID: doc.documentID,
 date: doc["date"]
);
}

Implementing State Management  ❘  417

Implementing the Service Class
The journal app uses Firebase Authentication to verify user credentials and the Cloud Firestore data-
base for storing data to the cloud. The services are invoked by making the appropriate API call.

Creating a class to group all of the same type services together is a great option. Another benefit of
separating services in service classes is that this makes it easier to create separate classes to imple-
ment additional or alternative services. For the journal app, you’ll learn how to implement the service
classes as abstract classes, but for this example, I wanted to show you how to implement the basic
service class.

The following example shows a DbFirestoreService class that implements methods to call the
Cloud Firestore database API:

class DbFirestoreService {
 Firestore _firestore = Firestore.instance;
 String _collectionJournals = 'journals';

 DbFirestoreService() {
 _firestore.settings(timestampsInSnapshotsEnabled: true);
 }

 Stream<List<Journal>> getJournalList(String uid) {
 return _firestore
 .collection(_collectionJournals)
 .where('uid', isEqualTo: uid)
 .snapshots()
 .map((QuerySnapshot snapshot) {
 List<Journal> _journalDocs = snapshot.documents.map((doc) => Journal
.fromDoc(doc)).toList();
 _journalDocs.sort((comp1, comp2) => comp2.date.compareTo(comp1.date));
 return _journalDocs;
 });
 }

 Future<bool> addJournal(Journal journal) async {}
 void updateJournal(Journal journal) async {}
 void updateJournalWithTransaction(Journal journal) async {}
 void deleteJournal(Journal journal) async {}
}

Implementing the BLoC Pattern
BLoC stands for Business Logic Component, and it was conceived to define a platform-agnostic inter-
face for the business logic. The BLoC pattern was developed internally by Google to maximize code
sharing between Flutter mobile and AngularDart web apps. It was first publicly presented by Paolo
Soares at the DartConf 2018 conference. The BLoC pattern exposes streams and sinks to handle data
flow, making the pattern reactive. In its simplest form, reactive programming handles the data flow
with asynchronous streams and the propagation of data changes. The BLoC pattern omits how the
data store is implemented; that is up to the developer to choose according to project requirements. By
separating the business logic, it does not matter which infrastructure you use to build your app; other
parts of the app can change, and the business logic remains intact.

418  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

Paolo Soares shared the following BLoC pattern guidelines at the DartConf 2018 conference.

The BLoC pattern has design guidelines to adhere to:

➤➤ Inputs and outputs are Streams and Sinks only

➤➤ Platform agnostic and dependencies must be injectable

➤➤ No platform branching allowed

➤➤ Implementation is up to the developer like reactive programming

The BLoC pattern has UI design guidelines to adhere to:

➤➤ Create a BLoC for each complex enough component

➤➤ Components should send inputs as is

➤➤ Components should show outputs as close as possible to as is

➤➤ All branching should be based on simple BLoC Boolean outputs

You’ll learn to use the InheritedWidget as a provider to access and pass the BLoC classes between
pages. You’ll also learn how to instantiate a BLoC without a provider for pages that do not require
sharing a reference between them—for example, the login page.

The following summarizes the BLoC pattern guidelines presented at the DartConf 2018 conference.

➤➤ Move business logic to BLoCs

➤➤ Keep UI components simple

➤➤ Design rules aren’t negotiable

Let’s take a look at a BLoC class structure. Although it’s not required, I name the class with a
descriptive name and the word Bloc like HomeBloc. The following example HomeBloc class handles
the database calls to the DbFirestoreService API service class, retrieves the list of converted
journal entries, and then sends it back to the widget (UI). The DbFirestoreService is injected to the
HomeBloc() constructor, making it platform independent. In the HomeBloc class, the DbApi abstract
class is platform independent and receives the injected DbFirestoreService class. The Business
Logic Component processes, formats, and sends the output back to the widget, and the receiving cli-
ent app could be mobile, web, or desktop, resulting in business logic separation and maximum code
sharing between platforms.

The following example shows how the platform-dependent DbFirestoreService() class is injected
to the HomeBloc(DbFirestoreService()) constructor, resulting in the HomeBloc() class remaining
platform independent.

// Inject the DbFirestoreService() to the HomeBloc() from UI widgets page
// by using dependency injection
HomeBloc(DbFirestoreService());

// BLoC pattern class
// The HomeBloc(this.dbApi) constructor receives
// the injected DbFirestoreService() class

Implementing State Management  ❘  419

class HomeBloc {
 final DbApi dbApi;

 final StreamController<List<Journal>> _journalController =
StreamController<List<Journal>>();
 Sink<List<Journal>> get _addJournal => _journalController.sink;
 Stream<List<Journal>> get listJournal => _journalController.stream;

 // Constructor
 HomeBloc(this.dbApi) {
 _startListeners();
 }

 // Close StreamControllers when no longer needed
 void dispose() {
 _journalController.close();
 }

 void _startListeners() {
 // Retrieve Firestore Journal Records as List<Journal> not DocumentSnapshot
 dbApi.getJournalList().listen((journalDocs) {
 _addListJournal.add(journalDocs);
 });
 }
}

Implementing StreamController, Streams, Sinks, and
StreamBuilder

The StreamController is responsible for sending data, done events, and errors on the stream
property. The StreamController has a sink (input) property and a stream (output) property. To
add data to the stream, you use the sink property, and to receive data from the stream, you listen to
the stream events by setting up listeners. The Stream class is asynchronous data events, and the Sink
class allows the adding of data values to the StreamController stream property.

The following example shows how to use the StreamController class. You use the Sink class to
add data with the sink property and the Stream class to send data with the stream property of
the StreamController. Note the use of the get keyword for the _addUser (Sink) and the user
(Stream) declarations. The get keyword is called a getter, and it’s a special method that provides read
and write access to the object’s properties.

final StreamController<String> _authController = StreamController<String>();
Sink<String> get _addUser => _authController.sink;
Stream<String> get user => _authController.stream;

To add data to the stream property, you use the sink property’s add(event) method.

_addUser.add(mood);

To listen to stream events, you use the listen() method to subscribe to the stream. You also use
the StreamBuilder widget to listen for stream events.

_authController.listen((mood) {
 print('My mood: $mood');
})

420  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

When you need multiple listeners to the StreamController stream property, use the Stream
Controller broadcast constructor. For example, you might have a StreamBuilder widget and a
listener listening to the same StreamController class.

final StreamController<String> _authController = StreamController<String>
.broadcast();

The StreamBuilder widget rebuilds itself based on the latest snapshot of new events from a Stream
class, and you’ll use it to build your reactive widgets to display data. In other words, the Stream-
Builder rebuilds every time it receives a new event from a stream.

StreamBuilder(
 initialData: '',
 stream: user,
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 return Text('Hello $snapshot.data');
 },
)

Use the initialData property to set the initial data snapshot before the stream sends the latest
data events. The builder is always called before the stream listener has a chance to process data,
and by setting the initialData, a default value is shown instead of a blank value.

initialData: '',

The stream property is set to the stream responsible for the latest data events, for example, the
StreamController stream property.

stream: user,

The builder property is used to add your logic to build a widget according to the results of the stream
data events. The builder property takes the BuildContext and AsyncSnapshot parameters. The Async-
Snapshot contains the connection and data information that you learned in Chapter 13’s “Retrieving Data
with the FutureBuilder” section. Make sure that the builder returns a widget; otherwise, you’ll receive an
error that the build functions returned a null. In Flutter the build functions must never return a null value.

builder: (BuildContext context, AsyncSnapshot snapshot) {
 return Text('Hello $snapshot.data');
},

The following example shows how to use the StreamBuilder widget to reactively change the UI
widget depending on the stream property value. This reactive programming results in performance
gain since only this widget in the widget tree rebuilds to redraw a new value when the stream
changes. Note that the user stream is configured from the previous StreamController example.

StreamBuilder(
 initialData: '',
 stream: user,
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 if (snapshot.connectionState == ConnectionState.waiting) {
 return Container(color: Colors.yellow,);
 } else if (snapshot.hasData) {
 return Container(color: Colors.lightGreen);
 } else {
 return Container(color: Colors.red);
 }
 },
),

Building State Management  ❘  421

BUILDING STATE MANAGEMENT

Before implementing state management for the client journal app that you created in Chapter 14, let’s
go over the overall plan and priority steps. In order of creation, you’ll create the model class, service
classes, utility classes, validator classes, BLoC classes, and InheritedWidget class as a provider, and
finally you’ll add state management and BLoCs for all pages. You begin by modifying the main page,
creating the login page, modifying the home page, and creating the entry page.

Note that from the UI widget pages you’ll inject the platform-specific authentication.dart and
db_firestore.dart service classes to the BLoC class constructor. The BLoC class uses the API
abstract class to receive the injected platform-specific service class, making the BLoC class platform-
agnostic. If you were also creating a web version of the journal app, you would inject the web appro-
priate authentication and database service classes to the BLoC classes, and they would just work;
these are some the benefits of using the BLoC pattern.

Table 15.1 lists the folders and pages structure for the journal app.

TABLE 15.1:  Folders and files structure

FOLDERS FILES

blocs authentication_bloc.dart

authentication_bloc_provider.dart

home_bloc.dart

home_bloc_provider.dart

journal_edit_bloc.dart

journal_edit_bloc_provider.dart

login_bloc.dart

classes format_dates.dart

mood_icons.dart

validators.dart

models journal.dart

pages edit_entry.dart

home.dart

login.dart

services authentication.dart

authentication_api.dart

db_firestore.dart

db_firestore_api.dart

Root folder main.dart

422  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

To help you visualize the app that you are developing, Figure 15.3 shows the final design for the
mood journaling app. From left to right, it shows the login page, home page, journal-entry deletion,
and edit entry page.

Adding the Journal Model Class
For the journal app, you’ll create a Journal model class that is responsible for holding individual
journal entries and mapping a Cloud Firestore document to a Journal entry. The Journal class
holds the documentID, date, mood, note, and uid String fields. The documentID variable stores a
reference to the Cloud Firestore database document unique ID. The uid variable stores the logged-in
user unique ID. The date variable is formatted as an ISO 8601 standard, for example, 2019-03-
18T13:56:54.985747. The mood variable stores the mood name like Satisfied, Neutral, and so on.
The note variable stores the detailed journal description for the entry.

TRY IT OUT	 Creating the Journal Model Class

In this section, continue to edit the journal project that you created in Chapter 14. You’ll be adding the
Journal model class.

1.	 Create a new Dart file under the models folder. Right-click the models folder, select New ➪ Dart
File, enter journal.dart, and click the OK button to save.

2.	 Create the Journal class structure.

class Journal {

}

FIGURE 15.3:  The final mood journal app

Building State Management  ❘  423

3.	 Inside the Journal class add the declarations for the documentID, date, mood, note, and uid
String variables.

String documentID;
String date;
String mood;
String note;
String uid;

4.	 Add a new line and enter the Journal constructor with named parameters by enclosing them in
curly brackets ({}). Reference each documentID, date, mood, note, and uid variable by using the
syntactic sugar to access the values with the this keyword, referring to the current state in
the class.

Journal({
 this.documentID,
 this.date,
 this.mood,
 this.note,
 this.uid
});

5.	 Add a new line and enter the factory Journal.fromDoc() method that is responsible for
converting and mapping a Cloud Firestore database document record to an individual
Journal entry.

factory Journal.fromDoc(dynamic doc) => Journal(
 documentID: doc.documentID,
 date: doc["date"],
 mood: doc["mood"],
 note: doc["note"],
 uid: doc["uid"]
);

The following is the full Journal class:

class Journal {
 String documentID;
 String date;
 String mood;
 String note;
 String uid;

 Journal({
 this.documentID,
 this.date,
 this.mood,
 this.note,
 this.uid
 });

 factory Journal.fromDoc(dynamic doc) => Journal(
 documentID: doc.documentID,

424  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

 date: doc["date"],
 mood: doc["mood"],
 note: doc["note"],
 uid: doc["uid"]
);
}

HOW IT WORKS

You created the journal.dart file containing the Journal class that is responsible for tracking indi-
vidual journal entries with the documentID, date, mood, note, and uid String variables. You created
the Journal.fromDoc() method that maps a Cloud Firestore database document record to an individual
Journal entry.

Adding the Service Classes
They are called service classes because they send and receive calls to a service. The journal app has
two service classes to handle the Firebase Authentication and Cloud Firestore database API calls.

The AuthenticationService class implements the AuthenticationApi abstract class. The
DbFirestoreService class implements the DbApi abstract class. The following is a sample call to
the Cloud Firestore database to query records; Table 15.2 describes the details:

Firestore.instance
 .collection("journals")
 .where('uid', isEqualTo: uid)
 .snapshots()

Cloud Firestore supports using transactions. One of the benefits of using transactions is to group
multiple operations (add, update, delete) in one transaction. Another case is concurrent editing: when
multiple users are editing the same record, the transaction is run again, making sure the latest data
is used before updating. If one of the operations fails, the transaction will not do a partial update.
However, if the transaction is successful, all of the updates are executed.

TABLE 15.2:  How to query the database

CALL DESCRIPTION

Firestore.instance Obtain the Firestore.instance reference.

.collection('journals') Specify the collection name.

.where('uid',

isEqualTo: uid)
The where() method filters by the specified field.

.snapshots() The snapshots() method returns a Stream of a
QuerySnapshot containing the record(s).

Building State Management  ❘  425

The following is a sample transaction that takes the _docRef document reference and calls the run-
Transaction() method to update the document’s data:

DocumentReference _docRef = _firestore.collection('journals').document('Cf409us32');
var journalData = {
 'date': journal.date,
 'mood': journal.mood,
 'note': journal.note,
};
_firestore.runTransaction((transaction) async {
 await transaction
 .update(_docRef, journalData)
 .catchError((error) => print('Error updating: $error'));
});

TRY IT OUT	 Creating the Authentication Service Classes

In this section, continue to edit the journal project. You’ll be adding the AuthenticationApi and
Authentication classes to handle the Firebase Authentication API.

1.	 Create a new Dart file in the services folder. Right-click the services folder, select New ➪ Dart
File, enter authentication_api.dart, and click the OK button to save.

2.	 Create the AuthenticationApi class and use the abstract modifier before the class declaration.

abstract class AuthenticationApi {

}

3.	 Inside the AuthenticationApi class, add the following interface methods:

getFirebaseAuth();
Future<String> currentUserUid();
Future<void> signOut();
Future<String> signInWithEmailAndPassword({String email, String password});
Future<String> createUserWithEmailAndPassword({String email, String password});
Future<void> sendEmailVerification();
Future<bool> isEmailVerified();

4.	 Create a new Dart file in the services folder. Right-click the services folder, select New ➪ Dart
File, enter authentication.dart, and click the OK button to save. Import the firebase_auth
.dart package and the authentication_api.dart abstract class.

5.	 Add a new line and create the AuthenticationService class that implements the
AuthenticationApi abstract class.

6.	 Declare the final FirebaseAuth _firebaseAuth variable that has a reference to the
FirebaseAuth.instance.

426  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

7.	 Add the _getFirebaseAuth() method and return the _firebaseAuth variable. The
FirebaseAuth is the entry point of the Firebase Authentication SDK.

import 'package:firebase_auth/firebase_auth.dart';
import 'package:journal/services/authentication_api.dart';

class AuthenticationService implements Authentication {
 final FirebaseAuth _firebaseAuth = FirebaseAuth.instance;

 FirebaseAuth getFirebaseAuth() {
 return _firebaseAuth;
 }
}

8.	 Add the Future<String> currentUserUid() async method responsible for retrieving the
currently logged-in user.uid.

Future<String> currentUserUid() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 return user.uid;
}

9.	 Add the Future<void> signOut() async method responsible for logging out the current user.

Future<void> signOut() async {
 return _firebaseAuth.signOut();
}

10.	 Add the Future<String> signInWithEmailAndPassword method accepting the named param-
eters email and password as String. This method is responsible for logging in a user by email/
password authentication provider by calling the _firebaseAuth.signInWithEmailAndPassword
method, and it returns the user.uid.

Future<String> signInWithEmailAndPassword({String email, String password}) async {
 FirebaseUser user = await _firebaseAuth.signInWithEmailAndPassword(email: email,
password: password);
 return user.uid;
}

11.	 Add the Future<String> createUserWithEmailAndPassword method accepting the named
parameters email and password as String. This method is responsible for creating a user by
email/password authentication provider by calling the _firebaseAuth.createUserWithEmailAn-
dPassword method, and it returns the newly created user.uid.

Future<String> createUserWithEmailAndPassword({String email, String password}) async {
 FirebaseUser user = await _firebaseAuth.createUserWithEmailAndPassword(email:
email, password: password);
 return user.uid;
}

Building State Management  ❘  427

12.	 Add the Future<void> sendEmailVerification method that retrieves the current logged-in user
by calling the _firebaseAuth.currentUser method. Once the user is retrieved, it calls the user.
sendEmailVerification method to send an email to the user to verify it was them creating
the account.

Future<void> sendEmailVerification() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 user.sendEmailVerification();
}

13.	 Add the Future<bool> isEmailVerified method that calls the _firebaseAuth.currentUser
method to retrieve the current logged-in user. Once the user is retrieved, it returns the user.
isEmailVerified bool value to verify the user has verified their email.

Future<bool> isEmailVerified() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 return user.isEmailVerified;
}

HOW IT WORKS

You created the authentication_api.dart file with the AuthenticationApi abstract class contain-
ing the interface methods.

To implement the code logic that calls the Firebase Authentication API, you created the authentication
.dart file containing the AuthenticationService class that implements the AuthenticationApi
abstract class. Each method in the AuthenticationService class calls the Firebase Authenti-
cation API.

TRY IT OUT	 Creating the DbFirestoreService Service Classes

In this section, continue to edit the journal project. You’ll be adding the DbApi and DbFirestore
Service classes to handle the Cloud Firestore database API.

1.	 Create a new Dart file in the services folder. Right-click the services folder, select New ➪ Dart
File, enter db_firestore_api.dart, and click the OK button to save.

2.	 Create the DbApi class and use the abstract modifier before the class declaration. Import the
journal.dart class.

import 'package:journal/models/journal.dart';

abstract class DbApi {

}

3.	 Inside the DbApi class, add the following interface methods:

Stream<List<Journal>> getJournalList(String uid);
Future<Journal> getJournal(String documentID);

428  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

Future<bool> addJournal(Journal journal);
void updateJournal(Journal journal);
void updateJournalWithTransaction(Journal journal);
void deleteJournal(Journal journal);

4.	 Create a new Dart file in the services folder. Right-click the services folder, select New ➪ Dart
File, enter db_firestore.dart, and click the OK button to save. Import the cloud_firestore
.dart package, the journal.dart class, and the db_firestore_api.dart class.

5.	 Add a new line and create the DbFirestoreService class that implements the DbApi
abstract class.

6.	 Declare the final Firestore _firestore variable that has a reference to the Firestore
.instance. Add the final _collectionJournals String variable that holds the Firestore
collection name initialized to journals.

7.	 Add a new line and add the DbFirestoreService() constructor that uses the _firestore
instance to call the settings() method to enable the timestampsInSnapshotsEnabled by setting
the value to true. In the future, Cloud Firestore will enable the value to true by default, and it’s
good to opt in to this new behavior.

import 'package:cloud_firestore/cloud_firestore.dart';
import 'package:journal/models/journal.dart';
import 'package:journal/services/db_firestore_api.dart';

class DbFirestoreService implements DbApi {
 Firestore _firestore = Firestore.instance;
 String _collectionJournals = 'journals';

 DbFirestoreService() {
 _firestore.settings(timestampsInSnapshotsEnabled: true);
 }
}

8.	 Add the Stream<List<Journal>> getJournalList method, taking the uid String parameter.
Note that the uid value is the logged-in user ID. This method is responsible for retrieving journal
entries. Use the _firestore instance with the dot (.) operator to set the _firestore member
property values. Refer to Table 15.2 to see how to query a Cloud Firestore database.

9.	 Set the value of the collection to the _collectionJournals variable, and set the where() method
to filter by the uid field. The snapshots() method returns a QuerySnapshot Stream.

10.	 Continue with the dot operator and add the map() method by passing the received snapshot.
Inside the map() method you convert the snapshot’s documents and map them to Journal classes
by using the Journal class fromDoc(doc) method and converting it to a List() by using the
toList() method.

11.	 Take the _journalDocs variable that is populated with the List of Journal classes and use the
sort() method to sort dates in descending order. For the last line, return the _journalDocs List
of Journal classes.

Stream<List<Journal>> getJournalList(String uid) {
 return _firestore
 .collection(_collectionJournals)

Building State Management  ❘  429

 .where('uid', isEqualTo: uid)
 .snapshots()
 .map((QuerySnapshot snapshot) {
 List<Journal> _journalDocs = snapshot.documents.map((doc) => Journal.
fromDoc(doc)).toList();
 _journalDocs.sort((comp1, comp2) => comp2.date.compareTo(comp1.date));
 return _journalDocs;
 });
}

12.	 Add the Future<bool> addJournal(Journal journal) async method that takes the Journal
class parameter. This method is responsible for adding a new journal entry.

13.	 Declare the DocumentReference _documentReference variable that holds the new document
added. Use the await keyword with the _firestore instance, specify the collection with the
_collectionJournals variable, and call the add() method.

14.	 The add() method takes the journal entry fields date, mood, note, and uid variables.

15.	 Add a new line to return a bool value if the record was successfully created by checking whether
_documentReference.documentID != null. If the documentID is not null, the record was
created and returns a true value; otherwise, it returns a false value.

Future<bool> addJournal(Journal journal) async {
 DocumentReference _documentReference =
 await _firestore.collection(_collectionJournals).add({
 'date': journal.date,
 'mood': journal.mood,
 'note': journal.note,
 'uid': journal.uid,
 });
 return _documentReference.documentID != null;
}

16.	 Add the updateJournal(Journal journal) async method taking the Journal class parameter.
This method is responsible for updating an existing journal entry.

17.	 Use the _firestore instance with the dot (.) operator to set the _firestore member property
values. Set the value of the collection to the _collectionJournals variable, and set the
document variable to the journal.documentID, which is the Cloud Firestore document ID.

18.	 Continue with the dot operator and add the updateData() method, passing the date, mood, and
note values from the journal variable. Add the catchError() method to intercept any errors and
print them to the console.

void updateJournal(Journal journal) async {
 await _firestore
 .collection(_collectionJournals)
 .document(journal.documentID)
 .updateData({
 'date': journal.date,
 'mood': journal.mood,
 'note': journal.note,
 })
 .catchError((error) => print('Error updating: $error'));
}

430  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

19.	 Add the deleteJournal(Journal journal) async method, taking the Journal class parameter.
This method is responsible for deleting a journal entry.

20.	 Use the _firestore instance with the dot (.) operator to set the _firestore member property
values. Set the value of the collection to the _collectionJournals variable, and set the
document variable to the journal.documentID.

21.	 Continue with the dot operator and add the delete() method. Add the catchError() method to
intercept any errors and print them to the console.

void deleteJournal(Journal journal) async {
 await _firestore
 .collection(_collectionJournals)
 .document(journal.documentID)
 .delete()
 .catchError((error) => print('Error deleting: $error'));
}

HOW IT WORKS

You created the db_firestore_api.dart file with the DbApi abstract class containing the inter-
face methods.

You created the db_firestore.dart file containing the DbFirestoreService class that implements
the DbApi abstract class. Each method in the DbFirestoreService class calls the Cloud Firestore
database API.

Adding the Validators Class
The Validators class uses the StreamTransformer to validate whether the email is in the correct
format by using at least one @ sign and a period. The password validator checks for a minimum of
six characters entered. The Validators class is used with the BLoC classes.

The StreamTransformer transforms a Stream that is used to validate and process values inside a
Stream. The incoming data is a Stream, and the outgoing data after processing is a Stream. For
example, once the incoming data is processed, you can use the sink.add() method to add data to the
Stream or use the sink.addError() method to return a validation error. The StreamTransformer.
fromHandlers constructor is used to delegate events to a given function.

The following is an example that shows how to use the StreamTransformer by using the fromHan-
dlers constructor to validate whether the email is in the correct format:

StreamTransformer<String, String>.fromHandlers(handleData: (email, sink) {
 if (email.contains('@') && email.contains('.')) {
 sink.add(email);
 } else if (email.length > 0) {
 sink.addError('Enter a valid email');
 }
});

Building State Management  ❘  431

TRY IT OUT	 Creating the Validators Class

In this section, continue to edit the journal project by adding the Validators class.

1.	 Create a new Dart file in the classes folder. Right-click the classes folder, select New ➪ Dart
File, enter validators.dart, and click the OK button to save.

2.	 Import the async.dart library and create the Validators class.

import 'dart:async';

class Validators {

}

3.	 Add the validateEmail variable and use the final keyword. This method is responsible for
checking whether the email is formatted correctly by having at least one @ sign and one period.

4.	 Initialize the validateEmail variable by calling the StreamTransformer.fromHandlers
constructor.

5.	 Inside the handler, add an if statement to check whether email.contains('@') && email.
contains('.'), and when both expressions validate to true, add the sink.add(email) method.

6.	 Add an else if statement to check whether the email.length > 0, meaning if the user has typed
at least one character, then add the sink.addError('Enter a valid email').

final validateEmail =
StreamTransformer<String, String>.fromHandlers(handleData: (email, sink) {
 if (email.contains('@') && email.contains('.')) {
 sink.add(email);
 } else if (email.length > 0) {
 sink.addError('Enter a valid email');
 }
});

7.	 Add the validatePassword variable and use the final keyword. This method is responsible for
checking whether the password length is at least 6 characters.

8.	 Initialize the validatePassword variable by calling the StreamTransformer.fromHandlers
constructor.

9.	 Inside the handler, add an if statement to check whether password.length >= 6, and if the
expression validates to true, add the sink.add(password) method.

10.	 Add an else if statement to check whether the password.length > 0, meaning if the user has
typed at least one character, then add the sink.addError(Password needs to be at least 6
characters ').

final validatePassword = StreamTransformer<String, String>.fromHandlers(
 handleData: (password, sink) {
 if (password.length >= 6) {

432  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

 sink.add(password);
 } else if (password.length > 0) {
 sink.addError('Password needs to be at least 6 characters');
 }
 });
}

HOW IT WORKS

You created the validators.dart file containing the Validators class. The StreamTransformer is
used to validate that emails and passwords pass a minimum standard. If the expressions’ values are true,
the email or password is added to the Stream by using the sink.add() method. If the expressions vali-
date to false, the sink.addError() method sends back the error description.

Adding the BLoC Pattern
In this section, you’ll create the authentication BLoC, authentication BLoC provider, login BLoC,
home BLoC, home BLoC provider, journal edit BLoC, and journal edit BLoC provider. The login
BLoC doesn’t need a provider class because it does not rely on receiving data from other pages.

I want to remind you of this important concept: BLoC classes are platform-agnostic and do not rely
on platform-specific packages or classes. For example, the Login page injects the platform-specific
(Flutter) AuthenticationService class to the LoginBloc class constructor. The receiving BLoC class
has the abstract AuthenticationApi class that receives the injected AuthenticationService
class, making the BLoC class platform-agnostic.

Adding the AuthenticationBloc
The AuthenticationBloc is responsible for identifying logged-in user credentials and monitoring
user authentication login status. When the AuthenticationBloc is instantiated, it starts a Stream-
Controller listener that monitors the user’s authentication credentials, and when changes occur, the
listener updates the credential status by calling a sink.add() method event. If the user is logged in,
the sink events send the user uid value, and if the user logs out, the sink events sends a null value,
meaning no user is logged in.

TRY IT OUT	 Creating the AuthenticationBloc

In this section, continue to edit the journal project. You’ll be adding the AuthenticationBloc class to
handle calling the Firebase Authentication service to log in or log out a user.

1.	 Create a new Dart file in the blocs folder. Right-click the blocs folder, select New ➪ Dart File,
enter authentication_bloc.dart, and click the OK button to save.

2.	 Import the async.dart library and authentication_api.dart class and create the
AuthenticationBloc class.

import 'dart:async';
import 'package:journal/services/authentication_api.dart';

Building State Management  ❘  433

class AuthenticationBloc {

}

3.	 Inside the AuthenticationBloc class, declare the final AuthenticationApi authentication-
Api variable. The BLoC pattern requires that you inject the platform-specific classes, and you’ll
pass the AuthenticationService class in the BLoC’s constructor. The authenticationApi
variable receives the injected AuthenticationService class.

final AuthenticationApi authenticationApi;

4.	 Add the _authenticationController variable as a String StreamController, add the
addUser variable getter as a String Sink, and add the user getter as a String Stream. Every
time the user logs in or logs out, the _authenticationController StreamController is
updated with the addUser getter.

final StreamController<String> _authenticationController = StreamController<String>();
Sink<String> get addUser => _authenticationController.sink;
Stream<String> get user => _authenticationController.stream;

5.	 Add the _logoutController variable as a bool StreamController, the logoutUser variable
getter as a bool Sink, and the listLogoutUser getter as a bool Stream. Every time the user logs
out, the _logoutController StreamController is updated with the logoutUser getter.

final StreamController<bool> _logoutController = StreamController<bool>();
Sink<bool> get logoutUser => _logoutController.sink;
Stream<bool> get listLogoutUser => _logoutController.stream;

6.	 Add a new line and enter the AuthenticationBloc constructor receiving the injected this.
authenticationApi parameter. Note that the injected parameter is the AuthenticationService
class. Inside the constructor add a call to the onAuthChanged() method that you create in step 8.

AuthenticationBloc(this.authenticationApi) {
 onAuthChanged();
}

7.	 Add the dispose() method and call the _authenticationController.close() and _logout-
Controller.close() methods to close the StreamController’s stream when it’s not needed.
Note that for the AuthenticationBloc class the close() method will not be called because
authentication needs to be accessible throughout the lifetime of the app.

void dispose() {
 _authenticationController.close();
 _logoutController.close();
}

8.	 Add the onAuthChanged() method that is responsible for setting up a listener to check when the
user logs in and logs out. Inside the method, call the authenticationApi.getFirebaseAuth() to
get the FirebaseAuth.instance from the authentication service class. Continue by using the dot
operator to call the onAuthStateChanged.listen((user)) to set up the listener. When the user

434  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

logs in, the user variable returns the FirebaseUser class with the user information. When the user
logs out, the user variable returns a null value.

9.	 Inside the listener, add the final String uid variable initialized by using the ternary operator to
check whether user != null and retrieve the user.uid value; otherwise, return a null value.

10.	 Add a new line and call the _addUser.add(uid) method to add the value to the sink with either
the user uid or the null value.

11.	 Add a new line and call the _logoutController.stream.listen((logout)) listener that is
called when the user logs out.

12.	 Inside the listener, add an if statement to check whether logout == true and call the _
signOut() method that you’ll create in step 13.

void onAuthChanged() {
 authenticationApi
 .getFirebaseAuth()
 .onAuthStateChanged
 .listen((user) {
 final String uid = user != null ? user.uid : null;
 addUser.add(uid);
 });
 _logoutController.stream.listen((logout) {
 if (logout == true) {
 _signOut();
 }
 });
}

13.	 Add the void _signOut()method that calls the authentication service’s authenticationSer-
vice.signOut() method to log out the user.

void _signOut(){
 authenticationApi.signOut();
}

HOW IT WORKS

To identify the logged-in user credentials and to monitor the login status, you created the authenti-
cation_bloc.dart file containing the AuthenticationBloc class. You declared a reference to the
AuthenticationApi class to gain access to the Firebase Authentication API. The authenticationApi
variable receives the injected AuthenticationService class. To add data to the StreamController’s
stream property, you used the sink.add() method, and the stream property emits the latest stream
events. You added methods that call the authentication service to log in, to log out, and to create
new users.

Building State Management  ❘  435

Adding the AuthenticationBlocProvider
The AuthenticationBlocProvider class is responsible for passing the State between widgets
and pages by using the InheritedWidget class as a provider. The AuthenticationBlocProvider
constructor takes a Key, Widget, and the this.authenticationBloc variable, which is the Authen-
ticationBloc class.

TRY IT OUT	 Creating the AuthenticationBlocProvider

In this section, continue to edit the journal project. You’ll be adding the AuthenticationBlocPro-
vider class as the provider for the AuthenticationBloc class to handle the logging in and logging out
and to monitor a user’s credentials. The AuthenticationBloc class calls the AuthenticationService
service class Firebase Authentication API.

1.	 Create a new Dart file in the blocs folder. Right-click the blocs folder, select New ➪ Dart File,
enter authentication_bloc_provider.dart, and click the OK button to save.

2.	 Import the material.dart package and the authentication_bloc.dart package and create the
AuthenticationBlocProvider class that extends the InheritedWidget class.

import 'package:flutter/material.dart';
import 'package:journal/blocs/authentication_bloc.dart';

class AuthenticationBlocProvider extends InheritedWidget {

}

3.	 Inside the AuthenticationBlocProvider class, declare the final AuthenticationBloc
authenticationBloc variable.

final AuthenticationBloc authenticationBloc;

4.	 Add the AuthenticationBlocProvider constructor with the const keyword. Add to the con-
structor the key, child, and this.authenticationBloc parameters.

const AuthenticationBlocProvider(
 {Key key, Widget child, this.authenticationBloc})
 : super(key: key, child: child);

5.	 Add the AuthenticationBlocProvider of(BuildContext context) method with the
static keyword.

6.	 Inside the method, return the AuthenticationBlocProvider by using the inheritFromWidget-
OfExactType method that allows children widgets to get the instance of the Authentication
BlocProvider provider.

static AuthenticationBlocProvider of(BuildContext context) {
 return (context.inheritFromWidgetOfExactType(AuthenticationBlocProvider)
 as AuthenticationBlocProvider);
}

436  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

7.	 Add and override the updateShouldNotify method to check whether the authenticationBloc
does not equal the old AuthenticationBlocProvider authenticationBloc. If the expression
returns true, the framework notifies widgets that hold the inherited data that they need to rebuild.

@override
bool updateShouldNotify(AuthenticationBlocProvider old) =>
 authenticationBloc != old.authenticationBloc;

HOW IT WORKS

To pass the State between widgets and pages, you created the authentication_bloc_provider.dart
file containing the AuthenticationBlocProvider class as the provider for the AuthenticationBloc
class. The AuthenticationBlocProvider class constructor takes the key, widget, and this.authen-
ticationBloc parameters. The of() method returns the result of the inheritFromWidgetOfExactType
method that allows children widgets to get the instance of the AuthenticationBlocProvider provider.
The updateShouldNotify method checks whether the value has changed, and the framework notifies
widgets to rebuild.

Adding the LoginBloc
The LoginBloc is responsible for monitoring the login page to check for a valid email format and
password length. When the LoginBloc is instantiated, it starts the StreamController’s listeners that
monitor the user’s email and password, and once they pass validation, the login and create account
buttons are enabled. Once the login and password values pass validation, the authentication service is
called to log in or create a new user. The Validators class is responsible for validating the email and
password values.

TRY IT OUT	 Creating the LoginBloc

In this section, continue to edit the journal project. You’ll be adding the LoginBloc class to handle the
login page’s email, password, login, and create account buttons. The LoginBloc is also responsible for
calling the Firebase Authentication service to log in or create a new user.

1.	 Create a new Dart file in the blocs folder. Right-click the blocs folder, select New ➪ Dart File,
enter login_bloc.dart, and click the OK button to save.

2.	 Import the async.dart library, import the validators.dart and authentication_api.dart
classes, and create the LoginBloc class by using the with keyword and the Validators class.

import 'dart:async';
import 'package:journal/classes/validators.dart';
import 'package:journal/services/authentication_api.dart';

class LoginBloc with Validators {

}

Building State Management  ❘  437

3.	 Inside the LoginBloc class, declare the final AuthenticationApi authenticationApi vari-
able. Add the String _email and _password private variables and the bool _emailValid and
_passwordValid private variables.

final AuthenticationApi authenticationApi;
String _email;
String _password;
bool _emailValid;
bool _passwordValid;

4.	 Add the _emailController variable as a String StreamController, add the emailChanged
variable getter as a String Sink, and add the email getter as a String Stream. Note that the
StreamController is initialized with the broadcast() stream since we’ll have multiple listeners.
After the stream property, add the transform(validateEmail) method that calls the
Validators class StreamTransformer and validates the email address. The StreamTransformer
adds to the sink property either the email address value if it passes validation or an error if it fails.

final StreamController<String> _emailController = StreamController<String>
.broadcast();
Sink<String> get emailChanged => _emailController.sink;
Stream<String> get email => _emailController.stream.transform(validateEmail);

5.	 By following the previous steps, add the additional StreamControllers to handle the password,
enable the login or create account buttons, and add the login or create account calls to the Cloud
Firestore service.

final StreamController<String> _passwordController = StreamController<String>
.broadcast();
Sink<String> get passwordChanged => _passwordController.sink;
Stream<String> get password => _passwordController.stream.transform
(validatePassword);

final StreamController<bool> _enableLoginCreateButtonController =
StreamController<bool>.broadcast();
Sink<bool> get enableLoginCreateButtonChanged => _enableLoginCreateButton
Controller.sink;
Stream<bool> get enableLoginCreateButton => _enableLoginCreateButtonCon-
troller.stream;

final StreamController<String> _loginOrCreateButtonController =
StreamController<String>();
Sink<String> get loginOrCreateButtonChanged => _loginOrCreateButtonController.sink;
Stream<String> get loginOrCreateButton => _loginOrCreateButtonController.stream;

final StreamController<String> _loginOrCreateController =
StreamController<String>();
Sink<String> get loginOrCreateChanged => _loginOrCreateController.sink;
Stream<String> get loginOrCreate => _loginOrCreateController.stream;

438  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

6.	 Add a new line and enter the LoginBloc constructor receiving the injected this.authentica-
tionApi parameter. Note that the injected parameter is the AuthenticationService class. Inside
the constructor, call the _startListenersIfEmailPasswordAreValid() method that you create
in step 8.

LoginBloc(this.authenticationApi) {
 _startListenersIfEmailPasswordAreValid();
}

7.	 Add the dispose() method and call the _passwordController, _emailController, _enable
LoginCreateButtonController, and _loginOrCreateButtonController close() methods to
close the StreamController’s stream when they are not needed.

void dispose() {
 _passwordController.close();
 _emailController.close();
 _enableLoginCreateButtonController.close();
 _loginOrCreateButtonController.close();
 _loginOrCreateController.close();
}

8.	 Add the _startListenersIfEmailPasswordAreValid() method that is responsible for setting up
three listeners that check the email, password, and login or create button streams.

9.	 Inside the method, add the email.listen((email)) listener. Inside the listener, set the _email =
email and the _emailValid = true values.

10.	 By using the dot operator, add the onError((error)) event handler and set the _email = '' and
the _emailValid = false values.

11.	 For both scenarios, call the _updateEnableLoginCreateButtonStream() method that you’ll
create in step 14.

12.	 Add a new line, and by following the previous steps, enter the password.listen((password))
listener.

13.	 Add the loginOrCreate.listen((action) listener, and by using a ternary operator, set the
action variable to either _login() or _createAccount(), depending on whether the user has
chosen to log in or create a new account.

void _startListenersIfEmailPasswordAreValid() {
 email.listen((email) {
 _email = email;
 _emailValid = true;
 _updateEnableLoginCreateButtonStream();
 }).onError((error) {
 _email = '';
 _emailValid = false;
 _updateEnableLoginCreateButtonStream();
 });
 password.listen((password) {
 _password = password;
 _passwordValid = true;

Building State Management  ❘  439

 _updateEnableLoginCreateButtonStream();
 }).onError((error) {
 _password = '';
 _passwordValid = false;
 _updateEnableLoginCreateButtonStream();
 });
 loginOrCreate.listen((action) {
 action == 'Login' ? _logIn() : _createAccount();
 });
}

14.	 Add the _updateEnableLoginCreateButtonStream() method that checks whether the
_emailValid and _passwordValid variables evaluate to true, and call the enableLogin
CreateButtonChanged.add(true) to add a true value to the sink property. Otherwise, add a
false value to the sink property. The results of the value being added to the sink property either
enable or disable the login or create account buttons.

void _updateEnableLoginCreateButtonStream() {
 if (_emailValid == true && _passwordValid == true) {
 enableLoginCreateButtonChanged.add(true);
 }
 else {
 enableLoginCreateButtonChanged.add(false);
 }
}

15.	 Add the Future<String> _logIn() async method that is responsible for logging in a user with
the email/password credentials.

16.	 Inside the method, add String _result = '' variable that tracks if the login is successful or fails.

17.	 Add an if statement checking whether the _emailValid and _passwordValid variables evaluate
to a true value. If the expression evaluates to true, add the await authenticationApi call to
the signInWithEmailAndPassword() by passing the _email and _password values.

18.	 By using the dot operator, add the then((user)) callback that sets the _result =
'Success' variable.

19.	 Add the catchError((error)) callback that sets the _result = error variable.

20.	 Add the return _result statement to return a status that the login has been successful or return
the login error.

21.	 Add an else statement to check whether the _emailValid and _passwordValid variables
evaluate to a false value and return 'Email and Password are not valid' since valida-
tion failed.

Future<String> _logIn() async {
 String _result = '';
 if(_emailValid && _passwordValid) {
 await authenticationApi.signInWithEmailAndPassword(email: _email, password:
_password).then((user) {
 _result = 'Success';

440  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

 }).catchError((error) {
 print('Login error: $error');
 _result = error;
 });
 return _result;
 } else {
 return 'Email and Password are not valid';
 }
}

22.	 Add the Future<String> _createAccount() async method that is responsible for creating a
new account and if successful automatically logging in the new user. When a new account is
created, it’s a good practice to automatically log in the new user.
Follow the previous steps and add the createUserWithEmailAndPassword and signInWithEmail
AndPassword methods.

Future<String> _createAccount() async {
 String _result = '';
 if(_emailValid && _passwordValid) {
 await authenticationApi.createUserWithEmailAndPassword(email: _email, password:
_password).then((user) {
 print('Created user: $user');
 _result = 'Created user: $user';
 authenticationApi.signInWithEmailAndPassword(email: _email, password:
_password).then((user) {
 }).catchError((error) async {
 print('Login error: $error');
 _result = error;
 });
 }).catchError((error) async {
 print('Creating user error: $error');
 });
 return _result;
 } else {
 return 'Error creating user';
 }
}

HOW IT WORKS

To monitor the login to check for a valid email format and password length, you created the login_
bloc.dart file containing the LoginBloc class that works with the Validators class. You declared
a reference to the AuthenticationApi class to gain access to the Firebase Authentication API. The
authenticationApi variable receives the injected AuthenticationService class. To add data to the
StreamController’s stream property, you used the sink.add() method, and the stream property
emits the latest stream events. You added methods that call the Firebase Authentication service to log in
or create a new account by using the email/password authentication provider.

Building State Management  ❘  441

Adding the HomeBloc
The HomeBloc is responsible for identifying logged-in user credentials and monitoring user authen-
tication login status. When the HomeBloc is instantiated, it starts a StreamController listener that
monitors the user’s authentication credentials, and when changes occur, the listener updates the
credential status by calling a sink.add() method event. If the user is logged in, the sink events send
the user uid value, and if the user logs out, the sink events send a null value, meaning no user is
logged in.

TRY IT OUT	 Creating the HomeBloc

In this section, continue to edit the journal project. You’ll be adding the HomeBloc class to handle call-
ing the Cloud Firestore database service.

1.	 Create a new Dart file in the blocs folder. Right-click the blocs folder, select New ➪ Dart File,
enter home_bloc.dart, and click the OK button to save.

2.	 Import the async.dart library; import the authentication.dart class, db_firestore_api
.dart class, and journal.dart class; and create the HomeBloc class.

import 'dart:async';
import 'package:journal/services/authentication_api.dart';
import 'package:journal/services/db_firestore_api.dart';
import 'package:journal/models/journal.dart';

class HomeBloc {

}

3.	 Inside the HomeBloc class, declare the final DbApi dbApi variable and the final
AuthenticationApi authenticationApi variable.

final DbApi dbApi;
final AuthenticationApi authenticationApi;

4.	 Add the _journalController variable as a String StreamController, add the _addListJour-
nal (private) variable getter as a List<Journal> Sink, and add the listJournal getter as a
List<Journal> Stream.

final StreamController<List<Journal>> _journalController =
StreamController<List<Journal>>.broadcast();
Sink<List<Journal>> get _addListJournal => _journalController.sink;
Stream<List<Journal>> get listJournal => _journalController.stream;

5.	 Add the _journalDeleteController variable as a Journal StreamController, and add the
deleteJournal variable getter as a Journal Sink. Since this StreamController is responsible
for deleting journals, you will not need a list of deleted journals Stream.

 final StreamController<Journal> _journalDeleteController =
StreamController<Journal>.broadcast();
Sink<Journal> get deleteJournal => _journalDeleteController.sink;

442  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

6.	 Add a new line and enter the HomeBloc constructor, taking the this.dbApi and the this.authen-
ticationApi parameters. Note that the injected parameters are, respectively, the
DbFirestoreService and AuthenticationService classes.

7.	 Inside the HomeBloc constructor, call the _startListeners() method that you will create
in step 9.

HomeBloc(this.dbApi , this.authenticationApi) {
 _startListeners();
}

8.	 Add the dispose() method and call the _journalController.close() and _journalDelete-
Controller.close() methods to close the StreamController’s stream when they are
not needed.

void dispose() {
 _journalController.close();
 _journalDeleteController.close();
}

9.	 Add the _startListeners() method responsible for setting up two listeners to retrieve a list of
journals and to delete an individual journal entry.

10.	 Before you start the listeners, you need to retrieve the currently logged-in user uid. Inside the
method, call the authenticationApi.getFirebaseAuth().currentUser() method, and with
the dot operator add the then((user)) callback that returns the user.uid value.

11.	 Inside the currentUser() method, call the dbApi.getJournalList() method to get the list of
journals filtered by the user’s uid from the Cloud Firestore service class.

12.	 Continue by using the dot operator to call the listen((journalDocs)) to set up the listener.

13.	 Inside the listener, call the _addListJournal.add(journalDocs) sink to add the list of journals
to the _journalController stream.

14.	 Add a new line and enter the _journalDeleteController.stream.listen((journal)) listener
that returns a journal to be deleted. Inside the listener, call the DbApi class dbApi.
deleteJournal(journal) method to delete the journal from the database.

void _startListeners() {
 // Retrieve Firestore Journal Records as List<Journal> not DocumentSnapshot
 authenticationApi.getFirebaseAuth().currentUser().then((user) {
 dbApi.getJournalList(user.uid).listen((journalDocs) {
 _addListJournal.add(journalDocs);
 });

 _journalDeleteController.stream.listen((journal) {
 dbApi.deleteJournal(journal);
 });
 });
}

Building State Management  ❘  443

HOW IT WORKS

To identify the logged-in user credentials and to monitor the user authentication login status, you
created the home_bloc.dart file containing the HomeBloc class. You declared a reference to the
DbApi class to gain access to the Cloud Firestore database API. You also declared a reference to the
AuthenticationApi class to gain access to the Firebase Authentication API. The dbApi variable
receives the injected DbFirestoreService class. The authenticationApi variable receives the injected
AuthenticationService class. To add data to the StreamController’s stream property, you used
the sink.add() method, and the stream property emits the latest stream events. You added methods
that call the Cloud Firestore service to retrieve a list of filtered journals by the user’s uid and to delete
individual journal entries.

Adding the HomeBlocProvider
The HomeBlocProvider class is responsible for passing the State between widgets and pages by
using the InheritedWidget class as a provider. The HomeBlocProvider constructor takes a Key,
Widget, and the this.authenticationBloc variable, which is the HomeBloc class.

TRY IT OUT	 Creating the HomeBlocProvider

In this section, continue to edit the journal project. You’ll be adding the HomeBlocProvider class as the
provider for the HomeBloc class to retrieve the list of journals and delete individual entries. The Home-
Bloc class calls the DbFirestoreService service class Cloud Firestore database API.

1.	 Create a new Dart file in the blocs folder. Right-click the blocs folder, select New ➪ Dart File,
enter home_bloc_provider.dart, and click the OK button to save.

2.	 Import the material.dart package and home_bloc.dart package and create the
HomeBlocProvider class that extends the InheritedWidget class.

import 'package:flutter/material.dart';
import 'package:journal/blocs/home_bloc.dart';

class HomeBlocProvider extends InheritedWidget {

}

3.	 Inside the HomeBlocProvider class, declare the final HomeBloc homeBloc and the final
String uid variables.

final HomeBloc homeBloc;
final String uid;

4.	 Add the HomeBlocProvider constructor with the const keyword.

5.	 Add to the constructor the key, child, this.homeBloc, and this.uid parameters.

const HomeBlocProvider(
 {Key key, Widget child, this.homeBloc, this.uid})
 : super(key: key, child: child);

444  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

6.	 Add the HomeBlocProvider of(BuildContext context) method with the static keyword.

7.	 Inside the method, return the HomeBlocProvider by using the inheritFromWidgetOfExactType
method that allows children widgets to get the instance of the HomeBlocProvider provider.

static HomeBlocProvider of(BuildContext context) {
 return (context.inheritFromWidgetOfExactType(HomeBlocProvider)
 as HomeBlocProvider);
}

8.	 Add and override the updateShouldNotify method to check whether the homeBloc does not
equal the old HomeBlocProvider homeBloc. If the expression returns true, the framework
notifies widgets that hold the inherited data that they need to rebuild. If the expression returns a
false value, the framework does not send a notification since there is no need to rebuild widgets.

@override
bool updateShouldNotify(HomeBlocProvider old) =>
 homeBloc != old.homeBloc;

HOW IT WORKS

To pass the State between widgets and pages, you created the home_bloc_provider.dart file con-
taining the HomeBlocProvider class as the provider for the HomeBloc class. The HomeBlocProvider
class constructor takes the key, widget, this.homeBloc, and this.uid parameters. The of() method
returns the result of the inheritFromWidgetOfExactType method that allows children widgets to get
the instance of the HomeBlocProvider provider. The updateShouldNotify method checks whether the
value has changed, and the framework notifies widgets to rebuild.

Adding the JournalEditBloc
The JournalEditBloc is responsible for monitoring the journal edit page to either add a new or
save an existing entry. When the JournalEditBloc is instantiated, it starts the StreamController’s
listeners that monitor the date, mood, note, and save button streams.

TRY IT OUT	 Creating the JournalEditBloc

In this section, continue to edit the journal project. You’ll be adding the JournalEditBloc class to han-
dle the journal entry page date, mood, note, and save button. The JournalEditBloc is also responsible
for calling the Cloud Firestore database service to save the entry.

1.	 Create a new Dart file in the blocs folder. Right-click the blocs folder, select New ➪ Dart File,
enter journal_entry_bloc.dart, and click the OK button to save.

2.	 Import the async.dart library; import the journal.dart, db_firestore_api.dart classes; and
create the JournalEditBloc class that accepts the this.add, this.selectedJournal, and this.
dbApi parameters. When the add variable is true, a new entry is created, and when the value is
false, an existing entry is edited. The selectedJournal parameter contains the Journal class

Building State Management  ❘  445

variables that contain the selected entry values. The this.dbApi receives the injected
DbFirestoreService class.

import 'dart:async';
import 'package:journal/models/journal.dart';
import 'package:journal/services/db_firestore_api.dart';

JournalEditBloc(this.add, this.selectedJournal, this.dbApi) {

}

3.	 Inside the JournalEditBloc class, declare the final DbApi dbApi variable. Add the final bool
add variable and the Journal selectedJournal variable.

final DbApi dbApi;
final bool add;
Journal selectedJournal;

4.	 Add the _dateController variable as a String StreamController, add the dateEditChanged
variable getter as a String Sink, and add the dateEdit getter as a String Stream. Note that
StreamController is initialized with the broadcast() stream since we’ll have multiple listeners.

final StreamController<String> _dateController = StreamController<String>
.broadcast();
Sink<String> get dateEditChanged => _dateController.sink;
Stream<String> get dateEdit => _dateController.stream;

5.	 By following the previous steps, add the additional StreamControllers to handle the mood, note,
and save journal call to the Cloud Firestore service.

final StreamController<String> _moodController = StreamController<String>
.broadcast();
Sink<String> get moodEditChanged => _moodController.sink;
Stream<String> get moodEdit => _moodController.stream;

final StreamController<String> _noteController = StreamController<String>
.broadcast();
Sink<String> get noteEditChanged => _noteController.sink;
Stream<String> get noteEdit => _noteController.stream;

final StreamController<String> _saveJournalController = StreamController<String>
.broadcast();
Sink<String> get saveJournalChanged => _saveJournalController.sink;
Stream<String> get saveJournal => _saveJournalController.stream;

6.	 Add a new line and enter the JournalEditBloc constructor receiving the injected this.add,
this.selectedJournal, and this.dbApi parameters. Note that the injected this.dbApi param-
eter receives the DbFirestoreService class.

7.	 Inside the JournalEditBloc constructor, call the _startEditListeners() method that you will
create in step 10.

446  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

8.	 By using the dot operator, add the then((finished)) callback that calls the _getJournal()
method that you create in step 12, and pass the add and selectedJournal variables.

JournalEditBloc(this.add, this.selectedJournal, this.dbApi) {
 _startEditListeners().then((finished) => _getJournal(add, selectedJournal));
}

9.	 Add the dispose() method and call the _dateController, _moodController, _noteCon-
troller, and _saveJournalController close() methods to close the StreamController’s
stream when they are not needed.

void dispose() {
 _dateController.close();
 _moodController.close();
 _noteController.close();
 _saveJournalController.close();
}

10.	 Add the Future<bool> _startEditListeners() async method that is responsible for setting up
four listeners to monitor the date, mood, note, and save streams.

11.	 Inside each listen() listener, the selectedJournal date, mood, note values are maintained.
When the _saveJournalController listener is called, it checks whether the action == 'Save'
and calls the _saveJournal() method that you will create in step 10. The last line of the method
adds the return true statement signaling that all listeners have been started.

Future<bool> _startEditListeners() async {
 _dateController.stream.listen((date) {
 selectedJournal.date = date;
 });
 _moodController.stream.listen((mood) {
 selectedJournal.mood = mood;
 });
 _noteController.stream.listen((note) {
 selectedJournal.note = note;
 });
 _saveJournalController.stream.listen((action) {
 if (action == 'Save') {
 _saveJournal();
 }
 });
 return true;
}

12.	 Add the _getJournal method that takes the bool add and Journal journal parameters.

13.	 Add an if statement to check whether the add value is true, meaning a new entry is going to be
created, and set the default values for the selectedJournal variable.

14.	 Add an else statement to handle editing an existing entry and set the default values from the
passed-in existing journal variable.

15.	 After the if-else statement, notify the StreamControllers by adding the date, mood, and note
values through each sink.add() method.

Building State Management  ❘  447

void _getJournal(bool add, Journal journal) {
 if (add) {
 selectedJournal = Journal();
 selectedJournal.date = DateTime.now().toString();
 selectedJournal.mood = 'Very Satisfied';
 selectedJournal.note = '';
 selectedJournal.uid = journal.uid;
 } else {
 selectedJournal.date = journal.date;
 selectedJournal.mood = journal.mood;
 selectedJournal.note = journal.note;
 }
 dateEditChanged.add(selectedJournal.date);
 moodEditChanged.add(selectedJournal.mood);
 noteEditChanged.add(selectedJournal.note);
}

16.	 Add the _saveJournal() method to create a Journal journal variable that holds the
entry values.

17.	 Call the DateTime.parse() constructor to convert the date to the ISO 8601 standard.

18.	 Add a ternary operator to check whether the add variable equals true and call the dbApi
.addJournal(journal) method to create a new journal entry. Otherwise, call the dbApi
.updateJournal(journal) method to update the current entry.

void _saveJournal() {
 Journal journal = Journal(
 documentID: selectedJournal.documentID,
 date: DateTime.parse(selectedJournal.date).toIso8601String(),
 mood: selectedJournal.mood,
 note: selectedJournal.note,
 uid: selectedJournal.uid,
);
 add ? dbApi.addJournal(journal) : dbApi.updateJournal(journal);
}

HOW IT WORKS

To monitor the journal edit page to add a new entry or save an existing entry, you created the journal_
edit_bloc.dart file containing the JournalEditBloc class. You declared a reference to the DbApi class
to gain access to the Cloud Firestore database API. The dbApi variable receives the injected DbFire-
storeService class. To add data to the StreamController’s stream property, you used the sink.
add() method, and the stream property emits the latest stream events. You added methods that call the
Cloud Firestore service to create a new entry or save an existing entry.

Adding the JournalEditBlocProvider
The JournalEditBlocProvider class is responsible for passing the State between widgets
and pages by using the InheritedWidget class as a provider. The JournalEditBlocProvider
constructor takes a Key, Widget, and this.journalEditBloc variables. Note that the
this.journalEditBloc variable is the JournalEditBloc class.

448  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

TRY IT OUT	 Creating the JournalEditBlocProvider

In this section, continue to edit the journal project. You’ll be adding the JournalEditBlocProvider
class as the provider for the JournalEditBloc class to add or edit individual entries. The JournalEdit-
Bloc class calls the DbFirestoreService service class Cloud Firestore database API.

1.	 Create a new Dart file in the blocs folder. Right-click the blocs folder, select New ➪ Dart File,
enter journal_edit_bloc_provider.dart, and click the OK button to save.

2.	 Import the material.dart package, the journal_edit_bloc.dart package, and the journal.
dart class, and create the JournalEditBlocProvider class that extends the
InheritedWidget class.

import 'package:flutter/material.dart';
import 'package:journal/blocs/journal_edit_bloc.dart';

class JournalEditBlocProvider extends InheritedWidget {

}

3.	 Inside the JournalEditBlocProvider class, declare the final JournalEditBloc journalEdit-
Bloc, final bool add, and final Journal journal variables.

final JournalEditBloc journalEditBloc;

4.	 Add the JournalEditBlocProvider constructor with the const keyword.

5.	 Add to the constructor the key, child, this.journalEditBloc, this.add, and this.journal
parameters.

const JournalEditBlocProvider(
 {Key key, Widget child, this.journalEditBloc})
 : super(key: key, child: child);

6.	 Add the JournalEditBlocProvider of(BuildContext context) method with the
static keyword.

7.	 Inside the method, return the JournalEditBlocProvider by using the inheritFromWidgetOf
ExactType method that allows children widgets to get the instance of the
JournalEditBlocProvider provider.

static JournalEditBlocProvider of(BuildContext context) {
 return (context.inheritFromWidgetOfExactType(JournalEditBlocProvider) as
JournalEditBlocProvider);
}

8.	 Add and override the updateShouldNotify method to check whether the journalEditBloc does
not equal the old JournalEditBlocProvider journalEditBloc. If the expression returns true,
the framework notifies widgets that hold the inherited data that they need to rebuild.

@override
bool updateShouldNotify(JournalEditBlocProvider old) => false;

Summary  ❘  449

HOW IT WORKS

To pass the State between widgets and pages, you created the journal_edit_bloc_provider.dart
file containing the JournalEditBlocProvider class as the provider for the JournalEditBloc class.
The JournalEditBlocProvider class constructor takes the key, widget, and this.journalEditBloc
parameters. The of() method returns the result of the inheritFromWidgetOfExactType method that
allows children widgets to get the instance of the JournalEditBlocProvider provider. The update-
ShouldNotify method checks whether the value has changed, and the framework notifies widgets
to rebuild.

SUMMARY

In this chapter, you implemented the client app’s app-wide and local-state management. You learned
how to implement the BLoC pattern to separate business logic from the UI pages. You created an
abstract class to define the authentication interface and the authentication service class to imple-
ment the abstract class. By using the abstract class, you can impose implementation and design
constraints. You used the abstract class with the BLoC class to inject at runtime the appropriate
platform-dependent class, resulting in the BLoC class being platform-agnostic.

You implemented an InheritedWidget class as a provider to pass State between widgets and pages.
You used the of() method to access reference to the provider. You created the Journal model class
to structure the individual journal records and used the fromDoc() method to convert and map a
Cloud Firestore database document to an individual Journal entry. You created service classes to
manage sending and receiving the service API calls. You created the AuthenticationService class
implementing the AuthenticationApi abstract class to access the Firebase Authentication API.
You created the DbFirestoreService class implementing the DbApi abstract class to access the
Cloud Firestore database API.

You implemented the BLoC pattern to maximize separation of the UI widgets and the business logic
components. You learned that the pattern exposes sinks to input data and exposes streams to output
data. You learned how to inject the platform-aware service classes to the BLoC’s constructor, making
the BLoC classes platform independent. By separating the business logic from the UI, it does not mat-
ter if you are using Flutter for the mobile apps, AngularDart for web apps, or any other platform. You
implemented the StreamController to send data, done events, and errors on the stream property.
You implemented the Sink class to add data with the sink property and the Stream class to send
data with the stream property of the StreamController.

In the next chapter, you’ll learn how to implement reactive pages to communicate with the BLoCs.
You’ll modify the main page to implement the app-wide state management by using the authentica-
tion BLoC provider. You’ll create the login page and implement the BLoC to validate the email and
password, log in, and create a new user account. You’ll modify the home page to implement the data-
base BLoC and use the ListView.separated constructor. You’ll create the journal edit entry page
and implement the BLoC to create and update existing entries.

450  ❘  CHAPTER 15   Adding State Management to the Firestore Client App

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

App-wide and local-state
management

You learned how to apply state management by creating the
InheritedWidget class as a provider to pass State between
widgets and pages.

abstract class You learned how to implement an abstract class and
abstract methods to define the authentication interface. You
created the AuthenticationService class that implements
the abstract class.

Model class You learned how to create the Journal model class
responsible for modeling the data structure and map
Cloud Firestore database QuerySnapshot to individual
Journal entries.

Service classes You learned how to create service classes that call different
services API. You created the AuthenticationService
class to call the Firebase Authentication API and the
DbFirestoreService class to call the Cloud Firestore
database API.

Validator class You learned how to create the Validators class that uses the
StreamTransformer to validate the email and password to
pass minimum requirements.

StreamController, Streams,
Sinks, and StreamBuilder

You learned how to use the StreamController to send
data, done events, and errors on the stream property. The
StreamController has a sink (input) property and a stream
(output) property.

BLoC pattern The BLoC acronym stands for Business Logic Component, and
it was created to define a platform-agnostic interface for the
business logic. In other words, it separates the business logic
from the UI widgets/components.

BLoC classes You learned how to create the AuthenticationBloc,
LoginBloc, HomeBloc, and JournalEditBloc BLoC classes.

BLoC dependency injection You learned how to use abstract classes with the BLoC
classes and how to inject platform-dependent classes to the
BLoC classes, making the BLoC classes platform-agnostic.

Summary  ❘  451

TOPIC KEY CONCEPTS

InheritedWidget class as
a provider

You learned how to create the
AuthenticationBlocProvider, HomeBlocProvider,
and JournalEditBlocProvider classes that extend
the InheritedWidget class to act as providers
for the AuthenticationBloc, HomeBloc, and
JournalEditBloc classes.

16
Adding BLoCs to Firestore
Client App Pages

WHAT YOU WILL LEARN IN THIS CHAPTER

➤➤ How to pass app-wide state management between pages

➤➤ How to apply local-state management in the widget tree

➤➤ How to apply the InheritedWidget as a provider to pass state
between widgets and pages

➤➤ How to use dependency injection to inject service classes to the
BLoC classes to achieve platform independence

➤➤ How to apply the LoginBloc class to the Login page

➤➤ How to apply the AuthenticationBloc class to manage user cre-
dentials for app-wide state management

➤➤ How to apply the HomeBloc class to the home page to list, add,
and delete journal entries

➤➤ How to apply the JournalEditBloc to the journal edit page to add
or modify an existing entry

➤➤ How to build reactive widgets by implementing the StreamBuilder
widget

➤➤ How to use the ListView.separated constructor to build a list of
journal entries with a divider line by using the Divider() widget

➤➤ How to use the Dismissible widget to swipe and delete an entry

➤➤ How to use the Dismissible widget confirmDismiss property to
prompt a delete confirmation dialog

454  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

➤➤ How to use the DropdownButton() widget to present a list of moods
with the title, color, and icon rotation

➤➤ How to apply the MoodIcons class to retrieve the mood title, color,
rotation, and icon

➤➤ How to apply the Matrix4 rotateZ() method to rotate icons according
to the mood in conjunction with the MoodIcons class

➤➤ How to apply the FormatDates class to format dates

In this chapter, you’ll continue to edit and complete the mood journaling app you’ve worked on in
Chapters 14 and 15. For your convenience, you can use the ch15_final_journal project as your
starting point and make sure you add your GoogleService-Info.plist file to the Xcode project
and the google-services.json file to the Android project that you downloaded in Chapter 14 from
your Firebase console.

You’ll learn how to apply the BLoC, service, provider, model, and utility classes to the UI widget
pages. The benefit of using the BLoC pattern allows for separation of the UI widgets from the busi-
ness logic. You’ll learn how to use dependency injection to inject service classes into the BLoC classes.
By using dependency injection, the BLoCs remain platform-agnostic.

You’ll also learn how to apply app-wide state management by implementing the Authentication-
BlocProvider class to the main page. You’ll learn how to pass state between pages and the widget
tree by implementing the HomeBlocProvider and JournalEditBlocProvider classes. You’ll learn
how to create a Login page that implements the LoginBloc class to validate emails, passwords, and
user credentials. You’ll modify the home page and learn how to implement the HomeBloc class to han-
dle the journal entries list and add and delete individual entries. You’ll learn how to create the journal
edit page that implements the JournalEditBloc class to add, modify, and save existing entries.

ADDING THE LOGIN PAGE

The Login page contains a TextField for entering the email address and a TextField for enter-
ing the password by obscuring the characters for privacy. You’ll also add a button to log in the user
and a button to create a new user account. You’ll learn how to implement the LoginBloc class
by using the StreamBuilder widget. You’ll learn how to use dependency injection to inject the
AuthenticationService()class to the LoginBloc class constructor, resulting in the LoginBloc
being platform-agnostic. See Figure 16.1 for an idea of how the final Login page will look.

Adding the Login Page  ❘  455

TRY IT OUT	 Creating the Login Page

In this section, you’ll continue to edit the journal project. You’ll be adding the LoginBloc class to han-
dle the validation of the email and password values. You’ll use the LoginBloc class to log in the user or
create a new user account and log in with the new authentication credentials.

1.	 Create a new Dart file in the pages folder. Right-click the pages folder, select New ➪ Dart File,
enter login.dart, and click the OK button to save.

2.	 Import the material.dart, login_bloc.dart, and authentication.dart classes. Add a new
line and create the Login class that extends a StatefulWidget.

 import 'package:flutter/material.dart';
 import 'package:journal/blocs/login_bloc.dart';
 import 'package:journal/services/authentication.dart';

FIGURE 16.1:  Final Login page

456  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 class Login extends StatefulWidget {
 @override
 _LoginState createState() => _LoginState();
 }

 class _LoginState extends State<Login> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
 }

3.	 Modify the _LoginState class and add the private LoginBloc _loginBloc variable.

4.	 Override the initState() and initialize the _loginBloc variable with the LoginBloc(Authenti
cationService()) class by injecting the AuthenticationService() in the constructor.

Note that the reason you initialized the _loginBloc variable from the initState() and not
the didChangeDependencies() is because the LoginBloc does not need a provider (Inher-
itedWidget).

 class _LoginState extends State<Login> {
 LoginBloc _loginBloc;

 @override
 void initState() {
 super.initState();
 _loginBloc = LoginBloc(AuthenticationService());
 }

 @override
 Widget build(BuildContext context) {
 return Container();
 }
 }

5.	 Override the dispose() method and dispose the _loginBloc variable. The LoginBloc class’s
dispose() method is called and closes all of the StreamControllers.

 @override
 void dispose() {
 _loginBloc.dispose();
 super.dispose();
 }

6.	 In the Widget build() method, replace the Container() with the UI widgets Scaffold and
AppBar and for the body property add a SafeArea() and SingleChildScrollView() with the
child property as a Column(). Set the Column crossAxisAlignment property to stretch.

7.	 For the AppBar bottom property, add a PreferredSize widget with the child property set to the
Icons.account_circle and set the size property to 88.0 pixels and the color property to
Colors.white.

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(

Adding the Login Page  ❘  457

 bottom: PreferredSize(
 child: Icon(
 Icons.account_circle,
 size: 88.0,
 color: Colors.white,
),
 preferredSize: Size.fromHeight(40.0)),
),
),
 body: SafeArea(
 child: SingleChildScrollView(
 padding: EdgeInsets.all(16.0, 32.0, 16.0, 16.0),
 child: Column(
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[

],
),
),
),
);
 }

8.	 Add to the Column children property two StreamBuilder widgets. The first StreamBuilder
handles the email TextField and sets the stream property to the _loginBloc.email stream.
Add to the builder property the TextField widget, and for the InputDecoration errorText
property set it to the snapshot.error. The onChanged property calls the _loginBloc
.emailChanged.add sink that passes the current email address.

Add the second StreamBuilder by following the previous steps to handle the password
TextField. Add a SizedBox with the height property set to 48.0 pixels and add a call to
the _buildLoginAndCreateButtons() method that you will create in step 9.

 Column(
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[
 StreamBuilder(
 stream: _loginBloc.email,
 builder: (BuildContext context, AsyncSnapshot snapshot) => TextField(
 keyboardType: TextInputType.emailAddress,
 decoration: InputDecoration(
 labelText: 'Email Address',
 icon: Icon(Icons.mail_outline),
 errorText: snapshot.error),
 onChanged: _loginBloc.emailChanged.add,
),
),
 StreamBuilder(
 stream: _loginBloc.password,
 builder: (BuildContext context, AsyncSnapshot snapshot) =>
 TextField(
 obscureText: true,
 decoration: InputDecoration(
 labelText: 'Password',

458  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 icon: Icon(Icons.security),
 errorText: snapshot.error),
 onChanged: _loginBloc.passwordChanged.add,
),
),
 SizedBox(height: 48.0),
 _buildLoginAndCreateButtons(),
],
),

9.	 Add a new line after the Widget build(BuildContext context) method and add the _build-
LoginAndCreateButtons() that returns a Widget. Add the StreamBuilder to handle which set
of buttons is active, for example Login button and then Create Account, or in reverse order. The
StreamBuilder checks whether the snapshot.data == 'Login' and calls the _buttonsLogin()
method; otherwise, it calls the _buttonsCreateAccount() method. You will create each method,
respectively, in steps 10 and 11.

 Widget _buildLoginAndCreateButtons() {
 return StreamBuilder(
 initialData: 'Login',
 stream: _loginBloc.loginOrCreateButton,
 builder: ((BuildContext context, AsyncSnapshot snapshot) {
 if (snapshot.data == 'Login') {
 return _buttonsLogin();
 } else if (snapshot.data == 'Create Account') {
 return _buttonsCreateAccount();
 }
 }),
);
 }

10.	 Add the _buttonsLogin() method that handles returning the button’s combination with Login
first and Create Account second. Since the Login button is the default, add the RaisedButton
widget, and for the Create Account button add the FlatButton widget.

 Column _buttonsLogin() {
 return Column(
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[
 StreamBuilder(
 initialData: false,
 stream: _loginBloc.enableLoginCreateButton,

Adding the Login Page  ❘  459

 builder: (BuildContext context, AsyncSnapshot snapshot) =>
 RaisedButton(
 elevation: 16.0,
 child: Text('Login'),
 color: Colors.lightGreen.shade200,
 disabledColor: Colors.grey.shade100,
 onPressed: snapshot.data
 ? () => _loginBloc.loginOrCreateChanged.add('Login')
 : null,
),
),
 FlatButton(
 child: Text('Create Account'),
 onPressed: () {
 _loginBloc.loginOrCreateButtonChanged.add('Create Account');
 },
),
],
);
 }

11.	 Add the _buttonsCreateAccount() method that handles returning the button’s combination with
Create Account first and Login second. Since the Create Account button is the default, add the
RaisedButton widget, and for the Login button add the FlatButton widget.

 Column _buttonsCreateAccount() {
 return Column(
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[
 StreamBuilder(
 initialData: false,
 stream: _loginBloc.enableLoginCreateButton,
 builder: (BuildContext context, AsyncSnapshot snapshot) =>
 RaisedButton(
 elevation: 16.0,
 child: Text('Create Account'),
 color: Colors.lightGreen.shade200,
 disabledColor: Colors.grey.shade100,
 onPressed: snapshot.data
 ? () =>
 _loginBloc.loginOrCreateChanged.add('Create Account')
 : null,
),
),

460  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 FlatButton(
 child: Text('Login'),
 onPressed: () {
 _loginBloc.loginOrCreateButtonChanged.add('Login');
 },
),
],
);
 }

HOW IT WORKS

The login.dart file contains the Login class that extends a StatefulWidget to handle logging in a
user or creating a new user account. You instantiate the LoginBloc class by injecting the Authenti-
cationService() class by overriding the initState() method. Note that the reason you initialized
the _loginBloc variable from the initState() and not the didChangeDependencies() is because
the LoginBloc does not need a provider (InheritedWidget). You closed the LoginBloc Stream-
Controllers listeners by overriding the dispose() method and calling the _loginBloc.dispose()
method. It’s good practice to close the StreamController listeners when they aren’t needed.

The StreamBuilder widget is used to monitor the email and password values. You used the TextField
widget’s onChanged property to call the _loginBloc.emailChanged.add sink and the _loginBloc.
passwordChanged.add sink to send the values to the LoginBloc Validators class to validate that the
minimum formatting requirements are met. You learned in Chapter 15’s “Adding the Validators Class”
section how the StreamTransformer transforms a Stream that is used to validate and process values
inside a Stream.

The StreamBuilder widget is used to listen to the _loginBloc.loginOrCreateButton stream to tog-
gle showing Login or Create Account as the default button.

MODIFYING THE MAIN PAGE

The main page is the control center responsible for monitoring app-wide state management. You’ll
learn how to implement the AuthenticationBlocProvider class as the main provider to the
AuthenticationBloc class. You’ll learn how to implement the HomeBlocProvider class as the
provider to the HomeBloc class with the child property as the Home class and also to hold the state

Modifying the Main Page  ❘  461

for the user uid. You’ll learn how to apply the StreamBuilder widget to monitor the user’s authenti-
cation status. When the user logs in, the widget directs the user to the home page, and when the user
logs out, it directs the user to the Login page. See Figure 16.2 for the main page BLoC flow.

TRY IT OUT	 Modifying the Main Page

In this section, you’ll continue to edit the journal project. You’ll be modifying the main.dart file to
handle app-wide state management by using the StreamBuilder and BLoCs.

1.	 Open the main.dart file and add the following packages and classes:

 import 'package:flutter/material.dart';
 import 'package:journal/blocs/authentication_bloc.dart';
 import 'package:journal/blocs/authentication_bloc_provider.dart';
 import 'package:journal/blocs/home_bloc.dart';
 import 'package:journal/blocs/home_bloc_provider.dart';
 import 'package:journal/services/authentication.dart';
 import 'package:journal/services/db_firestore.dart';
 import 'package:journal/pages/home.dart';
 import 'package:journal/pages/login.dart';

ConnectionState.waiting snapshot.hasData

AuthenticationBlocProvider()

CircularProgressIndicator()

Login() Home()

HomeBlocProvider()

FIGURE 16.2:  Main page BLoC flow

462  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

2.	 Inside the Widget build() method, add the final _authenticationService variable initialized
by the AuthenticationService().

 @override
 Widget build(BuildContext context) {
 final AuthenticationService _authenticationService = AuthenticationService();

3.	 Add the final _authenticationBloc variable initialized by the AuthenticationBloc() and
inject the _authenticationService dependency. The AuthenticationBloc class remains
platform-agnostic by using dependency injection of the AuthenticationService() class.

 final AuthenticationBloc _authenticationBloc = AuthenticationBloc
(_authenticationService);

4.	 Refactor the MaterialApp() widget to a method by placing the mouse over the word
MaterialApp and right-clicking. Then select Refactor ➪ Extract ➪ Method ➪ Method.

Modifying the Main Page  ❘  463

5.	 In the Extract Method dialog, enter _buildMaterialApp for the method name and click the
Refactor button.

6.	 Add to the _buildMaterialApp() constructor the Widget homePage parameter. When this
method is called, the page widget is passed to the homePage parameter, for example, the Login()
or Home() class page. Change the home property to the homePage widget.

 MaterialApp _buildMaterialApp(Widget homePage) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'Security Inherited',
 theme: ThemeData(
 primarySwatch: Colors.lightGreen,
 canvasColor: Colors.lightGreen.shade50,
 bottomAppBarColor: Colors.lightGreen,
),
 home: homePage,
);
 }

7.	 Go back to the Widget build method and replace the return _buildMaterialApp() call with the
AuthenticationBlocProvider() class.

8.	 For the authenticationBloc property, pass the _authenticationBloc variable, and for the
child property, pass the StreamBuilder() widget.

 return AuthenticationBlocProvider(
 authenticationBloc: _authenticationBloc,
 child: StreamBuilder(),
);

464  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

9.	 Set the StreamBuilder() widget’s initialData property to a null value, meaning no user is
logged in. Set the stream property to the _authenticationBloc.user stream.

10.	 While the snapshot connection status is waiting, it’s good practice to show a progress indicator.
Otherwise, the user thinks the app stopped working. Inside the builder property, add an if
statement checking that snapshot.connectionState == ConnectionState.waiting and return
a Container widget with the color property set to Colors.lightGreen and the child property
to the CircularProgressIndicator() widget.

11.	 When the user logs in with the correct credentials, you need to navigate to the Home() class page.
Add an else if statement checking whether the snapshot.hasData equals true and add the
return HomeBlocProvider() class.

12.	 Set the HomeBlocProvider() class’s homeBloc property to the HomeBloc(DbFirestoreService(),
_authenticationService) class; note that you are injecting the Flutter platform service classes.

13.	 For the child property, call the _buildMaterialApp(Home()) method to navigate to the Home()
class page.

14.	 Add the last else statement and add the return _buildMaterialApp(Login()) method to
navigate to the Login() class page.

 StreamBuilder(
 initialData: null,
 stream: _authenticationBloc.user,
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 if (snapshot.connectionState == ConnectionState.waiting) {
 return Container(
 color: Colors.lightGreen,
 child: CircularProgressIndicator(),
);
 } else if (snapshot.hasData) {
 return HomeBlocProvider(
 homeBloc: HomeBloc(DbFirestoreService(), _authenticationService),
 uid: snapshot.data,
 child: _buildMaterialApp(Home()),
);
 } else {
 return _buildMaterialApp(Login());
 }
 },
),

HOW IT WORKS

You edited the main.dart file that contains the MyApp class that extends a StatelessWidget to
handle app-wide authentication state management. The root of the MyApp class is the Authentication-
BlocProvider class with the child property set to the StreamBuilder widget. This StreamBuilder
widget monitors the _authenticationBloc.user stream, and the builder rebuilds every time the
user’s authentication status changes and navigates the user to the appropriate login or home page.

Modifying the Home Page  ❘  465

MODIFYING THE HOME PAGE

The home page is responsible for showing a list of journal entries filtered by the logged-in user uid and
the ability to add, modify, and delete individual entries. In this section, you’ll learn how to implement
the AuthenticationBlocProvider as the provider for the AuthenticationBloc class. You’ll learn
how to implement the HomeBlocProvider class as the provider for the HomeBloc class. You’ll learn
how to apply the StreamBuilder widget to build the journal entries list by calling the ListView
.separated constructor. The Dismissible widget is used to swipe on an item to delete the entry. You’ll
learn how to use the Dismissible widget confirmDismiss property to prompt the user with a delete
confirmation dialog. You’ll learn how to call the MoodIcons class to color and rotate icons according to
the selected mood. You’ll learn how to call the FormatDates class to format dates.

Note that I purposely didn’t inject the MoodIcons and FormatDates classes into the HomeBloc and
EditJournalBLoc classes to show that you can decide not to include certain utility classes in the
BLoC. If you were to include them in these BLoCs, you would duplicate the MoodIcons and Format-
Dates methods into two different BLoCs. In Chapter 15’s “Implementing the BLoC Pattern” sec-
tion, you learned in the UI design guidelines to create a BLoC for each complex enough component.
Another option is to create a MoodAndDatesBloc class to handle the MoodIcons and FormatDates
classes (as abstract classes) and use the MoodAndDatesBloc class in both the home and edit entry
pages. See Figure 16.3 for an idea of how the final home page will look.

FIGURE 16.3:  Final home page

466  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

TRY IT OUT	 Modifying the Home Page

In this section, you’ll continue to edit the journal project. You’ll be modifying the home.dart file to
handle listing the journal entries, as well as adding, modifying, and deleting them. You’ll use the
MoodIcons class to retrieve the correct mood title, color, rotation, and icon. You’ll use the
FormatDates class to format dates.

1.	 Open the home.dart file and add the following packages and classes:

 import 'package:flutter/material.dart';
 import 'package:journal/blocs/authentication_bloc.dart';
 import 'package:journal/blocs/authentication_bloc_provider.dart';
 import 'package:journal/blocs/home_bloc.dart';
 import 'package:journal/blocs/home_bloc_provider.dart';
 import 'package:journal/blocs/journal_edit_bloc.dart';
 import 'package:journal/blocs/journal_edit_bloc_provider.dart';
 import 'package:journal/classes/format_dates.dart';
 import 'package:journal/classes/mood_icons.dart';
 import 'package:journal/models/journal.dart';
 import 'package:journal/pages/edit_entry.dart';
 import 'package:journal/services/db_firestore.dart';

2.	 Modify the _HomeState class and add the private _authenticationBloc, _homeBloc, _uid,
_moodIcons, and _formatDates variables. Override the initState() and initialize the _login-
Bloc variable with the LoginBloc(AuthenticationService()) class by injecting the
AuthenticationService() in the constructor.

 AuthenticationBloc _authenticationBloc;
 HomeBloc _homeBloc;
 String _uid;
 MoodIcons _moodIcons = MoodIcons();
 FormatDates _formatDates = FormatDates();

3.	 Override the didChangeDependencies() method and initialize the variables from the provider
classes. Note that the InheritedWidget classes need to be accessed from the didChangeDepend-
encies() method and not the initState() method. Note that the _uid variable state is initial-
ized from the HomeBlocProvider, and the value is passed to the Journal class for adding
journal entries.

 @override
 void didChangeDependencies() {
 super.didChangeDependencies();
 _authenticationBloc = AuthenticationBlocProvider.of(context).
authenticationBloc;
 _homeBloc = HomeBlocProvider.of(context).homeBloc;
 _uid = HomeBlocProvider.of(context).uid;
 }

4.	 Override the dispose() method and dispose the _homeBloc variable. The HomeBloc class
dispose() method is called and closes all of the StreamControllers.

 @override
 void dispose() {
 _homeBloc.dispose();

Modifying the Home Page  ❘  467

 super.dispose();
 }

5.	 Add the _addOrEditJournal() method receiving the add and journal named parameters.

6.	 Inside the method add the Navigator.push() method that navigates to the EditEntry() page as
a child property of the JournalEditBlocProvider class.

7.	 For the journalEditBloc property, inject the JournalEditBloc class with the add, journal, and
DbFirestoreService() class.

8.	 Add the fullscreenDialog property and set it to true.

Note that you input values to the BLoC through sinks, but for this case, it makes sense to avoid
adding unnecessary StreamContollers and listeners since it doesn’t require the user to input
this data. Instead, you pass the add and journal variables through the JournalEditBloc()
constructor.

 // Add or Edit Journal Entry and call the Show Entry Dialog
 void _addOrEditJournal({bool add, Journal journal}) {
 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (BuildContext context) => JournalEditBlocProvider(
 journalEditBloc: JournalEditBloc(add, journal, DbFirestoreService()),
 child: EditEntry(),
),
 fullscreenDialog: true
),
);
 }

9.	 Add the _confirmDeleteJournal() method that returns the showDialog() method. The dialog
shows a delete confirmation warning giving the user a choice to delete the entry or cancel.

 // Confirm Deleting a Journal Entry
 Future<bool> _confirmDeleteJournal() async {
 return await showDialog(
 context: context,
 barrierDismissible: false,
 builder: (BuildContext context) {
 return AlertDialog(
 title: Text("Delete Journal"),
 content: Text("Are you sure you would like to Delete?"),
 actions: <Widget>[
 FlatButton(
 child: Text('CANCEL'),
 onPressed: () {
 Navigator.pop(context, false);
 },
),
 FlatButton(
 child: Text('DELETE', style: TextStyle(color: Colors.red),),
 onPressed: () {

468  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 Navigator.pop(context, true);
 },
),
],
);
 },
);
 }

10.	 Modify the AppBar actions property and replace the TODO comment with the call to the _
authenticationBloc.logoutUser.add(true) sink. The AuthenticationBloc receives the
sink value to log out the user, and the main page (containing the app-wide state management)
automatically navigates the user to the Login page.

 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.exit_to_app, color: Colors.lightGreen.shade800,),
 onPressed: () {
 _authenticationBloc.logoutUser.add(true);
 },
),
],

Modifying the Home Page  ❘  469

11.	 Edit the body property and replace the Container() widget with the StreamBuilder widget, and
set the stream property to the _homeBloc.listJournal stream.

12.	 Inside the builder property, add an if statement to check for ConnectionState.waiting and
return a Center() widget with the child property set to the CircularProgressIndicator()
widget.

13.	 Add an else if statement that checks for snapshot.hasData, and return the call to the _build
ListViewSeparated(snapshot) method passing the snapshot variable. You’ll create the
_buildListViewSeparated() method in step 17.

14.	 Add an else statement and return a Center() widget with the child property set to a
Container() widget.

15.	 Add a Text widget to the Container() child property with the message 'Add Journals.'

 body: StreamBuilder(
 stream: _homeBloc.listJournal,
 builder: ((BuildContext context, AsyncSnapshot snapshot) {
 if (snapshot.connectionState == ConnectionState.waiting) {
 return Center(
 child: CircularProgressIndicator(),
);
 } else if (snapshot.hasData) {
 return _buildListViewSeparated(snapshot);
 } else {
 return Center(
 child: Container(
 child: Text('Add Journals.'),
),
);
 }
 }),
),

16.	 Modify the FloatingActionButton onPressed property and replace the TODO comment with the
call to the _addOrEditJournal(add: true, journal: Journal(uid: _uid)) method.

 floatingActionButton: FloatingActionButton(
 //...
 onPressed: () async {
 _addOrEditJournal(add: true, journal: Journal(uid: _uid));
 },
),

17.	 After the Widget build(BuildContext context) method, add the _buildListViewSeparated(
AsyncSnapshot snapshot) method.

18.	 Return and call the ListView.separated() constructor with the itemCount property set to the
snapshot.data.length, meaning the journal’s item count.

19.	 For the itemBuilder property, add the _titleData variable and set the value by calling the
_formatDates.dateFormatShortMonthDayYear method by passing the snapshot date value.

470  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

20.	 Add the _subtitle variable and set the value by concatenating the snapshot mood and
note values.

21.	 Add the separatorBuilder property and return a Divider() widget with the color property set
to Colors.grey.

 Widget _buildListViewSeparated(AsyncSnapshot snapshot) {
 return ListView.separated(
 itemCount: snapshot.data.length,
 itemBuilder: (BuildContext context, int index) {
 String _titleDate = _formatDates.dateFormatShortMonthDayYear(snapshot
.data[index].date);
 String _subtitle = snapshot.data[index].mood + "\n" + snapshot
.data[index].note;
 return Dismissible();
 },
 separatorBuilder: (BuildContext context, int index) {
 return Divider(
 color: Colors.grey,
);
 },
);
 }

22.	 Add to the Dismissible() widget the key property set to the snapshot documentID by using the
Key() class. The Key() class creates a unique identifier for a widget to make sure the correct
journal entry is deleted.

 return Dismissible(
 key: Key(snapshot.data[index].documentID),

23.	 Set the background property to a Container() widget with the icon set to Icons.delete. Follow
the same steps for the secondaryBackground property. When the user swipes on a row to delete
the entry, the red background is shown with the delete icons notifying the user that they are about
to delete a journal entry.

 background: Container(
 color: Colors.red,
 alignment: Alignment.centerLeft,
 padding: EdgeInsets.only(left: 16.0),
 child: Icon(
 Icons.delete,
 color: Colors.white,
),
),
 secondaryBackground: Container(
 color: Colors.red,
 alignment: Alignment.centerRight,
 padding: EdgeInsets.only(right: 16.0),
 child: Icon(
 Icons.delete,
 color: Colors.white,
),
),

Modifying the Home Page  ❘  471

24.	 Set the child property to the ListTile() widget with the leading property set to the Column()
widget. Add to the children property two Text widgets that call the _formatDates class. The
leading property shows the day and day of the week of the journal entry.

 child: ListTile(
 leading: Column(
 children: <Widget>[
 Text(_formatDates.dateFormatDayNumber(snapshot.data[index].date),
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 32.0,
 color: Colors.lightGreen),
),
 Text(_formatDates.dateFormatShortDayName(snapshot.data[index].date)),
],
),

25.	 Set the trailing property to the Transform() widget with the Matrix4 rotateZ() method.

26.	 Pass the mood icon rotation to the rotateZ() method by calling the MoodIcons class’s _moodI-
cons.getMoodRotation method. For the happiest mood, the icon is rotated toward the left, and
for the saddest mood the icon is rotated toward the right.

 trailing: Transform(
 transform: Matrix4.identity()..rotateZ(_moodIcons
.getMoodRotation(snapshot.data[index].mood)),
 alignment: Alignment.center,
 child: Icon(_moodIcons.getMoodIcon(snapshot.data[index].mood), color:
_moodIcons.getMoodColor(snapshot.data[index].mood), size: 42.0,),
),

27.	 Set the title property to the Text widget showing the _titleDate variable.

28.	 Set the subtitle property to the Text widget showing the _subtitle variable.

29.	 For the onTap property, call the _addOrEditJournal method and pass a false value for the add
property and the snapshot.data[index] value for the journal property. The onTap property
handles the user tapping a journal entry and calls the _addOrEditJournal() method to edit
the entry.

 title: Text(
 _titleDate,
 style: TextStyle(fontWeight: FontWeight.bold),
),
 subtitle: Text(_subtitle),
 onTap: () {
 _addOrEditJournal(
 add: false,
 journal: snapshot.data[index],
);
 },
),

30.	 For the confirmDismiss property, add a call to the _confirmDeleteJournal() method showing
a dialog to confirm deleting the journal entry.

472  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

31.	 Add the if statement to check that the confirmDelete variable value is true and call the
_homeBloc.deleteJournal.add(snapshot.data[index]) sink to signal the HomeBloc class to
delete the journal entry.

 confirmDismiss: (direction) async {
 bool confirmDelete = await _confirmDeleteJournal();
 if (confirmDelete) {
 _homeBloc.deleteJournal.add(snapshot.data[index]);
 }
 },
);

HOW IT WORKS

You edited the home.dart file to contain the Home class that extends a StatefulWidget to handle show-
ing a list of journal entries with the ability to add, modify, and delete individual records. You accessed the
AuthenticationBlocProvider and HomeBlocProvider classes by using the provider’s of() method
from the didChangeDependencies method to receive the state from the main page. You implemented
the AuthenticationBloc and the HomeBloc classes by using the StreamBuilder widget to monitor
authentication and entry changes. You implemented the StreamBuilder widget to monitor the
_homeBloc.listJournal stream, and the builder rebuilds every time a journal entry changes.

The _addOrEditJournal() method handles adding or modifying a journal entry. The constructor takes
the add and journal named parameters to aid if you are adding or modifying an entry. To show the edit
entry page, you call the Navigator.push() method by passing the JournalEditBlocProvider and
inject the received parameters to the JournalEditBloc class.

The _buildListViewSeparated(snapshot) method uses the ListView.separated() constructor to
build the list of journal entries. The itemBuilder returns a Dismissible() widget that handles deleting
journal entries by swiping left or right on the entry. The Dismissible() child property uses the List-
Tile() to format each journal entry in the ListView. The separatorBuilder returns the Divider()
widget to show a gray divider line between journal entries.

ADDING THE EDIT JOURNAL PAGE

The edit journal page is responsible for adding and editing a journal entry. In this section, you’ll learn
how to create the journal edit page that implements the JournalEditBlocProvider as the provider
for the JournalEditBloc class. You’ll learn to use the StreamBuilder widget with the date, mood,
note, and Cancel and Save buttons. You’ll implement the showTimePicker() function to present
the user with a calendar to choose a date. You’ll learn how to use the DropdownButton() widget to
present the user with a list of selectable moods with the icon, color, description, and mood icon rota-
tion. You’ll use the Matrix4 rotateZ() method to implement the mood icon rotation. You’ll use the
TextEditingController() constructor with the note TextField() widget. You’ll learn how to call
the MoodIcons class to color and rotate icons in the DropdownButton DropdownMenuItem selection
list. You’ll learn how to call the FormatDates class to format the selected date. See Figure 16.4 for
the look of the final edit journal page.

Adding the Edit Journal Page  ❘  473

TRY IT OUT	 Creating the Edit Journal Page

In this section, you’ll continue to edit the journal project. You’ll be adding the JournalEditBloc class
to create or modify and save an existing entry.

1.	 Create a new Dart file in the pages folder. Right-click the pages folder, select New ➪ Dart File,
enter edit_entry.dart, and click the OK button to save.

2.	 Import the material.dart, journal_edit_bloc.dart, journal_edit_bloc_provider.dart,
format_dates.dart, and mood_icons.dart classes. Add a new line and create the EditEntry
class that extends a StatefulWidget.

 import 'package:flutter/material.dart';
 import 'package:journal/blocs/journal_edit_bloc.dart';
 import 'package:journal/blocs/journal_edit_bloc_provider.dart';
 import 'package:journal/classes/format_dates.dart';
 import 'package:journal/classes/mood_icons.dart';

FIGURE 16.4:  Final edit journal page

474  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 class EditEntry extends StatefulWidget {
 @override
 _EditEntryState createState() => _EditEntryState();
 }

 class _EditEntryState extends State<EditEntry> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
 }

3.	 Modify the _EditEntryState class and add the JournalEditBloc _journalEditBloc,
FormatDates _formatDates, MoodIcons _moodIcons, and TextEditingController
_noteController private variables.

The note field uses the TextField widget, which requires the _noteController to access and
modify the values.

 class _EditEntryState extends State<EditEntry> {
 JournalEditBloc _journalEditBloc;
 FormatDates _formatDates;
 MoodIcons _moodIcons;
 TextEditingController _noteController;

 @override
 Widget build(BuildContext context) {
 return Container();
 }
 }

4.	 Override the initState(), and let’s initialize the variables _formatDates, _moodIcons, and
_noteController. Make sure you add the super.initState().

 @override
 void initState() {
 super.initState();
 _formatDates = FormatDates();
 _moodIcons = MoodIcons();
 _noteController = TextEditingController();
 _noteController.text = '';
 }

5.	 Override the didChangeDependencies() method and initialize the _journalEditBloc variable
from the JournalEditBlocProvider class. Note that the InheritedWidget classes need to be
accessed from the didChangeDependencies() method and not the initState() method.

 @override
 void didChangeDependencies() {
 super.didChangeDependencies();
 _journalEditBloc = JournalEditBlocProvider.of(context).journalEditBloc;
 }

Adding the Edit Journal Page  ❘  475

6.	 Override the dispose() method and dispose of the _noteController and _journalEditBloc
variables. The JournalEditBloc class’s dispose() method is called and closes all of the
StreamControllers.

 @override
 dispose() {
 _noteController.dispose();
 _journalEditBloc.dispose();
 super.dispose();
 }

7.	 Add the _selectDate(DateTime selectedDate) async method that returns a
Future<DateTime>. This method is responsible for calling the Flutter built-in showDatePicker()
that presents the user with a pop-up dialog displaying a Material Design calendar to choose dates.

8.	 Add the DateTime _initialDate variable and initialize it with the selectedDate variable passed
in the constructor.

9.	 Add a final DateTime _pickedDate (date user picks from the calendar) variable and initialize it by
calling the await showDatePicker() constructor. Pass the context, initialDate, firstDate,
and lastDate properties. Note that for the firstDate, you use today’s date and subtract 365
days, and for the lastDate, you add 365 days, which tells the calendar selectable date ranges.

10.	 Add an if statement that checks that the _pickedDate variable (the date user picked from the
calendar) does not equal null, meaning the user tapped the calendar Cancel button. If the user did
pick a date, then modify the selectedDate variable by using the DateTime() constructor and pass
the _pickedDate year, month, and day.

11.	 For the time, pass the _initialDate hour, minute, second, millisecond, and microsecond.
Note that since you are changing only the date and not the time, you use the original’s created
date time.

12.	 Add a return statement to send back the selectedDate.

 // Date Picker
 Future<String> _selectDate(String selectedDate) async {
 DateTime _initialDate = DateTime.parse(selectedDate);

 final DateTime _pickedDate = await showDatePicker(
 context: context,
 initialDate: _initialDate,
 firstDate: DateTime.now().subtract(Duration(days: 365)),
 lastDate: DateTime.now().add(Duration(days: 365)),
);
 if (_pickedDate != null) {
 selectedDate = DateTime(
 _pickedDate.year,
 _pickedDate.month,
 _pickedDate.day,
 _initialDate.hour,
 _initialDate.minute,

476  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 _initialDate.second,
 _initialDate.millisecond,
 _initialDate.microsecond).toString();
 }
 return selectedDate;
 }

13.	 Add the _addOrUpdateJournal() method that calls the _journalEditBloc.saveJournal-
Changed.add('Save') sink to save journal entry. The JournalEditBloc receives this request
and calls the Cloud Firestore database API.

 void _addOrUpdateJournal() {
 _journalEditBloc.saveJournalChanged.add('Save');
 Navigator.pop(context);
 }

14.	 In the Widget build() method, replace the Container() with the UI widgets Scaffold and
AppBar, and for the body property add a SafeArea() and SingleChildScrollView() with the
child property as a Column().

15.	 Set the Column crossAxisAlignment property to start.

16.	 Modify the AppBar title property’s Text widget to Entry, and set the TextStyle color
property to Colors.lightGreen.shade800.

17.	 Set the automaticallyImplyLeading property to a false value to remove the default navigation
icon to navigate back to the previous page. You want the user to only dismiss this page by tapping
the Cancel or Save button.

18.	 To customize the AppBar background color with a gradient, remove the AppBar widget shadow by
setting the elevation property to 0.0.

19.	 To increase the AppBar’s height, set the bottom property to a PreferredSize widget with the
child property as a Container widget and the preferredSize property to Size.from-
Height(32.0).

Adding the Edit Journal Page  ❘  477

20.	 Set the flexibleSpace property to a Container widget with the decoration property to a
BoxDecoration widget.

21.	 Set the BoxDecoration gradient property to a LinearGradient with the colors property set to
a list of [Colors.lightGreen, Colors.lightGreen.shade50].

22.	 Set the begin property to Alignment.topCenter and the end property to Alignment.bottom-
Center. The LinearGradient effect draws the AppBar color from a lightGreen and gradually
fades to a lightGreen.shade50 color.

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Entry', style: TextStyle(color: Colors.lightGreen
.shade800),),
 automaticallyImplyLeading: false,
 elevation: 0.0,
 flexibleSpace: Container(
 decoration: BoxDecoration(
 gradient: LinearGradient(
 colors: [Colors.lightGreen, Colors.lightGreen.shade50],
 begin: Alignment.topCenter,
 end: Alignment.bottomCenter,
),
),
),
),
 body: SafeArea(
 minimum: EdgeInsets.all(16.0),
 child: SingleChildScrollView(
 child: Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[

],
),
),
),
);
 }

478  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

HOW IT WORKS

You created the edit_entry.dart file that contains the EditEntry class that extends a Stateful-
Widget to add or edit a journal entry. You implemented the JournalEditBlocProvider to receive
state from the home page by using the provider’s of() method from the didChangeDependencies
method. The JournalEditBloc class is responsible for adding, editing, and saving journal entries. You
used dependency injection by passing add, journal, and the DbFirestoreService() service to the
JournalEditBloc class. You implemented the showDatePicker() to select dates with a calendar and
implemented the DropdownButton() widget to select a list of moods and used the Matrix4 rotateZ()
method to rotate mood icons. You used the MoodIcons utility class with the DropdownButton Drop-
downMenuItem selection list. The FormatDates utility class formats the selected date. To give the AppBar
a color gradient effect, you used the BoxDecoration widget to customize the gradient property with
the LinearGradient class.

The following exercise continues to edit the entry page to add individual StreamBuilder widgets to
handle each entry field and actions.

TRY IT OUT	 Adding the StreamBuilders to the Edit Journal Page

In this section, you’ll continue to edit the edit_entry.dart file. You’ll be adding the StreamBuilder
widgets to handle the date, mood, note, and Cancel and Save buttons.

1.	 Continue editing the Column created in step 13 from the previous exercise. Add to the Column
children the StreamBuilder() widget with the stream property set to _journalEditBloc.
dateEdit stream. This StreamBuilder() widget is responsible for handling the date field.

2.	 Add to the builder property the if statement to check whether the snapshot does not have data
by using the !snapshot.hasData expression. Inside the if statement, return a Container(),
meaning an empty space since the data has not arrived yet.

 if (!snapshot.hasData) {
 return Container();
 }

3.	 Add a new line and return the FlatButton widget that is used to show the formatted selected date,
and when the user taps the button, it presents the calendar.

4.	 Set the FlatButton padding property to EdgeInsets.all(0.0) to remove padding for better
aesthetics and add to the child property a Row() widget.

Adding the Edit Journal Page  ❘  479

5.	 Add to the Row children property the Icons.calendar_day Icon with a size of 22.0 and color
property to Colors.black54.

6.	 Add a SizedBox with the width property set to 16.0 to add a spacer.

7.	 Add a Text widget and format the _selectedDate with the DateFormat.yMMMEd() constructor.
Add the Icons.arrow_drop_down Icon with the color property set to Colors.black54.

8.	 Add the onPressed() callback and mark it async since calling the calendar is a Future event.

9.	 Add to the onPressed() the FocusScope.of().requestFocus() method call to dismiss the
keyboard if any of the TextField widgets have focus. This step is optional, but I wanted to show
you how it’s accomplished.

 FocusScope.of(context).requestFocus(FocusNode());

10.	 Add a DateTime _pickerDate variable initialized by calling the await _selectDate(_select-
edDate) Future method, which is why you add the await keyword. You added this method in
step 7 in the “Creating the Edit Journal Page” exercise.

11.	 Add the call to the _journalEditBloc.dateEditChanged.add(_pickerDate) sink that passes
to the JournalEditBloc the selected _pickerDate variable.

 String _pickerDate = await _selectDate(snapshot.data);
 _journalEditBloc.dateEditChanged.add(_pickerDate);

The following is the full FlatButton widget code:

 StreamBuilder(
 stream: _journalEditBloc.dateEdit,
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 if (!snapshot.hasData) {
 return Container();
 }
 return FlatButton(
 padding: EdgeInsets.all(0.0),
 child: Row(
 children: <Widget>[
 Icon(
 Icons.calendar_today,
 size: 22.0,
 color: Colors.black54,
),
 SizedBox(width: 16.0,),
 Text(_formatDates.dateFormatShortMonthDayYear(snapshot.data),
 style: TextStyle(
 color: Colors.black54,
 fontWeight: FontWeight.bold),
),
 Icon(
 Icons.arrow_drop_down,
 color: Colors.black54,
),
],
),

480  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 onPressed: () async {
 FocusScope.of(context).requestFocus(FocusNode());
 String _pickerDate = await _selectDate(snapshot.data);
 _journalEditBloc.dateEditChanged.add(_pickerDate);
 },
);
 },
),

12.	 Add a new line and add the StreamBuilder() widget with the stream property set to _journal-
EditBloc.moodEdit stream. This StreamBuilder() widget is responsible for handling the
mood field.

 StreamBuilder(
 stream: _journalEditBloc.moodEdit,

13.	 Add to the builder property the if statement to check whether the snapshot does not have data
by using the !snapshot.hasData expression. Inside the if statement return a Container().

 builder: (BuildContext context, AsyncSnapshot snapshot) {
 if (!snapshot.hasData) {
 return Container();
 }

14.	 Add a new line and return the DropdownButtonHideUnderline widget with the child property
set to the DropdownButton<MoodIcons> widget declaring the type as the MoodIcons class.

 return DropdownButtonHideUnderline(
 child: DropdownButton<MoodIcons>(

15.	 Add the value property and call the _moodIcons.getMoodIconsList() method by using the
indexWhere method to search by the icon.title value. The value returned is the mood icon’s
index position in the list.

 value: _moodIcons.getMoodIconsList()[
 _moodIcons
 .getMoodIconsList()
 .indexWhere((icon) => icon.title == snapshot.data)
],

16.	 Add the onChanged property and call the _journalEditBloc.moodEditChanged.add(selected.
title) sink by passing the selected.title value. This event occurs when the user selects a
mood from the DropdownButton widget.

Adding the Edit Journal Page  ❘  481

 onChanged: (selected) {
 _journalEditBloc.moodEditChanged.add(selected.title);
 },

17.	 This section creates the pop-up list to choose a mood. Add the items property by calling the
_moodIcons.getMoodIconsList(), and by using the dot operator, call the map() method that
receives the selected mood icon.

18.	 Add a new line, return the DropdownMenuItem<MoodIcons> widget, and set the value property to
the selected variable.

19.	 For the child property, add a Row with the children property set to the Transform() widget,
SizedBox, and the Text widget.

20.	 Follow the steps from the home page’s step 22 to set up the Matrix4 rotateZ() method.

21.	 At the end of this method, make sure you add the call to the toList() by using the dot operator.

 items: _moodIcons.getMoodIconsList().map((MoodIcons selected) {
 return DropdownMenuItem<MoodIcons>(
 value: selected,
 child: Row(
 children: <Widget>[
 Transform(
 transform: Matrix4.identity()..rotateZ(
 _moodIcons.getMoodRotation(selected.title)),
 alignment: Alignment.center,
 child: Icon(
 _moodIcons.getMoodIcon(selected.title),
 color: _moodIcons.getMoodColor(selected.title)),
),
 SizedBox(width: 16.0,),
 Text(selected.title)
],
),
);
 }).toList(),
),
);
 }
),

The following is the full DropdownButton widget code:

 StreamBuilder(
 stream: _journalEditBloc.moodEdit,
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 if (!snapshot.hasData) {
 return Container();
 }
 return DropdownButtonHideUnderline(
 child: DropdownButton<MoodIcons>(
 value: _moodIcons.getMoodIconsList()[
 _moodIcons
 .getMoodIconsList()

482  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 .indexWhere((icon) => icon.title == snapshot.data)
],
 onChanged: (selected) {
 _journalEditBloc.moodEditChanged.add(selected.title);
 },
 items: _moodIcons.getMoodIconsList().map((MoodIcons selected) {
 return DropdownMenuItem<MoodIcons>(
 value: selected,
 child: Row(
 children: <Widget>[
 Transform(
 transform: Matrix4.identity()..rotateZ(
 _moodIcons.getMoodRotation(selected.title)),
 alignment: Alignment.center,
 child: Icon(
 _moodIcons.getMoodIcon(selected.title),
 color: _moodIcons.getMoodColor(selected.title)),
),
 SizedBox(width: 16.0,),
 Text(selected.title)
],
),
);
 }).toList(),
),
);
 }
),

22.	 Add a new line and add the StreamBuilder() widget with the stream property set to
_journalEditBloc.noteEdit stream. This StreamBuilder() widget is responsible for
handling the note field.

23.	 Add to the builder property the if statement to check whether the snapshot does not have data
by using the !snapshot.hasData expression.

24.	 Inside the if statement, return a Container().

 if (!snapshot.hasData) {
 return Container();
 }

25.	 When you use a TextField and the StreamBuilder as the user types their note, the cursor keeps
bouncing to the beginning of the TextField. To fix this, add the _noteController.value to be
equal to the _noteController.value.copyWith(text: snapshot.data) method. The bouncing
cursor happens because every time a character is typed the sink updates the stream and the
StreamBuilder retrieves the new value and repopulates the TextField.

26.	 Add a new line, return the TextField widget, and set the controller property to the _note-
Controller.

27.	 Add the maxLines property and set it to the null value, making the TextField auto-expand to
multiple lines as needed, making it a great UX feature.

Adding the Edit Journal Page  ❘  483

28.	 Add the onChanged property and call the _journalEditBloc.noteEditChanged.add(note)
sink by passing the note value. This event occurs when the user types in the TextField widget.

 StreamBuilder(
 stream: _journalEditBloc.noteEdit,
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 if (!snapshot.hasData) {
 return Container();
 }
 // Use the copyWith to make sure when you edit TextField the cursor does
not bounce to the first character
 _noteController.value = _noteController.value.copyWith(text:
snapshot.data);
 return TextField(
 controller: _noteController,
 textInputAction: TextInputAction.newline,
 textCapitalization: TextCapitalization.sentences,
 decoration: InputDecoration(
 labelText: 'Note',
 icon: Icon(Icons.subject),
),
 maxLines: null,
 onChanged: (note) => _journalEditBloc.noteEditChanged.add(note),
);
 },
),

29.	 Add a new line, add a Row() widget, and set the mainAxisAlignment property to
MainAxisAlignment.end. This Row() is responsible for right-aligning the Cancel and Save buttons
on the form.

30.	 Add to the children property the FlatButton widget and set the child to the Text widget with
the 'Cancel' value. For the onPressed property, call the Navigator.pop(context) method to
close the page without saving.

31.	 Add a SizedBox(width: 8.0) to separate the next FlatButton widget.

32.	 Add a second FlatButton widget and set the child to the Text widget with the 'Save' value.

33.	 For the onPressed property, call the _addOrUpdateJournal() method to save the journal entry.

 Row(
 mainAxisAlignment: MainAxisAlignment.end,
 children: <Widget>[
 FlatButton(
 child: Text('Cancel'),
 color: Colors.grey.shade100,
 onPressed: () {
 Navigator.pop(context);
 },
),
 SizedBox(width: 8.0),
 FlatButton(
 child: Text('Save'),
 color: Colors.lightGreen.shade100,

484  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

 onPressed: () {
 _addOrUpdateJournal();
 },
),
],
),

HOW IT WORKS

You created the edit_entry.dart file that contains the EditEntry class that extends a Stateful-
Widget to handle adding and editing journal entries. The JournalEditBlocProvider is used to receive
state from the home page. You implemented the JournalEditBloc class without using a provider to add
or edit and save journal entries. The StreamBuilder widget monitors the _journalEditBloc.dateEdit
stream, _journalEditBloc.moodEdit stream, _journalEditBloc.noteEdit stream, and each
builder rebuild every time a value changes.

The showTimePicker() function presents the user with a calendar, and the DropdownButton() widget
presents the user with a list of selectable moods. The Matrix4 rotateZ() method is used to implement
the mood icon rotation. The TextEditingController() constructor handles the note TextField()
widget. The MoodIcons class is responsible for coloring and rotating icons in the DropdownButton
DropdownMenuItem selection list. The FormatDates class formats the selected date. You created a custom
color gradient effect for the AppBar widget by using the LinearGradient class.

SUMMARY

In this chapter, you completed the journal app that you started in Chapter 14. You applied the BLoC
pattern to separate the UI widgets from the business logic. You implemented BLoC classes, BLoC
providers, service classes, utility classes, model classes, and app-wide and local-state management.
You passed app-wide state management between pages and local-state management in the widget tree
by using providers (InheritedWidget) and BLoCs. You used dependency injection to inject service
classes into the BLoC classes. You learned that the benefit of using dependency injection keeps the
BLoC classes platform-agnostic, giving the ability to share BLoC classes between different platforms
like Flutter, AngularDart, or others.

You applied app-wide state management by implementing the AuthenticationBlocProvider and
AuthenticationBloc classes to the app’s main page. You used the StreamBuilder widget to moni-
tor the _authenticationBloc.user stream for user credential changes. When the user credential
changes, the StreamBuilder builder rebuilds and appropriately navigates the user to the login or
home page.

You applied the LoginBloc class to validate the user’s credentials and email and password
requirements. You overrided the initState() method to initialize the _loginBloc variable with
the LoginBloc class by injecting the AuthenticationService() class without using a provider.
Note that the reason you initialized the _loginBloc variable from the initState() and not the
didChangeDependencies() is because the LoginBloc does not need a provider (InheritedWidget).

Summary  ❘  485

You used the StreamBuilder widget with the TextField widget to validate email and password val-
ues. The TextField widget’s onChanged property calls the _loginBloc.emailChanged.add sink
and the _loginBloc.passwordChanged.add sink to send the values to the LoginBloc Valida-
tors class. You used the StreamBuilder widget to listen to the _loginBloc.loginOrCreateButton
stream to toggle Login or Create Account as the default button.

You applied the HomeBloc class to build a list of journal entries filtered by the user uid with the
ability to add, modify, and delete entries. You accessed the AuthenticationBlocProvider and
HomeBlocProvider classes by using the provider’s of() method from the didChangeDependen-
cies method. You used the StreamBuilder widget by calling the ListView.separated constructor
to build the journal entries list. You used the Dismissible widget’s confirmDismiss property to
prompt the user with the delete confirmation dialog. You called the MoodIcons utility class to format
mood icons and the FormatDates class to format dates.

You accessed the JournalEditBlocProvider class by using the provider’s of() method from the
didChangeDependencies method. You applied the JournalEditBloc class to add, edit, and save
journal entries. You used the StreamBuilder widget to handle the date, mood, note, and Cancel and
Save buttons. You implemented the showTimePicker() function to show a calendar and to use the
DropdownButton() widget to present the user with a list of selectable moods. You used the Matrix4
rotateZ() method to rotate the mood icon according to mood. You used the MoodIcons class with
the DropdownButton DropdownMenuItem to present the mood selection list. You used the Format-
Dates class to format the selected date.

486  ❘  CHAPTER 16   Adding BLoCs to Firestore Client App Pages

▸▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

LoginBloc class You learned how to implement the LoginBloc class
without a provider to handle the authentication
credentials and to validate email and password
requirements.

AuthenticationBloc class You learned how to implement the
AuthenticationBloc class with the
AuthenticationBlocProvider class to handle app-
wide state management in the main page.

HomeBloc class You learned how to implement the HomeBloc class with
the HomeBlocProvider class to populate the ListView
with journal entries by using the separated()
constructor. You learned to use the HomeBloc class to
add, modify, or delete existing journal entries.

JournalEditBloc class You learned how to implement the JournalEditBloc
class without a provider to add or edit and save
journal entries.

InheritedWidget class The AuthenticationBlocProvider,
HomeBlocProvider, and JournalEditBlocProvider
classes extend from the InheritedWidget class,
and you learned how to access them from the
didChangeDependencies() method and not the
initState() method.

AuthenticationBlocProvider class You learned how to implement the
AuthenticationBlocProvider as the provider for the
AuthenticationBloc class for app-wide authentication
state management.

HomeBlocProvider class You learned how to implement the HomeBlocProvider
class as the provider for the HomeBloc class.

Dependency injection You learned how to use dependency injection by
injecting service classes to the BLoC classes. You learned
that by injecting services, the BLoC classes remain
platform-agnostic.

StreamBuilder widget You learned how to implement the StreamBuilder
widget to monitor a stream, and when a change occurs,
the builder rebuilds the widget with the latest data.

Summary  ❘  487

TOPIC KEY CONCEPTS

ListView.separated constructor
and Divider() widget

You learned how to implement the ListView.
separated constructor to build a list of journal entries
separated by a Divider() widget.

Dismissible widget and
confirmDismiss property

You learned how to implement the Dismissible widget
to swipe and delete a journal entry. You learned how to
implement the Dismissible widget’s confirmDismiss
property to prompt a dialog to confirm deleting a
journal entry.

DropdownButton() widget You learned how to implement the DropdownButton()
widget to present a list of moods with the title, color,
and icon rotation.

MoodIcons class You learned how to implement the MoodIcons class to
retrieve the mood’s properties like the title, color,
rotation, and icon.

showTimePicker() function You learned how to implement the showTimePicker()
function to present a calendar to choose a date.

Matrix4 rotateZ() method You learned how to implement the Matrix4
rotateZ() method to rotate an icon according to the
selected mood.

FormatDates class You learned how to implement the FormatDates class
to format dates.

489

INDEX

A

abstract class, 414–415, 424, 427, 450
accessing main() function, 64
actions property, 104
adding

animation to apps, 151–175
AppBar widgets, 105–107
authentication to client journal app, 395–403
AuthenticationBloc class, 432–434
AuthenticationBlocProvider class,

435–436
basic layout to client journal app, 403–406
BLoC pattern, 432–449
BLoCs to Firestore client app pages, 453–487
classes to client journal app, 406–408
Cloud Firestore database to journal app,

391–395
Cloud Firestore packages to client journal app,

395–403
drag and drop, 275–277
edit journal page, 472–484
Firebase to journal app, 375–410
Firestore to journal app, 375–410
HomeBloc class, 441–443
HomeBlocProvider class, 443–444
Journal model class, 422–424
JournalEditBloc class, 444–447
JournalEditBlocProvider class,

447–449
login page, 454–460
LoginBloc class, 436–440
service classes, 424–430
state management to Firestore client app,

411–451
Validators class, 430–432

addOrEditJournal() method, 338–339,
362–364, 368, 371, 467, 471, 472

addOrUpdateJournal() method, 476
ahead-of-time (AOT), 44
Android Emulator

setting up on Linux, 19
setting up on macOS, 15
setting up on Windows, 17

Android host platform channel, implementing,
318–321

Android Studio
about, 23
configuring editor for, 20
installing on Linux, 19
installing on macOS, 14–15
installing on Windows, 16–17

animatedBalloon() method, staggered
animations and, 172, 174

AnimatedBuilder widget, 176
AnimatedContainer widget

about, 176
using, 152–155

AnimatedCrossFade widget
about, 176
using, 155–159

animatedOpacity() method, 160–163
AnimatedOpacity widget

about, 176
using, 160–163

animation
adding to apps, 151–175
using AnimatedContainer widget, 152–155
using AnimatedCrossFade widget, 155–159
using AnimatedOpacity widget, 160–163
using AnimationController class, 164–170
using staggered animation, 170–175

490

AnimationController class–classes

AnimationController class
about, 176
using, 164–170

AOT (ahead-of-time), 44
AppBar widgets, 77, 78, 104, 105–107
applying

interactivity, 267–305
themes, 42

apps
adding animation to, 151–175
creating, 26–30
creating navigation for, 177–219
running, 30–32
styling using themes, 33–36

arithmetic operators, 49
arrays, declared in JSON, 328–329
askToOpen() method, 53
assert statement, 58
AssetBundle class, 130–131
assignment operators, 50
asynchronous programming, implementing, 64
authentication capabilities

adding to client journal app, 395–403
Firebase, 380–381, 410

AuthenticationBloc class, 432–434, 465–472,
486

AuthenticationBlocProvider class, 435–436,
460–464, 486

AuthenticationService class, 414–415,
424–430

B

BLoC classes, 415–416, 450, 453–487
BLoC dependency injection, 450
BLoC pattern

about, 450
adding, 432–449
implementing, 417–419

blocs folder, 421
Boolean variables

about, 47
declared in JSON, 328–329

BottomAppBar widget, 199–203, 219

BottomNavigationBar widget, 193–199, 219
BoxDecoration class, 135
break statement, 54
build() method, 6, 7, 8, 11
buildBody() method, 259–260
buildCompleteTrip() method, 299, 300
BuildContext objects, 9, 86
buildDraggable() method, 275–276
buildDragTarget() method, 276
buildJournalEntry() method, 260, 261
buildJournalFooterImages() method, 260,

263–265
buildJournalHeaderImage() method, 261
buildJournalTags() method, 260, 263
buildJournalWeather() method, 260, 262
buildListViewSeparate() method, 369, 371
buildRemoveTrip() method, 299, 301
ButtonBar widget, 126–130
Buttons widget, 104, 119–130
buttonsCreateAccount() method, 458
buttonsLogin() method, 458–460

C

Card widget, 222–223, 251
cascade notation, 51
case clause, 55
Center() widget, 469
checking orientation, 143–149, 150
child property, 108
Chip widget, 256, 266
CircleAvatar widget, 78, 266
CircularProgressIndicator, 374
class inheritance, 60
class mixins, 60–61
classes
abstract, 414–415, 424, 427, 450
adding to client journal app, 406–408
AnimationController, 164–170, 176
AssetBundle, 130–131
AuthenticationBloc, 432–434, 465–472, 486
AuthenticationBlocProvider, 435–436,

460–464, 486
AuthenticationService, 414–415, 424–430

491

classes folder–CustomScrollView widget

BLoC, 415–416, 450, 453–487
BoxDecoration, 135
database, 330–331, 373
Database, 330–331, 339–344, 373
DatabaseFileRoutines, 330–331, 339–344,

373
Duration, 155
EditJournalBloc, 465
FormatDates, 407–408, 465, 487
HomeBloc, 441–443, 486
HomeBlocProvider, 443–444, 460–464,

465–472, 486
InheritedWidget, 6, 415–416, 418, 421,

451, 486
InputDecoration, 135–136
Journal, 330–331, 339–344, 373, 422–424
JournalEdit, 330–331, 339–344, 373
JournalEditBloc, 444–447, 486
JournalEditBlocProvider, 447–449,

472–484
LoginBloc, 436–440, 454–455, 486
MaterialPageRoute, 178, 180–181
model, 416, 450
MoodIcons, 407–408, 465, 471, 478, 487
service, 417, 424–430, 450
State, 30, 37
StatefulWidget, 6–8, 22, 37
StatelessWidget, 6, 22
Stream, 61–62, 419–420, 450
StreamController, 419–420, 450
Ticker, 164
using, 57–61, 64
Validators, 430–432, 436, 440, 450

classes folder, 421
client platform channel app, implementing,

309–313
Cloud Firestore

about, 410
adding database to journal app, 391–395
adding packages to client journal app,

395–403
collections, 410
documents, 410
security rules, 410

structuring and data modeling, 377–379
viewing security rules, 381–383

cloud _ firestore package, 410
code, commenting, 44–45, 64
collections, Cloud Firestore, 410
column nesting, 115–117
Column() widget, 36, 78, 104, 114–119, 254, 256,

257, 266, 471
commenting code, 44–45, 64
composition, 257
conditional expressions, 51
configuring

Android Studio editor, 20
Firebase, 383–391

confirmDeleteJournal() method, 467,
471–472

confirmDismiss property, 487
constants, refactoring with, 86
Container widget, 78, 104, 108–112, 469, 470
continue statement, 54–55
copyWith method, 36
createElement method, 9–10
creating

apps, 26–30
Firebase projects, 383–391
folders/files, 65–68
full widget trees, 79–85, 100
journal app, 335–371
layouts, 253–266, 257–265
navigation for apps, 177–219
scrolling lists/effects, 221–251
shallow widget trees, 85–98, 100
state management, 421–449

crossFade() method, 155–156
CupertinoApp widget, 69
CupertinoNavigationBar widget, 78
CupertinoPageScaffold widget, 78
CupertinoTabScaffold widget, 78
curly brackets, 328, 340, 346, 347, 407
customizing CustomScrollView widget with

slivers, 243–250, 251
CustomScrollView widget

about, 221
customizing with slivers, 243–250, 251

Dart–element trees

492

D

Dart
about, 4, 22, 23
Boolean variables, 47
break statement, 54
case clause, 55
class inheritance, 60
class mixins, 60–61
commenting code, 44–45
continue statement, 54–55
declaring variables, 46–49
do-while loop, 53–54
else statement, 51–52
if statement, 51–52
implementing asynchronous programming,

61–62
import packages, 57
installing plugin for, 20
lists, 47–48
for loops, 52–53
maps, 48
number variables, 47
reasons for using, 43–44
referencing variables, 45–46
runes, 48–49
running main() entry point, 45
string variables, 47
switch statement, 55
ternary operator, 52
using classes, 57–61
using flow statements, 51–55
using functions, 55–57
using operators, 49–51
while loop, 53–54

dart:convert library, 374
dart:io library, 374
dart:math, 374
data

retrieving with FutureBuilder widget,
333–334

saving with local persistence, 327–374
data modeling, Cloud Firestore, 377–379
Database class, 330–331, 339–344, 373
database classes

about, 373
JSON and, 330–331

DatabaseFileRoutines class, 330–331,
339–344, 373

DateFormat, 373
dates

formatting, 331–332
sorting lists of, 332–333

DateTime.parse(), 373
deactivate() method, 8
Declarative user interface (UI), 22
declaring variables, 46–49
decorators, 135–139, 150
deleteTrip() method, 299–300, 303
dependencies

checking for in Linux, 19
checking for in Windows, 16
checking for on macOS, 14

dependency injection, 415, 450, 486
didChangeDependencies() method, 8, 474
didFinishLaunchingWithOptions method,

316
didUpdateWidget() method, 8
Dismissable widget, 296–303, 305, 360, 365,

371, 373, 465–472, 470, 487
dispose() method, 7, 350, 433, 438, 442, 456,

460, 475
Divider widget, 78, 261, 266, 470, 487
documentation comments, 44–45
documents, Cloud Firestore, 410
do-while loop, 53–54
drag and drop, adding, 275–277
Draggable widget, 271, 275–277, 305
DragTarget widget, 271, 275–277, 305
Drawer widget, 207–217, 219
DropDownButton() widget, 487
Duration class, 155

E

edit journal page, adding, 472–484
EditJournalBloc class, 465
editor, Android Studio, 20
Element objects, 9
element trees

493

elements–HomeBloc class

about, 8–9, 22
stateful widget and, 10–12
stateless widget and, 9–10

elements, 5, 22
else statement, 51–52
Emulator (Android)

setting up on Linux, 19
setting up on macOS, 15
setting up on Windows, 17

equality operators, 49
Expanded widget, 78
external packages, 38–41, 42

F

final layout, 257
Firebase

about, 376–377, 410
adding to journal app, 375–410
authentication, 410
configuring, 383–391
console panel website, 391
viewing authentication capabilities, 380–381

firebase_auth package, 410
Firestore. See also Cloud Firestore

about, 376–377
adding BLoC classes to client app pages,

453–487
adding state management to, 411–451
adding to journal app, 375–410

FlatButton widget, 121
flexibleSpace property, 104
FloatingActionButton widget, 119–120, 180
flow statements, 51–55, 64
Flutter. See Google Flutter
Flutter plugin, 23
Flutter SDK

about, 23
installing, 13–19

FlutterMethodChannel method, 323
FocusNode, 373
folders/files, creating and organizing, 65–68
footer images layout, 257
for loops, 52–53
Form widget, 139–143

FormatDates class, 407–408, 465, 487
formatting dates, 331–332
FormState validate method, 139, 143
fullscreenDialog property, 178–179
functions, 55–57, 64
Future object, 61–62, 373
FutureBuilder widget, 333–334, 360, 371, 373

G

gesture status bar, adding InkWell and
InkResponse to, 291–296

GestureDetector() widget
AnimationController class and, 168
Hero widget and, 189
interactivity and, 267–274, 305
setting up, 267–274
staggered animations and, 173
using for moving and scaling, 278–284

getApplicationDocumentsDirectory()
method, 330–331

getDeviceInfo() method, 312, 320
getFlutterView() method, 321
getIconList() method, 234
getJournal method, 446–447
global app themes, 33–35
Google Cloud Platform, 383
Google Flutter. See also specific topics

about, 3–4, 22
website, 13

GoogleService-Info.plist file, 410
google-services.json file, 410
GridView widget, 143, 230–236, 251

H

Hello World app
project setup, 25–30
stateless and stateful widgets, 37–38
using external packages, 38–41
using hot reload, 30–32
using themes to style your app, 33–36

Hero widget, 188–192, 219
home page, modifying, 465–472
HomeBloc class, 441–443, 486

494

HomeBlocProvider class–journal app

HomeBlocProvider class, 443–444, 460–464,
465–472, 486

home.dart, 75
hot reload, 30–32, 42

I

Icon widget, 132–135, 266
IconButton widget, 122–123
icons, 130–135
if statement, 51–52
Image widget, 131–132, 255, 266
images, 130–135, 150
implementing
abstract class, 414–415
Android host platform channel, 318–321
asynchronous programming, 61–62, 64
BLoC pattern, 417–419
client platform channel app, 309–313
Draggable widget, 275–277
DragTarget widget, 275–277
FlutterMethodChannel method, 323
InheritedWidget class, 415–416
invokeMethod method, 323
iOS host platform channel, 313–318
MethodChannel, 323
model class, 416
packages, 40–41
service class, 417
setMethodCallHandler method, 323
Sink property, 419–420
state management, 412–420
Stream class, 419–420
StreamBuilder widget, 419–420
StreamController class, 419–420

import packages, 57
import statement, 57
importing packages, 64
increaseWidth() method, 152, 153
InheritedWidget class, 6, 415–416, 418, 421,

451, 486
initializing packages, 40–41
initState() method

about, 7
AnimationController class and, 167
client platform channel app and, 312

interactivity and, 298
journal app and, 349–350, 456, 460, 466, 474
Navigator widget and, 185
staggered animations and, 171–172

InkResponse widget, 289–296, 305
InkWell widget, 189, 289–296, 305
InputDecoration class, 135–136
installing

Android Studio on Linux, 19
Android Studio on macOS, 14–15
Android Studio on Windows, 16–17
Dart plugin, 20
Flutter plugin, 20
Flutter SDK, 13–19
Xcode on macOS, 14

interactivity
applying, 267–305
Dismissable widget, 296–303, 305
Draggable widget, 275–277, 305
DragTarget widget, 275–277, 305
GestureDetector widget, 267–274, 278–289,

305
InkResponse widget, 289–296, 305
InkWell widget, 289–296, 305

Interval(), staggered animations and, 170–171
intl package, 374
invokeMethod method, 323
iOS host platform channel, implementing,

313–318

J

JIT (just-in-time), 44
journal app

adding BLoC pattern, 432–449
adding Cloud Firestore database to, 391–395
adding edit journal page, 472–484
adding Firebase and Firestore, 375–410
adding journal database classes, 339–344
adding journal entry page, 344–359
adding Journal model class, 422–424
adding login page, 454–460
adding service classes, 424–430
adding Validators class, 430–432
building, 335–371
building client journal app, 395–408

495

Journal class–methods

finishing home page, 359–371
laying foundations of, 337–339
modifying home page, 465–472
modifying main page, 460–464

Journal class, 330–331, 339–344, 373, 422–424
JournalEdit class, 330–331, 339–344, 373
JournalEditBloc class, 444–447, 486
JournalEditBlocProvider class, 447–449,

472–484
Journal.fromDoc() method, 423–424
JSON format

about, 328–330
database classes and, 330–331

just-in-time (JIT), 44

L

layouts
about, 253–255
adding to client journal app, 403–406
building, 253–266
creating, 257–265
final, 257
footer images, 257
tags, 256–257
weather section, 256

leading property, 104
lib folder, 25–26
Linux, installing Flutter SDK on, 17–19
listen() method, 419
lists, variables for, 47–48
List().sort, 373
ListTile widget, 223–229, 251, 367, 471
ListView widget, 207–217, 219, 223–229, 251,

373, 487
loadJournals() method, 371
logical operators, 50
login page, adding, 454–460
LoginBloc class, 436–440, 454–455, 486

M

macOS, installing Flutter SDK on, 13–15
main() entry point, running, 44–45
main page, modifying, 460–464
main() function, 9, 62, 64

main.dart, 75
maps, variables for, 48
markTripComplete() method, 299–300, 303
Material Components widgets, 26
MaterialApp widget, 69, 188, 462
MaterialPageRoute class, 178, 180–181
Matrix4 rotateZ() method, 487
MethodChannel, 309–313, 323
methods
addOrEditJournal(), 338–339, 362–364, 368,

371, 467, 471, 472
addOrUpdateJournal(), 476
animatedBalloon(), 172, 174
animatedOpacity(), 160–163
askToOpen(), 53
build(), 6, 7, 8, 11
buildBody(), 259–260
buildCompleteTrip(), 299, 300
buildDraggable(), 275–276
buildDragTarget(), 276
buildJournalEntry(), 260, 261
buildJournalFooterImages(), 260, 263–265
buildJournalHeaderImage(), 261
buildJournalTags(), 260, 263
buildJournalWeather(), 260, 262
buildListViewSeparate(), 369, 371
buildRemoveTrip(), 299, 301
buttonsCreateAccount(), 458
buttonsLogin(), 458–460
confirmDeleteJournal(), 467, 471–472
copyWith, 36
createElement, 9–10
crossFade(), 155–156
deactivate(), 8
deleteTrip(), 299–300, 303
didChangeDependencies(), 8, 474
didFinishLaunchingWithOptions, 316
didUpdateWidget(), 8
dispose(), 7, 350, 433, 438, 442, 456, 460, 475
FlutterMethodChannel, 323
FormState validate, 139, 143
getApplicationDocumentsDirectory(),

330–331
getDeviceInfo(), 312, 320
getFlutterView(), 321
getIconList(), 234

496

methods, refactoring with–OrientationBuilder widget

getJournal, 446–447
increaseWidth(), 152, 153
initState(), 7, 167, 171–172, 185, 298, 312,

349–350, 456, 460, 466, 474
invokeMethod, 323
Journal.fromDoc(), 423–424
listen(), 419
loadJournals(), 371
markTripComplete(), 299–300, 303
Matrix4 rotateZ(), 487
Navigator.pop, 178, 187
notImplemented(), 320
of(), 416
onAuthChanged(), 433
onCreate, 320
onDoubleTap(), 287, 288
onLongPress(), 289, 293–294, 295
onPressed(), 153, 345, 353
onScaleStart(), 288
onScaleUpdate(), 288
openPageAbout(), 179–181, 182
openPageGratitude(), 181–182
radioOnChanged(), 184
readAsString(), 331
refactoring with, 86–91
resetToDefaultValues(), 287–289, 294
rotateZ(), 471, 472–484, 478–484
runApp(), 9
runTransaction(), 424–425
saveJournal(), 447
setMethodCallHandler, 323
setScaleBig, 293–294, 295
setScaleSmall, 293–294, 295
setState(), 6–7, 8, 11, 37, 152, 155–156,

160–163, 195, 199, 285–287, 294, 310–312,
362–363, 412

showDialog(), 467
showTimePicker(), 345, 472–484, 487
sink.add(), 434, 441
tabChanged, 205–206
void _ signOut(), 434
Widget build(), 456–457, 462, 463, 469, 476
writeAsString(), 331

methods, refactoring with, 86–91
mkdir command, 75
model class, 416, 450

models folder, 421
modifying

home page, 465–472
main page, 460–464

MoodIcons class, 407–408, 465, 471, 478, 487
moving, using GestureDetector widget for,

278–284
multiline comments, 44

N

navigation
BottomAppBar widget, 199–203, 219
BottomNavigationBar widget, 193–199,

219
creating for apps, 177–219
Drawer widget, 207–217, 219
Hero widget, 188–192, 219
ListView widget, 207–217, 219
Navigator widget, 178–188, 219
TabBar widget, 203–207, 219
TabBarView widget, 203–207, 219

Navigator widget, 178–188, 219, 373
Navigator.pop method, 178, 187
nesting widgets, 100
notImplemented() method, 320
number variables, 47
numbers, declared in JSON, 328–329

O

objects, declared in JSON, 328–329
of() method, 416
onAuthChanged() method, 433
onCreate method, 320
onDoubleTap() method, 287, 288
onLongPress() method, 289, 293–294, 295
onPressed() method, 153, 345, 353
onScaleStart() method, 288
onScaleUpdate() method, 288
openPageAbout() method, 179–181, 182
openPageGratitude() method, 181–182
operators, 49–51, 64
organizing folders/files, 65–68
orientation, checking, 143–149, 150
OrientationBuilder widget, 143

packages–scrolling lists/effects

497

P

packages
cloud_firestore, 410
firebase_auth, 410
importing, 64
intl, 374
path_provider, 374
searching for, 39–40
using, 40–41

Padding widget, 78, 266
pages folder, 421
path_provider package, 374
persistence

about, 327–328
building journal app, 335–371
database classes and JSON, 330–331
formatting dates, 331–332
JSON format, 328–330
retrieving data with FutureBuilder widget,

333–334
saving data with local, 327–374
sorting lists of dates, 332–333

platform channels, 307–308
platform-native code

implementing Android host platform channel,
318–321

implementing client platform channel app,
309–313

implementing iOS host platform channel,
313–318

platform channels, 307–308
writing, 307–323

PopupMenuButton widget, 123–126
Positioned widget, 79
print statement, 56
print statement, 53
properties
actions, 104
child, 108
confirmDismiss, 487
flexibleSpace, 104
fullscreenDialog, 178–179
leading, 104
Sink, 419–420, 450
title, 104

R

radioOnChanged() method, 184
RaisedButton widget, 121–122
readAsString() method, 331
refactoring

with constants, 86
with methods, 86–91
with widget classes, 91–98

referencing variables, 45–46
relational operators, 49
render tree, 9, 23
RenderObject, 9, 22
replacing text with RichText child containers,

113–114
resetToDefaultValues() method, 287–289, 294
retrieving data with FutureBuilder widget,

333–334
return null statement, 55–56
RichText widget, 104, 112–114
root folder, 421
rotateZ() method, 471, 472–484, 478–484
route name, for navigation, 188
row nesting, 115–117
Row widget, 78, 104, 115–119, 255, 266
runApp() method, 9
runes, as variables, 48–49
running

apps, 30–32
main() entry point, 45

runTransaction() method, 424–425

S

SafeArea widget, 104, 107–108, 266
saveJournal() method, 447
saving data with local persistence, 327–374
Scaffold widget, 77, 78, 104
scaling, using GestureDetector widget for,

278–284
scrolling lists/effects
Card widget, 222–223, 251
creating, 221–251
customizing CustomScrollView widget with

slivers, 243–250, 251
GridView widget, 230–236, 251

498

security rules, Cloud Firestore–text fields

ListTile widget, 223–229, 251
ListView widget, 223–229, 251
Stack widget, 237–243, 251

security rules, Cloud Firestore, 381–383, 410
service classes

about, 450
adding, 424–430
implementing, 417

services folder, 421
setMethodCallHandler method, 323
setScaleBig method, 293–294, 295
setScaleSmall method, 293–294, 295
setState() method

about, 6–7, 8, 11, 37
AnimatedContainer widget and, 152, 155
AnimatedCrossFade widget and, 155–156
AnimatedOpacity and, 160–163
BottomNavigationBar widget and, 195, 199
client platform channel app and, 311–312
GestureDetector widget and, 285–287
interactivity and, 294, 300
journal app and, 362–363
state management and, 412

setup
Android Emulator on Linux, 19
Android Emulator on macOS, 15
Android Emulator on Windows, 17
GestureDetector widget, 267–274
of project for Hello World app, 25–30

showDatePicker() function, 345, 359, 373, 478
showDialog() method, 467
showTimePicker() method, 345, 472–484, 487
SingleChildScrollview widget, 78, 266
single-line comments, 44
Sink property, 419–420, 450
sink.add() method, 434, 441
SizedBox widget, 256, 257, 266
Skia, 4, 22
SliverAppBar widget, 243–250
SliverGrid widget, 243–250
SliverList widget, 243–250
slivers, customizing CustomScrollView widget

with, 243–250, 251
slivers widgets, 221
SliverSafeArea widget, 243–250
sorting lists of dates, 332–333

square brackets, 328
Stack widget, 79, 237–243, 251
staggered animation, 170–175
starter project template

creating folders/files, 65–68
organizing folders/files, 65–68
structuring widgets, 69–74

State class, 30, 37
state management

about, 450
adding to Firestore client app, 411–451
building, 421–449
implementing, 412–420

State object, 6, 11
stateful widget

about, 37–38
element trees and, 10–12

StatefulWidget class, 6–8, 22, 37
stateless widget

about, 37–38
element trees and, 9–10

StatelessWidget class, 6, 22
Stream class, 61–62, 419–420, 450
StreamBuilder widget, 419–420, 450, 460–484,

486
StreamController class, 419–420, 450
string variables, 47
strings, declared in JSON, 328–329
structuring

Cloud Firestore, 377–379
widgets, 69–74

styling apps using themes, 33–36
switch statement, 55

T

TabBar widget, 203–207, 219
TabBarView widget, 203–207, 219
tabChanged method
TabBar widget and, 205–206
TabBarView widget and, 205–206

tags layout, 256–257
ternary operator, 52
text fields

using forms for validating, 150
validating with Form widget, 139–143

499

Text widget–widgets

Text widget, 11–12, 78, 104, 112–114, 178,
255, 266

TextEditingController, 373
TextField widget, 373, 472–484
TextInputAction, 373
themes

applying, 42
styling apps using, 33–36

Ticker class, 164
title property, 104
Transform widget, 278–283, 471
type test operators, 50

U

Unicode, 48–49

V

validating text fields using Form widget, 139–143
Validators class, 430–432, 436, 440, 450
variables

Boolean, 47
declaring, 46–49
lists as, 47–48
maps as, 48
number, 47
referencing, 45–46
runes as, 48–49
string, 47
using, 64

viewing
Cloud Firestore security rules, 381–383
Firebase authentication capabilities, 380–381

void_signOut() method, 434

W

weather section layout, 256
websites

Firebase console panel, 391
Google Flutter, 13

while loop, 53–54
Widget build() method, 456–457, 462, 463,

469, 476

widget trees
about, 8–9, 22
building full, 79–85
building shallow, 85–98
creating full, 100
creating shallow, 100
refactoring with constants, 86
refactoring with methods, 86–91
refactoring with widget classes, 91–98
widgets overview, 77–79

widgets
about, 5, 22, 103
AnimatedBuilder, 176
AnimatedContainer, 152–155, 176
AnimatedCrossFade, 155–159, 176
AnimatedOpacity, 160–163, 176
AppBar, 77, 78, 104, 105–107
BottomAppBar, 199–203, 219
BottomNavigationBar, 193–199, 219
ButtonBar, 126–130
Buttons, 104, 119–130
Card, 222–223, 251
Center(), 469
checking orientation, 143–149
Chip, 256, 266
CircleAvatar, 78, 266
Column, 104, 114–119
Column(), 36, 78, 104, 114–119, 254, 256, 257,

266, 471
Container, 78, 104, 108–112, 469, 470
CupertinoApp, 69
CupertinoNavigationBar, 78
CupertinoPageScaffold, 78
CupertinoTabScaffold, 78
CustomScrollView, 221, 243–250, 251
Dismissable, 296–303, 305, 360, 365, 371,

373, 465–472, 470, 487
Divider, 78, 261, 266, 470, 487
Draggable, 271, 275–277, 305
DragTarget, 271, 275–277, 305
Drawer, 207–217, 219
DropDownButton(), 487
Expanded, 78
FlatButton, 121
FloatingActionButton, 119–120, 180

500

Windows, installing Flutter SDK on–Xcode

Form, 139–143
FutureBuilder, 333–334, 360, 371, 373
GestureDetector(), 168, 173, 189, 267–274,

278–284, 278–289, 305
GridView, 143, 230–236, 251
Hero, 188–192, 219
Icon, 132–135, 266
IconButton, 122–123
Image, 131–132, 255, 266
InkResponse, 289–296, 305
InkWell, 189, 289–296, 305
lifecycle events of, 5–8, 22
ListTile, 223–229, 251, 367, 471
ListView, 207–217, 219, 223–229, 251, 373,

487
MaterialApp, 69, 188, 462
Navigator, 178–188, 219, 373
nesting, 100
OrientationBuilder, 143
overview of, 77–79
Padding, 78, 266
PopupMenuButton, 123–126
Positioned, 79
RaisedButton, 121–122
RichText, 104, 112–114
Row, 78, 104, 115–119, 255, 266
SafeArea, 104, 107–108, 266
Scaffold, 77, 78, 104
SingleChildScrollview, 78, 266
SizedBox, 256, 257, 266
SliverAppBar, 243–250

SliverGrid, 243–250
SliverList, 243–250
slivers, 221
SliverSafeArea, 243–250
Stack, 79, 237–243, 251
stateful, 10–12, 37–38
stateless, 9–10, 37–38
StreamBuilder, 419–420, 450, 460–484, 486
structuring, 69–74
TabBar, 203–207, 219
TabBarView, 203–207, 219
Text, 11–12, 78, 104, 112–114, 178, 255, 266
TextField, 373, 472–484
Transform, 278–283, 471
using basic, 103–130, 150
using decorators, 135–139
using form to validate text fields, 139–143
using form widget to validate text fields,

139–143
using images and icons, 130–135
Wrap, 266

Windows, installing Flutter SDK on, 15–17
Wrap widget, 266
writeAsString() method, 331
writing platform-native code, 307–323

X

Xcode
about, 23
installing on macOS, 14

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Beginning Flutter®
	Title Page
	Copyright
	About The Author
	About The Technical Editor
	Acknowledgments
	Contents
	Introduction
	Part I: The Foundations of Flutter Programming
	Chapter 1: Introducing Flutter and Getting Started
	Introducing Flutter��������������������������
	Defining Widgets and Elements������������������������������������

	Understanding Widget Lifecycle Events��
	The StatelessWidget Lifecycle������������������������������������
	The StatefulWidget Lifecycle�����������������������������������

	Understanding the Widget Tree and the Element Tree���
	Stateless Widget and Element Trees���
	Stateful Widget and Element Trees��

	Installing the Flutter SDK���������������������������������
	Installing on macOS��������������������������
	System Requirements��������������������������
	Get the Flutter SDK��������������������������
	Check for Dependencies�����������������������������
	iOS Setup: Install Xcode�������������������������������
	Android Setup: Install Android Studio��
	Set Up the Android Emulator����������������������������������

	Installing on Windows����������������������������
	System Requirements��������������������������
	Get the Flutter SDK��������������������������
	Check for Dependencies�����������������������������
	Install Android Studio�����������������������������
	Set Up the Android Emulator����������������������������������

	Installing on Linux��������������������������
	System Requirements��������������������������
	Get the Flutter SDK��������������������������
	Check for Dependencies�����������������������������
	Install Android Studio�����������������������������
	Set Up the Android Emulator����������������������������������

	Configuring the Android Studio Editor��
	Summary��������������

	Chapter 2: Creating a Hello World App
	Setting Up the Project�����������������������������
	Using Hot Reload�����������������������
	Using Themes to Style Your App�������������������������������������
	Using a Global App Theme�������������������������������
	Using a Theme for Part of an App���������������������������������������

	Understanding Stateless and Stateful Widgets���
	Using External Packages������������������������������
	Searching for Packages�����������������������������
	Using Packages���������������������

	Summary��������������

	Chapter 3: Learning Dart Basics
	Why Use Dart?��������������������
	Commenting Code����������������������
	Running the main() Entry Point�������������������������������������
	Referencing Variables����������������������������
	Declaring Variables��������������������������
	Numbers��������������
	Strings��������������
	Booleans���������������
	Lists������������
	Maps�����������
	Runes������������

	Using Operators����������������������
	Using Flow Statements����������������������������
	if and else������������������
	ternary operator�����������������������
	for Loops����������������
	while and do-while�������������������������
	while and break����������������������
	continue���������������
	switch and case����������������������

	Using Functions����������������������
	Import Packages����������������������
	Using Classes��������������������
	Class Inheritance������������������������
	Class Mixins�������������������

	Implementing Asynchronous Programming��
	Summary��������������

	Chapter 4: Creating a Starter Project Template
	Creating and Organizing Folders and Files��
	Structuring Widgets��������������������������
	Summary��������������

	Chapter 5: Understanding the Widget Tree
	Introduction to Widgets������������������������������
	Building the Full Widget Tree������������������������������������
	Building a Shallow Widget Tree�������������������������������������
	Refactoring with a Constant����������������������������������
	Refactoring with a Method��������������������������������
	Refactoring with a Widget Class��������������������������������������

	Summary��������������

	Part II: Intermediate Flutter: Fleshing Out an App
	Chapter 6: Using Common Widgets
	Using Basic Widgets��������������������������
	SafeArea���������������
	Container����������������
	Text�����������
	RichText���������������
	Column�������������
	Row����������
	Column and Row Nesting�����������������������������

	Buttons��������������
	FloatingActionButton���������������������������
	FlatButton�����������������
	RaisedButton�������������������
	IconButton�����������������
	PopupMenuButton����������������������
	ButtonBar����������������

	Using Images and Icons�����������������������������
	AssetBundle������������������
	Image������������
	Icon�����������

	Using Decorators�����������������������
	Using the Form Widget to Validate Text Fields��
	Checking Orientation���������������������������
	Summary��������������

	Chapter 7: Adding Animation to an App
	Using AnimatedContainer������������������������������
	Using AnimatedCrossFade������������������������������
	Using AnimatedOpacity����������������������������
	Using AnimationController��������������������������������
	Using Staggered Animations���������������������������������

	Summary��������������

	Chapter 8: Creating an App’s Navigation
	Using the Navigator��������������������������
	Using the Named Navigator Route��������������������������������������

	Using Hero Animation���������������������������
	Using the BottomNavigationBar������������������������������������
	Using the BottomAppBar�����������������������������
	Using the TabBar and TabBarView��������������������������������������
	Using the Drawer and ListView������������������������������������
	Summary��������������

	Chapter 9: Creating Scrolling Lists and Effects
	Using the Card���������������������
	Using the ListView and ListTile��������������������������������������
	Using the GridView�������������������������
	Using the GridView.count�������������������������������
	Using the GridView.extent��������������������������������
	Using the GridView.builder���������������������������������

	Using the Stack����������������������
	Customizing the CustomScrollView with Slivers��
	Summary��������������

	Chapter 10: Building Layouts
	A High-Level View of the Layout��������������������������������������
	Weather Section Layout�����������������������������
	Tags Layout������������������
	Footer Images Layout���������������������������
	Final Layout�������������������

	Creating the Layout��������������������������
	Summary��������������

	Chapter 11: Applying Interactivity
	Setting Up GestureDetector: The Basics���
	Implementing the Draggable and Dragtarget Widgets��
	Using the GestureDetector for Moving and Scaling���
	Using the InkWell and InkResponse Gestures���
	Using the Dismissible Widget�����������������������������������
	Summary��������������

	Chapter 12: Writing Platform-Native Code
	Understanding Platform Channels��������������������������������������
	Implementing the Client Platform Channel App���
	Implementing the iOS Host Platform Channel���
	Implementing the Android Host Platform Channel���
	Summary��������������

	Part III: Creating Production-Ready Apps
	Chapter 13: Saving Data with Local Persistence
	Understanding the JSON Format������������������������������������
	Using Database Classes to Write, Read, and Serialize JSON��
	Formatting Dates�����������������������
	Sorting a List of Dates������������������������������
	Retrieving Data with the FutureBuilder���
	Building the Journal App�������������������������������
	Adding the Journal Database Classes��
	Adding the Journal Entry Page������������������������������������
	Finishing the Journal Home Page��������������������������������������

	Summary��������������

	Chapter 14: Adding the Firebase and Firestore Backend
	What Are Firebase and Cloud Firestore?���
	Structuring and Data Modeling Cloud Firestore��
	Viewing Firebase Authentication Capabilities���
	Viewing Cloud Firestore Security Rules���

	Configuring the Firebase Project���������������������������������������
	Adding a Cloud Firestore Database and Implementing Security��
	Building the Client Journal App��������������������������������������
	Adding Authentication and Cloud Firestore Packages to the Client App���
	Adding Basic Layout to the Client App��
	Adding Classes to the Client App���������������������������������������

	Summary��������������

	Chapter 15: Adding State Management to the Firestore Client App
	Implementing State Management������������������������������������
	Implementing an Abstract Class�������������������������������������
	Implementing the InheritedWidget���������������������������������������
	Implementing the Model Class�����������������������������������
	Implementing the Service Class�������������������������������������
	Implementing the BLoC Pattern������������������������������������
	Implementing StreamController, Streams, Sinks, and StreamBuilder���

	Building State Management��������������������������������
	Adding the Journal Model Class�������������������������������������
	Adding the Service Classes���������������������������������
	Adding the Validators Class����������������������������������
	Adding the BLoC Pattern������������������������������
	Adding the AuthenticationBloc������������������������������������
	Adding the AuthenticationBlocProvider��
	Adding the LoginBloc���������������������������
	Adding the HomeBloc��������������������������
	Adding the HomeBlocProvider����������������������������������
	Adding the JournalEditBloc���������������������������������
	Adding the JournalEditBlocProvider���

	Summary��������������

	Chapter 16: Adding BLoCs to Firestore Client App Pages
	Adding the Login Page����������������������������
	Modifying the Main Page������������������������������
	Modifying the Home Page������������������������������
	Adding the Edit Journal Page�����������������������������������
	Summary��������������

	Index
	EULA

