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Preface

Data science is a rapidly growingfield.While there is still a raging academic debate on
the exact position of data science in between—or encapsulating—statistics, machine
learning, and artificial intelligence, the number of data science programs offered at
schools around the world is growing rapidly (Donoho 2017). It has to, since data
scientists are among the most sought after people on the job market today and there
is a strong need for people who are trained and well educated in this discipline.
Whatever your view is on data science, it is hard to deny that an understanding of
statistics is useful, if not necessary, for any successful data scientist. This book aims
to provide an initial understanding of statistics meant for data scientists.

This book grew out of us teaching a bachelor level (undergraduate) course in
statistics to students enrolled in the data science program at the EindhovenUniversity
of Technology and the University of Tilburg, both in the Netherlands. The program
was new and we believed that this course had to be developed from scratch. Both
of us have extensive experience in teaching statistics to mathematics, social science,
and computer science students, but we felt data science needed something else.
Statistics for data scientists should focus on making sense out of data with a good
understanding of analytical tools. It should be practical and hands on, as statistics is
commonly thought of in the social sciences, but the data scientist should at least also
know the basic mathematical theory underlying the procedures she or he carries out,
although perhaps not to the level of a mathematician. The data scientist should also
be versed in the latest statistical methods, not just those used in the field 30 years ago.
Furthermore, we wanted to discuss tools that would make sense practically and not
resort to theoretically convenient tools, as many introductory statistics books discuss.
Finally, we expect the data scientist to use both analytical as well as computational
tools to solve data problems. This is what this book offers.

v
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For Whom is This Book for?

This book was designed to support a single semester course for undergraduate
students of data science. We used the material in the first year of the data science
program, placed in the curriculum just after basic calculus and a programming
course. However, we have since used this material also for teaching other students:
for computer science, artificial intelligence, and econometrics students. We have
used this material during their undergraduate programs to introduce them to modern
statistical methods and the relevant probability theory. For social science students
(psychology, sociology), we have used this material even at the master’s level; for
students with a little mathematical background and no programming experience, the
material in this book provides a challenging next step in their capacity for dealing
with data. Next to these targeted students, we feel this book is relevant for anyone
with limited knowledge of statistics, but some familiarity with basic mathematics
and programming, who wants to not just gain procedural knowledge of statistical
inference, but properly understand the basic principles and its modern applications.

What Makes This Book Different?

We are well aware that this is not the first nor the last undergraduate statistics text
and we also present material that can be found in many other books on statistics.
However, this book is different:

1. This book provides an accessible introduction to applied statistics for data scien-
tists. The book uniquely combines hands-on exercises withmathematical theory
and an introduction to probability theory.

2. This book uniquely contains modern statistical methods that are often deemed
advanced material; we cover bootstrapping, Bayesian methods, equivalence
testing, studydesignswith relevant associationmeasures, andbivariatemeasures
of association.

3. This book provides a unique introduction to sampling and uncertainty; where
most textbooks either ignore the underlying mathematical theory or introduce
solely the asymptotic theory, we introduce statistical inference in a natural way
using finite samples and real data.

4. We try to avoid emphasizing oversimplified topics that are appealing for their
mathematical ease but that are practically unrealistic (e.g., the z-test with
known variance). The focus is on statistical principles that have direct practical
relevance.

The balance between practical application, theoretical insight, and modern
methods is unique.
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Structure of the Book and Its Chapters

To get started, in Chap. 1, we immediately dive into the analysis of a real dataset.
Using R, students become acquainted with basic statistics used to describe data and
learn to visualize data. Immediately setting this book apart from many other applied
statistics texts, and directly relevant to data science students, we also discussmethods
of dealing with (extremely) large datasets. After this quick start, we take a step back
to reflect on what we have been doing; in Chap. 2, we more thoroughly study how
our data may have come about or should have been collected, and how it can be used
to make inferences about a population. In this chapter, students learn about sampling
methods, and they learn to evaluate the quality of different estimators (in terms of
bias and mean squared error) based on finite populations. Note that this chapter has
proven challenging for students, and in bachelor level courses, we have often skipped
parts of the chapters relating to specific sampling plans or estimators.

Chapters 3 and 4 take us—seemingly—a step away from data and practical appli-
cation. However, the finite population approach introduced in Chap. 2 that provides
students with a strong intuition regarding sampling and estimation can only take
us so far; to advance further, we need more theoretical tools to deal with uncer-
tainty (or randomness). Chapter 3 introduces basic probability theory starting from
the probabilities of events; students learn the probability axioms and learn how to
calculate probabilities in simple settings. We also introduce 2×2 contingency tables
and their common set of association measures. Chapter 4 takes us a step further; in
this chapter, students are introduced to discrete and continuous random variables and
their probability distributions.

We don’t, however, want to linger on the theory too long; we want to cover only
the parts we deem necessary for further application. In Chap. 5, we return to our
data and examine how we can use our newly developed theory to advance beyond
our understanding of sample characteristics as we did in Chap. 2. We discuss normal
populations, the central limit theorem, confidence intervals, andmaximum likelihood
estimation.

In Chap. 6, we elaborately discuss dependencies between multiple random vari-
ables and statistical measures for quantifying these dependencies for numerical,
categorical, and binary variables (e.g., correlation, agreement, and similarity). We
make explicit the difference between population characteristics and estimators (i.e.,
calculations from data) of these characteristics. We also discuss confidence intervals
for many of the dependency measures. We have included topics on how dependency
can be constructed mathematically and how this is connected to measures of depen-
dency. We kept these pieces separate to make this more complicated topic separate
from what is normally discussed in introductory statistics monographs.

In Chap. 7, we take on what everyone expects in an (applied) statistics book: the
topic of statistical testing. We discuss standard hypothesis testing, but in contrast
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to the many contemporary texts, we clearly relate hypothesis testing to estima-
tion and discuss alternative ways (e.g., bootstrapping) to quantify estimation preci-
sion. Furthermore, we cover equivalence testing: a testing method that likely gains
importance as datasets grow.

Finally, in Chap. 8, we introduce students to the Bayesian statistics; we detail
both the alternative philosophy and its pros and cons. Here, we do not choose a
side in the—in our view meaningless—frequentist vs. Bayesians battle; rather, we
emphasize relationships between the two camps.

Teaching Statistics to Data Scientists Using This Book

We have tried various approaches to teaching the material in this book and made
changes to the content and organization based on our experiences. For several years,
we have simply aligned the individual chapters of the book with the weeks that
made up our teaching quartile: eight weeks of teaching of four lecture hours and four
hours of practicals, one week for recaps, and a tenth week for amultiple choice exam.
Oftenwewould use the firstweek tomake sure students hadR installed, had sufficient
mathematical background, and discuss the first chapter. The subsequent weekswould
then match with the remaining seven chapters of the book. Often we would skip
parts of the chapters that are perceived to be particularly challenging depending on
the students’ progress: especially parts of Chaps. 2, 5, 6, and 7 prove challenging.
We also often prioritize the assignments for each chapter such that students know
where to start and which assignments to possibly skip. The lectures would consist
primarily (using an old-fashioned blackboard) of discussing the material per chapter,
while students were encouraged to do the assignments, and during lab sessions, the
assignments were discussed. The recap week of the course was usually devoted to
review of topics that students wanted to see addressed again and for discussions. A
discussion of a practice exam was often included in this week as well.

This relatively old style of teaching seemed to work well, but recently we have
been experimenting with alternatives. One alternative has now been to allow students
to work on the assignments in groups during lecture hours (with the possibility of
asking questions to a teaching assistant), while prior to the lecture, students were
encouraged to (a) study the material in the book and (b) watch a number of videos
introducing the material in the different chapters. We have combined this setup with
a number of discussion lectures in which prior to the lecture, students were able to
post questions and discussion topics to an online forum, which were subsequently
discussed in front of the class. This latter setup seemed to work well, but students
seem to prefer the traditional style of teaching over the video lectures.

Whatever teaching style is preferred, we believe that the full content of our book
is best taught in a semester to be able to go through all the content of the book. This
would also help students obtain a deeper understanding of all the topics included in
our book and have more time to get experienced in working with R.
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Datasets Used Throughout This Book

In this book, we often use actual empirical data to illustrate the methods and tech-
niques we are discussing. All the datasets used in this book, as well as all the relevant
R code, can be found at http://www.nth-iteration.com/statistics-
for-data-scientist.

Here, we provide a quick overview of the datasets used in this book:

• face-data.csv—The dataset face-data.csv contains a subset of the
publicly available dataset face_clean_with_demo.tab which can be
found at https://doi.org/10.7910/DVN/Q0LJVI. The original dataset
describes the data collected for an experiment that is described in detail in
the publication “Uncovering noisy social signals: Using optimization methods
from experimental physics to study social phenomena” by Kaptein, van Emden,
and Iannuzzi which itself can be found at https://doi.org/10.1371/
journal.pone.0174182. In this paper, the authors examined the effects
of changing a synthetically generated face along two different dimensions (the
distance between the eyes, and the brow-nose-chin ratio). Next, they measured
participants’ subjective experience of attractiveness of the generated face, rated
on a scale ranging from 1 (not attractive) to 100 (attractive). Each participant rated
a single face which is drawn from the 100 × 100 faces that could be rendered
based on varying the two dimensions. Examples of the faces involved are shown
in Figure 1.2. We took a subset of the original data collected in the study that
describes the responses and demographics of 3,628 participants. The resulting
dataset contains the following seven variables:

1. Id—A unique identifier for each participant.
2. Dim1—The value of the first dimension of the face (distance between the eyes).

As this value is randomlygenerated, it contains several decimal places.However,
in the actual generation of the face, only 100 unique values could be rendered.

3. Dim2—The value of the second dimension of the face (brow-nose-chin ratio).
Also for this variable, 100 unique values could be rendered. In total, the number
of distinct faces was, thus, 100 × 100 = 10, 000.

4. Rating—The attractiveness rating.
5. Gender—The gender of the participant.
6. Age—The age group of the participant.
7. Edu—The highest education completed by the participant.

We use this dataset extensively in Chap. 1 to illustrate the computation of several
sample statistics. The 3,628 participants in this study were recruited on Amazon
Mechanical Turk and participated in the study from their own homes. The set of
participants contained in the current dataset was presented with a face generated
using randomly (not uniform) selected values for dim1 and dim2; hence, each
participant was confronted with a slightly different synthetic face. After seeing the
face, participants could rate the attractiveness of the face by adjusting a slider.

http://www.nth-iteration.com/statistics-for-data-scientist
https://doi.org/10.7910/DVN/Q0LJVI
https://doi.org/10.1371/journal.pone.0174182
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• voting-demo.csv—The dataset voting-demo.csv is used in the assign-
ments in a number of the chapters, starting from Chap. 1. This dataset contains
synthetic data modeled based on German election data. The dataset contains data
of 750 individuals and it contains the following variables:

1. ID—A unique identifier for each individual in the study.
2. Vote—Whether or not the individual voted.
3. Age—The age in years of the individual.
4. Church—A variable indicating whether or not the individual identifies as

religious.
5. Choice—The political party the individual voted for or would have voted for

had they cast their vote.
6. Educ—The education level of the individual on a five-point scale. Note that

the labeling of this variable is inconsistent: an issue the student should find and
resolve.

7. Agegr—A recoding of the age of the individual into two groups (young and
old).

This dataset is used in Chaps. 1, 6, and 7.

• demographics-synthetic.csv—The dataset demographics-
synthetic.csv contains simulated data and is used in the assignments
in Chap. 1. It contains data regarding n = 500 units, describing the following
variables:

1. Gender—The gender of the participant.
2. Age—The age of the participant.
3. Weight—The weight of the participant.
4. Height—The height of the participant.
5. Voting—The political party the participant voted for (numeric).

The code to generate this data is provided in the R script generate-data.R
which is printed in full in Assignment 1.6.

• high-school.csv—This dataset describes a number of properties of over
50,000 first- and second-year high-school students in the Netherlands from more
than 2,250 classes from almost 240 schools. The dataset was collected by the
Central Bureau of Statistics (CBS) Netherlands to support the education of statis-
tics at high schools in the Netherlands. The CBS used a questionnaire to collect all
information. The dataset was used to help students get a better flavor of the field
of statistics. The main question asked to the students was “Who is the average
student?”. We will use the dataset for different purposes throughout the book. The
dataset contains different variables:

1. Number—A unique indicator of the student.
2. Gender—The gender of the student.
3. Age—The age of the student in years.
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4. Class—The class level (1 or 2) of the student.
5. Height—The height of the student in centimeters.
6. Sport—The number of hours per week the student practices sport.
7. TV—The number of hours per week the student looks TV.
8. Computer—The number of hours per week the student uses the computer.
9. Topic—The favorite topic at high school of the student (e.g., mathematics,

English, physical training, etc.).
10. Allowance—The allowance per week for the student.
11. Work—The amount of money per week earned by the student.
12. Breakfast—An indicator of whether the student ate breakfast on the day

the information was collected.

This dataset is used in Chaps. 2, 5, 6, and 7.

• potatoes.csv—This dataset contains six genetic profiles of different pota-
toes. Two readings of a Bintje potato, two genetically modified potatoes, one
experimental potato, and one Maris Piper potato. Each profile contains more than
47,000 binary signals. They represent the presence or absence of an active gene.
Comparing genetic profiles may be important for a good understanding of the
biological characteristics. The data was provided by Wageningen University &
Research.

1. X—A unique indicator of the gene.
2. Bintje1—The first reading of the genetic profile of a Bintje potato.
3. Bintje2—The second reading of the genetic profile of a Bintje potato.
4. Maris_Piper—A reading of the genetic profile of a Maris Piper potato.
5. Experimental—A reading of the genetic profile of an experimental potato.
6. GMO1—A reading of the genetic profile of a genetically modified potato.
7. GMO2—A reading of the genetic profile of a genetically modified potato.

This dataset is used in Chaps. 6 and 7.

Assignments

Each chapter contains multiple assignments; we feel that much of the material can
only be properly understood when applied. The assignments in each chapter do not
introduce new results or material; rather, they are designed to allow the student to
practice. The answer manual is available online at http://www.nth-iterat
ion.com/statistics-for-data-scientist under the title “Statistics for
Data Scientist; Answers to the assignments” and was written by Florian Böing-
Messing, Maurits Kaptein, and Edwin van den Heuvel.

Nijmegen, Eindhoven, Den Bosch,
The Netherlands
December 2020

Maurits Kaptein
Edwin van den Heuvel

http://www.nth-iteration.com/statistics-for-data-scientist
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Notation and Code Conventions

Here, we clarify and illustrate the mathematical notation and coding conventions
we use throughout the book. We try to do this as much as possible in order of
appearance in the book, but sometimes we reorder things to highlight relationships
between different concepts. We start with the mathematical notation:

• Observations: x, xi, �xi, . . .
In this book, we often consider observed data: measurements obtained from indi-
vidual units. By convention, we use lower-case Roman letters to denote observa-
tions. The reader will encounter these immediately in Chap. 1 and in most of the
following chapters. We use the following notation:

x It denotes a single scalar observation.Note thatwe also use x predominantly
as arguments to mathematical functions (f (x)) when these are discussed in
isolation.

xi We use the subscript i to index observations from units (see also below).
Hence, x1 refers to the scalar observation on variable x from unit 1.

�xi Whenwehave observations onmultiple variables fromunit i, we sometimes
use xi, yi, . . . explicitly, but we also use vector notation �xi. Here, �xi is a row
vector containing all p observations of a single unit.

x(k) In a limited number of places, we use bracketed subscripts for the kth order
statistics. In this case, x(1) denotes the minimum of the n observations, and
x(n) denotes the maximum.

Rxi We occasionally use Rxi to denote the rank score of xi. If x1 = 5, x2 = 1,
x3 = 7, x4 = 2, and x5 = 4, then Rx1 = 4,Rx2 = 1, Rx3 = 5,Rx4 = 2, and
Rx5 = 3.

• Indices, subscripts, and superscripts: xi, θk , . . .
We have tried to use consistent indexing throughout the book. The following
indices are used:

i We use i = 1, . . . , i = n to index units in a sample. n is used for the size of
the sample.

xix
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k Primarily in Chap. 2, we use k = 1, . . . , k = K to index possible samples
originating from a population. Thus, μ̂k is the estimator (by virtue of the hat)
used to estimate the population parameters μ (see below) based on sample
k. Note that k is used in Chap. 3 to index the values of a discrete random
variable.

Finally, note that we sometimes use subscripts h, i, j, or k to index different strata,
probabilities, events, or order statistics; this should be clear from the context.

• Statistics: x̄, s2, . . .
In Chap. 1, we introduce statistics; these are simply functions of data. Where
available, we use commonly used symbols for statistics that students will often
find in statistical texts. In the book,we introduce the followingdescriptive statistics
for numerical variables:

x̄ The sample mean: x̄ = ∑n
i=1xi/n.

s2 The sample variance: s2 =
∑n

i=1(xi−x̄)2

n−1 . Note that by convention, this is the
unbiased sample variance; we simply use VAR in Chap. 1 to refer to the

biased version: VAR =
∑n

i=1(xi−x̄)2

n .

S The sample standard deviation: s = √
s2. The notation VAR is also used

in other chapters to indicate the variance of an estimator (see below).
g1 The sample skewness: g1 = 1

n

∑n
i=1(xi − x̄)3/s3. It is a measure of

“asymmetry” of the data.
g2 The sample kurtosis: g2 = 1

n

∑n
i=1(xi − x̄)4/s4. It is a measure of how

“peaked” the data is.
SXY The sample covariance for variables x and y.
rP The sample correlation—Pearson’s correlation—between variables x and

y, often also denoted as rxy or rXY , is given by rP =
∑

xiyi−nx̄ȳ
(n−1)sxsy

, where sx is
the sample standard deviation of data collected on variable x.

rS Another often used measure of association, next to the correlation detailed
above, is Spearman’s correlation; this is given by simply computing
Pearson’s correlation above on rank scores Rxi and Ryi .

rP The thirdmeasure of correlation is Kendall’s tau: 1
n(n−1)

∑n
i=1

∑n
j=1sgn(xj−

xi)sgn(yj − yi), with sgn()̇ the sign function. Kendall’s tau correlation
coefficient is a measure of concordance.

We also introduce many statistics for quantifying the dependency between two
categorical variables x and y (including two nominal, ordinal, and binary variables).
For two categorical variables, the data are often summarized in a contingency table,
where the frequencies Nxy for all the combinations of levels of x and y are reported.
Based on these frequencies, many statistics can be defined. In Chap. 3, we intro-
duce the risk difference, relative risk, and odds ratio for binary variables (which are
evaluated again in Chap. 6). In Chap. 6, we introduce Cohen’s Kappa κC statistic,
Pearson’s χ2 statistic, Pearson’s φ coefficient, Cramer’s V coefficient, Goodman
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and Kruskal’s γ statistic, Yule’s Q coefficient of association, and several families of
similarity measures Sθ , Tθ , and theL -family S.

In Chap. 7, we introduce several test statistics for testing the hypothesis on
population parameters. The following statistics are introduced:

(ȳ − μ0)/(s/
√
n) The one-sample t-test for testing the hypothesis that the popu-

lation mean μ is equal to the known value μ0, with ȳ the
sample average and s the sample standard deviation.

(ȳ1−ȳ2)

(sp
√

n−1
1 +n−1

2 )
The two samples t-test for testing the hypothesis that the

means μ1 and μ2 of two populations are equal, with ȳk the
sample average for population k and s2p = [(n1 −1)s21 + (n2 −
1)s22]/[n1+n2−2] the pooled variance of the two sample vari-
ances of the two populations. There is also a version of the
t-test where another variance than the pooled variance is used.
We also discuss equivalence testing for testing the hypothesis
that the difference in population means is not close or not
equivalent.

s21/s
2
2 The F-test for testing the hypothesis that the variances σ 2

1 and
σ 2
2 from two independent populations are equal, with sk the

sample standard deviation of population k. A non-parametric
version of the F-test, called Levene’s test, is also introduced.

d/sd The paired t-test for testing the null hypothesis that twomeans
μ1 and μ2 from paired samples are equal, where d is the
average of the difference in the observations of the pairs and
sd is the standard deviation of these differences.

U The Mann-Whitney U test for testing the hypothesis that the
values of one population are not stochastically larger than the
values of another population (two independent samples).∑n

i=11(y1,i>y2,i) The sign test for paired samples: testing the null hypothesis
that values from the first dimension are not stochastically
larger than the values of the second dimension.

W+ The Wilcoxon signed rank test for testing the hypothesis that
differences from paired samples are on average equal for
positive and negative differences.

rP
√
n − 2/

√
1 − r2P The correlation test statistic for testing the hypothesis of inde-

pendence between two numerical variables x and y, with rP
Pearson’s correlation coefficient. The test statistic also plays
a role in quantifying the dependence between the categorical
variables in Chap. 6.

X 2
P Pearson’s chi-square test for testing the hypothesis of inde-

pendence between two categorical variables x and y.
W The Shapiro-Wilk test for testing the hypothesis that the popu-

lation distribution F()̇ is equal to the normal distribution
�((−̇μ)/σ).
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– G TheGrubbs test for testing the hypothesis that there is not an
outlier in a single sample of data.Wealsodiscuss JohnTukey’s
approach of identifying outliers, without doing a formal test.
An approach that is implemented in the box-plot of a variable.

If we introduce a statistic that is not directly used as an estimator for a population
parameter (see below) and that is less common (and hence does not have its own
standard symbol), we simply use acronyms: for example, in Chap. 1, we use MAD
for the mean absolute deviation. Note that when discussing general statistics, we
often use Tn; we use FTn from Chap. 5 onwards to describe the distribution (CDF) of
statistics over repeated random sampling (see also “Distributions” below).

• Population parameters: θ , μ, . . .
Parameters of a population are, by convention, referred to using lower-case Greek
letters. For a general population parameter, we use θ , and for a vector of popu-
lation parameters, we use �θ . Next, we use the following standards for population
parameters of numerical variables:

μ We use μ to refer to the population mean. We also use μx or μX to denote
the mean of variable X when needed.

σ 2 We use σ 2 to refer to the population variance.
σ We use σ to refer to the population standard deviation.
σxy We use σxy or σXY to refer to the population covariance between X and Y .

ρ We use ρ, ρxy, or ρXY to refer to the population correlation between X and
Y .

• Estimators: μ
∧

, θ
∧

, . . .
We often use sample statistics as an estimator for population parameters. Simply
put, every estimator is a statistic, but only some statistics are useful estimators.
When we use statistics as estimators, we identify them as such by placing a hat on
top. Hence, μ

∧

is an estimator for μ (which is commonly the statistic x̄ discussed

above), and �̂θ is a vector estimator of general population parameters �θ . If needed,
we use μ

∧

x to denote that we are concerned with variable x.

• Events and their probability: Pr(D), Pr(D|E), Pr(D ∩ E), . . .
Primarily in Chap. 3, but also later in the book, we are concerned with events.
Throughout this chapter, we denote events using capital Roman letters A, B, C,
etc. These should not be confused with the later use of capital roman letters for
random variables (see below) as used in Chap. 4. This, however, is convention,
and we stick to it. We use the notation Pr for probability. We use the following:

Pr(A) to denote the probability of event A happening,
Pr(Ac) to denote the probability of the complement of A happening (or “not

A”),
Pr(A|B) to denote the probability of event A happening given that B has

happened,
Pr(A ∪ B) to denote the probability that event A or B happens, and
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Pr(A ∩ B) to denote the probability that event A and B both happen.

Relationships between Pr(A), Pr(A|B) and Pr(A ∩ B) are given in Chap. 3

• Probability distributions and random variables: Starting from Chap. 4, we
move beyond the probabilities of individual events to discuss distributions and
random variables. Here, we list our main conventions:

X We use capital Roman letters to denote random variables. When
we talk about multiple random variables, we either use different
letters (X , Y , Z) as we do in Chap. 6 or we use subscripts Xi. We
use lower-case Roman letters (e.g., xi) to denote the realization of
a random variable.

f (x) Weuse lower-case f () to denote both probabilitymass functions—
which we refer to as PMFs in the text—and probability density
functions (PDFs) for discrete or continuous random variables,
respectively. Note that the following properties hold:

Discrete: For discrete random variables, f (x) = Pr(X = x). We some-
times use the latter expression explicitly. Note that we also use the
shorthand pk = Pr(X = k) which allows us to easily enumerate
all possible values of X which for discrete random variables are
natural numbers. Using set notation, this is written as x ∈ N.

Continuous: For continuous random variables,
∫ b
a f (x)dx = Pr(a ≤ X ≤ b),

where x ∈ R.
F(x) We use capital Roman F() to denote cumulative distribution func-

tions or CDFs. Here, F(x) = Pr(X ≤ x)which in the discrete case
is given by

∑x
k=0Pr(X = k) = ∑x

k=0pk and in the continuous case
by

∫ x
−∞ fX (t)dt. Note here the use of the subscript X to denote the

fact that f is the PDF of random variable X , and not of T . When
the targeted distribution is clear—which is often the case when we
focus on a single random variable—we omit the subscripts.

fXY (x, y) In Chap. 6, we explicitly discuss properties of multiple random
variables. Here, the subscripts mentioned above become impor-
tant. fXY (x, y) denotes the joint PMF or PDF of X and Y . This
should not be confused with fX |Y (x, y), which is also a function of
two variables (x and y), but now fX |Y refers to the PMF or PDF of
X conditional on Y .

Further relationships between f (x), F(x), fXY (x, y) and fX |Y (x, y) are discussed in
Chap. 6

• Expectation, variance, covariance: While technically operators (see below), we
discuss separately our notation for expectations, variances, and covariances when
we are doing analysis with random variables. Given random variables X and Y ,
we use the following:
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E(X ) for the expectation of X which in the discrete case is given by∑∞
k=0kpk (using the shorthand pk = Pr(X = k) introduced above)

and by
∫
R
xf (x)dx in the continuous case,

VAR(X ) for the variance of X which is given by E[(X − E(X ))2], and
COV(X ,Y ) for the covariance ofX and Y which is given byE[(X −E(X ))(Y−

E(Y ))].
• Operators: We expect familiarity with standard mathematical notation (+,−, ×,

and, f ′(x),
∫
f (x)dx, etc.). However, we explicitly detail the following operators:

∑n
i=1xi The summation operator:

∑n
i=1xi = x1 + x2 + · · · + xn.∏n

i=1xi The multiplication operator:
∏n

i=1xi = x1 × x2 × · · · × xn.

Next to the mathematical symbols used in the text, we also present the R code.
Code blocks, and their respective output, are presented as
> x <- c(1:10)
> x
[1] 1 2 3 4 5 6 7 8 9 10
while inline code is presented as x <- c(1:10). Note that for the code blocks,

we use > to start lines with code that is actually interpreted by R; lines that do not
start with > are output. Lines starting with ># are comments and are not executed
but are used to make the code more readable.

Finally, we assume some basic familiarity with the concepts of classes, functions,
and objects. Since we are working with R, it is important for the reader to know that
everything in R is an object. Hence, x defined in the example code above is an object.
Objects are instances of a class, which itself can be thought of as the blueprint for
an object. The object x above is a so-called instantiation of the “integer” class (you
can see this by executing class(x)). Abstractly, an object is a data structure that
has attributes and methods which can act on these attributes. Methods for the class
integer include the standard mathematical operators * and +.



Chapter 1
A First Look at Data

1.1 Overview and Learning Goals

For data scientists, the most important use of statistics will be in making sense of
data. Therefore, in this first chapter we immediately start by examining, describing,
and visualizing data.We will use a dataset called face-data.csv throughout this
chapter; this dataset, as well as all the other datasets we use throughout this book,
is described in more detail in the preface. The dataset can be downloaded at http://
www.nth-iteration.com/statistics-for-data-scientist.

In this first chapter we will discuss techniques that help visualize and describe
available data. We will use and introduce R, a free and publicly available statistical
software package that we will use to handle our calculations and graphics. You can
download R at https://www.r-project.org.

In this first chapter we will cover several topics:

• We will learn how to open datasets and inspect them using R. Note that a more
extensive overview of how to install R can be found in Additional Material I at the
end of this chapter.1

• We will run through some useful basic R commands to get you started (although
you should definitely experiment yourself!)

• We will explain the different types of variables and how they relate to different
descriptive measures and plots for summarizing data.

• We will discuss basic methods of summarizing data using measures of frequency,
central tendency (mean,mode,median), spread (mean absolute deviation, variance,
standard deviation), and skewness and kurtosis.

1 A number of the chapters in this book contain additional materials that are positioned directly
after the assignments. These materials are not essential to understand the material, but they provide
additional background.

© Springer Nature Switzerland AG 2022
M. Kaptein and E. van den Heuvel, Statistics for Data Scientists, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-10531-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10531-0_1&domain=pdf
http://www.nth-iteration.com/statistics-for-data-scientist
http://www.nth-iteration.com/statistics-for-data-scientist
https://www.r-project.org
https://doi.org/10.1007/978-3-030-10531-0_1
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• We will discuss the basic plotting functionality of R to create line graphs, bar
charts, scatter plots, box plots, and multi-panel density plots, and we will discuss
how to interpret these plots.

• Youwill learn to reason aboutwhich plots aremost informative forwhich variables.
We will discuss how the measurement levels relate to the types of plots we could
or should make.

• We will look briefly at using R for plotting mathematical functions.

1.2 Getting Started with R

R is a programming language: you can write code and have R execute that code. R
is very well suited for analyzing data, and has many statistical operations build-in,
but in the end it can be used to built all kinds of things. However, in this book we
will mainly use it for analyzing data.

There are many different ways in which you can use R. One way is to use what
is called the R console, which is shown in Fig. 1.1. The console comes with any
default installation of R that you can find at https://www.r-project.org. You can use
this console to type in R commands, and execute them line by line. The figure shows
the execution of the line print("hello world")which prints the string “hello
world” to the screen. Everything you do within a session (thus, without closing the
console) will be remembered; if you close the console you will lose the work you
have not saved explicitly.

The console is, however, not the easiest way of working with R. There are two
often used alternative ways of using R:

1. Using a code editor:You can use any text/code editor, such asTextMate or Sublime
text to write and store the R (analysis) code that you end up writing. Good code
editors will allow you to run the code directly from the editor by sending it to the
R console. If you have already programmed in some other language using a code
editor that supports R this might be your best option.

2. Using a graphical user interface: You can also use a point and click solution such
as RStudio. For downloads see https://www.rstudio.com. RStudio is preferred by
many of our students, and hence we explain installing and using RStudio in more
detail in the additional materials at the end of this Chapter.

RStudio is very popular these days, but this book is not tied to using RStudio. Find
something you are comfortable with and get used to it. In the end, it’s all a matter of
preference.

1.2.1 Opening a Dataset: face-data.csv

Webegin our studies by simply opening the dataset called face-data.csv, which
contains the data we will be using in this first chapter in .csv format. The dataset
contains data (or records) from n = 3,628 participants in a scientific study (Kaptein

https://www.r-project.org
https://www.rstudio.com
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Fig. 1.1 A screenshot of the R console with the execution of the command print("hello
world")

et al. 2016). In the study participants were asked to rate the attractiveness of a
synthetically generated face. For each participant the generated face differed slightly
along one of two dimensions: either the distance between the eyes, or the brow-
nose-chin ratio was different. Figure1.2 provides an example of nine synthetically
generated faces.

After seeing a face, participants rated its attractiveness on a scale from 1 to 100.
Next to the rating, the dataset also contains some demographic information about the
participants (their age, gender, education level). For a full description of the dataset
and the setup of the experiment, see the preface.

Opening the data in R can be done using some simple R commands:

> path <- "data-files/"
> file <- "face-data.csv"
> face_data <- read.csv(paste(path, file, sep=""),

stringsAsFactors = TRUE)
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Fig. 1.2 Nine examples of
different faces rated by
participants in the
experiment differing along
two dimensions. In the actual
experiment faces were
generated randomly with
different values for the
distance between the eyes
and the brow-nose-chin ratio
for each participant
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Note that in the above code snippet the commands are preceded by a “>”, all other
printouts will be responses from R. We will stick to this convention throughout the
book.

The core of the code above is the call to the function read.csv which allows
us to open the datafile. In programming, a function is a named section of a program
that performs a specific task. Functions often take one or more arguments as their
input, and return some value.2

Since this is the first R code we cover in this book, we go through it line by
line. However, whenever you encounter code in the book and you are unsure of its
functionality, make sure to run the code yourself and inspect the output.

The first line of the code creates (or instantiates) a new variable called path
with the value data-files/. The quotes surrounding the value indicate that the
variable is of type string (a set of characters) as opposed to numeric (a number). We
discuss this in more detail below. Similarly, the second line defines a string variable
called file with the value face-data.csv. Jointly these indicate the folder
of the datafile (relative to R’s working directory which you can find by executing
the function getwd()) and the name of the datafile. The working directory can
be changed by running setwd(dir), where dir is a character string specifying
the desired working directory (e.g., setwd("/Users/username") on a Mac).
Note that the path needs to be specified using the forward slash / as the separator.

The third line is more complex as it combines two function calls: first, inside
the brackets, a call to paste(path,file,sep=""), and second, a call to

2 In R you can always type ?function_name to get to the help page of a function. You should
replace function_name by the name of the function you want to see more information about.
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read.csv to open the file. The call to paste combines the strings path and
file. This can be seen by inspecting the output of this function call:

> paste(path, file, sep="")
[1] "data-files/face-data.csv"

Hence, in this code paste ensures that the path to the actual datafile, relative to
R’s current working directory, is supplied to the read.csv function. Note that the
third argument supplied to the paste function, named sep, specifies how the two
strings path and file should be combined.

Theread.csv functionopens the csvdata and returns a so-calleddata.frame
object containing the data in the file. We will discuss the data.frame object in
more detail in Sect. 1.2.3. The function read.csv is one of many functions to read
data into R; there are separate functions for opening different types of files (such as
.sav3 data files or .txt files). Thus, if you encounter other types of files make sure
to find the right function to open them: in such cases, Google (or any other search
engine of your choice) is your friend. Finally, note the stringsAsFactors =
TRUE argument: this specifies that any variable containing strings will be considered
a factor (see below). This option has been R’s default for a long time, but since R
version 4.0.0, we have to supply it manually.4

The function read.csv takes a number of additional arguments. We could for
example make the following call:

> face_data <- read.csv("data-files/face-data.csv", sep=",",
header=TRUE, dec=".", stringsAsFactors = TRUE)

where we make explicit that the values in the file are separated by comma’s, that the
first line contains variable names (headers), and that we use a point (“.”) to indicate
the starting of decimals in numbers.

After running this code we have, in the current session, an object called face_
data which contains the data as listed in the file in an R data.frame; the data
frame is just one of the many ways in which R can store data, but it is the one we will
be using primarily in this book. In this example, we have opened a “.csv” file, which
contains data stored in rows and columns. The values are separated by commas (it is a
comma-separated value file), and the different rows present data of different people.
This is really nice and structured. However, during actual work as a data scientist
you will encounter data of all sorts and guises. Likely, very often the data will not all
be neatly coded like this, and it will not be at all easy to read data into R or any other
software package. We will not worry about these issues too much in this book, but
Crawley (2012) provides an excellent introduction to ways of opening, re-ordering,
re-shuffling, and cleaning data.5

3 .sav files are data files from the statistical package SPSS.
4 As is true for many programming languages, R is continuously updated. For the interested reader
here is a discussion regarding the change of the default stringsAsFactors argument: https://
developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/.
5 Note that the read.csv function loads all the data into RAM; be aware that this might not be
feasible for large datasets.

https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/
https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/
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1.2.2 Some Useful Commands for Exploring a Dataset

So, nowwe have a data.frame object named face_data that contains our data.
We can inspect the contents of this object by simply typing the name of the object
into the R console:

> face_data
id dim1 dim2 rating gender age edu

1 1 13.02427 13.54329 5 Male 25 to 34 years High school
2 2 24.16519 22.42226 59 Female 25 to 34 years Some college
3 3 19.71192 22.54675 5 Female 25 to 34 years 4 year college
4 4 16.33721 13.46684 10 Female 25 to 34 years 2 year college
5 5 26.67575 27.99893 25 Male 25 to 34 years Some college
6 6 12.02075 13.62148 75 Female 35 to 44 years Some college
### AND ON AND ON ####

This shows a very long list consisting of all of the records in our dataset. Clearly, if
you have data on millions of people this will quickly become an impenetrable mess.6

It is therefore usually much easier to inspect a dataset using the functions head,
dim, and summary which we will explain here.

The head function prints the first few lines of a data frame. If you do not specify
a number of lines, then it wil print 6 lines:

> head(face_data)
id dim1 dim2 rating gender age edu

1 1 13.02427 13.54329 5 Male 25 to 34 years High school
2 2 24.16519 22.42226 59 Female 25 to 34 years Some college
3 3 19.71192 22.54675 5 Female 25 to 34 years 4 year college
4 4 16.33721 13.46684 10 Female 25 to 34 years 2 year college
5 5 26.67575 27.99893 25 Male 25 to 34 years Some college
6 6 12.02075 13.62148 75 Female 35 to 44 years Some college

You could also try out the function tail(face_data,10L) to get the last 10
lines.

The summary function provides a description of the data using a number of
summary statistics; we will cover these in detail in Sect. 1.4.

> summary(face_data)
id dim1 dim2
Min. : 1.0 Min. :11.12 Min. :12.08
1st Qu.: 907.8 1st Qu.:25.55 1st Qu.:40.81
Median :1814.5 Median :35.53 Median :52.54
Mean :1814.5 Mean :35.97 Mean :49.65
3rd Qu.:2721.2 3rd Qu.:46.74 3rd Qu.:60.61
Max. :3628.0 Max. :63.09 Max. :70.28

rating gender
Min. : 1.00 : 14
1st Qu.: 41.00 Female:1832

6 To prevent a messy output the R console will stop printing at some point, but still, the output will
be largely uninformative.
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Median : 63.00 Male :1782
Mean : 58.33
3rd Qu.: 78.00
Max. :100.00

age edu
: 14 4 year college:1354
18 to 24 years : 617 Some college : 969
25 to 34 years :1554 2 year college: 395
35 to 44 years : 720 High school : 394
45 to 54 years : 413 Masters degree: 384
55 to 64 years : 237 Doctoral : 95
Age 65 or older: 73 (Other) : 37

In the output above, note the difference between the way in which gender and
rating are presented: for genderwe see counts (or frequencies) of each possible
value, while for ratingwe see a minimum value, a maximum value, and a number
of other descriptive statistics. This is because R distinguishes numerical values such
as rating from strings which contain text, such as gender in our case. We will
look at this in more detail in Sect. 1.3.1 and we will see that there are apparently 14
cases for which no gender and age are observed.

Alternatively, gender could have also been stored as a number (for example using
the values 0 and 1 for females and males respectively); if that were the case R would
have reported its minimum andmaximum values by default. If we want R to interpret
numeric values not as numbers, but as distinct categories, we can force R to do so by
using the as.factor function. The code below prints a summary of the variable
rating, and subsequently prints a summary of the factor rating; the difference
is pretty striking: in the first case R reports a number of so-called descriptive statistics
which we will discuss in more detail in Sect. 1.4, while in the second case R prints
how often each unique rating occurs in the dataset (the value 1 occurs 84 times
apparently). More information on the type of variables can be found in Sect. 1.2.3.

> summary(face_data$rating)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 41.00 63.00 58.33 78.00 100.00

> summary(as.factor(face_data$rating))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
84 12 6 14 12 8 12 14 15 23 17 17 11 11 22 21 12 24 16 31 8
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
16 6 25 50 16 15 13 14 65 13 13 29 20 54 13 19 27 19 79 21 28
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
12 21 50 30 12 18 34 133 35 38 48 20 69 35 25 16 40 139 35 42 37
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
33 71 48 34 46 27 162 40 36 37 41 199 41 41 44 41 162 62 39 40 38
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
122 46 25 29 34 89 16 25 16 11 39 7 8 3 1 41

Note that in the code-snippet above the “$” is used to address the variable rating
in the dataset by its (column) name.
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Finally, the function dim specifies the number of rows and columns in the
data.frame:

> dim(face_data)
[1] 3628 7

This shows that we have 3,628 rows of data and 7 columns. Often the rows are
individual units (but not always), and the columns are distinct variables.

1.2.3 Scalars, Vectors, Matrices, Data.frames, Objects

The data.frame is just one of the many objects that R supports.7 We can easily
create other types of objects. For example, if we run:

> id <- 10

we create the object called id, which is a variable containing the value 10. The object
id lives outside or next to our dataset. Thus object id should not be confused with
the column id in our dataset. Just as with our dataset (the face_data object), we
can easily inspect our new object by just typing its name:

> id
[1] 10

To see the column id we should have used the R code

> face_data$id

indicating that the column id lives in the data frame face_data.
To gain some more understanding regarding R objects and their structure, we will

dig a bit deeper into the face_data object. The face_data object is of type
data.frame, which itself can be thought of as an extension of another type of
object called a matrix.8 A matrix is a collection of numbers ordered by rows and
columns. To illustrate, the code below creates a matrix called M consisting of three
rows and three columns using the matrix() function. We populate this matrix
using the values 1, 2, . . . , 9 which we generate with the c(1:9) command.9

7 In this book we do not provide a comprehensive overview of R; we provide what you need to know
to follow the book. A short introduction can be found in Ippel (2016), while for a more thorough
overview we recommend Crawley (2012).
8 While it is convenient to think of a data.frame as a generalization of a matrix object, it
technically isn’t. The data.frame is “a list of factors, vectors, and matrices with all of these
having the same length (equal number of rows in matrices). Additionally, a data frame also has
names attributes for labelling of variables and also row name attributes for the labelling of cases.”.
9 In R actually the command 1:9 would suffice to create the vector; however, we stick to using the
function c() explicitly when creating vectors.
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> M <- matrix(c(1:9), nrow=3)
> M

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

The data.frame object is similar to the matrix object, but it can contain
different types of data (both numbers and strings), and it can contain column names:
we often call these variable names.

We can access different elements of a matrix in multiple ways. This is called
indexing. Here are some examples:

> M[2, 3]
[1] 8
> M[3, 1]
[1] 3
> M[1, ]
[1] 1 4 7
> M[, 2]
[1] 4 5 6

Both a row or a column of numbers is called a vector, and a single numerical entry of
a vector is called a scalar. Hence, the object id that we defined above was a scalar
(a single number) while the command c(1:9) generates a vector. Note that “under
the hood” R always works using vectors, which explains the [1] in front of the value
of id when we printed it: R is actually printing the first element of the vector id.

We can add more elements to the vector id and access them using their index:

> id
[1] 10
> id <- c(id, 11)
> id
[1] 10 11
> id[2]
[1] 11

In the code above, the function c() concatenates the arguments that are passed to
this function into a single vector.

Just like a matrix, we can also index a data frame using row and column numbers.

> face_data[3, 5]
[1] Female
Levels: Female Male
> face_data[3, ]
id dim1 dim2 rating gender age edu

3 3 19.71192 22.54675 5 Female 25 to 34 years 4 year college

If you use face_data[1, ] you would obtain the first row of data and not the
variable names.
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The data frame allows us to index and retrieve data in many different ways that
the matrix does not allow. Here are some examples:

> face_data$gender[3]
[1] Female
Levels: Female Male
> face_data$gender[1:5]
[1] Male Female Female Female Male
Levels: Female Male
> face_data$gender[face_data$rating>95]
[1] Male Male Female Female Female Male Female Male Female Female Female
[12] Female Female Female Female Female Female Female Male Male Female Female
[23] Male Female Male Male Female Female Male Female Female Male Female
[34] Female Female Female Female Female Male Female Male Male Male Female
[45] Male Male Female Female Female Female Male Female Female Female Female
[56] Male Male Female Female Female
Levels: Female Male

The first command returns the third value of the variable (column) called gender,
and the second command returns the first five values of this variable. The R syntax
in the last line selects from the dataset called face_data the gender variable,
but only for those values in which the rating variable is larger than 95; thus, this
shows the gender of all the participants that provided a very high rating.

1.3 Measurement Levels

We have already seen a difference between gender and rating in their “type” of
data. A bit more formally, often four different measurement levels are distinguished
(Norman 2010):

1. Nominal: Nominal data makes a distinction between groups (or sometimes even
individuals), but there is no logical order to these groups. Voting is an example:
there is a difference between those who vote, for instance, Democrat, or Repub-
lican, but it’s hard to say which is better or worse, or how much better or worse.
Nominal data is often encoded as a factor in R. When a variable is encoded as
a factor in R, which can be forced by using the as.factor() function, the
values that the variable can take are stored separately by R and are referred to as
the different levels of the factor.

2. Ordinal: Ordinal data also distinguishes groups or individuals, but now imposes
an order. An example is the medals won at a sports event: Gold is better than
Silver, but it’s unclear how much better.

3. Interval: The interval scale distinguishes groups (or actually, often individuals),
imposes an order, and provides a magnitude of the differences in some unit. For
example, we can say that the Gold winner has a score of 0 s, the Silver winner
10 s (being 10 s slower), and the Bronze winner 12 s.

4. Ratio: This contains all of the above, but now also imposes a clear reference point
or “0”. The interval scale level does not really allow one to say whether the Gold
winner was “twice as fast” as the Silver winner; we know she was 10 s faster, but
we don’t know how long the total race took. If we measure the speed from the
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start of the race, we have a fixed “0”, and we can meaningfully state things like:
“the winner was twice as fast as the Bronze medalist.”

Note that each consecutive measurement level contains as much “information”—in
a fairly loose sense of the word—as the previous one and more. As a consequence of
this, note that if you have (e.g.) ratio data, you could summarize it into nominal data,
but not the other way around. We can see this in our dataset for the variable age:
whileage could have been recorded as a ratio variable (in years), our dataset contains
age as an ordinal variable: it only specifies the age group a specific person belongs
to. Operations that are meaningful on ratio data (such as addition and multiplication)
are often nonsensical on nominal or ordinal data.

Nominal and ordinal data are often called categorical data, while interval and ratio
data are referred to as numerical data.We alsomake a distinction between continuous
and discrete numerical data. Theoretically, continuous variables can assume any
value. This means that the continuous variable can attain any value between two
different values, no matter how close the two values are. For discrete variables this
would be untrue.10 Examples of continuous variables are temperature, weight, and
age, while discrete data is often related to counts, like the number of text messages,
accidents, microorganisms, students, etc. We will return to measurement levels later
in this chapter when we describe which summaries and visualizations are well-suited
for measurements of a specific level.

1.3.1 Outliers and Unrealistic Values

If you paid close attention before, you might have noticed that for 14 units the value
of gender in the dataset we opened was empty. Thus, the factor gender contains
three levels: “Female”, “Male”, and “”. It is unclear what this last, empty, level tries
to encode. You will find this a lot in real datasets: often a datafile contains entries
that are clearly erroneous, non-sensical, or otherwise unclear. Quite a big part of data
science is actually knowing what to do with such data. For now, however, we will
just recognize these units and remove them from our analysis. Again, the book by
Crawley (2012) provides more pointers regarding these issues.

The rows containing the level “” can be removed using the following commands:

> face_data <- face_data[face_data$gender == "Female" | face_data
$gender == "Male", ]

> nrow(face_data)
[1] 3614

The code above deletes all the rows for which the value of gender is empty by
selecting all the rows that contain the value Female ( =="Female") or (|) Male
( == "Male") and subsequently prints the number of rows in the dataset (which

10 In practice, continuous data does not exist, since we record data always with a finite number of
digits and hence the property that there would be a value in between any two values is lost. Thus
data is essentially always discrete.



12 1 A First Look at Data

is now 3,614 as opposed to 3,628). Note that just deleting the rows that contain the
empty values does not force R to delete the empty value as a possible level of the
factor gender; we can achieve this by dropping this level explicitly:

> summary(face_data$gender)
Female Male

0 1832 1782
> face_data$gender <- droplevels(face_data$gender)
> summary(face_data$gender)
Female Male
1832 1782

where in the first command it is clear from the summary that 0 rows have the value
“”, while in the last command the summary shows that the level “” is no longer
considered a possible value of the factor gender.

We will make sure that we also drop the superfluous levels of the variable age
by running

> face_data$age <- droplevels(face_data$age)

Besides unclear values we also often encounter very extreme values; for example,
we might find that the age of a participant in a study is 622. Such extreme values are
often called “outliers” (amore formal definition exists, butwewon’t get into that now;
we will, however, discuss some statistical methods of finding outliers in Chap.7).
There are essentially two types of outliers: implausible and plausible outliers. An age
of 622 years old would be implausible (so far), but a weight of a person of 500kg,
would be very extreme, but not impossible. How to properly deal with outliers is a
topic in its own right, but by and large the options are (a) ignoring them, (b) removing
them or (c) trying to substitute them, using statistical methods, with a more plausible
alternative.

Removing implausible values is common practice, but removing plausible out-
liers should never be common practice. Similarly, many datasets contain “missing
data”; for example when someone refused to fill out their gender; this is likely what
happened in the face_data dataset. Missing values are often either ignored (the
units removed as we did above), or they are filled in using statistical prediction mod-
els: this filling-in is called imputation.11 Researchers also like to use special values
to indicate missing data, like 88, 888, 99, and 999. These values should be used only
when they represent implausible values for the variable. Thus 99 for a missing age
is not recommended, while 999 would be proper value for a missing age.

11 Data imputation is a field in its own right (see, e.g., Vidotto et al. 2015); we will not discuss it
in this topic further in this book. However a very decent introduction is provided by Baguley and
Andrews (2016).
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1.4 Describing Data

We now turn to describing the data that we are looking at. We have seen some
examples already, for example when we were using the summary function, but here
we will discuss the R output and a number of popular data descriptions in a bit more
detail. Note that some descriptive statistics (or just descriptives) that we introduce
are often used for data of a certain measurement level; we will indicate the most
appropriate measurement levels for each descriptive statistic discussed below.

1.4.1 Frequency

Nominal and ordinal data are often described using frequency tables; let’s do this for
the variable age:

> t1 <- table(face_data$age)
> t2 <- transform(t1, cumulative = cumsum(Freq), relative = prop.

table(Freq))
> t2

Var1 Freq cumulative relative
1 18 to 24 years 617 617 0.17072496
2 25 to 34 years 1554 2171 0.42999447
3 35 to 44 years 720 2891 0.19922524
4 45 to 54 years 413 3304 0.11427781
5 55 to 64 years 237 3541 0.06557831
6 Age 65 or older 73 3614 0.02019923

The code above presents the frequency of occurrence of each value of the variable,
the so-called cumulative frequency, and the relative frequency.12 The frequency is
just the number of times a value occurs in the dataset. We may generally denote the
values by a set of numbers {x1, x2, . . . , xm}, with m the number of levels, and the
frequency for x j given by f j , j = 1, 2, . . . ,m. In the example above this means we
may use

x1 = 1 for 18 to 24 years,

x2 = 2 for 25 to 34 years,

. . . ,

x7 = 7 for 65 years and older,

which have frequencies

12 The cumulative frequency makes more sense for ordinal data than for nominal data, since ordinal
data can be ordered in size, which is not possible for nominal data.
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f1 = 617,

f2 = 1554,

. . . ,

f7 = 73.

Using this notation the cumulative frequency for a specific value x j is given by
∑ j

k=1 fk , the relative frequency is given by f j/
∑m

k=1 fk , and the cumulative relative
frequency is given by

∑ j
k=1 fk/

∑m
k=1 fk .13

The code for computing the frequencies requires some explanation: in the first
line we create a new object called t1 by using the table function; this line creates
a table that contains only the frequency counts but not yet the cumulative sums and
relative frequencies. This is done in the second line using the transform function:
this function creates a new table, called t2, which transforms t1 into a new table
with additional columns.

Frequencies are often uninformative for interval or ratio variables: if there are lots
and lots of different possible values, all of them will have a count of just one. This
is often tackled by discretizing (or “binning”) the variable (which, note, effectively
“throws away” some of the information in the data). Here is the code to discretize
the variable rating into five bins and create a frequency table:

> bins <- 5
> rating_binned <- factor(cut(face_data$rating, breaks=bins))
> t3 <- table(rating_binned)
> t4 <- transform(t3, cumulative = cumsum(Freq), relative = prop.

table(Freq))
> t4
rating_binned Freq cumulative relative

1 (0.901,20.8] 381 381 0.1054234
2 (20.8,40.6] 513 894 0.1419480
3 (40.6,60.4] 821 1715 0.2271721
4 (60.4,80.2] 1214 2929 0.3359159
5 (80.2,100] 685 3614 0.1895407

Here the cut() function is used to effectively cut up the continuous rating into five
distinct categories. Note that the interval length is 19.8, except for the first interval:
here the default choice made by R is a bit mysterious.

1.4.2 Central Tendency

When we work with numerical data, we often want to know something about the
“central value” or “middle value” of the variable, also referred to as the location of
the data. Here we have several measures that are often used:

13 Not all readers will be familiar with summation notation; let x1, x2, . . . , x j be a set of numbers,

than
∑ j

k=1 xk = x1 + x2 + · · · + x j .
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1. Arithmeticmean:The arithmeticmean of a set of numbers, which is often denoted
x̄ when we are referring to the sample mean of a variable x , is given by:

x̄ = 1

n

n∑

i=1

xi (1.1)

where n is the total number of observed units, and xi the score on variable x by
unit i . Note that all data points weigh equally in computing the mean, and that it
is affected quite a bit by extreme values or outliers. In R we can use the build-in R
function mean() to compute the mean of a variable.

2. Mode: The mode is merely the most frequently occurring value. And yes, there
might be multiple modes. R does not have a built in function to compute it, so let’s
write our own:

> get_mode <- function(v){
+ uniqv <- unique(v)
+ uniqv[which.max(tabulate(match(v, uniqv)))]
+ }
> get_mode(face_data$rating)
[1] 75

The code above introduces a number of new concepts. Here, in the first line, we
create a new function called getmode, which takes the argument v. In the second
line the function unique is used to generate a vector containing all the unique
elements of the vector v. The next line, which is a bit involved, creates a table
of the counts of each of the unique elements of v, and subsequently selects the
highest value with the highest count.14 Thus, the function eventually returns the
value of the mode, not how often that specific value occurred.15

3. Median: The median is a value that divides the ordered data from small to large
(or large to small) into two equal parts: 50% of the data is below the median and
50% is above. The median is not necessarily a value that is present in the data.
Practically, we sort the data and choose the middle-most value when n is odd, or
the average of the two middle values when n is even. Hence, the median of the data
2, 5, 6, 4 (which, when ordered is 2, 4, 5, 6) is 4.5. In R you can use the function
median().

4. Quartiles, deciles, percentiles, quantiles: Instead of using 50% for the median,
we may use any cut-off value. The function quantile() provides as standard
(its default) the cut-off values 0%, 25%, 50%, 75%, and 100%.

> quantile(face_data$rating)
0% 25% 50% 75% 100%
1 41 63 78 100

14 It is good practice to execute parts of a complicated line of code like this separately so that you
understand each command (in this case match, tabulate, and which.max).
15 Finally, note that the smallest most frequently occurring value is reported; it is an interesting
exercise to change this function such that it returns all the modes if multiple modes exist.
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A cut-off of 0% is used to indicate the minimum. Thus 1 is the smallest rating in
the dataset. The cut-off 100% is used for the maximum rating. The rating 41 years
belongs to a cut-off of 25%, which means that 25% of the participants contained
in the data provided a rating below or equal to 41.
More theoretically, a quantile xq is a value that splits the ordered data of a variable
x into two parts: q · 100% of the data is below the value xq and (1 − q) · 100%
of the data is above. The parameter q can take any value in the interval [0, 1].
When q = 0.25, q = 0.50, and q = 0.75 the quantiles are referred to as the first,
second,16 and third quartiles, respectively. We call quantiles deciles when q is
restricted to the set {0.1, 0.2, . . . , 0.9} and percentiles when the q is restricted
to {0.01, 0.02, 0.03, . . . , 0.99}. Thus quartiles and deciles are also percentiles.
In R we can compute different quantiles by passing the desired value q to the
quantile function as a second argument:

> quantile(face_data$rating, c(.2))
20%
35

Quantiles can be calculated in different ways, depending on the way we “interpo-
late” between two values. To illustrate this let us calculate the first quartile of the
data {2, 5, 6, 4} that we used to illustrate the calculation of the median (which was
4.5). If we order the data ({2, 4, 5, 6}), the first quartile can be seen as the median
of the data {2, 4} on the left of the median, which would give a value of 3. Alter-
natively and more generically, we could map the ordered values equally spaced
on the interval (0, 1), where the i th ordered value of the data is positioned at the
level q = i/(n + 1) in the interval (0, 1), with n being the number of data points.
Thus in our example we would put the value 2 at the level q = 1/5, the value 4 at
q = 2/5, the value 5 at q = 3/5, and the value 6 at q = 4/5 (see Fig. 1.3). Now
the first quartile is the value that should be positioned at level q = 0.25. In our
example, the value 3 would be located at 0.3, since it is exactly in the middle of
the levels 0.2 and 0.4 and 3 is exactly in the middle of the values 2 and 4. Thus the
value 2.5 would be positioned at the level q = 0.25. The first quartile is 2.5 instead
of 3. Note that the median of 4.5 is precisely in the middle of 4 and 5 which are
positioned at level 0.4 and 0.6, respectively.
This procedure is available in many software packages, often as default setting,
but R uses a different default. Instead of putting the data {2, 4, 5, 6} at the quan-
tiles {0.2, 0.4, 0.6, 0.8} as seen in Fig. 1.3, the function quantile() in R uses
the quantiles (i − 1)/(n − 1) for the ordered data. Thus the data {2, 4, 5, 6} is
positioned at quantiles {0, 1/3, 2/3, 1} and then an interpolation is applied. The
following R code shows the results:

> x <- c(2, 4, 5, 6)
> quantile(x)
0% 25% 50% 75% 100%

2.00 3.50 4.50 5.25 6.00

16 Yes, the second quartile is equal to the median.
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Fig. 1.3 Mapping the
ordered data to the values
i/(n + 1), with i the ordered
number of the value

With the option type=6 in the function quantile(), we obtain the results
described earlier, i.e.

> quantile(x, type=6)
0% 25% 50% 75% 100%

2.00 2.50 4.50 5.75 6.00

Note that quantiles are very useful to get some idea of the so-called “distribution”
of a variable.

1.4.3 Dispersion, Skewness, and Kurtosis

Knowing the “central tendency” or locations of data points might not be sufficient
to really understand the data that you are looking at. Dispersion measures help us
understand how far apart the data are away from the center or from each other,
while skewness and kurtosis are measures that describe features of the shape of the
frequency plot of the data.

1. Range and interquartile range: Range is the difference between the maximum
and minimum. It quantifies the maximum distance between any two data points.
The range is easy to calculate in R:

> max(face_data$rating) - min(face_data$rating)
[1] 99

Clearly, the range is sensitive to outliers. Instead of using the minimum and
maximum, we could use the difference between two quantiles to circumvent
the problem of outliers. The interquartile range (IQR) calculates the difference
between the third quartile and the first quartile. It quantifies a range for which
50% of the data falls within.

> quantile(face_data$rating, c(0.75)) - quantile(face_data$
rating, c(0.25))

37

Thus 50% of the rating data lies within a range of 37. The interquartile range
is visualized in the boxplot, which we discuss later in this chapter.

2. Mean absolute deviation: We can also compute the average distance that data
values are away from the mean:

MAD = 1

n

n∑

i=1

|xi − x̄ | (1.2)
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where | · | denotes the absolute value. R does not have a built-in function for this,
but MAD can easily be computed in R:

> sum(abs(x-mean(x)))/length(x)

3. Mean squared deviation, variance, and standard deviation:Much more com-
mon than the mean absolute difference is the mean squared deviation about the
mean:

MSD = 1

n

n∑

i=1

(xi − x̄)2 (1.3)

It does the same as MAD, but now it uses squared distances with respect to the
mean. The variance is almost identical to the mean squared deviation, since it
is given by s2 = ∑n

i=1(xi − x̄)2/(n − 1) = n · MSD/(n − 1). For small sample
sizes the MSD and variance are not the same, but for large sample sizes they are
obviously very similar. The variance is often preferred over theMSD for reasons
that we will explain in more detail in Chap. 2 when we talk about the bias of an
estimator. The sample standard deviation is s = √

s2. The standard deviation
is on the same scale as the original variable, instead of a squared scale for the
variance.

4. Skewness and kurtosis: Both measures, skewness and kurtosis, are computed
using so-called standardized values zi = (xi − x̄)/s of xi which are also called
z-values. Standardized values have no unit and the mean and variance of the
standardized values are equal to 0 and 1, respectively.17

Skewness is used tomeasure the asymmetry in data and kurtosis is used tomeasure
the “peakedness” of data. Data is considered skewed or asymmetric when the
variation on one side of the middle of the data is larger than the variation on the
other side. The most commonly used measure for skewness is

g1 = 1

n

n∑

i=1

(
xi − x̄

s

)3

(1.4)

When g1 is positive, the data is called skewed to the right. The values on the right
side of the mean are further away from each other than the values on the left side
of the mean. In other words, the “tail” on the right is longer than the “tail” on the
left. For negative values of g1 the data is called skewed to the left and the tail on
the left is longer than the tail on the right. When g1 is zero, the data is considered
symmetric around its mean. In practice, researchers sometimes compare themean
with the median to get an impression of the skewness, since the median and mean
are identical under symmetric data, but this measure is more difficult to interpret
than g1.Datawith skewness values of |g1| ≤ 0.3 are considered close to symmetry,

17 Note that the average of the standardized values is equal to 1
n

∑n
i=1 zi = 1

n

∑n
i=1 xi/s − x̄/s = 0

and that the sample variance is equal to 1
n−1

∑n
i=1(zi − 0)2= 1

n−1

∑n
i=1 (xi − x̄)2 /s2 = s2/s2=1.
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since it is difficult to demonstrate that data is skewed when the value for g1 is
close to zero.
The most commonly used measure for kurtosis is

g2 = 1

n

n∑

i=1

(
xi − x̄

s

)4

− 3 (1.5)

When g2 is positive, the data is called leptokurtic and the data has long heavy tails
and is severely peaked in the middle, while a negative value for g2 is referred to
as platykurtic and the tails of the data are shorter with a flat peak in the middle.
When g2 is zero the data is called mesokurtic. Similar to g1, it is difficult to
demonstrate that data is different from mesokurtic data when g2 is close to zero,
since it requires large sample sizes. Values of g2 in the asymmetric interval of
[−0.5, 1.5] indicate near-mesokurtic data.
Note that the measures g1 and g2 are unchanged when all values x1, x2, . . . , xn
are shifted by a fixed number or when they are multiplied with a fixed number.
This means that shifting the data and/or multiplying the data with a fixed number
does not change the “shape” of the data.

1.4.4 A Note on Aggregated Data

In practice wemight sometimes encounter aggregated data: i.e., data that you receive
are already summarized. For instance, income data is often collected in intervals or
groups: [0, 20, 000) euro, [20, 000, 40, 000) euro, [40, 000, 60, 000) euro, etc., with
a frequency f j for each group j . In the dataset face_data age was recorded in
seven different age groups. Measures of central tendency and spread can then still be
computed (approximately) based on such grouped data. For each group j we need
to determine or set the value x j as a value that belongs to the group, before we can
compute these measures. For the example of age in the dataset face_data, the
middle value in each interval may be used, e.g., x1 = 21.5, x2 = 30, etc. For the age
group “65 years and older”, such a midpoint is more difficult to set, but 70 years may
be a reasonable choice (assuming that we did not obtain (many) people older than
75 years old). The mean and variance for grouped data are then calculated by

x̄ =
∑m

k=1 xk fk∑m
k=1 fk

, s2 =
∑m

k=1(xk − x̄)2 fk
∑m

k=1 fk − 1
(1.6)

with m the number of groups. Similarly, many of the other descriptive statistics that
we mentioned above can also be computed using aggregated data. The average age
and the standard deviation in age for the dataset face_data, using the aggregated
data and the selected midpoints, are equal to 35.6 and 11.75 years, respectively.



20 1 A First Look at Data

1.5 Visualizing Data

Next to inspecting data by computing summaries, we often visualize our data. Visu-
alization, when done well, can make large and even high-dimensional datasets (rela-
tively) easy to interpret. As with many topics we introduce in this book, visualization
is a topic in its own right. We refer the interested reader to Rahlf (2017) or Young
and Wessnitzer (2016); here we merely provide some basics to get started making
simple data visualizations with R.

Since we will be making plots, the easiest thing to do is to just call the function
plot on the data object we have and see what happens:

> plot(face_data)

This code produces Fig. 1.4. Note that variable id is a variable that represents the
order of participants entering the study.

Admittedly, blindly calling plot is not very esthetically appealing nor is it
extremely informative. For example, we can see that gender only has two lev-
els: this is seen in the fifth row of panels, where gender is on the y-axis and each
dot—each of which represents an observation in the dataset—has a value of either 1
or 2. However, the panels displaying gender do not really help us understand the
differences between males and females. On the other hand, you can actually see a
few things in the other panels that are meaningful. We can see that there is a pretty
clear positive relationship between id and dim1: apparently the value of dim1was
increased slowly as the participants arrived in the study (see the first panel in the
second row). Evaluate Fig. 1.4 carefully so you know what’s going on with the other
variables as well.

Interestingly, R will change the “default” functionality of plot based on the
objects that are passed18 to it. For example, a call to

> plot(face_data$rating)

produces Fig. 1.5, which is quite different from the plot we saw when passing the
full data.frame as an argument. Thus, based on the type of object passed to
the plotting function—whether that is a data.frame, a numerical vector, or a
factor—the behavior of the function plot will change.

Admittedly, the default behavior of R is not always the best choice: you should
learn how to make the plots you want yourself without relying on the R defaults. We
will look at some ways of controlling R plots below.

18 Each argument provided to a function is of a certain type, for example a vector or a
data.frame as we discussed before. R uses this type information to determine what type of
plot to produce.
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Fig. 1.4 Calling plot on a data frame. Note that on both the columns and the rows of the grid the
variables in the dataset are listed. Each panel presents a visualization showing one variable in the
dataset on the y-axis, and one on the x-axis

1.5.1 Describing Nominal/ordinal Variables

One way to start thinking about informative plotting is by considering the measure-
ment levels of variables; just as frequencies are useful for describing nominal (and
sometimes ordinal) variables, but less so for interval and ratio variables, certain types
of plots are useful for nominal and ordinal variables, while others are less useful. A
simple way of plotting the frequencies is a bar chart. The following code produces
Fig. 1.6 and provides a simple example:

> counts <- table(face_data$age)
> barplot(counts)
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Fig. 1.5 Calling plot on a
single continuous variable
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You can also make a pie chart using the same frequencies. The following code
produces Fig. 1.7.

> pie(counts)

Pie charts can be useful for easy comparisons of relative frequencies, while bar charts
are more meaningful for absolute numbers or frequencies. The bar chart allows you
to compare the heights of the bars more easily (and hence the size of the groups).
However, the pie chartmore clearly visualizes the relative share of each value. Hence,
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Fig. 1.7 Example of a pie
chart for displaying
frequencies

18 to 24 years

25 to 34 years

35 to 44 years

45 to 54 years

55 to 64 years

Age 65 or older

by using different visualizations you can emphasize different aspects of the data. For
a first exploratory analysis of a dataset it is therefore often useful to look at multiple
visualizations. Obviously, more ways of showing frequencies exist, but these are the
most basic versions that you should know and should be able to construct.

1.5.2 Describing Interval/ratio Variables

We can now look at ways of visualizing continuous variables. Figure1.8 shows a
so-called box and whiskers plot (or box plot); these are useful for getting a feel of the
spread, central tendency, and variability of continuous variables. Note that themiddle
bar denotes the median and the box denotes the middle 50% of the data (with Q1 the
first quartile at the bottom of the box and Q3 the third quartile as the top of the box).
Next, the whiskers show the smallest value that is larger or equal to Q1 − 1.5IQR
and the largest value that is smaller than or equal to Q3 + 1.5IQR. Finally, the dots
denote the values that are outside the interval [Q1 − 1.5IQR,Q3 + 1.5IQR], which
are often identified or viewed as outliers. Box and whiskers plots can be very useful
when comparing a continuous variable across subgroups of participants (e.g. males
and females)—see Sect. 1.5.3. The figure was produced using the following code:

> boxplot(face_data$rating)

Next to box and whiskers plots, histograms (examples are shown in Fig. 1.9) are
also often used to visualize continuous data. A histogram “bins” the data (discretizes
it), and subsequently shows the frequency of occurrence in each bin. Therefore, it is
the continuous variant of the bar chart. Note that the number of bins selected makes
a big difference in the visualization: too few bins obscure the patterns in the data,
but too many bins lead to counts of exactly one for each value. R “automagically”
determines the number of bins for you if you pass it a continuous variable; however,
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Fig. 1.8 Example of a box and whiskers plot useful for inspecting continuous variables
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Fig. 1.9 Examples of histograms with different numbers of breaks (R’s default on the left, 5 in the
middle, 50 on the right). Determining the number of breaks to get a good overview of the distribution
of values is an art in itself

you should always check what things look like with different settings. The following
code produces three different histogramswith different numbers of breaks (or bins).19

> hist(face_data$rating)
> hist(face_data$rating, breaks=5)
> hist(face_data$rating, breaks=50)

Finally, a density plot—at least in this setting—can be considered a “continuous
approximation” of a histogram. It gives per range of values of the continuous variable
the probability of observing a value within that range. We will examine densities in
more detail in Chap.4. For now, the interpretation is relatively simple: the higher the

19 The bins don’t always correspond to exactly the number you put in, because of the way R runs its
algorithm to break up the data, but it gives you generally what you want. If you want more control
over the exact breakpoints between bins, you can be more precise with the breaks option and give
it a vector of breakpoints.
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Fig. 1.10 Example of a
density plot on the variable
rating
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line, the more likely are the values to fall in that range.20 The density plot shown in
Fig. 1.10 is produced by executing the following code:

> plot(density(face_data$rating))

It is quite clear that values between 40 and 100 quite often occur, while values higher
than 100 are rare. This could have been observed from the histogram as well.

1.5.3 Relations Between Variables

We often want to visualize multiple variables simultaneously instead of looking at
single variables similar to Fig. 1.4. That way we can see relations between variables.
Themost often used visualization of a relationship between two continuous variables
(and therefore R’s default) is the scatterplot (see Fig. 1.11). Note that here each dot
denotes a unique observation using an (x, y) pair. The following code produces such
a plot:

> plot(face_data$dim1, face_data$rating)

This plot shows that there is a (kind of nonlinear) relationship between the first
dimension of the face and the rating that participants give: for a very low value of
the distance between the eyebrows people seem to provide low attractiveness ratings

20 The interpretation of densities is different than the interpretation of histograms.
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Fig. 1.11 A scatterplot
denoting the relationship
between dim1 and rating
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more frequently. However, the relationship is quite noisy: not everyone provides the
exact same rating for the same value of dim1.21

To see the relation between a categorical variable (nominal or ordinal) and a
continuous variablewe canmake box plots separately for each level of the categorical
variable. Figure1.12 shows the boxplots for rating as a function of gender. This is
what R produces automatically using the plot function. The code to generate the
plot is:

> plot(face_data$gender, face_data$rating)

This default behavior of the plot function in this case is nice. However, we feel the
default is somewhat inconsistent: when passing the full data.frame to the plot
function (see Fig. 1.4) it would have been nice if the same boxplots were shown for
relationships between categorical and continuous variables (e.g., rows 5, 6, and 7).
However, this is regretfully not the case.

1.5.4 Multi-panel Plots

We often plot multiple panels in one single figure. This can be done using the
par(mfrow=c( y, x)) command in R. This basically sets up a canvas with
y rows and x columns for plotting. The following code produces Fig. 1.13 and thus
combines six panels into one figure.

> par(mfrow=c(3, 2))

21 This makes sense: (a) people often do not respond in the exact same way, and (b) the value for
dim2 differs as well!.
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Fig. 1.12 Box plots split for
gender
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> plot(face_data$gender)
> plot(face_data$gender, face_data$rating)
> pie(counts)
> barplot(counts)
> hist(face_data$dim1)
> plot(density(face_data$dim2))

1.5.5 Plotting Mathematical Functions

Often we want to plot mathematical functions (such as y = x2, or z = sin(x) +
cos(y)). Plotting (2D) functions in R is simple and there are multiple ways. We first
create the actual function in R and try it out to make sure you understand how this
function actually works: we pass it the argument x , and it returns the value x2. Here
is a small example:

> square <- function(x) {x^2}
> square(3)
[1] 9

Next, we generate a sequence of numbers—using the built-in function seq. Try to
type ?seq into R to see the different uses of the function. Here we make a sequence
from −2 to 2:

> x <- seq(-2, 2, by=.1)
> x
[1] -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9

-0.8 -0.7 -0.6
[16] -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8 0.9
[31] 1.0 1.1 1.2
> y <- square(x)
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Fig. 1.13 Demonstrating a plot with multiple panels. Note that by now you should be able to name,
and interpret, each of the panels

Make sure you understand the result that is generated when you run print(y).
We can then easily make the (x, y) plot using the following code (Fig. 1.14):

> par(mfrow=c(1, 2))
> plot(x, y)
> plot(x, y, type="l")

Note that Fig. 1.14 displays both the standard plot (on the left), and the plot using
the additional argument type="l"; the latter makes an actual line as opposed to
plotting the separate points. If youwant to have both a line and points you can provide
the option "b".

Alternatively, we can also plot functions directly: the following code produces
Fig. 1.15.

> curve(square, xlim=c(-2, 2))

This will work as long as the function you are plotting accepts an x argument. Note
that you can pass additional arguments to curve to determine the range and domain
of the function: in this case we specify the domain by adding xlim=c(-2,2).
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Fig. 1.14 Plotting a simple
function by evaluating it at a
sequence of points
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1.5.6 Frequently Used Arguments

R’s default plotting functions all have additional arguments to style the created plots.
We have already seen the functionality of the type="l" argument for plot. Here
are a few additional arguments that work for most of the simple plotting functions
in R:

• type: We just saw this difference between either plotting points, or a solid line.
• xlim, ylim: These can be used to specify the upper and lower limits of the x-
and y-axes using c(lower, upper).

• lwd: This can be used to set the line width.
• col: This can be used for colors.
• xlab, ylab: These can be used for labels on the axis by passing a string.
• main: This is the main heading of the plot

So, we can now do something like this to produce Fig. 1.16:

> plot(face_data$gender, face_data$rating,
+ col=c(1, 2), lwd=5, main="Comparing�ratings",
+ xlab="Gender�(males�and�females)",
+ ylim=c(1, 100)
+ )

Finally, note that we can use functions like lines, points, and abline to add
lines and points to an existing plot. You will play with this in the assignments.

Fig. 1.16 Demonstrating
additional arguments for the
plot function
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1.6 Other R Plotting Systems (And Installing Packages)

Up till now we have been using the “standard” plotting functions of R. However, R’s
functionality is greatly expanded by the fact that developers can easily contribute
extension packages to R. A number of specific plotting packages have been added to
the R language over the years. Here we briefly cover two of these, namely, ggplot
and Lattice. Both provide more stylized plots than the standard functions. Here
we briefly introduce each of these plotting systems—and in doing so show how you
can include additional packages. However, both ggplot and Lattice require
quite some time to really master; this is outside the scope of this book.

1.6.1 Lattice

Lattice is older than ggplot, but it is very useful for making multi-panel plots
and for splitting plots according to some variables. Figure1.17 is an example of a
lattice plot that is generated using the following code:

dim1
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Fig. 1.17 Demonstrating a lattice plot and the ability to easily make multi-panel plots using
formula’s
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Fig. 1.18 Demonstrating ggplot2. Shown is a scatterplot with a trend line for each gender

> # install.packages("lattice")
> library(lattice)
> xyplot(rating ~ dim1 | age, groups=gender, data=face_data)

Here, thexyplot function generates the plot. The function takes as its first argument
an R formula object: the syntax rating dim1 | age indicates that we
want to plot rating as a function of dim1 for each level of age. Next, we specify
that we want to plot this relationship grouped by gender; this creates two different
colors for the two genders in each panel. Finally, we point to the data object that
contains these variables using the data=face_data argument.

In the above code-snippet, the line # install.packages("lattice") is
a comment; the # ensures that the line is not executed. However, removing the #
makes this code run, and tells R to automagically download the “lattice” package.

1.6.2 GGplot2

GGplot2 makes very nice looking plots, and has great ways of doing explorative data
analysis. Just to give a brief example, the following code produces Fig. 1.18:

> library(ggplot2)
> qplot(rating,
+ dim1,
+ data=face_data,
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+ geom=c("point", "smooth"),
+ color=gender,
+ main="Regression�of�rating�on�dim1",
+ xlab="dim1", ylab="rating")

See http://ggplot2.org/book/qplot.pdf for more info on GGplot2. Obviously, this
code will only work after you have installed (using install.packages() and
loaded (using library()) the ggplot2 package.

Problems

1.1 This first assignment deals with the dataset demographics-synthetic.
csv.Makesure todownload thedataset fromhttp://www.nth-iteration.com/statistics-
for-data-scientist and carry out the following assignments:

1. Compute the mean, mode, and median of the variables Age, Weight, and
Voting. Provide a short interpretation for each of these numbers.

2. In the dataset, find any values that you believe are erroneous. Hence, look for
outliers or coding errors. Note which values you found (by specifying their row
and column index). Next, remove the rows that contain these “errors” (yes, you
will have to search the web a bit on how to delete rows from a data frame; this
was not explicitly covered in the chapter). Howmany rows are left in the resulting
dataset?

3. Compute the mean, mode, and median of the variable Age again. How did these
values change by removing the outliers?

4. Compare the (sample) variance of the variables Height and Weight. How do
they differ? What does this mean?

5. Use the quantile function to compute the 18th percentile of Age. What does
this score mean?

6. Create a scatterplot relating the Weight (x-axis) and Age (y-axis) of partici-
pants. Do you see a relation?

7. Redo the same plot, but now color the points and add meaningful labels to the
axis. Also, provide a nice title for the plot.

8. Next, add a horizontal line to the plot at Age = 30 and add a vertical line to the
plot at Weight = 90.

9. Create a box plot comparing the distribution of Age for males and females.
10. Create a figure with two panels, one with the scatterplot you just created and one

with the box plot you just created.
11. Create a histogram of the variable Weight. What do you think is a good number

of breaks? Why?

1.2 This second assignment concerns the dataset voting-demo.csv.

1. Inspect the dataset: How many observations (rows) does it contain? And how
many variables (columns)? What do the variables mean?

http://ggplot2.org/book/qplot.pdf
http://www.nth-iteration.com/statistics-for-data-scientist
http://www.nth-iteration.com/statistics-for-data-scientist
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2. Write down the measurement level of each of the variables.
3. Compute all of the descriptive statistics described in this chapter for each of the

variables. Try to interpret each of them. Do they all make sense? If not, why not?
4. Do you see any clear differences between this real—and hence not simulated—

dataset you are looking at right now and the previous simulated dataset that we
looked at in Problem1.1?Think of amethod bywhich you could tell the difference
between simulated and real data in this case.

1.3 The next assignments should strengthen your R programming skills. To keep
up with the book and to use R efficiently in the upcoming chapters, please make sure
you can do the following:

1. Using the for, sum, and length functions (and whatever else you need), write
your own function to create a frequency table (hence, the number of times each
unique numerical value occurs in a vector that is passed to the function).

2. Create a function to compute the mean of a variable using only the sum and
length functions.22

3. Create a function to compute the mean of a variable using only the for function.
4. Discuss how the above two functions for computing a mean differ. Does this

difference change if you compute the mean of a variable with more and more
observations? Use the Sys.time function to see how long each of the two
functions takes to compute the mean as a function of the number of observations.

5. Run the command x <- rnorm(100, mean=0, sd=1) to create a new
variable called x. What is the size of x?23

6. Compute descriptive statistics for x that you think are useful.
7. Visualize the data in x. What plot do you select and why?
8. Now try to examine in the same way, by computing descriptives and by

plotting, the variable x2 <- c(rnorm(1000, mean=0, sd=1),
rnorm(1000, mean=4, sd=2)).

1.4 Suppose we asked a group of 8 persons how old they are and recorded the
following ages: 30, 23, 29, 36, 68, 32, 32, 23.

1. Use these data to calculate the following descriptive statistics by hand: arithmetic
mean, median, mode, range, mean absolute deviation, variance, and standard
deviation. Give a short interpretation of each statistic you calculated.

2. The age of 68 is quite an outlier in this dataset since it is considerably greater
than the remaining ages. Remove the age of 68 from the dataset and calculate
the above descriptive statistics again based on the remaining seven ages. What
do you notice? Are some descriptive statistics more sensitive to the outlier than
others?

3. Compute standardized (z) scores for each person in the 8 person dataset. Next,
compute the mean and variance of the z-scores.

22 Obviously, you can use operators such as + and *.
23 We will discuss the command rnorm in more detail in Sect. 4.8.1.
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1.5 Suppose you are given aggregated (or grouped) data describing the Age in
years of a sample of n people. The dataset does not contain the raw n data points,
but rather it contains K age values denoted by v1, . . . , vK . For example, if v1 = 12,
this means that the age of the first group of people is 12. Next, the data also contains
frequencies fk , which indicate how often a specific age vk is present in the original
(i.e., unaggregated) dataset. Using this setup, answer the following questions:

1. What is the result of the sum
∑K

k=1 fk?
2. Give a formula for computing the variance of Age for the n people based on the

aggregated data.
3. Can you give a formula for computing the median of Age based on the grouped

data? If so, provide it. If not, then why is this not possible?
4. Implement, in R, a function for computing the mean of an aggregated dataset and

a function for computing the variance of an aggregated dataset.

1.6 Extra In this last assignment we will take another look at the simulated dataset
we considered in Problem 1.1. We used the following R code to produce this dataset:

> # Function for creating the data in demographics-synthetic.csv:
> create_data <- function(n, seed=10) {
+ set.seed(seed)
+
+ # Create:
+ gender <- rbinom(n, 1, .48)
+ height <- round(170 + gender*10 + rnorm(n, 0, 15), 1)
+ weight <- height / 2 + runif(n, -10, 10)
+ voting <- rbinom(n, 5, c(.3, .3, .2, .195, .005))
+ age <- round(23 + sqrt(rnorm(n, 0, 5)^2), 1)
+
+ # Recode:
+ voting <- ifelse(voting==4, 99, voting)
+ gender <- ifelse(gender==1, "Male", "Female")
+
+ # Return data frame:
+ data <- data.frame(
+ "Gender" = gender,
+ "Age" = age,
+ "Weight" = weight,
+ "Height" = height,
+ "Voting" = voting)
+
+ return(data)
+ }
>
> # Create the data and store it:
> n <- 500
> data <- create_data(n)
> write.csv(data, file="demographics-synthetic.csv")

Obviously, you should feel free to play around with this function. However, make
sure you do the following:

1. Investigate the rbinom() function. What does it do?
2. Investigate the rnorm() function. What does it do?



36 1 A First Look at Data

3. What happens if you change the value of seed?
4. Explain what the ifelse() function does.

If you have time, you can always teach yourself more GGplot. For example, try to
follow the tutorial at http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html. It
will certainly pay off in the rest of your data science career if you are able to quickly
make informative (and cool-looking) plots!

Additional Material I: Installing and Running RStudio

RStudio is an integrated development environment (IDE) for R. It includes a console,
a syntax-highlighting text editor that supports direct code execution, as well as tools
for plotting, viewing your history, debugging and managing your workspace.

The Steps Involved When Installing RStudio

In order to run R and RStudio on your system, you need to follow the following three
steps in the same order:

1. Install R
2. Install RStudio
3. (optionally) Install additional R-Packages

Installing R

Installing R is different for users of different operating systems:

• Windows users can download the latest version of R at https://cran.cnr.berkeley.
edu/bin/windows/ and subsequently open the .exe file to install R.

• Mac users can get their version of R at https://cran.cnr.berkeley.edu/bin/macosx/
and open the downloaded .pkg file to install R.

• Linux users can follow the instructions on https://cran.cnr.berkeley.edu/bin/linux/.
Users of Ubuntu with Apt-get installed can execute sudo apt-get install
r-base in their terminal.

Install RStudio

After installing R, you will need to install RStudio. The different versions of RStudio
can be found at https://www.rstudio.com/products/rstudio/download/#download.
After installation you can open up RStudio; it should look like Fig. 1.19.

http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
https://cran.cnr.berkeley.edu/bin/windows/
https://cran.cnr.berkeley.edu/bin/windows/
https://cran.cnr.berkeley.edu/bin/macosx/
https://cran.cnr.berkeley.edu/bin/linux/
https://www.rstudio.com/products/rstudio/download/#download
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Fig. 1.19 Demonstrating ggplot. Shown is a scatterplot with a trend line for each gender

Installing Packages (Optional)

To install packages using RStudio click on the Packages tab in the bottom-right
section and then click on install. A dialog box will appear. In the Install Packages
dialog, write the package name you want to install under the Packages field and
then click install. This will install the package you searched for or give you a list of
matching package based on your package text.

You should now be good to go!
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Chapter 2
Sampling Plans and Estimates

2.1 Introduction

In the previous chapterwe computed descriptive statistics for the dataset on faces. The
results showed that the average rating was 58.37 and that men rated the faces higher
than women on average. If we are only interested in the participants in the study and
we are willing to believe that the results are fully deterministic,1 we could claim that
the group of men rates higher than the group of women on average. However, if we
believe that the ratings are not constant for one person for the same set of faces2

or if we would like to know whether our statements would also hold for a larger
group of people (who did not participate in our experiment), we must understand
what other results could have been observed in our study if we had conducted the
experiment at another time with the same group of participants or with another group
of participants.

To be able to extend your conclusions beyond the observed data, which is called
more technically statistical inference, you should wonder where the dataset came
from, how participants were collected, and how the results were obtained. For exam-
ple, if the women who participated in the study of rating faces all came from one
small village in the Netherlands, while the men came from many different villages
and cities in the Netherlands, you would probably agree that the comparison between
the average ratings from men and women becomes less meaningful. In this situation
the dataset is considered selective towards women in the small village. Selective
means here that not all women from the villages and cities included in the study
are represented by the women in the study, but only a specific subgroup of women
have been included. To overcome these types of issues, we need to know about the
concepts of population, sample, sampling procedures, and estimation of population

1 Deterministic means here that the scores of the participants on the tested faces will always be the
same: they are without any uncertainty. In reality though, scoring or rating is subjective and variable
even for just one person.
2 Not constant means that a rating of 60 for one face from one of the participants could also have
been 50 or 65 if we had asked for the rating at another moment.
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characteristics, and also how these concepts are related to each other to be able to do
proper statistical inference.

Figure2.1 visualizes the relation between these concepts. On the left side we
have a population of units (e.g., all men and women from the Netherlands) and on
the right side we have a subset of units (the sample). Sampling procedures are formal
probabilistic approaches to help collect units from the population for the sample.
For the sample we like to use x1, x2, ...., xn for the observations of a certain variable
(e.g., ratings on faces from pictures). The calculations on the sample data, which we
have learned in Chap.1, are ways of describing the sample. For the population the
same notation x1, x2, . . . , xN for all N units is used. Here we have used the same
indices for the sample and the population, but this does not mean that the sample x1,
x2, . . . , xn is just the first n units from the population x1, x2, . . . , xN . Mathematically,
we should have written xi1 , xi2 , ...., xin for the sample data, with ih ∈ {1, 2, . . . , N }
and ih �= il when h �= l, since any set of units i1, i2, .., in from the population could
have ended up in the sample. The values in the sample are referred to as a realization
from the population.

If we know which sampling procedure was applied to collect the units for the
sample, we would also know how close the calculations or statistics described in
Chap.1 would be to the theoretical value in the whole population.3 Thus the sam-
pling procedure and the choice of calculation on the sample data (an average, median,
first quartile, standard deviation etc.) would make statistical inference mathemati-
cally precise and it would therefore help us when making statements beyond the
sample data. In terms of statistical inference, the calculations on the sample data
are referred to as estimates for the theoretical value in the whole population. Note
that we often introduce a Greek symbol for a theoretical value in the population,
like μ = ∑n

i=1 xi/N and σ 2 = ∑n
i=1(xi − μ)2/N for the mean and variance of the

population, respectively (see Fig. 2.1).
By studying this chapter you will learn the following:

• The formal definitions of population, units, and sample.
• Different probability sampling approaches that one can use to select units from a
population to create a representative sample.

• The concepts of bias, standard error, and mean squared error to evaluate the
closeness of sample calculations to the population value and how these depend on
the specific sampling approach.

• Methods of determining bias, standard error, andmean square error of a sampling
procedure using R.

3 The theoretical value is a calculation procedure applied to all units in the population. It is considered
theoretical, since the values on each unit in the populationmaynot exist butwebelieve that they could
exist. The faces dataset makes this clear, since we only know the ratings of faces for participants in
the study, and values beyond the study only exist if faces were to be rated by other units as well.
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Fig. 2.1 Graphical representation of the material in this chapter: we are concerned with the rela-
tion(s) between population and sample, and the quality of sampling plans and estimators

2.2 Definitions and Standard Terminology

In this section we briefly introduce some definitions and standard terminology. Fre-
quently, we wish to say something about a group of units other than just the ones we
have measured. A unit is usually a concrete or physical thing for which we would
like to measure its characteristics. In medical research and the social sciences units
are mostly human beings, while in industry units are often products, but units can
essentially be anything: text messages, financial transitions, sales, etc. The complete
set of units that we would like to say something about is called the (target) popula-
tion. The set of units for which we have obtained data is referred to as the sample.
The sample is typically a subset of the population, although in theory the sample
can form the whole population or the sample can contain units that are not from the
target population. If we are interested in individuals in the age range of 25 years to
65 years, it could happen that a person with an age outside this range is accidently
included in the sample.

Statistics is concerned with how we can say things, and what we can say, about
a population given that we have only observed our sample data. As we mentioned
before, we call this statistical inference: “Statistical inference is the process of deduc-
ing properties of an underlying population by analysis of the sample data. Statistical
inference includes testing hypotheses for the population and deriving population
estimates.”, see e.g., Casella and Berger (2002).

In many situations it is unnecessary to specify the unit explicitly since it will be
clear from the context, but it is not always easy to determine the unit. For instance,



42 2 Sampling Plans and Estimates

a circuit board contains many different components. Testing the quality of a circuit
board after it has been produced requires the testing of all or a subset of the com-
ponents. In this case it is not immediately clear whether the circuit board itself or
whether the components are the units. In this setting the circuit board is sometimes
referred to as the sample unit, since it is the unit that is physically taken from the
production process. The components on the circuit board are referred to as observa-
tion units, since it is the unit that is measured. If the components were to be tested
before being placed on the circuit board, however, the component would represent
both the sample and observation unit.4

In principle we would expect that a population is always finite, since an infinite
number of units does not exist in real life. However, populations are often treated
as infinite. One reason is that populations can be really really large. Examples are
all humans, all animals, all telephones, all emails, all internet connections, and all
molecules in the world. It is mathematically often more convenient (as we will see
later) to assume that such a population is infinite. However, in this chapter we are
concerned solely with finite populations; we will discuss infinite populations in later
chapters and discuss their relation with this chapter.

Properly defining or describing a population can be difficult. For instance, let’s
assume we would like to know whether students at Dutch universities are satisfied
with their choice of study. At first the population could simply be all students at
all Dutch Universities, but this is not necessarily well defined. Do we include all
students and also students that have been registered abroad but are studying at aDutch
University for a short period of time? Do we include students of the University of
Groningenwho study at their campus inChina?What about studentswhohave chosen
two programs (double bachelor or master) or are registered at multiple institutes?
What about students that have recently changed their program? This simple example
shows that we probably need to specify many more details before our population of
interest is truly defined.5 These details often require specification of a time period to
eliminate changes in the population over time. A student at a Dutch University 10
years ago is probably different from a student today, but also the choices of program
are different over these time periods. For example, Data Science did not exist as a
bachelor program in the Netherlands before the academic year 2016–2017.

Furthermore, even if the population is established, measuring all units is often
impossible or too elaborate. This means that information about the population can
only be obtained by considering a subset of the population.6 In the current era of

4 Note that other terminology for sample and observation unit is used in different fields of science
or even within statistics. For instance, units are sometimes called elements and an observation unit
may be referred to as an elementary unit or element. The sample unit is sometimes referred to as
enumeration or listing unit (see Levy and Lemeshow 2013).
5 Unfortunately, many studies on human beings hardly ever make their target population explicit,
which makes research claims somewhat fuzzy.
6 Any subset of units from a population is called a sample, irrespective of how the sample has been
obtained. We use the term sampling to refer to the activity of obtaining the units in a sample. This
includes taking the measurements on the units and not just the physical collection of units.
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big data7 where we measure and store all kinds of information, we may think that
sampling is redundant, since we can measure almost all units from the population.
This is, however, not true for a number of reasons:

1. In many applications we really can’t measure the complete population. For
instance, one of the tests applied to aircraft engines is the “frozen bird test”.
A frozen dead bird is shot into one operating aircraft engine to determine if the
engine can consume the bird (it goes through the engine) and still keeps running
properly after the bird has gone through. Clearly, shooting a large solid projectile
through an engine will cause damage to the engine, so this is not a test you would
like to apply to each produced aircraft engine. In industry, many destructive tests
are applied to determine product quality and this will only be done on a small
subset of products.

2. Time, space, or budget restrictions often do not allow us to measure all units
from a population. For instance, there is a legal obligation to verify the finan-
cial bookkeeping of all businesses that are registered at the stock exchange. It
is impossible to verify each and every item in the bookkeeping and therefore
sampling is necessary.

3. Big data itself may be an argument for sampling. If we have a very large sample
or we have been able to measure all units from the population, the resulting
dataset can be so large that it becomes impossible to analyze the full data at one
computer. Sampling techniques can then help reduce the size of the data and still
obtain the required information.

To be able to say something about a population by using a sample, the samplemust
be representative. A representative sample can be intuitively defined as a sample of
units that has approximately the same distribution of characteristics as the population
from which it was drawn. Although this is not an explicit definition, since it does not
clarify howmuch “approximately” trulymeans, it at least intuitively presents a notion
of the goal of representative sampling. Note that there have been alternative views on
what a representative sample should be (see, e.g., Kruskal and Mosteller 1980). For
instance, a representative sample is a miniature of the population or it should contain
full coverage of the population, like Noah’s Ark. However, it was Jerzy Neyman
with his seminal paper in 1934 who made the definition of representative sampling
precise (Neyman 1992).

There are many ways in which we can select units from a population. We often
distinguish two groups of methods: non-representative sampling methods, and rep-
resentative sampling methods. A non-representative sample implies that we do not
know the exact process by which units in the population became part of the sample.
The sample itself may describe the population appropriately or not, but we can never
demonstrate or show this. For representative samples this is not the case: here we
know how units have been included in the sample. More precisely, we would know
the probability with which a unit of the population is being collected. Representative

7 We have to admit that Big Data is a bit of a buzz word that is not very well defined. For now we
will just go with the fuzzy notion of a very large dataset; one consisting of many rows and columns.
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sampling is therefore also referred to as random or probability sampling. Thus the
definition of a representative sample is related to how the data has been collected
from the population and it requires random elements.

2.3 Non-representative Sampling

The most common non-representative sampling methods may be divided into three
categories: convenience sampling, haphazardly sampling, and purposive sampling.
Although these sampling methods are frequently in use, it is strongly recommended
not to apply these methods, unless knowledge is available on how to adjust or correct
the sample for inferential purposes.

2.3.1 Convenience Sampling

Convenience sampling collects only units from the population that can be easily
obtained, such as the top layer of a pallet of boxes or trays with vials or the first cavity
in a multi-cavity molding process. This may provide a biased sample, as it represents
only one small part or time window of the whole processing window for a batch of
products. The term bias indicates thatwe obtain the value of interest with a systematic
mistake: we study bias in more detail later in this chapter. Convenience sampling is
often justified by using the argument of population homogeneity.8 This insinuates
that either the population units are not truly different or the process produces the
population of units in random order. Under these assumptions it is indeed irrelevant
which set of units is collected, but these assumptions seem to contradict the need for
sampling in the first place and are hardly ever justified.

2.3.2 Haphazard Sampling

Haphazard sampling is often believed to be an excellent way of collecting samples,
because it gives a feeling or the impression that each unit was collected completely
at random.9 This way of sampling is best described by an example. If one stands in a
library in front of a bookshelf and one is asked to collect an arbitrary book, then “just
picking one” would be a haphazard sample. However, in practice it turns out that this
procedure typically collects books in the center of the bookshelf and typically books

8 Homogeneity means “being all the same or all of the same kind”.
9 Random is an often used word, but it is hard to properly define. In statistics we often use the term
uniformly random for selection processes that are “governed by or involving equal chances for each
unit”.
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that are larger or thicker. This is usually not what people feel or believe when they try
to take an arbitrary book. Hence despite the feeling of randomness when performing
haphazard sampling, often the resulting sample is not truly random.Another example
is that human beings have the tendency to choose smaller digits when they are asked
to choose digits from 1 to 6 (Towse et al. 2014).

2.3.3 Purposive Sampling

Purposive sampling or judgmental sampling tries to sample units for a specific pur-
pose. This means that the collection of units is focused on one or more particular
characteristics and hence it implies that only units that are more alike are sampled.
In epidemiological research10 purposive sampling can be very practical, since it may
be used to exclude subjects with high risks for unrelated diseases. In clinical trials11

inclusion (e.g., participants older than 65 years) and exclusion (e.g., no pregnant
women) criteria are explicitly applied to make sure a sample has specific character-
istics. This way of sampling is strongly related to the definition of the population,
since deliberately excluding units from the sample is analogous to limiting the pop-
ulation of interest. Thus purposive sampling may be useful, but it is limited since
it does not allow us in general to make statements about the whole population, and
at best only about a limited part of the population (although we may not be sure
either). In other words, it does most likely produce a biased sample with respect to
the complete population.

2.4 Representative Sampling

All the sampling methods discussed above have the risk that some units are much
more likely to be included in the sample than others, which can make statistics
computed on the sample data bad estimates for the population parameters of interest.
Even worse: with non-representative sampling some units are not only more likely
to be included in the sample, we also do not actually know how likely units were
included. Hence, even if we wanted to, we could not control for these systematic
differences between units. When performing representative sampling we sample
units in such a way that we do know how likely units are to be included in the sample
(even if they will be different from unit to unit).

10 The research field that is concerned with understanding health and disease.
11 Experimental studies on human beings to determine if a new treatment is beneficial with respect
to placebo or a currently available treatment.
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To collect representative samples, statisticians have come up with the concept of
probability sampling or random sampling. Random sampling is a sampling method
that uses a random mechanism. This means that the probability of each unit in the
population of becoming part of the sample is both positive and known. Note that we
have not yet formally discussed the definition of probability: we will do this in the
next chapter. However, for now the intuitive definition of probability that we all know
from throwing a die suffices: if a die has six sides—which most of them have—then
the probability of throwing a six is equal to 1/6. We can easily generalize this idea
to dice that have K sides, and thus the probability for each side is simply 1/K .
Hence, if we want to select a unit with probability 1/m, we could create an m-sided
die, roll it, and include the unit in the sample that belongs to the number on top of
the die. Obviously this is not how samples are selected in practice, as we collect
more than one unit and we use computers to generate (pseudo) random numbers.
For the interested reader we have described how to generate random numbers using
algorithms in the additional material at the end of this chapter.

The most common random sampling methods are: simple random sampling, sys-
tematic sampling, stratified sampling, and cluster sampling, we will discuss these
below. Throughout this chapter we will assume the existence of a (finite) list of all
units in the population. Such a list, however, will often not exist in practice. For
instance, there is no complete list of all internet connections in the Netherlands nor
is there a list of all dolphins in the ocean. We will however assume that such a list
could be created, and discuss sampling mechanisms accordingly.

2.4.1 Simple Random Sampling

Simple random sampling is a way of collecting samples such that each unit from the
population has the exact same probability of becoming part of the sample. Simple
random sampling is a conceptually easy method of forming random samples but it
can prove hard in practice. Because of its importance in statistical theory we discuss
it in more detail.12

To illustrate simple random sampling, suppose that the entire population consists
of six units (N = 6) only, numbered from 1 to 6. It is decided to collect a sample
of three units (n = 3) from this population. For a simple random sample each of
20 combinations of three units could possibly form the sample S, i.e., the possible
samples are:

12 Simple random sampling is frequently combined with other choices or settings (see stratified and
cluster sampling).
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S1 = (1, 2, 3) S2 = (1, 2, 4) S3 = (1, 2, 5) S4 = (1, 2, 6)
S5 = (1, 3, 4) S6 = (1, 3, 5) S7 = (1, 3, 6)
S8 = (1, 4, 5) S9 = (1, 4, 6)
S10 = (1, 5, 6)
S11 = (2, 3, 4) S12 = (2, 3, 5) S13 = (2, 3, 6)
S14 = (2, 4, 5) S15 = (2, 4, 6)
S16 = (2, 5, 6)
S17 = (3, 4, 5) S18 = (3, 4, 6)
S19 = (3, 5, 6)
S20 = (4, 5, 6)
The simple random sample can now be collected by generating one number k

between 1 and 20 (using our K = 20-sided die) and then selecting Sk when k appears
on top of the die. Note that each sample has the same probability (1/20) of being
collected and that each unit has the same probability (1/2) of being collected.13

This is a general property of simple random sampling: each unique sample has
the same probability of being selected, and, as a result, each unit has the same
probability of being selected (the numbers depend on the population and sample size).
Hence, simple random sampling guarantees that each unit has the same probability
of becoming part of the sample.

In R, this can be conducted by applying the function sample.14 The function
sample has (at least) three arguments: the data on the variable of interest (here we
choose x), the number of samples drawn from the data (here we choose 1), and the
indicator that tells us whether sampling is done with replacement (here we choose
FALSE)15:

> x <- c(1:20)
> set.seed(575757)
> sample(x, 1, FALSE)
[1] 15

Thus, S15, containing the units 2, 4, and 6, should be collected from the population.16

In practice, it might be cumbersome to create a list of all possible samples S1, S2,
…, SK and subsequently select one of the samples because the number of samples
K of size n that can be created with population size N rapidly increases with N and
n. The number K of unique samples of size n is given by

K = N !/ [n! (N − n)!] ,

13 Each unit in the population appears in 10 out of 20 possible samples Sk . For instance, unit 3
appears in S1, S5, S6, S7, S11, S12, S13, S17, S18, and S19.
14 Notice the argument FALSE that is supplied to the sample function is to indicate that there is
no replacement. See also next page on sampling without replacement.
15 Sampling with replacement implies that the units are put back into the population after being
sampled and can be sampled again.
16 Note that we have provided a seed number (initial value) to make the procedure reproducible.
Every time the procedure is run, you will obtain sample 15.
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with x ! = x × (x − 1) × (x − 2) × · · · × 2 × 1. To see this, note that a set of num-
bers from {1, 2, 3, . . . , N } can be ordered in N ! ways.17 These are all the possible
permutations of the numbers of 1 to N . At the first position there are N units to
choose from, at the second position there are N − 1 units left to choose from, then at
the third position there are N − 2 units left to choose from, etc., until the last unit is
fixed by the collection of all previous collected N − 1 units. This makes N ! possible
options or permutations. Now assume that we take the first n positions as the sample.
All permutations from N ! that would just permute the first n positions, which are n!
permutations, and/or permute the last N − n positions, which are (N − n)! permu-
tations, would not lead to another set of units from the population. Thus given one
permutation from the N ! permutations, there are n! × (N − n)! other permutations
from the N ! permutations that result in the same sample. Thus the unique number of
samples of size n from a population of size N is now K = N !/ [n! (N − n)!].18

A practically more feasible alternative approach of collecting a simple random
sample is sampling the units sequentially from the populationwithout replacement.19

This leads to the same unique sample S defined by the permutations but without the
need to list all the possible samples. To illustrate this consider again the example of
N = 6 and n = 3. The probability that we would collect sample S15 = (2, 4, 6), for
instance, is calculated as follows. First we need to drawunit 2, which has a probability
of 1/6. Each unit in the population has the same probability of being collected. After
unit 2 has been collected, the probability of collecting unit 4 is equal to 1/5, since
each of the remaining five units in the population has the same probability of being
collected. Then finally, to collect unit 6, after units 2 and 4 have been taken out
of the population, the probability is equal to 1/4. To obtain the probability that
(2, 4, 6) occurs is just the product of probabilities (as we will learn in Chap. 3). Thus
the probability of obtaining (2, 4, 6) is equal to 1/120 = 1/6 × 1/5 × 1/4. This is
clearly not equal to 1/20, which we indicated earlier as being the probability for
(2, 4, 6). This is because we have assumed in the calculation of the probability of
1/120 that the order is strictly first unit 2, then unit 4, and finally unit 6. However,
the order in which we collect units 2, 4, and 6 is irrelevant, and we ignored this order
when computing our previous result of 1/20. To resolve the difference, notice that
the number of ways in which we can permute the three units is 3! = 3 × 2 × 1 = 6
(namely, (2, 4, 6); (2, 6, 4); (4, 2, 6); (4, 6, 2); (6, 2, 4); (6, 4, 2)). Each of these
permutations has the same probability of being collected as permutation (2, 4, 6).
Thus the probability of collecting sample (2, 4, 6), irrespective of the order in which

17 The x ! notation is called “x-factorial”.
18 Note that it does not matter which n positions of a permutation of {1, 2, 3, . . . , N } you would
choose. For our example therewould be 6! = 720 permutations of {1, 2, 3, . . . , 6}. If we consider the
permutations for which the first three elements remain {1, 2, 3}, there are 36 permutations (3! = 6
permutations of {1, 2, 3} and 3! = 6 permutations of {4, 5, 6}) leading to the same sample {1, 2, 3}.
Thus there will be 20 = 720/36 different samples (given by S1, S2, . . . , S20).
19 Sampling without replacement means that the unit that is collected for the sample is not placed
back in the population. This is common in medical science, marketing, psychology, etc. Sampling
with replacement puts the unit back every time it is collected. For research on animals in the wild,
units are of course being placed back.
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they are collected, is now 6 × 1/120 = 1/20. Thus the approach of sequentially
collecting units (without replacement) would give each triplet Sk above the same
probability of 1/20, as we found before!

In general, the probability of collecting sample Sk of size n from a population
of N units, using sequential sampling, is equal to n! (N − n)!/N ! which is equal
to one over the number of unique samples. The probability that a specific unit is
part of the sample is given by n/N . To demonstrate this let’s focus on the first unit
(i = 1) of the population. In total there are N !/ [n! (N − n)!] possible samples of
size n from a population of N units. The number of samples that does not contain
unit 1 is equal to (N − 1)!/ [n! (N − 1 − n)!], since they are all the samples from
population {2, 3, . . . , N } without unit 1. Thus the probability that unit 1 is not con-
tained in the sample is equal to (N − 1)!/ [n! (N − 1 − n)!] / (N !/ [n! (N − n)!]) =
(N − n) /N . The probability that unit 1 is contained in the sample is then 1 −
(N − n) /N = n/N . Since we can repeat this argument for each unit i in the popu-
lation, the probability n/N holds true for every unit in the population.

2.4.2 Systematic Sampling

To obtain a sample of size n using systematic sampling, a few steps are required.
First the population should be divided into n groups and the order of the units (if
some order exists) should be maintained (or otherwise fix the order). Now suppose
that each group consists of m units (thus the population size is N = nm) ordered
from 1 to m in each group. From the first group one unit is randomly collected with
probability 1/m. Say the pth unit was the result. Then from each of the n groups
the pth unit is collected too, forming the sample of n units. Note that systematic
sampling provides only m possible sets of samples, i.e., S1, S2, . . . , Sm .

Consider the population of six units again where we wish to collect a sample
of three units. Splitting the population in to three groups for example provides the
subgroups (1, 2); (3, 4); and (5, 6). From the first group, which consists of only
two units, one unit should be randomly collected with probability 1/m = 0.5. Thus
the sample can now only consist of S6 = (1, 3, 5) or S15 = (2, 4, 6). Note that we
have used the notation or index of the set of possible samples from simple random
sampling. The possible samples from systematic sampling are quite different from the
set of samples that can be obtained with simple random sampling. However, similar
to simple random sampling, each unit in the population still has the same probability
of being collected. The probability that a unit enters the sample is p = 1/m, which
is the same as the probability of selecting one of the m possible sample sets.

The most important advantage of systematic sampling over simple random sam-
pling is the ease with which the sample may be collected. Systematic sampling is
often used in manufacturing in relation to a time period, for instance taking a unit
every half hour. With a constant production speed a systematic sample is created if
the first time point within the first half hour is taken randomly. This is clearly much
easier than collecting a simple random sample at the end of production. It probably
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leads to fewer mistakes or to improper “short cuts” in sampling that would lead to a
haphazard or convenience sample. Systematic sampling can also lead to more pre-
cise descriptive statistics than simple random sampling (see Cochran 2007). A clear
disadvantage of systematic sampling is that the “period” for systematic sampling
may coincide with particular patterns in the process or population.

2.4.3 Stratified Sampling

Simple random and systematic sampling methods implicitly assume that there is no
particular group structure present in the population. At best they assume that the order
of participants is aligned with an ordering in time. Structures in a population may
be caused by particular characteristics. For instance, products may be manufactured
on several different production lines, which form particular subpopulations within
the population of products. Or, age, gender, and geographic area may form typical
subgroups of people with different disease prevalence or incidence.20

When the numbers of units across these subpopulations are (substantially) dif-
ferent, simple random and systematic sampling may not collect units from each
subgroup. Indeed, suppose that two production lines, say A and B, are used for the
manufacturing of products and production line A produced 1,000 products, while
production line B only produced 10 products. Then a simple random sample of 100
products may not necessarily contain any units from production line B.21 Thus pro-
duction line B would probably be under-represented. Stratified sampling is used to
accommodate this issue by setting the sample size for each subpopulation (often
called strata) to a fixed percentage of the number of units of the subpopulation. For
instance, a 10% sample from the population of products from the two production
lines A and B results in a simple random sample of size 100 units from line A and a
simple random sample of size 1 unit from line B. By selecting 10% of the units from
each stratum we are certain that each stratum is included in the sample.

Stratified sampling can also be applied to time periods, similar to systematic sam-
pling. The population is then divided into n groups such that the order in units is
maintained. From each group one unit is randomly collected with probability 1/m,
when each group contains m units. Note that this form of stratified sampling is not
identical to systematic sampling (although thismethod of stratified sampling is some-
times referred to as systematic sampling). In the case of the ordered population of
six units in the example for systematic sampling, the population is again split up into
three periods, i.e., (1, 2); (3, 4); and (5, 6). With stratified sampling the sample can
now exist of the following possibilities: S6 = (1, 3, 5), S7 = (1, 3, 6), S8 = (1, 4, 5),
S9 = (1, 4, 6), S12 = (2, 3, 5), S13 = (2, 3, 6), S14 = (2, 4, 5), S15 = (2, 4, 6), using

20 Prevalence is the proportion of the population that is affected by the disease and incidence is the
proportion or probability of occurrence within a certain time period.
21 You will learn in the following chapter that this probability is equal to 1000
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the notation of the sampling sets for simple random sampling. Thus stratified sam-
pling may lead to samples that are not possible with systematic sampling, but it does
not produce all possible samples from simple random sampling.

The number of possible samples that can be collected with stratified random
sampling is given by

KS = N1!
n1!(N1 − n1)! × N2!

n2!(N2 − n2)! × · · · × NM !
nM !(NM − nM)! , (2.1)

with Nh the population size in stratum h, nh the sample size taken from stratum h, and
M the number of strata. Note that N1 + N2 + · · · + NM = N and n1 + n2 + · · · +
nM = n represent the total population and sample size, respectively. In the example
above we had M = 3 strata, a population size of Nh = 2 for each stratum, and a
sample size nh = 1 for each stratum. The number of possible samples is thus indeed
8 = 2 × 2 × 2.

The probability of collecting any of the KS samples is again 1/KS , with KS given
in Eq. (2.1), the same calculation principle as in simple and systematic sampling.
The probability of collecting a unit now depends on the stratum the unit is part of.
Using the probability for simple random sampling, the probability for any unit in
stratum h is equal to nh/Nh . If the ratio of the sample size nh and stratum size Nh

is the same across all strata, each unit in the population has the same probability of
being collected in the sample. This type of stratified sampling is called proportional
stratified sampling.

2.4.4 Cluster Sampling

Directly sampling units from populations is not always feasible. For instance, in
several countries there are no complete or up-to-date lists of all houses in a certain
geographic area. However, using maps of the region, groups or clusters of houses
can be identified and these clusters can then be sampled. In other settings, economic
considerations are used to form clusters of units that are being sampled. To deter-
mine how many hours per day children in the Netherlands play video games, it is
logistically easier and financially cheaper to sample schools from the Netherlands
and then contact (a random sample of) the children at these schools. Thus cluster
sampling involves random sampling of groups or clusters of units in the population.

Cluster sampling can be less representative than sampling units directly. For
instance, a random sample of 20,000 children from the Netherlands may cover the
Netherlands more evenly than a random sample of 20 schools with on average 1,000
students. Additionally, cluster sampling introduces a specific structure in the sample
which should also be addressedwhen the data is being analyzed. The cluster structure
introduces two sources of variation in the data being collected. In the example of the
number of hours per day that children play video games, children within one school
may be more alike in their video game behavior than children from other schools.
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These sources of variation need to be quantified to make proper statements on the
population of interest.

Cluster sampling can be performed as single-stage or inmultiple stages. A single-
stage cluster sample uses a random sample of the clusters and then all units from
these clusters are selected. In a two-stage cluster sample, the units from the sampled
clusters are also randomly sampled instead of taking all units from the cluster. The
number of stages can increase in general to any level, depending on the application.
For instance, sampling children from the Netherlands can be done by sampling first
a set of counties, then a set of cities within counties, then a set of schools within
cities, and then finally a set of classes within schools (with or without sampling
children from these classes). The sampling units for the first stage (e.g. counties) are
referred to as primary cluster units. Sampling these different levels of clusters can
be performed using simple random sampling, systematic sampling, or even stratified
sampling, if certain cluster are put together on certain criteria.

Cluster sampling is in a way related to stratified sampling. For instance, in a two-
stage cluster sample, the clusters may be viewed as strata, but instead of collecting
units fromeach stratum, the strata themselves are first being randomly sampled. Since
we deal withmultiple levels of hierarchical clusters, the calculation of the probability
of collecting one unit from the population and the probability of collecting one of
the many sample sets is more cumbersome for cluster sampling. Therefore, we do
not provide general formulae.

To illustrate the complexity of cluster random sampling, consider a population of
children at six schools in a city in the Netherlands, with N1 = 500, N2 = 300, N3 =
700, N4 = 1, 500, N5 = 1, 100, and N6 = 400 children. Here we have six (M =
6) clusters in total. The municipality decided to use a two-stage cluster sampling
approach, where first three (m = 3) schools are randomly collected and then one
hundred (n = 100) children are randomly collected within the schools. To list all
possible samples will be computationally impossible, since the number K of sample
sets will be ridiculously large. For instance, the number of samples just from school
1 alone will already be equal to 2.0417 × 10107. However, we may still calculate the
probability for each unit to enter the sample.

The probability for a unit i in school h is determined by ph = nh/Nh , as we
discussed for simple random sampling. It does not depend on the unit i , but it
does depend on the school h. Thus the probabilities for collecting units in the six
schools are p1 = 1/5, p2 = 1/3, p3 = 1/7, p4 = 1/15, p5 = 1/11, and p6 = 1/4,
respectively. Since each school has the same probability (1/6) of being collected
and we collect three schools, the probability for a unit being collected in the
sample is now equal to p1 = 1/10, p2 = 1/6, p3 = 1/14, p4 = 1/30, p5 = 1/22,
and p6 = 1/8, for units in the schools 1, 2, 3, 4, 5, and 6, respectively. Note
that the units from the smallest school have the highest probability of being col-
lected (1/6), while the probability for each unit in the population would be equal
to 3 × 100/ [500 + 300 + 700 + 1500 + 1100 + 400] = 1/15 for simple random
sampling. Furthermore, the probability that school h is collected with simple
random sampling is ph = Nh/ [N1 + N2 + · · · + N6]. Thus with simple random
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sampling the largest school has the highest probability of being represented in the
sample, while in cluster random sampling each school has the same probability (1/6).

2.5 Evaluating Estimators Given Different Sampling Plans

In Chap.1, several descriptive statistics were discussed, like the average, standard
deviation, median, quartiles, quantiles, etc. They were introduced to summarize the
collected data, but in the context of sampling they can be viewed as so-called estima-
tors: quantities that we compute using the data in our sample to say something about
the population. For example, can we determine how well the sample average x̄ , as
defined in the previous chapter, estimates the population mean, μ? This means that
we would like to determine the “closeness” of the sample average to the population
mean. Whatever measure we would like to use for closeness, the sampling approach
will influence the performance of the estimator. For instance, the sample average
may generally be closer to the population mean under simple random sampling than
under cluster random sampling. We will use bias, mean square error (MSE), and
standard error (SE) as measures of closeness and we will illustrate these measures in
this section for any type of statistic that we wish to calculate. To do this we will first
provide a general framework for random sampling (Cochran 2007), for which simple
random sampling, systematic sampling, stratified sampling, and cluster sampling are
all a special case. In the third subsection we will illustrate the bias, mean squared
error and standard error and in the fourth subsection we show how R can be used for
evaluations.

2.5.1 Generic Formulation of Sampling Plans

A formal or mathematical definition for collecting a random sample of size n from a
population of units indicated by � = {1, 2, 3, ....., N }, N ≥ n, can be described as
follows: Let S1, S2, ....., SK be subsets of the population�, Sk ⊂ �, k = 1, 2, . . . , K ,
such that each subset Sk has n unique units from � and the union of all units from
S1, S2,....., SK forms the whole population �, i.e., � = ∪K

k=1Sk . Then each subset
Sk is attached a probability πk such that πk > 0, for all k = 1, 2, . . . , K , and π1 +
π2 + · · · + πK = 1. A random sample of size n is obtained by drawing just one
number from 1, 2, 3, . . . , K using the probabilities π1, π2, π3, . . . , πK . Subsets S1,
S2, ....., SK can be assumed to be unique, Sk �= Sl when k �= l, since otherwise we
can create a unique set by adding the probabilities for the subsets that are equal. This
does not mean that there is no overlap in units from different subsets, i.e., we do
not require Sk ∩ Sl = ∅. Note that simple random sampling, systematic sampling,
stratified sampling, and cluster random sampling all satisfy this definition.

The set of samples S1, S2, . . . , SK with their probabilities π1, π2, π3, . . . , πK is
referred to as a sampling plan. Note that K can be very large and quite different for
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different sampling plans. It is also good to realize that the sets S1, S2, . . . , SK and the
probabilities π1, π2, π3, . . . , πK result in a set of probabilities p1, p2, p3, . . . , pN
for units 1, 2, 3, . . . , N in the population �, with pi > 0.22

The sampling plan contains all the information necessary to analyze the quality of
a sampling procedure. As long as we know S1, S2, ....., SK with their respective prob-
abilities π1, π2, π3, . . . , πK we can use these in any further analysis. Hence, despite
the differences between simple random sampling, systematic sampling, stratified
sampling, and cluster sampling, our subsequent theory for judging the quality of a
sampling plan can be solely stated in terms of the Sk’s and πk’s.

2.5.2 Bias, Standard Error, and Mean Squared Error

Consider a population of N units and assume that we are interested in one charac-
teristic or variable of the unit. For instance, the variable could represent height,
weight, gender, hours of television watching per week, tensile strength, bacte-
rial contamination, a face rating, etc. Each unit i in the population has a theo-
retical value xi that may become available in the sample. Note that we consider
numerical values only. The population parameter of interest can be defined by
θ ≡ θ(x), with x = (x1, x2, . . . , xN ), as some kind of calculation on all theoret-
ical values: for instance, the population mean μ = ∑N

i=1 xi/N or the population
variance σ 2 = ∑N

i=1 (xi − μ)2 /N .
A sample Sk of size n can now be seen as the set of units, i.e., Sk = {i1, i2, . . . , in}

with ih ∈ {1, 2, 3, . . . , N } and all indices unique (ih �= il when h �= l). With every
sample Sk we have observed a vector of observations x′

k = (xi1 , xi2 , . . . , xin ), with
′

indicating the transpose.23 Based on the observed data we compute the descriptive
statistic θ̂k = T (xk) and use it as an estimate for the population parameter θ , with T a
function applied to the observeddata (i.e., somecalculationprocedure). Inmanycases
the function T is identical to the calculation θ at the population level, but alternative
functions may be used depending on the sampling plan. For instance, for estimation
of the population mean, we may use average x̄k = ∑n

h=1 xih/n = ∑
i∈Sk xi/n, but

we may also use a weighted average
∑

i∈Sk wi xi/n, with the weights adding up to
one (

∑
i∈Sk wi = 1); see Sect. 2.6. The function T is referred to as the estimator.

In general, the value θ̂k can be considered an estimate of the population parameter
θ when sample Sk would be collected. The estimate θ̂k will most likely be different
from the population parameter θ , because the sample is just a subset of the population.
When the sample is representative the sample result should be “quite close” to the

22 Note that these probabilities do not necessarily add up to one, i.e., p1 + p2 + · · · + pN �= 1,
since we allow Sk ∩ Sl �= ∅. Furthermore, the probabilities are not always the same for each unit.
23 Vectors are mathematical entities. Here they are used to group the values x1, x2, . . . , xn on
variable x from sample Sk . They are typically denoted as bold face xk to distinguish vectors from
the single observation xk . By definition, vectors are presented as columns and to be able to present
them as rows we indicate this by x′

k and call this the transposed vector.
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population parameter and then the sample result may be considered a good estimate
of the population parameter.

2.5.2.1 Bias

The bias of an estimator T , given the sampling plan S1, S2, S3, ....., SK with proba-
bilities π1, π2, π3, . . . , πK for parameter θ is defined as

bias =
K∑

k=1

θ̂kπk − θ.

In words: the bias is the difference between the weighted average—over all possible
K samples—of the sample estimate θ̂k’s and the true population parameter θ . The
weights in this weighted average are provided by the probabilities πk . Thus, if the
bias of an estimator is zero, this means that, if we repeatedly take samples using our
sampling plan and repeatedly compute our statistic of interest, the average over all
of those statistics is equal to the true population parameter. If the bias is zero, the
estimator, under the sampling plan that is being evaluated, is said to be unbiased. In
statistics, “bias” is an objective statement about an estimator (in combination with a
sampling plan), and while unbiased estimates are often preferred, it is not pejorative,
unlike the ordinary English use of the term “bias” (hence, it is a bit of a bad term
since bias does not necessarily mean “bad”).

Note that we often define

E(T ) ≡
K∑

k=1

θ̂kπk,

with T the estimator, and call this the expected population parameter for the estimator
under the sampling plan.24 The bias of an estimator is thus the difference between
this estimator’s expected value and the true population value.

2.5.2.2 Mean Squared Error

A small bias of an estimator under a sampling plan does not guarantee that individual
sample results θ̂k are actually close to the population parameter θ ; it just states that
they are close on average, if we were to sample over and over again. However, we
often only collect one sample, and thus the performance of an estimator on average
is not our only concern. We are also concerned with the variability of the estimator

24 The expectation operator E() is introduced here merely as a shorthand notation, but when we dis-
cuss probability and random variables more theoretically in Chap.4 we will see that the expectation
has a more formal interpretation.
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across different samples. To capture the variability in the sample results θ̂1, θ̂2, . . . , θ̂K
with respect to the true value θ , we use the so-called mean squared error (MSE). This
is defined as

MSE =
K∑

k=1

(
θ̂k − θ

)2
πk .

The MSE measures the weighted average squared distance of the sample results
θ̂1, θ̂2, . . . , θ̂K from the population parameter θ . The weights are again determined
by the sampling probabilities. Often, the smaller the MSE the better the sampling
plan. Sometimes the root mean square error (RMSE) is reported, which is simply
RMSE = √

MSE.

2.5.2.3 Standard Error

Another measure that is relevant to sampling plans, and closely related to the bias
and MSE, is the standard error (SE). The standard error is defined as

SE =
√
√
√
√

K∑

k=1

(
θ̂k − E (T )

)2
πk .

It represents the variability of the sampling plan with respect to the expected popula-
tion parameter E(T ) instead of using the true population parameter θ . Note that the
standard error of an estimator is used as ameasure to represent our uncertainty regard-
ing an estimate. In many examples the standard error contains population parameters
(see Sect. 2.6) that we do not know. To use standard errors in practice we have to
estimate the standard error as well, and this is what researchers and professionals
typically do. We will explore this in more detail below when we derive analytical
expressions for the bias and standard error of the sample mean, sample variance,
and sample proportion for simple random sampling, systematic sampling, stratified
sampling, and one-stage and two-stage cluster random sampling, respectively.

Figure2.2 shows how bias, MSE, and SE relate: if the bias is small, E(T ) is close
to the parameter value θ . On the other hand, if the bias is large, E(T ) is not close
to θ . If the MSE is small, the variability of the θ̂k’s around θ is small, while if the
MSE is large, the variability around θ is large. If the SE is small, the variability of
the θ̂k’s around E(T ) is small. Finally, note that if the sampling plan is unbiased
and thus E(T ) = θ , the RMSE and the SE are identical. More generally, it can be
demonstrated that

RMSE =
√

SE2 + (E(T ) − θ)2.

Thus the RMSE is never smaller than the SE.
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Fig. 2.2 A graphical illustration of the differences (and similarities) between bias, MSE, and SE.
The top row of the plot shows that the bias of an estimator θ̂ is high if its expected value over
repeated sampling E(T ) is far away from the true value of θ . The middle row shows that the MSE
quantifies the dispersion (or spread) of the estimator θ̂ over repeated sampling (i.e., θ̂k for each
sample k) around the true value of θ . Finally, the standard error quantifies the dispersion of the
estimator over repeated sampling around its expected value E(T )

2.5.3 Illustration of a Comparison of Sampling Plans

Here we will assume that we have full knowledge about the population, so that we
can evaluate the bias, standard error, and mean squared error for different sampling
plans. Clearly, in practice we never have this information, otherwise the sampling
becomes obsolete. However, we often do have some knowledge of the population
in practice, using information from registries or historical data, and this information
can be used to evaluate different strategies, often in combination with simulations
(see Sect. 2.5.4).

Our population of interest is provided inTable2.1,which is taken fromTable2.3 of
Levy and Lemeshow (2013). The population consists of six schools in a community
with in each school the total number of students and the number of students that were
not immunized for measles. In total there are 314 students, of which 30 students are
not immunized for measles. The population parameter of interest is θ = 30/314 =
0.09554, the proportion of students not being immunized for measles. We assume
that schools 1, 3, and 4 are located in the north of the community and the schools 2,
5, and 6 are located in the south. Two sampling approaches are being considered: a
single-stage cluster sample with a simple random sample of two clusters (schools)
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Table 2.1 Schools with total number of students and students not being immunized for measles

School Number of students Proportion

Total number Not immunized

1 59 4 0.068

2 28 5 0.179

3 90 3 0.033

4 44 3 0.068

5 36 7 0.194

6 57 8 0.140

and a single-stage cluster sample with stratified sampling of two clusters. For the
stratified sampling, the strata are north and south.

For the single-stage cluster sampling with simple random sampling, there
are K = 6!/ [2! × 4!] = 15 possible samples of two schools: S1 = (1, 2); S2 =
(1, 3); . . . ; S6 = (1, 6); S7 = (2, 3); . . . ; S10 = (2, 6); ....; S15 = (5, 6). Each pair
of schools has the same probability of being collected, i.e., πk = 1/K = 1/15 for
k = 1, 2, . . . , 15. The expected population parameter for this sampling approach is
given by

E(T ) = ∑K
k=1 θ̂kπk

=
[
9

87
+ 7

149
+ 7

103
+ 11

95
+ 12

116
+ 8

118
+ 8

72
+ 12

64

+13

85
+ 6

134
+ 10

126
+ 11

147
+ 10

80
+ 11

101
+ 15

93

]

× 1

15
= 0.10341.

The bias is therefore determined by bias = 0.10341 − 0.09554 = 0.00787. Thus
the simple random sample of two schools (single stage cluster sample) is not fully
unbiased, but the bias is relatively small.

The MSE is

MSE =
[(

9

87
− 30

314

)2
+

(
7

149
− 30

314

)2
+ · · · +

(
15

93
− 30

314

)2
]

× 1

15
= 0.00167.

This implies a root mean square error of RMSE = √
0.00167 = 0.04087. From the

bias and theMSEwecan determine the SEaswell: SE =
√
MSE − bias2 = 0.04010.

For the single-stage cluster sample with stratified sampling, there are K = 9
possible samples of two schools: S1 = (1, 2); S2 = (1, 5); S3 = (1, 6); S4 = (2, 3);
S5 = (3, 5) ; S6 = (3, 6); S7 = (2, 4); S8 = (4, 5) ; S9 = (4, 6). Each pair has the
same probability of being collected, i.e., πk = 1/K = 1/9 for k = 1, 2, . . . , 9. The
expected population parameter for this sampling approach is given by
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E(T ) = ∑K
k=1 θ̂kπk

=
[
9

87
+ 11

95
+ 12

116
+ 8

118
+ 10

126
+ 11

147
+ 8

72
+ 10

80
+ 11

101

]

× 1

9
= 0.09886.

The bias is therefore determined at bias = 0.09886 − 0.09554 = 0.00331. Again
the sampling approach is not fully unbiased, but it is closer to zero than the simple
random sample of two schools.

The MSE is determined at

MSE =
[(

9

87
− 30

314

)2
+

(
11

95
− 30

314

)2
+ · · · +

(
11

101
− 30

314

)2
]

× 1

9
= 0.00036.

This implies a root mean square error of RMSE = √
0.00036 = 0.01910, which is

smaller than the RMSE for the simple random sample of two schools. The SE of this
stratified sampling plan is given by SE = 0.01881.

Clearly, the single-stage cluster sample with stratification is better than the simple
random sample of schools, since the bias is closer to zero and the MSE is lower. The
reason is that the proportion of immunization is quite different between the strata.
Schools 1, 3, and 4 have a high proportion of immunization, while schools 2, 5, and
6 have a lower proportion of immunization. The stratified sampling approach makes
sure that both proportions are being represented in the sample.

We could have considered alternative sampling plans, like simple random sam-
pling and stratified sampling from the complete population of school data. In that
case wewould have needed the information on student level instead of the aggregated
data at the school level. Thus we need a list of all students telling us whether the
student would have been immunized for measles or not and then calculate the criteria
for all possible sample sets as we just illustrated. However, for these sampling plans
there are many sample sets (i.e., the Sk’s) and it would be tedious to do so. On the
other hand, for these sampling plans there exist generic and explicit mathematical
formulas for the bias,MSE, and SE if wewish to estimate a populationmean, propor-
tion, or variance. Thus the calculations in these cases are relatively easy: we present
these theoretical results in Sects. 2.6, 2.7 and 2.8.

2.5.4 Comparing Sampling Plans Using R

In practice we may use the computer to help us evaluate, in particular when we
want to use more complex sampling plans, to study other population parameters, or
when we want to investigate other estimators. For instance, we may want to select
a sample of high-school children again, similar to the data we have in our dataset
high-school.csv, to investigate if television watching behavior has changed
since the year 2000. We could take the same sampling approach as before, but we
could also study alternative samplingprocedures thatmaybemore complex and could
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not be studied previously, since a historical dataset was not available then. Improving
the sampling plan, i.e., reducing MSE, can help us lower the number of samples and
costs. Based on the historical data wemay investigate if stratification on grades helps
us reduce the standard error, or maybe we can reduce the number of schools with an
increase in the number of students within schools. These types of evaluations may
be mathematically difficult, in particular if several other stratifications and cluster
samples are already involved, but it may not be so difficult to study these plans
with the computer (now that some data are available). In other cases we may even
generate our own data or extent the historical data to help evaluate sampling plans
and estimators.

Here we will provide a generic approach with R to be able to investigate sam-
pling plans and estimators. The R codes are relatively straightforward, but they can
be extended and made more complex to address specific situations. The goal is to
understand the structure, and not the possible sophistication of sampling and pro-
gramming. Recall that this type of computer approach requires historical data or
some knowledge of the population to be able to mimic data from the population. The
general structure is the following:

1. generate population data,
2. execute a sampling plan and generate sample data,
3. compute a statistic using the sample data, and
4. execute these steps a large number of times and compute bias, MSE and SE

using the results.

Under the assumption that we have appropriately created the population data, this
procedure will give us (approximately) the values for bias, MSE, and SE when we
repeat the procedure many times. To illustrate this it may be easiest to think about a
simple random sample. Each time we draw a sample from the population with the
computer we draw in principle from the set S1, S2, ....., SK with their probabilities
π1, π2, π3, . . . , πK . Thus if we repeat this procedure many times, we will see all
sample sets S1, S2, ....., SK appear in the proper proportions π1, π2, π3, . . . , πK .
With the computer we can draw samples repeatedly, which we cannot do in practice,
but the results depend on the quality of the simulated population data. If we are less
sure about the appropriateness of the population data, it may be better to introduce
variations in the population data to determine if the results of the sampling plan are
robust against other possible realistic populations.

We will now provide the R code for the steps listed above. Each time we will
create our own functions. If you want to explore different sampling plans, or different
estimators, you only need to change the code within that specific function and the
program can be executed again. Note that—merely as an example—we will focus
on computing the bias, MSE, and SE of the sample mean under simple random
sampling.
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2.5.4.1 Generating Population Data

We start our R script by writing a function to generate our population data, although
in some cases this step can be omitted if we have historical data available. We want
to generate a data.frame object that contains the indices of the units i , and the
value of the variable x . Furthermore, we will add the option to also include a group
membership, which might be useful if, in the future, we want to evaluate cluster
sampling. In this case the grouping is independent of the units, but this can be
changed if certain structures need to be incorporated. The code looks as follows:

> ### Function to generate population data of size N
> ### with variable of interest X and a possible grouping
> ### The function returns a data frame with N rows and
> ### columns i (units), x (variable), and, possibly,
> ### groups (the grouping)
> generate_population_data <- function(N, groups=1) {
+
+ # Generate index:
+ i <- c(1:N)
+
+ # Generate N random numbers uniformly between 0 and 10:
+ x <- runif(N, min=0, max=10)
+
+ # If groups, generate group membership with equal
+ # probability:
+ group <- sample(1:groups, size=N, replace=TRUE)
+
+ return(data.frame(i=i, x=x, group=group))
+
+ }

The comments make clear what each line of code does. Calling this function using
generate_population_data(100) returns a data.frame consisting of
100 rows. This number can be increased if a larger population is required.

2.5.4.2 Implementing a Sampling Plan

Now that we have a way of creating a population of a certain size, we need to
implement our sampling method. Simple random sampling, where each unit has the
same probability of being selected, can be implemented as follows:

> ### Select a number of units from a population
> ### The function returns a vector of selected units
> sample_from_population <- function(P, n) {
+
+ # Create a vector of selected units
+ # currently for simple random sample
+ selected <- sample(P$i, size=n)
+
+ return(selected)
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+
+ }

Again, the comments make clear what each line of code does. Obviously it is easy
to change this function to implement different sampling methods but this is outside
the scope of the book.

2.5.4.3 Computing an Estimator

After selecting the units in the sample, we need to compute an estimator. Obviously
we could use the R functions mean, mode, etc. that we have seen in the previous
chapter. However, to make our R script flexible we create a separate function to
compute the estimator; we can then just change the content of this function if we
want to consider different estimators. The function takes a vector of sample data
x1, . . . , xn and returns the value of the estimator:

> ### Compute the value of an estimator given
> ### a vector of sample data x
> ### The function returns a scalar
> compute_estimator <- function(x) {
+
+ # Compute the estimator and return
+ est <- sum(x)/length(x)
+ return(est)
+
+ }

2.5.4.4 Computing Bias, MSE, and SE

That almost wraps up all the functions we need: we can now create a population, sam-
ple from it, and compute estimators. However, we also need a function which, given
a whole vector of estimators θ̂1, . . . , θ̂K and the true population value θ computes
the bias, MSE, and SE. This can be implemented as follows:

> print_summary <- function(theta, estimators) {
+
+ # Compute Bias
+ bias <- mean(estimators) - theta
+
+ # Compute MSE
+ mse <- sum( (estimators - theta)^2 ) / length(estimators)
+
+ # Compute SE
+ se <- sqrt(sum( (estimators - mean(estimators))^2 ) /
+ length(estimators))
+
+ # Print nicely by putting into data frame
+ result <- data.frame(bias=bias, mse=mse, se=se)
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+ print(result)
+
+ }

Note that this function prints the bias, MSE, and SE to the screen of the user.

2.5.4.5 Putting It All Together

The functions above give us all the ingredients we need to start simulating the results
of repeatedly sampling from a population using a specific sampling plan. By execut-
ing the sampling plan over and over again, we can find its performance on average.
The following code implements our simulation:

> ### Putting it all together and running the simulation:
>
> # Set seed, N, n, and the number of simulations
> set.seed(12345)
> N <- 1000
> n <- 10
> sims <- 100000
>
> # Generate the population data:
> P <- generate_population_data(N=N)
>
> # Generate an empty vector to store results
> estimators <- rep(NA, times=sims)
>
> # For each simulation....
> for (j in 1:sims) {
+
+ # Select sample from P...
+ select <- sample_from_population(P=P, n=n)
+ sample_data <- P[select, ]
+
+ # Compute estimator and store result.
+ estimators[j] <- compute_estimator(sample_data$x)
+
+ }
>
> # Compute the population parameter:
> theta <- mean(P$x)
>
> # Compute bias, mse, se and print to screen:
> print_summary(theta=theta, estimators=estimators)

bias mse se
1 -0.0001635409 0.7963648 0.8923927

Again, the comments make clear what each line of code does. For this run of the
code—and this will differ each time you run the code depending on the random
numbers that the computer generates—we find that the bias is −0.0001635409; this
is quite close to the value of zero that we know is the analytical solution to our
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question (see Sect. 2.6). If you try a larger sample you will see that the MSE and SE
will diminish in size (see Sect. 2.6 again). Note that we ran this code after setting
the so-called seed—basically the starting point of the computers random number
generator—using set.seed(12345). If you do the same, you should get the
exact same result (for more details on random number generation see the additional
material at the end of this chapter).

2.6 Estimation of the Population Mean

For estimators of the population meanμ = ∑N
i=1 xi/N in the form of weighted aver-

ages, the bias, MSE, and SE can be formulated mathematically when the sampling
plan is simple random sampling, systematic sampling, stratified sampling, and cluster
sampling. When we obtain the values x1, x2, . . . , xn from sample Sk , we may “aver-
age” them in different ways. We may feel that some observations are more important
or reliable than other observations and we may want to use this in averaging. This
can be done using a weighted average, where the weights would help quantify how
much more one observation is valued over other observations. A weighted average
for the data observed from sample Sk is now defined as x̄w,k = ∑

i∈Sk wik xi , with∑
i∈Sk wik = 1. Note that the weights need to add up to one and that the weights

may in principle depend on the sample set Sk , although we will restrict ourselves to
weights that are independent of Sk , i.e., wik = wi . If we choose weight w1 = 2/n
and weight w2 = 1/(2n), the first observation is four times as important as the sec-
ond observation. If every observation has the same weight, we obtain the arithmetic
average x̄k = ∑

i∈Sk xi/n. In practice, weights can depend on other variables like sex
and age, in particular in stratified sampling. In this section we will describe the bias,
MSE, and SE for weighted averages under the four sampling plans. The SE andMSE
depend on population variances, which we will define in the following subsections.
Since we have the calculation rule MSE = bias2 + SE2 we will mainly focus on bias
and MSE. A summary of the theory is provided in Table2.2 (Cochran 2007).

2.6.1 Simple Random Sampling

Recall that for simple random sampling we are drawing a sample of size n
from a population of size N where the number of possible samples K is given
by N !/ [n! (N − n)!] and each sample Sk is selected with probability 1/K (see
Sect. 2.4.1). In this sampling plan, it can be demonstrated that the arithmetic aver-
age is the only unbiased estimator for the population mean in the class of weighted
averages (see Cochran 2007). Thus we will focus on the arithmetic average x̄k for
simple random sampling.
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To demonstrate that x̄k is unbiased, recall that each sample Sk has the
same probability πk = 1/K of being collected and that E (T ) = ∑K

k=1 x̄k/K =
∑K

k=1

∑
i∈Sk xi/(nK ). Since each unit i has a probability of n/N to occur in the

sample, the unit i will be present in nK/N of the samples S1, S2, . . . , SK . Thus∑K
k=1

∑
i∈Sk xi becomes equal to (nK/N )

∑N
i=1 xi , which implies that E (T ) =

∑N
i=1 xi/N = μ which is the definition of the population mean. This makes the

bias equal to bias = E(T ) − μ = 0.
Now that we know that the arithmetic average is an unbiased estimator for the

population mean, we also know that the standard error (SE) of the arithmetic average
is equal to the root mean squared error (RMSE). The MSE of the arithmetic average
is given by (see also Table2.2)

MSE(x̄k) = σ 2

(
N

N − 1

) (
1 − n

N

) 1

n
, (2.2)

with σ 2 = ∑N
i=1(xi − μ)2/N the population variance.

The expression of the MSE clearly shows that it becomes equal to zero when
the sample size n becomes equal to the population size N . Thus the arithmetic
average becomes equal to the population mean when the sample size is equal to the
population size. This may seem intuitively obvious, but it is not. The MSE will not
become zero when the estimator is biased, even if the sample size is equal to the
population size. This may become clear if we use a constant times the arithmetic
average as an estimator for estimation of the population mean, i.e., cx̄k , with c
some constant. This estimator has a bias (c − 1)μ and a squared standard error of
SE2 = c2σ 2(N/(N − 1))(1 − n/N )/n.25 The MSE is now equal to MSE = [(c −
1)μ]2 + c2σ 2(N/(N − 1))(1 − n/N )/n and this becomes equal to the squared bias
[(c − 1)μ]2 when the sample size is equal to the population size. Although we would
favor the arithmetic average x̄k over cx̄k , the MSE for the estimator cx̄k can actually
be lower than the MSE of the arithmetic average x̄k for sample sizes smaller than the
population, but this depends heavily on μ and c.

2.6.1.1 Estimation of the MSE

Reporting the MSE or RMSE is important in practice, since it helps us evaluate the
closeness of the estimator to the population parameter: the smaller the MSE, the
closer the estimate would be to the population parameter. However, the expression
for the MSE in Eq. (2.2) shows that we cannot use this MSE in practice, as we do not
know the population variance σ 2. Thus, the MSE must be estimated too to be able to
use it next to the estimator forμ. Section2.8 shows that an unbiased estimator forσ 2 is
given by [(N − 1)/N ]s2k , with s2k the sample variance s2k = ∑

i∈Sk (xi − x̄k)2/(n − 1)
that we have seen in Chap.1. Using this sample variance estimator, the MSE we may

25 For any estimator T we have the following convenient calculation rules: E(cT ) = cE(T ) and
SE(cT ) = cSE(T ), where c is a constant.
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use in practice becomes

ˆMSE(x̄k) = (N − n)s2k /(Nn). (2.3)

This is an unbiased estimator of the MSE of the arithmetic average in Eq. (2.2) and
it may also be used when the observations are binary. Note that the standard error of
x̄k is just the square root of the ˆMSE in Eq. (2.3).

2.6.2 Systematic Sampling

Recall that for systematic sampling we split our population into n groups consisting
of m units, where from each group we select the kth unit (k ∈ {1, 2, . . . ,m}). Here
we will assume that the ratio of the population size N and sample size n is an integer,
i.e., N/n = m ∈ {1, 2, 3, ....., N } to keep calculations mathematically more simple.
The population is now perfectly split into n groups of sizem. The sampling plan is S1,
S2, . . . , Sm , with Sk = {k, k + m, k + 2m, . . . , k + (n − 1)m}, and each sample Sk
having probability 1/m of being collected. The sample average can now be written
as x̄k = ∑n

i=1 xk+m(i−1)/n.
If the population can be perfectly split up into n groups of m units,

the sample average x̄k is an unbiased estimator of the population mean μ =∑m
h=1

∑n
i=1 xh+m(i−1)/N , with N = mn. The mean square error is given by (see

Table2.2)

σ 2 − 1

N

n∑

h=1

m∑

i=1

(
xh+m(i−1) − x̄h

)2
, (2.4)

with σ 2 the population variance given by σ 2 = ∑m
k=1

∑n
i=1(xk+m(i−1) − μ)2/N and

with x̄h the sample average for sample set Sh . It is obvious that theMSE of the sample
average under systematic sampling is different from the MSE of the sample average
under simple random sampling (just compare Eq. (2.4) with Eq. (2.2)). Systematic
sampling can be more efficient than simple random sampling, in particular when the
variance in the systematic samples is larger than the population variance (which is
impossible to verify in practice).

2.6.2.1 Estimation of the MSE

In the general setting for systematic sampling, an unbiased estimation of the MSE in
Eq. (2.4) is not possible. The literature has discussed solutions (see, e.g., Were et al.
2015), but this will be outside the scope of this book. However, given that there is no
systematic difference betweenunits basedon their position in the groups (and the ratio
of sample and population size is an integer), the MSE of the sample average under
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systematic sampling becomes equal to the MSE of the sample average under simple
random sampling. In this case, the sample variance multiplied by (N − 1)/N , i.e.,
[(N − 1)/N ]s2k , with s2k = ∑n

i=1(xk+m(i−1) − x̄k)2/(n − 1), is an unbiased estimator
of the MSE in Eq. (2.2).

2.6.3 Stratified Sampling

To discuss the properties of the weighted sample average under stratified sampling
we will change the notation for the index of units. Instead of using index i for a unit
in the population, we will use the indices (h, i) to indicate the unit i ∈ {1, 2, . . . , Nh}
for units in stratum h ∈ {1, 2, . . . , M}, and with N1 + N2 + · · · + NM = N the total
number of population units. Thus the variable xhi represents the value of unit i in
stratum h. The population mean can then be rewritten into

μ = 1

N

M∑

h=1

n∑

i=1

xhi =
m∑

h=1

whμh (2.5)

with wh = Nh/N and μh = ∑Nh
i=1 xhi/Nh the population average in stratum h or the

strata mean. Note that the weights add up to one, i.e., w1 + w2 + · · · + wM = 1.
Thus the population mean is a weighted mean of the strata means μh .

The variance σ 2
h in stratum h is defined as σ 2

h = ∑Nh
i=1(xhi − μh)

2/Nh . The rela-
tionship between the population variance and the strata variances is given by

σ 2 ≡ 1

N

M∑

h=1

Nh∑

i=1

(xhi − μ)2 =
M∑

h=1

whσ
2
h +

M∑

h=1

wh(μh − μ)2. (2.6)

Thus the population variance is the sum of two parts. The first part represents
a weighted mean of the within strata variances and the second part represents a
weighted mean of the squared distances of the strata means to the population mean.
They may be referred to as within and between (strata) variances.

Now let’s assume that we have determined in some way the sample size nh
in stratum h, such that the sum is equal to the total sample size n = n1 + n2 +
· · · + nm . In case we draw a simple random sample in each stratum, the possi-
ble samples for stratum h are now denoted by Sh,1, Sh,2, . . . , Sh,Kh , with Kh =
Nh !/[nh !(Nh − nh)!]. Sh,k is the collected sample in stratum h, the sample mean
is given by x̄h,k = ∑

i∈Sh,k
xhi/nh . The sample variance in stratum h is then denoted

by s2h,k = ∑
i∈Sh,k

(xhi − x̄h,k)
2/(nh − 1).

The bias and standard error within each stratum h now follow the theory of simple
random sampling in Sect. 2.6.1. This implies that the bias of the sample average x̄h,k

in stratum h is zero for the stratum mean μh . Thus the standard error of the sample
average in stratum h can now be estimated with ˆSE(x̄h,k) = √

(1 − fh)sh,k/
√
nh ,

with fh = nh/Nh the sample fraction in stratum h.
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To obtain an estimate of the overall population mean we need to combine the
sample statistics from the different strata. Since the population mean is equal to the
weighted strata means with weights wh = Nh/N , the most logical way is to use
the weighted strata sample means with the exact same weights. Thus the population
mean can be estimated by x̄k = ∑M

h=1 wh x̄h,k . This estimate is unbiased. This can be
seen easily, since x̄h,k is unbiased for the stratum mean μh and the weights wh are
the same weights that are needed to combine the strata means into the population
mean in Eq. (2.5).

The MSE of the weighted sample average x̄k = ∑M
h=1 wh x̄h,k can now be deter-

mined using simple algebraic calculations. First recall that the SE of an estimator
that is multiplied by a constant is the SE of the estimator multiplied by the constant
(i.e., SE(cT ) = cSE(T )). Secondly, the simple random samples from the different
strata are completely unrelated, which implies that the sum of the squared standard
errors of wh x̄h,k form the squared standard error of the sample average x̄k . Finally,
the squared standard error of x̄h,k is equal to its MSE since x̄h,k is unbiased. Thus the
MSE of x̄k is now equal to (see Table2.2)

MSE(x̄k) =
M∑

h=1

w2
hMSE(x̄h,k) =

M∑

h=1

Nh(1 − fh)w
2
hσ

2
h /[(Nh − 1)nh].

2.6.3.1 Estimation of the MSE

Since the strata variance s2h,k can be used to estimate MSE(x̄h,k), see Sect. 2.6.1, an
estimator of the MSE of x̄k is now given by

ˆMSE(x̄k) =
M∑

h=1

(1 − fh)w
2
hs

2
h,k/nh . (2.7)

An estimate of the standard error of x̄k is now obtained by taking the square root of
the estimated MSE in Eq. (2.7).

2.6.4 Cluster Sampling

For single-stage cluster sampling, we just perform a simple random sample ofm clus-
ters from a total of M available clusters and then evaluate all units in the collected
clusters. If cluster h is being collected in our single-stage cluster sample, we would
collect or observe the mean x̄h on all Nh units in this cluster. Thus here we sample
the cluster mean x̄h = μh . To estimate the population meanμ = ∑M

h=1

∑Nh
i=1 xhi/N ,

with xhi the value on variable x for unit i in cluster h and N = ∑M
h=1 Nh , there

are several possibilities. Initially, we may be inclined to use the theory from simple
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random sampling, since we draw a simple random sample of clusters. However,
this may not be the best choice. Indeed, for simple random sampling we would
calculate the arithmetic average of the cluster means that we have collected,
i.e., x̄ = ∑m

h=1 x̄h/m. This estimator is an unbiased estimator of
∑M

h=1 μh/M =
∑M

h=1

∑Nh
i=1 xhi/(MNh), but this mean is not equal to the population mean. This

is obvious, since the arithmetic average of cluster means does not weigh the size
of the clusters in the calculation. A large cluster will have the same weight in the
arithmetic average x̄ as a very small cluster. Thus only when the cluster sizes are
all equal (N1 = N2 = · · · = NM ) will the average x̄ be an unbiased estimator of the
population mean μ.

Two commonly used approaches in practice for estimation of the populationmean
under single-stage cluster sampling are listed in Table2.2. Both approaches calculate
the total sum of observations

∑m
h=1 Nh x̄h from the units in the collected clusters, but

one approach considers the cluster sizes Nh as being fixed numbers, while the other
approach treats the cluster sizes as being random numbers. If the cluster sizes are
considered fixed, the total sum of observations is divided by the total number of units∑m

h=1 Nh that were collected in the single-stage cluster sample, giving the estimator
x̄F = ∑m

h=1 Nh x̄h/
∑m

h=1 Nh . If the cluster sizes are considered random, the total
sum of observations is divided by the expected number of units (m/M) · N in the
single-stage cluster sample, with N = ∑M

h=1 Nh being the population size. This gives
the estimator x̄R = [M/(mN )]∑m

h=1 Nh x̄h and it would require knowledge of the
number of clusters and the total population size. Note that x̄ , x̄F , and x̄R are all equal
when the cluster sizes are all equal.

In Sect. 2.5.3 we illustrated the bias and MSE for a single-stage cluster sample
on a binary variable for a population of children who were clustered by schools (see
the data in Table2.1). We applied the first or fixed cluster size approach (x̄F ) for
estimating the population proportion and demonstrated that it was somewhat biased.
It is unbiased only when the cluster sizes are all equal, but the bias is often very
small and can be ignored in practice. On the other hand, the second approach (x̄R),
where we would assume the population sizes are random, is unbiased in all cases. To
illustrate this, consider the data on non-immunized children in Table2.1. We draw
randomly one pair of schools for our single-stage cluster and there are in total 15
possible pairs of schools that could be collected. Each pair has a probability of 1/15
to be collected. The total population size is N = 314 children with in total 30 events,
which gives a population mean of 15/257 = 0.09554. The expected value of the
statistic x̄R , using our generic theory in Sect. 2.5.2, is now given by

E( M
mN

∑m
h=1 Nh x̄h) = 6

628
[9 + 7 + 7 + 11 + · · · + 11 + 15] 1

15

= 15

257
= 0.09554,

which implies that there is no bias, since the population proportion is identical to our
expected value of the estimator x̄R . According to the formula for MSE in Table2.2,
the MSE for this estimator can be calculated as
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62

2(6 − 1)3142

(

1 − 2

6

)
[
(4 − 5)2 + (5 − 5)2 + · · · + (8 − 5)2

] = 0.0005355,

since the mean number of events for one school Nμ/M is equal to 5. Note that this
MSE is approximately one third of the MSE that we calculated in Sect. 2.5.3 for
estimator x̄F , but this does not mean that we should always use x̄R . If the cluster
means do not vary a lot, the estimator x̄F would be preferred over x̄R , but when
there is relatively large variation across cluster means, x̄R would be preferred over
x̄F . In other words, when the cluster means are truly heterogeneous, x̄R provides the
smallest standard error. In the example with the schools, the cluster proportions of
non-immunized children vary substantially or are heterogeneous.

2.6.4.1 Estimation of the MSE

In practice we cannot know the MSE, since it involves all cluster means and the
population mean, but we can estimate it from a single-stage cluster sample when we
draw more than one cluster. The estimator for the MSE of x̄R is equal to

ˆMSE(x̄R) = M − m

N 2Mm(m − 1)

m∑

h=1

(MNhx̄h − N x̄R)2 . (2.8)

Knowing that the estimator x̄R is unbiased for the populationmeanμ, we can estimate
the standard error of x̄R by

√
( ˆMSE(x̄R)).

Estimators x̄F and x̄R for the populationmean in a two-stage cluster sample are the
same as for the single-stage cluster sampling. The only difference is that the observed
average per cluster x̄h is now based on a simple random sample from cluster h and
it is (most likely) not equal to the cluster mean μh any more. Based on the theory of
simple random sampling we know that the cluster sample average x̄h is an unbiased
estimator of the cluster mean μh . This implies that the bias of x̄F and x̄R for two-
stage cluster sampling would be equal to the bias of x̄F and x̄R for single-stage cluster
sampling. However, theMSE of x̄F and x̄R for two-stage cluster sampling is different
from the MSE of x̄F and x̄R under single-stage cluster sampling.

In single-stage cluster sampling the MSE of x̄F and x̄R is only determined by
differences in the cluster means and the population mean. This term describes the
variability across cluster means. This can be seen best in the MSE of x̄F , where the
distance of μh to μ is squared. In two-stage cluster sampling the MSE of x̄F and x̄R
would also include squared distances of the unit values to their cluster means, or in
other words it includes within-cluster variability. That is why there is a term with the
cluster variance σ 2

h in the MSE additional to the term that quantifies the variability
among the cluster means. The MSE of x̄F and x̄R in two-stage cluster sampling can
also be estimated from one two-stage cluster sample when more than one cluster is
collected, but this is outside the scope of our book. More information can be found
in the literature (see Cochran 2007; Levy and Lemeshow 2013).



72 2 Sampling Plans and Estimates

2.7 Estimation of the Population Proportion

Population proportions are very much similar to population means. The population
values z1, z2, . . . , zN are now represented by binary values, i.e., zi ∈ {0, 1}, and
the population proportion η is obtained by the fraction of units with the value 1,
i.e., the population mean η = ∑N

i=1 zi/N . Binary variables occur if the unit has
only two possible outcomes, like having a disease or not, but a binary variable is
often created from other variables. For instance, having hypertension or high blood
pressure is often defined by a systolic blood pressure of 140mm Hg or higher. Thus
the binary variable zi in this case is created from a continuous variable xi using
zi = 1[C,∞) (xi ), with 1A(x) an indicator variable being equal to 1 if x ∈ A and 0
otherwise. In the example of hypertension, the population proportion represents the
fraction or proportion of people with a systolic blood pressure equal to or higher than
140mm Hg, i.e., η = ∑N

i=1 1[C,∞) (xi ) /N .
When the characteristic of the unit is binary, the variability in the values z1,

z2, . . . , zN is determined by the proportion η. The population variance σ 2 for the
binary values is

∑N
i=1(zi − η)2/N , but this can be rewritten into

σ 2 =
N∑

i=1

(zi − η)2/N =
N∑

i=1

z2i /N − η2 =
N∑

i=1

zi/N − η2 = η(1 − η).

Thus the population mean and population variance for binary variables are perfectly
related. Knowing the population mean implies that you can calculate the population
variance, but also the other way around. Knowing the population variance implies
that you can calculate the population mean.

This relationship between the populationmean and population variance for binary
variables is slightly different for sampled data. If z1, z2, . . . , zn is a sample of binary
data from sample Sk (recall the notation in Sect. 2.5.1), the sample average is defined
as η̂k = ∑

i∈Sk zi/n, but the sample variance is s2k = ∑
i∈Sk (zi − η̂k)

2/(n − 1) =
nη̂k(1 − η̂k)/(n − 1). The difference in relations for samples and populations is
caused by the use of n − 1 in the sample variance, but N in the population vari-
ance. We could decide to use n for the sample variance instead of n − 1, but then
the sample variance s2k = ∑

i∈Sk (xi − x̄k)2/n for the population variance σ 2 for any
variable x becomes biased (see Sect. 2.8). So, we wish to use n − 1 in the sample
variance. Alternatively, we could use N − 1 in the population variance instead of
N , and this is often done in literature to simplify the estimate of the MSE for the
sample average in Eq. (2.3), but then the population variance for binary variables
would contain the population size. So, here there is a trade-off and we choose to
define the population variance by σ 2 = ∑N

i=1(xi − μ)2/N , with μ the population
mean and N the total population size. This is applied for any variable x , including
binary variables.

Since population proportions can be seen as population means, the theory from
Sect. 2.6 can be applied on the binary samples z1, z2, . . . , zn . Practically, this means
that we just replace the variable x by the binary variable z in each formula for sample
statistics used in Sect. 2.6. This applies to all the discussed sampling plans. Some
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formulas can be rewrittenmaking use of the relation between (population and sample)
means and variances, but this is left to the reader, as in practice there is no need to
rewrite the formulas. We just use the same statistics, whether the variable is binary
or not.26

2.8 Estimation of the Population Variance

Reporting an estimate for the population mean is much more common in society
than reporting an estimate for the population variance or standard deviation, because
governmental institutes, marketing bureaus, and other agencies are typically more
interested in means or totals, like unemployment rates, economic growth, number
of sales, number of views per website per day, etc. However, the variability among
units is also relevant. A statement by the government that consumer spending is (most
likely) increasing by 5% next year is a statement about the population mean, but it
does not provide the full picture. If on average the consumer spending is increasing,
this does not mean that all groups increase in consumer spending. For instance,
elderly people or students may not increase in their spending even though the mean
increases. Thus differences between units or groups of units is also important. These
differences are often quantified by the variance or standard deviation. In this section
we will only focus on the population variance for simple random sampling, since
variances for other sampling plans are more complicated, in particular the derivation
of the MSE and SE.

In Sect. 2.6 we have defined the population variance by σ 2 = ∑N
i=1(xi − μ)2/N ,

with μ the population mean and N the total population size. If we draw a simple
random sample Sk (recall the notation in Sect. 2.5.1) of n units, the sample variance
was defined in Sect. 2.4.1 as s2k = ∑

i∈Sk (xi − x̄k)2/(n − 1), with x̄k = ∑
i∈Sk xi/n

the sample average. This sample variance is not an unbiased estimator of the pop-
ulation variance, as it estimates Nσ 2/(N − 1) (see also Sect. 2.7). Again, when the
population size is large this ratio is very close to one and s2k would certainly be a
proper estimate (which is frequently used in practice), but to obtain an unbiased
estimate of σ 2 in all cases it is better to use (N − 1)s2k /N .

In Sect. 2.7 we also mentioned that we should use n − 1 in the calculation of
the sample variance instead of n to obtain an unbiased estimate of the population
variance. Indeed, if we were to use (N − 1)

∑
i∈Sk (xi − x̄k)2/(Nn) as the sample

estimator, the expected value becomes (n − 1)σ 2/n and the bias becomes −σ 2/n.
This bias cannot be neglected if the ratio of population variance and sample size is
relatively large. Investigating the variability of systolic blood pressure in a sample
of only 15 people with a population standard deviation of 12 mm Hg gives a bias
of almost −10. Clearly, when sample sizes increase the bias rapidly decreases and

26 If the variable x is ordinal or nominal the theory in Sect. 2.6 cannot just be used, since ordinal and
nominal values cannot be interpreted numerically (see Chap.1). The binary variable (being either
ordinal or nominal) is the exception as long as we code the two possible outcomes as 0 and 1.
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there would no longer be a strong argument anymore to use n − 1. An intuitive
reason for the use of n − 1 in the sample variance is that we first have to estimate the
population mean μ with the sample average x̄k and therefore we loose “one degree
of freedom” from all n observations or available degrees of freedom. The use of the
sample average makes one observation redundant. The divisor n − 1 is referred to
as the number of degrees of freedom used to calculate the sample variance.

The MSE of the estimator (N − 1)s2k /N , with s2k = ∑
i∈Sk (xi − x̄k)2/(n − 1), is

complicated to determine and it contains the population kurtosis. It is equal to

MSE

(
Ns2k
N − 1

)

= σ 4

[
(N − n)(N − 1)(Nn − N − n − 1)

N (N − 2)(N − 3)n(n − 1)
γ2 + 2(N − n)

(N − 2)(n − 1)

]

,

(2.9)
with γ2 the population excess kurtosis defined by γ2 = ∑N

i=1(xi − μ)4/(Nσ 4) − 3.
When the excess kurtosis is close to zero and the population is largewith respect to the
sample size, the MSE of the estimator (N − 1)s2k /N is close to 2σ 4/(n − 1). More
generally, when the population size is large, the MSE is approximately σ 4(γ2/n +
2/(n − 1)), which is often used as an approximation to describe theMSE in Eq. (2.9).

2.8.1 Estimation of the MSE

The MSE in Eq. (2.9) can be estimated by substituting estimates for the population
parameters σ 4 and γ2. An obvious and common estimator of the squared variance σ 4

is of course (N − 1)2s4k /N
2, even though this estimator is biased. An estimator for

the population kurtosis γ2 was provided in Chap.1 by g2 in Eq. (1.5). This estimator
is unfortunately biased for estimation of the population kurtosis, but it is considered
an appropriate estimator for the kurtosis. Using these two estimators into Eq. (2.9)
and taking the square root, an estimator of the precision of the variance estimator
(N − 1)s2k /N is obtained. Thus an estimator of the MSE in Eq. (2.9) is now

(N − 1)2s4k
N 2

[
(N − n)(N − 1)(Nn − N − n − 1)

N (N − 2)(N − 3)n(n − 1)
g2 + 2(N − n)

(N − 2)(n − 1)

]

and in case we deal with large populations we may use the simplified version
s4k [g2/n + 2/(n − 1)].
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2.9 Conclusions

In this chapter we discussed how we may collect and use the sample data such that
it may say something about the population parameters of interest. This process is
called statistical inference. We have shown that the quality of inference depends on
the estimators used, aswell as theway inwhich units are sampled from the population.
The nice and surprising part of probability sampling is that the collected or sampled
values can be used to estimate the population parameters and their precision.

The results presented in this chapter provide a good feel forwhat is called sampling
variability: by taking a sample from a population we always introduce uncertainty
in our resulting inferences. However, to take these ideas further, we need to extend
our theoretical knowledge: we need more understanding of probability theory. In the
next two chapters we will develop this theory, and subsequently we will return to the
topic of estimation.

Problems

2.1 Random sampling of n = 3 units from a population {1, 2, 3, 4, 5, 6, 7, 8, 9}with
N = 9 units. The units represent three periods. Period one contains units {1, 2, 3},
period two contains units {4, 5, 6}, and period 3 contains units {7, 8, 9}.
1. How many subsets of three units can be formed ignoring the time structure?
2. Considering the time structure, how many systematic subsets of size 3 can be

formed?
3. Considering the time structure, how many stratified subsets of size 3 can be

formed?
4. For assignments (1), (2), and (3) separately, use R to select one random subset

from all possible subsets that you have formed.
5. Use R to draw directly from the population, without creating any subsets, for

simple random sampling, systematic sampling, and stratified sampling.

2.2 To determine the proportion of children who are not immunized with measles,
a single stage cluster sampling of n = 3 schools from the population of N = 6
schools described in Table2.1 is considered. Recall that the population parameter is
θ = 30/314 = 0.09554.

1. How many possible simple random samples of three schools are there? Make a
collection of all possible simple random samples of three schools and calculate
the bias, standard error, and mean square error of this sampling approach.

2. Now stratify the schools in three strata: stratum 1 is {1, 3}, stratum 2 is {4, 6},
and stratum 3 is {2, 5}. How many possible stratified samples of 3 schools are
there given these strata? Make a collection of all possible stratified samples of
three schools and calculate the bias, standard error, and mean square error of this
stratified sampling approach.
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3. Next, stratify the schools as follows: stratum 1 is {1, 2}, stratum 2 is {3, 5}, and
stratum 3 is {4, 6}. Make a collection of all possible stratified samples of three
schools and calculate the bias, standard error, and mean square error of this
alternative stratified sampling approach.

4. Which sampling procedure would you prefer if you have to choose from the
three options in (1), (2), or (3)?

5. Set your seed to 19,670,912 and subsequently draw one simple random sample
of three schools. Given only the data in this sample, what are the estimates of
the bias, SE, and MSE?

2.3 Consider the dataset high-school.csv with 50,069 high-school children
from theNetherlands. The data contains 13 different variables aswe have discussed in
the beginning of this book.Wewill use this dataset to answer the following questions.
Use seed number 19,670,912.

1. For the numerical variables, what are the population means and population vari-
ances?

2. What are the population proportions of children that do not spend time on sports,
watch television, or, computer (determine this for the three variables separately)?

3. For the categorical variables, what are the population proportions?
4. Use R to draw a simple random sample of n = 1,200 children.

a. Estimate the means of the numerical variables and provide an estimate of the
corresponding standard errors.

b. Estimate the proportions of children that do not spend time on sports, watch
television or computer and provide the standard errors.

c. Estimate the proportion of female and male children that prefer mathematics
and calculate their standard errors.

5. Use R to draw a stratified sample from the 12 provinces.

a. Explain the choice of sample sizes within each of the provinces.
b. Estimate the means of the numerical variables and provide an estimate of the

corresponding standard errors.
c. Estimate the proportion of female and male children that prefer mathematics

and calculate their standard errors.

6. Which sampling approach in (4) and (5) for the separate variables would you
prefer? Why?

7. What would be your recommendation for the sampling approach if you wish to
estimate the proportion of children that prefer mathematics?

2.4 In this assignment we will explore the R code presented in Sect. 2.5.4. Make
the following changes to the R code and interpret the results (make sure to execute
set.seed(12345) before every simulation run):

1. Plot the distribution of the estimators of the population mean and add a vertical
line at the population mean to the plot.
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2. Increase the sample size n to 100, rerun the simulation, and plot the distribution
of the estimators again. Do the results from the print_summary() function
change? Does the distribution of the estimators look different?

3. Use the sample median (instead of the sample mean) as the estimator for
the population mean and rerun the simulation. Compare the results from the
print_summary() function for the two different estimators (use a sample
size of n = 10 in both simulations). Which estimator performs better in the
simulations?

4. Next, our interest focuses on the population variance instead of the population
mean. Change the R code such that it uses the sample variance as an estimator
for the population variance. Make sure that you use the correct denominator
when calculating the sample and population variances. Run the simulation again
with a sample size of n = 10 and plot the distribution of the estimators. Is
the distribution symmetric or is it skewed? Can you think of a reason why the
distribution is (not) symmetric?

5. Now we are interested in estimating the population mean using single-stage
cluster sampling. Change the R code such that there are 50 clusters (or groups)
in our population. In the simulation, draw a simple random sample of five clusters
out of these 50 clusters and use all units in the sampled clusters to estimate the
population mean.

6. The R code in Sect. 2.5.4 does not use the probability of obtaining a sample πk

explicitly. Why not?

Additional Material I: Generating Random Numbers

Suppose we want to randomly select one out of N numbers with equal probability.
In the old days, before the use of computers, we would generate random numbers by
(e.g.,) printing out cards numbered 1 to N and subsequently shuffling these cards,
with N the number of units in our population. If the shuffling was done well, this
would ensure that eachnumber had the sameprobability of being selected.Nowadays,
however, we use computers to generate random numbers.27

Most computer algorithms28 that produce random numbers, produce numbers
that are determined by the previous number the algorithm generated. By definition
such a series of numbers cannot be truly random, since if the algorithm is known the
sequence of numbers is known exactly. However, they do appear to be random and
therefore they are called pseudorandom.An effective (pseudo-, but wewill drop that)
random number generator is characterized by the following properties (see Sheskin
2003):

27 Note that it is not at all easy to produce “real” random numbers; this is true both when we use
computers or when we shuffle cards. There is actually a scientific literature on how to shuffle cards
such that they are really randomly ordered.
28 An algorithm is a set of instructions designed to perform a specific task.
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1. Each digit or number 0, 1, 2, . . . , 9 has the same probability (1/10) of occurring
in the sequences of numbers.

2. The randomnumber generator should have a long period before it starts repeating
the same sequence.

3. The sequence of numbers should never degenerate, which means that the algo-
rithm should not produce the same number over and over again after a certain
period.

4. The algorithm should be able to reproduce the same set of numbers, which is
often guaranteed by providing a starting or initial value (the so called seed, which
we already encountered in the simulation and the assignments of this chapter).

5. The algorithm should be efficient and not utilize lots of computer memory.

Many such algorithms have been developed.One of the earliest algorithmswas the
midsquare procedure. This procedure starts with an initial value m0 > 0, chosen by
the user. The value is squared and then the middle r digits are used as the first random
number. This process is then repeated to produce the set of numbers. To illustrate this
we use the example from Sheskin (2003). The initial value is m0 = 4,931 and r is
taken equal to 4. Squaring m0 results into m2

0 = 24,314,761. The middle four digits
are m1 = 3,147, which is the first random number in the sequence. To continue this
process we obtain m2 = 360 as the next number, since (3147)2 = 9,903,609. Note
that we could have taken 9,036, since there is no exact middle number of length 4.
The third random number would be m3 = 2,960 since 129,600 is the square of 360.
The midsquare method is not used frequently, since the procedure seems to have a
short period or may degenerate; hence, it is not a really good pseudo-random number
generator.29

An improvement over the midsquare procedure is themidproduct procedure. The
procedure starts with two initial numbers m0 and m1 of length r . The numbers are
multiplied and the middle r digits are taken for number m2. Then the numbers m1

and m2 are multiplied to generate m3. This continues to generate the set of pseudo
random numbers m2, m3, m4, . . . . In some cases a constant multiplier is used. This
means that the numbers mk , k = 2, 3, 4, ...., are determined from the middle four
digits of the productmk−2 × mk−1. Although the midproduct procedure is better than
the midsquare procedure it still has a short period or it may degenerate.

A much better approach is the so-called linear congruential method. This method
produces numbers in the range 0 to n − 1 and it uses a recursive relationship. The
relationship is given by mk = (a × mk−1 + c) mod n, for k = 1, 2, ..... The param-
eter a is a constant multiplier, the parameter c is an additive constant or increment,
and n is the modulus.30 The value m0 is the initial value or seed value. The follow-
ing example is again from Sheskin (2003). Consider m0 = 47, a = 17, c = 79, and
n = 100. This results into m1 = (17 × 47 + 79) mod 100 = (878) mod 100 = 78.
Continuing the procedure, the sequence of pseudo random numbers would become

29 So, why did we discuss it? Well, because it provides an easy start!.
30 The operation x mod n provide the rest value when x is divided by n. For instance, 26 mod 7 is
equal to 5.
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m1 = 78, m2 = 5, m3 = 64, m4 = 67, m5 = 18, m6 = 85, etc. To generate a high-
quality sequence of random numbers with the linear congruential method, the value
n must be large. It has been suggested to take n = 231 − 1 = 2,147,483,647.

Instead of producing a set of integer values, the random numbers can be repre-
sented as a uniform set of values in between [0, 1), also denoted as RND. This is
done by dividing the random numbers by 10r , with r being the maximum number
of digits of the random numbers. For the example of the midsquare procedure r was
4 and the range for the random numbers was 0 to 9999. Thus the value 0 would be
theoretically possible, but the value 1 could not be attained, since 9999/104 < 1.
For the linear congruential method, we could divide the random numbers by the
modulus number n, thus by n = 100 in the specific example. Again, the value 1 is
not possible, but the value 0 would be attainable. To generate integers from a list of
say 1 to N , both boundaries being included, we could just take the integer part of
the value 1 + N × RND. For instance, if we want to draw one number from 1 to 6
(to simulate the throwing of a die) and we use the example of the linear congruential
method, the value RND would become equal to RND = m1/n = 78/100 = 0.78.
The value 1 + N × RND = 1 + 6 × 0.78 = 5.68. The integer value is then 5.

Modern statistical software packages apply substantiallymore sophisticated recur-
sive algorithms. The Mersenne-Twister algorithm is currently applied in most sta-
tistical software packages, like R, Python, SPSS, SAS, etc. The algorithm is outside
the scope of this book, but it can be found in Matsumoto and Nishimura (1998).
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Chapter 3
Probability Theory

3.1 Introduction

Statistics is a science that is concerned with principles, methods, and techniques for
collecting,processing,analyzing,presenting,andinterpreting(numerical)data.Statis-
tics canbedivided roughly intodescriptive statistics (Chap.1) and inferential statistics
(Chap. 2), as we have already suggested. Descriptive statistics summarizes and visu-
alizes the observed data. It is usually not very difficult, but it forms an essential part of
reporting(scientific)results.Inferentialstatisticstriestodrawconclusionsfromthedata
that would hold true for part or thewhole of the population fromwhich the data is col-
lected.The theoryofprobability,which is the topicof thenext two theoretical chapters,
makes it possible to connect the twodisciplinesofdescriptive and inferential statistics.

We have already encountered some ideas from probability theory in the previous
chapter. To start with, we discussed the probability of selecting a specific sample πk

andwe briefly defined the notion of probability based on the throwing of a dice. In this
chapterwework out these ideasmore formally and discuss the probabilities of events;
we define probabilities and discuss how to calculatewith probabilities. In the previous
chapter, when discussing bias, we have also encountered the expected population
parameter E(T ), but we have not yet detailed what expectations are exactly; this is
something we cover in Chap.4.

To summarize, descriptive statistics only get us so far. If we want to do more
interesting things we need to have a formal, theoretical, understanding of probability.
This is exactly what we cover in the next two chapters. However, despite being
primarily theoretical, we introduce practical examples of each of the concepts we
introduce throughout the chapters.

In this chapter we will study:

• Basic principles and terminology of probability theory
• Calculation rules for probability; the probability axioms
• Conditional probability
• Measures of risk, and their association with study designs
• Simpson’s Paradox
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3.2 Definitions of Probability

In daily life, probability has a subjective interpretation, because everyone may have
his or her own intuition or ideas about the likelihood of particular events occuring.
An event is defined as something that happens or it is seen as a result of something.
For instance, airplane crashes around the world or congenital anomalies in newborn
babies can be considered events. These two types of events are considered rare
because their frequency of occurrence is considered small with respect to the possible
number of opportunities, but nobody knows exactly what the probability of such an
event is. Using information or empirical data, the probability of an event can bemade
more quantitative. One could assign the ratio of the frequency of an event and the
frequency of opportunities for the event to occur as the probability of this event: for
instance, the yearly number of newborn babies with a congenital anomaly as a ratio
of all yearly newborns or the number of airplane crashes in the last decade as a ratio
of the number of flights in the same period.

The possible opportunities for an event to occur can also be viewed as a population
of units (e.g., newborns or flights in a particular period of time) and the events can be
seen as the population units with a specific characteristic (e.g., congenital anomalies
or airplane crashes). In this context the definition of the probability of an event A for
a finite population can be given by

Pr (A) = NA

N
, (3.1)

with NA the number of units with characteristic A and N the size of the population.
The definition in Eq. (3.1) is only correct if each opportunity for the event to occur

is as likely to produce the event as any other opportunity. Indeed, if for instance,
congenital anomalies may occur more frequently for older women than for younger
women or airplane crashes might occur more frequently for intercontinental flights
than for continental flights, the definition in Eq. (3.1) is inappropriate. Of course,
in such cases we may reduce the population into a smaller set of units or divide it
into several subsets and then apply the definition in Eq. (3.1) to these subsets, but
this can only be performed if the number of units in the subsets does not become too
small. If we have to create very many subsets, it may happen that the probabilities for
these subsets are only equal to 1 or 0, which would make the definition less useful.
Another limitation of this definition is that it is defined for finite populations only. In
the case of tossing a coin until a head appears, the sequence of tosses can in theory
be infinitely long and the definition in Eq. (3.1) seems unsuitable.

This brings us to an alternative, and more theoretical, approach to the definition
of probability of an event, which assigns to this probability the proportion of the
occurrence of an event obtained from infinitely many repeated and identical trials
or experiments under similar conditions. This definition has its origin in gambling;
thus we will explain it by considering dice throwing once again: if a die is thrown n
times and the event A is the single dot facing up, then the probability Pr (A) of the
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event A can be approximated by the ratio of the number of throws nA with a single
dot facing up and the total number of throws n, i.e.,

Pr (A) ≈ nA
n

.

When the number of repeated trials n is increased it is expected that the proportion
nA/n converges to some value p (which would be equal to 1/6 if the die is fair).
Thus an alternative definition of probability can now be given by

Pr (A) = lim
n→∞

nA
n

= p. (3.2)

Clearly, this definition is only appropriate when repeated and identical trials can
be conducted under almost similar conditions (e.g., gaming and gambling). Thus
definition Eq. (3.2) is more conceptual for real situations, since it is impossible to
conduct infinitely many or even many of these trials in practice. Indeed, in the case
of congenital anomalies, it would be extreme to have each mother deliver (infinitely)
many babies just to be able to approximate or apply the definition of probability in
Eq. (3.2).

This fact, however, does not imply that the definition in Eq. (3.2) is useless. On
the contrary, it merely shows where particular assumptions about probabilities are
introduced. For instance, for each pregnant woman we could assign an individual
probability parameter of reproducing a newborn baby with a congenital anomaly.
If we are willing to assume that the probabilities for these women are all equal,
the probability in Eq. (3.1) is an approximation to the probability in Eq. (3.2), but
alternatively we could also assume that equal probabilities only exist for pregnant
women of certain age. In the Additional material at the end of this chapter we provide
a brief overview of the history of probability, highlighting different ways in which
people have thought about probabilities and probability theory over the years.

Definition of probability. A formal mathematical framework of probability
can be constructed (see the Additional material at the end of this chapter). In this
textbook and in context with the above-mentioned definitions Eq. (3.1) and Eq. (3.2),
we simply define the probability Pr(A) of an event A as an (unknown) value between
zero and one, 0 ≤ Pr (A) ≤ 1, where both boundaries are allowed, which could either
be approximated by collecting appropriate and real data or by the limit of a propor-
tion of repeated and identical trials.1 To operationalize probability we also need some
calculation rules; we discuss these in the next section.

1 It should be noted here that a probability of zero does not necessarily mean that the event will
never occur. This seems contradictory, but we will explain this later. On the other hand, if the event
can never occur, the probability is zero.
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3.3 Probability Axioms

There are several calculation rules for probabilities, but before we discuss some of
them we need to introduce some standard notation on events.

• The complement of event A is denoted by Ac and it indicates that event A does
not occur. Thus the complement of having a female baby is having a male baby
(although there exists literature that suggests that gender or sex is much more
fluent).

• The occurrence of two events A and B at the same time is denoted by A ∩ B. This
is often referred to as the joint or mutual event. If event A represents a congenital
anomaly in a newborn baby and event B represents the gender male of the baby,
then A ∩ B represents the event that the baby is both male and has a congenital
anomaly.

• The event that eitherA orB (or both) occurs is denoted byA ∪ B. Thus in the exam-
ple of newborn babies, A ∪ B means that the baby is either male (with or without
an anomaly) or is female with a congenital anomaly. This is the complement of
the event of having a female baby without an anomaly (i.e., (A ∪ B)c = Ac ∩ Bc).

We also have to provide some additional definitions relevant for probabilities

• The probability of no event must be zero. Not having events is indicated by the
empty set ∅ and the probability is Pr(∅) = 0. For instance, if two events A and B
can never occur together (mutually exclusive events), then it follows that A ∩ B =
∅ and Pr (A ∩ B) = Pr (∅) = 0. The mutual event that a newborn baby has an
anomaly in its uterus and is also a boy does not exist. This should have probability
zero of occurring.

• The probability that event A occurs is one minus the probability that the event A
does not occur; thus Pr (A) = 1 − Pr (Ac). This rule is based on the assumption
that either event A occurs or event Ac occurs. This means that Pr (A ∪ Ac) = 1,
since we will see either A or Ac.

• We call two events A and B independent if and only if the probability of the
mutual event is equal to the product of the probabilities of each event A and
B separately. Thus the independence of events A and B (denoted by A ⊥ B) is
equivalent with Pr (A ∩ B) = Pr (A) · Pr (B). Using products of probabilities when
independence is given or assumed is applied frequently throughout the book. Note
that any event A with the non-event ∅ is independent: Pr(A ∩ ∅) = Pr(∅) = 0 =
0 · Pr(A) = Pr(∅)Pr(A). Alternatively, if two events with a positive probability
(Pr(A) > 0 and Pr(B) > 0) that are also mutually exclusive can never be inde-
pendent: 0 = Pr(∅) = Pr(A ∩ B) < Pr(A)Pr(B). We will discuss dependencies in
more detail in Chap.6.

Using the above definitions we can define the following calculation rules:

1. If the events A and B are independent, then the events A and Bc, the events Ac and
B, and the events Ac and Bc are also independent. Demonstrating this fact is left
to the reader and part of the assignments.



3.3 Probability Axioms 85

2. The probability of the occurrence of either event A or B or both is equal to the
sum of the probabilities of these events separately minus the probability that both
events occur at the same time, i.e., Pr (A ∪ B) = Pr (A) + Pr (B) − Pr (A ∩ B).
Note that mutually exclusive events A and B imply that Pr (A ∪ B) = Pr (A) +
Pr (B).

3. The probability of an event A is the sum of the probability of both events A
and B and the probability of both events A and Bc, thus Pr (A) = Pr (A ∩ B) +
Pr (A ∩ Bc). This is sometimes referred to as the law of total probability and is
frequently applied throughout the book. Note that this rule follows directly from
the second rule.

Our definition of probability, combined with these calculation rules, jointly com-
pose the core of our theoretical discussion of probabilities. In essence, all of the
material in this chapter and the next can be derived from these simple rules. How-
ever, you will be surprised by the many interesting results we can find merely based
on these simple rules!

3.3.1 Example: Using the Probability Axioms

To explain the calculation rules using a practical example we will make use of a
deck of cards. A deck of cards contains 52 playing cards: 13 clubs, 13 diamonds,
13 hearts, and 13 spades. Diamonds and hearts have color red and clubs and spades
are black. Each suit has the same 13 different values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jack,
queen, king, and ace. Now suppose one card is randomly collected from the deck,
then we can answer the following questions:

• What is the probability that this card is a heart?
• What is the probability that this card is not a heart?
• What is the probability that it is a heart and a king?
• What is the probability that the card is a heart or a king?
• Are the events that the card is a heart and is a king independent?

Note that by virtue of our random selection of the card we are actually investigating
the probabilities of a specific simple random sample containing a single unit (as
discussed in Chap. 2).

The probability that the card is a heart is equal to 1/4. This can be deduced in at
least twoways. First of all, there are 52 cards in total (the population of cards) and each
card is as likely to be drawn as any other card. The 13 hearts are all favorable for the
event or outcome of drawing a heart. Thus using definition Eq. (3.1), the probability
is given by 13/52 = 1/4. An alternative approach is to define the population by the
four suits, and only one suit would provide the appropriate event of drawing a card
of hearts, leading to 1/4 directly.

The probability that the card is not heart is now 3/4, using the definition that the
probability of the complementary event is one minus the probability of the event.
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There is only one king of hearts, which leads to the probability of 1/52 of the
event that the card is both heart and a king, using definition Eq. (3.1).

The probability of drawing a king is 4/52 = 1/13, since there are four kings
among the 52 cards. The probability that the randomly collected card is hearts or a
king is equal to 1/4 + 1/13 − 1/52 = 4/13, using the second calculation rule.

Since the product of probabilities of hearts and a king is (1/4) · (1/13) = 1/52,
which is equal to the probability of drawing the king of hearts, the definition of
independence implies that the events are independent.

3.4 Conditional Probability

In some situations probability statements are of interest for a particular subset of
outcomes. For instance,what is the probability that the newborn baby has a congenital
anomaly given that the baby is a boy. This question is of interest because it could
be possible that congenital anomalies are more frequent for boys than for girls. This
probability is generally not the same as the probability that both events congenital
anomaly and gendermale occur, because we have excluded events of the type female.
If event A represents a congenital anomaly and B represents the event of a male
newborn baby, then the probability of interest is the so-called conditional probability
denoted by Pr (A|B). We refer to this conditional probability as the probability of
event A given event B. It is defined by

Pr (A|B) = Pr (A ∩ B)

Pr (B)
, when Pr (B) > 0. (3.3)

Clearly, if event B could never occur (i.e., Pr (B) = 0), there is no reason to define
the conditional probability in Eq. (3.3). However, for calculation purposes discussed
hereafter we will need to define the conditional probability Pr (A|B) ≡ 0 when
Pr (B) = 0.

In the case of newborn babies, one may think that the conditional probability is
equal to the probability of a congenital anomaly, but this is only true when the two
events congenital anomaly and gender male are independent. Indeed, if the events
A and B are independent (and Pr (B) > 0), then Pr (A ∩ B) = Pr (A) Pr (B). Using
the alternative formulation Pr (A ∩ B) = Pr (A|B)Pr (B) of formula Eq. (3.3), the
independence of the eventsA andB results in Pr (A|B) = Pr (A). Thus the conditional
probability of a congenital anomaly given the child is a boy is then equal to the
probability of having a congenital anomaly irrespective of gender.

If we deal with two events A and B, the relevant probabilities can be summarized
in the a 2 × 2 contingency table given in Table3.1. In column A and row B, the
probability of the occurrence of both events A and B at the same time is given
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Table 3.1 Conditional probabilities in a 2 × 2 contingency table

A Ac

B Pr (A ∩ B) = Pr (A|B) Pr (B) Pr (Ac ∩ B) = Pr (Ac|B) Pr (B) Pr (B)

Bc Pr (A ∩ Bc) = Pr (A|Bc) Pr (Bc) Pr (Ac ∩ Bc) = Pr (Ac|Bc) Pr (Bc) Pr (Bc)

Pr (A) Pr (Ac) 1

by Pr (A ∩ B). Using the conditional relation Eq. (3.3) it can also be expressed by
Pr(A|B)Pr(B).2 For the other three cells the same type of probabilities are presented.

For row B in Table3.1 the two probabilities in column A and Ac add up to the
probability Pr (B) of event B, since Pr (A|B) + Pr (Ac|B) = 1. This last relation is
due to the fact that if event B has already occurred, the probability for the occurrence
of event A or event Ac are given by Pr (A|B) and Pr (Ac|B) (see also the second
probability rule). Indeed, if we know that the new-born baby is a boy (event B),
only the conditional probabilities of congenital anomalies Pr (A|B) and Pr (Ac|B) in
row B can be observed. If on the other hand we know that the newborn baby is a
girl, only the conditional probabilities Pr (A|Bc) and Pr (Ac|Bc) in row Bc can be
observed. Also note that Pr(A|B)Pr(B) and Pr(A|Bc)Pr(Bc) add up to Pr(A), which
also follows from the second probability rule after appyling definition Eq. (3.3).

3.4.1 Example: Using Conditional Probabilities

Conditional probabilities play an important role in medical testing where the med-
ical test can produce false negative and false positive test results. In this context,
the sensitivity of a medical test is the probability of a positive test results (disease
indicated) when the patient truly has the disease and the specificity of the test is the
probability of a negative test result (disease not indicated) for patients without this
particular disease.

If event A represents a positive test result (and thus Ac represents an event with
a negative test result) in a patient and event B represents the presence of the disease
(and thus Bc represents the event with no disease), then the sensitivity and specificity
of the medical test are given by the conditional probabilities Pr (A|B) and Pr (Ac|Bc),
respectively (see Table3.1).

Suppose that a diagnostic test for the detection of a particular disease has a sensitiv-
ity of 0.95 and a specificity of 0.9. Assume further that the proportion of patients with
the disease (a priori probability) in the target population is equal to 0.7. Thus in this

2 Using definition Eq. (3.3) we can write Pr(A ∩ B) as Pr(A|B) Pr(B), as we did in Table3.1, but
also as Pr(B|A) Pr(A). Which one to use mostly depends on the practical situation. In Table3.1 we
could have used Pr(B|A) Pr(A) as well.
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example we have received the following information in Table3.1: Pr (A|B) = 0.95,
Pr (Ac|Bc) = 0.9, and Pr (B) = 0.7. This particular example is for instance discussed
by Veening et al. (2009, Chap.13) for the detection of a hernia. Possible questions
of interest are the size of the diagnostic probabilities:

• What is the probability of having the disease when the medical test has provided
a positive test result: Pr (B|A)?

• What is the probability of not having the diseasewhen themedical test has provided
a negative test result: Pr (Bc|Ac)?

The calculation of these diagnostic probabilities can be obtained by the theorem
of Bayes, or just Bayes Theorem, which is given by

Pr (B|A) = Pr (A ∩ B)

Pr (A)
= Pr (A|B)Pr (B)

Pr (A)
,

and is easily derived using relation Eq. (3.3).
Using relations Pr (A) = Pr (A|B) Pr (B) + Pr (A|Bc) Pr (Bc), see Table3.1,

Pr (Bc) = 1 − Pr (B) , and Pr (A|Bc) = 1 − Pr (Ac|Bc) , the conditional probability
Pr (B|A) can be rewritten as

Pr (B|A) = Pr (A|B)Pr (B)

Pr (A|B) Pr (B) + [1 − Pr (Ac|Bc)] [1 − Pr (B)]
. (3.4)

The last expression in Eq. (3.4) contains only the terms Pr (A|B), Pr (Ac|Bc),
and Pr (B) which were all provided in the example. Thus it becomes possi-
ble to calculate the conditional probability Pr (B|A). The answer is 0.9568 ≈
(0.95 · 0.7) / (0.95 · 0.7 + 0.1 · 0.3).

For the probability Pr (Bc|Ac) a similar formula can be established. It is the same
formula Eq. (3.4), but with A replaced by Ac, B replaced by Bc, Ac replaced by A,
and Bc replaced by B. If we again apply Pr (Bc) = 1 − Pr (B), then we find for the
conditional probability Pr (Bc|Ac) the following formula

Pr
(
Bc|Ac

) = Pr (Ac|Bc) [1 − Pr (B)]

Pr (Ac|Bc) [1 − Pr (B)] + [1 − Pr (A|B)] Pr (B)
. (3.5)

Thus the answer to the second question above is 0.8852 ≈ (0.9 · 0.3) /

(0.9 · 0.3 + 0.05 · 0.7).
In the general public, there is little intuition about these conditional probabilities

Pr(B|A) and Pr(Bc|Ac), when Pr(A|B), Pr(Ac|Bc), and Pr(B) are given, due to the
role of Pr(B). If in our example above the probability of the disease is rare, say
Pr(B) = 0.005, the probability of having the disease given a positive test Pr(B|A)

would become approximately equal to 0.046, which is still very low. Without the
positive test, the probability for an arbitrary person to have the disease would be
equal to Pr(B) = 0.005, but if this person receives a positive test, this probability
increases to 0.046. Clearly, there is a huge increase in probability (more than 9 times
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higher), but since the a priori probability of the diseasewas very small, the probability
on the disease after a positive test remains low.

3.4.2 Computing Probabilities Using R

In Chaps. 1 and 2 we have seen how R can be used to perform descriptive analyses of
data and simulate different sampling procedures. R is also a handy calculator for per-
forming simple calculations such as those presented in the examples in Sects. 3.3.1,
3.4.1, and 3.5.4. For instance, consider the example of a medical test from Sect. 3.4.1,
where the event A (Ac) represents a positive (negative) test result and the event B (Bc)
represents the presence (absence) of a particular disease in a patient. The follow-
ing probabilities are given: Pr(A|B) = 0.95 (sensitivity of the test), Pr(Ac|Bc) = 0.9
(specificity of the test), and Pr(B) = 0.7 (proportion of patients in the target popu-
lation having the disease). What we would like to know is the probability of having
the disease given that the test is positive, Pr(B|A), and the probability of not hav-
ing the disease given that the test is negative, Pr(Bc|Ac). These probabilities can be
calculated using the formulas in Eqs. (3.4) and (3.5), respectively. We can use R to
carry out these calculations as follows:

> # Specify known probabilities:
> P_A_given_B <- 0.95
> P_notA_given_notB <- 0.9
> P_B <- 0.7
>
> # Calculate Pr(B|A):
> P_A_given_B*P_B/(P_A_given_B*P_B+(1-P_notA_given_notB)*(1-P_B))
[1] 0.9568345
>
> # Calculate Pr(B^c|A^c):
> P_notA_given_notB*(1-P_B)/(P_notA_given_notB*(1-P_B)+
+ (1-P_A_given_B)*P_B)
[1] 0.8852459

Note that in the R code above P_A_given_B is the sensitivity Pr(A|B) and
P_notA_given_notB is the specificity Pr(Ac|Bc).

3.5 Measures of Risk

The example of conditional probabilities for medical tests is a relevant example of
probability theory, but it is of course not the only application of probability theory.
Conditional probabilities also play a dominant role in the investigation of associ-
ations between events (see, for example Jewell 2003; Rothman et al. 2008; White
et al. 2008). Two events or variables are considered associated when they are not
independent. For instance, the probability of a congenital anomaly in newborn babies
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may be different for boys and girls. If independence is violated, a comparison of the
two conditional probabilities of congenital anomalies given boys and girls can be
used to quantify the strength of the association. Different association measures or
measures of risk exist for this purpose, such as the risk difference, relative risk, and
odds ratio. We discuss each of these in turn.

To discuss thesemeasures, it is convenient to change our notation slightly so that it
is easier to seewhat is an outcome andwhat is an explanatory variable. Hence, instead
of using A and B for events we will use D to denote the event of interest (outcome,
result, disease) and E to denote the event that may affect the outcome (risk factor,
explanatory event, exposure). In our exampleD is the event of the congenital anomaly
and E is the event of being male, but one may consider many other examples:

• Lung cancer (D) with smoking (E) or non-smoking (Ec).
• Product failure (D) with automation (E) or manual processing (Ec).
• Passing the data science exam (D) with the use of our book (E) or the use of other
books or no books at all (Ec).

3.5.1 Risk Difference

The risk difference or excess risk is an absolute measure of risk, since it is nothing
more than the difference in the conditional probabilities, i.e.

ER = Pr (D|E) − Pr
(
D|Ec

)
.

The risk difference is based on an additive model, i.e., Pr (D|E) = ER + Pr (D|Ec).
It always lies between −1 and 1.

If the risk difference is positive (ER > 0), there is a greater risk of the outcome
when exposed (E) than when unexposed (Ec). A negative risk difference (ER < 0)
implies that the exposure (E) is protective for the outcome. If the risk difference is
equal to zero (ER = 0), the outcome (D) is independent of the exposure (E).

To see this last statement we will assume that 0 < Pr (E) < 1 and then use the
definition of conditional probability and the calculation rules from Sect. 3.3.

ER = 0 ⇐⇒ Pr (D|E) = Pr (D|Ec)

⇐⇒ Pr (Ec) Pr (D ∩ E) = Pr (E) Pr (D ∩ Ec)

⇐⇒ [1 − Pr (E)] Pr (D ∩ E) = Pr (E) [Pr(D) − Pr (D ∩ E)]
⇐⇒ Pr (D ∩ E) = Pr (D) Pr (E) .

Many researchers feel that the risk difference is the most important measure, since
it can be viewed as the excess number of cases (D) as a fraction of the population
size. If the complete population (of size N ) were to be exposed, the number of
cases would be equal to N · Pr (D) = N · Pr (D|E). If the complete population were
unexposed the number of cases would be equal to N · Pr (D) = N · Pr (D|Ec). Thus
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the difference in these numbers of cases indicates how the number of cases were to
change if a completely exposed population would change to a completely unexposed
population.

3.5.2 Relative Risk

The relative risk would compare the two conditional probabilities Pr (D|E) and
Pr (D|Ec) by taking the ratio, i.e.

RR = Pr (D|E)

Pr (D|Ec)
.

It is common to take as denominator the risk of the outcome D for the unexposed
group. Thus a relative risk larger than 1 (RR > 1) indicates that the exposed group
has a higher probability of the outcome (D) than the unexposed one. A relative risk
equal to one (RR = 1) implies that the outcome and exposure are independent. A
relative risk less than one (RR < 1) indicates that the unexposed group has a higher
probability of the outcome. The relative risk is based on a multiplicative model, i.e.,
Pr (D|E) = RR · Pr (D|Ec).

3.5.3 Odds Ratio

The third measure of risk is also a relative measure. The odds ratio compares the
odds for the exposed group with the odds for the unexposed group. The odds is a
measure of how likely the outcome occurswith respect to not observing this outcome.
The odds comes from gambling, where profits of bets are expressed as 1 to x . For
instance, the odds of 1 to 6 means that it is six times more likely to loose than to win.
The odds can be defined mathematically by O = p/ (1 − p), with p the probability
of winning. The odds of the exposed group is OE = Pr (D|E) /[1 − Pr (D|E)] and
the odds for the unexposed group is OEc = Pr (D|Ec) /[1 − Pr (D|Ec)]. The odds
ratio is now given by

OR = OE

OEc
= Pr (D|E) [1 − Pr (D|Ec)]

Pr (D|Ec) [1 − Pr (D|E)]
= Pr (Dc|Ec)

Pr (Dc|E)
× RR. (3.6)

Similar to the relative risk, it is common to use the unexposed group as reference
group, which implies that the odds of the unexposed groupOEc is used in the denom-
inator.

An odds ratio larger than one (OR > 1) indicates that the exposed group has a
higher odds than the unexposed group, which implies that the exposed group has a
higher probability of outcome D. An odds ratio of one (OR = 1) indicates that the
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outcome is independent of the exposure, and an odds ratio smaller than one (OR < 1)
indicates that the unexposed group has a higher probability of the outcome.

Note that the odds ratio and relative risk are always ordered. To be more precise,
the odds ratio is always further away from 1 than the relative risk, i.e., 1 < RR < OR
or OR < RR < 1. To see this, we will only demonstrate 1 < RR < OR, since the
other ordering OR < RR < 1 can be demonstrated in a similar way. If RR > 1, we
have that Pr(D|E) > Pr(D|Ec), using its definition. Since Pr(Dc|E) = 1 − Pr(D|E)

and Pr(Dc|Ec) = 1 − Pr(D|Ec), we obtain that Pr(Dc|E) < Pr(Dc|Ec). Combining
this inequality with the relation in Eq. (3.6), we see thatOR > RR. Note that the odds
ratio and relative risk are equal to each other when RR = 1 (or OR = 1).

3.5.4 Example: Using Risk Measures

To illustrate the calculations of the different riskmeasures wewill consider the exam-
ple of Dupuytren disease (outcome D) and discuss whether gender has an influence
on this disease (E is male). Dupuytren disease causes the formation of nodules and
strains in the palm of the hand that may lead to flexion contracture of the fingers.
Based on a random sample of size n = 763 from the population of Groningen, a con-
tingency table with Dupuytren disease and gender was obtained (Table3.2). More
can be found in Lanting et al. (2013).

The probabilities in the middle four cells in Table3.2 (thus not in the bottom row
nor in the last column) represent the probabilities that the two events occur together.
Thus the probabilities Pr (D|E) and Pr (D|Ec) can be obtained by Pr (D|E) =
Pr (D ∩ E) /Pr (E) = 92/348 = 0.2644 and Pr (D|Ec) = Pr (D ∩ Ec) /Pr (Ec) =
77/415 = 0.1855, respectively.

Given this information we can compute the risk difference, the relative risk, and
the odds ratio:

• The risk difference is now ER = 0.0788, which implies that males have 7.88%
absolute higher risk of Dupuytren disease than females.

• The relative risk is RR = (92/348) / (77/415) = 1.4248. This implies that males
have a risk of Dupuytren disease that is almost 1.5 times larger than the risk for
females.

Table 3.2 2 × 2 contingency table for Dupuytren disease and gender

Exposure Disease outcome Total

Dupuytren (D) No Dupuytren (Dc)

Male (E) 92/763 = 0.1206 256/763 = 0.3355 348/763 = 0.4561

Female (Ec) 77/763 = 0.1009 338/763 = 0.4430 415/763 = 0.5439

Total 169/763 = 0.2215 594/763 = 0.7785 1
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• The odds ratio of Dupuytren disease for males isOR = (92 × 338)/(77 × 256) =
1.5775, indicating that the odds for Dupuytren disease in males is more than 1.5
time larger than the odds for females. Thus males have a higher risk for Dupuytren
disease.

In the next sectionwediscusswhatmeasures of association or riskwe can calculate
if we sample from the population in three different ways. Each of the sampling
approaches will provide a 2 × 2 contingency table, just like the one in Table3.2, but
they may not provide estimates of the population proportions.

3.6 Sampling from Populations: Different Study Designs

The odds ratio is often considered more complex than the relative risk, in particular
because of the simplicity of interpretation of the relative risk. The odds ratio is,
however, more frequently used in practice than the relative risk. An important reason
for this is that the odds ratio is symmetric in exposure E and outcome D. If the roles
of the exposure and outcome are interchanged the odds ratio does not change, but
the relative risk does.

To see this, we will again use the data presented in Table3.2. Interchanging the
roles of E and D results in a relative risk of Pr (E|D) /Pr (E|Dc). This relative risk
is equal to (92/169)/(256/594) = 1.2631 and it is quite different from the relative
risk Pr (D|E) /Pr (D|Ec) = 1.4248.When the roles of E andD are interchanged, the
odds ratio becomes [Pr (E|D) /(1 − Pr (E|D))]/[Pr (E|Dc) /(1 − Pr (E|Dc)]. Cal-
culating this odds ratio results in the odds ratio of 1.5775 (as we already calcu-
lated in Sect. 3.5.4), since [(92/169)/(77/169)]/[(256/594)/(338/594)] = (92 ×
338)/(77 × 256). These results can be proven mathematically; we ask you to do so
in the assignments.

As wewill see hereafter, the symmetry of the odds ratiomakes it possible to inves-
tigate the association between D and E irrespective of the way that the sample from
the populationwas collected. Thiswould not be the case for the risk difference and the
relative risk. There aremanyways inwhichwe can select a sample from a population,
but three of them are particularly common in medical research: population-based
(cross-sectional), exposure-based (cohort study), and disease-based (case-control
study). We discuss these three in turn, and also discuss their limitations with respect
to calculating the different risk or association measures if there are any.

3.6.1 Cross-Sectional Study

In a cross-sectional study a simple random sample of size n is taken from the popu-
lation (see Chap.2). For each unit in the sample both the exposure and outcome are
being observed and the units are then summarized into the four cells (E,D), (E,Dc),
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(Ec,D), and (Ec,Dc). The 2 × 2 contingency table would then contain the number
of units in each cell, just like we saw in Table3.2 for Dupuytren disease.

This way of sampling implies that the proportions in the last row (Pr(D) and
Pr(Dc)) and the proportions in the last column (Pr(E) and Pr(Ec)) of Table3.1
would be unknown before sampling and they are being determined by the proba-
bility of outcome and exposure in the population. The example of Dupuytren disease
in Table3.2was actually obtainedwith a population-based sample. Thus the observed
probabilities in Table3.1 obtained from the sample represent unbiased estimates of
the population probabilities .

Here we have applied the theory of simple random sampling of Sect. 2.7 for
estimation of a population proportion. For instance, if we define the binary variable
xi by 1 if unit i has both events E and D (thus E ∩ D) and it is zero otherwise, the
estimate of the population proportion Pr(E ∩ D)would be the sample average of this
binary variable. This sample average is equal to the number of units in cell (E,D)

divided by the total sample size n; see also Table3.2. This would also hold for any
of the other cells, including the cells in the row and column totals (Pr(D), Pr(Dc),
Pr(E), and Pr(Ec)). Thus if we also want to express the mean squared error (MSE)
for estimating any of the probabilities in Table3.1, we could apply the MSE from
Table2.2 (see Sect. 2.2). Since the 2 × 2 contingency table with sample data provides
proper estimates of the population proportions, the measures of risk that would use
these estimates from the sampled contingency table are estimates of the population
measures of risk. Thus calculation of the risk difference, the relative risk, and the
odds ratio are all appropriate for cross-sectional studies.

3.6.2 Cohort Study

In a cohort study, a simple random sample is taken from the population of units
who are exposed and another simple random sample is taken from the population
of units who are unexposed. Thus this way of sampling relates directly to stratified
sampling discussed in Chap.2 with the strata being the group of exposed (E) and the
group of unexposed (Ec). In each sample or stratum the outcome D is noted and the
contingency table in Table3.1 is filled. In this setting, the probabilities Pr (E) and
Pr (Ec) are preselected before sampling and are fixed in the sample, whatever they
are in the population. Thus the sample and the population may have very different
probabilities.

To illustrate this we consider the example of newborn babies again. The outcome
will be the occurrence of congenital anomalies (D) and the exposure would repre-
sent the gender of the child, with male being the event (E). If we select a random
sample of 500 male newborn babies and 1,000 female newborn babies, the observed
contingency table would have twice as many girls as boys, but in practice this ratio
is approximately one. Thus a consequence is that the probabilities in the cells of the
contingency tables are no longer appropriate estimates for the population probabili-
ties, since we have destroyed the ratio in probabilities for E and Ec. This also implies
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that the probability Pr (D ∩ E) in Table3.1 does not reflect the true probability in the
population either. This would become evenmore obvious if we assume that the expo-
sure E is really rare in the population (Pr (E) ≈ 0) and all units with the exposure
also have the outcome D. In the sample we would observe that Pr (D ∩ E) is equal
to one, while in the population this probability is close to zero since the exposure
hardly occurs.3

Despite the fact that we cannot use the joint probabilities in the contingency table
as estimates for the population probabilities, the risk difference, the relative risk,
and the odds ratio in the sample are all appropriate estimates for the population
when a cohort study is used. The reason is that these measures use the conditional
probabilities only, where conditioning is done on the exposure. The Pr (D|E) and
Pr (D|Ec) in the sample do represent the conditional population probabilities.

3.6.3 Case-Control Study

In a case-control study a simple random sample is taken from the population of units
having the outcome and from the population of units without the outcome. Thus
this way of sampling relates also directly to stratified sampling discussed in Chap. 2
with the strata being the group with outcome (D) and the group without outcome
(Dc). In each sample or stratum the exposure of each unit is noted. Thus for disease-
based sampling the probabilities Pr (D) and Pr (Dc) are known before sampling and
are fixed in the sample. This means that the observed probabilities in the sample
are inappropriate as estimates for the same probabilities in the population. Thus
we cannot estimate how many units in the population have the outcome. Similar to
the cohort study, we cannot estimate the joint probabilities Pr (D ∩ E), Pr (D ∩ Ec),
Pr (D ∩ E), and Pr (D ∩ E) in the population from the sample. This is similar to the
discussion in cohort studies.

The problem with case-control studies is that the conditional probabilities
Pr (D|E) and Pr (D|Ec) cannot be determined either. To illustrate this, assume the
following probabilities in the population Pr (D ∩ E) = 0.08, Pr (D ∩ Ec) = 0.02,
Pr (Dc ∩ E) = 0.12, and Pr (Dc ∩ Ec) = 0.78. Thus in the population we have
Pr (D|E) = 0.4 and Pr (D|Ec) = 0.025, which gives a relative risk of RR = 16. Now
let us assume that the sample size in the outcome D group is equal to 900 and it is
the same as in the Dc group. We would expect the following numbers in the 2 × 2
contingency Table3.3, because Pr(E|D) = 0.8 and Pr(E|Dc) = 0.133.

The conditional probabilities Pr (D|E) and Pr (D|Ec) are now equal to Pr (D|E) =
720/840 = 0.8571 and Pr (D|Ec) = 180/960 = 0.1875. The relative risk for
Table3.3 is now given by RR = 4.5714, which is substantially lower than the relative
risk in the population. The odds ratio, though, can still be properly estimated, due
to the symmetry of the odds ratio, which does not change if the roles of D and E
interchange.

3 If, in this case, the population size(s)were known,we could calculateweighted averages to estimate
the population parameters as we did in Chap.2.



96 3 Probability Theory

Table 3.3 2 × 2 contingency table for an artificial case-control study

Exposure Disease outcome Total

D Dc

Male 720 120 840

Female 180 780 960

Total 900 900 1800

3.7 Simpson’s Paradox

In Sect. 3.5 we discussed three different measures of risk for two types of events
(outcome D and exposure E). In Sect. 3.6 we discussed three different observational
study designs and demonstrated that not all three measures can be determined in each
of these observational studies. However, in practice it is evenmore complicated, since
we should always be aware of a third event C that may change the conclusions if the
event data of D and E are split for C and Cc. This issue is best explained through an
example. In Table3.4 we report the numbers of successful removal of kidney stones
with either percutaneous nephrolithotomy or open surgery (see Charig et al. 1986
for more details).

The relative risk of removal of kidney stones for percutaneous nephrolithotomy
with respect to open surgery (which can be calculated from this dataset, as it is a
cohort study) is determined by RR = (289/350)/(273/350) = 1.0586. This means
that percutaneous nephrolithotomy increases the “risk” of successful removal of the
kidney stones with respect to open surgery. However, if the data are split by size of
kidney stone, a 2 × 2 contingency table for stones smaller and larger than 2cm in
diameter can be created. Let’s assume thatwe obtain the two 2 × 2 contingency tables
in Table3.5. Note that if we combine the two tables into one 2 × 2 contingency table
we obtain Table3.4. The relative risks for the two sizes of kidney stones separately are
determined at RR≤2 = 0.9309 and RR>2 = 0.9417. Thus it seems that open surgery
has a higher success of kidney stone removal than percutaneous nephrolithotomy for
both small and large stones. This seems to contradict the results from Table3.4 and
this contradiction is called Simpson’s paradox (Simpson 1951), named after Edward
Hugh Simpson.

Table 3.4 2 × 2 contingency table for removal of kidney stones and two surgical treatments

Exposure Kidney stones outcome Total

Removal (D) No removal (Dc)

Nephrolithotomy (E) 289 61 350

Open surgery (Ec) 273 77 350

Total 562 138 700
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Table 3.5 2 × 2 contingency table for removal of kidney stones and two surgical treatments by
size of kidney stones

Exposure Kidney Stones Outcome ≤ 2cm (C) Total

Removal (D) No Removal (Dc)

Nephrolithotomy (E) 234 36 270

Open Surgery(Ec) 81 6 87

Total 315 42 357

Exposure Kidney Stones Outcome > 2cm (Cc) Total

Removal (D) No Removal (Dc)

Nephrolithotomy (E) 55 25 80

Open Surgery(Ec) 192 71 263

Total 247 96 343

Simpson (1951) demonstrated that the association between D and E in the col-
lapsed contingency table is preserved in the two separate contingency tables for C
and Cc whenever one or both of the following restrictions hold true

Pr (D ∩ E ∩ C) Pr
(
D ∩ Ec ∩ Cc

) = Pr
(
D ∩ Ec ∩ C

)
Pr

(
D ∩ E ∩ Cc

)

Pr (D ∩ E ∩ C) Pr
(
Dc ∩ E ∩ Cc

) = Pr
(
Dc ∩ E ∩ C

)
Pr

(
D ∩ E ∩ Cc

)

The first equation implies that the odds ratio for having the exposure E for the
presence or absence of C in the outcome group D is equal to one, i.e.

OREC|D = Pr (E|C,D) [1 − Pr (E|Cc,D)]
Pr (E|Cc,D) [1 − Pr (E|C,D)] = 1.

Thus E and C must be independent in the outcome group D, which means that
Pr (E ∩ C|D) = Pr (E|D) Pr (C|D). The second equation implies that the odds ratio
for the outcome D in the presence or absence of C in the exposed group E is equal
to one, i.e.

ORDC|E = Pr (D|C,E) [1 − Pr (D|Cc,E)]
Pr (D|Cc,E) [1 − Pr (D|C,E)] = 1.

Thus this means that D and C are independent in the exposed group E, which means
that Pr (D ∩ C|E) = Pr (D|E) Pr (C|E).

In the example of kidney stones, we see that Pr (E ∩ C|D) = 234/562,
Pr (E|D) = 289/562, and Pr (C|D) = 315/562. The product of probabilities
Pr (E|D) Pr (C|D) = 0.2882, which is substantially lower than Pr (E ∩ C|D) =
0.4164. Additionally, we also obtain Pr (D ∩ C|E) = 234/350, Pr (D|E) =
289/350, and Pr (C|E) = 270/350. This shows that Pr (D|E) Pr (C|E) = 0.6370,
which is lower than Pr (D ∩ C|E) = 0.6686.

If the two independence requirements are violated, the event C is called a con-
founder. In this case we should report the stratified analysis. Thus for the example



98 3 Probability Theory

of kidney stone removal, the analysis should be conducted on the data in Table3.5.
This means that open surgery has a slightly higher success rate than percutaneous
nephrolithotomy.4

Simpson’s paradox also shows that data analysis is far from trivial and care should
be taken when making bold statements about associations of events in populations.

3.8 Conclusion

In this chapter we started our exploration of the theory of probability. To do so,
we defined probabilities, and we gave the basic computation rules to work with
probabilities. We discussed probabilities (in terms of events) and several derived
quantities that are used in practice to summarize data, such as distinct risk measures.
Also, we discussed how sampling (or study design) and appropriate risk measures
are closely related.

The probability rules we discuss in this chapter provide the foundation for dis-
cussing more probability theory; namely the theory of random variables. We will
do so in the next chapter. In the additional materials for this chapter you will find a
short history of probability. It is interesting to see that the same rules have originated
multiple times, using different definitions of probabilities. For now we will continue
using our definitions presented here. However, in Chap.8 we will get back to some
of the fundamental discussions and discuss the important role that Eq. (3.4) has in
thinking about probabilities.

Problems

3.1 Two fair dice are thrown one by one.

1. What is the probability that the first die shows an odd number of eyes facing
up?

2. What is the probability that the sum of the eyes of the two dice is eleven?

3.2 A card is randomly drawn from an incomplete deck of cards from which the ace
of diamonds is missing.

1. What is the probability that the card is “clubs”?
2. What is the probability that the card is a “queen”?
3. Are the events “clubs” and “queen” independent?

3.3 In a group of children from primary school there are 18 girls and 15 boys. Of
the girls, 9 have had measles. Of the boys, 6 have had measles.

4 Note that Simpson’s Paradox, and its solutions, are still heavily debated (see, Armistead 2014 for
examples).
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1. What is the probability that a randomly chosen child from this group has had
measles?

2. If we randomly choose one person from the group of 18 girls, what is the
probability that this girl has had measles?

3. Are the events “boy” and “measles” in this example independent?

3.4 In a Japanese cohort study, 5,322 male non-smokers and 7,019 male smokers
were followed for four years. Of these men, 16 non-smokers and 77 smokers devel-
oped lung cancer.

1. What is the probability that a randomly chosen non-smoker from this group
developed lung cancer?

2. What is the probability that a randomly chosen smoker from this group devel-
oped lung cancer?

3. Are the events “smoking” and “lung cancer” in this example independent?
4. What is the conditional probability that the patient is a smoker if he has devel-

oped lung cancer?

3.5 Prove mathematically that A ⊥ Bc, Ac ⊥ B, and Ac ⊥ Bc if A ⊥ B.

3.6 In a life table the following probabilities are provided. Females can expect to
live to an age of 50 years with a probability of 0.898. The probability drops to 0.571
for females with a life expectancy of 70 years. Given that a woman is 50 years old,
what is the probability that she lives to an age of 70 years?

3.7 Suppose a particular disease is prevalent in a population with 60%. The sensi-
tivity and specificity of the medical test for this disease are both 0.9. A patient from
this population is visiting the physician and is tested for the disease.

1. What is the probability that the patient has the disease when the patient is tested
positively?

2. If the sensitivity is 0.9, what is the minimum required specificity of the medical
test to know with at least 95% certainty that the patient has the disease when
tested positively?

3. If the specificity is 0.9, what is the minimum required sensitivity of the medical
test to know with at least 95% certainty that the patient does not have the disease
when tested negatively?

3.8 Use R to carry out the calculations presented in Sect. 3.5.4. First, use the
matrix() function to store the numbers presented in Table3.2 in a 3 × 3 matrix.
Use the dimnames argument of the matrix() function to give the matrix mean-
ingful row and column names. If you do not know how to use the dimnames
argument try running ?matrix() or search the Internet. Use the numbers stored in
the matrix to calculate the risk difference, the relative risk, and the odds ratio. Give
an interpretation of the results.
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3.9 Consider the following 2 × 2 contingency table for the removal of kidney stones
using two different treatments:

Treatment Removal of kidney stones Total
Successful Not successful

Open surgery 273 77 350
Small incision 289 61 350
Total 552 148 700

1. What do you think is the study design that the researchers of the removal of kidney
stones have selected?

2. Calculate the risk difference, the relative risk, and the odds ratio for a successful
removal of kidney stones for a small incision with respect to open surgery. Based
on these results, formulate your conclusion.

3. Provemathematically that the odds ratio for outcomeDwith andwithout exposure
E is the same as the odds ratio for the exposure E with and without the outcome
D.

Additional Material I: A Historical Background of
Probability

The theory of probability was inspired by and has its origin in gaming and gambling.
In the 16th century, the Italian mathematician Girolamo Gardano (1501–1576) is
considered the first to have calculated probabilities by theoretical arguments and
possibly started the development of modern probability (see David (1955)). Also
Galileo-Galilei (1564–1642) discussed probabilities, in particular for throwing three
dice, but he may have thought that the problem was of little interest. The two French
mathematicians Blaise Pascal (1623–1662) and Pierre de Fermat (1601–1665) dis-
cussed more complex calculations of popular dice games in a set of letter corre-
spondences. They are often credited with the development of the first fundamental
principles for probability theory. Their correspondence was probably initiated by a
seeming contradiction presented by the French nobleman Chevalier de Méré, who
believed that scoring a six once in four throws of a die is equal to scoring a double
six simultaneously in 24 throws of two dice (see Sheynin (1977)). As we now know,
these probabilities are approximately 0.5177 and 0.4914, respectively.

The Dutch scientist Christiaan Huygens (1629–1695) is known to be the first to
write a book solely on the subject of probability in 1657, in which a systematic
manner of probability calculations was set out for gambling questions. Although he
might not have met Pascal or Fermat, he was probably introduced to the theory of
probability when he spent time in Paris in 1655. It is believed that the manuscript
of Huygens initiated much more interest in the theory of probability. It profoundly
influenced two other important contributors to this theory, namely the Swiss mathe-
matician James Bernoulli (1654–1705) and the French mathematician Abraham de
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Moivre (1667–1754). They both contributed to probability theory by introducing
more complicated calculations in gambling questions, but Bernoulli also provided a
philosophical foundation that would make probability suitable for broader applica-
tions.

The French mathematician and astronomer Pierre-Simon Laplace (1749–1827)
took this development much further and applied probability theory to a host of new
applications. It can be claimed that Laplace is responsible for the early development
of mathematical statistics (see Stigler (1975)). In 1812 he published the first edition
of a book on probability theory with a wide variety of analytical principles. For
instance, he presents and applies the theorem of Bayes. This important calculation
rule in probability,which plays a role in, for instance, diagnostic tests, aswe discussed
before, is credited to the English mathematician Thomas Bayes (1702–1761). It was
published posthumously in 1764, but it did not receive much attention until Laplace
published it in his book. It is unknown if Laplace was aware of the publication in
1764.

Amore fundamentalmathematical formulation of the definition of probabilitywas
developed by the Russian mathematician Andrey Nikolaevich Kolmogorov (1903–
1987), who built upon theoretical results of other mathematical scientists. One could
claim that the work of Kolmogorov ended the search for a precise mathematical
definition of probability that is also comprehensive enough to be useful to describe
a large set of practical phenomena.

Additional Material II: A Formal Definition of Probability

The first step is to introduce an outcome space Ω of elementary events (Grimmett
et al. 2001). This is the set of outcomes that we may (theoretically) observe. For
example, the outcome space Ω can be equal to Ω = {1, 2, 3, 4, 5, 6} if we through
a die and each side of the die can finish on top. Then in the second step we need
to define what is called a σ -field (or σ -algebra) F . This is a set of subsets of the
outcome space Ω . It needs to satisfy the following conditions:

1. The empty set ∅ must be an element ofF . Thus ∅ ∈ F .
2. The union of any number of subsets ofF should be part ofF . If A1, A2,..... ∈ F

then ∪∞
i=1Ai ∈ F .

3. The complement of any subset inF is part ofF . If A ∈ F then Ac ∈ F .

Note that we may define different σ -fields on the same outcome space. For
instance, for the outcome space Ω = {1, 2, 3, 4, 5, 6} we could define F =
{∅, {6} , {1, 2, 3, 4, 5} ,Ω} as the σ -field. This σ -field shows that we are inter-
ested in the event of throwing a six. We may also be interested in the event
of throwing an odd number, which would imply that the σ -field is equal to
F = {∅, {1, 3, 5} , {2, 4, 6} ,Ω}. Alternatively, we may be interested in throwing
any outcome, which means that the σ -field would contain any possible subset of Ω .
Thus F would be equal to
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F = {∅, {1}, {2}, . . . , {6}, {1, 2}, {1, 3}, . . . , {5, 6}, {1, 2, 3}, {1, 2, 4}, . . . , {4, 5, 6}, . . . , {1, 2, 3, 4, 5, 6}} .

Note that all three σ -fields satisfy the conditions listed above. Thus the σ -field
determines what sort of events we are interested in. The σ -field relates to the question
or to the probability of interest.

Now the final step is to define the probability measure Pr on (Ω,F ) as a function
from the σ -fieldF to the interval [0, 1], i.e., Pr : F → [0.1], that satisfies:
1. Pr (∅) = 0.
2. If A1, A2, . . . is a collection of disjoint members ofF , i.e., Ai ∈ F and Ai ∩ Aj =

∅ for i �= j , then Pr
(∪∞

i=1Ai
) = ∑∞

i=1 Pr (Ai ).

The triplet (Ω,F ,Pr) is called a probability space and Pr is called the probability
measure.

Thus if we believe that throwing a six with one die is equal to 1/6, the probabil-
ity space may be written as ({1, 2, 3, 4, 5, 6} , {∅, {6} , {1, 2, 3, 4, 5} ,Ω} ,Pr) with
Pr ({6}) = 1/6. Alternatively, if we do not know the probability of throwing a 6, we
may introduce an unknown probability θ for the probability of throwing a 6, i.e.,
Pr({6}) = θ . The probability space remains what it is, but Pr is changed now.
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Chapter 4
Random Variables and Distributions

4.1 Introduction

In the first chapter we discussed the calculation of some statistics that could be useful
to summarize the observed data. In Chap.2we explained sampling approaches for the
proper collection of data from populations. We demonstrated, using the appropriate
statistics, how we may extend our conclusions beyond our sample to our population.
Probability sampling required reasoning with probabilities, and we provided a more
detailed description of this topic in Chap. 3. The topic of probability seems distant
from the type of data that we looked at in the first chapter, but we did show how
probability is related to measures of effect size for binary data. We will continue
discussing real-world data in this chapter, but to do so we will need to make one
more theoretical step. We will need to go from distinct events to dealing with more
abstract random variables. This allows us to extend our theory on probability to other
types of data without restricting it to specific events (i.e., binary data).

Thus, this chapter will introduce random variables so that we can talk about con-
tinuous and discrete data. Random variables are directly related to the data that we
collect from the population; a relationship we explore in depth. Subsequently we
will discuss the distributions of random variables. Distributions relate probabilities
to outcomes of random variables. We will show that distributions may be considered
“models” for describing variables from populations. We will discuss separately dis-
tributions for discrete random variables and for continuous random variables. In each
case we will introduce several well-known distributions. In both cases we will also
discuss properties of the random variables: wewill explain their expected value, vari-
ance, andmoments. These properties provide summaries of the population. They are
closely related to themean, variance, skewness, and kurtosiswe discussed inChaps. 1
and 2. However, we will only finish our circle—from data to theory to data—in the
next chapter.
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In this chapter we will discuss:

• Populations and density functions
• The definition of random variables and probability distributions
• Probability distributions for continuous random variables
• Probability distributions for discrete random variables
• Formal definitions of means, variances, standard deviations, and other moments
• Examples of parametric probability distributions (Bernoulli, binomial, Poisson,
normal, lognormal, uniform, and exponential)

• Using R to work with probability distributions.

4.2 Probability Density Functions

In Chap.1 we introduced the histogram to visualize our data and we gave an example
of a density plot, or in other words a density function (see Fig. 1.10). The density
function may be viewed as a smooth version of the histogram if we standardize the
frequencies on the vertical axis to proportions. It may be viewed as an approximation
of the histogram on all units from the population if the population is very large (say
million’s and million’s of units). The density function characterizes the occurrence
of values for a specific variable (as depicted on the x-axis) on all units from the
population. Since in practice all populations are finite, the density function is an
abstract formulation of, or a “model” for, the “frequencies” of all population values.
In statistics the density function is typically denoted by the small letter f and it is
typically referred to as probability density function (PDF).

Since we have assumed that the PDF f is some kind of smooth approximation
of the histogram, the PDF must satisfy two important conditions or properties. The
first condition is that it cannot be negative, i.e., f (x) ≥ 0 for every value x that
is present in the population. Clearly, we cannot observe a negative frequency or
proportion in histograms. We often extend the domain of this PDF to the whole real
line R, even though the values from the population may be restricted to a smaller
domain. For values of x outside this domain, the PDF can then be defined equal to
zero: f (x) = 0. For instance, measuring the amount of hours per week that school
children watch television ranges theoretically from 0 to 168 hours. A PDF f would
then be considered equal to zero for any negative value of x and for values larger
than 168 hours (and possibly also for values inside this interval, but that depends on
the behavior of all children in the population). The second condition for a PDF is
that we assume that the “area under the curve” is equal to one, i.e.,

∫
R

f (x)dx = 1.

This essentially means that 100% of all unit values together form the population.
If we were able to observe all values from the population we must have considered



4.2 Probability Density Functions 105

or obtained all units from the population. This property makes it possible to relate
PDFs to proportions of units in the population (or, as we will see later, to probability
statements), as we have already indicated in Chap.1. For instance, the proportion of
school children that watches television for less than or equal to 2 hours per week can
now be written as

0 ≤
∫ 2

−∞
f (x)dx =

∫ 2

0
f (x)dx ≤

∫
R

f (x)dx = 1.

Indeed, if all children watch television for less than two hours per week, then the
integral on the left side would be equal to 1, since watching for less than two hours
per week still represents the whole population of school children, but if all school
children watch television for more than two hours per week, the integral would be
equal to 0, since no child will watch less then two hours per week. In practice the
proportion will be somewhere in between 0 and 1, since there will be children who
hardly watch any television and those who watch a lot. Thus the integral indicates
what proportion of school-children watch television for less than or equal to two
hours a week. By studying these proportions (or integrals) for any type of interval,
say [a, b] ⊂ R, we would know or be able to retrieve the shape of the PDF f , or in
other words, we would know exactly what proportion of the population would have
what set of values. We will discuss this later in more detail.

Many different PDFs exist and they have been proposed over a period of more
than two centuries to be able to describe populations and data in practical settings.
These functions are often parametric functions, i.e., the PDF is known up to a set of
parameters. The PDF is then often denoted by fθ , where θ represents the set or vector
of m density parameters: θ = (θ1, θ2, . . . , θm)T .1 Many books have been written on
PDFs, so it would go too far to provide a long list here, but we do want to provide
information about the normal, log normal, uniform, and exponential PDFs to give a
flavor of the differences.

4.2.1 Normal Density Function

The normal PDF is very special within statistics, both for theoretical and for practical
reasons. We will learn in Chaps. 4, 5, and 6 that it can be used to approximate other
PDFs when the sample size or the size of the data is getting large. This has the
advantage that important features of the normal density function can be transferred
to other densities when the approximation is quite close. Beside these theoretical
aspects, the normal PDF has been used often to analyze all kinds of datasets and it is

1 Although the subscript notation that we introduce here is often used, in some contexts the notation
f (·|θ) is preferred to make explicit that the distribution function is conditional on the parameters
(for example in Chap.8 of this book). In the current chapter we will, however, use the subscript
notation.
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Fig. 4.1 Three normal
density curves for different
choices of the parameters

an underlying assumption of several of the modeling approaches that is outside the
scope of this book.

The normal PDF was probably first introduced explicitly as a PDF by Carl
Friedrich Gauss, and it is therefore often referred to as the Gauss curve. He used
the normal PDF to describe random errors in measuring orbits (Sheynin 1979), in
particular for the calculation of the orbit of the dwarf planet Ceres. In that period the
topic was referred to as the “theory of errors”. It was an important research area to
determine how to deal with measurement errors in calculations. Today the normal
PDF is still frequently used for describing data, since many types of measurements,
like physical dimensions, are often properly described by the normal PDF.

The normal PDF has just two parameters:μ and σ .2 The parameterμ indicates the
mean value of the population of the variable of interest and the parameter σ indicates
the standard deviation. These parameters represent the exact same two population
parameters that we discussed in Chap. 2. The shape of the normal PDF is equal to the
famous “bell-shape” curve that we have all seen somewhere before. Three different
curves are represented in Fig. 4.1.

The normal PDF is mathematically formulated by

fμ,σ (x) = 1

σ
√
2π

exp

(
− (x − μ)2

2σ 2

)
, (4.1)

withμ ∈ R and σ 2 > 0. It is obvious that the normal PDF satisfies the first condition:
fμ,σ (x) > 0 for all x ∈ R, but it is not straightforward to show that the integral of
this density is equal to one (but it really is).

When we chooseμ = 0 and σ = 1 in Eq. (4.1), we refer to this normal PDF as the
standard normal density function or standard normal PDF and we rather prefer the

2 Although in general we like to denote the parameters of a PDF with θ = (θ1, θ2, . . . , θm)T , for
many specific PDFs other notation is used. For the normal PDF we should have used θ = (θ1, θ2)

T ,
with θ1 = μ and θ2 = σ , but μ and σ are more common in the literature.
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notationφ instead of f0,1, i.e.,φ(x) = exp{−x2/2}/√2π . Thismeans that the normal
PDF fμ,σ (x) in Eq. (4.1) can now also be written as fμ,σ (x) = φ((x − μ)/σ)/σ .

Some well-known characteristics of the normal PDF are the areas under the curve
for specific intervals. For instance, 95.45% of all the population values fall within
the interval [μ − 2σ,μ + 2σ ], or formulated in terms of the integral:

∫ μ+2σ

μ−2σ
φ((x − μ)/σ)dx =

∫ 2

−2
φ(x)dx = 0.9545.

Alternatively, 95% of the values fall within [μ − 1.96σ,μ + 1.96σ ] and 99.73% of
all the population values fall within the interval [μ − 3σ,μ + 3σ ].

4.2.1.1 Normally Distributed Measurement Errors

Putting these characteristics in practice we follow the ideas of Gauss onmeasurement
errors. We will assume that the normal PDF can be used to describe random errors
in measuring some kind of quantity η (e.g., blood pressure of a human being, the
diameter of a planet, the tensile strength of one plastic tube, etc.). We would expect
that the population of all possible measurement errors, that we may obtain when we
measure the quantity,3 are on average equal to zero (μ = 0), since it would be as
likely to measure higher as lower values than the true value η that we are trying to
capture. Based on the shape of the standard normal PDF, it is much more likely to
obtain random errors closer to zero than random errors that will be far away from
zero. Moreover, approximately 95.45% of all the possible random errors that wemay
obtain will fall within plus or minus twice the standard deviation away from zero,
i.e., [−2σ,+2σ ], and 99.73% will fall within [−3σ,+3σ ]. The standard deviation
σ is here a measure of the precision of the measurement system.

For instance, the standard deviation of measuring blood pressure with oscillo-
metric devices in human beings is approximately equal to 4.4 and 3.4 mmHg for
systolic and diastolic blood pressure, respectively (Liu et al. 2015). Thus 95.45% of
the random systolic blood pressure errors fall within [−8.8, 8.8] mmHg and 99.73%
will fall within [−13.2, 13.2] mmHg. Thus if we measure a person with a systolic
blood pressure η = 120 mmHg, our blood pressure reading will fall within 111.2
mmHg and 128.8 mmHg with 95.45% certainty and within 106.8 mmHg and 133.2
mmHg with 99.73% certainty. Something similar can be determined for diastolic
blood pressure.

3 Here we assume the existence of an infinite population of measurement errors having the normal
PDF fromwhich one error e is randomly sampledwhenwe conduct onemeasurement of the quantity.
This error is then added to the true value η to obtain a measurement x = η + e of the quantity or a
reading of the unit.
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Fig. 4.2 Three lognormal
population densities for
different values of its
parameters

4.2.2 Lognormal Density Function

Although the origin of the lognormal PDF comes from a more theoretical setting,
the log normal PDF became very popular at the beginning of the 20th century, when
the log normal PDF was being used for biological data (Kotz et al. 2004). It has
been used in many different applications, ranging from agriculture to economics
and from biology to the physical sciences. The lognormal PDF has some very nice
properties, whichmakes it useful inmany applications. Aswewill see, the lognormal
PDF describes populations with positive values. This would make more sense than
the normal PDF, which describes both positive and negative values, when quantities
like particle size, economic growth, duration of games and activities, and measures
of size are being studied. Furthermore, the relative standard deviation, which was
formulated in Chap. 1, is constant for the lognormal PDF. This means that larger
values demonstrate larger variability, but the ratio with variability is constant whether
we observe smaller or larger values. Finally, the lognormal PDF is not symmetric
like the normal PDF (see Fig. 4.2), which makes sense when values are limited from
below, but not from above.

On the other hand, the lognormal PDF is closely related to the normal PDF. If the
population values can be described by a lognormal PDF, the normal PDF would then
describe the logarithmic transformation of the population values (using the natural
logarithm). Thus, the relationship between the normal and lognormal PDFs is based
on a log transformation. In practice, we often make use of this transformation, so that
we can borrow the normal PDF characteristics in the log scale and then transform
the results back to the original scale (using the inverse of the logarithm: exp{x}).

The mathematical formulation of the lognormal density is given by

fμ,σ (x) = 1

xσ
√
2π

exp

{
− (log(x) − μ)2

2σ 2

}
, (4.2)
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with x > 0, log(x) the natural logarithm, μ ∈ R, and σ 2 > 0.4 This PDF has been
formulated only on positive values x > 0, while we have indicated that the domain
of PDFs is typically formulated on the whole real line R. For the part that is left out
(x ≤ 0), the density is then automatically assumed equal to zero. Thus the lognormal
density is equal to zero ( fμ,σ (x) = 0) for values of x ≤ 0. In Fig. 4.2 a few examples
of the log normal PDF are visualized.

Thus the lognormal PDF is also always non-negative for all values of x ∈ R.
Knowing that the integral of the normal PDF is equal to one, helps us to demonstrate
that the integral of the lognormal PDF is also equal to one:

∫ ∞

0

1

xσ
√
2π

exp

{
− (log(x) − μ)2

2σ 2

}
dx =

∫ ∞

−∞
1

σ
√
2π

exp

{
− (x − μ)2

2σ 2

}
dx = 1

Thus the lognormal density function also satisfies the two criteria for a PDF.
The parameters μ and σ have a different meaning in the lognormal PDF than

in the normal PDF. They do represent the population mean and standard deviation,
but only for the logarithmic transformed values of the population. Their meaning in
relation to the mean and standard deviation of the population values in the original
scale is now more complicated. The population mean and standard deviation in the
original scale are now functions of both μ and σ . They are given by exp{μ + σ 2/2}
and (exp{σ 2} − 1) exp{2μ + σ 2}, for the mean and standard deviation, respectively,
see the additional material at the end of this chapter. The relative standard deviation
(i.e., the standard deviation divided by the mean) is now a function of the parameter
σ only:

√
exp{σ 2} − 1. This property makes the lognormal density very useful for

chemical measurements, where it is often assumed that the measurement error is a
fixed percentage of the value that is beingmeasured, i.e., they have a constant relative
standard deviation. Indeed, in chemical analysis, the measurement error for higher
concentrations is larger than for lower concentrations.

4.2.3 Uniform Density Function

We saw that a random measurement error that could be described by a normal PDF
is more likely to be closer to zero than to be further away from zero (due to the bell
shape of the density). For a uniform PDF this is different. If the randommeasurement
error would be described by a uniform PDF, being close to or far away form zero
would be equally likely. However, the uniform PDF has a finite domain, whichmeans
that the density is positive on an interval, say [θ0, θ1], with θ0 < θ1 and θ0, θ1 ∈ R,
but zero everywhere else.

4 Note that we use the same notation fμ,σ for the normal PDF and lognormal PDF. This does not
mean that the normal and lognormal PDFs are equal, but we did not want to use a different letter
every time we introduce a new PDF.We believe that this does not lead to confusion, since we always
mention which PDF we refer to.
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The mathematical formulation of the uniform PDF is therefore given by

fθ0,θ1 (x) = 1

θ1 − θ0
, x ∈ [θ0, θ1]. (4.3)

It is obvious that the density is non-negative on the real line R, since it is positive on
[θ0, θ1] and zero everywhere else. Furthermore, the area under the curve is equal to
one, which can easily be determined using standard integral calculations:

∫
R

fθ0,θ1 (x) dx =
∫ θ1

θ0

1

θ1 − θ0
dx = θ1 − θ0

θ1 − θ0
= 1.

Thus the uniform PDF satisfies the two conditions for a PDF. The standard uniform
density is given by the density in Eq. (4.3) with θ0 = 0 and θ1 = 1.

As can be seen from the density function in Eq. (4.3), the uniform PDF has two
parameters (θ0 and θ1), similar to the normal and lognormal PDF, but the parameters
θ0 and θ1 have a truly different interpretation. They indicate the lowest and highest
values present in the population, or in other words, they represent the minimum and
maximumvalues in the population. Themean and standard deviation for a population
that is described by a uniform PDF are equal to (θ0 + θ1)/2 and (θ1 − θ0)/

√
12,

respectively.
As an example, consider that the random measurement error for systolic blood

pressure follows a uniform density symmetric around zero and has a population
standard deviation of 4.4 mmHg. In this case, the parameters θ0 and θ1 would be
equal to−7.62 and 7.62, respectively. A systolic blood pressure reading for a person
with an actual systolic blood pressure of 120 mmHg would fall within the interval
[112.38, 127.62] mmHg with 100% confidence and any value would be as likely as
any other value in this interval. Although the uniform PDF is probably no longer used
for measurement errors, it was suggested as possible PDFs for the theory of error
before the normal density for measurement errors was introduced (Sheynin 1995).

The uniform PDF has also some nice theoretical properties that we will use later
in this chapter. We would be able to simulate a population described by any density
function through the use of the standard uniform density. If we draw a population
using the standard uniformdensity, wewould be able tomake a proper transformation
of these uniform values such that the transformed values would describe another
density. Drawing values according to the uniform density with a computer using a
pseudo-random number generator has been discussed in the additional material of
Chap.2.

4.2.4 Exponential Density Function

The exponential PDF has become a very popular density function in practice in
the field of reliability, representing the failure times of complex equipment (Barlow
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1984). For instance, it may describe the life time of a population of phones that were
bought in 2019. Some phonesmay live for many years, while others may break-down
or stop working within months. One important characteristic of the exponential PDF
is its lack of memory of failure times. The occurrence of a failure of a machine
(like a phone) in, say, week 52, assuming it survives week 51, is the same as the
probability that this machine will fail this week (assuming it survived last week).
Thus the exponential PDF describes populations with positive values, similar to the
lognormal PDF.

The exponential PDF has only one parameter, which is different from the log-
normal density, and it is mathematically described for positive x by the following
function

fλ (x) = λ exp{−xλ}, (4.4)

with x > 0 and λ > 0. For values of x less than or equal to zero, the PDF is equal to
zero (as we already mentioned).

It is interesting to note that the exponential PDF is closely related to the double
exponential PDF, which had been applied at least a century earlier in relation to the
theory of errors (Hald 2008). The double exponential is symmetric, like the normal
PDF, but the exponential PDF is skewed to the right like the lognormal PDF (see
Fig. 4.3). The double exponential PDF can easily be determined using the exponential
PDF. The double exponential PDF, for any value x ∈ R, is defined by 0.5 fλ(|x |),
with | · | the absolute function.

Both the exponential and double exponential satisfy the conditions for a PDF.
Clearly, they are non-negative on the real line R and it can be easily shown that the
area under the PDF is equal to one. For the exponential PDF we have

∫
R

fλ(x)dx =
∫ ∞

0
λ exp{−λx} = [− exp{−λx}]∞0 = 1.

Since the double exponential PDF is half the exponential PDF on positive values of
x and half the exponential PDF on the negative values of x , the area under the double
exponential PDF is also equal to one.

A few choices of the exponential PDF are visualized in Fig. 4.3. Visualizing the
double exponential is just half the exponential PDF together with its mirror image
on the left side of x = 0.

For the exponential PDF, the parameter λ is related to the population mean, since
λ−1 represents the population mean. Thus the smaller the value of λ, the larger the
population mean. If the life time of a phone (in years) is described by the exponential
density with λ = 0.25, the mean life-time of a phone is then equal to 4 years. The
population standard deviation is also equal to λ−1 and therefore depends on the
mean of the population, but the relative standard deviation is then independent of
the parameter and it is equal to 1. For the double exponential PDF, the mean is equal
to zero, which makes it an attractive PDF for measurement errors. The standard
deviation of the double exponential is equal to

√
2/λ. Thus, the larger the value λ,

the closer the measurement errors will be.
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Fig. 4.3 Three exponential
density curves

4.3 Distribution Functions and Continuous Random
Variables

In the discussions on the theory of errors, PDFswere used to help describe the random
measurement errors to be able to come to a proper calculation (often the arithmetic
average or median) of the collected observations, like the calculation of the orbit
of a celestial body using several measured positions. Whether a calculation of the
observations would be better or more precise than just one of these observation was a
topic of study.5 The randomerrorswere considered imperfections of themeasurement
process (often the human eye) that was trying to capture the true value of interest.
These randomerrorswere in that periodnot always seen as randomvariables (Sheynin
1995), while the concept of a random variable was already in use long before the
theory of errors was discussed. Indeed, random variables were already used when
the fundamentals of probability were developed many years earlier.

An intuitive definition of a random variable or random quantity is a variable for
which the value or outcome is unknown and for which the outcome is influenced
by some form of random phenomenon. There exists a more formal or mathematical
definition, but it is outside the scope of this book.6 A random variable is typically
denoted by a capital letter, say X , Y , or T , to indicate that we do not know the value
yet. A realization or an outcome of the random variable is then indicated by the same,
but lower case, letter x , y, or t . This is in line with our definition of realization in
Chap.2. Indeed, a random variable may be seen as a variable that can in principle

5 Now we know, with all our knowledge on probability and statistics, that a calculation of the
observations like the arithmetic average is in most cases better than just selecting one of them.
6 There is actually, and perhaps surprisingly, quite an active debate surrounding the definition of
a random variable. A definition that is more mathematical but might still be accessible is the
following: “A random variable is a mapping (i.e., a function) from events to the real number line”.
This definition allows us to mathematically link the material in Chap.3—where we discussed
events—to the material presented in this chapter. However, this definition is sometimes perceived
as confusing as it does not contain any reference to random processes or outcomes.
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be equal to any of the values in the population, and after probability sampling the
outcome(s) will become known. Before sampling the outcomes are unknown, so
we use capital X , and after sampling the outcomes would become known, so we
use x . The probability sampling approach makes the variable of interest a random
variable, as the sampling approach is here the random phenomenon. One of the
earliest examples of a random variable, which is in a way unrelated to our sampling
discussion, is, for instance, the age of death. Indeed, when somebody will die is
unknown and in many ways random.

Random variables are very convenient to help quantify particular probabilities.
John Graunt published in 1662 a life table for people in London. He provided proba-
bilities of mortality at different age groups. For instance, he indicated that from 100
births, 36 of them would not grow older than 6 years of age, only one of them would
reach an age of 76 years, and none of them would become 80 years or older (Glass
1950). In terms of mathematics, we can write such mortality probabilities in the form
of Pr(X ≤ x), where the Pr indicates probability, X is the random variable for age
at death, and x is a specific age of interest.7 For instance, in terms of the life table
of John Graunt: Pr(X ≤ 6) = 0.36 represents the probability that a new born person
would die before or at the age of 6 years old and it is equal to 0.36 = 36/100.

The probability function Pr(X ≤ x) is a general concept and can be used for any
random variable. The random variable X can be the number of hours per week that a
school child watches television and we may ask what is the probability that a school
child watches less than or equal to two hours per week: Pr(X ≤ 2). The probability
Pr(X ≤ x) is also referred to as the distribution function obtained in x and it is
denoted by F(x) = Pr(X ≤ x). Thus every random variable X has a distribution
function F through F(x) = Pr(X ≤ x), but also every distribution function F has a
random variable X , namely the random variable X that makes Pr(X ≤ x) = F(x).
Thus the two concepts are directly related to each other and we then typically say
that X is distributed according to F , i.e., X ∼ F .

Each distribution function typically satisfies three conditions:

1. When the value x increases to infinity, the distribution function becomes equal
to one, i.e., limx→∞ F(x) = 1. In terms of the examples of death and television
watching this makes sense. When x is large, say larger than 168, every body has
died before this age or watches this number of hours of television per week or
less. Thus, in these examples F(x) = 1 for any x > 168.

2. When the value x decreases to minus infinity the distribution function becomes
equal to zero, i.e., limx→−∞ F(x) = 0. Again this makes sense for the two exam-
ples, because no newborn baby would die before the age of zero nor does any-
body watch less than zero hours of television per week. Thus, in these examples
F(x) = 0 for any value x < 0.

3. The distribution function is a non-decreasing function, i.e., F(x1) ≤ F(x2) when
x1 ≤ x2. Indeed, the probability of dying within the age of x1 cannot be larger

7 In the analysis of life tables it is much more common to calculate probabilities of surviving after
a specific age x , i.e., Pr(X > x), but this is of course equal to Pr(X > x) = 1 − Pr(X ≤ x), as we
discussed in Chap.3.
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than the probability of dying at a higher age x2. In theory, it is possible that the
probability will stay at the same level between x1 and x2, indicating that in the
interval [x1, x2] no population values exist (e.g., no one would die between the
ages of 19 and 20 years, say, or no one watches 6 to 7 hours per week television)

There is a direct relation between distribution functions and densities. If we start
with a PDF, we can define a distribution function in the following way:

F(x) =
∫ x

−∞
f (z)dz. (4.5)

Clearly, this function F is a distribution function. When the value x increases to ∞
we obtain the full area under the density, which is by definition equal to one. The
area under the density must become zero when x goes to −∞ (there is no unit in
the population with the value −∞. And finally, when x2 is larger than x1, the area
under the PDF from −∞ up to x2 is not smaller than the same area under the density
up to x1. The distribution function F is often referred to as the cumulative density
function (CDF). It also shows that the distribution function F is defined as a function
from the real lineR to the interval [0, 1]. Note that a PDF now also defines a random
variable, since it defines a distribution function and a distribution function defines a
random variable.

For each of the PDFs we discussed in the previous subsection there exist an
accompanied distribution function. This does not mean that we have a closed form
expression of each distribution function, since we do not have this for the normal
and lognormal distribution functions. However, for the uniform and exponential
distribution function we do have an explicit form.

Fig. 4.4 Relationship between the PDF and CDF of a continuous random variable with a uniform
distribution function
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The uniform distribution function is given by

Fθ0,θ1(x) =

⎧⎪⎨
⎪⎩
0 for x < θ0

x
θ1−θ0

for x ∈ [θ0, θ1]
1 for x > θ1

This implies that the standard uniform distribution function is equal to F0,1(x) = x
for x ∈ [0, 1], F0,1(x) = 0 for x < 0, and F0,1(x) = 1 for x > 1. The relationship
between the standard uniform PDF and CDF is illustrated in Fig. 4.4.

The exponential distribution function is given by

Fλ(x) =
{
0 for x ≤ 0

1 − exp{−λx} for x > 0.

The standard exponential distribution function is F1(x) = 1 − exp{−x} for x > 0
and zero everywhere else.

There are a few additional characteristics that we need to mention. First of all,
there are theoretical (or exotic) examples where we can define a distribution function
without having a density. This has to do with distribution functions that are not
differentiable. We do not treat these distribution functions in this book, thus we
always assume that there is a PDF that defines the distribution function. Under this
assumption, we can obtain that the probability that a random variable X has its
outcome in an interval (x1, x2] is equal to

Pr(X ∈ (x1, x2]) = Pr(x1 < X ≤ x2)

= Pr(X ≤ x2) − Pr(X ≤ x1)

= F(x2) − F(x1)

=
∫ x2

−∞
f (z)dz −

∫ x1

−∞
f (z)dz

=
∫ x2

x1

f (z)dz.

This equality formalizes our earlier discussion in Sect. 4.2 that the integral from x1 to
x2 represents the proportion of units in the population having its values in this interval.
Note that we have used probability rule Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B)

fromChap.3 for the second equality sign. If we define the two events A and B by A =
(X ≤ x2) and B = (X > x1), we have A ∩ B = (x1 < X ≤ x2) and A ∪ B = (X ∈
R). Thus we obtain now: 1 = Pr(X ∈ R) = Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩
B) = Pr(X ≤ x2) + Pr(X > x1) − Pr(x1 < X ≤ x2). This implies that Pr(x1 <

X ≤ x2) = Pr(X ≤ x2) + Pr(X > x1) − 1 = Pr(X ≤ x2) − Pr(X ≤ x1).
Finally, as a consequence of the second characteristic, the density value f (x)

is not equal to Pr(X = x). The probability Pr(X = x) is equal to zero for con-
tinuous random variables, since there is no surface area under f (x). It also



116 4 Random Variables and Distributions

implies that Pr(X < x) = Pr(X ≤ x) for continuous random variables. The fact that
f (x) �= Pr(X = x) is somewhat confusing and may be disappointing, since we
started the introduction of a PDF as an approximation of the histogram for all val-
ues in a population. This emphasizes that the PDF is a mathematical abstractness or
model for describing population values. The abstractness comes from the fact that
densities are formulated for infinitely large populations. In terms of random mea-
surement errors, it would make sense to assume that there is an infinite number of
possible random errors that could influence the measurement.

4.4 Expected Values of Continuous Random Variables

In the subsection on probability densities we discussed the population mean and
standard deviation. These population characteristics can now be more rigorously
defined through the continuous random variables. The random variable represents a
variable of the population without yet knowing its outcome. If we “average out” all
the possible outcomes, where we weight each outcome with the PDF, we obtain a
kind of “weighted average”, similar to what we did in Chap.2. However, we have
many values to average out, in principle all values of R, which we can not just
average (there are far too many values). The averaging is then conducted by the use
of integrals as a generalization of summation.

Let X be a continuous random variable with density f , then the expected value
of random variable X is defined by

E(X) =
∫
R

x f (x) dx . (4.6)

This expectation represent the population mean, which is typically denoted by the
parameter μ as we used in Chap.2. Thus, the population mean is μ = E(X). Note
that we have used the symbol E before in Chap.2; at that point in the text we did not
explain exactly what it meant, but nowwe know its formal definition. The population
variance σ 2 can also be formulated in terms of an expected value of the random
variable. The population variance σ 2 is now given by σ 2 = E(X − μ)2, with

E(X − μ)2 =
∫
R

(x − μ)2 f (x) dx . (4.7)

Clearly, we can generalize this concept. If we consider a (not necessarily continu-
ous or differentiable) function ψ : R → R, then the expected value of the random
variable ψ (X) is defined by

Eψ (X) =
∫
R

ψ (x) f (x) dx . (4.8)
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The population mean is now obtained by taking ψ(x) = x and the population vari-
ance is obtained by taking ψ(x) = (x − μ)2. Thus the function ψ may depend on
population parameters.

The mean μ is also called the first moment of the random variable X and the
variance is called the second central moment of the random variable X , since it
squares the random variable after the mean is subtracted. We can also investigate
other moments of the random variable X . The pth moment of random variable X
is obtained by Eq. (4.8) with ψ(x) = x p and the pth central moment of random
variable X is obtained by choosing ψ(x) = (x − μ)p in Eq. (4.8). The third and
fourth central moments are related to the skewness and kurtosis of the population
values. The skewness is equal to γ1 = E(X − μ)3/σ 3 and the kurtosis is γ2 = E(X −
μ)4/σ 4 − 3. Note that the moments of a random variable X may not always exist:
this depends on the density f .

In the following table we provide the mean, variance, skewness, and kurtosis of
the five parametric distributions we introduced in Sects. 4.2 and 4.3. Section4.3 has
already provided the mean and variance, but not the skewness and kurtosis. Note that
we have used the following notation τ 2 = exp{σ 2} in the table.

Mean Variance Skewness Kurtosis
Normal
distribution
(μ, σ )

μ σ 2 0 0

Lognormal
distribution
(μ, σ )

exp{μ}τ (τ 2 −
1)τ 2 exp{2μ}

(τ 2 + 2)
√

τ 2 − 1 τ 8 + 2τ 6 +
3τ 4 − 6

Uniform
distribution
(θ0, θ1)

[θ1 − θ0]/2 [θ1 − θ0]2/12 0 −6/5

Exponential
distribution λ

λ−1 λ−2 2 6

Double
exponential
distribution λ

0 2λ−2 0 3

In Eq. (4.8) we used the function ψ and therefore discussed the expected value of
random variable ψ(X). The random variable ψ(X) can be seen as a mathematical
transformation of the original random variable. Knowing the expected value of this
transformed random variable provides us the mean of the population of transformed
values. However, if we can establish the full distribution function ofψ(X), this gives
us much more information about the population of transformed values than just the
mean.

The full distribution function of ψ(X) can always be established, but it does not
always have a simple workable form. To illustrate a case in which we can obtain
the full distribution function of a transformed random variable in workable form, we
will start with X being normally distributed with parameters μ and σ , and consider
the function ψ(x) = exp{x}. The distribution function of the normally distributed
random variable X is given by
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Pr(X ≤ x) =
∫ x

−∞
1

σ
φ

(
z − μ

σ

)
dz =

∫ (x−μ)/σ

−∞
φ(z)dz,

and this normal distribution function is often denoted by Φ((x − μ)/σ), which is
defined as Φ(x) = ∫ x

−∞ φ(z)dz. Then for any value x > 0, we can obtain the distri-
bution function of exp{X} by

Pr(exp{X} ≤ x) = Pr(X ≤ log(x))

= Φ

(
log(x) − μ

σ

)

=
∫ log(x)

−∞
1

σ
φ

(
z − μ

σ

)
dz

=
∫ x

0

1

zσ
φ

(
log(z) − μ

σ

)
dz. (4.9)

Since the last integral contains the lognormal PDF, we have obtained that the dis-
tribution of exp{X} is lognormally distributed with parameters μ and σ . Note that
the integral does not start from −∞, but we know that the lognormal density is zero
for x ≤ 0, thus the integral from −∞ to 0 does not contribute. Thus we see that
the lognormal PDF is related to the random variable exp{X} when X is normally
distributed. We have now learned that the logarithm of a lognormally distributed
random variable is normally distributed.

Now we can generalize this for any random variable X and any monotone differ-
entiable function ψ . Let F be the distribution function of X and f the PDF, we then
have

Pr(ψ−1(X) ≤ x) = Pr(X ≤ ψ(x))

= F(ψ(x))

=
∫ ψ(x)

−∞
f (z)dz

=
∫ x

−∞
ψ ′(z) f (ψ(z))dz,

withψ ′ the derivative of ψ . The calculations now show that the distribution function
of random variable ψ−1(X) is equal to F(ψ(x)) and the PDF is ψ ′(x) f (ψ(x)). An
interesting consequence of this finding is that the distribution function of the random
variable F−1(U ), withU a standard uniform distributed random variable and F any
invertible distribution function, is now given by F . Indeed, just applying the same
procedure as above, we find that Pr(F−1(U ) ≤ x) = Pr(U ≤ F(x)) = F(x). Thus
the PDF of random variable F−1(U ) must now be equal to f . This result for the
standard uniform random variable U is very convenient if we want to simulate data
from some kind of distribution function F , as we will explain in Sect. 4.8.3.
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4.5 Distributions of Discrete Random Variables

Not all the data thatwe collect and observe are realizations of continuous randomvari-
ables. Many applications provide us with discrete numerical data, e.g., the number of
defective products, the number of microorganisms in a production environment, the
presence or absence of a disease, the score on an intelligence test, etc. For these dis-
crete numerical variables,we can also formulate randomvariables.Adiscrete random
variable X is a random variable that takes its values in the set N = {0, 1, 2, 3, .....}.8

For discrete random variables we can define pk = Pr(X = k) as the probabil-
ity of observing the outcome k. This is referred to as the probability mass function
(PMF) if the probabilities pk satisfy two conditions. First, all probabilities pk should
be nonnegative (pk ≥ 0, ∀k) and secondly, the probabilities need to add up to one,
i.e.,

∑∞
k=0 pk = 1. This second condition is related to the way we constructed prob-

abilities: the probability that one of the events (in this case outcome k) happens—
regardless of which one—is equal to 1.9 Sometimes wewould like to use the notation
f (x) = Pr(X = x), with x ∈ N, for the PMF, and we can then write the PMF out in
full

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 0
p0 if x = 0
p1 if x = 1
p2 if x = 2
...

...
...

pk if x = k
...

...
...

If only a few numbers of discrete values are possible, like the outcomes for throw-
ing a die, then most of the probabilities pk will be equal to zero. For throwing a fair
die, we may have the random variable X taking its values in the set {1, 2, 3, 4, 5, 6}
and the probabilities p0 = 0, p1 = p2 = p3 = p4 = p5 = p6 = 1/6, and pk = 0 for
k > 6. For binary events, like the occurrence of a disease, we can introduce the ran-
dom variable X that takes its value in the set {0, 1}. The probabilities pk may then
be defined as p0 = 1 − p, p1 = p, and pk = 0 for k > 1 and some value p ∈ [0, 1].

The PMF for a discrete random variable is the equivalent of the PDF for a continu-
ous randomvariable. Thismeans that there is also a distribution function for a discrete
random variable. The distribution function or cumulative density function (CDF) for
a discrete random variable X is now given by F(x) = Pr(X ≤ x) = ∑x

k=0 f (k).10

8 Discrete does not always mean that we observe values inN. For instance, grades on a data science
test may take values in {1, 1.5, 2.0, 2.5, . . . , 9.0, 9.5, 10}. Thus, it would be more rigorous to say
that a discrete random variable X takes its values in the set {x0, x1, x2, . . . , xk , . . .}, with xk an
element of the real line (xk ∈ R) and with an ordering of the values x0 < x1 < x2 < · · · . However,
in many practical settings we can map this set to a subset of N or to the whole set N.
9 In the more general setting, the probability can be defined as P (X = xk) = pk .
10 If the set is {x0, x1, x2, . . . , xk , . . .}, with x0 < x1 < x2 < · · · , then theCDF is defined as F(x) =∑mx

k=0 f (xk), with mx the largest value for k that satisfies xk ≤ x .
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Fig. 4.5 Relationship between the PMF and CDF of a discrete random variable with three possible
outcomes

The CDF represents the probability that the random variable X will have an outcome
less than or equal to the value x , the same as for continuous random variables. We
can write the CDF in full by stating:

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 0
p0 if x ≤ 0
p0 + p1 if x ≤ 1
p0 + p1 + p2 if x ≤ 2
...

...
...

p0 + p1 + · · · + pk if x ≤ k
...

...
...

Knowing either the PMF or the CDF of a discrete random variable suffices to
describe the probabilities associated with the values that the discrete random variable
can take. Clearly, the PMF and CDF are closely related: Fig. 4.5 demonstrates the
relationship between the PMF and the CDF.

The PMF and CDF for a discrete random variable that we introduced based on
our coin-tossing and dice throwing scenarios presented earlier are:

f (x) =
{ 1

2 if x = 0
1
2 if x = 1

and

F (x) =
⎧⎨
⎩
0 if x < 0
1
2 if 0 ≤ x < 1
1 if x ≥ 1
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Note that we do not have to restrict the value x to values in N for the CDF. We
can also use any x in R. If we define �x� as the highest integer value that is less than
or equal to x , the CDF for any value x ∈ R is now given by F(x) = F(�x�). This
means that the CDF is a step function, see Fig. 4.5. For any value x ∈ [�x� , �x + 1�)
the CDF is constant.

4.6 Expected Values of Discrete Random Variables

In this section we discuss expected values of a discrete random variable X , similar
to what we did for continuous random variables. More specifically, we will discuss
the expectation of the discrete random variableψ(X). The definition is similar to the
definition for continuous random variables, but for discrete random variables we can
use summation instead of using integrals. Thus, the expectation of a discrete random
variable ψ(X) is given by

E (ψ(X)) =
∞∑
k=0

ψ(k)pk =
∞∑
k=0

ψ(k)Pr(X = k). (4.10)

This definition is closely related to the definition of the expected population parameter
for an estimator T as discussed in Chap.2. If we would collect many realizations
of the discrete random variable X , say N realizations, we expect to see value k
with frequency N · pk . Thus, the mean value of the random variable ψ(X) would be
calculated with Eq. (4.10) when the number of realizations N becomes really large.
This was the same argument used in Chap.2 for an estimator T that was used on a
sample of data that was collected with probability sampling.

If we chooseψ(x) = x weobtain the expected value of X and this is again referred
to as the mean of the random variable or the mean of the population, the same as
for continuous random variables. We also use the same notation μ for this mean,
i.e., μ = E(X). By choosing ψ(x) equal to ψ(x) = (x − μ)2 and using this in Eq.
(4.10) we obtain the variance of a discrete random variable X , and denote this by
σ 2 = E(X − μ)2.

Similar as for the continuous random variables, we can investigate other moments
of the discrete random variable X . The pth moment of a discrete random variable X
is obtained by Eq. (4.10) with ψ(x) = x p and the pth central moment of a discrete
random variable X is obtained by choosing ψ(x) = (x − μ)p in Eq. (4.10). The
skewness and kurtosis of a discrete random variable X (or equivalently the skewness
and kurtosis for a population with discrete values), are equal to γ1 = E(X − μ)3/σ 3

and γ2 = E(X − μ)4/σ 4 − 3, respectively, using Eq. (4.10) for the expectation E.
Note that the moments of a discrete random variable X may not always exist: this
depends on the choice of probabilities pk .
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4.7 Well-Known Discrete Distributions

Similar to the case of PDFs, the PMFs may typically have a particular form that is
known up to a set of one or more parameters θ = (θ1, θ2, . . . , θm)T . The PMF is then
denoted by fθ (x), using the same notation as for continuous PDFs, where again we
may use other symbols for the parameters θ , since this is more alignedwith literature.
People have studied different forms of the distribution of discrete random variables
for a large number of applications. In this section we introduce four famous discrete
distributions.11 We do so by providing a story that motivates the random variable.

4.7.1 Bernoulli Probability Mass Function

The story of the Bernoulli random variable is simple: Bernoulli random variables are
motivated by considering binary random variables: i.e., random variables that take
on values 0 or 1. The simplest example of this is a single coin toss where we map
tails to 0 and heads to 1. Now introduce the parameter p, with 0 ≤ p ≤ 1, for the
probability that the binary random variable X will be equal to 1. This gives rise to
the following PMF:

Pr(X = x) = f p(x) = px (1 − p)1−x ,

with x ∈ {0, 1} and f p(x) = 0 for any other value of x . A binary random variable
with the above PMF is said to be Bernoulli distributed. Also, note that we often write
X ∼ B(p) to denote that X is Bernoulli distributed with parameter p. We leave it
to the reader to specify the Bernoulli CDF.

The mean and variance of a Bernoulli random variable are easily determined by
using Eq. (4.10). Themeanμ is equal toμ = E(X) = ∑1

k=0 kp
k(1 − p)1−k = p and

the varianceσ 2 is equal toσ 2 = E(X − p)2 = p2(1 − p) + (1 − p)2 p = p(1 − p).
Thus themean andvariance are just functions of the parameter p. Themean represents
the average number of “ones” (or events), which is obviously equal to the probability
p of observing the value 1.

4.7.2 Binomial Probability Mass Function

The binomial distribution follows from the idea that we might be interested in the
total number of heads if we toss a coin multiple times or the total number of airplane
accidents or crashes per year. The quantity of interest is the total number of ones
Sn (e.g., heads for the coin and crashes for the airplanes), when n represents the
total number of tosses or flights per year. The random variable Sn is then given by

11 Many more distribution functions are known and often used and studied; we present only a small
selection.
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Sn = X1 + X2 + · · · + Xn , with Xk the binary random variable for toss or flight k.
Obviously, the random variable Sn can attain the outcome values 0, 1, 2, . . . , n. The
small letter s is in this case used to indicate a possible value that Sn can take. If
the outcome is equal to zero (s = 0) we have not seen a single head in n throws or
any accident in n flights, while if s = n all throws were heads or all airplane flights
resulted in an accident.

The PMF of the binomial is given by:

P (Sn = s) = fn,p(s) =
(
n

s

)
ps (1 − p)n−s ,

where (
n

s

)
= n!

s! (n − s)! ,

and s! is the total number of permutations of a set of s (different) values. While
already briefly introduced in Chap.2, we discuss permutations in more detail in the
additional materials at the end of this chapter. We have visualized three binomial
PMFs in Fig. 4.6.

The binomial PMF has two parameters: probability p ∈ [0, 1] and the number of
trials n. In many settings the number of trials will be known, and only p is unknown.
For instance, the probability p of passing a data science test would be unknown, but
the number of students taking the exam is known upfront. However, in some settings
the number of trials is not known, while the probability p is assumed known. For
instance, the estimation of the number of microorganisms in a container solution
(e.g., milk container) based on a set of binary test scores of small sample volumes
from the container (Cochran 1950; van den Heuvel 2011).

To obtain the mean and variance for a binomial random variable with for-
mula (4.10) is somewhat more work than for the Bernoulli. However, there exist
closed form expressions. The mean is equal to μ = E(Sn) = np and the variance is

Fig. 4.6 PMFs for the
binomial distribution
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σ 2 = E(Sn − np)2 = np(1 − p). Since the binomial random variable Sn is the sum
of n independent Bernoulli variables, it may be expected that the mean is just n times
the mean of a Bernoulli random variable. However, this rule also seems to hold for
the variance, which may be less expected. In Sect. 4.10 we will show that these rules
hold true in general, irrespective of the underlying PMF.

4.7.3 Poisson Probability Mass Function

A disadvantage of a random variable with a binomial distribution function is that it is
bounded by the number of trials n. There are, however, many applications where the
number of events or count is not necessary bounded by a fixed number (or at least it is
difficult to formulate this bound). In such cases we can use the Poisson distribution,
which is often used to express the probability of a given number of events occurring
in a fixed interval of time when these events occur with a known constant rate and
independently of the time since the last event.

Let X be a random variable with outcome set {0, 1, 2, 3, . . .}; then X has a Poisson
PMF with parameter λ > 0 when the probability of observing k events is given by

P (X = k) = fλ(k) = λk

k! exp (−λ)

Figure4.7 shows three different choices of the Poisson PMF.
The mean of a Poisson random variable is equal to μ = E(X) = λ. Thus the

parameter λ represents the average number of counts. When the mean is larger than
5, the shape of the PMF looks very much like the normal PDF (see the rightmost
PMF in Fig. 4.7). The normal PDF is then viewed as a smooth version of the discrete
Poisson PMF. The variance of a Poisson random variable is equal to the mean, i.e.,

Fig. 4.7 PMFs for the
Poisson distribution
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σ 2 = E(X − λ)2 = λ. It requires some in-depth calculations to obtain the mean and
variance using Eq. (4.10).

4.7.4 Negative Binomial Probability Mass Function

The negative binomial PMF is often considered a Poisson PMFwith an extra amount
of variation, even though it originated from a different type of application. In this
original application, a random variable X has a negative binomial PMF when it
represents the number of trials needed to obtain a fixed known number of binary
events. For instance, howmany products (e.g., light bulbs) X should be tested before
we observe, say r , defective products (e.g., not working light bulbs), when each
product has the same probability p of being defective. Thus the negative binomial
has two parameters p and r , with r typically known in this application. However, in
this form the connection with the Poisson is less obvious.

The negative binomial PMF that we will introduce has two parameters λ and δ,
where λ still represents the mean, the same as for the Poisson random variable, but
the δ represents an overdispersion parameter, indicating the extra amount of variation
on top of the Poisson variation. The PMF for the original application is the same as
the PMF we will introduce, but it is just a different way of parameterizing the PMF.

A negative binomial random variable X has its outcomes in the set {0, 1, 2, 3, ....},
like the Poisson random variable. The PMF is defined by

Pr (X = k) = fλ,δ(k) = Γ (k + δ−1)

Γ (k + 1)Γ (δ−1)

(δλ)k

(1 + δλ)k+δ−1 ,

with Γ the gamma function given by Γ (z) = ∫ ∞
0 xz−1 exp{x}dx . Note that Γ (k) =

(k − 1)!, when k is an integer. A few choices for the negative binomial PMF are
provided in Fig. 4.8. Themean and variance of the negative binomial randomvariable

Fig. 4.8 PMFs for the
negative binomial
distribution
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are given by μ = E(X) = λ and σ 2 = E(X − λ)2 = λ + δλ2. Clearly, in case the
parameter δ converges to zero, the variance converges to the variance of a Poisson
random variable. This is the reason that the parameter δ is called the overdispersion.

4.7.5 Overview of Moments for Well-Known Discrete
Distributions

The following table provides the expected value, variance, skewness, and kurtosis
for the four discrete distributions we introduced above. Note that we have already
provided the means and variances.

Mean Variance Skewness Kurtosis

Bernoulli f p(x) p p(1 − p)
1 − 2p√
p(1 − p)

1 − 6p(1 − p)

p(1 − p)

Binomial fn,p(x) np np(1 − p)
1 − 2p√
np(1 − p)

1 − 6p(1 − p)

np(1 − p)

Poisson fλ(x) λ λ 1/
√

λ 1/λ

Negative Binomial
fλ,δ(x)

λ λ + δλ2
1 + 2δλ√
λ(1 + δλ)

6δ + [λ(1 + δλ)]−1

When thenumber of trialsn for the binomial randomvariable is large, the skewness
and kurtosis are close to zero. Actually, it is not the number of trials that is important,
but either the number of events np or the number of non-events n(1 − p) that should
be large to make the skewness and kurtosis close to zero. In that case the Binomial
PMF looks very much like the normal PDF. An example of this situation is given by
the most right PMF in Fig. 4.6. Here the number of trials is equal to n = 25 and the
probability of an event is p = 0.20. This gives a skewness of 0.3 and a kurtosis of
0.01. See also Sect. 4.9.

Something similar is also true for the Poisson and Negative Binomial random
variables. For the Poisson the mean λ should be relatively large to have a shape that
is similar to a normal PDF. We already indicated this. The most right PMF in Fig. 4.7
is close to a normal PDF. The mean of this Poisson PMF was equal to λ = 8, which
makes the skewness equal to 0.35 and the kurtosis equal to 0.125. For the Negative
Binomial random variable the mean λ should also be large, but the overdispersion
should not be too large. Indeed, a large mean will put the skewness close to zero, but
the kurtosis may still be away from zero when delta is too large, due to the term 6δ
in the kurtosis. In Fig. 4.8 the most right PMF is closest to a normal PDF, although
it is still a little bit skewed and has a little bit thicker tails than the normal density.
This PMF has a mean of λ = 20 and an overdispersion of δ = 0.05, which makes
the skewness equal to 0.47 and the kurtosis equal to 0.325.
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4.8 Working with Distributions in R

The functions and packages inR can support uswhenworkingwith randomvariables,
PDFs, PMFs, and CDFs. First of all, R can help us calculate particular probabilities.
As we have seen, not all CDFs have closed-form expressions. Thus, to determine a
CDF value requires either calculation of integrals or otherwise summations of many
terms. Numerical approaches have been implemented in R to help us do this with
the computer. Secondly, R can help us create population values or samples from
populations which are described by a PDF or PMF. We will demonstrate how you
can use R to—by means of Monte-Carlo (MC) simulation—compute summaries of
random variables with complex distribution functions. Summaries are sometimes
obtained exact, like the means, variance, skewness, and kurtosis reported earlier, but
not every type of summary can always be determined exactly or it may be more
time-consuming than just using a MC simulation. Finally, we will also demonstrate
a method that allows you to obtain realizations (draws) of a random variable with a
specific distribution function that you may have created your self or that exists in the
literature but not in R.

4.8.1 R Built-In Functions

Roffers a number ofwell-knowndistribution functions. It uses a standardized naming
scheme to name the functions that relate to probability distributions. The name always
consists of (an abbreviation of) the mathematical name of the distribution function—
for example norm for the normal distribution function—with one of the following
prefixes:

• d- A distribution function with the prefix d-, for example dnorm, allows you
to evaluate the PDF or PMF at a specific value. Thus, a call to dnorm(x, mu,
sigma) evaluates the PDF of the normal distribution function with mean mu and
standard deviation sigma at x.

• p- A distribution function with the prefix p-, for example pnorm, allows you to
evaluate the CDF at a specific value. Thus, a call to pnorm(x, mu, sigma)
evaluates the CDF in x of the normal distribution function with mean mu and
standard deviation sigma at x.

• q- A distribution function with the prefix q-, for example qnorm, allows you
to evaluate the so-called quantile or inverse function of the distribution functions.
The quantile function specifies the value of the random variable that gives you the
specific probability of the variable being less than or equal to that value. Thus the
quantile function gives x = F−1(u) for probability or value u ∈ (0, 1), with F the
CDF.

• r- A distribution function with the prefix r-, for example rnorm, allows you
to generate draws of a random variable with a specific distribution function. Thus
rnorm(1000, mu, sigma) returns a vector of length 1,000 containing draws
from a normal random variable with mean mu and standard deviation sigma.
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The normal, uniform, and exponential distributions we covered in this chapter are
called -norm,-unif and -exp. The lognormal distribution function does not exist
in R, but it can be created through the normal distribution function. The binomial,
Poisson, and negative binomial distributions are given by -binom, -pois, and
-nbinom. The Bernoulli is just a special case of the binomial with a size (or number
of trials) of one. It should be mentioned that the parametrization of the negative
binomial in R is different from our formulation, which means that we need to study
the difference between the parametrization in R and our formulation (when you
investigate -nbinom, R gives info on this difference). A full overview of the built-in
distribution functions can be found at https://stat.ethz.ch/R-manual/R-devel/library/
stats/html/Distributions.html.

The code below gives an example in which we first evaluate the PDF and the
CDF of the normal for a given mean and standard deviation. Next, we demonstrate
the equality concerning the quantile function we highlighted above, and finally we
obtain 10 draws from the same normal distribution function.

> mu <- 0 # Mean
> s2 <- 1 # Variance
> s <- sqrt(s2) # Standard deviation
>
> x <- 1
> dnorm(x, mean=mu, sd=s) # PDF of the normal distribution

evaluated at x
[1] 0.2419707
> pnorm(x, mean=mu, sd=s) # CDF of the normal distribution

evaluated at x
[1] 0.8413447
>
> p <- pnorm(x, mean=mu, sd=s)
> qnorm(p, mean=mu, sd=s) # The so-called quantile function Q(p)

= x if and only if p = F(x)
[1] 1
>
> set.seed(982749)
> n <- 10
> rnorm(n, mean=mu, sd=s) # Get 10 draws / realizations from the

distribution
[1] 0.15958190 0.60671592 1.10638675 -1.03021164 0.14672386

0.37733998
[7] 0.55563879 0.77358142 0.61140111 -0.09188106

4.8.2 Using Monte-Carlo Methods

The ability to easily obtain draws from a distribution function allows us to approxi-
mate the properties of distribution functions by computing summaries of the draws
obtained. This method is called Monte Carlo (or MC) simulation, and we can use it

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Distributions.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Distributions.html
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to check our analytical results. For example, we can approximate the expected value
of a random variable X ∼ N (2, 9) using the following code12:

> draws <- rnorm(10^6, mean=2, sd=3)
> mean(draws)
[1] 1.996397

In this case we already knew that the mean was equal to 2. The simulation shows that
we obtain a value very close to 2 and confirms our knowledge. This MC approach is
closely related to simple random sampling in Chap.2, but now we sample from an
infinitely large population that is described by the normal distribution function. The
example is somewhat simple, but it shows how simulation works. MC becomes more
relevant when more complicated random variables are being studied. For instance,
the expected value of exp{√X}, with X ∼ N (μ, σ 2), is less easy to determine
mathematically. You may think that this may be an exotic random variable to study,
but practice often studies very interesting and complex random variables, often a
combination of several random variables. Instead of evaluating the mean of the
randomvariables, we could also study the variance and othermoments (like skewness
and kurtosis), which will be even more difficult to obtain mathematically.

To illustrate MCwith multiple random variables, we can easily imagine a random
variable Z whose distribution function is a combination of two normal distribution
functions with different means and variances, which is something we call a mixture
distribution: for instance, the distribution of body weight of women and men or
the tensile strengths of plastic tubes produced from two production lines. One way
of constructing such a variable is by imagining that we first throw a coin, Y ∼
B(1/3), and subsequently we obtain a draw from one of two different normals: Z0 ∼
N (10, 1) if Y = 0 and Z1 ∼ N (20, 5) if Y = 1. Or, more generally, the random
variable of interest Z is constructed as Z = Y Z0 + (1 − Y )Z1 where Y ∼ B(p),
Z0 ∼ N (μ0, σ

2
0 ), and Z1 ∼ N (μ1, σ

2
1 )with p = 1/3, μ0 = 10, σ 2

0 = 1,μ1 = 20,
and σ 2

1 = 5.
Since Z is a function of random variables, it is itself a random variable. However,

it is not immediately clear (yet) how we could compute summaries such as its expec-
tation, variance, moments, or even the percentage of values above a certain level (say
15). In Sect. 4.9 we will look at this variable more mathematically, but here we will
study the variable through MC simulation:

> # Set number of draws, probability of coin, and mean and
standard deviation of first normal distribution

> n <- 10^6
> p <- 1/3
> mu_1 <- 10
> s_1 <- 1
>
> # Flip a coin with probability p
> Y <- rbinom(n, size=1, prob=p)
>

12 Note that -norm uses standard deviations instead of variances. You can always type ?rnorm
to see the exact arguments.



130 4 Random Variables and Distributions

> # Generate the mixture draws (note that 20 = 1*10+10 and 5 = 1*
4+1)

> Z <- rnorm(n, mean=(Y*10)+mu_1, sd=(Y*4)+s_1)
>
> # Plot the draws in a histogram
> hist(Z, freq=FALSE, breaks=50)
>
> # Compute mean and variance (increase the power to compute

higher central moments)
> mean_Z <- mean(Z)
> var_Z <- mean((Z-mean(Z))^2)
> mean_Z
[1] 13.31672
> var_Z
[1] 31.09315

> # Compute percentage of values above 15
> P <- (Z>15)
> mean_P <- mean(P)
> mean_P
[1] 0.28147

Figure4.9 shows the histogramof the draws generated using this code. Themixing
of the two normals is clearly visible. Note that we use freq=FALSE to print a
histogram that has probabilities on the y-axis instead of frequencies (which is the
default we saw in Chap.1).

The example above shows how we can better understand the properties of a dis-
tribution or a random variable, but it can also be used to evaluate estimators that
are being used on samples from a population, as we discussed in Chap. 2. The only
difference with Chap.2 is that we are making certain assumptions on the population
values in this simulation. Indeed, we have assumed that the population is described
by a particular PDF or PMF or a particular set of random variables. If we study
one large simulation of many draws (like 106 in the example above) we obtain a
population that can give us better insight in the population characteristics, but if we
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Fig. 4.9 The histogram of a mixture distribution
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simulate repeatedly (say 103) a smaller number of draws (equal to an anticipated
sample size n) and calculate our estimator on each simulation sample, we can eval-
uate the performance of the estimator. Using the (103) repeated simulations, we can
approximate the mean, variance and other moments of the estimator, like we did in
Chap.2.

4.8.3 Obtaining Draws from Distributions: Inverse
Transform Sampling

It is clear that R is very useful for working with probability distributions; we can
evaluate PMFs, PDFs, and CDFs, and we can use MC simulation to compute expec-
tations, variances, and moments of random variables and estimators—this is even
possible when we might not be able to do so analytically. However, in the examples
above we are inherently limited by Rs default functions; hence, we can only work
with the well-known distributions that R supports. Although there are packages that
implement more distributions, sometimes we might want to obtain draws from a
distribution that is not well-known and implemented by others. If this is the case,
we can sometimes use inverse transform sampling as we discussed in Sect. 4.4; we
demonstrate it here in more detail to generate draws of an exponential distribution
function—which actually is implemented in R—and than check our results.

Figure4.10 shows the idea behind inverse transform sampling. As long as we
know the CDF of a random variable, we can use draws from a uniform distribution
function to generate draws from the variable of interest by evaluating the inverse of
the CDF (obviously this is something we need to derive ourselves). For example,
consider the exponential distribution function: the exponential distribution function
with parameter λ has the following PDF and CDF:

fλ(x) = λ exp{−λx} Fλ(x) = 1 − exp{−λx},

0

1

Sample U(0,1) => p

CDF F(x)

x where F(x) = p

Inverse Probability Sampling

Fig. 4.10 The CDF of a complex continuous distribution function
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Fig. 4.11 Exponential approximated using draws obtained by inverse transform sampling

with x > 0. The inverse of the CDF is now equal to

F−1
λ (u) = − log(1 − u)/λ,

with u ∈ (0, 1). Now, we can implement the inverse CDF, F−1(x) in R, and use the
inverse transform sampling trick:

> # lambda = 2
> # f(x) = 2*exp(-2*x)
> # F(x) = 1-exp(-2*x)
> # F(u)^-1 = -log(1-u)/2
>
> cdf_inverse <- function(u) {
+ -log(1-u)/2
+ }
>
> rfx <- function(n) {
+ u <- runif(n, min=0, max=1)
+ cdf_inverse(u)
+ }
>
> n <- 10^6
> draws <- rfx(n)
> hist(draws, freq=FALSE, breaks=40)
> curve(dexp(u, rate=2), col="red", add=TRUE)

The last two lines plot a histogram (see Fig. 4.11) of the obtained draws using our
trick, and superimpose a curve using the built-in dexp function in R; it is clear that
our sampling approach works very well! Thus using the uniform random variable
we can in principle simulate any other random variable if we know the CDF and its
inverse.

4.9 Relationships Between Distributions

Wehave only introduced a small number of well-known distribution functions above;
many probability textbooks will provide many more examples of well-known dis-
tribution functions. However, our aim was just to introduce the main concepts; it’s
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Table 4.1 Comparisons of the probabilities of Poisson and binomial distribution functions

X Binomial Poisson X Binomial Poisson X Binomial Poisson

0 0.00000 0.00001 7 0.01456 0.04368 14 0.12441 0.09049

1 0.00000 0.00007 8 0.03550 0.06552 15 0.07465 0.07239

2 0.00000 0.00044 9 0.07099 0.08736 16 0.03499 0.05492

3 0.00004 0.00177 10 0.11714 0.10484 17 0.01235 0.03832

4 0.00027 0.00531 11 0.15974 0.11437 18 0.00309 0.02555

5 0.00129 0.01274 12 0.17971 0.11437 19 0.00049 0.01614

6 0.00485 0.02548 13 0.16588 0.10557 20 0.00004 0.00968

easy to look up the PDFs, CDFs, expectations and moments of specific distributions
online (Wikipedia is actually a good source in this regard). Here we highlight a
few well-known relationships between distribution functions. We have already seen
the relationship between the Bernoulli and binomial distribution functions; we now
discuss two more.

4.9.1 Binomial—Poisson

Although the Poisson and binomial distribution functions are different, as they have
different supports, they can be close to each other. To demonstrate, Table4.1 shows
the Poisson probabilities next to the binomial probabilities when λ = np is equal to
12 and n = 20. The probabilities are reasonably close although not extremely close.

The Poisson and binomial distribution functions are quite close whenever λ is
equal to np and n is relatively large. It can be shown that the Poisson probabilities
are the limit of the binomial probabilities when n converges to infinity under the
condition that np converges to λ.

4.9.2 Binomial—Normal

Although the normal distribution function provides probabilities for continuous out-
comes and the binomial distribution function provides probabilities for discrete out-
comes, the normal distribution function may approximate the binomial distribution
function (as we have already discussed in Sect. 4.7.5). The approximation is quite
good under certain conditions, in particular when the skewness and kurtosis of the
binomial distribution are close to zero.

Let Sn be a binomial random variable with parameters n and p. Probability calcu-
lation with the binomial distribution function can be adequately approximated with
a normal distribution function when the mean np and the value n (1 − p) are both
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larger than 5 and the sample size is at least 20 (n ≥ 20). The binomial probability is
then approximated by a normal probability as follows:

P (Sn ≤ k) ≈ P
(
Z ≤ (k + 0.5 − np) /

√
np (1 − p)

)
,

with Z the random variable from a standard normal distribution function.
For large sample sizes this approximation can be very useful, since binomial

probabilities may not be easily calculated with a computer, due to the complexity of
calculating the number of permutations n! when n is large.

4.10 Calculation Rules for Random Variables

In our discussion of the binomial random variable we saw that it can be formulated as
the sum of n binary random variables. In theMonte Carlo simulation we created Z =
Y Z1 + (1 − Y )Z2, with Y a binary variable and Zk a normally distributed random
variable having mean μk and variance σ 2

k . This shows that we are often interested in
functions of random variables. In some cases we are able to determine the properties
of these constructed random variables that are functions of the properties of the
random variables that were used in the construction. This section will provide some
calculation rules that apply in all cases (when certain independence conditions are
satisfied), whatever the underlying PDF or PMF is used. Thus they are very generic
rules. We will state the rules without giving proofs.

4.10.1 Rules for Single Random Variables

Here we assume that we have a random variable X , either discrete or continuous,
and a constant c. The following rules hold true.

E (c) = c

E (cX) = cE (X)

Var(X) ≥ 0

Var(X + c) = Var(X)

Var(cX) = c2Var(X)

Var(X) = E(X2) − [E(X)]2
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4.10.2 Rules for Two Random Variables

Here we assume that we have a random variable X and a random variable Y . The
following rules always hold true:

E (X) = E (Y ) , when X = Y

E (X + Y ) = E (X) + E (Y )

If we assume that the random variables X and Y are independent of each other
(see also Chap.6), we can provide a few other simple rules. Independence means
that the outcome of X has nothing to do with the outcome of Y . For instance, when
X represents the body weight of women and Y the body weight of men, and we draw
randomly one woman and one man from the population, the weight of the woman
will be unrelated to, or independent of, the weight of the man.13

Moremathematically, independence can be defined through our definition of inde-
pendent events inChap.3. Ifwe introduce the events A = {X ≤ x} and B = {Y ≤ y},
then independence of the two events is given by Pr(X ≤ x,Y ≤ y) = Pr(A ∩ B) =
Pr(A)Pr(B) = Pr(X ≤ x)Pr(Y ≤ y) = FX (x)FY (y), with FX and FY the CDFs for
X and Y , respectively. In Chap.6 we will see that Pr(X ≤ x,Y ≤ y) is the joint CDF
of X and Y , denoted by FXY (x, y). The two random variables X and Y are now
considered independent, when this product of probabilities occurs for every x and
y, i.e., when FXY (x, y) = FX (x)FY (y) for all x and y. Note that, when X and Y
are independent, the random variables ϕ(X) and ψ(Y ) are independent, whatever
functions ϕ and ψ are chosen.

The following rules will hold true when X and Y are independent.

E(XY ) = E(X)E(Y )

Var(X + Y ) = Var(X) + Var(Y )

Var(X − Y ) = Var(X) + Var(Y )

Var(XY ) = Var(X)Var(Y ) + Var(X)(E(Y ))2 + Var(Y )(E(X))2

The second rule shows why the variance of a binomial random variable is n times
the variance of a Bernoulli random variable. This rule is applied (sequentially) to
the random variable Sn = X1 + X2 + · · · + Xn , with X1, X2, . . . , Xn independent
random variables. Furthermore, the second and thrid rule tell us that variances of
independent random variables always add up, even if we subtract random variables
from each other.

13 Yes, you are correct, practice ismore complicated since aman and awomanmay share a household
and therefore their weights may be related.
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Note that the first rule above shows that we could have calculated the mean of the
mixture distribution discussed in Sect. 4.8.2 analytically:

E(Y Z0 + (1 − Y )Z1) = E(Y Z0) + E((1 − Y )Z1)

= EYEZ0 + E(1 − Y )EZ1

= pμ0 + (1 − p)μ1.

The fourth rule helps us calculate the variance of Y Z0, which is p(1 − p)σ 2
0 + p(1 −

p)μ2
0 + σ 2

0 p
2 = pσ 2

0 + p(1 − p)μ2
0. However, computing the variance of Y Z0 +

(1 − Y )Z1 is more difficult, since Y Z0 and (1 − Y )Z1 are not independent, due to
the common random variable Y .

4.11 Conclusion

In this chapter we have introduced one more snippet of theory that we need to
advance our analysis of data: we introduced random variables and distributions of
random variables. In the next chapter we will, using all the theory that we have now
developed, relate back to sample data. We will first discuss distribution functions of
sample statistics over repeated random sampling, and we will find that these depend
on the parameters of the population distributions thatwe assume.Wewill than discuss
two methods of estimating these population parameters.

Problems

4.1 In a trial the patients (n = 20) are randomly assigned to the groups A and B.
The randomization is done by throwing an unbiased die. When the number of dots
is even, the patient will be in group A, otherwise in group B.

1. What is the probability that exactly 10 patients will be in group A?
2. What is the probability that at most 9 patients will be allocated to group A?

4.2 In Sect. 4.5 we discussed multiple discrete distribution functions by providing
the PMF ( f (x)) and discussing their means, variances, and central moments.

1. Derive the CDF of the Bernoulli distribution.
2. Determine mathematically that the mean of a binomially distributed random

variable X with parameters p and n is equal to EX = np.
3. Determine mathematically that the variance of a binomially distributed random

variable X with parameters p and n is equal to E(X − np)2 = np(1 − p).
4. Determine mathematically that the mean of a Poisson distributed random vari-

able X with parameter λ is equal to EX = λ.
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5. Determine mathematically that the variance of a Poisson distributed random
variable X with parameter λ is equal to E(X − λ)2 = λ.

6. Use R to make a figure displaying the CDF of the Poisson distribution with
λ = 5.

7. Determine mathematically that the mean of a uniform distributed random vari-
able X with parameters a and b, with a < b, is equal to EX = (a + b)/2.

8. Determine mathematically that the variance of a uniform distributed random
variable X with parameters a and b, with a < b, is equal to E(X − (a +
b)/2)2 = 1

12 (b − a)2.

4.3 Let us assume that the probability of a person in the Netherlands being left-
handed is 0.10. What is the probability that in a random group of 20 persons from
the Netherlands you will find at least three left-handed persons?

4.4 A specific diagnostic test has a known sensitivity of 0.9 for the related disease.
Five patients, all carriers of the disease, do the diagnostic test. Give the probability
distribution function of the number of positive tests. This means that you need to
calculate P (S5 = 0) , P (S5 = 1) , . . . , P (S5 = 5), with S5 the random variable that
indicates the number of positive tests.

4.5 Consider the exponential CDF F (x) = 1 − exp (−λx), for x > 0 and otherwise
equal to zero. Now let X be distributed according to this exponential distribution.

1. Determine the mean and variance of X .
2. What is the median value of the exponential distribution function? Use the defi-

nition of the median we discussed in Chap. 1.

4.6 Consider the PDF f (x) = 3x2 on the interval (0, 1].
1. Demonstrate that the function is indeed a density.
2. What are the mean, variance and standard deviation?
3. How likely is it that the outcome will be in between 0.25 and 0.75?

4.7 The following questions concern the use of R to work with random variables

1. Use R to make a figure of both the PDF and the CDF of the normal distribution
with parameters μ = 10 and σ 2 = 3.

2. Compute the expected value and variance for the N (μ = 10, σ 2 = 3) distri-
bution using Monte Carlo simulation.

4.8 Implement inverse transform sampling for the PDF f (x) = 1/2x defined from
0 to 2.
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Additional Materials I: From Bernoulli to Binomial

InChap.2wehave already discussed permutations.Herewewill repeat this for binary
values and then discuss how the binomial distribution is generated from Bernoulli
distributed random variables. Thus we will consider units (or subjects) i that have a
Bernoulli random variable Xi with parameter p.

Consider a sample of three subjects (n = 3), and let x1, x2, and x3 be the out-
comes or realizations. These values can be ordered in six (3! = 3 · 2 · 1 = 6) different
ways, or in other words there are six permutations, namely (x1, x2, x3), (x1, x3, x2),
(x2, x1, x3), (x2, x3, x1), (x3, x1, x2), and (x3, x2, x1). To see this, we can see that for
the first position there are three possibilities to choose from (x1, x2, or x3), then for the
second position there are only 2 = (3 − 1) possibilities left because the first position
is already taken by one of the outcomes. Then for the third position there is only
1 = (3 − 2) possibility left, since the previous two positions are taken. Clearly, this
can be generalized to k different values, leading to k! = k · (k − 1) · (k − 2) · · · 2 · 1
permutations.

For the binomial distribution function, the values or outcomes from the subjects
are not all different, as they are either equal to zero or equal to one (they come from
a binary random variable). For instance, when we consider again the three values
x1, x2, and x3, with the assumption that x1 = 1, x2 = 0, and x3 = 0, there are still
six permutations, but these permutations are not all unique in the sense that the sum
over all the values is still the same. The permutation (x1, x2, x3) is exactly the same
as permutation (x1, x3, x2), since they are both equal to (1, 0, 0).

The number of unique permutations (also referred to as the number of combina-
tions) is in this case thus three, since they are (1, 0, 0), (0, 1, 0), and (0, 0, 1). Clearly,
for a given permutationwe could permute all the zero’s and all the oneswithout affect-
ing the result. Thus the number of uniquepermutations is determinedby the total num-
ber of permutations, divided by the number of permutations that can bemadewith the
zero’s and with the ones. Thus in the example we find 3!/ (2! · 1!) = 6/ (2 · 1) = 3.
More generally, when the outcomes consist of zero’s and ones and the number of ones
is for instance k, then the number of unique permutations is given by the binomial
coefficient: (

n
k

)
= n!

k! (n − k)!
This so-called binomial coefficient is pronounced n over k or n choose k.

Each of the n!/(k!(n − k)!) outcomes result in the exact same probability of
occurrence, namely pk(1 − p)n−k . To illustrate this with the three outcomes x1, x2,
and x3, the probability that (1, 0, 0) occurs is p(1 − p)(1 − p), that (0, 1, 0) occurs
is (1 − p)p(1 − p), and that (0, 0, 1) occurs is (1 − p)(1 − p)p. Thus all three
outcomes have a probability of p(1 − p)2 of occurrence. Thus the probability that
we see k events (or ones) is now equal to [n!/(k!(n − k)!)]pk(1 − p)n−k , which
results into the binomial distribution function.
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Additional Materials II: The Log Normal Distribution

Determining the moments is a little bit of work, but can be determined by standard
calculus methods and the knowledge that

∫
R

σ−1φ((x − μ)/σ)dx = 1. For instance,
the first moment of a lognormal distributed random variable X ∼ LN (μ, σ 2) is
given by

E(X) = ∫
R
x fμ,σ (x)dx

= ∫ ∞
0 x 1

σ x φ
(
log(x)−μ

σ

)
dx

= ∫
R
exp(z) 1

σ
φ

( z−μ

σ

)
dz

= ∫
R

1
σ
√
2π

exp
(
− (z−μ)2

2σ 2 + z
)
dz

= ∫
R

1
σ
√
2π

exp
(
− z2−2z(μ+σ 2)+μ2

2σ 2

)
dz

= exp
(

(μ+σ 2)2−μ2

2σ 2

) ∫
R

1
σ
√
2π

exp
(
− (z−μ−σ 2)2

2σ 2

)
dz

= exp
(
μ + 0.5σ 2

) ∫
R

1
σ
φ

(
z−μ−σ 2

σ

)
dz

= exp
(
μ + 0.5σ 2

)

Note that the population mean E(X) is a function of the density parameters μ and
σ 2, which is typically different from the normal distribution. It also implies that the
parameters μ and σ do not represent the mean and standard deviation of the random
variable X ∼ LN (μ, σ 2).

Using similar calculus techniques, the variance is given by

E(X − exp(μ + 0.5σ 2))2 = exp
(
2μ + σ 2

) (
exp

(
σ 2

) − 1
)
,

which again is a function of the density parameters μ and σ . This implies that the

relative standard deviation is now equal to RSD = 100%
√
exp

(
σ 2

) − 1. Thus the

relative standard deviation is now only a function of σ 2 and does not depend on μ.
The skewness and excess kurtosis are a little more elaborate. They are functions of
just the parameter σ and do not depend on μ. To get some feeling about the values
of the skewness and kurtosis, we visualized them as function of σ in Fig. 4.12. This
figure also plots the relative standard deviation (not expressed as percentage).

The figure suggest that for larger values of σ , the skewness and kurtosis are devi-
ating from the value zero. Thus for larger values of σ , the lognormal distribution
function really deviates from the normal distribution function. Additionally, the rel-
ative standard deviation is also increasing with σ . For instance, a value of σ = 0.5
gives an RSD = 53.29%.

The quantiles of the lognormal distribution function can be obtained by the quan-
tiles z p of the standard normal distribution function. Indeed, let xp be the pth quantile
of the lognormal distribution function: then we know that Fμ,σ (xp) = p, with Fμ,σ

the CDF for fμ,σ in Eq. (4.2) and hence, using relationship Eq. (4.9), we obtain
that xp = exp

(
μ + σ z p

)
. It follows immediately that the median of the lognormal
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Fig. 4.12 RSD, skewness,
and excess kurtosis of
lognormal distribution: light
gray curve: RSD; gray
curve: γ1, dark gray curve: γ2

distribution function is equal to exp (μ), since z0.5 = 0. The first and third quar-
tiles are equal to exp (μ − 0.67449σ) and exp (μ + 0.67449σ), respectively, since
Φ(−0.67449) = 1 − Φ(0.67449) = 0.25.
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Chapter 5
Estimation

5.1 Introduction

The field of inferential statistics tries to use the information from a sample to make
statements or decisions about the population of interest. It takes into account the
uncertainty that the information is coming from sampling and does not perfectly
represent the population, since another sample would give different outcomes. An
important aspect of inferential statistics is estimation of the population parameters
of interest. We have discussed the step from descriptions of a sample to those of
a population already in Chap.2; however, now that we have the theory of random
variables at our disposal we can do much more than we did before. This is what we
explore in this chapter.

This chapter can be split up into two parts: in Sects. 5.2–5.4 we consider the
distributions of sample statistics or estimators given assumptions regarding the dis-
tribution of the variables of interest in the population. Sample statistics themselves
are random variables, and hence we can study their distribution functions, expec-
tations, and higher moments. We first study the distribution functions of sample
statistics in general, assuming that the variable of interest has some distribution in
the population but without further specifying the shape of this distribution function.
Next, we study the distributions of sample statistics when we assume the variable
of interest to be either normally or log normally distributed in the population. We
devote more attention to so-called normal populations because of their prominence
in statistical theory.

The second part of this chapter is Sect. 5.5, where we change our focus to esti-
mation: in the subsections we discuss two different methods to obtain estimates θ̂ of
the parameters of a population distribution Fθ (x) given sample data. The methods
we discuss are the method of moments and the maximum likelihood method. In these
sections, to provide a concrete example, we study the log normal distribution func-
tion, as this is one of the distribution functions for which the estimates originating
from the two estimation methods differ.
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Hence, to summarize, in this chapter we will discuss:

• The definition of sample statistics
• Distributions of sample statistics
• The central limit theorem
• Confidence intervals
• Estimation procedures: method of moments and maximum likelihood

We will obviously discuss how to use R to do the computations involved.

5.2 From Population Characteristics to Sample Statistics

Now that we have introduced PDFs and PMFs in Chap.4 to describe or approximate
the population values, we can visualize the concept of statistical inference for the
analysis of data. Figure5.1a shows our approach in Chap.2: we considered random
samples directly from a population without using the notion of random variables or
density functions. In this chapter, as depicted in Fig. 5.1b, the population (visual-
ized as a histogram) may still be seen as a finite set of values x1, x2, . . . , xN , as we
discussed in Chap. 2. However, contrary to our earlier approach, PDFs and PMFs,
visualized on the right-hand side of Fig. 5.1b, are considered statistical models for
the population values, as we have already indicated in Chap.4. While we still use
probability sampling to obtain our actual data, our process of statistical inference
changes due to the introduction of our statistical models. Before collecting our sam-
ple, we consider the data to be represented by random variables (our model), where
the CDFs connect the random variables to their PDFs or PMFs. When the data are
truly collected we obtain the observed sample data, which we consider to be realiza-
tions from these random variables. Thus, the difference from Chap. 2 is that we now
use the statistical models for describing populations using the theory introduced in
Chap.4 to get from the population to the sample data.

The introduction of PDFs and PMFs changes the way we make inference back
from the sample data to the population. In Chap. 2 we discussed how we could use
descriptive statistics from Chap.1 to directly estimate population characteristics like
population means, variances, and proportions. We have already called this statistical
inference, but in this chapter we will use the sample data to estimate aspects or
characteristics of the assumed PDF or PMF. More precisely, we will estimate the
parameters of the PDF or PMF. These estimates will be considered realizations of
corresponding estimators that are created from the random variable(s) of interest
X1, X2, . . . , Xn . Based on our understanding of the assumed PDF or PMF through
the estimated parameters, we can draw conclusions regarding the population if the
PDF or PMF describes the population appropriately. Going from the data to the
PDF or PMF to the population is also called statistical inference, but now we are
using (parametric) statistical models. Introducing these statistical models allows us
to make more detailed statements about the population than we were able to without
the introduction of these models.
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Fig. 5.1 Overview of the changes in our estimation procedure in this chapter compared to our
approach in Chap.2: in this chapter we use the theory of random variables and distribution functions
as developed in the previous two chapters to allow us to make more detailed statements about the
population of interest

Belowwe study the properties and distribution functions of different sample statis-
tics or estimators—which we define in Sect. 5.2.2 below—given different choices or
assumptions about the distribution function Fθ in the population. However, we first
repeat some of our earlier defined population characteristics that might be of interest.

5.2.1 Population Characteristics

If the population is described by a PDF or PMF, say f , the population mean and
population variance are determined by

μ ( f ) = E(X) =
∫
R

x f (x)dx (5.1)

σ 2 ( f ) = E (X − μ( f ))2 =
∫
R

(x − μ( f ))2 f (x) dx (5.2)

The population standard deviation is denoted by σ ( f ). Note that we are now using
the notation μ ( f ) to make explicit that the population mean μ will depend on our
choice of f .

Other moments than the first two moments may help characterize the population
as well, although they may not be used frequently in practice.1 Twomoments that are

1 Higher moments of the population density f are difficult to determine or to estimate from a sample
with small sample sizes. Thus, whenever data are sparse, higher moments will be considered less
relevant, but in cases with big data, we anticipate that higher moments may become more important
since the large sample sizewouldmake it possible to estimate these population characteristics better.
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not uncommon to study are the third and fourth moment of the standardized variable
Z = (X − μ( f ))/σ ( f ). As we have already seen in Chap.4, the third moment
γ1( f ) = E (Z)3 of the standardized random variable is called the skewness and the
fourth moment minus the value 3 of the standardized random variable γ2( f ) =
E (Z)4 − 3 is called the excess kurtosis.

Other characteristics of the population might also be of interest, such as a per-
centile xp. A percentile xp separates the population in two pieces such that p × 100%
of the population has a value less than or equal to xp and (1 − p) × 100%of the popu-
lation has a value larger than xp . InChap.4we called such values quantiles. If the pop-
ulation is described by a PDF f , the percentile xp ( f ) is given by xp ( f ) = F−1 (p),

since F
(
xp ( f )

) = ∫ xp( f )
−∞ f (x) dx = p, with F−1 the inverse distribution function.

Thus the percentiles x0.25 ( f ), x0.5 ( f ), and x0.75 ( f ) are the first, second, and third
quartiles of the population.2

5.2.2 Sample Statistics Under Simple Random Sampling

We can view a sample X1, X2, ...., Xn of size n from a population as a set of
random variables all coming from the same distribution function F . Although we
have seen that the distribution of the finite population would change if we sample
without replacement (due to the fact that the population is finite), it does not change
if we sample with replacement or the change is really small if the sample is small
with respect to the population size. Alternatively, in settings of repeated experiments
(e.g., tossing a coin, producing products, measuring blood pressure) the population
of values can be viewed as an infinite population and we may view the sample X1,
X2, ...., Xn as random variables from some kind of mechanism F that would create
random outcomes. Thus we will consider the sample X1, X2, ...., Xn as a set of
random variables and x1, x2, . . . , xn as the set of realizations that we would see or
observe if we have conducted the (sampling) experiment.

In the simplest setting possible, we will assume that the random variables X1,
X2, ...., Xn are all distributed according to F and they are all independent of each
other, i.e. mutually independent, see Chaps. 4 and 6 for definitions of independence.
This setting is often denoted by stating that “X1, X2,...., Xn are independent and
identically distributed (i.i.d) with distribution function F’. Thus in many situations
wewould start with something like “Let X1, X2, . . . , Xn be i.i.d. with Xi ∼ F”. Note
that when doing so we have essentially assumed that we collected a simple random
sample.

A sample statisticTn ∈ R is nowdefined as any functionTn ≡ T (X1, X2, . . . , Xn)

that is applied to the sample X1, X2, . . . , Xn . As Tn is a function of random variables,
it is itself a random variable. If we observe a realization x1, x2, . . . , xn for the random

2 We used the notationμ ( f ), σ ( f ), γ1( f ), γ2( f ), and xp ( f ) to indicate that these population char-
acteristics are dependent on the density function f . In many texts however, the explicit dependence
on ( f ) is omitted for convenience, as we already did in Chap.4.
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sample X1, X2, . . . , Xn , we immediately observe a realization for the sample statistic
Tn , which we will denote by tn , i.e. tn = T (x1, x2, . . . , xn). Note that this latter
expression aligns with our definition of sample statistics given in Chap.1.

In Chap.1 we listed multiple sample statistics. Here we list a number of often
used sample statistics as random variables (instead of realizations):

• Sample average: Tn = X̄ = ∑n
i=1 Xi/n

• Sample variance: Tn = S2 = ∑n
i=1(Xi − X̄)2/ (n − 1)

• Sample standard deviation: Tn = S =
√∑n

i=1(Xi − X̄)2/ (n − 1)

• Sample skewness: Tn = b1 = 1
n

∑n
i=1(Xi − X̄)3/S3

• Sample excess kurtosis: Tn = b2 = 1
n

∑n
i=1(Xi − X̄)4/S4 − 3

• Sample minimum: Tn = X(1) = min {X1, X2, ...., Xn}
• Sample maximum: Tn = X(n) = max {X1, X2, ...., Xn}
The minimum and maximum are considered the first and last random variables from
the ordered set of random variables: X(1), X(2), . . . , X(n). The ordered set of random
variables puts the variables in order from small to large, i.e. X(1) < X(2) < · · · <

X(n).3

The order statistics X(1), X(2), . . . , X(n) can be used to determine the quantiles xp
of the population. To determine the pth quantile xp, we need to calculate np first. If
np ∈ N is an integer, the quantile xp is estimated by the average of two sequential
order statistics: qp = [X(np) + X(1+np)]/2. If np /∈ N is not an integer, we take the
smallest integer value that is larger than or equal to np, which is denoted by �np�.
For example, assume �7.29� = 8 and �7� = 7, then the quantile xp is estimated by
the order statistic qp = X(�np�).

In Chap.1 we have already seen how to compute a number of the realized sample
statistics using R.

5.3 Distributions of Sample Statistic Tn

Using the theory of random variables we developed in the previous chapter, we
can now examine the distributions of the random variables Tn in more detail. The
random variable Tn would itself have a CDF, which we denote by FTn . It is defined
by FTn (x) = P (Tn ≤ x). This CDF is often referred to as the sample distribution
function of statistic Tn , as it describes how the sample statistics vary if we draw
(new) samples from the population. It should not be confused with the population
distribution function F , which describes how the units from the population vary. The

3 Note that the random variables X1, X2, . . . , Xn would indicate the order of sampling. In the order
of sampling there is no guarantee that they also represent the order of size. Furthermore, it should
be noted that ordering the random variables (like we do for the minimum and maximum) is only
unique when the random variables are continuous, since each realization will produce different
values. In practice though, rounding may violate uniqueness.
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sample distribution function FTn is determined by the choice of Tn and the underlying
distribution function F for the random sample X1,X2, . . . , Xn .4

In many settings, the sample distribution function has a sample PMF or PDF fTn ,
often referred to as the sample density function of Tn . Unfortunately, it is not always
easy to determine the sample distribution or sample density function in general. Only
in special cases is it possible to determine closed-form functions. In the sections below
we examine a number of these cases.

Note that we study the distributions of Tn , as these distribution functions effec-
tively allow us to examine the quality of our estimators: the distribution function of
the random variable Tn provides a measure of how well an estimator approximates
a population value. For example:

• The expected value of an estimator E(Tn) is a measure for the central tendency of
a sample statistic, and,

• The standard deviation of Tn provides a measure for the variability of a sample
statistic.

Note that we have already studied these concepts in Chap.2 when we studied
the bias, MSE, and standard error (SE). In fact, the standard deviation of a sample
statistic Tn is the standard error of that sample statistic; the standard error of a sample
statistic of interest is commonly reported in scientific texts to quantify the uncertainty
associated with the sample statistic.

5.3.1 Distribution of the Sample Maximum or Minimum

The sampling distribution of theminimum ormaximum of X1, X2, . . . , Xn are easily
determined in generality. Let Tn be the maximum of X1, X2, . . . , Xn , the distribution
function of Tn is given by

FX(n)
(x) = P

(
X(n) ≤ x

) = P (max {X1, X2, ...., Xn} ≤ x)
= P (X1 ≤ x, X2 ≤ x, ...., Xn ≤ x) = ∏n

i=1 P (Xi ≤ x)
= [F (x)]n

Note that we have used both assumptions of i.i.d of the random sample X1,
X2, . . . , Xn in the derivation of the sample distribution of the maximum. The inde-
pendence is used to obtain a product of probabilities and the assumption that Xi ∼ F
is used to obtain [F (x)]n .

The distribution function for the minimum X(1) = min {X1, X2, ...., Xn} can be
determined in a similar way and is equal to FX(1) (x) = 1 − [1 − F(x)]n .

The sample density functions of the maximum and minimum can be deter-
mined by taking the derivative of the sample distribution functions with respect

4 Note that we are assuming simple random sampling here; when assuming other types of sampling
procedures FTn might change. Thus FTn depends also on the sampling plan.
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to x . Thus the sample densities for the maximum and minimum are given by
fX(n)

(x) = n [F (x)]n−1 f (x) and fX(1) (x) = n [1 − F(x)]n−1 f (x), respectively.
An interesting example of the sampleminimum X(1) is when the random variables

X1, X2, . . . , Xn are i.i.d. exponentially distributed, i.e. Xi ∼ exp(λ). The exponential
distribution function is given by F (x) = 1 − exp (−λx) for x > 0 and zero other-
wise. If we would substitute this distribution function in the distribution function
FX(1)of the sample minimum X(1) we would obtain FX(1) (x) = 1 − exp (−nλx) for
x > 0 and zero otherwise. Thus this implies that the sample distribution of the mini-
mum X(1) is exponentially distributed, X(1) ∼ exp (nλ), but now with parameter nλ,
when X1,X2, . . . , Xn are i.i.d. exp(λ) distributed.

5.3.2 Distribution of the Sample Average X̄

The distribution function of the sample average X̄ = ∑n
i=1 Xi/n is not so easy to

determine in general. Only in special cases are we able to describe it. For example,
we can describe it in the i.i.d. Bernoulli case. We have already seen in the previous
chapter that if the random variables X1, X2, . . . , Xn are i.i.d. Bernoulli distributed,
Xi ∼ B (p), the sum of the random variables is binomial Bin (n, p) distributed. This
implies that the distribution function of the sample average X̄ of Bernoulli distributed
random variables in x ∈ [0, 1] is given by

FX̄ (x) = P
(
X̄ ≤ x

) = P (X1 + X2 + · · · + Xn ≤ nx) =
	nx
∑
k=0

(
n
k

)
pk (1 − p)n−k

Although it is not easy to describe the sample distribution of the sample average in
general, there are a few things that we can say about the moments of the distribution
of the sample average.

The pth moment of a general sample statistic Tn is given by E
(
T p
n

) =∫
R
t p fTn (t) dt , if the sample density fTn exists, using the definition of moments for

any random variable. It can, however, also be calculated in a different way, using the
population density f and the fact that X1, X2, . . . , Xn are i.i.d. F . The pth moment
of Tn is

E
(
T p
n

) = ∫
R
t p fTn (t) dt = E

(
T p
n (X1, X2, . . . , Xn)

)
= ∫

Rn T
p
n (x1, x2, . . . , xn) f (x1) f (x2) · · · f (xn) dx1dx2 · · · dxn (5.3)

A special case is the first moment μ
(
fTn

) = E (Tn). The advantage of Eq. (5.3)
is that the moments of the sample statistic Tn = X̄ can be expressed in moments of
the random variables X1, X2, . . . , Xn . Indeed, the first moment of X̄ is now given by
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μ
(
f X̄

) = E
(
X̄

)
= ∫

Rn

[
1
n

∑n
i=1 xi

]
f (x1) f (x2) · · · f (xn) dx1dx2 · · · dxn

= 1
n

∑n
i=1

∫
Rn xi f (x1) f (x2) · · · f (xn) dx1dx2 · · · dxn

= 1
n

∑n
i=1

∫
R
xi f (xi ) dxi

= 1
n

∑n
i=1 E (Xi ) = μ ( f )

Note that this relationship essentially proves why the rule E (X + Y ) = E (X) +
E (Y ) in Chap.4 is true. The pth central moment of Tn is now given by E(Tn −
μ( fTn ))

p and can be written in a similar way as in Eq. (5.3). The second central
moment is the variance of the sample statistic Tn . Taking the square root, we obtain
the standard deviation of Tn .

For the sample average X̄ wewould obtain a varianceE(X̄ − μ( f ))2 = σ 2( f )/n.
To see this note that the square of X̄ − μ( f ) is given by

(
X̄ − μ( f )

)2 =
(
1
n

∑n
i=1 (Xi − μ( f ))

)2
= 1

n2
∑n

i=1 (Xi − μ( f ))2 + 2
n2

∑n−1
i=1

∑n
j=i+1 (Xi − μ( f ))

(
X j − μ( f )

)

Using this relation and the rules on random variables from Chap. 4, we obtain

σ 2 (
f X̄

) = E
(
X̄ − μ( f )

)2
= E

[
1
n2

∑n
i=1 (Xi − μ( f ))2 + 2

n2
∑n−1

i=1
∑n

j=i+1 (Xi − μ( f ))
(
X j − μ( f )

)]
= 1

n2
∑n

i=1 E (Xi − μ( f ))2 + 2
n2

∑n−1
i=1

∑n
j=i+1 E (Xi − μ( f ))

(
X j − μ( f )

)
= σ 2 ( f ) /n + 2

n2
∑n−1

i=1
∑n

j=i+1 E (Xi − μ( f ))E
(
X j − μ( f )

)
= σ 2 ( f ) /n

Thus the sample average has an expectation of μ ( f ) and a variance of σ 2 ( f ) /n,
irrespective of the population density f . In other words, the sample average X̄ is
an appropriate estimator for the population mean μ ( f ), and it has a standard error
(SE) that is a factor

√
n smaller than the standard deviation of the population, i.e.

the standard error is SE(X̄) = σ ( f ) /
√
n. Note that this standard error is typically

unknown, since it depends on the unknown population standard deviation σ( f ) (see
also Chap.2). This unknown parameter can also be estimated from the sample data,
as we will discuss in next subsection.

The skewness and kurtosis of the sample density of the sample average can
also be expressed in terms of the skewness and kurtosis of the population density.
The skewness is given by γ1( f X̄ ) = γ1( f )/

√
n and the excess kurtosis is given by

γ2( f X̄ ) = γ2( f )/n. Thus the skewness and excess kurtosis are close to zero when
the sample size is getting large.
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5.3.3 Distribution of the Sample Variance S2

The distribution function of the sample variance Tn = S2 ≡ ∑n
i=1(Xi −

X̄)2/ (n − 1) is in general unknown, but similar to the sample average, we are able
to determine a few moments. To do so, it is easier to rewrite the variance first into
S2 = ∑n

i=1(Xi − μ( f ))2/ (n − 1) − n(X̄ − μ( f ))2/(n − 1). The first moment is
now easily determined as

μ ( fS2) = E(S2)

= 1
n−1

∑n
i=1 E (Xi − μ( f ))2 − n

n−1E
(
X̄ − μ( f )

)2
= n

n−1σ
2( f ) − 1

n−1σ
2( f )

= σ 2( f ),

using the rules on random variables from Chap.4. Thus the sample variance S2 is
an unbiased estimator of the population variance σ 2( f ). With this information it
also becomes possible to estimate the standard error of the sample average with
ˆSE(X̄) = S/

√
n, which we already knew from Chap.2.

The second moment of the sample variance is more difficult to determine, but it
is possible (as we also have seen in Chap.2). It is given by

σ 2 ( fS2) = E
(
S2 − μ ( fS2)

)2 = E
(
S2 − σ 2 ( f )

)2 =
[
1

n
γ2 ( f ) + 2

n − 1

]
σ 4 ( f )

Thus the second moment of the sample variance depends on the excess kurtosis of
the population density and the squared population variance.5

The standard deviationσ( fS2) = σ 2( f )
√[(n − 1)γ2( f ) + 2n]/[n(n − 1)] is also

referred to as the standard error of the sample variance S2. This standard error can
be estimated by substituting S for σ ( f ) and b2 for γ2( f ).

5.3.4 The Central Limit Theorem

Above, we discussed the moments of the sample average for any population density
f (assuming that these moments existed). The mean of the sample average was
determined asμ( f ) and the standard deviation (or standard error) was determined as
σ( f )/

√
n. If the sample size increases, the standard deviation vanishes (σ( f )/

√
n →

0 if n → ∞). This implies that the sample average converges to the population mean
μ( f ). This seems reasonable, since the increase in information (n → ∞) would
lead to a more precise understanding of the population mean. In other words, if we

5 As we mentioned in Chap.2, for normal population densities f the second moment of the sample
variance is 2σ 4 ( f ) / (n − 1), which is just a function of the sample variance. Indeed, under the
assumption of normality, the excess kurtosis is equal to zero.
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measure almost all units from the population we will know the population mean
almost exactly.6

If we study the standardized sample average, i.e. Zn = (X̄ −
μ( f ))/(σ ( f )/

√
n) = √

n(X̄ − μ( f ))/σ ( f ), the mean would be equal to zero
(E(Zn) = 0) and the variance would be equal to one (E(Z2

n) = 1). This is true
irrespective of the sample size n. Thus if the sample size increases, the random
variable Zn does not change its mean or its standard deviation. It does not converge
to zero either when the sample size n increases to infinity, as the mean and variance
of Zn remain zero and one, respectively. Note that the distribution function of Zn

may still depend on n, since the skewness and kurtosis of Zn are given by γ1( f )/
√
n

and γ2( f )/n, respectively, and are different for different n.
What can we then say about the distribution function Pr(Zn ≤ z) of Zn?Well, the

central limit theorem tells us that this distribution function converges to the standard
normal distribution functionΦ(z) = ∫ z

−∞ φ(x)dx . Thus in other words, if the sample
size becomes large,

Zn = √
n(X̄ − μ( f ))/σ ( f ) ∼ N (0, 1), (5.4)

becomes almost normal. Note that we did not imply anything about the shape of
the population density f , just the existence of μ( f ) and σ 2( f ) (and of course the
assumption that X1, X2, . . . , Xn are i.i.d. with density f ).

The central limit theory is formulated as follows (Patrick 1995).7 Let X1,
X2, . . . , Xn be i.i.d. with distribution function F and with mean μ( f ) = E(Xk)

and with finite variance σ 2( f ) = E(Xk − μ( f ))2 < ∞. The distribution function
of

√
n(X̄ − μ( f )) converges to the normal distribution function with mean zero and

variance σ 2( f ). In other words, the distribution function of
√
n(X̄ − μ( f ))/σ ( f )

converges to the standard normal distribution function.
A consequence of this formulation is that the distribution function of any statis-

tic of the form Sn = ∑n
i=1 ψ(Xi )/n would also converge to a normal distribution

function when the mean μψ( f ) = E(ψ(Xk)) and variance σ 2
ψ( f ) = E(ψ(Xk) −

μψ( f ))2 are finite. Using the central limit theorem, ψ(X1), ψ(X2), . . . , ψ(Xn) are
i.i.d. and have a finite variance; thus, the statistic

√
n(Sn − μψ( f )) converges to a

normal distribution with mean zero and variance σ 2
ψ( f ).

As we can see from the formulation of the central limit theorem the underlying
distribution function F is irrelevant. Thus the central limit theoremcan also be applied
to the sample average of Bernoulli distributed random variables X1, X2, . . . , Xn ,
with Xk ∼ B(p). Thus the sample average of zero’s and one’s is also related to a
normal distribution when the sample size is large enough. In this case the mean is
μ( f ) = p and the variance is σ 2 ( f ) = p(1 − p). Thus the distribution function of
Zn = √

n(X̄ − p)/
√
p(1 − p) converges to a standard normal distribution function

6 It is interesting to think about what would happen if this was not true; how would we then go
about stating something regarding a population based on a sample?
7 There exist several formulations of the central limit theorem. We chose the classical theorem
which is the Lindeberg-Levy formulation.
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Φ. This may not be surprising, since we have already discussed in Chap. 4 that the
binomial and normal distribution functions are close to each other whenever n is
larger than 20 and the number np and n(1 − p) are larger than 5. The approximation
comes from the central limit theorem.

5.3.4.1 Central Limit Theorem Applied to Variances

The central limit theorem can also be applied to the sample variance S2, when the
fourth central moment E(Xk − μ( f ))4 exists. The sample variance can be rewritten
as

S2 = 1

n − 1

n∑
i=1

(Xi − μ( f ))2 − n

n − 1
(X̄ − μ( f ))2.

Wemay apply the central limit theorem first to 1
n

∑n
i=1(Xi − μ ( f ))2, whereψ(x) =

(x − μ( f ))2. The mean of ψ(Xi ) = (Xi − μ( f ))2 is given by μψ( f ) = E(Xi −
μ( f ))2 = σ 2( f ) and the variance is given by

σ 2
ψ( f ) = E((Xi − μ( f ))2 − σ 2( f ))2 = E(Xi − μ( f ))4 − σ 4( f ) = [γ2( f ) + 2]σ 4( f ),

with γ2( f ) the excess kurtosis of population density f . The variance of 1
n

∑n
i=1(Xi −

μ ( f ))2 is then given by [γ2( f ) + 2]σ 4( f )/n. Based on the central limit theo-
rem, we obtain that the large sample distribution of

√
n[ 1n

∑n
i=1(Xi − μ ( f ))2 −

σ 2( f )]/(σ 2( f )
√

γ2( f ) + 2) is equal to the standard normal distribution. In other
words,

1√
n

n∑
i=1

[(Xi − μ ( f ))2 − σ 2( f )] n→∞−→ N
(
0, [γ2( f ) + 2]σ 4( f )

)
,

Thus 1
n

∑n
i=1(Xi − μ ( f ))2 is approximately normally distributed with

N
(
σ 2( f ), [γ2( f ) + 2]σ 4

( f )/N ), which implies that 1
n−1

∑n
i=1(Xi − μ ( f ))2 is approximately normally

distributed with N
(
σ 2( f ), [γ2( f ) + 2]σ 4( f )/n

)
.

From the central limit theorem, we know that the distribution of
√
n(X̄ − μ( f ))

converges to the normal distribution N
(
0, σ 2( f )

)
. This implies that

(X̄ − μ( f ))2 = [√n(X̄ − μ( f ))]2/n → 0

when n converges to ∞. Since n/(n − 1) converges to 1 for n → ∞, we
now obtain that n

n−1 (X̄ − μ( f ))2 converges to zero. Combining the individual
results above, we obtain that

√
n(S2 − σ 2( f )) converges to a normal distribution
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N
(
0, [γ2( f ) + 2]σ 4( f )

)
, with σ 2( f ) the population variance and γ2( f ) the popu-

lation excess kurtosis.8

5.3.5 Asymptotic Confidence Intervals

The sample distribution function FTn can help quantify how much the statistic is
varying around the population characteristic it is trying to approach. From the sam-
ple distribution function FTn we may determine certain quantiles, say xp( fTn ) and
x1−p( fTn ), for p < 0.5. Based on the definition of quantiles and the sampling distri-
bution function FTn , the sample statistic will fall in the interval (xp( fTn ), x1−p( fTn )]
with probability 1 − 2p. Indeed, the probability is equal to

Pr(Tn ∈ (xp( fTn ), x1−p( fTn )]) = Pr(Tn ≤ x1−p( fTn )) − Pr(Tn ≤ xp( fTn ))
= FTn (x1−p( fTn )) − FTn (xp( fTn ))
= 1 − p − p = 1 − 2p

Now if we make a few assumptions about the large sample distribution of Tn , we
would be able to quantify how close the sample statistic is to the population char-
acteristic θ , with θ equal to for instance μ( f ), σ( f ), or xp( f ). Thus let’s assume
that Tn is trying to estimate the population characteristic θ and that the asymp-
totic sample distribution of (Tn − θ)/τn is given by the standard normal distribution
function Φ. Here τn is the standard error of the sample statistic Tn and we will
assume that we can estimate it from the sample data. If z p = xp (φ) is the quan-
tile of the standard normal distribution, the sample statistic Tn falls in the interval
(θ + z pτn, θ + z1−pτn] = (θ − z1−pτn, θ + z1−pτn]with probability approximately
equal to 1 − 2p. Indeed, if the sample size is large enough we obtain

Pr(Tn ∈ (θ − z1−pτn, θ + z1−pτn]) = Pr((Tn − θ)/τn ∈ (−z1−p, z1−p])
≈ Φ(z1−p) − Φ(−z1−p)

= 1 − p − p = 1 − 2p

Alternatively, we can rewrite the probability Pr(Tn ∈ (θ − z1−pτn, θ + z1−pτn]) into
Pr(θ ∈ (Tn − z1−pτn, Tn + z1−pτn]), which means that the population characteristic
is contained within limits Tn − z1−pτn and Tn + z1−pτn with probability equal to
1 − 2p. The interval (Tn − z1−pτn, Tn + z1−pτn] is now called an asymptotic con-
fidence interval for θ with confidence level 1 − 2p. It is common to choose the

8 The central limit theorem holds true for sums of random variables, as we just indicated, but there
are other examples that demonstrate that the large sample distribution of Tn can be normal. For
instance, it is shown that the large sample distribution of

√
n

(
X(�np�) − xp

)
converges to a normal

distribution N
(
0, p(1 − p)/( f (xp))2

)
, with f the population density, xp the pth quantile, and

X(k) the kth-order statistic. Thus the sample distribution function of the sample statistic Tn can
sometimes be approximated by a normal distribution function, even if it is not always the sum of
independent random variables.
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confidence level equal to 95%, which means that p = 0.025. The confidence inter-
val thus quantifies that, if the same population is sampled on numerous occasions and
interval estimates are made on each occasion, the resulting intervals would include
the true population parameter in (approximately) 95% of the cases.

In practice we still need to estimate the standard error τn to be able to calculate
the confidence interval, as τn would be a function of the density parameters and
is unknown in the calculation of the interval (Tn − z1−pτn, Tn + z1−pτn]. It is then
common to replace τn by its estimator τ̂n . In some cases, we would also change
the normal quantile z1−p by a quantile of the t-distribution if we could formulate a
degrees of freedom for the estimator τ̂n (see Sect. 5.4).

5.3.5.1 Illustrating the Asymptotic Confidence Interval

To illustrate the asymptotic confidence interval, let’s consider the sample average
X̄ = ∑n

i=1 Xi/n that tries to estimate the population mean μ( f ). From the central
limit theorem, we know that X̄ ∼ N (μ( f ), σ 2( f )/n) is approximately normally
distributed. The 97.5% quantile of the standard normal distribution function is equal
to z0.975 = 1.96; see Chap.4. Applying the 95% asymptotic confidence interval for
μ( f ) using the estimator X̄ , results in

(
X̄ − 1.96σ( f )/

√
n, X̄ + 1.96σ( f )/

√
n
]

Since the standard deviation σ( f ) is unknown, we may replace σ( f ) by an esti-
mator. The most commonly used estimator is to use the sample standard deviation

S =
√∑n

i=1(Xi − X̄)2/(n − 1). The 95% confidence interval on μ( f ) that can be
calculated from the data is then equal to

(
X̄ − 1.96 S/

√
n, X̄ + 1.96 S/

√
n
]

(5.5)

Applying this to the estimation of the mean number of hours per week that children
watch television using the school-children data gives us the following statistics:
sample size n = 50,069, sample average x̄ = 14.22914 and sample variance s2 =
108.9057. The 95% confidence interval for the mean number of hours of television
watching per week is now determined by (14.14, 14.32] using the confidence interval
in Eq. (5.5). After reading the school data high-school.csv into R, and calling
this dataset schooldata, the following R code gives us the required results

> schooldata <- read.csv("high-school.csv")
> n <- dim(schooldata)
> n
[1] 50069 13
> mu <- mean(schooldata$TV)
> mu
[1] 14.22914
> v <- var(schooldata$TV)
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> v
[1] 108.9057
> lcl <- mu - 1.96*sqrt(v/n[1])
> lcl
[1] 14.13773
> ucl <- mu + 1.96*sqrt(v/n[1])
> ucl
[1] 14.32055

We can also determine the 95% asymptotic confidence interval on the population
variance of the number of hours per week watching television. This requires an R
package that can estimate the excess kurtosis of a variable (like television watching).
The following R code gives all the result:

> n <- dim(schooldata)
> n
[1] 50069 13
> v <- var(schooldata$TV)
> v
[1] 108.9057
> library(e1071) # included to have access to the kurtosis()

function
> b2 <- kurtosis(schooldata$TV, type=3)
> b2
[1] 3.653064
> lcl <- v - 1.96*sqrt((b2+2)*(v^2)/n[1])
> lcl
[1] 106.6376
> ucl <- v + 1.96*sqrt((b2+2)*(v^2)/n[1])
> ucl
[1] 111.1738

Note that we have made use of the asymptotic distribution of the sample variance,
which is certainly appropriate with a sample size of more than 50,000.

5.4 Normally Distributed Populations

In cases in which we assume that the random variables X1, X2, . . . , Xn are i.i.d. nor-
mally distributed, Xi ∼ N (μ, σ 2), we are able to make finite sample statements for
a few of the sample statistics, due to a few nice properties of the normal distribution.

1. Property 1: The sum of the random variables
∑n

i=1 Xi is again normally dis-
tributed, but now with mean nμ and variance nσ 2. Thus this implies that the
sample average X̄ has a normal distribution with mean μ and variance σ 2/n and
thus has (X̄ − μ)/

(
σ/

√
n
)
, a standard normal distribution function.

2. Property 2: The sum of the squared standardized random variables∑n
i=1 (Xi − μ)2 /σ 2 is known to be chi-square distributed with n degrees of

freedom. The chi-square PDF is given by
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fχ2(x) = 1

Γ (n/2)2n/2
x (n−2)/2 exp (−x/2) ,

for x > 0 and zero otherwise. The function Γ is the gamma function defined
implicitly through an integral: Γ (x) = ∫ ∞

0 zx−1 exp (−z) dz; see also the nega-
tive binomial PMF in Chap.4. A graphical representation of the chi-square PDF
is given in Fig. 5.2. Additionally, the sum

∑n
i=1

(
Xi − X̄

)2
/σ 2 is chi-square

distributed with n − 1 degrees of freedom. We will see the use of the chi-square
distribution when we calculate confidence intervals for the standard deviation of
normally distributed random variables.

The first four moments of the chi-square distribution with n degrees of freedom
can be determined. They are given by

μ
(
fχ2

) = n, σ 2
(
fχ2

) = 2n, γ1
(
fχ2

) =
√
8

n
, γ2

(
fχ2

) = 12

n
.

The skewness and excess kurtosis of the chi-square distribution would rapidly
converge to zero when the degrees of freedom increases. Which is not surprising,
since we know that the distribution function of a properly standardized sample
variance S2 would converge to a normal distribution (see Sect. 5.3.4.1).

3. Property 3: Let Z be standard normally distributed, Z ∼ N (0, 1), let V 2
n be

chi-square distributed with n degrees of freedom, V 2
n ∼ χ2

n , and assume that Z
and V 2

n are independent. The distribution function of the ratio of this standard
normal random variable and the square root of a chi-square Z/(Vn/

√
n) has a

so-called Student t-distribution with n degrees of freedom. The Student t PDF is
given by

ft (x) = Γ ((n + 1)/2)

Γ (n/2)
√
nπ

(
1 + x2

n

)−(n+1)/2

x ∈ R.

Note that Student’s t-density is symmetric around zero. The symmetry implies the
following relation for the pth quantile: xp( ft ) = −x1−p( ft ). This is similar to the
quantiles of the normal distribution (i.e. z p = −z1−p). A graphical representation
of a t-probability distribution with only two degrees of freedom is presented in
Fig. 5.2 together with a standard normal probability distribution. We will see the
use of the t-distribution when we calculate confidence intervals for the mean of
normally distributed random variables.

The first four moments of the t-distribution with n degrees of freedom are given
by

μ ( ft ) = 0, σ 2 ( ft ) = n

n − 2
, γ1 ( ft ) = 0, γ2 ( ft ) = 6

n − 4

Thus the Student t-density with n = 1 or n = 2 does not have a finite variance.
The tails would go to zero when |x | converges to∞, but the tails multiplied by x2
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Fig. 5.2 Left: chi-square densities (light gray curve d f = 2; gray curve d f = 5; dark gray curve
d f = 10. Right: t-density with d f = 2 (gray curve) and standard normal density (black dotted
curve)

do not go to zero or not fast enough to make the area under the curve finite. The
skewness is zero only when the degrees of freedom are larger than 3. To have a
finite kurtosis the degrees of freedom should be larger than 4.

5.4.1 Confidence Intervals for Normal Populations

The three properties regarding i.i.d. normally distributed random variables, as dis-
cussed in the previous section, are useful to obtain confidence intervals for themeanμ

and variance σ 2, without needing a large sample size n. To illustrate this we will first
consider the mean μ. Property 1 provides that (X̄ − μ)/

(
σ/

√
n
)
is standard normal

distributed. Since we do not know the standard deviation σ in practice, we need to
estimate this. One option is to take the sample standard deviation S as we discussed in
Sect. 5.3.5. We also know from property 2 that V 2

n−1 = (n − 1)S2/σ 2 ∼ χ2
n−1. Then

rewriting the random variable (X̄ − μ)/
(
S/

√
n
)
into

X̄ − μ

S/
√
n

= (X̄ − μ)/
(
σ/

√
n
)

√
(n − 1)S2/σ 2/

√
n − 1

= Z

Vn−1/
√
n − 1

,

with Z standard normally distributed. Now using property 3, we see that (X̄ −
μ)/

(
S/

√
n
)
has a Student t-distribution with n − 1 degrees of freedom. This means

that we can use the quantile values of the Student t-distribution to formulate confi-
dence intervals on μ. If xp ( ft ) is the pth quantile of the Student t-distribution with
n − 1 degrees of freedom, the 1 − 2p confidence interval for μ (with p < 0.5) is
now (

X̄ − x1−p ( ft )
S√
n
, X̄ + x1−p ( ft )

S√
n

]
(5.6)
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Note that the only restriction on the sample size n, is that it should be larger than
2, otherwise we cannot calculate a sample variance. Furthermore, this interval is very
similar to asymptotic confidence intervals of the form (Tn − z1−pτn, Tn + z1−pτn],
where we used the quantiles of the standard normal distribution (i.e., x1−p( ft ) was
replaced by z1−p). When the sample size is increasing, the quantile of the Student
t-distributionwith n − 1 degrees of freedom converges to the quantile of the standard
normal distribution. The quantiles of the t-distribution are already quite close to the
same quantiles of the normal distribution when sample sizes are larger than one
hundred.

Calculating the confidence interval in Eq. (5.6) for the number of hours per week
of television watching for the school data does not lead to anything else than what we
reported in Sect. 5.3.5. The 95% confidence interval is (14.14, 14.32]. The sample
size is so large that the t-quantile is equal to the normal quantile. Indeed, x0.975( ft )
with 50,068 degrees of freedom is equal to 1.960011. Since the formof the confidence
interval in Eq. (5.6) is the same as the form of asymptotic confidence intervals, the
non-normality of the underlying data of television watching has become irrelevant
when the sample size is large.

As we saw in Sect. 5.3.5, the asymptotic 1 − 2p confidence interval for the vari-
ance σ 2 is given by

(
S2 − z1−p τ̂n, S2 − z1−p τ̂n

]
, where the estimated standard error

τ̂n is given by
τ̂n = S2

√[b2 + 2]/n,

and b2 is the sample excess kurtosis. An alternative confidence interval for the vari-
ance σ 2 can be created under the assumption that X1, X2, . . . , Xn are i.i.d. normally
distributed, Xi ∼ N (μ, σ 2). This will make use of property 2 from the previous sub-
section and we will show that this alternative confidence interval has a different form
than the asymptotic confidence interval.

We know that V 2
n−1 = (n − 1)S2/σ 2 ∼ χ2

n−1, which implies that we can directly
use the chi-square distribution. Let xp( fχ2) be the pth quantile of the chi-square dis-
tribution with n − 1 degrees of freedom. Then we obtain Pr(V 2

n−1 ≤ xp( fχ2)) = p.
Rewriting this probability results into Pr(σ 2 ≥ (n − 1)S2/xp( fχ2)) = p. Addition-
ally, we have Pr(V 2

n−1 > x1−p( fχ2)) = p, which results in the probability Pr(σ 2 <

(n − 1)S2/x1−p( fχ2)) = p. Thus a 1 − 2p confidence interval for the variance σ 2

is now given by [
(n − 1)S2/x1−p( fχ2), (n − 1)S2/xp( fχ2)

)
(5.7)

Note that the form of this confidence interval is no longer of the form “estimate plus
and minus a constant times the standard error”, but there is still a resemblance. The
asymptotic confidence interval can be written into the form of (cnS2,CnS2], with
cn = 1 − z1−p

√[b2 + 2]/n and Cn = 1 + z1−p
√[b2 + 2]/n. Thus the asymptotic

confidence interval is of the same form as the interval in Eq. (5.7), but it uses different
constants to multiply the sample variance.

The advantage of the confidence interval in Eq. (5.7) over the asymptotic con-
fidence interval for the variance is that it does not require large sample sizes. It
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will be an appropriate confidence interval9 for any sample size larger than 2, if X1,
X2, . . . , Xn are i.i.d normally distributed. The asymptotic confidence interval does
not require the assumption of normality, but requires large datasets.

Using the number of hours per week of television watching in the school data,
we can also calculate the 95% confidence interval if we assume that the distribution
for the hours of watching television is normal. The following R code provides the
results:

> n <- dim(schooldata)
> n
[1] 50069 13
> v <- var(schooldata$TV)
> v
[1] 108.9057
qchi_up <- qchisq(0.975,n[1]-1)
> qchi_up
[1] 50690.11
> qchi_low <- qchisq(0.025,n[1]-1)
> qchi_low
[1] 49449.68
> lcl <- (n[1]-1)*v/qchi_up
> lcl
[1] 107.5692
> ucl <- (n[1]-1)*v/qchi_low
> ucl
[1] 110.2675

The results are somewhat different from the interval (106.64, 111.17] obtained in
Sect. 5.3.5, while the sample size is quite large. The reason is that the underlying
distributionof the number of hours perweekof televisionwatching is far fromnormal.
More precisely, the issue is the excess kurtosis,which deviates fromzero. If b2 is close
to zero, the constants (n − 1)/x1−p( fχ2) and (n − 1)/xp( fχ2) used inEq. (5.7)would
be close to the constants cn = 1 − z1−p

√
2/n and cn = 1 − z1−p

√
2/n, respectively,

where b2 is taken zero. Thus in the situation of the data on television watching, we
expect that the asymptotic confidence interval is preferredover the confidence interval
based on normality, since the excess kurtosis is not close to zero. It was estimated at
b2 = 3.653064, see Sect. 5.3.5.1.

Confidence intervals for the population variance σ 2 immediately result in con-
fidence intervals on the population standard deviation σ by just taking the square
root.

9 Appropriate confidence intervals means that the confidence interval contains the parameter of
interest with the correct level of confidence. If we construct 95% confidence intervals, we would
like the probability that the parameter is inside the confidence interval to be equal to 95%. If we
would use asymptotic confidence intervals, and the normal approximation is not close yet due to
relatively small sample sizes, the confidence level could deviate from 95%.
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5.4.2 Lognormally Distributed Populations

The lognormal distribution function—see alsoChap.4—is strongly related to the nor-
mal distribution function, since log(X) is normalN (μ, σ 2) when X is lognormally
LN (μ, σ 2) distributed. This makes the analysis of data that represents realizations
of lognormally distributed random variables relatively easy, since we can just take
the logarithmic transformation and use sample statistics on the transformed data.

Thus if X1, X2, . . . , Xn are i.i.d. lognormally distributed, the sample
average and sample variance of the transformed random variables log (X1),
log (X2) , . . . , log (Xn), with log the natural logarithm, are given by

X̄ log = 1

n

n∑
i=1

log (Xi ) S2log = 1

n − 1

n∑
i=1

(
log (Xi ) − X̄ log

)2
. (5.8)

These sample statistics are unbiased estimates of μ and σ 2, respectively. Even
stronger, using the results from Sect. 5.4, the distribution function of X̄ log is nor-
mally distributed N

(
μ, σ 2/n

)
and (n − 1) S2log/σ

2 has a chi-square distribution
function with n − 1 degrees of freedom. This also implies that the geometric aver-
age exp

(
X̄ log

) = ∏n
i=1

n
√
Xi is lognormally distributed.

5.5 Methods of Estimation

In the previous sectionswe introduced several sample statistics and discussed some of
their characteristics. We also demonstrated that these sample statistics can be viewed
as estimators of certain population properties. For instance, the sample average X̄ can
be used as an estimator of the population mean μ ( f ). However, it would be much
nicer if we could construct procedures that would allow us to directly estimate the
parameters of population distributions, as opposed to estimating only characteristics
of the distributions. Belowwe discuss two such approaches,method of moments esti-
mation (MME) and maximum likelihood estimation (MLE). The latter is considered
the better one in most cases and is more generic. Note that both estimation meth-
ods provide us with parameter estimates that are themselves simply functions of our
sample data: hence, estimators obtained using either MME or MLE are themselves
sample statics (Tn) and we can study their distribution functions (we will do so when
we study the standard error of MLE estimates in Sect. 5.5.2.3).
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5.5.1 Method of Moments

The method of moments connects strongly to the theory on sample statistics Tn
from Chap.2. Assume that the population density fθ depends on a set of parameters
θ = (θ1, θ2, . . . , θm)T . For example, the normal density has two parameters θ1 = μ

and θ2 = σ 2. Estimates of these parameters can then be obtained by computing m
or more central moments. As discussed earlier, the central moments of a random
variable X , which has a density fθ , are defined by

μr ( fθ ) = E (X − μ ( fθ ))
r =

∫
R

(x − μ ( fθ ))
r fθ (x) dx,

with μ( fθ ) = E(X) the mean value. For discrete random variables we would have

μr ( fθ ) = E (X − μ ( fθ ))
r =

θ∑
k=0

(k − μ ( fθ ))
r fθ (k) ,

where fθ (k) represents the probability that X is equal to k.
The moments clearly depend on the parameters θ and the moments can be esti-

mated with the sample moments Mr = 1
n

∑n
i=1

(
Xi − X̄

)r
, with M1 = X̄ and X̄ the

sample average. If we equate the sample moments Mr to the centralized population
moments μr , we create a system of equations that can possible be solved for θ .

Thus when executing the method of moments, we are looking for parameters
θ = (θ1, θ2, . . . , θm)T that satisfy the following equations X̄ = μ ( fθ ) and Mr =
μr ( fθ ) for r = 2, 3, . . . ,m. The solution θ̃ = (θ̃1, θ̃2, . . . , θ̃m)T is called themethod
of moments estimator. Note that the second sample moment M2 is equal to (n −
1)S2/n and is thus not an unbiased estimator of μr ( fθ ), since we already now that
S2 is unbiased.

5.5.1.1 Example: Lognormal Distribution

To illustrate the method of moments, consider the random variable X that is lognor-
mally distributed, i.e. X∼ LN (μ, σ 2); see Chap.4 for more details. This means
that the population density is given by fL (x) = φ

([
log (x) − μ

]
/σ

)
/ [xσ ], when

x > 0 and zero otherwise. This density contains only two parameters θ1 = μ and
θ2 = σ 2, and we only need to solve the two equations

X̄ = μ ( fL) = exp
(
μ + 0.5σ 2

)
M2 = σ 2 ( fL) = exp

(
2μ + σ 2

) (
exp

(
σ 2

) − 1
) (5.9)

Using the relationship that σ 2 ( fL) /μ2 ( fL) = exp
(
σ 2

) − 1, we obtain that σ 2 can
be estimated by
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σ̃ 2 = log

(
1 + M2

X̄2

)
= log

(
X̄2 + M2

) − 2 log
(
X̄

)
.

Note that the sample average is always positive, i.e. X̄ > 0. Using the estimator σ̃ 2

in the first equation in Eq. (5.9), we obtain the moment estimator for μ, which is
given by

μ̃ = log
(
X̄

) − 0.5
[
log

(
X̄2 + M2

) − 2 log
(
X̄

)]
(5.10)

= 2 log
(
X̄

) − 0.5 log
(
X̄2 + M2

)
. (5.11)

We could have taken an alternative approach and considered the set of trans-
formed random variables log (X1), log (X2) , . . . , log (Xn). These random variables
are normally distributedwithmeanμ and variance σ 2. Themoment estimators in this
setting are now μ̃ = X̄ log and σ̃ 2 = (n − 1)S2log/n, where X̄ log and S2log are defined
in Eq. (5.8). This shows that the moment estimators on transformed data are differ-
ent from the moment estimators on the original data. This non-uniqueness issue is
considered a real disadvantage of the moment estimators.

5.5.1.2 MME Calculation in R for Lognormal

To further illustrate the approach we will calculate, using R, the estimates for the
time spent in front of the television in the dataset high-school.csv that we
have already encountered. In reality this variable TV cannot come from a lognormal
distribution, since a lognormal distribution does not produce zeros. Hence, we will
calculate the estimates using the data from the children that do watch television,
since this may possibly be lognormally distributed. To do this we first create a new
dataset new_data and subsequently calculate the summary statistics for TV in the
new dataset:

new_data <- schooldata[schooldata$TV>0, ]
> summary(new_data$TV)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 7.00 12.00 14.46 20.00 70.00

We can now compute the sample moments that we need to estimate the population
parameters:

> n <- nrow(new_data)
> n
[1] 49255
> Xbar <- mean(new_data$TV)
> Xbar
[1] 14.4643
> M2 <- (n-1)*var(new_data$TV)/n
> M2
[1] 107.302
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Next, we can use the results in the previous section to estimate the population
parameters:

> mu <- 2*log(Xbar)-0.5*log(Xbar^2+M2)
> mu
[1] 2.464677
> sigma2 <- log(Xbar^2+M2)-2*log(Xbar)
> sigma2
[1] 0.414013

Alternatively, we can calculate the moment estimates on the log transformed
observations. The results are:

> logx <- log(new_data$TV)
> Xlog <- mean(logx)
> Xlog
[1] 2.409657
> Slog <- var(logx)
> Slog
[1] 0.6048436

These estimates are quite different from the moment estimates used on the original
(non-transformed) data; in particular, the variance is different. This shows that the
moment estimators may greatly vary when transformations are used. It should be
noted that both estimates are in principle appropriate.

5.5.2 Maximum Likelihood Estimation

The maximum likelihood approach is probably best explained in the context of a set
of random variable X1, X2, . . . , Xn having an i.i.d. BernoulliB (p) distribution. In
this setting we would like to estimate the parameter p. If we obtain a realization x1,
x2, . . . , xn , we could ask how likely it is that we observe this set of results for given
values of p. This so-called likelihood of the data is given by

L (p) = px1 (1 − p)1−x1 px2 (1 − p)1−x2 · · · pxn (1 − p)1−xn (5.12)

Indeed, the term pxi (1 − p)1−xi is the probability that the random variable Xi will
attain the realization xi , i.e. P (Xi = xi ) = pxi (1 − p)1−xi , with xi ∈ {0, 1}. Thus
the product L (p) in Eq. (5.12) represents the probability that X1, X2, . . . , Xn will
attain the realization x1, x2, . . . , xn . Note that we fully exploit the i.i.d. assumption:
we assume identical distributions for each random variable Xi (and we thus work
with parameters p as opposed to pi ), and the probability of the joint observations is
given by the product over the probability of the individual observations; the latter is
possible by virtue of the independence assumption.

Since the likelihood is a function of the parameter p, we can search for a p that
wouldmaximize the likelihood.Theparameter p thatwouldmaximize the probability
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in Eq. (5.12) is the parameter that is most likely to have produced the realizations.
The maximum likelihood estimate p̂ is the value that maximizes L (p) in Eq. (5.12).

To obtain this maximum, it is more convenient to take the logarithm of the like-
lihood  (p) given by

 (p) =
n∑

i=1

[
xi log (p) + (1 − xi ) log (1 − p)

]
.

The logarithm of a function achieves its maximum value at the same points as the
function itself, but is easier to work with analytically as we can replace the multipli-
cations by sums that are easier to differentiate.

As we know from Calculus, the maximum of a function can be obtained by taking
the derivative and then equating it to zero and solving the equation for the variable
of interest. Taking the derivative of  (p) with respect to p and equating it to zero
results in


′
(p) =

n∑
i=1

[
xi
p

− 1 − xi
1 − p

]
= 0 ⇐⇒ (1 − p)

n∑
i=1

xi − np + p
n∑

i=1

xi = 0 ⇐⇒ np =
n∑

i=1

xi

Thus themaximum likelihood estimate is nowgivenby p̂ = x̄ . Since anyvalue x̄ − ε,
ε > 0, for p in the derivative gives a positive value the solution is a maximum. The
ML estimator is now p̂ = X̄ , which is the same as the MME, since the first moment
of a Bernoulli random variable is p.

TheMLapproach can be generalized to any population density or probabilitymass
function fθ . If X1, X2, . . . , Xn are i.i.d. with density fθ , the likelihood function is
given by L (θ |X1, X2, . . . , Xn) = ∏n

i=1 fθ (Xi ) and the log likelihood function is
given by

θ ≡  (θ |X1, X2, . . . , Xn) =
n∑

i=1

log fθ (Xi ) . (5.13)

The maximum likelihood estimator θ̂ = (θ̂1, θ̂2, . . . , θ̂n)
T is the set of parameters

that maximizes the log likelihood function in Eq. (5.13). It is considered a (vector
of) random variable(s), since it is a (set of) function(s) of the random variables X1,
X2, . . . , Xn . It can often be determined by solving the set of equations given by

∂

∂θk
θ =

n∑
i=1

[(
∂

∂θk
fθ (Xi )

)
/ fθ (Xi )

]
= 0, (5.14)

with ∂θ/∂θk indicating the derivative of θ with respect to θk . This set of equations
is often referred to as the likelihood equations. The solution θ̂ of Eq. (5.14) does
not always result in a closed form expression, which means that we have to resort to
numerical approaches if we want to determine the MLE on data.
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5.5.2.1 Example: Lognormal Distribution

Recall that the population density is given by fL (x) = φ
([
log (x) − μ

]
/σ

)
/ [xσ ],

when x > 0 and zero otherwise, and that the set of parameters that we want to
estimate is given by θ1 = μ and θ2 = σ 2. Note also that the standard normal density
is given by φ(x) = exp(−x2/2)/

√
2π . The log likelihood in this setting is equal to

n∑
i=1

log fL (Xi ) =
n∑

i=1

[
− (log (Xi ) − μ)2

2σ 2
− log

√
2π − log(Xi ) − log (σ )

]

Tomaximize this function it should be noted that the terms log
√
2π and log(Xi ) can

essentially be ignored, since they will be the same whatever we choose for μ and σ .
Taking the derivatives with respect to μ and σ and equating them to zero we obtain
the following equations

n∑
i=1

[
log(Xi ) − μ

σ 2

]
= 0 and

n∑
i=1

[
(log (Xi ) − μ)2

σ 3
− 1

σ

]
= 0

Solving these equations leads to the solutions μ̂ = X̄ log = ∑n
i=1 log(Xi ) and σ̂ 2 =

1
n

∑2
i=1(log(Xi ) − X̄ log)

2 = (n − 1)S2log/n provided earlier in Eq. (5.8). These solu-
tions are the MME of the logarithmically transformed random variables.10 This
implies that the MLE for σ 2 is not unbiased, since the expected value of σ̂ 2 is equal
to E(σ̂ 2) = E((n − 1)S2log/n) = (n − 1)σ 2/n, although this bias vanishes when the
sample size gets large.

Using the ML estimates for the density parameters to estimate the population
parameters μ( fL ) or σ 2( fL) in the logarithm scale does not provide unbiased esti-
mator for the mean of the population in the original scale, since the MLE estimate
exp(μ̂ + 0.5σ̂ 2) is unequal to the expected value of the sample mean X̄ . This is
often considered a drawback of the MLE. It may estimate the parameters of the PDF
or PMF unbiasedly, but they do not always estimate the population mean and vari-
ance unbiasedly. This would be different from the moment estimators applied to the
original scale of the observations.

5.5.2.2 MLE Calculation in R for Lognormal

To determine themaximum likelihood estimates on a real dataset for a certain density
fθ , we can program the log likelihood θ ourselves and then use the function mle
from the stats package to maximize the log likelihood function. This can be done
using the following R code:

10 Note that the MLE and MME are not always the same. This depends on the particular density.



5.5 Methods of Estimation 165

> library(stats4)
> minuslogl <- function(mu, sigma) {
+ densities <- dlnorm(new_data$TV, meanlog=mu, sdlog=sigma)
+ -sum(log(densities))
+ }
> mle(minuslogl, start=list(mu=10, sigma=5))

Call:
mle(minuslogl = minuslogl, start = list(mu = 10, sigma = 5))

Coefficients:
mu sigma

2.4096583 0.7777092

Note that the mle procedure in R provides the standard deviation σ̂ instead of
the variance σ̂ 2. The reason is that the lnorm is provided with a standard deviation.
Squaring the value 0.7777092 results in 0.6048.

It should be noted that there also exists other packages that do not require you
to formulate the function yourself. One such package is called fitdistr(x,
distr="name"), where you put the name of the distribution in place of "name".
It requires the installation of the package MASS, after which you can execute the
following R code:

> library(MASS)
> fitdistr(new_data$TV, densfun="lognormal")

meanlog sdlog
2.409656712 0.777709043
(0.003504225) (0.002477861)

The advantage of this direct approach is that the estimates come with an estimated
standard error (i.e., the estimated standard deviation of the estimators), similar towhat
we discussed for the sample average and sample variance.

5.5.2.3 Standard Error of MLE

The standard errors of themaximum likelihood estimators are calculated based on the
variance of the large sample distribution (or asymptotics) of the maximum likelihood
estimators. Under certain regularity conditions, it can be shown that

√
n(θ̂ − θ)

converges to a normal distribution N
(
0, I−1 (θ)

)
, with θ̂ the MLE and I (θ) the

so-called Fisher information.11 We will illustrate the proof, without being formal.
For convenience purposes, we will assume that the density fθ has only one parameter
instead of multiple parameters θ1, θ2, . . . , θm .

The first derivative of the log likelihood, which is also referred to as the score
function S(θ), is given by

11 The theory of maximum likelihood estimation was developed by Sir Ronald Fisher.
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Sn (θ) ≡ d

dθ
θ =

n∑
i=1

d

dθ
log fθ (Xi ) =

n∑
i=1

f
′
θ (Xi )

fθ (Xi )

The expectation of the score function is zero (under certain regularity condi-
tions), since E[ f ′

θ (Xi )/ fθ (Xi )] = ∫
R
f

′
θ (x)dx = d

dθ

∫
R
fθ (x)dx = 0. This implies

that E[Sn(θ)] = 0. The variance of the score function is now given by E[S2n (θ)] =
n

∫
R
[( f ′

θ (x))
2/ fθ (x)]dx . We will now define the Fisher information I (θ) by

I (θ) = E

[
d

dθ
log fθ (X)

]2

=
∫
R

[( f ′
θ (x))

2/ fθ (x)]dx . (5.15)

with X having density fθ .
The score function is a sum of independent random variables, which means that

if we standardize the score function appropriately, the central limit theorem tells
us that the distribution function of the score function will converge to a normal
distribution function. Thus Sn(θ)/

√
nI (θ) converges to a standard normal random

variable Z∼ N (0, 1). It can also be shown that the Fisher information is equal to the
minus expectation of the derivative of the score functionwith respect to the parameter
θ , i.e.

nI (θ) = −E

(
S

′
n (θ)

)

with S
′
n(θ) = d

dθ
Sn (θ). This derivative is also a sum of independent random vari-

ables; thus properly standardized it will converge to a standard normal random vari-
able. This also implies that S

′
n(θ)/n will converge to the Fisher information I (θ) .

Now using a first-order Taylor expansion for the score function Sn(θ̂) that is evalu-
ated in the ML estimator θ̂ , we obtain that Sn(θ̂) ≈ Sn(θ) + (θ̂ − θ)S

′
n(θ). But the

score function in the MLE estimator is zero, i.e. Sn(θ̂) = 0, since the MLE estimator
θ̂ maximizes the likelihood. This means that

√
n

(
θ̂ − θ

)
≈ −

√
nSn(θ)

S ′
n(θ)

= − 1√
I (θ)

Sn(θ)√
nI (θ)

nI (θ)

S ′
n(θ)

Since nI (θ)/S
′
n(θ) coverges to 1 and Sn(θ)/

√
nI (θ) converges to Z∼ N (0, 1),

we obtain that
√
n(θ̂ − θ) converges to N (0, 1/I (θ)). Thus, we see that the

asymptotic variance of the maximum likelihood estimator is I−1(θ). This implies
that the approximate standard error of the maximum likelihood estimator is now
SE(θ̂ ) = 1/

√
nI (θ). Since we have an estimator θ̂ of the parameter θ , the standard

error is estimated with
ˆSE(θ̂) = 1√

nI (θ̂)

.

This asymptotic standard error can be used in the calculation of confidence intervals
on θ using the theory of Sect. 5.3.5. When Tn = θ̂ is the MLE for θ having an esti-
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mated standard error τ̂n = 1/
√
nI (θ̂) (using the notation of Sects. 5.3.5 and 5.4.1),

the 1 − 2p asymptotic confidence interval is

(θ̂ − z1−p/

√
nI (θ̂ ), θ̂ + z1−p/

√
nI (θ̂)].

To illustrate this theory on asymptotic standard errors, let X1, X2, . . . , Xn be i.i.d.
PoissonP(λ)distributed.Recall that the populationmeanμ ( f ) = λ and the popula-
tion variance σ 2( f ) = λ. Themaximum likelihood estimator for θ = λ, which is also
the moment estimator, is given by the sample average λ̂ = X̄ . Indeed, the log likeli-
hood is θ = ∑n

i=1[Xi log(λ) − log(Xi !) − λ]. Equating the derivative with respect
to λ to zero results into

∑[(Xi/λ) − 1] = 0. Solving this for λ gives λ̂ = X̄ . The
asymptotic distribution of the sample average has been discussed in Sect. 5.3.4. It was
demonstrated that the distribution of

√
n(X̄ − μ ( f ))/σ ( f ) converges to a standard

normal distribution. Applying this to the Poisson distributed random variables, we
see that

√
n(X̄ − λ) converges to N (0, λ).

Using Eq. (5.15), the Fisher information for the Poisson distribution is given by
I (λ) = E[(X/λ) − 1]2. This is equal to E[(X − λ)/λ]2 = 1/λ. Thus indeed, the
asymptotic variance of the MLE is given by I−1(λ) = λ and the standard error of X̄
is equal to

√
λ/n.

Problems

5.1 Consider the exponential CDF FE (x) = 1 − exp (−λx), for x > 0 and other-
wise equal to zero.Now let X be distributed according to this exponential distribution.

1. Determine the relative standard deviation of X .
2. Determine the pth quantile.
3. Determine the skewness and kurtosis.
4. Given realizations 0.05, 0.20, 1.72, 0.61, 0.24, 0.79, 0.13, 0.59, 0.26, 0.54 from

random variables X1, . . . , X10 which we assume to be distributed i.i.d. exponen-
tially, use R to compute the maximum likelihood estimate of λ.

5.2 Consider the data of the approximately 50,000 school children listed in
high-school.csv.

1. Calculate for each numerical variable the average, variance, skewness, and kur-
tosis.

2. Calculate for each numerical variable a 95% confidence interval on the population
mean and on the population variance.

3. Calculate for each numerical variable the 0.20th quantile.
4. Calculate the proportion of children that do not play sport and calculate a 95%

confidence interval on the population proportion.
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5.3 Consider the Bernoulli distribution Pr(X = 1) = p = 1 − Pr(X = 0).

1. Now let X1, X2, . . . , X10 be i.i.d.B(p) distributed with p = 0.2. Then calculate
the sample average X̄ = (X1 + X2 + · · · + X10)/10 and the standardized sample
average (X̄ − 0.2)/

√
0.016. Simulate this standardized sample average 10,000

times and create a histogram of the 10,000 sample averages. What is the average
and variance? Is the distribution approximately standard normal?

2. Simulate such a sample 10,000 times and calculate for each simulation the asymp-
totic 95% confidence interval for p using the sample average. Count how often
the true parameter p is contained in these 10,000 confidence intervals.

3. Now let X1, X2, . . . , X50 be i.i.d.B(p) distributed with p = 0.2. Then calculate
the sample average X̄ = (X1 + X2 + · · · + X50)/50 and the standardized sample
average (X̄ − 0.2)/

√
0.0032. Simulate this standardized sample average 10,000

times and create a histogram of the 10,000 sample averages. What is the average
and variance? Is the distribution approximately standard normal?

5.4 Consider again the exponential CDF FE (x) = 1 − exp (−λx) for x > 0 and
otherwise equal to zero.

1. Now let X1, X2, and X3 be i.i.d. FE distributed with λ = 0.5. Then calculate
a 95% asymptotic confidence interval on λ−1 using the sample average X̄ =
(X1 + X2 + X3)/3. Simulate these confidence intervals 10,000 times and count
how often the true parameter λ−1 = 2 is contained in these 10,000 confidence
intervals.

2. Now draw X1, X2, . . . , X20 from the exponential distribution with λ = 0.5 and
calculate a 95% asymptotic confidence interval on λ−1 using the sample aver-
age X̄ = (X1 + X2 + · · · + X20)/20. Simulate these confidence intervals 10,000
times and count howoften the true parameterλ−1 = 2 is contained in these 10,000
confidence intervals.

3. Explain the difference in the results from parts 1 and 2.
4. Now draw X1, X2, . . . , X20 from the exponential distribution with λ = 0.5 and

calculate a 95% asymptotic confidence interval on λ−2 using the sample variance
S2 = ∑20

i=1(Xi − X̄)2/19. Simulate these confidence intervals 10,000 times and
count how often the true parameter λ−2 = 4 is contained in these 10,000 confi-
dence intervals.

5. As parts 2 and 4 both provide confidence intervals on λ, which approach would
you prefer (X̄ or S2)? Explain why.

5.5 Consider the exponential CDF FE (x) = 1 − exp (−λ(x − η)) for x > η and
otherwise equal to zero. Assume that the random variables X1, X2, . . . , Xn are i.i.d.
exponentially exp(η, λ) distributed.

1. Determine the moment estimator for λ in case η = 0.
2. Determine the maximum likelihood estimator for λ in case η = 0.
3. Determine the moment estimators for λ and η.
4. Determine the maximum likelihood estimators for λ and η.
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5.6 Consider the data on approximately 50,000 children at high schools in the
Netherlands and focus on the variable SPORTS. Create a data set that contains only
positive values (i.e., eliminate the zeros). Assume that the data on SPORTS are from
a gamma distribution with density function

fG(x) = βα

Γ (α)
xα−1 exp (−βx) ,

when x > 0 and otherwise equal to zero.

1. Determine mathematically the moment estimators if X1, X2, . . . , Xn are i.i.d.
gamma G(α, β) distributed.

2. Use the results from part 1 to determine the moment estimates for α and β based
on the SPORTS data.

3. Use R to compute the maximum likelihood estimates for α and β.
4. Sample 100 times 1,000 children from the data and calculate the moment esti-

mates and the maximum likelihood estimates for each of the 100 draws. Per
estimation method, calculate the average of the estimates for α and β and the
standard deviation of these estimates. Can you make a choice on which method
of estimation is preferred for α and β?

Reference

B. Patrick, Probability and Measure (A Wiley-Interscience Publication, Wiley, Hoboken, 1995)



Chapter 6
Multiple Random Variables

6.1 Introduction

Up to now we have mainly focussed on the analysis of a single variable. We have
discussed probability density functions (PDFs), probability mass functions (PMFs),
and distribution functions (CDFs) as descriptions of the population values for such
a single variable and connected these functions to a single random variable. These
probability functions were functions with a single argument x ∈ R. For instance, the
CDF Fθ(x) was defined for all x ∈ R. In this chapter we will extend the concept of
probability functions tomultiple arguments, say (x, y), that would represent multiple
random variables.

Implicitly, we have already discussed multiple random variables. First of all, we
discussed the occurrence of multiple events in Chap. 3. We will see in this chapter
that this relates to bivariate binary random variables, X and Y . Secondly, we dis-
cussed multiple random variables that originated from (simple random) sampling
from a population in Chap.5. Indeed, we considered the set of random variables
X1, X2, . . . , Xn being i.i.d. with distribution function Fθ. With this assumption the
joint distribution function of all these random variables simultaneously is fully deter-
mined by Fθ. This wasmost explicit whenwe discussedmaximum likelihood estima-
tion: here we saw that the joint likelihood of the variables—by virtue of the fact that
they were independent—was the product of the likelihoods of each of the individual
random variables. Thus the likelihood function was nothing else than the product of
the PDFs.

In this chapter we study distribution functions of multiple random variables in
a bit more detail, in particular bivariate distribution functions. Here we will mainly
discuss that (X1,Y1), (X2,Y2), . . . , (Xn,Yn) are i.i.d. and the random variables Xi

and Yi are typically not independent. We start by introducing some more theory: we
discuss joint PMFs, PDFs, and CDFs of multiple random variables (also called mul-
tivariate probability functions). After discussing this theory, we introduce properties
of multivariate distribution functions that relate to the dependency of Xi and Yi , also
referred to as measures of association. We discuss several estimators for estimation
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172 6 Multiple Random Variables

of these measures of association and discuss how to construct confidence intervals.
Finally, we demonstrate how they can be calculated with R. Hence, in this chapter
we will study dependency between variables. We will cover:

• Joint probability functions of discrete and continuous random variables
• Properties of multivariate distributions: measures of association
• Estimators for measures of association
• Confidence intervals for measures of association
• Some other sample statistics that quantify associations

Note that this chapter is a mix of theory and practice. Although we do not discuss
the theory of multiple distributions extensively in this book,1 we do provide a lot of
information on measures of associations for bivariate random variables. We discuss
associations as a population parameter but also in the form of sample statistics. Only
in the final section do we illustrate how to calculate measures of association on real
data.

Admittedly, this chapter is relatively long. However, it is structured such that parts
of the chapter can easily be skippedwithoutmissing themainpoints. Section6.2 intro-
duces multivariate distribution functions and is essential to understand the material
in this chapter. Section6.3 details howmultivariate distribution functions can be con-
structed; this section can easily be skipped by readers who are not interested in the
underlying theory. Section6.4 provides the main properties of multivariate distribu-
tions which we deem essential theory. Section6.5 extends the essential theory, by
providing variousmeasures of association. In Sects. 6.6 and 6.7we discuss estimators
of measures of association: An introductory course might only cover Sects. 6.5.1 and
6.6.1 and skip the other sections. Section6.8 details how we can use R to compute
various measures of association.

6.2 Multivariate Distributions

In Chap.4 we introduced random variables and their probability distributions. We
discussed how a single random variable X with outcome values inR has a cumulative
density function FX if the probability that X is observed in the interval (−∞, x] is
given by the distribution function FX , i.e., Pr (X ≤ x) = FX (x). This was true for
both discrete and continuous random variables.2

This notion can easily be extended to functions of more than one variable (see
both Chaps. 3 and 4). We say that random variables X and Y have a joint distribution
function FXY if the probability that X is observed in the interval (−∞, x] and the

1 For a more extensive theoretical discussion on multivariate distribution functions see Ross (2014);
Nelsen (2007).
2 Note that we have changed the notation a bit to indicate that the CDF FX belongs to the random
variable X . We do this because we will introduce multiple random variables hereafter, each having
their own CDF that does not necessarily have to be identical for all random variables.
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probability that Y is observed in the interval (−∞, y] is given by the function FXY ,
i.e., Pr (X ≤ x,Y ≤ y) = FXY (x, y). The joint distribution function of two random
variables is also called a bivariate distribution function. We can extend this beyond
two variables and consider FX1X2···XK , with FX1X2···XK (x1, x2, . . . , xK ) = Pr(X1 ≤
x1, X2 ≤ x2, . . . , XK ≤ xK ) the joint distribution function of K random variables
X1, X2, . . . , XK . We often call this joint distribution function a multivariate distri-
bution function.

The joint distribution function contains all the information on how the random
variables are related to each other, i.e., how the random variables are dependent on
each other. In practice, we may say that variables are “co-related”, a term not used
frequently anymore, but it was used by Sir Francis Galton, who was among the first
to discuss co-relation in depth. If one variable increases and the other variable also
increases (on average) or if one variable increases while the other variable decreases
(on average) they are said to co-relate. For instance, taller people typically have a
larger weight, a relationship we are well aware of, but it was first identified by Galton
who studied co-relations among anthropometric data; see for instance Galton (1889).

6.2.1 Definition of Independence

Two random variables X and Y are called independent when the bivariate distri-
bution function is equal to the product of the marginal distribution functions.3 In
mathematics, independence of X and Y holds when FXY (x, y) = FX (x)FY (y) for
all (x, y) ∈ R × R, with FX the CDF of X and FY the CDF of Y (also called the
marginal distribution functions in this context of bivariate random variables). The
random variables X and Y are called dependent when they are not independent.
The random variables X1, X2, . . . , XK are called mutually independent when the
joint distribution function is the product of the marginal distribution functions, i.e.,
FX1X2···XK (x1, x2, . . . , xK ) = FX1(x1)FX2(x2) · · · FXK (xK ) for all xk ∈ R.4 If in case
we assume that all distribution functions are identical, i.e., FX1(x) = FX2(x) = · · · =
FXK (x) = F(x) for all x , then we have the concept of X1, X2, . . . , XK being i.i.d.
with distribution function F (as we studied in Chap.5).

It is important to realize that dependency can occur within a single population unit
or betweenmultiple population units. For single units, the random variables typically
represent different variables, like height and weight for a single person (which was

3 Note that this definition is very similar to the definition of independence of events as discussed in
Chap.3.
4 Note that there exists examples of pairwise independence without having mutual independence.
In other words, we may have that X and Y , X and Z , and Y and Z are (pairwise) independent,
but X , Y , and Z are not mutually independent. Thus we may have FXY (x, y) = FX (x)FY (y),
FXZ (x, z) = FX (x)FZ (z), and FY Z (y, z) = FY (y)FZ (z) for all x , y, and z, but we may not have
FXY Z (x, y, z) = FX (x)FY (y)FZ (z) for all x , y, and z. Pairwise independence is thus weaker than
mutual independence. When we talk about independence among multiple random variables we
mean mutual independence.
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studied by Francis Galton) or the two dimensions of the face in the face-data dis-
cussed in Chap.1. For multiple units, as we studied in Chap.4 (although we assumed
independence), the random variables may typically represent the same variable, like
the height of siblings. Here the dependence is introduced by an overarching unit or
cluster (i.e., family), that indicates that specific results belong to each other. In this
case, dependence occurs when the results (e.g., height) for members of the same
family are closer to each other than results taken frommembers of different families.
We discussed this in Chap.2 for cluster random sampling. The theory in this chapter
applies to both situations, and the context will make it clear whether we study single
or multiple units.

In Chap.4 we introduced distribution functions through PDFs or PMFs and con-
nected distribution functions to random variables, essentially showing that all these
concepts are strongly related. The same concepts hold for multivariate random vari-
ables. In the following two sections we will demonstrate this, first for discrete and
then for continuous random variables. Then in the third subsection we will discuss
how we can construct joint PDFs, PMFs, or CDFs.

6.2.2 Discrete Random Variables

If X andY are both discrete randomvariables, than the joint probabilitymass function
(PMF) is:

fXY (x, y) = Pr(X = x,Y = y)

This function of two variables x and y gives the probability of the occurrence of
the events X = x and Y = y happening simultaneously. Here we will assume again
that the values of x and y are both elements of the natural numbers N. Some or
many combinations of pairs (x, y) may not occur, which implies that the probability
for these values is zero, i.e., fXY (x, y) = 0. Since this bivariate PMF represents the
probability of the occurrence of events, all the probabilities should add up to 1. Thus
we have

∑

(x,y)∈N×N

fXY (x, y) =
∞∑

x=0

∞∑

y=0

fXY (x, y) =
∞∑

y=0

∞∑

x=0

fXY (x, y) = 1. (6.1)

The marginal PMF of Y is given by fY (y) = ∑∞
x=0 fXY (x, y) and the marginal

PMF of X is given by fX (x) = ∑∞
y=0 fXY (x, y). They indicate the PMF of Y aggre-

gated over the possible choices of X and of X aggregated over the possible choices
of Y , respectively. Thus, the joint PMF of two variables X and Y also allows us to
obtain the (marginal) PMFs of the single variables X and Y . This also means that
the theory of Chaps. 3, 4, and 5 applies to the single random variable X and Y . Note
that we can extend the bivariate setting to more variables, for example to three vari-
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ables: fXY Z (x, y, z) = Pr(X = x,Y = y, Z = z). The marginal PMF of X is then
fX (x) = ∑∞

y=0

∑∞
z=0 fXY Z (x, y, z). For Y and Z we can do something similar.

The joint CDF FXY of the random variables X and Y is now provided in the same
way as we did for single random variables:

FXY (x, y) =
x∑

k=0

y∑

l=0

fXY (k, l),

for every x and y in N. Now we accumulate both the x and y variables. It can
be seen that this leads to the definition of the bivariate distribution function we
discussed above: FXY (x, y) = ∑x

k=0

∑y
l=0 fXY (k, l) = ∑x

k=0

∑y
l=0 Pr(X = k,Y =

l) = Pr(X ≤ x,Y ≤ y) using the rules for adding up probabilities when the inter-
sections of the events are empty.

We can also define the conditional PMF of X given Y = y:

fX |Y (x |y) = Pr(X = x |Y = y) = Pr(X = x,Y = y)

Pr(Y = y)
= fXY (x, y)

fY (y)
,

when fY (y) > 0 (and similarly for Y given X = x). Note that we have already
covered this concept in Chap.3 for individual events and here we extend this to
distributions. Analogously, we define the conditional density fX |Y (x |y) to be equal to
0when fY (y) is equal to zero. The conditional PMF fX |Y gives the probability of X =
x given a specific choice of Y = y. For instance, if X represents a favourite subject
at school and Y represents gender, the conditional probability is the probability that
a particular gender, say female, likes a specific subject, say mathematics, as her
favourite subject (among all females).

When the random variables X and Y are independent, the conditional PMF
becomes equal to the marginal PMF. To see this, we will first illustrate that indepen-
dence means that fXY (x, y) = fX (x) fY (y). Indeed,

fXY (x, y) = Pr(X = x, Y = y)

= Pr(X ≤ x, Y ≤ y) − Pr(X ≤ x, Y ≤ y − 1)

− Pr(X ≤ x − 1, Y ≤ y) + Pr(X ≤ x − 1, Y ≤ y − 1)

= FXY (x, y) − FXY (x, y − 1) − FXY (x − 1, y) + FXY (x − 1, y − 1)

= FX (x)FY (y) − FX (x − 1)FY (y) − FX (x)FY (y − 1) + FX (x − 1)FY (y − 1)

= (FX (x) − FX (x − 1))(FY (y) − FY (y − 1))

= Pr(X = x) Pr(Y = y)

= fX (x) fY (y)

Now using this relation in the definition of conditional PMFs, we immediately obtain
that fX |Y (x |y) = fX (x) when X and Y are independent.
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To give concrete examples of bivariate discrete distribution functions, we will
consider the distribution function of two binary random variables and link this with
our theory in Chap.3 and we will introduce the multinomial distribution function as
a multivariate extension of the binomial distribution function.

6.2.2.1 Two Binary Random Variables

Consider the following joint PMF for random variables X and Y where x ∈ {0, 1}
and y ∈ {0, 1}:

fXY (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p00 if x = 0 and y = 0

p01 if x = 0 and y = 1

p10 if x = 1 and y = 0

p11 if x = 1 and y = 1

(6.2)

with p00 ≥ 0, p01 ≥ 0, p10 ≥ 0, and p11 ≥ 0 unknown parameters such that p00 +
p01 + p10 + p11 = 1. For example, the parameters can be given by

fXY (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

338
763 if x = 0 and y = 0
77
763 if x = 0 and y = 1
256
763 if x = 1 and y = 0
9

763 if x = 1 and y = 1

These probabilities were provided in (contingency) Table3.2 of Chap.3, where the
variable X indicates the gender of a participant (X = 1 means male and X = 0
means female) and the variable Y represents the occurrence of Dupuytren disease
(Y = 1means presenceofDupuytrendisease andY = 0means absenceofDupuytren
disease). It may be shown (see exercises) that the variables X and Y in this situation
are not independent. The measures of risk that were discussed in Chap.3 would all
hold for binary random variables defined by Eq. (6.2).

6.2.2.2 The Multinomial Distribution

Themultinomial distribution function occurs naturally if we sample without replace-
ment from a population with K classes. For instance, the quality of a product may be
divided into five categories: very low, low, okay, high, very high. When we consider
a sample of size n, we may keep track of the number of products in each of the
K categories, i.e., we observe random variables X1, X2, . . . , XK , with K = 5. The
joint PDF for X1, X2, . . . , XK is the multinomial PDF given by
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fX1X2...XK (x1, x2, . . . , xK ) = n!
x1!x2! · · · xK ! p

x1
1 px22 · · · pxKK (6.3)

with xk ∈ {0, 1, 2, . . . , n}, n = x1 + x2 + · · · + xK , pk > 0, and p1 + p2 + · · · +
pK = 1. The probability pk represents the percentage of units (or products in our
example) in the population (the full production of products) that has quality level k.

Note that this PMF is a generalization of the binomial PMF. If we consider K = 2,
the multinomial PMF reduces to the binomial PDF. However, for the binomial PMF
we usually do not mention or incorporate x2 in the PMF, as this is automatically
defined through x2 = n − x1, and only focus on the number of events X1.

6.2.3 Continuous Random Variables

The theory we have just discussed for discrete PMFs can also be extended to the
PDFs of continuous random variables. Let’s denote the joint PDF of two continuous
random variables X and Y by fXY (x, y). Similar to PDFs fX (x) of single random
variables X , this does not represent probabilities. The probability Pr(X = x,Y = y)
is equal to zero, while fXY (x, y) may be positive, i.e., there exist x and y, such that
fXY (x, y) > Pr(X = x,Y = y) = 0.
The joint CDF for X and Y is now defined by

FXY (x, y) =
∫ x

−∞

∫ y

−∞
fXY (u, v)dudv. (6.4)

This means that we integrate out the area under the function fXY (u, v) over the inter-
val (−∞, x] for u and (−∞, y] for v. This can be considered even more generally,
if we consider any set A ⊂ R × R and define the probability that (X,Y ) ∈ A by

Pr
(
(X,Y ) ∈ A

) =
∫∫

A

fXY (u, v)dudv (6.5)

In the special case that A = (−∞, x] × (−∞, y] we obtain Pr(X ≤ x,Y ≤ y) =
FXY (x, y), which is similar to what we discussed in Chap.4 on single random vari-
ables.

Themarginal PDF for continuous randomvariables is now obtained by integration
instead of summation that we used for discrete random variables:

fX (x) =
∫ ∞

−∞
fXY (x, y)dy and fY (y) =

∫ ∞

−∞
fXY (x, y)dx . (6.6)

The marginal CDFs can be obtained through the marginal PDFs, using the integral
of the PDF over the interval (−∞, x] like we did in Chap.4, but it can also be
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obtained through the joint CDF by letting y or x converge to infinity: FX (x) =
limy→∞ FXY (x, y) and FY (y) = limx→∞ FXY (x, y).

The conditional densities are defined in the same way as for discrete random
variables. They are given by

fX |Y (x |y) = fXY (x, y)

fY (y)
and fY |X (y|x) = fXY (x, y)

fX (x)
. (6.7)

Note that the conditional PDF fX |Y (x |y) is only defined in values for y that gives
fY (y) > 0 and conditional PDF fY |X (y|x) is only defined in x for which fX (x) > 0.
When fX (x) = 0 or fY (y) = 0 the respective conditional PDFs are defined to be zero.
If the random variables X and Y are independent, the joint density is the product of
the marginal densities, i.e., fXY (x, y) = fY (y) fY (y) for all x and y in R.

6.2.3.1 Bivariate Normal Density Function

A well-know bivariate continuous distribution function is the bivariate normal dis-
tribution function. The PDF is given by:

f (x, y) = 1

2πσXσY

√
1 − ρ2

exp

(
− z21 − 2ρz1z2 + z22

2(1 − ρ2)

)
(6.8)

with z1 = (x − μX )/σX the standardized normal variable for X and z2 = (y −
μY )/σY the standardized normal variable for Y . Note that when the parameter ρ
is equal to zero we obtain that the bivariate normal PDF is the product of the normal
PDF of X and the normal PDF of Y . Thus when ρ = 0, the normal random variables
X and Y are independent. However, when ρ �= 0, the normal random variables X
and Y are dependent. The parameter ρ is called the correlation coefficient and is
contained within the interval [−1, 1].

Note that for distribution functions of more than two random variables, say
(X1, X2, . . . , XK ) we often resort to using vector/matrix notation. For example,
when considering the joint normal distribution function of K random variables we
denote its mean by a vector μ = (μ1,μ2, . . . ,μK )T of length K , and a K × K
covariance matrix Σ . The diagonal of this matrix contains the variances of the ran-
dom variables, with σ2

k the variance of variable Xk placed at the kth row and column
inΣ . Wewill not discuss this in more detail, but it is good to be aware that sometimes
a very shorthand notation is used to denote the joint distribution function of a large
number of random variables.
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6.3 Constructing Bivariate Probability Distributions

Dependency between random variables has been studied extensively in the literature
and it is still a highly important topic within statistics and data science. Researchers
have tried to develop specific and special classes of multivariate and bivariate distri-
bution functions. Herewewill describe just a few approaches to constructing families
of CDFs, without having the intention of being complete. There are several books
discussing the topic in much more detail Samuel et al. (2004); Johnson et al. (1997);
Balakrishnan and Lai (2009). We will focus on bivariate random variables, although
some of the concepts can easily be extended to higher dimensions. The concepts are
somewhat mathematical, but it shows very well the complexities and opportunities
of creating bivariate CDFs. Such families can then be used in practice when they
describe the bivariate data appropriately. Thus they are not just theoretical, they can
be made practical. We will connect or illustrate some of these CDFs later in this
chapter when we discuss measures of association.

6.3.1 Using Sums of Random Variables

Dependent random variables are sometimes constructed by combining random
variables. Let U , V , and W be three independent random variables and define
X = W +U and Y = W + V . Since both X and Y share the same random vari-
able W , the random variables X and Y must be dependent. If we only observe the
random variables X and Y in practice, the random variable W is sometimes referred
to as latent variable. Note that this approach to constructing bivariate CDFs creates
a very large set of bivariate CDFs, since we have not specified the underlying CDFs
of U , V , and W . Thus this approach gives a lot of flexibility.

This way of constructing dependent random variables has been applied, for
instance, to normal random variables, Poisson random variables, and binomial ran-
dom variables. It is particular convenient for these distributions, since they have the
property that when we add up independent random variables they stay within the
same family of distributions. For the normal distribution function we have already
seen this in property 1 of Sect. 5.4, but this property also holds true for Poisson ran-
dom variables and for binomial random variables under specific conditions. Thus
when U , V , and W are all normal, Poisson, or binomial, the marginal CDFs of X
and Y are also normal, Poisson, or Binomial, respectively.

When U ∼ N (μU ,σ2
U ), V ∼ N (μV ,σ2

V ), and W ∼ N (μW ,σ2
W ), it can be

shown that X and Y are bivariate normally distributed with
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μX = μW + μU

μY = μW + μV

σ2
X = σ2

W + σ2
U

σ2
Y = σ2

W + σ2
V

ρ = σ2
W√

(σ2
W + σ2

U )(σ2
W + σ2

V )

.

When U ∼ P(λU ), V ∼ P(λV ), and W ∼ P(λW ), it can be shown that X
is Poisson distributed with parameter λW + λU and Y is Poisson distributed with
parameter λW + λV . The bivariate PDF is then given by

fXY (x, y) = exp(−[λU + λV + λW ])λ
x
Uλ

y
V

x !y!
min(x,y)∑

k=0

x !y!
(x − k)!(y − k)!k!

(
λW

λUλV

)k

.

A similar construction is available for binomial random variables, but is outside the
scope of this book.

It may be obvious to see that this method of constructing a bivariate CDF can be
extended easily to more than just two random variables. Then each random variable
contains the same componentW . This form has been used extensively in the classical
theory of measurement reliability, in particular with normally distributed random
variables. The random variable W represents a “true” value of something that is
measured, and the other random variables U and V represent measurement errors.
Thus in the bivariate case, the same unit is just measured twice.

6.3.2 Using the Farlie–Gumbel–Morgenstern Family of
Distributions

When X and Y are two random variables with marginal CDFs FX and FY , respec-
tively, we can create a bivariate CDF in the following way:

FXY (x, y) = FX (x)FY (y)(1 + α(1 − FX (x))(1 − FY (x))).

The parameter α should be within [−1, 1] and when it is equal to zero, the ran-
dom variables X and Y are independent. The parameter α may be seen as the
dependency parameter and the larger the absolute value |α| the stronger the depen-
dency. This class of distribution functions is referred to as the one-parameter Farlie–
Gumbel–Morgenstern (FGM) distribution functions (Schucany et al. 1978). The
class has been extended to a generalized FGM class, but this is outside the scope
of the book. It can be shown that the marginal distribution functions are given by
FX and FY , respectively. For instance, limy→∞ FXY (x, y) = FX (x) · 1 · (1 + α(1 −
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FX (x)) · 0) = FX (x). The bivariate PDF is given by

fXY (x, y) = fX (x) fY (y)(1 + α(1 − 2FX (x))(1 − 2FY (x))).

The advantage of this class is that it may be used with many different choices for
FX and FY . For instance, if we choose FX and FY normal CDFs, we have created a
bivariate CDF for X and Y that has marginal normal CDFs, but which is not equal to
the bivariate normal PDF given by the bivariate PDF in Eq. (6.8) from the previous
section. Thus, when X and Y are marginally normally distributed, there are different
ways of creating dependencies between X and Y that are different from the bivariate
PDF in Eq. (6.8).

The FGM and its generalizations have been widely studied in the literature. They
have been applied to areas like hydrology, but have not found their way into practice.
The reason is that it can only model weak dependencies between random variables
X and Y ; see Sect. 6.5.

6.3.3 Using Mixtures of Probability Distributions

Although a very generic formulation can be provided for this class of distribution
functions (Marshall and Olkin 1988), we would like to introduce a smaller class that
is defined through conditional PDFs. Let Z be a random variable and conditionally
on this random variable we assume that X and Y are independent distributed. Thus
the joint PDF of X and Y given Z , which is denoted by fXY |Z (x, y|z), is now given
by

fXY |Z (x, y|z) = fX |Z (x |z) fY |Z (y|z) = fX Z (x, z) fY Z (y, z)

f 2Z (z)
.

Then the joint PDF for X and Y is obtained by

fXY (x, y) =
∫ ∞

−∞
fX |Z (x |z) fY |Z (y|z) fZ (z)dz.

These bivariate mixtures of probability distributions have been applied to many
different applications. They have been used in survival analysis, where the outcomes
X and Y represent time to failure. They have also found their way into medical
and epidemiological sciences, where multiple measurements over time are collected
on individuals. The outcomes X and Y represent two observations (either discrete
or continuous) on the same individual. The random variable Z is used to drive the
dependency between the repeated measures. We will illustrate this with two exam-
ples.

Assume that Z is normally distributed with mean μZ and variance σ2
Z and

conditional PDFs fX |Z (x |z) and fX |Z (x |z) are given by fX |Z (x |z) = φ((x − μ1 −
z)/σ1)/σ1 and fY |Z (y|z) = φ((y − μ2 − z)/σ2)/σ2, with φ the standard normal
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PDF, then fXY (x, y) is equal to Eq. (6.8) with

μX = μZ + μ1

μY = μZ + μ2

σ2
X = σ2

Z + σ2
1

σ2
Y = σ2

Z + σ2
2

ρ = σ2
Z√

(σ2
Z + σ2

1)(σ
2
Z + σ2

2)

.

In this example, the mixture distribution is just another way of indicating that X and
Y are equal to X = W +U and Y = W + V , respectively, with U , V , and W inde-
pendent normally distributed random variables (U ∼ N (μ1,σ

2
1), V ∼ N (μ2,σ

2
2),

and W ∼ N (μZ ,σ2
Z )). This shows that some of the approaches are not unique.

Another interesting example,wherewe do not dealwith sums of randomvariables,
is when we take X and Y as binary variables and Z standard normally distributed.
We assume that fX |Z (1|z) = 1 − fX |Z (0|z) = Φ(αX + βX z) and fY |Z (1|z) = 1 −
fY |Z (0|z) = Φ(αY + βY z), with αX , βX , αY , βY unknown parameters and Φ the
standard normal CDF. Then the marginal PMFs fX (x) and fY (y) are given by

fX (1) = 1 − fX (0) = Φ

(
αX/

√
1 + β2

X

)

fY (1) = 1 − fY (0) = Φ

(
αY /

√
1 + β2

Y

)
,

while the joint PDF for X and Y is given by Eq. (6.2) with

p00 =
∫ ∞

−∞
(1 − Φ(αX + βX z))(1 − Φ(αY + βY z))φ(z)dz

p01 =
∫ ∞

−∞
(1 − Φ(αX + βX z))Φ(αY + βY z)φ(z)dz

p10 =
∫ ∞

−∞
Φ(αX + βX z)(1 − Φ(αY + βY z))φ(z)dz

p11 =
∫ ∞

−∞
Φ(αX + βX z)Φ(αY + βY z)φ(z)dz

Binary models like these are often used in the analysis of questionnaire data, with X
and Y representing questions or items to which you can answer only yes (or correct)
and no (or incorrect). This can easily be extended to many more binary questions.
The variable Z represents the ability of a person who takes the questionnaire. If the
ability is high for a person, correctly answering the questions is no problem. The
parameters αX and αY are considered the difficulty parameters for the two items.
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The larger the parameters the more difficult it is to correctly answer the questions.
The parameters βX and βY are called the discrimination parameters, which tells us
how well we can distinguish between different abilities of groups of people.

6.3.4 Using the Fréchet Family of Distributions

Maurice Fréchet demonstrated that any bivariate CDF FXY (x, y) can be bounded
from below and from above using the marginal CDFs FX (x) and FY (y) (Plackett
1965). The boundaries are given by

max{FX (x) + FY (y) − 1, 0} ≤ FXY (x, y) ≤ min{FX (x), FY (y)}

The boundary functions FBL(x, y) = max{FX (x) + FY (y) − 1, 0} and FBU (x, y) =
min{FX (x), FY (y)} are both CDFs themselves. The two boundary CDFs can then be
taken to form a one-parameter class of CDFs of the form

FLU (x, y) = λFBL(x, y) + (1 − λ)FBU (x, y), λ ∈ [0, 1].

It should be noted that the marginal CDFs for X and Y are FX and FY , respectively.
Furthermore, the parameter λ indicates the strength of the dependence, even though
this class does not contain the independent setting. There is no λ value that leads
to FLU (x, y) = FX (x)FY (y). Therefore, it has been extended to also include the
independence case, but we do not discuss this here. The class of CDFs above (and
its extensions) is referred to as the Fréchet class of distribution functions.

The Fréchet class of CDFs has been used to analyze bivariate dependent Poisson
distributed data from a production environment (Fatahi et al. 2012) and (its extension)
to financial applications (Yang et al. 2009).

6.4 Properties of Multivariate Distributions

Now that we have generalized single random variables to bivariate and multivariate
random variables, we can examine some properties of themultiple variables and their
joint distribution functions. We will examine the expectation and variance—which is
called covariance in this case—of multivariate random variables, similar to the uni-
variate case. We will also introduce a standardized measure of the covariance—the
correlation—which quantifies the linear dependence between two variables. Fur-
thermore, we will discuss a few alternative measures of association.
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6.4.1 Expectations

For single random variables we have discussed (central) moments, as these moments
relate the PDFor PMFs to the population characteristics.Now thatwe have dependent
multiple random variables we can study expectations of functions of these variables
to quantify population values that represent theway that randomvariables are related.
Here we discuss some important examples for discrete random variables; for contin-
uous random variables the definitions are similar, although the summation signs are
replaced by integrations. We will focus again on bivariate random variables.

Although we study a joint PMF fXY (x, y), we might still be interested in the
expected value of just one of the random variables involved, for example Y . In this
case we can easily obtain the marginal distribution function of Y using fY (y) =∑∞

x=0 fXY (x, y) as stated before, and subsequently compute the expectation E(Y ),
aswe have seen inChap. 4. Thus the resultswe discussed inChap.4 remain applicable
for both X and Y separately.

However, we may now also investigate moments of one variable, say Y again,
given a specific result of the other variable, say X = x . This means that we are
interested in the conditional expectation ofψ(Y ) given X = x , i.e.,E(ψ(Y )|X = x).
Here ψ is a function that can be chosen to our liking. Given a joint PMF this can be
computed as follows:

E(ψ(Y )|X = x) =
∞∑

y=0

ψ(y) fY |X (y|x)

which quantifies the mean value of ψ(Y ) given a specific choice of X = x . Note
that this expectation is thus a function of x . When we choose ψ(y) = y, we
obtain the expected value or mean of Y conditionally on X = x and it is given
by μY (x) = E(Y |X = x). Since this is a function of x , we may study the random
variable μY (X) = E(Y |X = X) and in particular the mean or expected value of this
random variable. This expected value is given by

E[μY (X)] =
∞∑

x=0

μY (x) fX (x)

=
∞∑

x=0

E(Y |X = x) fX (x)

=
∞∑

x=0

∞∑

y=0

y fY |X (y|x) fX (x)
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=
∞∑

x=0

∞∑

y=0

y fXY (x, y)

=
∞∑

y=0

y fY (y) = μY .

Note that we have used that
∑∞

x=0 y fXY (x, y) = y fY (y). The result thatE[μY (X)] =
μY may not be surprising, as μY (x) represents the mean value for Y when X = x
and if we then average out all the specific mean values for Y over all x , weighted
with the marginal probability fX (x), we should obtain the mean value of Y .

We may also like to know how much Y would vary if we know that X = x . This
variability may provide us information on how well we can predict y if we have
observed x . If this variability is very small, we know that the value y should be close
to the conditional mean μY (x). Thus we would like to study the conditional variance
of Y given that X = x . This conditional variance, denoted by VAR(Y |X = x) is
given by

VAR(Y |X = x) = E((Y − μY (x))2|X = x) =
∞∑

y=0

(y − μY (x))2 fY |X (y|x).

Note that we calculate the variance around the conditional mean μY (x), and not
around μY , since μY (x) is the expected value for Y when we condition on or know
that X = x . This conditional variance is also a function of x , and we may denote
it by σ2

Y (x). If we average out all these variances over all x , like we did with the
conditional mean, we obtain

Eσ2Y (X) =
∞∑

x=0

σ2Y (x) fX (x)

=
∞∑

x=0

∞∑

y=0

(y − μY (x))2 fY |X (y|x) fX (x)

=
∞∑

x=0

∞∑

y=0

[(y − μY )2 + 2(y − μY )(μY − μY (x)) + (μY − μY (x))2] fXY (x, y)
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=
∞∑

y=0

(y − μY )2 fY (y) −
∞∑

x=0

(μY (x) − μY )2 fX (x)

= σ2Y − VAR(μY (X)).

Thus, when we average out all the conditional variances of Y given X = x , we do
not obtain the variance of Y , but we obtain less than the variance of Y . This is
not surprising, since we have eliminated the variability in Y that is induced by X .
More precisely, the variability in the conditional mean is what we have eliminated.
If we rearrange the equality above, we obtain a well-known relation in statistics on
variances, which is equal to

VAR(Y ) = E[VAR(Y |X = X)] + VAR(E(Y |X = X)).

Note that we have seen something similar in Chap. 2 when we looked at stratified
sampling (see Eq. (2.6)). The total variability in a single variable Y is the sum of
the variability in Y within strata and the variability between strata in the means
of Y .

If we wish to study how strongly X and Y are related to each other, we would
need to investigate the expectations of functions of X and Y , say g(x, y). For this
general function, the expectation is given by:

E[g(X,Y )] =
∞∑

x=0

∞∑

y=0

g(x, y) fXY (x, y)

Note that we already have investigated an example of this type when we discussed
the conditional variance. Here g(x, y)was selected equal to g(x, y) = (y − μY (x))2.
Another example, which we will use later in this chapter, is g(x, y) = xy. It is easy
to show that if X and Y are independent then E(XY ) = E(X)E(Y ), which we have
already discussed in Chap. 4.

6.4.2 Covariances

We have talked extensively about the variance of a random variable, and about ways
of estimating variances. We now introduce this concept for two random variables.
We define the covariance of X and Y by

COV(X,Y ) = σXY = E[(X − E(X))(Y − E(Y ))].

By using the calculation rules for expectation in Sect. 4.10 in Chap.4 we have used
the following algebraic relations:
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E
[
(X − E(X))(Y − E(Y ))

] = E
[
XY − X (E(Y )) − (E(X))Y + (E(X))(E(Y ))

]

= E(XY ) − (E(X))(E(Y )) − (E(X))(E(Y )) + (E(X))(E(Y ))

= E(XY ) − (E(X))(E(Y )).

The covariance has the following properties:

1. COV(X, X) = VAR(X) = σ2
X .

2. If X and Y are independent, then COV(X,Y ) = 0.5

3. COV(X,Y ) = COV(Y, X).
4. COV(aX,Y ) = aCOV(X,Y ).
5. COV(X + c,Y ) = COV(X,Y ).
6. COV(X + Y, Z) = COV(X, Z) + COV(Y, Z).

Now that we have the concept of covariance, we can extend the calculation rules
on the variances of adding and subtracting two random variables that we discussed
in Sect. 4.10 under the assumption of independence. Irrespective of the underlying
CDFs for X and Y , the variances of X + Y and X − Y are now given by

1. VAR(X + Y ) = VAR(X) + 2COV(X,Y ) + VAR(Y ).
2. VAR(X − Y ) = VAR(X) − 2COV(X,Y ) + VAR(Y ).

If we have independence between X and Y , we obtain that COV(X,Y ) = 0 and the
two rules are reduced to the rule we mentioned in Sect. 4.10.

6.4.2.1 Covariance of Bivariate Normal Distributions

To illustrate the calculation of covariances, we will assume that X and Y are bivari-
ate normally distributed, with PDF given by Eq. (6.8). This means that E(X) =
μX , E(Y ) = μY , VAR(X) = σ2

X , and VAR(Y ) = σ2
Y . To determine the covariance

between X and Y , it may be more convenient to introduce the standardized ran-
dom variables Z1 = (X − μX )/σX and Z2 = (Y − μY )/σY and to note that the PDF
for these standardized random variables is simply exp{−(z21 − 2ρz1z2 + z22)/(2(1 −
ρ2))}/(√2π(1 − ρ2)). The covariance of X and Y can now be determined by

5 Note that the converse is not necessarily true: two random variables can have a covariance of 0,
and still be dependent. A simple example is to take X as a standard normal random variable and
Y = X2. It is clear that X and Y are dependent, since Y is a function of X , and that COV(X, Y ) =
E(XY ) − EXEY = EX3 = 0.
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COV(X, Y ) = E(X − μX )(Y − μY )

= σXσYE[Z1Z2]
= σXσY

∫ ∞
−∞

∫ ∞
−∞

z1z2
1

2π(1−ρ2)
exp

{
− z21−2ρz1z2+z22

2(1−ρ2)

}
dz1dz2

= σXσY

∫ ∞
−∞

z2
1√
2π

exp

{
− z22

2

}∫ ∞
−∞

z1
1√

2π(1−ρ2)
exp

{
− (z1−ρz2)2

2(1−ρ2)

}
dz1dz2

= σXσY

∫ ∞
−∞

ρz22
1√
2π

exp

{
− z22

2

}
dz2

= ρσXσY .

For the bivariate normal distribution function we have a very nice property that
does not hold for many other bivariate CDFs. The distribution function of any linear
combination of X and Y , say aX + bY , has a normal distribution function with mean
μ = aμX + bμY and variance σ2 = a2σ2

X + 2abρσXσY + b2σ2
Y .

6.4.2.2 Covariance of Bivariate Lognormal Distributions

The bivariate lognormal CDF is implicitly defined through the bivariate normal dis-
tribution. If we assume that (X,Y ) is bivariate normal, with parameters μX , μY , σX ,
σY , and ρ, then (exp(X), exp(Y )) has a bivariate lognormal distribution function.
To determine the covariance of (exp(X), exp(Y )), recall that X + Y has a normal
distribution function with mean μX + μY and variance σ2

X + 2ρσXσY + σ2
Y . The

covariance of (exp(X), exp(Y )) is now equal to

COV(exp(X), exp(Y )) = E[exp(X) exp(Y )] − E[exp(X)]E[exp(Y )]
= E[exp(X + Y )] − exp(μX + 0.5σ2

X ) exp(μY + 0.5σ2
Y )

= exp(μX + μY + 0.5(σ2
X + 2ρσXσY + σ2

Y ))

− exp(μX + 0.5σ2
X ) exp(μY + 0.5σ2

Y )

= exp(μX + 0.5σ2
X + μY + 0.5σ2

Y )(exp(ρσXσY ) − 1)

= E[exp(X)]E[exp(Y )](exp(ρσXσY ) − 1).

This covariance is quite different from the covariance ρσXσY = COV(X,Y ) in the
logarithmic scale. Thus the covariance is affected by transformations.
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6.4.2.3 Covariance for Sums of Random Variables

In amore general setting, wemay consider covariances of bivariate distribution func-
tions that are created from sums of random variables, as we discussed in Sect. 6.3.
If we assume that X = W +U and Y = W + V , with U , V , and W mutually inde-
pendent having means μU , μV and μW , and variances σ2

U , σ
2
V , and σ2

W , respectively,
the covariance of X and Y can be calculated as well. Using the calculation rules of
Sect. 4.10, the means of X and Y are given by μX = μW + μU and μY = μW + μV ,
respectively. Then the covariance between X and Y is

COV(X,Y ) = E[(X − μX )(Y − μY )]
= E[(W − μW +U − μU )(W − μW + V − μV )]
= VAR(W ) + E[(W − μW )(V − μV )] + E[(U − μU )(W − μW )]

+ E[(U − μU )(V − μV )]
= σ2

W .

We have not made any assumptions about the distribution function of U , V , and
W : we have only assumed that they had finite variances. Thus, irrespective of the
underlying distributions, the covariance of X andY is the variance ofW . For instance,
for a Poisson distributed random variable W , i.e., W ∼ P(λW ), the covariance of
X and Y is VAR(W ) = λW , irrespective of the CDFs of U and V .

6.4.2.4 Covariance of Farlie–Gumbel–Morgenstern Distributions

If we assume that the bivariate CDF of X and Y is from the Farlie–Gumbel–
Morgenstern family, the covariance can be written as

COV(X, Y ) = E(XY ) − E(X)E(Y )

=
∫ ∞

−∞

∫ ∞

−∞
xy fX (x) fY (y) (1 + α(1 − 2FX (x))(1 − 2FY (y))) dxdy − μXμY

= αE[X (1 − 2FX (X))]E[Y (1 − 2FY (Y ))].

Now assume that FX and FY are exponential CDFs with parameters λX and λY ,
respectively. Then the expectations in the covariance can be calculated explic-
itly. We would obtain E[X (1 − 2FX (X))] = −[2λX ]−1 and E[Y (1 − 2FY (Y ))] =
−[2λY ]−1, respectively. This means that the Farlie–Gumbel–Morgenstern CDF with
marginal exponential CDFs leads to a covariance of −α/[4λXλY ].
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6.4.2.5 Covariance of Bivariate Mixture Distributions

If we assume that X and Y are conditionally independent given the random variable
Z = z, for all values of z, we can also establish the covariance. First of all, we will
show that E(XY ) is equal to E[μXY (Z)], with μXY (z) = E(XY |Z = z). Indeed, we
have

E[μXY (Z)] =
∫ ∞

−∞
μXY (z) fZ (z)dz

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xy fXY |Z (x, y|z) fZ (z)dxdydz

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xy fXY Z (x, y, z)dxdydz

=
∫ ∞

−∞

∫ ∞

−∞
xy fXY (x, y)dxdy

= E(XY ).

Because X and Y are independent conditionally on Z = z, we also obtain that
E(XY |Z = z) = E(X |Z = z)E(Y |Z = z) = μX (z)μY (z). These two results now
lead to a covariance for X and Y that is given by

COV(X,Y ) = E(XY ) − E(X)E(Y )

= E[μXY (Z)] − μXμY

= E[μX (Z)μY (Z)] − μXμY

= E[(μX (Z) − μX )(μY (Z) − μY )]
= COV(μX (Z),μY (Z)).

Thus the covariance of X and Y is equal to the covariance of random variables μX (Z)

and μY (Z). If we assume that X and Y are identically distributed (conditionally on
Z ), we would have that μX (z) = μY (z) = μ(z), which would lead to COV(X,Y ) =
VAR(μ(Z)).

Nowassume that Z is a randomvariablewith outcomes in (0,∞), e.g., a lognormal
or exponential randomvariable, withmeanμZ and varianceσ2

Z . Furthermore, assume
that the conditional distribution function of X given Z = z is Poisson with parame-
ter zλX , X |Z = z ∼ P(zλX ), and the conditional distribution function of Y given
Z = z is Poisson with parameter zλY , Y |Z = z ∼ P(zλY ); then the conditional
expectations μX (z) and μY (z) are given by μX (z) = zλX and μY (z) = zλY , respec-
tively. This implies thatμX = E(μX (Z)) = λXE(Z) = λXμZ andμY = λYμZ . Then
the covariance of X and Y is given by

COV(μX (Z),μY (Z)) = E[μX (Z)μY (Z)] − μXμY = λXλY

(
E(Z2) − μ2

Z

)
= λXλYσ2

Z .
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Note that the Poisson assumption is not really relevant in the calculation of this
covariance. The relevant part is that μX (z) = zλX and μY (z) = zλY . Thus any
alternative CDF for which it make sense to assume μX (z) = zλX and μY (z) =
zλY , for instance the exponential distribution, would give the same covariance of
COV(X,Y ) = λXλYσ2

Z .

6.5 Measures of Association

In the previous subsection we focused on covariances of several bivariate distribu-
tions. Some of them were studied in a very generic form, without specifying FX

and FY . However, covariances are not easily comparable across different families
of bivariate CDFs. One of the reasons is that covariances are affected by variance
parameters. For instance, the covariance of a bivariate normal CDF was given by
ρσXσY and depends strongly on the variability of X and Y . Thus a covariance of
10 and 100 could be explained by any of the three parameters ρ, σX , and σY . Thus
the incomparability is caused by a lack of standardization, implying that we would
like a measure that has no unit or that is dimensionless. For the covariance of ρσXσY

it seems reasonable to standardize with the standard deviations of X and Y . How-
ever, another reason for the incomparability is that dependency between X and Y
can take different forms and therefore standardization may become setting-specific,
which would not help comparability. In the setting of bivariate Poisson mixture dis-
tributions we saw that the covariance was given by λXλYσ2

Z , with λX and λY mean
parameters and σ2

Z a variance parameter. Here we would like to eliminate the mean
parameters λX and λY , since they provide no information on the dependency. They
will be there even if there is independence. Simply using the standard deviations of
X and Y , like we suggested for the normal case, does not eliminate λX and λY . The
underlying mixture distribution is quite different from the bivariate normal distribu-
tion and therefore the covariances are not directly comparable between these CDFs.
We just have to accept that covariance is but one measure that captures dependency.

In this sectionwewill discuss differentmeasures of association that will capture in
some way the dependency between X and Y . Only one of them uses the covariance.
In Chap.3 we already discussed three measures of association for binary random
variables: risk difference, relative risk, and odds ratio. None of them were defined
through covariances, but rather through their conditional probabilities. We will see
in this section that we can also define measures of association through their joint
CDF.

6.5.1 Pearson’s Correlation Coefficient

Aswe justmentioned, oneway of standardizing the covariance is to divide the covari-
ance by the standard deviation of both X and Y . This standardization makes sense,
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since we would study the covariance of the random variables ZX = (X − μX )/σX

and ZY = (Y − μY )/σY . Both standardized random variables have a variance of
one. The covariance of the standardized random variables is referred to as Pearson’s
correlation coefficient and it is often denoted by ρP . It is given by:

ρP = CORR(X, Y ) = COV(ZX , ZY ) = E

(
X − μX

σX

)(
Y − μY

σY

)
= COV(X, Y )√

VAR(X)VAR(Y )
.

Pearson’s correlation coefficient has some nice properties:

1. CORR(X,Y ) ∈ [−1, 1]
2. If CORR(X,Y ) = 1, then Y = aX + b, where a > 0
3. If CORR(X,Y ) = −1, then Y = aX + b, where a < 0
4. CORR(aX + b, cY + d) = CORR(X,Y ) for a, c > 0 or a, c < 0.

Pearson’s correlation coefficient is a way of quantifying how two variables “co-
relate”. If Pearson’s correlation is positive, the two variables X and Y move in
the same direction. If X is increasing then Y should be increasing as well. This
is typically seen in the anthropometric data of Sir Francis Galton. A taller person
is typically heavier than a shorter person. If Pearson’s correlation is negative, the
random variables move in opposite directions. A typical example is that an increase
in age reduces cognitive abilities. When Pearson’s correlation coefficient is zero the
random variables are called uncorrelated.6 The following rule of thumb is often used
to qualify the strength of Pearson’s correlation coefficient (Hinkle et al. 2003):

0.90 < |ρP | ≤ 1.00 Very strong correlation

0.70 < |ρP | ≤ 0.90 Strong correlation

0.50 < |ρP | ≤ 0.70 Moderate correlation

0.30 < |ρP | ≤ 0.50 Low correlation

0 ≤ |ρP | ≤ 0.30 Negligible correlation.

6.5.1.1 Correlation for Bivariate Normal Distributions

It should be noted that Pearson’s correlation coefficient nicely works for bivariate
normal CDFs, since the CORR(X,Y ) for bivariate normally distributed random
variables X and Y is equal to the PDF parameter ρ, i.e., ρP = CORR(X,Y ) = ρ.
Thus Pearson’s correlation coefficient is only a function of the parameter ρ that
indicates the strength of the dependence between X and Y . This is not the case for all
the other covariances (see below) that we discussed in the previous section. Pearson’s
correlation coefficient may not be a function of the dependence parameter alone.

6 Recall that uncorrelated does not mean independent.
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Fig. 6.1 Pearson’s
correlation coefficient for
bivariate lognormal
distributions

6.5.1.2 Correlation for Bivariate Lognormal Distributions

We already saw that the covariance of two lognormally distributed random variables
is given by E[exp(X)]E[exp(Y )](exp(ρσXσY ) − 1), with (X,Y ) bivariate normal.
Since the variances of exp(X) and exp(Y ) are given by (E[exp(X)])2(exp(σ2

X ) −
1) and (E[exp(Y )])2(exp(σ2

Y ) − 1), respectively, Pearson’s correlation coefficient
becomes

ρP = exp(ρσXσY ) − 1√
(exp(σ2

X ) − 1)(exp(σ2
Y ) − 1)

.

When the variances of X and Y are the same, say σ2
X = σ2

Y = σ2, Pearson’s correla-
tion coefficient reduces to ρP = [exp(ρσ2) − 1]/[exp(σ2) − 1]. This correlation is
a decreasing function in σ2. When σ2 is close to zero the correlation is ρ and when
σ2 becomes very large the correlations converges to zero. On the other hand, the
correlation is relatively constant for the variance σ2 ≤ 1 (see Fig. 6.1).

6.5.1.3 Correlation for Sums of Random Variables

Here we assumed that X = W +U and Y = W + V , with U , V , and W mutually
independently distributed,withmeansμU ,μV andμW , and variancesσ2

U ,σ
2
V , andσ2

W ,
respectively. The variances of X and Y are now σ2

X = σ2
W + σ2

U and σ2
Y = σ2

W + σ2
V ,

respectively, using the calculation rules of Sect. 4.10. Pearson’s correlation coefficient
now becomes equal to

ρP = σ2
W√

(σ2
W + σ2

U )(σ2
W + σ2

V )

. (6.9)
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This correlation coefficient is often referred to as the intraclass correlation coefficient
(ICC).

6.5.1.4 Correlation of Farlie–Gumbel–Morgenstern Distributions

Since the marginal distribution functions for X and Y are equal to FX and FY for the
Farlie–Gumbel–Morgenstern family of distribution functions, respectively, Pearson’s
correlation simply becomes

ρP = αE[X (1 − 2FX (X))]E[Y (1 − 2FY (Y ))]
σXσY

.

It has been shown that this correlation coefficient can never be larger than 1/3 (Schu-
cany et al. 1978). Thus Pearson’s correlation coefficient for the FGM family is
bounded by −1/3 ≤ ρP ≤ 1/3. This implies that the FGM family of CDFs may
be useful for applications where the random variables are weakly correlated.

In the case that FX and FY are exponential CDFs with parameters λX and λY ,
respectively, the covariance was provided by −α/[4λXλY ]. Since the standard devi-
ations σX and σY are given by λ−1

X and λ−1
Y , respectively, Pearson’s correlation coef-

ficient becomes equal to ρP = −α/4. Thus, in the case of exponential CDFs in the
FGM family, Pearson’s correlation is only a function of the dependence parameter.

6.5.1.5 Correlation of Bivariate Mixture Distributions

The marginal CDFs for X and Y are determined through the conditional PDFs:

fX (x) =
∫ ∞

−∞
fX |Z (x |z) fZ (z)dz and fY (y) =

∫ ∞

−∞
fY |Z (y|z) fZ (z)dz.

If Z is a discrete random variable, integration is replaced by summation. Thus the
variances of X and Y are now given by (see Sect. 6.4.1)

VAR(X) = E[VAR(X |Z = Z)] + VAR(μX (Z))

VAR(Y ) = E[VAR(Y |Z = Z)] + VAR(μY (Z)).

Pearson’s correlation coefficient is then equal to

ρP = COV(μX (Z),μY (Z))√
(E[VAR(X |Z = Z)] + VAR(μX (Z)))(E[VAR(Y |Z = Z)] + VAR(μY (Z)))

.

To illustrate this with an example, assume again that Z is a random variable with
outcomes in (0,∞), havingmeanμZ andvarianceσ2

Z , and assume that the conditional
distribution function of X given Z = z is Poisson with parameter zλX , X |Z = z ∼



6.5 Measures of Association 195

P(zλX ) and the conditional distribution function of Y given Z = z is Poisson with
parameter zλY ,Y |Z = z ∼ P(zλY ). The covariancewas obtained byCOV(X,Y ) =
λXλYσ2

Z . The conditional variance of X given Z is given by VAR(X |Z = z) = zλX ,
which is the conditional mean of the Poisson distribution. Thus E(VAR(X |Z =
Z)) = μZλX . The variance of μX (Z) is

VAR(μX (Z)) = VAR(ZλX ) = λ2
XVAR(Z) = λ2

Xσ2
Z .

Putting the pieces together, we obtain that E[VAR(X |Z=Z)]+VAR(μX (Z)) =
μZλX + σ2

Zλ2
X . For Y we obtain the same relation E[VAR(Y |Z = Z)] + VAR

(μY (Z)) = μZλY + σ2
Zλ2

Y . Hence, Pearson’s correlation coefficient now becomes
equal to

ρP = σ2
Z√

(σ2
Z + μZλ−1

X )(σ2
Z + μZλ−1

Y )

.

6.5.2 Kendall’s Tau Correlation

Pearson’s correlation coefficient is just one measure of association that quantifies
the dependency between X and Y . We already knew this, because we have already
defined specific measures of association for two binary random variables X and
Y in Chap.3. In this section we will discuss Kendall’s tau, which is a measure of
concordance. A concordance measure is similar to correlation. To understand this
alternative approach to dependency between X and Y , we consider two independent
draws from FXY , say (X1,Y1) and (X2,Y2). Independence means here that X1 and
X2 are independent and Y1 and Y2 are independent. The two pairs of random vari-
ables (X1,Y1) and (X2,Y2) are called concordant when (X2 − X1)(Y2 − Y1) > 0
and discordant when (X2 − X1)(Y2 − Y1) < 0. If a pair is concordant or discordant,
it means that the change in the two random variables DX = X2 − X1 (from X1 to
X2) and DY = Y2 − Y1 (from Y1 to Y2) are dependent. Concordance refers to a “pos-
itive” dependency, which means that the direction of change in X is the same as the
direction of change in Y . Discordance means a “negative” dependence, where the
direction of change in X is opposite to the direction of change in Y .

Kendall’s tau measures the strength between the dependency of DX and DY and
can be defined in terms of probabilities:

τK = Pr ((X2 − X1)(Y2 − Y1) > 0) − Pr ((X2 − X1)(Y2 − Y1) < 0)

= 2 Pr ((X2 − X1)(Y2 − Y1) > 0) − 1

= 4 Pr(X1 < X2,Y1 < Y2) − 1.

Note that Maurice Kendall defined his correlation coefficient on data (thus as an
estimator and not as a parameter), but the population parameter it represents is
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obvious: see Kendall (1938) and Sect. 6.6. Kendall’s tau is also referred to as a
correlation coefficient and it varies between −1 and 1. It should be noted that
the minimum −1 is attained when FXY is equal to the Fréchet lower bound, i.e.,
FXY (x, y) = max{FX (x) + FY (y) − 1, 0}. The value 1 is attainedwhen FXY is equal
to the Fréchet upper bound, i.e., FXY (x, y) = min{FX (x), FY (y)} (see Fuchs et al.
2018).

When X and Y are independent, Kendall’s tau is equal to zero. Indeed, if X
and Y are independent, then all four random variables are independent, since we
assumed that the two pairs (X1,Y1) and (X2,Y2) were already independent. This
makes DX and DY independent and this implies that the probability that DX DY > 0
is equal to 0.5, which makes Kendall’s tau equal to zero. Furthermore, Pearson’s
correlation coefficient of DX and DY is given byCORR(DX , DY ) = CORR(X,Y ).
Thus Pearson’s correlation coefficient also measures the concordance or discordance
in a certain way.

We have seen that Pearson’s correlation coefficient fits very well with the bivari-
ate normal distribution, but Kendall’s tau fits very well with the continuous FGM
distributions and the Fréchet family of distribution functions. Irrespective of the
marginal CDFs FX and FY , Kendall’s tau for a bivariate FGM distribution is equal
to τK = 2α/9 (Fuchs et al. 2018) and for the Fréchet family Kendall’s tau is
τK = (2λ − 1)/3 (Nelsen 2007). Thus Kendall’s tau correlation coefficient is only a
function of the dependency parameter in the FGM and Fréchet families of distribu-
tion functions whenwe deal with continuous random variables X and Y . This general
characteristic for Kendall’s tau does not happen for Pearson’s correlation coefficient,
but it does happen for special choices of FX and FY (see Sect. 6.5.1). For bivariate
normal distribution functions Kendall’s tau is given by τK = 2 arcsin(ρ)/π, with ρ
the parameter of the bivariate normal distribution. Since ρ is equal to Pearson’s cor-
relation coefficient ρP for the normal distribution, the relation τK = 2 arcsin(ρ)/π
links Kendall’s tau to Pearson’s correlation coefficient for normal data. Finally, for
the bivariate mixture distributions Kendall’s tau must be studied case by case to
determine which parameters of the joint distribution function are included in τK .

6.5.3 Spearman’s Rho Correlation

Kendall’s tau was defined through probabilities using two i.i.d. pairs (X1,Y1) and
(X2,Y2) having CDF FXY . It measured the concordance between X and Y . There
is an alternative approach that relates to concordance and to Pearson’s correlation
coefficient. This approach is Spearman’s rho. To define Spearman’s rho in terms
of the joint CDF, we need to use three i.i.d. pairs (X1,Y1), (X2,Y2), and (X3,Y3)
of random variables having joint distribution function FXY , but we do not need to
use all six random variables. Spearman’s rho correlation is defined by the following
probability:

ρS = 2 [Pr((X1 − X2)(Y3 − Y1) > 0) − Pr((X1 − X2)(Y3 − Y1) < 0)] .
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This definition of concordance did not come from Spearman, since Spearman intro-
duced only the estimator for this dependency parameter (see Sect. 6.6.3). The current
formulation was established later to understand what population parameter Spear-
man’s estimator was trying to capture. This is not obvious from Spearman’s estima-
tor, like it was for Kendall’s tau. We will see that the estimator is strongly related to
Pearson’s correlation, while its definition in terms of FXY is quite similar to that of
Kendall’s tau, but now using three pairs. Note that Spearman’s rho quantifies con-
cordance of change in one dimension from the first to the second observation and
change in the second dimension from the first to the third observation. Thus when
X and Y are independent, Spearman’s rho correlation coefficient becomes equal to
zero. Furthermore, it ranges from −1 to 1, like Kendall’s tau and Pearson’s corre-
lation coefficient. However, Spearman’s rho may be quite different from Kendall’s
tau. The following results can be shown mathematically (Nelsen 2007):

−1 ≤ 3τK − 2ρS ≤ 1,

and there exists CDFs for which these boundaries are attainable. Thus Spearman’s
rho and Kendall’s tau can differ substantially in a population. They can also both
differ strongly from Pearson’s correlation. Thus in this sense they all represent a
different way of capturing the dependency between X and Y .

Similar to Kendall’s tau, Spearman’s rho correlation also fits very well with the
FGM and Fréchet families of distribution functions. For the FGM family of CDFs,
Spearman’s rho is equal to ρS = α/3 and for the Fréchet family of CDFs, Spearman’s
rho is equal to ρS = [2λ − 1]/3 (Nelsen 2007). Thus Spearman’s rho and Kendall’s
tau both estimate the same function of the dependency parameter λ in the Fréchet
family of distributions, but different functions for the FGM family. For the bivariate
normal distribution function, Spearman’s rho is equal to ρS = 6 arcsin(ρ/2)/π, with
ρ the correlation parameter of the bivariate normal distribution (Moran 1948). Finally,
for the bivariate mixture distribution functions Spearman’s rho must be studied case
by case to determine which parameters of the joint distribution function are included
in ρS .

6.5.4 Cohen’s Kappa Statistic

Pearson’s correlation coefficient, Kenadall’s tau, and Spearman’s rho are allmeasures
of correlation and concordance, but in 1960, Jacob Cohen published another measure
of association, referred to as a measure of agreement. It measures how much two
observers or raters agree on the evaluation of the same set of n items or units into
K exhaustive and mutually exclusive classes (Cohen 1960). Since there is also a
chance of accidentally classifying units in the same category by the raters, he created
a measure that quantifies how well the raters agree on classification that is corrected
for accidental or chance agreement. This chance agreement has strong similarities
with grade corrections in multiple choice exams.
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The bivariate random variables X and Y , which represents two readings on the
same unit, both take their values in {1, 2, 3, . . . , K }. The joint PDF is fully defined by
the set of PDF parameters p11, p12, . . . , p1K , p21, p22, . . . , p2K , . . . , pK1, pK2, . . . ,

pKK given by

Pr(X = x,Y = y) = pxy ≥ 0, and
K∑

x=0

K∑

y=0

pxy = 1.

Thus the probabilities make up a K × K contingency table, similar to the 2 × 2
contingency table in Table3.1 that we used for diagnostic tests. The probability pxy
represents the probability that a unit is classified by the first rater in class x and by
the second rater in class y. Thus, the probability pkk indicates the probability that
both raters classify a unit in the same class k. This implies that when pxy = 0 for
every x �= y, there will be no difference in classification between the two raters.

Thus one relevant measure for agreement is the probability pO = ∑K
k=1 pkk . It

represents the probability that both raters classify units in the same classes. When
it is equal to 1, there is perfect agreement. On the other hand, when the ratings are
independent, i.e., Pr(X = x,Y = y) = fX (x) fY (y), the expected probability that
both raters classify a unit in the same class k is equal to fX (k) fY (k). Thus, based on
independent ratings, we expect a probability of correctly classifying units in the same
classes to be equal to pE = ∑K

k=1 fX (k) fY (k). Thus it may not be fair to contribute
all correct classifications to the raters, because some of them may have happened
just by chance. Cohen therefore proposed the kappa statistic, given by

κC = pO − pE
1 − pE

.

When there is perfect agreement (pO = 1), the kappa statistic reaches its maximum
at the value of one (κC = 1), but when the ratings are independent, the kappa statistic
is equal to κC = 0. Although the kappa statistic can become smaller than zero, in
particular when there is discordance, in most practical settings, the kappa will be
between 0 and 1 (κC ∈ [0, 1]). The following criteria are sometimes used to qualify
the agreement:

0.80 < κC ≤ 1.00 High agreement

0.60 < κC ≤ 0.80 Substantial agreement

0.40 < κC ≤ 0.60 Moderate agreement

0.20 < κC ≤ 0.40 Fair agreement

0 < κC ≤ 0.20 Poor agreement.

The kappa statistic has been applied to different applications, including medical
and engineering settings. Although it was typically developed for nominal data, it has
been applied to ordinal random variables as well, including binary random variables.
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For ordinal random variables there exists a weighted version of Cohen’s kappa.
When X and Y are further apart, i.e., |X − Y | > 1, this seems to be a more serious
misclassification then when X and Y just differ one class, i.e., |X − Y | = 1. This
weighted version would address this issue of larger differences in misclassification.
However, it is outside the scope of our book.

6.6 Estimators of Measures of Association

In Chap.5 we discussed moment and maximum likelihood estimation for the param-
eters of univariate CDFs. Both approaches exist also for the estimation of the param-
eters of bivariate and multivariate CDFs, including estimation of the dependency
parameters. However, MLE of the dependency parameter can be quite cumbersome
when we deal with some of the more general families of joint CDFs (e.g., the FGM
CDFs, the Fréchet CDFs, and the mixtures of CDFs). Thus, in this section we will
focus on howwe can estimate the dependency between X andY usingmostlymoment
estimators, knowing that this may not always be optimal, it does provide some insight
in the association of X and Y .

6.6.1 Pearson’s Correlation Coefficient

Pearson’s correlation coefficient was defined through the covariance of X and Y and
the covariance was represented by an expectation of a function of X and Y . This
means that Pearson’s correlation coefficient represents a population characteristic.
Similar to our approach of estimating population means and variances, where we
defined a sample variant of the population characteristic, we can also do this for
population covariances and correlations.

Now assume that we have observed the pairs of observations (X1,Y1), (X2,Y2),
. . . , (Xn,Yn) on n units, being i.i.d. (Xi ,Yi ) ∼ FXY . This means that we assume that
(X1,Y1), (X2,Y2), . . . , (Xn,Yn) are n independent copies of (X,Y ), the sameway as
we assumed for a single random variable. Since the pairs are identically distributed,
the covariance COV(Xi ,Yi ) is equal to COV(X,Y ) for all units i .

The sample covariance, SXY , is then defined by

SXY = 1

n − 1

n∑

i=1

(Xi − X̄)(Yi − Ȳ ),

with X̄ and Ȳ the sample average of variable X and Y , respectively. The sample
covariance is an unbiased estimator for the population covariance COV(X,Y ). This
follows from the following observation:
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E(SXY ) = 1

n − 1

n∑

i=1

E[(Xi − X̄)(Yi − Ȳ )]

= 1

n − 1

n∑

i=1

E[(Xi − μX + μX − X̄)(Yi − μY + μY − Ȳ )]

= 1

n − 1

n∑

i=1

E[(Xi − μX )(Yi − μY ) − (Xi − μX )(Ȳ − μY )

− (X̄ − μX )(Yi − μY ) + (X̄ − μX )(Ȳ − μY )]

= n

n − 1
COV(X,Y ) − 2

1

n(n − 1)

n∑

i=1

E[(Xi − μX )(Yi − μY )]

+ 1

n(n − 1)

n∑

i=1

E[(Xi − μX )(Yi − μY )]

= COV(X,Y ).

Note that we have used the independence between pairs of variables so that E[(Xi −
μX )(Y j − μY )] = E(X j − μX )E(Yi − μY ) = 0, when i �= j .

The sample version of Pearson’s correlation, rP , also called the product-moment
correlation coefficient or sample correlation coefficient, can now be computed by
substituting the sample covariance and the sample variances S2X and S2Y in the defi-
nition of ρP . Thus an estimate of Pearson’s correlation coefficient is

rP = SXY
SX SY

. (6.10)

By rewriting rP , we can calculate the product-moment correlation coefficient in a
number of equivalent ways. Here are a few:

rP = SXY
SX SY

=

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

(n − 1)SX SY

=

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

√
n∑

i=1
(Xi − X̄)2

n∑
i=1

(Yi − Ȳ )2

=

n∑
i=1

XiYi − n X̄ Ȳ

(n − 1)SX SY
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=
n

n∑
i=1

XiYi −
n∑

i=1
Xi

n∑
i=1

Yi
√
n

n∑
i=1

X2
i − (

n∑
i=1

Xi )2

√
n

n∑
i=1

Y 2
i − (

n∑
i=1

Yi )2

.

The product-moment correlation rP is typically not unbiased, which means that
E(rP) �= ρP . The reason is that both the numerator and the denominator are random
variables and the expectation of a ratio is not equal to the ratio of the expectations.
Furthermore, the expectation of the numerator in rP is unbiased for the numerator
in the definition of Pearson’s correlation ρP . Calculating the bias is difficult or even
impossible. However, there are a few things known about the estimator rP . First
of all, if ρP = 0 and the pairs (Xi ,Yi ) are i.i.d. bivariate normally distributed, the
distribution function of rP is related to the t-distribution. Under these conditions, it
can be shown that the CDF of rP

√
n − 2/

√
1 − rP has the CDF of a t-distribution

with n − 2 degrees of freedom. For any value of ρP , but still assuming that the pairs
(Xi ,Yi ) are bivariate normally distributed, Sir Ronald Fisher determined the exact
PDF of rP (Fisher 1915), and demonstrated that zrP = 0.5[log(1 + rP) − log(1 −
rP)] is approximately normally distributed with mean 0.5[log(1 + ρP) − log(1 −
ρP)] and variance 1/(n − 3) (Fisher et al. 1921). This transformation is referred to as
theFisher z-transformation. Finally, the asymptotic distribution of rP is normalwhen
the pairs (Xi ,Yi ) are i.i.d. FXY with finite fourth central moments. More specifically,√
n(rP − ρP) ∼ N (0, n(1 − ρ2P)2/(n − 3)), see Bonett and Wright (2000).
Knowledge of the distribution function of the product-moment correlation coeffi-

cient can be used to create confidence intervals. Under the assumption of normality,
it is common to use the Fisher z-transformation and calculate the 100%(1 − α) con-
fidence interval by

(
1

2
log

(
1 + rP
1 − rP

)
− z1−α/2√

n − 3
,
1

2
log

(
1 + rP
1 − rP

)
+ z1−α/2√

n − 3

]
,

with z1−p the pth upper quantile of the standard normal distribution function. These
limits can then be transformed back to the original scale using the inverse transfor-
mation [exp{2x} − 1]/[exp{2x} + 1] of the Fisher z-transformation. Thus the con-
fidence interval in the original scale is

(
exp{2[zrP − z1−α/2/

√
n − 3]} − 1

exp{2[zrP − z1−α/2/
√
n − 3]} + 1

,
exp{2[zrP + z1−α/2/

√
n − 3]} − 1

exp{2[zrP + z1−α/2/
√
n − 3]} + 1

]

If the observed data is not normal and the sample size is relatively large, the asymp-
totic confidence interval from Sect. 5.3.5 may be applied directly on the product-
moment estimator, i.e.,
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(
rP − z1−α/2(1 − r2P)√

n − 3
, rP + z1−α/2(1 − r2P)√

n − 3

]
.

As an alternative to this large sample approach, Fisher z-transformation is also fre-
quently applied when the underlying data is not normally distributed.

6.6.1.1 Estimation of Dependency Parameters

The product-moment correlation can be used to determine information on depen-
dency parameters. For instance, it directly estimates the parameter ρ in the bivariate
normal CDF. Additionally, if the CDFs are constructed through sums of random vari-
ables X = W +U and Y = W + V , the dependency is determined by the variance
of W . If this variance is zero, there is no correlation. The product-moment correla-
tion is a direct estimator of what was called the intraclass correlation coefficient (see
Eq.6.9). Together with the sample variances S2X and S2Y , which are estimators for
σ2
X = σ2

W + σ2
U and σ2

Y = σ2
W + σ2

V , respectively, we may obtain an estimator for
the variance σ2

W of W , using rP SX SY . In another situation, the bivariate CDF FXY

may be part of the FGM family with exponential marginal distribution functions, the
dependency parameter α can be estimated by rP X̄ Ȳ . Indeed, rP estimates αλ−1

X λ−1
Y

and the sample averages X̄ and Ȳ estimate the parameters λ−1
X and λ−1

Y , respectively.

6.6.2 Kendall’s Tau Correlation Coefficient

An estimator of Kendall’s tau correlation can be defined by

rK = 1

n(n − 1)

n∑

i=1

n∑

j=1

sgn(X j − Xi )sgn(Y j − Yi )

= 2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

sgn(X j − Xi )sgn(Y j − Yi ),

with the sign function sgn(x) defined by

sgn(x) =

⎧
⎪⎨

⎪⎩

1 if x > 0

0 if x = 0

−1 if x < 0.

Thus the estimator depends only on the signs of X j − Xi and Y j − Yi , which
implies that the estimator is independent of monotone transformations (increasing
or decreasing functions) of the data. If we apply the estimator on (ψ1(X1),ψ2(Y1)),
(ψ1(X2),ψ2(Y2)), . . . , (ψ1(Xn),ψ2(Yn)), when both ψ1 and ψ2 are increasing or
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both decreasing functions, we obtain the exact same estimator. This is easily seen,
since the sign just compares the sizes without considering the differences in sizes.

Kendall showed that the distribution function of this estimator is approximately
normal when sample size converges to infinity. Studying its moments is difficult, but
the exact variance of rK has been determined at [2(2n + 5)]/[3n(n − 1)] (Kendall
1938), when the pairs are uncorrelated (i.e., τK = 0). Furthermore, the variance of
rK is bounded from above with VAR(rK ) ≤ 2(1 − τ 2

K )/n (Long and Cliff 1997).
Several confidence intervals have been provided of which some are more easily

calculated than others. Here we provide the 100%(1 − α) confidence interval based
on the Fisher z-transformation. Although it may not be recommended for small sam-
ple sizes, for larger sample sizes it does provide good coverage (i.e., the confidence
level of the interval is close to the intended level of 100%(1 − α)) and it is relatively
easy to calculate. The variance of rK in the transformed Fisher z scale has been deter-
mined at 0.437/(n − 4) (Fieller et al. 1957). The 100%(1 − α) confidence interval
is then determined by

(
zrK − z1−α/2

√
0.437/(n − 4), zrK + z1−α/2

√
0.437/(n − 4)

]
,

with zrK = 0.5[log(1 + rK ) − log(1 − rK )] and z p the pth quantile of the standard
normal distribution. In the original scale, the confidence interval becomes equal to

(
exp(2[zrK − z1−α/2

√
0.437/(n − 4)]) − 1

exp(2[zrK − z1−α/2
√
0.437/(n − 4)]) + 1

,
exp(2[zrK + z1−α/2

√
0.437/(n − 4)]) − 1

exp(2[zrK + z1−α/2
√
0.437/(n − 4)]) + 1

]

Long and Cliff (1997) have suggested using a quantile from the t-distribution
instead of the normal quantile z1−α/2, but they also showed that their Fisher z-
transformed confidence interval was slightly conservative (gave confidence levels
slightly higher than 100%(1 − α)) for smaller sample sizes. As for larger sample
sizes there will be hardly any difference between normal and t-quantiles, we believe
that our choice would be more appropriate.

6.6.2.1 Estimation of Dependency Parameters

The estimator of Kendall’s tau can be easily used to estimate the dependency parame-
ter of the FGM and Fréchet family of distribution functions. The dependency param-
eterα of the FGM family can be estimated by α̂ = 9rK /2 and λ of the Fréchet family
can be estimated by λ̂ = [3rK + 1]/2. The confidence intervals on these parameters
can be obtained by transforming the confidence limits in the same way. It should
be noted that when these estimates are outside the range of the dependency param-
eters (i.e., α̂ /∈ [−1, 1] and λ̂ /∈ [0, 1]), the data may not support these families of
distributions.
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6.6.3 Spearman’s Rho Correlation Coefficient

The estimator for Spearman’s rho ρS is defined by the product-moment correlation
coefficient on the ranks of the pairs of observations. It is referred to as Spearman’s
rank correlation. Ifwe assume thatwe observe the pairs of randomvariables (X1,Y1),
(X2,Y2), . . . , (Xn, Yn),we candefine the ranks for the x and y coordinates separately.
The rank RX

k of Xk is the position of Xk in the ordered values X(1), X(2), . . . , X(n)

from small to large. For instance, if we have observed five observations x1 = 5,
x2 = 1, x3 = 7, x4 = 2, and x5 = 4, then the observed ranks will be equal to r X1 = 4,
r X2 = 1, r X3 = 5, r X4 = 2, and r X5 = 3.7 Note that if the same value occurs multiple
times they all receive the same rank. For instance, if there were a sixth observation,
x6 = 2, then x4 and x6 both have the same value 2. This is called a tie. The ranks
would now be given by r X1 = 5, r X2 = 1, r X3 = 6, r X4 = 2.5, r X5 = 4, and r X6 = 2.5.
Since the ranks of x4 and x6 should be 2 and 3 or 3 and 2, they both get the average
rank of 2.5. If we additionally define the rank RY

k for Yk among the random variables
Y(1), Y(2), . . . ,Y(n), we have translated the pair (Xk,Yk) to a pair of ranks (RX

k , RY
k ).

Then Spearman’s rank correlation coefficient is defined by

rS =

n∑
i=1

(RX
i − R̄X )(RY

i − R̄Y )

√
n∑

i=1
(RX

i − R̄X )2
n∑

i=1
(RY

i − R̄Y )2

,

with R̄X and R̄Y the average ranks for the X and Y variables, i.e., R̄X = ∑n
k=1 R

X
k /n

and R̄Y = ∑n
k=1 R

Y
k /n. As the total number of ranks in a sample of n observations

is equal to n(n + 1)/2, the average ranks R̄X and R̄Y are equal to R̄X = R̄Y =
(n + 1)/2. Note that Spearman’s rank correlation coefficient can also be written in
a different form:

rS = 1 − 6
n∑

i=1

(RY
i − RX

i )2

n3 − n
.

Since Spearman’s rank correlation depends on the ranks of the variables x
and y, the estimator is independent of monotonic transformations (increasing or
decreasing functions) of the data. Thus Spearman rho’s estimator rS on (X1,Y1),
(X2,Y2), . . . , (Xn, Yn) is exactly the same as Spearman rho’s estimator rS on the
transformedpairs (ψ1(X1),ψ2(Y1)), (ψ1(X2),ψ2(Y2)), . . . , (ψ1(Xn),ψ2(Yn)),when
ψ1 and ψ2 are both increasing or both decreasing functions. This is easily seen, since
ranks only determine the position in the set of ordered values and do not take into
account the levels, other than for comparison.

The CDF and some of its characteristics (like the moments) of rS have been
studied, mostly under the assumption of bivariate normal CDFs, but the distribution

7 Thus, x2 has the smallest value, and thus receives rank 1, while x3 has the largest value, and thus
receives rank 5.
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function of rS is not easy to determine in general. The reason is that the underlying
joint distribution function of the pairs of random variables plays an important role
in the distribution function of the ranks. To illustrate the complexity, consider for
instance, Pr(RX

n = n), which is given by

Pr(RX
n = n) = Pr(Xn = max{X1, X2, . . . , Xn})

= Pr(Xn ≥ X1, Xn ≥ X2, . . . , Xn ≥ Xn−1)

=
∫ ∞

−∞
Pr(Xn ≥ X1, Xn ≥ X2, . . . , Xn ≥ Xn−1|Xn = x) fXn (x)dx

=
∫ ∞

−∞
Pr(X1 ≤ x, X2 ≤ x, . . . , Xn−1 ≤ x |Xn = x) fXn (x)dx

=
∫ ∞

−∞
Fn−1
X (x) fXn (x)dx,

with fXn = fX , since X1, X2, . . . , Xn are i.i.d. with CDF FX .
Although we may not prefer the use of Spearman’s correlation coefficient over

Pearson’s product-moment estimator (see Sect. 6.6.4) under the assumption of nor-
mally and independently distributed pairs (X1,Y1), (X2,Y2), . . . , (Xn,Yn), themean
and variance of rS have been established under this setting (see Fieller and Pearson
1961). The mean is given by

ρS = E(rS) = 6

(n + 1)π
(arcsin(ρ) + (n − 2) arcsin(ρ/2)) ≈ 6

π
arcsin(ρ/2).

Thus the parameter ρ of the bivariate normal distribution can now be estimated by
ρ̂ = 2 sin(πrS/6). The variance of rS is a long series of powers of the correlation
coefficient ρ, but we will provide the series up to power ρ6. The variance is then
approximately

VAR(rS) ≈ 1

n

(
1 − 1.1563465ρ2 + 0.304743ρ4 + 0.155286ρ6

)
.

Taking the square root of this variance and substituting ρ̂ for ρ would provide an
estimator of the standard error on the estimator rS under the assumption of normality.

Different approaches of constructing 100%(1 − α) confidence intervals on ρS

through rS has been suggested for (X1,Y1), (X2,Y2), . . . , (Xn,Yn) being i.i.d. with
CDF FXY . First of all, there exists an asymptotic confidence interval applied directly
on rS , secondly there exists a confidence interval based on the t-distribution, and
finally there exist confidence intervals based on the Fisher z-transformation. Since
the asymptotic confidence interval on rS directly seems to be liberal (the coverage of
the interval is often lower than 100%(1 − α)) and the confidence interval based on
the t-distribution is conservative (the coverage is typically larger than 100%(1 − α)),
we only focus on the Fisher z-transformation, since this approach seems to have
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produced appropriate coverage: close to 100%(1 − α) for several settings (Caruso
and Cliff 1997).

The Fisher z-transformation of rS uses normal confidence intervalswith a variance
S2rS of rS in this transformed scale. Different suggestions for this variance have been
proposed: S2rS = 1.06/(n − 3) (Fieller and Pearson 1961), S2rS = (1 + r2S/2)/(n − 3)
(Bonett and Wright 2000), and S2rS = (n − 2)−1 + |zrS |/[6n + 4

√
n] (Caruso and

Cliff 1997), with zrS the Fisher z-transformation of rS , i.e., zrS = 0.5[log(1 + rS) −
log(1 − rS)]. Based on the Fisher z-transformation, a 100%(1 − α) confidence inter-
val is provided by (

zrS − z1−α/2SrS , zrS + z1−α/2SrS
]
.

Taking the inverse Fisher z-transformation on these limits, a 100%(1 − α) confidence
interval for ρS is constructed. This gives confidence limits equal to

(
exp(2[zrS − z1−α/2SrS ]) − 1

exp(2[zrS − z1−α/2SrS ]) + 1
,
exp(2[zrS + z1−α/2SrS ]) − 1

exp(2[zrS + z1−α/2SrS ]) + 1

]
.

For correlation coefficients less than or equal to 0.5, simulation studies with nor-
mally distributed random variables show that the Fisher z-transformed confidence
intervals with the three different standard errors behave very similar (Bonett and
Wright 2000). The coverage probabilities are around 95%, irrespective of the use of
the three standard errors. When the correlation coefficient is larger than 0.5, Fieller
and Pearson’s standard error underestimates the variability of the estimator of Spear-
man’s rho. Thus the coverage probability of the confidence interval with Fieller and
Pearson’s standard error is smaller than 95%. For correlation coefficients larger than
0.7, the standard error of Caruso and Cliff also starts to underestimate the variability
of the estimator of Spearman’s rho. For the standard error of the approach of Bonett
andWright underestimation occurs for correlation coefficients larger than 0.9. Thus,
for normally distributed data, Bonett and Wright’s approach is most appropriate, but
less is known when the bivariate distribution is deviating from normality.

6.6.3.1 Estimation of Dependency Parameters

The estimator of Spearman’s rho can be easily used to estimate the dependency
parameter of the FGM and Fréchet family of distribution functions. The dependency
parameter α of the FGM family can be estimated by α̂ = 3rS and λ of the Fréchet
family can be estimated by λ̂ = [3rS + 1]/2. Confidence intervals can be constructed
through confidence intervals on ρS , using the same functions. It should be noted
that when these estimates are outside the range of the dependency parameters (i.e.,
α̂ /∈ [−1, 1] and λ̂ /∈ [0, 1]), the data may not support these families of distributions.
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6.6.4 Should We Use Pearson’s Rho, Spearman’s Rho or
Kendall’s Tau Correlation?

Now that we have the availability of three measures of correlation (or concordance),
the question arises: which one should we use on the data? This has been a question
for a long time and different opinions exist in the literature, all providing arguments
for choosing just one of them. In a way this is surprising, since they all describe a
different aspect of the population and the difference can be quite large depending on
the family of CDFs. Thus, if we know what measure we would like to quantify, the
choice is easy. Nevertheless, here we will discuss a few facts and we hope to provide
more insight into which one to use if there is no clear preference of choosing one
of the population parameters. It should be mentioned upfront that there always exist
exceptions, but general trends can be given.

The product-moment correlation provides a measure that is particularly suitable
for linear associations between variables. To illustrate this we would like to show the
famous example of Anscombe’s quartet in Fig. 6.2. For each of the four figures the
product-moment estimator is equal to ≈0.8. The figures clearly show that the “co-
relation” or dependency between X and Y is quite different across the four figures,
even though the product-moment correlation is 0.8 for all figures.

The product-moment estimator would be most suitable for the top left figure
in Fig. 6.2. The reason is that these data seem to be close to bivariate normally

Fig. 6.2 Anscombe’s quartet: an illustration of four different cases that all have the same product-
moment correlation
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distributed data and Pearson’s correlation coefficient is the dependency parameter.
Thus when the data are bivariate normally distributed, or when transformations can
be applied that would make the data approximately bivariate normal, we suggest
applying the product-moment estimator on the (transformed) data. It has been shown
that Pearson’s estimator rP is more efficient (i.e., has a smaller asymptotic variance)
than Spearman’s estimator (Borkowf 2002).

If we do not have normally distributed data and a proper transformation of the
data that would lead to approximately bivariate normal data is difficult to find, it is
not obvious which of the three options to choose.8 Often Pearson’s product-moment
estimator is immediately disqualified, since it is affected by transformations of the
data. If none of the transformations leads to the top left figure in Fig. 6.2 it is almost
impossible to know which transformation should then be used. Borkowf provides a
theoretical example with bivariate uniform distribution functions in which Pearson’s
product-moment estimator is preferred over Spearman’s rank correlation (Borkowf
2002), but for practical data this would be difficult to assess. Furthermore, Pearson’s
product-moment estimator is also sensitive to outliers (illustrated in the bottom left
figure in Fig. 6.2). Spearman’s rho and Kendall’s tau estimators are less sensitive and
may prevent a long investigation into the outlier to determine whether it should be
removed or changed. Thus for non-normal bivariate data (that is difficult to transform
into normally dsitributed data) it is probably best not to use Pearson’s product-
moment estimator.

When we have to choose between Spearman’s rank or Kendall’s tau estimator,
is there a clear preference? The answer is no, but there are a few observations that
may help guide the choice. First of all, Kendall’s tau estimator has a clear inter-
pretation. It measures the difference between concordant and discordant pairs. The
interpretation of Spearman is more difficult, although it is often presented as a robust
version of Pearson’s product-moment estimator. Secondly, Kendall’s tau estimator
is computationally more intensive, since it requires the comparisons of pairs with
all other pairs, which is not needed with Spearman’s rank. Thus on really large data,
Kendall’s tau may lead to numerical issues. However, for large datasets Kendall’s tau
estimator is more efficient than Spearman’s rank correlation. This is possibly easiest
to recognize if we compare the variances of rK and rS in the Fisher z-transformation.
For Kendall’s tau this variance was 0.437/(n − 4), while it was at least 1/(n − 3) for
Spearman’s rank correlation.9 Finally, when the data contain ties (i.e., values among
the x variable and/or values among the y variable are equal), Spearman’s rank cor-
relation has a smaller standard error than Kendall’s tau estimator (Puth et al. 2015).
Thus when we have non-normal bivariate data, we prefer Kendall’s tau estimator
over Spearman when the data is continuous (and there are hardly any ties present),
while we prefer Spearman’s rank when there are some ties. Note that when there are

8 For the two figures at the bottom in Fig. 6.2 it is not directly obvious which transformation may be
suitable to create a figure that is similar to the top left figure. For the top right figure a transformation
of Y to

√
Y will most likely create a figure close to the top left.

9 We should be careful here to look solely at the standard error, since Kendall’s tau and Spearman’s
rhodonotmeasure the samepopulationparameter andKendall’s tau is often smaller thanSpearman’s
rho.
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a lot of ties, several adaptations of Kendall’s tau exist to deal with the ties, and these
are preferred over Kendall’s tau and Spearman’s rank.

Despite our guidance, it should be realized that quantifying the dependency of
X and Y by just one measure seems to provide only limited information on its
dependency and you should not trust just one number blindly.We recommend always
visualizing your data and using this to either decide what correlation measure is most
suitable directly on the data or to otherwise determine possible transformations to
come to more linear dependencies in the transformed scale. It should be noted that in
some cases it may even be better to try to capture the full joint distribution function
FXY (although this is outside the scope of this book). Indeed, the dependency is
fully captured by FXY , although it may be more cumbersome to demonstrate that the
estimated joint CDF does describe the observed data properly.

6.6.5 Cohen’s Kappa Statistic

If we collect pairs (X1,Y1), (X2,Y2), . . . , (Xn,Yn) of i.i.d. bivariate random vari-
ables as copies of (X,Y ) that can take their values in {1, 2, . . . , K }, the data can
be summarized in a K × K contingency table (similar to the 2 × 2 contingency
table in Table3.1). In cell X = x and Y = y the number of pairs, say Nxy , from
(X1,Y1), (X2,Y2), . . . , (Xn,Yn) with the combination (x, y) is reported. Thus the
data is summarized as

Nxy =
n∑

i=1

1{x}(Xi )1{y}(Yi ),

with 1A(x) the indicator variable that is equal to 1 if x ∈ A and 0 otherwise. It should
be noted that the sum of all numbers in the contingency table should add up to n:∑K

x=1

∑K
y=1 Nxy = n.Wemay also add up the numbers by row or by column, leading

to

Nx · =
K∑

y=1

Nxy and N·y =
K∑

x=1

Nxy .

The distribution function of Nxy is binomial with parameters n and pxy = Pr(X =
x,Y = y).Moreover, themultivariatePMFfor N11, N12, . . . , N1K , N21, N22, . . . , N2K ,
. . . , NK1, NK2, . . . , NKK has amultinomial distribution function (see Chap.4) given
by

Pr(N11 = n11, N12 = n12, . . . , NKK = nKK ) = n!
K∏

x=1

K∏

y=1

(
p
nxy
xy

nxy !

)
.

Cohen’s Kappa statistic is now estimated by
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κ̂C = p̂O − p̂E
1 − p̂E

, with p̂O = 1

n

K∑

k=1

Nkk and p̂E = 1

n2

K∑

k=1

Nk·N·k .

Based on themultinomial distribution, the standard error for the estimator of Cohen’s
kappa statistics can be approximated. The standard error is defined through

VAR(κ̂C) ≈ pO(1 − pO)

n(1 − pE )2
.

Based on this standard error an asymptotic 100%(1 − α) confidence interval can be
created. This interval is given by

(
κ̂C − z1−α/2

√
p̂O(1 − p̂O)

(1 − p̂E )
√
n

, κ̂C + z1−α/2

√
p̂O(1 − p̂O)

(1 − p̂E )
√
n

]
,

with z p the pth quantile of the standard normal distribution function.
The simplicity of Cohen’s kappa statistic has made it very popular in all kinds of

sciences to quantify agreement. However, Cohen’s kappa statistic should not be used
when particular outcomes of X and Y are rare. Thus when the probability Pr(X = k)
or Pr(Y = k) is small compared to the other levels {1, 2, .., k − 1, k + 1, . . . , K }, the
statistic may underestimate the agreement. To illustrate this we assume that K = 2
and provide two 2 × 2 contingency tables (see Table6.1).

Cohen’s kappa statistic is approximately equal to 0.625 and 0.350 for the first and
second table, respectively. Thus the second table provides a fair agreement, while
the first table gives a moderate agreement. However, the probability of agreement
(pO ) is larger in the second table (0.91) than in the first table (0.85). Thus, there is
less misclassification in the second table than in the first table, but agreement in the
second table is seriously lower than in the first table. This is caused by the imbalance
in the probability of observing outcomes 1 and 2. Thus, Cohen’s kappa works best
when each outcome has approximately the same probability of occurrence, or is at
least not strongly imbalanced.

Table 6.1 Examples of Cohen’s kappa statistic
Y = 1 Y = 2 Total

X = 1 20 5 25
X = 2 10 65 75
Total 30 70 100

Y = 1 Y = 2 Total
X = 1 3 3 6
X = 2 6 88 94
Total 9 91 100



6.6 Estimators of Measures of Association 211

6.6.6 Risk Difference, Relative Risk, and Odds Ratio

Although we have already discussed risk difference, relative risk, and odds ratio in
Chap.3, we would like to recall them here so that we can also report the calculation
of confidence intervals. We assume that the bivariate binary data (Xi ,Yi ) ∈ {0, 1} ×
{0, 1} can be captured by the summary statistics

Nxy =
n∑

i=1

1{x}(Xi )1{y}(Yi ), for (x, y) ∈ {0, 1} × {0, 1}.

Note that we have already used this type of notation for Cohen’s kappa statistic, but
with binary data it is more convenient to use values 0 and 1 for X and Y , instead of
using the values 1 and 2.

If we assume that Y represents some kind of outcome and X represents some kind
of exposure, with X = 0 the reference group, the estimators of the risk difference
( ˆRD), relative risk (R̂R), and odds ratio (Ô R) are defined by (see also Chap.3):

ˆRD = N11

N11 + N10
− N01

N01 + N00
= N11N00 − N10N01

(N11 + N10)(N01 + N00)

R̂R = N11(N01 + N00)

N01(N11 + N10)

Ô R = N11N00

N10N01

The statistical literature contains many different approaches to constructing confi-
dence intervals. It is not our intention to provide them all, but to provide one approach
for each measure of association that is relatively easy to calculate and also has a good
performance inmany settings (i.e., the coverage of the confidence interval containing
the population parameter is close to the intended confidence level 100%(1 − α)).
For the remainder it may be useful to introduce the notation p̂0 = N01/N0· and
p̂1 = N11/N1· as the estimators of the probability of the event Y = 1 in group X = 0
and X = 1, respectively, with Nx · = Nx1 + Nx0.

For the risk difference we provide the method of Wilson (Newcombe 1998). This
method first calculates 100%(1 − α) confidence limits on the proportions of event
Y = 1 for the two groups X = 0 and X = 1 separately and then uses these confidence
limits in the confidence interval on the risk difference. The two separate 100%(1 − α)

confidence intervals are given by
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Lx =
2Nx · p̂x + z21−α/2 − z1−α/2

√
4Nx · p̂x (1 − p̂x ) + z21−α/2

2(Nx · + z21−α/2)
,

Ux =
2Nx · p̂x + z21−α/2 + z1−α/2

√
4Nx · p̂x (1 − p̂x ) + z21−α/2

2(Nx · + z21−α/2)
,

for x ∈ {0, 1} and z p the pth quantile of the standard normal distribution function.
The 100%(1 − α) confidence interval on the risk difference is then given by

( ˆRD −
√

( p̂1 − L1)2 + (U0 − p̂0)2, ˆRD +
√

(U1 − p̂1)2 + ( p̂0 − L0)2
]
.

For the relative risk, the confidence interval is calculated in the logarithmic scale.
The estimated standard error of the logarithmic transformed relative risk is given by

ˆSE RR =
√
1 − p̂0
N0· p̂0

+ 1 − p̂1
N1· p̂1

.

Thus the asymptotic 100%(1 − α) confidence interval on the logarithmic transfor-
mation of the relative risk is given by

(LRR,URR] =
(
log(R̂R) − z1−α/2 ˆSE RR, log(R̂R) + z1−α/2 ˆSE RR

]
.

The 100%(1 − α) confidence interval on the relative risk is then calculated by trans-
forming these confidence limits back to theoriginal scale using (exp(LRR), exp(URR)].

The confidence interval on the odds ratio is also calculated in the logarithmic scale
using the standard error

ˆSEOR =
√
N−1
00 + N−1

01 + N−1
10 + N−1

11 .

The 100%(1 − α) confidence interval on the odds ratio in the logarithmic scale is
given by

(LOR,UOR] =
(
log(Ô R) − z1−α/2 ˆSEOR, log(Ô R) + z1−α/2 ˆSEOR

]
.

Thus the 100%(1 − α) confidence interval on the odds ratio is then calculated by
transforming these confidence limits back to the original scale using (exp(LOR), exp
(UOR)].
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6.7 Other Sample Statistics for Association

Chapter3 presented three measures of association (risk difference, relative risk, and
odds ratio) that were typically developed for 2 × 2 contingency tables. In Sect. 6.5
we presented three correlation measures (Pearson’s, Spearman’s, and Kendall’s cor-
relation) that aremost suitable for interval and ratio data.We also introduced Cohen’s
kappa statistic for measuring agreement in contingency tables. These measures were
all formulated in terms of population parameters and they capture some part (or
under certain settings all) of the dependency. However, there are many more mea-
sures of association and this section will provide a few of them that have also been
used in practice. For these measures the underlying population parameters are less
known or have not been emphasized that much in the literature as the ones we already
discussed.

We have organized this section by the different types of categorical data: nominal,
ordinal, and binary. The measures for nominal and ordinal data also apply to binary
settings, but we discuss a few measures that were invented only for binary data. For
continuous (interval and ratio) data, we may resort to either one of the three different
correlation measures discussed in the previous section (see also the discussion on its
use in Sect. 6.6.4).

6.7.1 Nominal Association Statistics

This section discusses statistics that are particularly useful for quantifying the depen-
dency between two nominal random variables X and Y . They measure the depar-
ture from dependency and they are all functions of Pearson’s chi-square statistic.
Although they can be applied to nominal variables, they have also been used for
ordinal and binary random variables X and Y . In this setting we assume that X can
take its value in {1, 2, . . . , K } and Y can take its value in {1, 2, . . . , M} and we
assume that (X1,Y1), (X2,Y2), . . . , (Xn,Yn) are i.i.d. with CDF FXY .10 The data
can then be summarized by

Nxy =
n∑

i=1

1{x}(Xi )1{y}(Yi ), with (x, y) ∈ {1, 2, . . . , K } × {1, 2, . . . , M}

The numbers Nxy represent the frequencies of the cells in a K × M contingency
table, with K rows and M columns. Note that the number of levels (K and M) for
X and Y may now be different. For instance, if we wish to study the dependency
between gender (boys and girls) and their favourite subject at school (mathematics,
English, history, etc.) in the high school data on first- and second-year students, we

10 The CDF for i.i.d. nominal bivariate random variables is typically the multinominal distribution.
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would have a 2 × 19 (or a 19 × 2) contingency table, since the study collected data
on 19 different subjects.

Similar to the material on Cohen’s kappa statistic, we may also determine the
number of pairs (Xi ,Yi ) for which the X variable is equal to x , irrespective of the
value ofY . Thiswill be denoted by Nx ·. Something similar canbedone for the variable
Y , leading to N·y . They represent the row and column totals in the contingency table:

Nx · =
M∑

y=1

Nxy and N·y =
K∑

x=1

Nxy .

If X and Y are independent, the joint PMF is the product of the two marginal
PMFs: Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y) for all (x, y) ∈ {1, 2, . . . , K } ×
{1, 2, . . . , M}. We have seen with Cohen’s kappa statistic that the joint PMF
Pr(X = x,Y = y) can be estimated by Nxy/n and that themarginal PMFsPr(X = x)
and Pr(Y = y) can be estimated by Nx ·/n and N·y/n, respectively. Pearson’s chi-
square statistic quantifies the difference between the observed numbers Nxy and their
expected numbers Nx ·N·y/n based on independence. Thus a part of Pearson’s chi-
square statistic is [Nxy − Nx ·N·y/n]2. The square is used to make all differences
positive. However, Pearson normalized the squared differences with the expected
numbers. The reason is that a small squared difference between Nxy and Nx ·N·y/n
when Nx ·N·y/n is small is not the same as a small squared difference between Nxy

and Nx ·N·y/n when Nx ·N·y/n is large. Thus, to provide a measure for the K × M
contingency table, Pearson added all these normalized squared differences over all
cells of the contingency table, leading to Pearson’s chi-square statistic

χ2
P =

K∑

x=1

M∑

y=1

[Nxy − Nx ·N·y/n]2
Nx ·N·y/n

= 1

n

K∑

x=1

M∑

y=1

[nNxy − Nx ·N·y]2
Nx ·N·y

. (6.11)

Itmaybeobvious that thismethodof constructing a statistic is always non-negative
(χ2

P ≥ 0) and that it is equal to zero only when the observed frequencies in the cells
of the contingency table are equal to the expected frequencies. Thus the larger the
value for Pearson’s chi-square statistic, the stronger the association between the two
random variables X and Y . Since it calculates the differences between observed
frequencies and frequencies under the assumption of independence, Pearson’s chi-
square represents a measure of departure from independence.

The CDF of Pearson’s chi-square statistic has been studied and it has been demon-
strated that it can be approximated with a chi-square distribution with (K − 1)(M −
1) degrees of freedom when X and Y are independent.11 That is why it is referred to
as a chi-square statistic. Thus the PDF of Pearson’s chi-square statistic has the form
of the densities visualized in the left figure in Fig. 5.2.

11 If independence is not satisfied, the CDF of Pearson’s chi-square statistics is equal to a non-
central chi-square distribution function. This distribution function has not been discussed in our
book and it is outside our scope.
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Table 6.2 Observed and expected frequencies for independence between gender and opinion on
soccer

Agree Disagree Total

Male 75 (66.7) 25 (33.3) 100

Female 25 (33.3) 25 (16.7) 50

Total 100 50

To illustrate Pearson’s chi-square statistic, we use a 2 × 2 contingency tablewhere
the variables X and Y are gender and their opinion on the statement “I like soccer”,
respectively. Men and women had to indicate whether they agree or disagree with
the statement. Independence between X and Y would indicate that men and women
both like soccer in the same ratios. Table6.2 above gives the observed numbers of
100 males and 50 females. In brackets we have calculated the expected values using
Nx ·N·y/n.

Based on the observed and expected results the chi-square statistic becomes:
χ2
P = 1.042 + 2.083 + 2.083 + 4.167 = 9.375. This value is quite large, if we con-

sider that the statistic would follow a chi-square distribution with d f = 1 degrees of
freedom (d f = (2 − 1)(2 − 1)) when sex and their opinions are independent. The
probability that we observe a value larger than 3.84 is equal to only 5% if X and Y
are independent.12

The advantage of Pearson’s statistic is that it is applicable to any K × M contin-
gency table, whether the random variables X and Y are binary, ordinal, or nominal.
Note that Kendall’s tau and Spearman’s rho cannot be applied to nominal data, since
they require that X and Y are ordinal. Thus, whenever one of X and Y is nominal,
we may resort to Pearson’s chi-square statistic. For this reason, Pearson’s chi-square
statistic is considered to measure nominal association. However, a disadvantage of
Pearson’s chi-square statistic is that it cannot be viewed as a correlation coefficient,
likeKendall’s tau and Spearman’s rho, since it is not limited by the value 1. If wemul-
tiply all frequencies in the contingency table with a constant, Pearson’s chi-square
increases with the same constant. Thus Pearson’s chi-square statistic is not properly
normalized to be viewed as a proper association statistic.

Pearson normalized the statistic with the sample size n when he studied 2 × 2
contingency tables. This measure is also called Pearson’s squared phi-coefficient:

φ2 = χ2
P

n
.

For the setting of 2 × 2 contingency tables, Pearson’s phi-coefficient φ is equal to
the absolute value of Pearson’s product-moment estimator applied on the binary
pairs (Xi ,Yi ). To see this we will rewrite Pearson’s chi-square statistic defined

12 The 95% and 99% quantiles of a chi-square distribution with 1 degrees of freedom are equal to
3.84146 and 6.63490, respectively.
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in Eq. (6.11) and Pearson’s product-moment estimator defined in Eq. (6.10) for the
2 × 2 contingency table. In the case of two categories K = M = 2, the numerator
[nNxy − Nx ·N·y]2 in Eq. (6.11) is equal to [N11N22 − N12N21]2 for each combination
of (x, y) ∈ {1, 2} × {1, 2}. Thus the sums in Pearson’s chi-square statistic then add
up the denominators. This is equal to n2/[N1·N2·N·1N·2]. Thus for binary X and Y ,
Pearson’s chi-square statistic becomes:

χ2
P = n

[N11N22 − N12N21]2
N1·N2·N·1N·2

.

This makes the phi-coefficient equal to φ = |N11N22 − N12N21|/√N1·N2·N·1N·2.
Pearson’s product-moment estimator in Eq. (6.10) can be written in terms of the con-
tingency table frequencies Nxy . For binary random variables X and Y , the numera-
tor
∑n

i=1(Xi − X̄)(Yi − Ȳ ) in Eq. (6.10) is equal to [N11N22 − N12N21]/n, see the
equivalent forms of covariances. The two terms in the denominator are

∑n
i=1(Xi −

X̄)2 = N2·N1·/n and
∑n

i=1(Yi − Ȳ )2 = N·2N·1/n. This makes Pearson’s product-
moment estimator ρP equal to ρP = [N11N22 − N12N21]/√N1·N2·N·1N·2. The abso-
lute value of ρP is now equal to φ.

For K × M contingency tables, Harald Cramér noticed that a normalization of
Pearson’s chi-square statistic with n was not ideal. He demonstrated that the max-
imum value of Pearson’s chi-square statistic could become maximally equal to
nmin{K − 1, M − 1}. Thus Cramér introduced the association measure V for gen-
eral K × M contingency tables that would have its values in [0, 1]. It is defined
by

V =
√

χ2
P

nmin{K − 1, M − 1} .

It is obvious that Cramér’s V is equal to Pearson’s φ coefficient when either the X or
the Y variable has just two levels. Thus Cramér’s V is the more general measure of
nominal association, since it is properly normalized for all contingency tables and it
reduces to Pearson’s φ for 2 × 2 contingency tables.

Although the normalization is theoretically correct, researchers have criticized
Cramér’s V , since the maximum is only attained in artificial contingency tables. The
maximum attainable value for V can be substantially smaller if we keep the row and
column totals fixed to the totals that we have observed. Table6.3 is an example of a
table for which themarginal distribution limits the value of the (positive) association:

Pearson’s φ is equal to φ = 0.11 and there is no other 2 × 2 contingency table
with the exact same row and column totals that results in a higher value of φ. Thus
under the marginal constraints we cannot make the association any stronger (in this
direction). However, the fact that it is not close to one does not necessarily imply
that the relationship is very weak. This is because the marginal distribution “limits”
the possible values of φ (or other measures of relationship strength). Nevertheless,
for nominal random variables it does provide similar interpretations as the sample
correlations and often φ or V are reported together with χ2 and a p-value of the
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Table 6.3 Example of 2 × 2 contingency table with maximal φ coefficient given the marginals

Agree Disagree Total

Male 5 0 5

Female 40 5 45

Total 45 5 50

null-hypothesis test that there is no dependence between variables; null-hypothesis
testing is a topic we will cover in the next chapter.

Although Pearson’s chi-square, Pearson’s phi-coefficient, and Cramér’s V are
meant for contingency tables, they can also be applied to continuous variables X
and Y . In this case, X and Y must be transformed to categorical variables first.
This can easily be done by forming non-overlapping intervals, like we also do for
visualization of continuous data in histograms. For instance,we can create K intervals
for the variable X : (−∞,α1], (α1,α2], . . . , (αK−2,αK−1], and (αK−1,∞), with
α1, α2, . . . ,αK threshold values that are selected by ourselves, and M intervals
for the variable Y : (−∞,β1], (β1,β2], . . . , (βM−2,βM−1], and (βM−1,∞), with β1,
β2, . . . ,βM threshold values that are selected by ourselves. The continuous data
(X1,Y1), (X2,Y2), . . . , (Xn,Yn) can then be summarized by Nxy , which would then
represent the number of pairs (Xi ,Yi ) that falls in the set (αx−1,αx ] × (βy−1,βy],
with α0 = β0 = −∞ and αK = βM = ∞. It should be noted though that the choice
of the number of levels and the choice of thresholds can have a strong influence on the
calculation of nominal associations. Nevertheless, they may be useful for continuous
data as well, in particular when continuous data are already observed as a categorical
variable (e.g. income).

6.7.2 Ordinal Association Statistics

Here we restrict ourselves to ordinal data for both X and Y and assume that the data
can be summarized or represented by a K × M contingency table. Thus X and Y
can take their value in {1, 2, . . . , K } and {1, 2, . . . , M}, respectively. As an example,
you may think of X and Y being severity ratings, like 1=“very low”, 2=“low”,
3=“neutral”, 4=“high”, and 5=“very high”, in, for instance, quality assessments or
disease classifications. Potentially, Pearson’s rho, Spearman’s rho, and Kendall’s
tau estimators may seem to be suitable for this type of data, but they are not ideal.
Pearson’s rho will treat the values 1, 2, …, K for X and the values 1, 2, …, M for Y
as numerical, while these numbers are somewhat arbitrary. Changing the values will
lead to a different Pearson’s rho estimate. Spearman’s rho and Kendall’s tau compare
the ordinal values with each other, but in many comparisons the values cannot be
ordered. If we observe the pairs (1, 3), (3, 2), (3, 5), (1, 4), (2, 5), then pairs 1 and 4
and pairs 2 and 3 cannot be ordered in their x coordinate and pairs 3 and 5 cannot be
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ordered in their y coordinate. As we mentioned earlier, we observe ties in both the
x and y coordinates. These ties affect the estimator as well as the calculation of its
standard error. Here we will provide a few alternatives, closely related to Kendall’s
tau, but that do addresses the ties appropriately.

The issue with Kendall’s tau is the use of the denominator 0.5n(n − 1) that quan-
tifies the number of pairs being compared. When there are many ties, the number
of pairs that can really order the pairs is much lower. In the example of the five
pairs (1, 3), (3, 2), (3, 5), (1, 4), (2, 5), 10 pairs can potentially be compared, but
for two comparisons we could not order the x coordinate and for one pair we could
not order the y coordinate. Thus Kendall’s tau can be simply adjusted by using the
correct number of pairs that are being compared. This was developed by Goodman
and Kruskal (1979) and is referred to as Goodman and Kruskal’s gamma:

γ = Pr((X2 − X1)(Y2 − Y1) > 0) − Pr((X2 − X1)(Y2 − Y1) < 0)

Pr((X2 − X1)(Y2 − Y1) > 0) + Pr((X2 − X1)(Y2 − Y1) < 0)
.

It can be estimated by

G = NC − ND

NC + ND
,

with NC and ND defined by

NC =
n∑

i=1

n∑

j=1

1(0,∞)((X j − Xi )(Y j − Yi ))

ND =
n∑

i=1

n∑

j=1

1(−∞,0)((X j − Xi )(Y j − Yi )).

Here NC and ND represent the number of concordant and discordant pairs. It should
be noted that the sample size n is typically larger than the sum of concordant and
discordant pairs, i.e., n > NC + ND , due to the many ties in data of the K × M
contingency table. Clearly, if there are no ties at all, Goodman and Kruskal’s gamma
reduces to Kendall’s tau.

The distribution function of the estimatorG has been studied under the assumption
that (X1,Y1), (X2, Y2), . . . , (Xn,Yn) are i.i.d. with distribution function FXY . The
distribution function of

√
n(G − γ) is asymptotically normal with zero mean and a

variance that is smaller than but close to (Goodman and Kruskal 1979):

2(1 − γ2)

Pr((X2 − X1)(Y2 − Y1) > 0) + Pr((X2 − X1)(Y2 − Y1) < 0)
.

This variance can be estimated with 2(1 − G2)/(ND + NC). Thus, a 100%(1 − α)

confidence interval on γ can be constructed using the theory of our asymptotic
confidence intervals in Sect. 5.3.5. The confidence interval is then
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⎛

⎝G − z1−α/2

√
2(1 − G2)

ND + NC
,G + z1−α/2

√
2(1 − G2)

ND + NC
,

⎤

⎦ ,

with z p the pth quantile of the standard normal distribution function.

6.7.3 Binary Association Statistics

In 1901, Paul Jaccard published an index to classify ecological species (Jaccard
1901). The index tried to measure or quantify the similarity in a large number of
attributes from two objects. The objects in Jaccard’s work were mostly large areas
of land (in Switzerland) and the attributes were the (presence and absence of) plant
species that grewon the land. This is just one application, but itmay be clear thatmany
other applications could be formulated in which we would like to quantify similarity
between objects, e.g., genetic similarity between two individuals, similarity of text
from two manuscripts, or identification of individuals with biometrics (fingerprints,
iris images, etc.).

After the introduction of the Jaccard measure of similarity, many more were
developed (Choi et al. 2010). Over a period of 100 years, more than 70 indices have
been proposed and discussed. Similarity measures are highly relevant in the field of
data science, as they are not just used on attribute data of two objects: they are often
applied to attribute data of many objects to group or identify clusters of objects. The
goal is to group more similar objects together, such that objects in one cluster are
much more similar than objects from different clusters.13 So, there is a rich literature
on similarity measures and we cannot possibly mention them all.

We will discuss two sets of similarity measures for 2 × 2 contingency tables that
contain several well-known measures used in practice (see Gower and Legendre
1986). Here we may assume that we observed n binary attributes on two objects,
leading to the n pairs (X1,Y1), (X2,Y2), . . . , (Xn,Yn). In this type of application,
the pairs may not be independent and/or identically distributed with just one CDF
FXY . Thus the analysis of the data may be considerably more complicated, but we
will only focus on the summary data

Nxy =
n∑

i=1

1{x}(Xi )1{y}(Yi ), for (x, y) ∈ {0, 1} × {0, 1}.

Note that for binary data we prefer the values {0, 1} for X and Y , instead of {1, 2}.
Here N11 is the number of attributes that both objects share and N00 is the number of
attributes that both objects lack. N01 and N10 represent the numbers of objects that
are present in one object but absent in the other object.

13 Note that clustering of data is outside the scope of our book, but having a better understanding
of the similarity measures may also help understand clustering techniques better.
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Two sets of similarity indices were given by Gower and Legendre (1986)

Sθ = N00 + N11

N00 + N11 + θ[N01 + N10]
Tθ = N11

N11 + θ[N01 + N10] ,

with θ > 0 a constant. The similarity measure Sθ focuses on the similarity of both
the absence as well as the presence of attributes, since it uses both N00 and N11, while
the similarity measure Tθ focuses only on the presence of attributes. Thus when we
wish to emphasize the similarity on attributes that are present, the set of Tθ is more
appropriate than Sθ. Furthermore, both similarity measures are bounded from below
with the value zero and from above with the value 1 (Sθ, Tθ ∈ [0, 1]). The closer
the similarity measures get to one the more similar the two objects would be on the
presence and absence of attributes. Therefore, the measures 1 − Sθ and 1 − Tθ are
referred to as dissimilarity measures.

If we replace θ with specific values we obtain well-known similarity measures
that have been published in the literature. The following list shows just a few options:

Sokal &Sneath(2) : S0.5 = 2[N00 + N11]
2[N00 + N11] + N01 + N10

Sokal &Michener : S1 = N00 + N11

N00 + N11 + N01 + N10

Roger &Tanimoto : S2 = N00 + N11

N00 + N11 + 2[N01 + N10]
Czekanowski : T0.5 = 2N11

2N11 + N01 + N10

Jaccard : T1 = N11

N11 + N01 + N10

Sokal &Sneath(1) : T2 = N11

N11 + 2[N01 + N10]
Note that we already discussed the Sokal & Michener measure in the calculation
of Cohen’s kappa statistic, since it represents the probability of agreement (without
correcting for chance agreement). It is also referred to as the Rand index (Albatineh
2010). The index by Czekanowski is sometimes referred to as the Sorenson & Dice
index (Warrens 2008).

The similaritymeasures Sθ and Tθ are essentially functions of [N00 + N11]/[N01 +
N10] and N11/[N00 + N11], respectively. These two measures have been proposed as
similarity measures themselves:
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Sokal &Sneath(3) : SSS = N00 + N11

N01 + N10

Kulcynski : TK = N11

N01 + N10

Thus Sθ = θ/[θ + SSS] and Tθ = θ/[θ + TK ]. It should be noted that both SSS and TK
are not properly normalized. They can be larger than 1 and are essentially unbounded,
which makes them more difficult to interpret and to compare.

In a way, the similarity measures quantify the dependency between X and Y .
The higher the value the stronger the dependency and more similar the two objects
are. However, they are somewhat different from some other association measures
for 2 × 2 contingency tables, like Yule’s measure of association, one of the oldest
measures of association (see below).

The dissimilarity measures can be considered a distance between the objects.
Indeed, Gower and Legendre (1986) showed that the dissimilarity measures 1 − Sθ

and 1 − Tθ are distancemeasures when θ ≥ 1 and
√
1 − Sθ and

√
1 − Tθ are distance

measures when θ ≥ 1/3. Note that a distance measure d is defined by four character-
istics: d(a, b) ≥ 0, d(a, a) = 0, d(a, b) = d(b, a), and d(a, b) + d(b, c) ≥ d(a, c),
with a, b, and c representing arbitrary objects on which the distance is applied. The
second condition requires us to look at dissimilarity measures instead of similarity
measures.

Although all four conditions on the distance are important, it is the last condition
that makes the dissimilarity measures as distances most attractive, in particular if
classification of multiple objects is important. Indeed, we do not like the situation
that two objects are unrelated while they are both related to the same object. In terms
of social media, we do not want to usemeasures that could identify two people having
no connection at all, but who do share a friend. In that setting they are related through
their friend.

It is clear that φ is an alternative measure with values in [0, 1]. As it is not
of the form

√
1 − Sθ or

√
1 − Tθ, it is unknown if 1 − φ or

√
1 − φ is a distance

measure, like the proposed similarity measures for values of θ being large enough.
Gower & Legendre demonstrated for Pearson’s correlation coefficient ρP on the
2 × 2 contingency table that 1 − ρP is not a distance measure, but

√
1 − ρP is a

distance measure.
An alternative class of similarity measures, which is referred to as the L family

of similarity indices, is defined by

S = λ + μ(N00 + N11), (6.12)

where the parameters λ andμ can only be functions of the row and column totals, i.e.,
functions of N0·, N1·, N·0, and N·1. The Jaccard similarity measure is not contained
in this family, but the Czekanowski index is contained in this family as well as the
Sokal & Michener index (Albatineh 2010; Warrens 2008). This class also contains
Cohen’s kappa statistic. The parameters are then equal to
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Sokal &Michener: λ = 0 and μ = 1

n

Czekanowski: λ = 1 − 1

N1· + N·1
and μ = 1

N1· + N·1

Kappa: λ = −N1·N·1 + N0·N·0
N1·N·0 + N·1N0·

and μ = 1

N1·N·0 + N·1N0·

The mean and variance of the indices in this family of indices have been studied and
they can be used to quantify confidence intervals, but this is outside the scope of our
book.

Similar to the discussion of agreement, there is a discussion about whether the
similarity measures should be corrected for similarity due to chance. For the L
family, corrections have been proposed. A corrected index is of the form

CS = S − E(S)

1 − E(S)
,

with S the similarity measure in Eq. (6.12). Note that it is not always clear what the
expectation of S is, since the setting in which the 2 × 2 contingency table is observed
may change from setting to setting. Recall that (X1,Y1), (X2,Y2), . . . , (Xn,Yn)
are not (necessarily) i.i.d., which implies that different assumptions lead to differ-
ent results for E(S). Nevertheless, it has been shown that several of the indices in
this class all become equivalent after correction (Warrens 2008). This includes the
Czekanowski index, the Sokal &Michener index, and Cohen’s kappa statistics. Thus
after correction these three indices are all equivalent.

The last measure that we would like to mention is Yule’s Q statistic. It was termed
the coefficient of association, which made sense at the time, as it is one of the oldest
measures of association. Now that there are somanymeasures, we rather call it Yule’s
Q statistic. It is defined as

Q = N00N11 − N01N10

N00N11 + N01N10
.

The measure ranges from −1 to +1 and when Q is zero there is no association,
similar to Pearson’s, Spearman’s, and Kendall’s correlation coefficients.

Yule’s Q is different from the two families of similarity measures, since it is
not of the form Sθ, Tθ, and S in Eq. (6.12). Neither is 1 − Q or

√
1 − Q a distance

measure (Gower and Legendre 1986), which makes it also different from Pearson’s
product-moment estimator on binary data. Yule’s Q is a special case of Goodman &
Kruskal’s γ statistic applied to a 2 × 2 contingency table, but there is also a direct
connection to the odds ratio, since Yule’s Q can be rewritten as

Q = ÔR − 1

ÔR + 1
. (6.13)



6.7 Other Sample Statistics for Association 223

Thus Yule’s Q is a monotone function of the odds ratio, which makes Yule’s Q
an attractive measure. It transforms the odds ratio to a measure that is in line with
correlation coefficients. But more importantly, if we randomly eliminate attributes
from one object, say remove half of all the attributes from object 1, then both N11

and N10 would reduce by a factor 2, but Yule’s Q would not reduce. Thus Yule’s
Q statistic is robust against the number of features that are present in one object, a
characteristic that does not hold for the similarity measures. Confidence intervals on
Yule’s Q can easily be determined by using the confidence limits of the odds ratio
and then substitute them in Eq. (6.13).

Having discussed many different measures of association or measures of similar-
ity, it is not easy to choose among all the possible indices, in particular since there
are so many. Here we provide a few simple directions, although we realize that each
setting may require its own index to accomplish its specific goals. If the similarity on
attributes is most important, we recommend a measure for the class Tθ, preferably
with a parameter θ ≥ 1/3 to use a measure that can be viewed as a distance measure
between the two objects. Clearly, when both the absence and presence of attributes
are important, either Sθ or S in Eq. (6.12) can be used. If it should also represent a
distancemeasure, Sθ with θ ≥ 1/3 seemsmost appropriate.When a chance corrected
measure is more appropriate, the similarity measure S can be used. Depending on
the way that the data is collected, the chance corrected measure reduces to one of
seven measures (Gower and Legendre 1986). In some settings this could be Cohen’s
kappa statistic. Finally, when it is important that the measure is robust against the
number of features that could be present, Yule’s Q may seem an appropriate choice.

6.8 Exploring Multiple Variables Using R

Obviously, the measures of association we discussed above can easily be computed
with R, either by using a package that has programmed some of the associations or
otherwise by programming the associations ourself.Wewill illustrate themeasures of
association by using our different datasets. First wewill study the correlation between
the two (continuous) face dimensions in the face data. Secondly, we will study the
association between two binary variables that we will create from two variables in
the high-school data. We will study the association between watching television or
not with computer use or not. Additionally, we will study some similarity measures
on the potato data using their genetic profile. Finally, we will study the association
between voting choice and education level from the voting data.

6.8.1 Associations Between Continuous Variables

To illustrate the associations for continuous variableswewill use the face data. Recall
that the first dimension (dim1) in the face data is the distance between the eyes
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and the second dimension (dim2) is the brow-to-chin ratio. Since both dimensions
are continuous, the three correlation measures Pearson’s rho, Spearman’s rho, and
Kendall’s tau all apply nicely. They can all be calculated with the same R function
cor(). After reading in the data, and calling it facedata, the following code was
used to calculate all three correlation measures:

> n <- dim(facedata)
> n[1]
[1] 3628
> rho_P <- cor(facedata$dim1, facedata$dim2,

method = c("pearson"))
> rho_P
[1] 0.7260428
> rho_S <- cor(facedata$dim1, facedata$dim2,

method = c("spearman"))
> rho_S
[1] 0.7435
> tau_K <- cor(facedata$dim1, facedata$dim2,

method = c("kendall"))
> tau_K
[1] 0.529564

As we can see, Pearson and Spearman’s rho are relatively close to each other, but
Kendall’s tau is somewhat smaller. It is not uncommon that Kendall’s tau is (sub-
stantially) lower than Spearman’s rho (see Sect. 6.5.3). The results also show that
the correlation coefficients are positive and quite large. Thus a larger brow-to-chin
ratio co-occurs with a larger distance between the eyes. In Fig. 6.3 we have given
the scatter plot for the two dimensions, where we can see how the two variables are
co-related. The figure shows a strong relation, but it does not seem to be linear. This
would possibly disqualify the use of Pearson’s product-moment estimator, unless we

Fig. 6.3 Scatter plot between the two face dimensions in the face data
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may find a suitable transformation of the two dimensions that would show a linear
trend after transformation.

Confidence intervals can be calculated through the Fisher z-transformation. We
have programmed the 95% confidence intervals ourselves, which are provided in the
following code for all three correlation coefficients (even though Pearson’s rho may
not seem to be the most reasonable choice to quantify the association between the
two face dimensions):

> za <- qnorm(0.975)
>
> z_P <- 0.5*(log(1+rho_P)-log(1-rho_P))
> LCL_FP <- z_P - za/sqrt(n[1]-3)
> UCL_FP <- z_P + za/sqrt(n[1]-3)
> LCL_P <- (exp(2*LCL_FP)-1)/(exp(2*LCL_FP)+1)
> UCL_P <- (exp(2*UCL_FP)-1)/(exp(2*UCL_FP)+1)
> LCL_P
[1] 0.7102827
> UCL_P
[1] 0.7410753
>
> z_S <- 0.5*(log(1+rho_S)-log(1-rho_S))
> LCL_FS <- z_S - za*sqrt(1.06/(n[1]-3))
> UCL_FS <- z_S + za*sqrt(1.06/(n[1]-3))
> LCL_S <- (exp(2*LCL_FS)-1)/(exp(2*LCL_FS)+1)
> UCL_S <- (exp(2*UCL_FS)-1)/(exp(2*UCL_FS)+1)
> LCL_S
[1] 0.7281344
> UCL_S
[1] 0.7581186
>
> z_K <- 0.5*(log(1+tau_K)-log(1-tau_K))
> LCL_FK <- z_K - za*sqrt(0.437/(n[1]-3))
> UCL_FK <- z_K + za*sqrt(0.437/(n[1]-3))
> LCL_K <- (exp(2*LCL_FK)-1)/(exp(2*LCL_FK)+1)
> UCL_K <- (exp(2*UCL_FK)-1)/(exp(2*UCL_FK)+1)
> LCL_K
[1] 0.5139033
> UCL_K
[1] 0.5448719

Due to the relatively large sample size, the confidence intervals are quite small. The
three confidence intervals show the ranges of values (from the lower bound in the
interval to the upper bound in the interval) for which the population parameters ρP ,
ρS , and τK may fall with 95% confidence. This also implies that it is not very likely
that the two dimensions are uncorrelated, since the value 0 is far below the lower
bounds. Thus it is unlikely that the two dimensions are independent. We will discuss
this topic of hypothesis testing more formally and in more detail in Chap.7.
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6.8.2 Association Between Binary Variables

We discussed in previous sections several measures that could be used to quantify the
dependency between binary variables. We discussed Cohen’s kappa to understand
agreement, association measures from Chap. 3 to quantify changes in risk, Pearson’s
chi-square statistic as a dependency measure, Pearson’s φ coefficient as a correlation
coefficient, Yule’s Qmeasure as ameasure of association, and several othermeasures
of similarity. In principle, thesemeasures can be calculated for any 2 × 2 contingency
table, but it depends on the application which would make more or less sense. Here
we will illustrate all of these measures.

6.8.2.1 Pearson’s Chi-Square, Pearson’s φ Coefficient, and Yule’s Q

If we consider the binary variables on television watching and computer use from the
data on high-school students, themost appropriatemeasures are Pearson’s chi-square
statistic, Pearson’s φ coefficient, and Yule’s Q statistic. The reason for choosing
these measures is that we want to quantify the strength of the dependency between
two different variables. There is no direct preference for an investigation of one
binary variable conditionally on the level of the other binary variable. The two binary
variables are viewed as two outcomes on the high-school children.

The following R code creates the 2 × 2 contingency table:

> x <- ifelse(schooldata$TV > 0, 1, 0)
> y <- ifelse(schooldata$COMPUTER > 0, 1, 0)
> xy<-table(x,y)
> xy

y
x 0 1
0 303 511
1 5889 43366

Watching television (yes/no) is collected in the x variable and using the computer
(yes/no) is collected in the y variable, butwe could have interchanged this. The choice
is essentially arbitrary. When x = 1 the student watches television and when y = 1
the student uses the computer. There are 303 students who do not watch television
and do not use the computer. Pearson’s chi-square statistic can easily be programmed
with R statements, but we can also use an R function:

> chisq.test(xy, correct=FALSE)

Pearson’s Chi-squared test

data: xy
X-squared = 471.74, df = 1, p-value < 2.2e-16

Here we used the chi-square test in R, which calculates Pearson’s chi-square statistic
at 471.74. The option “correct=FALSE” is needed to avoid a correction on the
calculation of Pearson’s chi-square. This is called Yates correction, but we will not



6.8 Exploring Multiple Variables Using R 227

discuss this here. The R function also “tests” whether watching television and using
the computer are dependent, but the topic of testing is postponed toChap.7. Pearson’s
chi-square is rather large, due to two elements. It will be large when the two variables
are strongly dependent and when there is a weak dependency but now with a large
sample size. To correct for the sample size of n = 50,069, Pearson’s φ coefficient
can be calculated. The φ coefficient is determined at 0.097 (= √

(471.74/50, 069)).
It has a positive sign, since 303 × 43,366 is larger than 511 × 5,889, otherwise φ
would be negative.

The estimate of theφ coefficient is not considered very largewhenwe compare the
result with the criteria or rules of thumb listed in the section on Pearson’s correlation
coefficient. The φ coefficient would indicate that the dependence between watching
television and computer use can be neglected.However,Yule’s Q statistic is estimated
at 0.627. It can be calculated from the contingency table using the following R codes:

> N00<-303
> N10<-5889
> N01<-511
> N11<-43366
> Q<-(N00*N11-N10*N01)/(N00*N11+N10*N01)
> Q
[1] 0.6273149

Thus Yule’s Q statistic indicates a moderate correlation between television watching
and computer use when we apply the rules of thumb in Sect. 6.6.1. The difference
in interpretation between Pearson’s φ coefficient and Yule’s Q is quite large in this
example. The reason is a large imbalance in cell counts in the contingency table.
More than 85% of the high-school students watch television and use a computer.
This imbalance makes Pearson’s φ coefficient somewhat less reliable. The φ coef-
ficient can only range from −1 to +1 when there is no imbalance, i.e., N00 is of
the same size as N11. When there exist imbalances the range from −1 to 1 becomes
(much) narrower, making it harder to apply the rules of thumb in Sect. 6.6.1. Thus,
considering the three statistics for the current example, we conclude that television
watching and computer use cannot be neglected. There exists a low to moderate
dependency.

6.8.2.2 Risk Difference, Relative Risk, and Odds Ratio

To demonstrate the measures of association or measures of risk from Chap.3 with
their 95% confidence intervals, we will investigate whether the proportion of com-
puter use between boys and girls is different. In this setting we have two well-defined
groups of students (boys and girls) and a well-defined binary outcome (making use
of a computer or not). The data on television watching and computer use could also
have been used if we were interested in the difference in proportion of computer
use for students who do watch television and students who do not watch television
(or the other way around). In that case we would have a clear outcome variable
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being computer use and a clear subgroup variable being students who do or do not
watch television. However, if we do not have a clear subgroup-outcome formulation,
because we do not know if we should group students into watching television or
should group students into using computers or not, it is more appropriate to quantify
the dependency between television watching and computer use by the methods we
discussed in Sect. 6.8.2.1.

The contingency table for gender and computer use can be constructed with the
following R codes:

> s <-schooldata$GENDER
> y <- ifelse(schooldata$COMPUTER > 0, 1, 0)
> sy<-table(s,y)
> sy

y
s 0 1
Boy 1512 22958
Girl 4680 20919

Thus the proportions of boys that use the computer is 93.82% (= 22,958/(22,958 +
1,512)) and the proportion of girls that use the computer is 81.72% (= 20,919/
(20,919 + 4,680)). Calculating the difference in proportion with their 95% confi-
dence interval using R leads to the following codes:

> z<-qnorm(0.975,mean=0,sd=1,lower.tail=TRUE)
>
> N_boy=22958+1512
> p_boy=22958/N_boy
> p_boy
[1] 0.9382101
> L_boy <-(2*N_boy*p_boy+z^2-z*sqrt(4*N_boy*p_boy*(1-p_boy)+z^2))

/(2*(N_boy+z^2))
> L_boy
[1] 0.935124
> U_boy <-(2*N_boy*p_boy+z^2+z*sqrt(4*N_boy*p_boy*(1-p_boy)+z^2))

/(2*(N_boy+z^2))
> U_boy
[1] 0.9411586
>
> N_girl=20919+4680
> p_girl=20919/N_girl
> p_girl
[1] 0.8171804
> L_girl <-(2*N_girl*p_girl+z^2-z*sqrt(4*N_girl*p_girl*(1-p_girl)

+z^2))/(2*(N_girl+z^2))
> L_girl
[1] 0.812398
> U_girl <-(2*N_girl*p_girl+z^2+z*sqrt(4*N_girl*p_girl*(1-p_girl)

+z^2))/(2*(N_girl+z^2))
> U_girl
[1] 0.8218675
>
> RD<-p_boy-p_girl
> RD
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[1] 0.1210297
> L_RD<-RD-sqrt((p_boy-L_boy)^2+(U_girl-p_girl)^2)
> L_RD
[1] 0.1154178
> U_RD<-RD+sqrt((U_boy-p_boy)^2+(p_girl-U_girl)^2)
> U_RD
[1] 0.1265671

Thus the difference in proportions of computer use betweenmale and female students
is estimated at 12.10%, with a 95% confidence interval equal to [11.54%, 12.66%].

If we would prefer to study the relative risk, the following codes can be applied.
Here we compare boys versus girls (with girls the reference group).

> RR<- p_boy/p_girl
> RR
[1] 1.148106
> SE_RR<-sqrt((1-p_boy)/(N_boy*p_boy)+(1-p_girl)/(N_girl*p_girl))
> LL_RR<-log(RR)-z*SE_RR
> LU_RR<-log(RR)+z*SE_RR
> L_RR<-exp(LL_RR)
> L_RR
[1] 1.140524
> U_RR<-exp(LU_RR)
> U_RR
[1] 1.15574

Thus, the relative risk is estimated at 1.148with 95%confidence interval [1.141, 1.156].
Although the name of the measure is referred to as relative risk, it is merely a ratio
of probabilities. It indicates that 14.8% more boys use the computer than girls.

For the calculation of the odds ratio we may use the following R codes:

> NB0<-1512
> NB1<-22958
> NG0<-4680
> NG1<-20919
>
> OR<-(NB1/NB0)/(NG1/NG0)
> OR
[1] 3.396935
> SE_OR<-sqrt(1/NB1 + 1/NB0 +1/NG1 + 1/NG0)
> LL_OR<-log(OR)-z*SE_OR
> LU_OR<-log(OR)+z*SE_OR
> L_OR<-exp(LL_OR)
> L_OR
[1] 3.19614
> U_OR<-exp(LU_OR)
> U_OR
[1] 3.610344

The odds ratio for computer use of male students with respect to female students
is estimated at 3.40 with a 95% confidence interval equal to [3.20, 3.61]. Recall
that the odds ratio is agnostic to the subgroup-outcome setting. This means that the
outcome and subgroup can be interchanged without changing the result. Thus the
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odds ratio could also have been used for the dependency between television watching
and computer use, as it does not matter which variable creates the subgroup variable.
Note that this argument is supported by the direct relation between the odds ratio
and Yule’s Q statistic in Eq. (6.13).

6.8.2.3 Measures of Similarity

The genetic data on the potatoes can be used to quantify how two potatoes are similar
with respect to their genetic score. Here we will investigate Cohen’s kappa statistic
and several similarity measures.

To investigate how well the RNA sequencing method performs, we compared
the score of Bintje_1 with the score of Bintje_2. These scores represent two
readings of the same potato. After reading in the data, the following R code provides
us with the 2 × 2 contingency table:

> b1<-potato$Bintje_1
> b2<-potato$Bintje_2
> bb<-table(b1,b2)
> bb

b2
b1 0 1
0 22285 3726
1 638 20933

The probability of agreement pO is estimated at 90.83% (= (22,285 + 20,933)/
47,582). To eliminate the element of chance, Cohen’s kappa statistic with its 95%
confidence interval is estimated with the following R code:

> p_O<-(22285+20933)/47582
> p0_b1<-(22285+3726)/47582
> p1_b1<-(20933+638)/47582
> p0_b2<-(22285+638)/47582
> p1_b2<-(20933+3726)/47582
>
> p_E<-p0_b1*p0_b2+p1_b1*p1_b2
> p_E
[1] 0.4982978
> K<-(p_O-p_E)/(1-p_E)
> K
[1] 0.8171917
>
> SE_K<-sqrt(p_O*(1-p_O)/(47582*(1-p_E)^2))
> L_K<-K-z*SE_K
> L_K
[1] 0.8120226
> U_K<-K+z*SE_K
> U_K
[1] 0.8223607

Thus, the agreement between the two readings is estimated at κ̂C = 0.817 with 95%
confidence interval equal to [0.812, 0.822]. According to the criteria in Sect. 6.5.4,
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the agreement between the two readings on a Bintje potato is substantial. Note that
Cohen’s kappa statistic is particularly useful for quantifying variability in binary
(or categorical) variables, which should in principle be identical. If the sequencing
method were perfect, the two readings for gene signals for Bintje potatoes should
be identical. Thus Cohen’s kappa statistic quantifies the amount of noise in the
measurement system, which is less than 20% for detecting gene signals.

Calculating the agreement on gene signals between the first reading of Bintje and
the experimental potato leads to an estimate of κ̂C = 0.719[0.713, 0.725] and shows a
lower agreement than the two readings onBintje.14 Instead ofCohen’s kappa statistic,
it may be more useful to apply another similarity measure, as we do not expect that
both potatoes should provide identical gene scores. For such settings we may not
want to correct for chance. It would be best to consider similarity measures that can
also be interpreted as distance measures, since we would find it inappropriate if the
similarity between the Bintje and experimental potatoes is closer than the two Bintje
readings. Thus we will only illustrate the similarity measures Sθ and Tθ with θ ≥ 1.
An alternative would be to study the dissimilarity measures

√
1 − Sθ or

√
1 − Tθ

with θ ≥ 1/3 as distance measures, but here we want to study similarity.
Table6.4 shows the similaritymeasures Sokal &Michner (S1), Roger &Tanimoto

(S2), Jaccard (T1), and Sokal & Sneath (T2) for the similarity between the two Bintje
readings and the first Bintje reading and the experimental potato.

The R code for the calculation of these similarity measures is only illustrated for
the comparison of the first Bintje reading with the experimental potato, since simple
adjustments are needed to calculate the similarity measures for the Bintje readings.

> b1<-potato$Bintje_1
> ex<-potato$Experimental
> be1<-table(b1,ex)
> be1

ex
b1 0 1
0 20448 5563
1 1175 20396

>
> N00<-20448
> N11<-20396
> N01<-5563
> N10<-1175
>
> S1<-(N00+N11)/(N00+N11+1*(N01+N10))
> S1
[1] 0.8583918
> S2<-(N00+N11)/(N00+N11+2*(N01+N10))
> S2
[1] 0.7519146
> T1<-N11/(N11+1*(N01+N10))
> T1
[1] 0.7516769
> T2<-N11/(N11+2*(N01+N10))

14 Calculations on the agreement between Bintje and the experimental potato are left to the reader.
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Table 6.4 Similarity measures for the comparison of the genetic score of potatoes

Bintje readings Bintje and experimental

Sokal & Michner (S1) 0.908 0.858

Roger & Tanimoto (S2) 0.832 0.752

Jaccard (T1) 0.827 0.752

Sokal & Sneath (T2) 0.706 0.602

> T2
[1] 0.6021493

The results show that the similarity measures can be really different. S1 seems to
indicate a high similarity between the potatoes, while T2 indicates almost a moderate
similarity between Bintje and the experimental potato. This difference indicates that
the similarity between potatoes reduceswhenwe only focus on the presence of genes.
Thus, part of the similarity between potatoes is coming from the absence of genes.
On the other hand, the values of S2 and T1 are almost equal.

It is not straightforward to choose the most appropriate similarity measure. If we
wish to compare the similarity of potatoes on the presence of genes, T1 and T2 seem
most appropriate. Jaccard’s measure is then more common than Sokal & Sneath and
has an easy interpretation. It is the proportion of genes that are present among all
active genes observed in both potatoes. If we also value the similarity of potatoes for
the absence of genes we may want to use S1 or S2. They are both symmetric in the
absence and presence of genes. Interchanging absence and presence does not make
a difference in the calculation. Thus, they value similarity on presence and absence
equally. Sokal & Michener has the easiest interpretation, being the proportion of
genes that are present and absent in both potatoes.

6.8.3 Association Between Categorical Variables

To investigate the dependency between categorical variables we will use the data
from the voting demo. Here we will study the variable voting choice and the variable
on education. Both variables can be viewed as nominal or ordinal variables. The
variable on education was already given in an ordinal format. Here the lowest level
of education is given by “low” and the highest level of eduction is given by “high”
and the numerical values list ordered levels of education between these extremes.
This ordering is based on number of years studied, but this does not mean that the
ordering of education is perfect. It does not take into account the type of education.
Thus it merely shows some form of ordering between education. Political party can
be (partially) ordered on a five-point scale as well, using for instance the categories
strongly conservative, conservative, neutral, liberal, and strongly liberal. However,
this ordering is imperfect since categorizing political parties into one of these five
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levels may be highly subjective and could be different depending on the political
topic. We will first assume that the two variables are considered nominal and then
change to ordinal variables.

The following code summarizes the two variables into a K × M contingency
table (with K = 4 and M = 3). We also requested a chi-square statistic using an R
package.

> x<- votedata$Educ
> y<- votedata$Choice
> xy<-table(x,y)
> xy

y
x CDU/CSU FDP SPD
2 88 39 76
3 36 16 27
High 39 12 20
Low 170 64 163

> chisq.test(xy, correct=FALSE)

Pearson’s Chi-squared test

data: xy
X-squared = 6.2894, df = 6, p-value = 0.3916

Thus Pearson’s chi-square statistic is determined at 6.2894, which is not considered
extremely large for a contingency table with six degrees of freedom (d f = (K −
1)(M − 1)). To obtain a normalized value of Pearson’s chi-square statistic, we may
use Cramér’s V statistic. The statistic divides the chi-square value by the number
nmin{K − 1, M − 1}, as Pearson’s chi-square can not exceed this number. Cramér’s
V can now be determined by the following R code:

> n<-dim(votedata)
> K<-4
> M<-3
> chi2<-6.2894
> V2<-chi2/(n[1]*min(K-1,M-1))
> V<-sqrt(V2)
> V
[1] 0.06475286

Cramér’s V is determined at 0.065, which indicates that there is a negligible associ-
ation between voting choice and education.

If we now assume that both variables are ordinal, we may calculate Goodman
and Kruskal’s gamma statistic. To do this we first need both variables as two ordinal
variables where the levels can be identified as being in a particular order. In the
education variable the level 2 is higher than the level “low”, but R considers level
2 before the level “low”, because R works with alphabetical order. Thus we must
have a variable that is ordered properly. We will create a variable with the numbers
1, 2, 3, and 4, where the number 1 indicates the lowest level of education and 4 the
highest level of education. For the voting variable we also need to create a variable
with ordered levels. We will create a variable with levels 1, 2, and 3. The SPD is
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considered center-left, the FDP is considered center to center-right, and the CDU is
considered center-right. Thus the levels 1, 2, and 3 will be given to the parties SPD,
FDP, and CDU/CSU. The following R code provides the two new variables.

> Edu <- ifelse(x==’Low’,1,as.character(x))
> Edu <- ifelse(Edu==’High’,4,as.character(Edu))
> Edu <- as.numeric(Edu)
>
> Party <- ifelse(y==’SPD’,1,as.character(y))
> Party <- ifelse(Party==’FDP’,2,as.character(Party))
> Party <- ifelse(Party==’CDU/CSU’,3,as.character(Party))
> Party <- as.numeric(Party)

Goodman and Kruskal’s G estimator can be determined with an R function
“gkgamma”. To do this, we need to install the package “MESS”. The following
R code shows the steps that are needed to conduct the calculations. The first step is
the installation of the package and the second step is the creation of the contingency
table for education and voting choice, where the levels are now put in the correct
order. The third and final step calculates the statistic and its 95% confidence interval.

> install.packages("MESS")
> library(MESS)
> EP<-table(Edu,Party)
> EP

Party
Edu 1 2 3
1 163 64 170
2 76 39 88
3 27 16 36
4 20 12 39

> gkgamma(EP,conf.level=0.95)

Goodman-Kruskal’s gamma for ordinal categorical data

data: EP
Z = 1.8486, p-value = 0.06452
95 percent confidence interval:
 -0.005589579  0.196988457
sample estimates:
Goodman-Kruskal’s gamma

0.09569944

Thus Goodman and Kruskal’s estimator G is determined at 0.096 with 95% con-
fidence interval [−0.006, 0.197]. The association between education and political
party, when they are considered ordinal, shows a negligible to low association, sim-
ilar to the calculation of Cramér’s V .
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6.9 Conclusions

We have covered different topics for bivariate variables. We provided the theory
of joint distribution functions to formalize dependency between two variables and
made a distinction between discrete and continuous variables. The joint distribution
function describes dependency in an abstract way. We tried to provide different ways
of constructing bivariate distribution functions, to demonstrate that dependency can
come in all kinds of forms. We also connected the bivariate distribution function to
population characteristics, using expectations, and we discussed some calculation
rules.

Another large part is themany different measures of association that exist to quan-
tify the dependency between variables. Thesemeasures are described for continuous,
categorical, and binary variables. For each type of variable several measures have
been developed and studied. We described what aspect of the population these mea-
sures capture, i.e., formulated dependency parameters. These population parameters
depend on how the dependency is constructed. They depend on the measure and the
bivariate distribution.We also discussed estimators for these measures of association
and we provided confidence intervals on many of these measures of association.

In the final section we illustrated many of the measures of associations on real
data and discussed when certain estimators are more realistic than other measures of
association. This section also provided the R code to help you calculate the measures
on real data.

Although we have provided quite a range of measures of association, we have not
been complete. There are still many more, and new measures are being developed.
The reason is that these measures of associations may play a role in machine learning
techniques and they are being studied for their performance on certain data science
tasks.

Problems

6.1 Using the dataset voting-demo.csv, do the following:

1. Make a contingency table of Vote by Choice.
2. Compute the χ2, φ, and Cramer’s V value for this table. Do so using R and do so

by hand.
3. Think of a way to visualize the relationship.
4. Create a new variable called Age2, which is the age in months, using

Age2 <- 12*Age. What is the correlation between Age and Age2?
5. Now, let us add some noise to Age2 using

Age2 <- Age2 + rnorm(length(Age2), mean=0, sd=x) where
you choose different values for x . Each time plot the relationship and compute
the correlation coefficient.
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6.2 Consider the following joint PMF for random variables X and Y where x ∈
{0, 1} and y ∈ {0, 1, 2}:

PXY (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
12 if x = 0 and y = 0
3
12 if x = 0 and y = 1
1
12 if x = 0 and y = 2
1
12 if x = 1 and y = 0
1
12 if x = 1 and y = 1
4
12 if x = 1 and y = 2

1. What is the (marginal) expectation of X?
2. What is the conditional expectation of Y |X = 1?
3. Compute E(XY ).
4. Are X and Y independent?

6.3 Consider the following questions:

1. Suppose X ∼ N (0, 1) is a random variable and Y = X2. What is the covari-
ance COV(X,Y ) between X and Y ? And ρXY ? If you are unsure try it using
simulations.

2. Can you think of another example where two variables are dependent but their
correlation is zero?

3. How would you quantify the association between a variable of ordinal measure-
ment level and one of interval measurement level? And nominal and interval?
(Note that in different fields people use different methods. Try searching online
for some proposed solutions and explore them.)

6.4 In this exercise we will calculate Pearson’s rho, Spearman’s rho, and Kendall’s
tau using the face data. We will use the variable on the first dimension and the rating
variable.

1. Calculate the three correlation coefficients for the first dimension with the rating
variable.

2. Provide a 95% confidence interval on the correlation coefficients. Based on the
estimates what do you conclude on the association?

3. Produce a scatter plot between the first dimension and the rating. Based on this
scatter plot, which correlation coefficient would you recommend for these two
variables?

6.5 In this exercise we will calculate the measures of association between binary
variables from the voting data. We are interested in the question of whether there is
a relationship between religion and voting behavior. The binary variables of interest
are “Church” and “Vote”.

1. Create the 2 × 2 contingency table.
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2. Calculate Pearson’s chi-square statistic. Does this statistic show a dependency
between religion and voting?

3. Calculate Pearson’s φ coefficient between voting and religion. Do you think there
is a dependency between the two variables?

4. Calculate Yule’s Q statistic between voting and religion. Do you think there is a
dependency between the two variables?

5. Do you think there is a difference in interpretation between Pearson’sφ coefficient
and Yule’s Q statistic? If so, which one would you trust more in this setting?

6.6 In this exercise we will calculate the measures of risk for the voting data. We
are interested in the question of whether religious people will vote more than non-
religious people. The binary variables of interest are “Church” and “Vote”.

1. Create the 2 × 2 contingency table
2. Calculate the proportion of voters for religious and non-religious people with

their 95% confidence intervals
3. Calculate the risk difference on voting for religious people against non-religious

people. Provide a 95% confidence interval on the risk difference.
4. Calculate the relative risk on voting for religious people against non-religious

people. Provide a 95% confidence interval on the risk difference.
5. Calculate the odds ratio on voting for religious people against non-religious peo-

ple. Provide a 95% confidence interval on the risk difference.
6. Based on the measures of risk, what is your conclusion about the dependence

between voting and religion?

6.7 In this exercise we will calculate similarity measures between GMO1 and
GMO2 potatoes. We would like to know whether the two GMO potatoes are similar
on the active gene profile.

1. Create the 2 × 2 contingency table between the GMO1 and GMO2 potato.
2. Calculate Cohen’s kappa statistic on the GMO1 and GMO2 data and provide the

95% confidence interval. What do you conclude on the agreement of the genetic
profile?

3. Do you think that Cohen’s Kappa statistic is suitable measure to quantify the
similarity between the two GMO potatoes?

4. Calculate the similarity measures Sokal &Michner (S1), Roger & Tanimoto (S2),
Jaccard (T1), and Sokal & Sneath (T2) for the GMO1 and GMO2 potatoes. What
do you conclude on the similarity? Explain your answer.

5. Describe which similarity measure you would use to quantify the similarity on
the active gene profile. Explain your answer.

6.8 In this exercise we will calculate measures of association between the nominal
variables breakfast and favorite school subject using the data of the high-school
students. We wish to answer the question of whether there is an association between
school subjects and the eating of breakfast before school.

1. Create the 2 × 2 contingency table between breakfast and subject. What is the
number of degrees of freedom in this contingency table?
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2. Calculate Pearson’s chi-square statistic. Do you think this indicates a strong asso-
ciation between breakfast and subject? Explain your answer.

3. Calculate Cramér’s V statistic. Do you think there is a dependency between
breakfast and school subject? Explain your answer.

6.9 In this exercise we will calculate measures of association between the ordinal
variables age and allowance using the high-school data. Here the variable allowance
will be changed into a categorical variable with just three levels: 0, (0, 10], and
(10,∞). We are only interested in high-school students with an age in the interval
[10, 14]. We wish to answer the question of whether there is an association between
age and allowance categories.

1. Create the new ordinal variable for allowance and report the number of students
in each of the three levels.

2. Create the 2 × 2 contingency table between age and the ordinal allowance vari-
able. What is the number of degrees of freedom in this contingency table?

3. Calculate Pearson’s chi-square statistic. Do you think this indicates a strong asso-
ciation between age and allowance? Explain your answer.

4. Calculate Goodman and Kruskal’sG statistic. Do you think there is a dependency
between age and allowance? Explain your answer.
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Chapter 7
Making Decisions in Uncertainty

7.1 Introduction

Up till now we have covered ways of summarizing data, and we have paid a lot
of attention to understanding how summaries computed on sample data (sample
statistics) vary as a function of the sampling plan and the population characteris-
tics. In Chap.5 we also covered the idea that we can use our sample to estimate
population parameters; in this case we are basically making a decision—our best
guess—regarding the population parameter given the sample data. The distribution
function of the estimators—which are themselves sample statistics—that we studied
in Chap.5 gives us some feel for the precision of our inferences. However, what if
your estimate of the population parameter is 10, and someone asks whether you are
sure that it is not 10.2; what would your answer then be? In this Chapter we examine
multiple approaches to answering this seemingly simple question.

A lot of the practical use of statistical analysis is to make decisions based on data.
In this chapter we will cover some approaches to this end, although admittedly we
will not provide a thorough overview of all the methods for decision-making under
uncertainty that people have come up with over the years. We will focus on two
different methods:

1. Bootstrapping: We will first focus on making decisions regarding population
parameters based on a relatively simple procedure that is called bootstrapping. The
bootstrap provides a very general way to obtain a quantification of the uncertainty
of an estimator. We have already seen that obtaining a larger sample decreases the
variance of an estimator (i.e., the estimator becomes more precise). Furthermore,
when estimating a population mean or difference in population means, we find
that a smaller population variance leads to a smaller variance of the estimator. The
bootstrap has these exact same properties and is easy to carry out for many sample
statistics; it provides a first entry into making decisions regarding populations
based on sample data. We will introduce the bootstrap—and different variants
thereof—in Sect. 7.2.
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2. Hypothesis testing:Weoftenwant tomake binary decisions: does thismedication
have an effect—yes or no? Are the means of these two groups in the population
equivalent yes or no? There is a large body of work in statistics that focusses
on making such binary decisions; we will discuss this approach in some detail.
In Sect. 7.3 we introduce the basic setup and discuss the errors that can occur
when making binary decisions. Next we discuss hypothesis testing and provide
a number of examples of different significance tests. In Sect. 7.3.3 we relate null
hypothesis testing to confidence intervals and subsequently discuss equivalence
testing. In Sect. 7.3.9 we discuss how we can make decisions regarding outliers
and in Sect. 7.3.8 we discuss hypothesis testing for normality.

Note that in this chapterweomit a formal treatment of decision theory,whichprovides
a formalized mathematical view on decision-making in uncertainty that extends to
all kinds of decisions. We cover decision theory briefly in Chap. 8 when we discuss
Bayesianmethods, but we refer the interested student to Robert (2007). Furthermore,
we do not go into much depth regarding hypothesis testing: we merely provide the
main intuition and discuss a number of commonly used tests. We refer the interested
reader to classical works like Lehmann and Romano (2006) for a muchmore detailed
discussion of statistical hypothesis testing.

In this chapter you will learn:

• Theuse of non-parametric, parametric, andonline bootstrap to quantify uncertainty
and support decision making

• The errors involved in binary decision-making
• The rationale behind hypothesis testing
• The p-value
• The relationship between p-values and confidence intervals
• How to do a number of standard test statistics (e.g., t-tests, χ2-tests).
• How to test for normality
• How to identify outliers in datasets
• How to conduct equivalence tests

7.2 Bootstrapping

To make our first steps into the area of decision-making, we will first provide a
conceptually simple method (which can be made formal in many situations, see e.g.,
(Efron 1992), to address the following problem: Given an estimated sample statistic
θ̂, can we say that the population value of that statistic is θ̂ ± δ? Or, can we say
something about how likely it is that the population value is larger than θ̂ + δ? Note
that without making any assumptions regarding the sampling process and/or the
population distributions involved, it is practically impossible to say anything about
the population based on sample data with full certainty. However, informally, it is
quite clear that a large random sample and a relatively small variance of the estimator
θ̂ should both increase our confidence regarding statements we can make about the
population.
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The bootstrap provides a very simple way—at least when you have access to
modern-day computers—to quantify the uncertainty of virtually any estimator given
sample data. Once you have a quantification of this uncertainty—in the form of a
distribution function—you can use this distribution function to make decisions. Note
that the distribution of the estimator θ̂—either over repeated sampling or otherwise—
is key to many statistical decision procedures; this will be true also for the hypothesis
testing we discuss later in this chapter.

7.2.1 The Basic Idea Behind the Bootstrap

Given a (random) sample of size n from some population with distribution function
FX , we frequently set out to obtain an estimate of a population parameter θ = T (x).1

Our point estimate of the parameter of interest is often what is called the “plug-in
estimator” for θ: θ̂ = T (x1, . . . , xn); i.e., it is the statistic of interest calculated on
the sample data x1, . . . , xn . Note that we have routinely used plug-in estimators
for population statistics earlier in the book: e.g., we used x̄ = μ̂ = ∑n

x=1 xn/n as a
plug-in estimate for the population mean μ.

Next to our point estimate, we are often also interested in the distribution function
of θ̂ over repeated samples: i.e., if we repeatedly obtain a (random) sample of size
n from the population of interest, what would Fθ̂ look like? We are interested in
Fθ̂ as it gives us information about the variability of our estimate over repeated
samples: a key ingredient we can use to quantify the certainty surrounding our point
estimate θ̂. Again, we have already discussed such properties for specific estimators.
For instance, we investigated Fμ̂, with μ̂ the sample mean, when the density fX is a
normal density. The distribution function function Fμ̂ will be a normal distribution
function (see Chap.5). More generally, without making any assumptions on fX , we
calculated the standard error of the sample mean (see, e.g., Chaps. 2 and 5), which is
simply the standard deviation of a random variable having CDF Fμ̂. Thus, depending
on the statistic involved, the sampling plan, and the assumptions one is willing to
make about FX or fX , wemight be able to analytically derive Fθ̂. However, obtaining
Fθ̂ in general (or properties thereof) can be challenging.

The bootstrap addresses the problem of deriving Fθ̂ using the power of computer
simulation. It is appealing because it replaces the analytical approach that we have
explored up till now by a simulation approach. Thus, the bootstrap can in principle
approximate Fθ̂ for arbitrary statistics θ̂ = T (x1, . . . , xn). The logic is quite simple:
if we have a good estimate of the population distribution function FX , i.e., F̂X , we
can simply program a computer to obtain M samples (by simulation) of size n from

1 If the population is finite, T (x) represents a calculation on the values from all population units,
as we discussed in Chap.2. If the population is infinite, the T (x) represents a characteristic of
the random variable X having distribution function function FX or density fX , as we discussed
in Chaps. 4 and 5. For instance, we may be interested in the expected value E(X), which would
become a function of the parameters of the density fX .
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F̂X using the same sampling plan that we have used to collect our initial sample. If
F̂X is close to FX it does not really matter if we draw from F̂X or FX . On each sample
m = 1, . . . , M we can subsequently compute the statistic of interest, θ̂(1), . . . , θ̂(M)

which themselves serve as approximate samples from Fθ̂ (approximate as we are
using F̂X , and thus we obtain samples from F̂θ̂). As long as our estimate of F̂X is
close to the true FX , our samples of F̂θ̂ can be used to approximate properties of
Fθ̂: e.g., the standard error of a statistic can simply be computed by computing the
standard deviation of the M samples of the statistic of interest:

ˆSE(θ̂) =
√

∑M
m=1(θ̂

(m) − θ̄2

M − 1
, (7.1)

where θ̄ = ∑M
m=1 θ̂(m)/M .

This leaves open the question of obtaining F̂X : how do we obtain an estimate of
the distribution function of the variable of interest in the population? The simplest
bootstrap approach—although others exist—is to simply use the empirical distribu-
tion function: the original samples x1, . . . , xn in our sample can be used to construct
a discrete approximation of FX by simply giving each unique value vi in x1, . . . , xn
probability 1

n . Thus, we use the observed distribution function of X directly as our
estimate for FX . As a simple example, consider a sample of n = 6 binary observations
0, 1, 0, 1, 1, 1. In this case we obtain

F̂X (x) =
⎧
⎨

⎩

0 if x < 0
p0 if x ≤ 0
p0 + p1 if x ≤ 1

(7.2)

where p0 = 2
6 and p1 = 4

6 . We can now use F̂X , in combination with computer sim-

ulation, to generate bootstrap samplesm = 1, . . . , M and compute θ̂(m) for arbitrary
statistics T . Note that the empirical distribution function will provide a reasonable
approximation for FX if the sample size n is large, and the sample has been obtained
under simple random sampling. If the latter is not the case, we would obviously need
to correct for the sampling plan when trying to construct F̂X .

The empirical distribution solution described above is often referred to as the
non-parametric bootstrap: no parametric assumptions regarding FX are made in this
procedure. While appealing because of its generality, the non-parametric bootstrap
might sometimes be outperformed (in terms of, e.g., estimation precision) by the
so-called parametric bootstrap: in the parametric bootstrap F̂X is assumed to be of a
certain form (e.g., it is assumed to be normal), and plug-in estimates for its parameters
(e.g., μ̂ and σ̂2 in the normal case) are used to estimate FX . If the assumptions are
correct, the parametric bootstrap is preferable over the non-parametric bootstrap. In
the sections below we describe how the non-parametric and the parametric bootstrap
can be carried out in R. Note that in this book we will not cover the theoretical
properties of the bootstrap; we refer the interested reader to Tibshirani and Efron
(1993) for more details.
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Fig. 7.1 Histogram of
means computed on 10,000
bootstrap replicates of our
sample data
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7.2.2 Applying the Bootstrap: The Non-parametric Bootstrap

The following code computes bootstrap replicates θ̂(1), . . . , θ̂(M) for the samplemean
(thus θ̂ = ∑n

i=1 xi/n) by explicitly resampling M = 10,000 samples of size n. Here,
the sample is drawn from a known normal population with μ = 32, and σ = 5. Note
that to generate the M bootstrap replicates, we (re-)sample the original sample with
replacement. Resampling the original sample with replacement effectively generates
a simple random sample from a population with distribution function FX where the
empirical distribution function in the sample data is used to construct F̂X .

Figure7.1 provides a histogram of these M so-called bootstrapped means. The
final line of R code was used to create the histogram (note that we first obtain a
sample of 50 observations from a normal population with mean 32 and standard
deviation 5, thus, in this simulation FX (x) = Φ((x − 32)/5):

> n <- 50
> sample_data <- rnorm(n, mean=32, sd=5)
> M <- 10000 # Number of bootstrap replicates.
> boots <- rep(NA, times=M)
> for (m in 1:M) {
+ resamp <- sample(sample_data, size=n, replace=TRUE) # Note

the sampling WITH replacement.
+ boots[m] <- mean(resamp)
+ }
> hist(boots, breaks=50)

The histogram seems to closely resemble a normal PDF: as we know from our
earlier analytical treatments, for normal populations the distribution function Fμ̂ is
indeed normal with μ = 32 and σ2 = 25/50 = 0.5. The histogram however gives us
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a quantification of the uncertainty of the sample mean purely based on the sample
data without any additional assumptions regarding the population.

The distribution function of bootstrap replicates can easily aid us in our subse-
quent decision-making: a population mean between approximately 30 and 33 seem
plausible (which includes the true population mean of 32), while values smaller than
29 or larger than 34 seem very unlikely. If we want to make a binary decision—e.g.,
decide whether our population mean is larger or equal to 33, we can compute the
proportion p of the bootstrap replicates that satisfy this criterion and, after setting
some confidence bound pcut we accept the proposed idea if p > pcut .2 Note that for
such a procedure, as a rule of thumb, often a minimum of M = 10,000 bootstrap
samples is recommended and samples sizes (of the original sample that is) of n = 20
are often considered the minimum (see Davidson and MacKinnon 2000) for a more
formal discussion).

Interestingly, we can bootstrap not only themean, but all kinds of sample statistics.
Again, this is one of the great appeals of the bootstrap: for some estimators, deriving
analytical results, such as an analytical statement of the standard error, might be
hugely complex. In such cases in particular, the bootstrap procedure will give you
an easy method of getting some idea of the uncertainty of your estimates. Here is the
R code to carry out the bootstrapping procedure for the variance:

> # But, we can bootstrap all kinds of things:
> M <- 10000 # Number of bootstrap replicates.
> boots.var <- rep(NA, times=M)
> for (m in 1:M) {
+ resamp <- sample(sample_data, size=n, replace=TRUE)
+ boots.var[m] <- var(resamp)
+ }
> hist(boots.var, breaks=50)

The results are displayed in Fig. 7.2.
The histogram shows that the distribution function of the variance is somewhat

skewed to the right. The right tail of the histogram is longer than the left tail of the
histogram. We know this from analytical derivations when the distribution function
of the original data FX is normal. The distribution function of the sample variance fol-
lows a chi-square distribution function: (n − 1)s2/σ2 ∼ χ2

n−1. The histogram shows
that the true variance of the population is somewhere between 10 and 35, with a high
probability. This contains the variance of 25 that we used for the simulation.

2 The proportion p is, in some cases when M is large, indeed a good estimate of the probability that
the population parameter falls within a certain range. Theoretical results that support this motivate
the appeal of the bootstrap; however, for these to hold we need to make assumptions regarding the
population. Here we discuss the bootstrap informally and do not examine these theoretical results.
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Fig. 7.2 Histogram of
bootstrap replicates of the
sample variance
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7.2.3 Applying the Bootstrap: The Parametric Bootstrap

What we have just covered is what is called the “non-parametric” bootstrap. As
stated, other version(s) of the bootstrap exist, a very common one being called the
parametric bootstrap. In this version of the bootstrap we do not resample the actual
data, but rather create new datasets (aswe have been doing ourselves earlier) based on
properties of the observed sample (such as the mean and the standard deviation). We
will not dig into the details of the parametric bootstrap, but it’s good to know that it
exists, and that—while introducing additional assumptions thatmight be erroneous—
it sometimes provides better performance than the non-parametric bootstrap (again,
see (Tibshirani and Efron 1993) for theoretical details). Here is the R code to generate
a parametric bootstrap for a sample mean when we assume a normal population:

> K <- 10000 # Number of bootstrap replicates.
> par.boots <- rep(NA, times=K)
> xbar <- mean(sample_data)
> s <- sd(sample_data)
> for (k in 1:K) {
+ resamp <- rnorm(n, mean=xbar, sd=s)
+ par.boots[k] <- mean(resamp)
+ }
> summary(par.boots)

Min. 1st Qu. Median Mean 3rd Qu. Max.
28.48 30.83 31.30 31.30 31.76 33.93

In this specific casewe generate a new sample each time fromanormal distribution
(using the rnorm function) where the mean and standard deviation are estimated
using the mean and standard deviation of the sample. This illustrates the basic idea
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of the parametric bootstrap: if we assume some population distribution function, we
can use the sample to estimate its parameters, and subsequently use this distribution
function to generate bootstrap replicates. In the exercises we will further explore the
results of both the parametric and the non-parametric bootstrap and compare these
results to the asymptotic results obtained in earlier chapters.

7.2.3.1 The boot package

As you have seen before, R comes with all kinds of handy extensions (packages). A
package for computing bootstrap estimates is called boot. It can be used to compute
all kinds of bootstraps (see ?boot to read more), but a simple bootstrap of the mean
(the non-parametric one we just discussed) can be computed like this:

> library(boot)
> bmean <- function(data, indices) {mean(data[indices])}
> boots <- boot(sample_data, statistic=bmean, R=10000)
> boots

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = sample_data, statistic = bmean, R = 10000)

Bootstrap Statistics :
original bias std. error

t1* 31.31461 -0.003718269 0.6822525

Here, the boots object will contain the bootstrap samples (and more). Once you
generate the bootstrap samples, print(boots) and plot(boots) can be used
to examine the results. Furthermore, you can use the boot.ci() function to obtain
confidence intervals for the statistic(s). Note that you will have to pass a function
to the boot() function that takes as arguments the data and a so-called index (the
selected data); hence we had to write a new function to compute the mean ourselves,
as the standard mean function does not accept the indices argument. Always look at
?boot if you are unsure.

7.2.4 Applying the Bootstrap: Bootstrapping Massive
Datasets

The bootstrap is interesting because it allows us to gain quick insight into the vari-
ability of many different estimators (and even functions of multiple estimators, etc.).
However, it can be computationally demanding. In particular, when you are working
with extremely large datasets, or with data that arrives continuously in a so-called



7.2 Bootstrapping 249

“data stream” (i.e., the data points are observed one by one, in sequence), boot-
strapping might be computationally too demanding. A way to solve this is to use a
so-called “online” (or “streaming” or “row-by-row”) bootstrap.

The online bootstrap (see, e.g., Eckles and Kaptein 2019) was originally designed
to deal with situations in which data points x1, . . . , xt arrive sequentially, over time.
Thus, the sample x1, . . . , xt is continuously augmented (i.e., xt+1 gets added). In
such cases, generating M bootstrap samples anew each time a new data point is
added is computationally very demanding and, if the data points are observed in
rapid sequence, perhaps even impossible. This is for example true when we consider
data of the behavior of users of a website that is being logged to the web-servers:
every user visiting the website will create a new data point and as such she will
augment the sample. In such a case we can, instead of generating M bootstrap
samples each time the sample is augmented, maintain M different estimators and
“update” these estimators each time a new data point is observed. If we add some
randomness to our updating mechanism by which, when a new data point arrives,
some of the M estimators are updated while some are not, we—over time as the data
are continuously augmented—end up with M different estimators that quantify the
variability of interest.

To illustrate, suppose we are interested in quantifying the variability in an esti-
mated proportion. Using—for illustration purposes—M = 4 and further suppos-
ing that we initialize our bootstrapped estimates p1 = p2 = p3 = p4 = 0.5 using
an effective sample size of n1 = n2 = n3 = n4 = 2, we can examine how the first
datapoint would affect the M estimates. Suppose the first datapoint x1 = 1, and
we simply flip a fair coin M times to generate our randomness. If the sequence
of coin tosses is 1, 1, 0, 1, this implies that we update p1, p2, and p3 as follows:
pm = (pmnm + x1)/(nm + 1) andwe subsequently update nm = nm + 1 (again, only
for 1, 2, and 4). We thus end up with p1 = 2/3, p2 = 2/3, p3 = 0.5, p4 = 2/3.
Next, if x2 = 0, and our sequence of coin tosses is 0, 0, 1, 1, we end up with
p1 = 2/3, p2 = 2/3, p3 = 1/3, p4 = 2/4, etc. It is clear that as new datapoints are
observed, this procedure will lead to M different estimates—each based on a slightly
different dataset selected by virtue of our introduced randomness. A histogram over
the M estimates can now again be used to examine the variability of the estimator of
interest.

The online bootstrap for a sample mean can be implemented in R using the
following code:

> # Online bootstrap:
> K <- 10000
> online.means <- rep(0, times=M)
> online.counts <- rep(0, times=M) # This could have been a

matrix.
>
> # Function for online update of mean:
> update.mean <- function(current, n, x) {
+ return(current+(x-current)/n)
+ }
>
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Fig. 7.3 Bootstrapping
using the online bootstrap
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> # Run through the data in sequence:
> for (i in 1:length(sample_data)) {
+ # Sample / generate the randomness to determine which of the

M samples to update:
+ update <- sample(c(TRUE, FALSE), size=K, replace=TRUE)
+ # Update the selected samples:
+ online.counts[update] <- online.counts[update] + 1
+ online.means[update] <- update.mean(current=online.means[

update], n=online.counts[update], x=sample_data[i])
+ }
>
> summary(online.means)

Min. 1st Qu. Median Mean 3rd Qu. Max.
29.09 31.16 31.60 31.59 32.02 34.21

> hist(online.means, breaks=50)

This code produces Fig. 7.3. Note that instead of resampling the data multiple
times, we actuallymaintainmultiple (in this case J = 10,000) estimates, and for each
datapoint that we encounter in the data we “update” our estimate with probability
0.5. Note that we could do this on much larger streams of data and that this is much
more feasible computationally than the original non-parametric bootstrap; we will
examine this in more detail in the assignments.
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7.2.5 A Critical Discussion of the Bootstrap

The bootstrap provides an appealing, and very general, method of the quantifying
uncertainty of any statistic T (x). However, as is often the case with statistical meth-
ods, the approach also has its own caveats. It is relatively easy to see when the
bootstrap procedure will provide us with poor results (although it is not always easy
to solve). Recall that effectively the bootstrap procedure consists of two parts:

1. First, we estimate FX based using our sample x1, . . . , xn . This gives us F̂X .
2. Second, we obtain M random samples from F̂X (each of size n), on which we

computed our bootstrap estimates of the statistic of interest θ̂(1), . . . θ̂(M) which
we regard as (approximate) samples from Fθ̂.

Each of these parts can wreak havoc. First, it might be the case that F̂X is a very
poor estimate of FX . This is often the case when n is small, but it might also be caused
by the fact that the original sample x1, . . . , xn is not obtained through simple random
sampling. If the latter is the case, the sampling scheme that was used should be taken
into consideration when computing F̂X ; this can be challenging. For well-known ran-
dom sampling procedures such as cluster sampling, variations to the bootstrap that
still provide accurate result are known (see (Tibshirani and Efron 1993) for details),
but for more challenging—or unknown—sampling schemes assessing the accuracy
of F̂X is hard. Next, obviously, the sampling scheme implemented in the second step
presented above should mimic the sampling scheme that was originally used: if the
M bootstrap samples are generated using a different sampling scheme than the sam-
pling scheme of interest, Fθ̂ might not be properly approximated by the M bootstrap
samples. In our discussion above we assumed simple random sampling; resampling
the sample with replacement as we discussed for the non-parametric bootstrap gen-
erates simple random samples from a population with distribution function F̂X . If,
however, we are interested in the variability of our estimator over differently obtained
samples, we should adopt our bootstrapping procedure accordingly. Thus, although
the bootstrap is appealing as it allows one to quantify the uncertainty for virtually
any statistic—by simply replacing tedious analytical work with simple computer
operations—one should always be careful: for complex sampling schemes and com-
plex population distributions, F̂X , or the resultingM bootstrap samples of the statistic
of interest, might not provide a good quantification of the uncertainty associated with
θ̂.

7.3 Hypothesis Testing

While the bootstrap provides an easy way of quantifying uncertainty that we can use
to make decisions, it is hard in general to make statements about the quality of these
decisions. Hypothesis testing provides a method for making binary decisions that,
in many instances, does give us clear quantitative statements about the quality of the
decisions we make.
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Within hypothesis testing the general setup is as follows: we state our decision
problem as a choice between two competing hypotheses regarding the population,
often called the null hypothesis H0, and the alternative hypothesis Ha . To provide
a concrete example, we might be interested in testing whether the population mean
μ( f ) is equal to or below a certain known value μ0. The respective hypotheses can
in this case be formulated as follows:

H0 : μ( f ) ≤ μ0

Ha : μ( f ) > μ0

In this section we will discuss several different null hypotheses that would be useful
in many different applications.

The subsequent rationale of hypothesis testing is that we assume that the null
hypothesis is true and that we gather sufficient evidence to demonstrate that it is not
true. Thus the goal of hypothesis testing is to reject the null hypothesis on the basis of
sufficient and well-collected data. We will make the notion of “sufficient evidence”
more precise below. However, before we do so it is good to think about the possible
errors involved when making a binary decision between two hypotheses. Given that
H0 and Ha are complementary, one of the two must be true in the population. We
will be making a decision in favor of one of the two hypotheses based on (random)
sample data. We will decide that either H0 is rejected (thus Ha must be true) or is
not rejected (thus there is no or not enough evidence to demonstrate that H0 is false).
This setup gives rise to four different situations as depicted in Fig. 7.4.

In two of these situations the decision matches with the population: we do not
reject H0 when H0 is true in the population (the upper left corner in Fig. 7.4) and we
reject H0, and subsequently accept Ha , when Ha is true in the population (the lower
right corner in Fig. 7.4). We can also err on two sides. First of all, we can make a false
positive or type 1 error. In this case we reject H0 while in reality it is true (bottom
left corner in Fig. 7.4). The probability of a type 1 error is associated with the level
α. The α is used as a maximal allowable type 1 error for a decision rule. Finally, we
can also make a type 2 error. In this case we do not reject H0, while in actuality Ha is
true (the top right corner in Fig. 7.4). The probability of a type 2 error is associated
with the level β. The value β is used a maximal allowable type 2 error.3 One minus
the type 2 error is called the power of the binary decision rule. It indicates how likely
the null hypothesis is rejected when the alternative hypothesis is true.

Note that it is easy to create a decision procedure that has a type 1 error probability
equal to zero: if we simply never reject H0—in this case basically we state that there
is never sufficient evidence to reject H0—we will never make a type 1 error. While
this decision procedure does control the type 1 error, it is clearly not very useful, as
the power of this decision rule is zero: we never accept the alternative hypothesis

3 These two errors generally exist for any binary decision. Suppose we need to make a choice
between A and B: we can choose A while B is true, or choose B when A is true. In different contexts
these two types of errors have different names, such as sensitivity and specificity in diagnostic
testing, as discussed in Chap. 3.
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Fig. 7.4 Types of errors in
hypothesis testing

when it is true. To alleviate this problem, the procedure of hypothesis testing aims
to be less conservative (e.g., it will reject the null hypothesis sometimes but not too
often when it would be true). It defines sufficient evidence such that the probability
of making a type 1 error is at most α.4 The levelα is called the significance level and,
as we have already mentioned, it is the maximal allowable probability of rejecting
the null hypothesis when the null hypothesis is actually true. It is often set equal to
a value of α = 0.05 or α = 0.01.

7.3.1 The One-Sided z-Test for a Single Mean

To illustrate the concept of hypothesis testing, now that we understand the type
of mistakes we can make, we will return to the hypothesis on the population mean
above: H0 : μ( f ) ≤ μ0 versus Ha : μ( f ) > μ0.Wewill illustrate how itworks, using
asymptotic theory, i.e., we assume that the sample is large enough to be able to use
the normal distribution function as an approximation to the distribution function of
the statistic that we are using to make a decision about the null hypothesis.

Let’s assume that we have collected a random sample Y1, Y2, . . . ,Yn from the
population. We may estimate the population mean μ ( f ) with the sample average Ȳ .
Clearly, when Ȳ is smaller or equal to μ0 the random variable Ȳ seems to be in line
with the null hypothesis H0 : μ( f ) ≤ μ0. In other words, there is no evidence that the
null hypothesis is false. Although the random variable does not suggest any conflict
with the null hypothesis H0 : μ( f ) ≤ μ0, it does not guarantee thatμ( f ) ≤ μ0 either.
Indeed, if the population mean μ( f ) were somewhat larger than μ0, it might not be
completely unlikely to observe a sample average still below μ0 due to the sampling
(a type 2 error). When Ȳ is larger than μ0, we might start to believe that the null
hypothesis is incorrect. However, when Ȳ is just a little higher than μ0 this might not
be very unlikely either, even when μ( f ) ≤ μ0. For instance, for any symmetric f at

4 Here we discuss merely bounds on the type 1 error for a given sample size n. Subsequent theory
exists to also bound the type 2 error with the level β, from which the required sample size n would
then follow. This latter theory is of interest when planning (e.g.) experiments and determining their
sample size. Here we consider situations in which the sample data of size n is given and we have
no real control over the power.



254 7 Making Decisions in Uncertainty

μ( f ) = μ0, the probability that Ȳ is larger than μ0 is equal to 0.5. Only when the
sample average Ȳ is substantially larger—thus when there is sufficient evidence—
than Ȳ would we start to indicate that the null hypothesis H0 : μ( f ) ≤ μ0 is unlikely
to be true (although a type 1 error could be made here).

Thus we want to find a criterion for the average Ȳ such that the average can only
be larger than this criterion with a probability that is at most equal to α when the null
hypothesis is true. If we assume that this criterion is equal to μ0 + δ, with δ > 0,
then the probability that Ȳ is larger than μ0 + δ is given by

Pr
(
Ȳ > μ0 + δ

) = Pr

(
(Ȳ − μ( f ))

σ( f )/
√
n

>
μ0 − μ( f ) + δ

σ/
√
n

)

≈ 1 − Φ

(
μ0 − μ( f ) + δ

σ( f )/
√
n

)

where Φ is the standard normal PDF. Note that we have made use of asymp-
totic theory here to approximate the probability. Under the null hypothesis H0 :
μ( f ) ≤ μ0 this probability is the type 1 error and it is maximized when μ( f ) = μ0.
Hence, if we deliberately set μ( f ) = μ0 to maximize the type 1 error, the prob-
ability Pr

(
Ȳ > μ0 + δ

)
is given by 1 − Φ(δ

√
n/σ). When we choose δ equal to

δ = z1−ασ( f )/
√
n, the probability becomes Pr

(
Ȳ > μ0 + δ

) ≈ α. Thus, when Ȳ >

μ0 + z1−ασ( f )/
√
n the probability of rejecting the null hypothesis is at mostα—and

hencewe have defined sufficient evidence by the criterionμ0 + z1−ασ( f )/
√
n for the

null hypothesis H0 : μ( f ) ≤ μ0 using the statistic Ȳ . Note that the null hypothesis
could still be true, but that it is just bad luck to have observed such an unlikely large
average under the null hypothesis. However, we know that this probability of having
bad luck is less than or equal to α and therefore we accept making this potential type
1 error.

In practice, we cannot use the criterion Ȳ > μ0 + z1−ασ( f )/
√
n directly, as it

depends on the population standard deviation σ( f ), which is generally not known.
We could estimate it from the data and the most natural candidate would be to
take the sample standard deviation S = [ 1

n−1

∑n
i=1(Yi − Ȳ )2]1/2. If the sample size

is large enough, the probability Pr(Ȳ > μ0 + z1−αS/
√
n) would still be close to

α. Thus when the sample size is large enough, we may reject the null hypothesis
in practice when Ȳ > μ0 + z1−αS/

√
n or in other words when the asymptotic test

statistic Tn = (Ȳ − μ0)/(S/
√
n) is larger than z1−α. Thus for large sample sizesn, the

null hypothesis H0 : μ( f ) ≤ μ0 is tested with test statistic Tn = (Ȳ − μ0)/(S/
√
n)

and the null hypothesis is rejected with significance level α when the test statistic
is larger than the critical value z1−α. The null hypothesis is not rejected when Tn =
(Ȳ − μ0)/(S/

√
n) ≤ z1−α, since there would not be enough evidence to reject the

null hypothesis with significance level α (i.e., the observed result is not unlikely
enough under H0). This does not mean that the null hypothesis is true. Note that
the asymptotic approach for testing H0 : μ( f ) ≤ μ0 will work for most population
densities fX whenever the sample size is large enough.

Instead of using the critical value z1−α for the asymptotic test statistic Tn = (Ȳ −
μ0)/(S/

√
n) to reject a null hypothesis, we often compute a so-called p-value. As

the p-value is very often reported and used, it is good to provide a definition first:
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The p-value is the probability that the observed test statistic tn and more extreme
observations would occur under the null hypothesis.5

After computing a p-value, we can reject H0 when p < α. In the case of the asymp-
totic test statistic for H0, this probability is equal to p = 1 − Φ(tn), with Φ the
standard normal distribution function.

To summarize, the basic rationale of null hypothesis testing is that it provides a
procedure to bound the errors made when making binary decisions (rejecting H0 or
not) based on sample data. To do so, we compute a test statistic Tn , and we compute
the distribution function of this test statistic given the assumption that H0 is true.
When we have the distribution function of our test statistic under H0, we can then
see whether the observed test statistic tn (or a more extreme value of tn) is sufficient
to reject H0. When the observed test statistic tn is unlikely to occur under the null
hypothesis and we reject H0 the result is often said to be statistically significant.

7.3.1.1 Example: Watching Television

To provide a simple example of the one-sided null hypothesis test we just explained,
consider the data on approximately 50,000 children at high schools in the Nether-
lands with an age of 11 to 13 years and focus on the amount of time spent behind
the TV. The population density is highly skewed, since this is suggested by the
histogram in Fig. 7.5 and the sample skewness of 1.568 (use the function call
skewness(high_school$TV, type=3) after you have loaded the package
e1071). However, the sample size is n = 50,069, which may be considered large
enough to apply the asymptotic test statistic.

In this case we would like to know if children spend less than 14hours per week
in front of the television on average, since we have reason to believe that they spend
(much) more. Thus the null hypothesis is H0 : μ( f ) ≤ μ0 = 14 and the alternative
hypothesis is Ha : μ( f ) > 14, since we would like to show the alternative. The
following R code provides the observed test statistic tn = (ȳ − μ0)/(s/

√
n), with ȳ

the sample average and s the sample standard deviation.

> mu0 <- 14
> ybar <- mean(high_school$TV)
> s <- sd(high_school$TV)
> n <- nrow(high_school)
> tn <- (ybar-mu0)/(s/sqrt(n))
> ybar
[1] 14.22914
> s
[1] 10.43579
> n
[1] 50069
> tn

5 Here tn is considered the realization of the test statistic Tn and referred to as the observed test
statistic.
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Fig. 7.5 Histogram of TV-watching of children at age 11 to 13 years

[1] 4.913231

If we take as the significance level α = 0.05, this test statistic is substantially
larger than the critical value z1−α = z0.95 = 1.644854 (to see this use R and use
qnorm(0.95, mean=0, sd=1)), which means that we will reject the null
hypothesis H0 : μ( f ) ≤ 14 for the hours of watching TV.

7.3.2 The Two-Sided z-Test for a Single Mean

Testing H0 : μ( f ) ≤ μ0 against Ha : μ( f ) > μ0 (or the other form H0 : μ( f ) ≥ μ0

against Ha : μ( f ) < μ0) is calledone-sidedhypothesis testing.Weare only interested
in rejecting the null hypothesis in one direction, when the test statistic Tn = (Ȳ −
μ0)/(S/

√
n) is large positive (or negative).

In other applications we might be interested in two-sided hypothesis testing. The
null hypothesis is formulated as H0 : μ( f ) = μ0 and the alternative hypothesis is Ha :
μ( f ) �= μ0.Wewould reject the null hypothesiswhen either Tn = (Ȳ − μ0)/(S/

√
n)

is large positive or large negative. If we still keep our significance level at α, we will
reject the null hypothesis H0 : μ( f ) �= μ0 when (Ȳ − μ0)/(S/

√
n) > z1−α/2, with

z1−α/2 the 1 − α/2 quantile of the standard normal distribution (when using a normal
approximation), or when (Ȳ − μ0)/(S/

√
n) < −z1−α/2. Thus we would reject when

|Ȳ − μ0|/(S/
√
n) > z1−α/2, with |x | the absolute value of x . Figure7.6 illustrates

the difference between one- and two-sided tests by indicating the rejection region
under the null hypothesis.
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Fig. 7.6 The difference between one-sided and two-sided tests. In both cases H0 is not rejected
if the observed test statistic tn falls outside of the rejection region α. However, for a one-sided
test (top) the rejection region is located on one tail of the distribution (the blue area denoted α).
Hence, only if tn > z1−α (in this case), and sufficiently large to fall within the rejection region, is
H0 rejected. For a two-sided test the rejection region is split over the two tails of the distribution:
hence H0 can be rejected if tn is either sufficiently small or sufficiently large. Finally, note that if
tn > z1−α—if this is the direction of the one-sided test—a one-sided test might reject H0, whereas
the same tn might not lead to a rejection in the two-sided case, because the critical value for the
two-sided test is larger than for the one-sided test

Two-sided tests are very often used; they are the default testing method reported
in many studies in the social sciences (and beyond). In practice, when moving from
a one-sided test to a two-sided test we merely change our rejection region: we still
derive the distribution function of the test statistic under the null hypothesis, but now
we reject this hypothesis when the test statistic is sufficiently small or sufficiently
large. To control our type 1 error, we therefore split up our rejection region in two:
this is why we work with z1−α/2 as opposed to z1−α as we did before for one-sided
hypothesis testing. Note that two-sided tests, while used very often in practice, are
less useful when sample sizes are very large: with a very large n, the standard error
of a test statistic will become small, and we eventually will reject the null hypothesis
in most cases.6

Although we have shown how to compute the values of the test statistics for
one-sided and two-sided tests by writing our own custom R code, R also contains
a number of default functions to perform statistical tests. The R function z.test
(x, y = NULL, alternative="two.sided", mu = 0, sigma.x=
NULL, sigma.y = NULL, conf.level = 0.95) takes a vector x and

6 One way to see why this is true is to consider testing the two-sided null hypothesis that the
difference in means of two independent normal populations is zero. As this concerns a continuous
random variable, the probability that this difference is exactly zero is itself zero. Thus, as long as
we gather a sufficient number of observations, we will eventually reject the null hypothesis.
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optionally a vector y to test whether the mean of x is equal to μ (the default value
of which is 0, but it can be set using the mu argument) or whether the difference
in means of x and y is equal to μ. The argument alternative can be used to
specify the alternative hypothesis and thus specify whether we are considering a
one- or two-sided test. The function z.test will provide a p-value using a(n)
(asymptotic) normal approximation.

7.3.3 Confidence Intervals and Hypothesis Testing

Both in Chap.5 and when we covered the bootstrap method we discussed confidence
intervals. A confidence interval quantifies that, if the same population is sampled on
numerous occasions and interval estimates are made on each occasion, the resulting
intervals would include the true population parameter in (approximately) 95% of the
cases. We showed how to compute (asymptotic) confidence intervals for specific test
statistics. For example, we showed that a 1 − α asymptotic confidence interval for
μ( f ) could be calculated by [Ȳ − z1−α/2S/

√
n, Ȳ + z1−α/2S/

√
n].

Interestingly, this confidence interval contains the statistic we just discussed for
hypothesis testing. In the case thatμ0 is not contained in the confidence interval, either
(Ȳ − μ0)/(S/

√
n) > z1−α/2 or (Ȳ − μ0)/(S/

√
n) < −z1−α/2 would have occurred.

Thus the null hypothesis H0 : μ( f ) = μ0 would be rejected if μ0 is not contained
in [Ȳ − z1−α/2S/

√
n, Ȳ − z1−α/2S/

√
n]. Thus confidence intervals relate directly to

two-sided hypothesis tests.
This example demonstrates that, if we can compute confidence intervals, we can

directly use the confidence intervals to test a null hypothesis. If the null hypothesis
is included in the confidence interval, we do not have sufficient evidence to reject it.
If the confidence interval lies fully outside of the null hypothesis, there is sufficient
evidence to reject the null hypothesis. Theoretically (and asymptotically) using con-
fidence intervals for testing will lead to the same type 1 error probabilities. However,
whether the asymptotic theory holds depends quite heavily on the test statistic of
interest, the population distribution, and the sample size: as we saw in the assign-
ments in Chap.5, confidence intervals do not always have their desired coverage
probability for small sample sizes. The bootstrap approach we discussed above as
an analytical approach to obtain confidence intervals for certain statistics may be an
alternative to generate confidence intervals (instead of using asymptotic theory).

We would like to encourage the reporting of confidence intervals, as opposed to
the common practice of reporting only p-values.We feel that the current emphasis on
p-values in scientific reporting is unwarranted: the p-value is useful for controlling
type 1 errors, but its use should not be overstated. This has a number of reasons:
first of all, the p-value states whether it is unlikely to see a value of tn under H0 to
declare “significance”; this, however, does not at all imply that the value of tn actually
relates to a practically significant or important finding. Second, not rejecting H0 is
often considered evidence in favor of H0, but this is erroneous: for very small n we
would hardly ever reject H0, but this is just due to a lack of sufficient evidence, it
is not due to the fact that H0 is likely to be true. A confidence interval would then
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show a very wide interval, indicating that the test statistic is not very precise. The R
functions we will discuss in the next sections for testing null hypotheses frequently
provide (by default 95%) confidence intervals for the test statistic of interest.

7.3.4 The t-Tests for Means

In the following sections we discuss a number of test statistics for testing population
means assuming that the data comes from a normal distribution. In this case we
do not have to make use of large sample sizes and the asymptotic theory. The test
statistics will work for any sample size n and not just for large sample sizes.

7.3.4.1 The t-Test for a Single Sample

Under the assumption that the random variables Y1, Y2, . . . ,Yn are i.i.d. normally
N

(
μ0,σ

2
)
distributed, we would know that the test statistic Tn = (Ȳ − μ0)/(S/

√
n)

has a t-distribution with n − 1 degrees of freedom. Thus, instead of using the 1 −
α quantile z1−α of the normal distribution, we may better use the 1 − α quantile
x1−α( ft ) of the t-distribution for one-sided testing. Indeed, we would obtain that
Pr((Ȳ − μ0)/(S/

√
n) > x1−α( ft )) = α for any sample size n. The test statistic Tn =

(Ȳ − μ0)/(S/
√
n) is called the one-sample t-test and we would reject the one-sided

null hypothesis H0 : μ( f ) ≤ μ0 in favor of Ha : μ( f ) > μ0 when the observed value
tn > x1−α( ft ) and do not reject the null hypothesis when tn ≤ x1−α( ft ). On the other
hand, we would reject the one-sided null hypothesis H0 : μ( f ) ≥ μ0 in favor of
H0 : μ( f ) < μ0 when tn < −x1−α( ft ) and do not reject the null hypothesis when
tn ≥ −x1−α( ft ). Finally, we would reject the two-sided null hypothesis H0 : μ( f ) =
μ0 in favor of Ha : μ( f ) �= μ0 when |tn| > x1−α/2( ft ) and do not reject the null
hypothesis when |tn| ≤ x1−α/2( ft ).

Again, we could also calculate a p-value instead of using quantiles as critical
values. In this case, the probability for H0 : μ( f ) ≤ μ0 against Ha : μ( f ) > μ0 is
equal to p = 1 − Ft (tn), with Ft the t-distribution function with n − 1 degrees of
freedom and tn is calculated from the data. If this p-value is below α, we believe
that it is unlikely to obtain the result tn or larger results under the null hypothesis
H0 : μ( f ) ≤ μ0. The p-value would be exactly equal to α if tn equals the critical
value x1−α( ft ). Indeed, α = 1 − Ft (x1−α( ft )) = Pr(Tn > x1−α( ft )). For the null
hypothesis H0 : μ( f ) ≥ μ0 against Ha : μ( f ) < μ0 the p-value is calculated as p =
Ft (tn) and for the null hypothesis H0 : μ( f ) = μ0 against Ha : μ( f ) �= μ0, the p-
value is calculated as p = 2[1 − Ft (|tn|)].

The one-sample t-test is the optimal test statistic under the assumption of Y1,
Y2, . . . ,Yn are i.i.d. N

(
μ0,σ

2
)
: There is no other test statistic with the same type

1 error α that would reject the null hypothesis quicker than the t-test when the
alternative hypothesis is true, i.e., it has the highest power compared to any other test
statistic. The one-sample t-test is illustrated with R in the following subsection.
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7.3.4.2 The t-Test for Two Independent Samples

We often want to compare the means of two independent samples with each other.
In this case, we essentially have one sample from population h = 1 with sample
size n1 and one sample from population h = 2 with sample size n2. The random
variables are denoted by Yh,1, Yh,2, . . . ,Yh,nh for population h. If we assume that
Yh,1, Yh,2, . . . ,Yh,nh are i.i.d. N (μh,σ

2
h) and we are interested in a testing hypothesis

regarding the difference μ1 − μ2 (i.e., the difference in population means), a natural
estimator for this difference is Ȳ1 − Ȳ2, and the standard error of this estimator is√

σ2
1/n1 + σ2

2/n2.
7 This standard error can be estimated by substituting the sample

variance S2h for σ2
h , h = 1, 2.

If the standard deviations of the two populations are equal (σ = σ1 = σ2; see

below), the standard error
√

σ2
1/n1 + σ2

2/n2 becomes equal to σ
√
1/n1 + 1/n2. In

the case of equal variances, both sample variances S21 and S22 provide information
on the variance σ2. The variance σ2 can now be estimated by the pooled sample
variance S2p given by

S2p = (n1 − 1)S21 + (n2 − 1)S22
n1 + n2 − 2

.

S2p is a weighted average of the sample variances where the weights are based on
the degrees of freedom. The random variable (Ȳ1 − Ȳ2)/[Sp

√
1/n1 + 1/n2] has a

t-distribution function with n1 + n2 − 2 degrees of freedom. It can be used to test a
one-sided or two-sided null-hypothesis on the mean difference μ1 − μ2.

When the two variances are unequal, the statistic (Ȳ1 − Ȳ2)/
√
S21/n1 + S22/n2

does not follow a t-distribution and the distribution function of the statistic is not
free from the ratio σ1/σ2. This does not mean that we should always use asymp-
totic theory for normally distributed data, since the t-distribution still provides a
better approximation when the degrees of freedom are estimated from the data. This
approximation is often referred to as the Satterthwaite or Welch approximation and
can easily be computed using R.

TheR functiont.test(x,y=NULL,alternative="two.sided",mu
= 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)
can be used similarly to the function z.test but uses the t-distribution as opposed
to the normal distribution function. Hence, this function can be used to compute both
the one-sample t-test and the two independent samples t-test (with the assumption of
equal and unequal variances). The code belowprovides an example of the one-sample
and two independent samples tests based on simulated data:

7 The variance of the difference of two independent random variables is the sum of the two
variances of the random variables (see the calculation rules in Chap. 4). Indeed, VAR(X − Y ) =
VAR(X) + VAR(Y ), with VAR(X − Y ) = E(X − Y − E(X − Y ))2, VAR(X) = E(X − E(X))2,
and VAR(Y ) = E(Y − E(Y ))2. The variances of Ȳ1 and Ȳ2 are equal to σ2

1/n1 and σ2
2/n2, respec-

tively.
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> # Simulating 20 observations
> set.seed(21349)
> x <- rnorm(20, 5, 1)
> # t.test one mean, H0 : mu=0
> t.test(x)

One Sample t-test

data: x
t = 25.697, df = 19, p-value = 3.206e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
4.547128 5.353552
sample estimates:
mean of x
4.95034

>
> # Adding a set of observations
> y <- rnorm(20, 3, 3)
> # t.test comparing means
> t.test(x, y)

Welch Two Sample t-test

data: x and y
t = 3.5683, df = 26.042, p-value = 0.001423
alternative hypothesis: true difference in means is not equal to

0
95 percent confidence interval:
0.7259575 2.6984199
sample estimates:
mean of x mean of y
4.950340 3.238152

The code above shows that in this case the null hypothesis for the one-sample t-test
(first example, H0 : μ = 0 by default), using α = 0.05, is rejected as p << 0.05.
Note that the 95% confidence interval is provided and it does not contain the value
0. For the second example, using α = 0.05 the null hypothesis H0 : μ1 = μ2 is also
rejected. Again, a confidence interval for the mean difference is provided and does
not contain the value 0. Aswe did not assume equal variances, the degrees of freedom
for the test statistic were calculated at d f = 26.042, which is less than the degrees of
freedom of d f = 38 (= n1 + n2 − 2 = 20 + 20 − 2) that we would have used when
assuming equal variances.

Deciding between the two t-tests with equal or unequal variances for testing the
means from two independent samples has been a long-standing debate among statis-
ticians. Some statisticians believe that we should always use the t-test with unequal
variances,while others firstwant to investigatewhether the variances between the two
populations are different. If they are different, then a t-test with unequal variances
is used, otherwise the t-test with equal variances is used. These statisticians have
recommended using a significance level of α = 0.25 for testing equality of the two
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variances: H0 : σ2
1 = σ2

2 or equivalently H0 : σ1 = σ2. Testing this null-hypothesis
under the assumption of normality is discussed in Sect. 7.3.6.1.

7.3.4.3 The t-Test for Two Dependent Samples

We sometimes want to compare themeans of two dependent samples: e.g., the means
of two related groups. This occurs frequently when we want to compare a property
that we measure regarding people (e.g., their happiness) at one point in time with
that same property at a later point in time. In this case, contrary to the independent
sample case discussed above, the data are paired (as we have discussed in Chap.6).
The null hypothesis is still formulated on the difference in means μ1 − μ2 for the
two samples, like we did for the two independent samples, but now we must take
into account that the data may be dependent.

We can consider hypothesis testing regarding the difference in means by calcu-
lating difference scores. Thus, we can consider the difference scores D1 = Y1,1 −
Y2,1, D2 = Y1,2 − Y2,2, . . . Dn = Y1,n − Y2,n . By considering the difference score we
have brought the two samples back to one sample of difference scores and addressed
the dependencybetween the two samples. Thus, the test staticTn = D̄/ ˆSE(D̄),where
D̄ is the average of the difference scores and ˆSE(D̄) = sD/

√
n with sD the sample

standarddeviationof the difference scores. The test statisticTn follows a t-distribution
with n − 1 degrees of freedom (when the difference scores are normally distributed).
This test statistic can be used to test the null hypotheses H0 : μD = μ1 − μ2 ≤ 0,
H0 : μD = μ1 − μ2 ≥ 0 or H0 : μD = μ1 − μ2 = 0.

The R function t.test() discussed above can also be used to conduct a depen-
dent samples t-test: using the argument paired we can differentiate between an
independent and a dependent samples t-test. The code below shows the results for a
paired samples (i.e., dependent samples) t-test. We use a slightly different set-up for
simulating data, since we want to simulate paired data. Here we generate a random
variable Z from a normal distribution that will be used for the X and Y observation
on one unit. We add a little bit of normal noise and shift the mean for the Y variable.
Using this simulation setup, the null hypothesis H0 : μD = 0 is rejected. The 95%
confidence interval of the difference in means is provided.

> set.seed(21349)
> z <- rnorm(20, 3, 5)
> e1 <- rnorm(20, 0, 1)
> e2 <- rnorm(20, 0, 1)
> x <- z + e1
> y <- z + 1 + e2
> t.test(x, y, paired=TRUE)

Paired t-test

data: x and y
t = -3.4888, df = 19, p-value = 0.002457
alternative hypothesis: true difference in means is not equal to

0
95 percent confidence interval:
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-1.4061194 -0.3516121
sample estimates:
mean of the differences

-0.8788657

If we had ignored the dependency between the two samples and performed a
two independent samples t-test, we would not have rejected the null hypothesis of
H0 : μD = μ1 − μ2 = 0. The reason is that the two independent samples t-test does
not eliminate the common part Z in the two paired observations X and Y . Thus when
the data are paired, you should use the paired t-test and when they are not paired you
should use the two independent samples t-test.

7.3.5 Non-parametric Tests for Medians

The z-tests and the t-tests have been developed under certain assumptions. The z-
test heavily depends on asymptotic theory and therefore requires large sample sizes,
while the t-test can be used for small sample sizes but under the strict assumption
of having collected data from a normal distribution. Alternative approaches for the
z-test and t-test have been developed that require fewer or no assumptions. These
tests are referred to as non-parametric tests. We will discuss the Mann–Whitney U
test for the comparison of two population medians when two independent samples
are collected and theWilcoxon’s signed rank test and the sign test for the comparison
of two medians from two dependent samples.

7.3.5.1 Mann–Whitney U Test for Two Independent Samples

The t-tests are based on the assumption of normality. This assumption does not
always hold, so we may be in need of alternative approaches that do not assume
normality of the data. One such approach is the Mann–Whitney U test for two
independent samples. It tests the null hypothesis H0 : Pr(Y1 > Y2) = Pr(Y1 < Y2),
with Y1 a random draw from the first population and Y2 a random draw from the
second population. If the null hypothesis is false, it is more likely to observe larger
values in one of the populations with respect to the other population. Thus one
population is stochastically greater than the other population. Note that the null
hypothesis is equivalent to H0 : Pr(Y1 > Y2) = 0.5.

If we now assume that the distribution function F2 for the second population is
given by F2(y) = F1(y + δ), with F1 the distribution function of the first popula-
tion and δ a (shift) parameter, the null hypothesis H0 : Pr(Y1 > Y2) = Pr(Y1 < Y2)
implies that the medians of the two populations must be equal (i.e., δ = 0). Thus,
only in this somewhat restrictive formulation of population distributions, the Mann–
Whitney U test investigates whether the two populations have equal medians.

The Mann–Whitney U test statistic is given by
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U =
n1∑

i=1

n2∑

j=1

[
1(Y2, j<Y1,i ) + 0.5 · 1(Y1,i=Y2, j )

]
,

with 1A the indicator function equal to 1 if A is true and zero otherwise. It represents
the number of pairs (Y1,i ,Y2, j ) of observations from the two populations for which
the first population provides a larger value than the second population. If there are ties
(i.e., Y1,i = Y2, j ), we cannot determine which population provides the larger value;
thus this pair only contributes half to the total number of observations for which the
first population is larger than the second population. If the variable Yh is continuous,
we should not observe any ties if we use enough decimal places in the recording of
the values.

The Mann–Whitney U test only makes use of the ordering of the observations.
The total number of pairs for which the comparison between the two populations is
made is equal to n1n2. Indeed, each observation of the first sample is compared to
each observation in the second sample. Thus the statistic U/(n1n2) is an estimator
of the probability Pr(Y1 > Y2). When U/(n1n2) is away from 0.5 or in other words,
whenU is away from0.5n1n2, the null hypothesis H0 : Pr(Y1 > Y2) = 0.5 is rejected
and one population is considered stochastically greater than the other population.

To determine whether the U statistic is away from 0.5n1n2, we will make use of
asymptotic theory, aswedidwith the z-test formeans. If the sample sizesn1 andn2 are
large enough, the Mann–Whitney U statistic is approximately normally distributed
with mean μU and variance σ2

U . Under the null hypothesis H0 : Pr(Y1 > Y2) = 0.5,
the mean μU is of course equal to μU = 0.5n1n2. The variance is then equal to
σ2
U = n1n2(n1 + n2 + 1)/12, but only when there are no ties. If there are ties, a

correction to this variance is required tomake the variance smaller. The ties reduce the
variability inU . To test the null hypothesis H0 : Pr(Y1 > Y2) = 0.5 we calculate the
standardized value Z = [U − 0.5n1n2]/√n1n2(n1 + n2 + 1)/12 and compare this
with the quantiles zα/2 and z1−α/2 of the standard normal distribution. If |Z | > z1−α/2

we reject the null hypothesis.
To illustrate the Mann–Whitney U test, we will use the simulated data we have

already used for the t-test for two independent samples.

> set.seed(21349)
> x <- rnorm(20, 5, 1)
> y <- rnorm(20, 3, 3)
> sort(x)
[1] 3.641566 3.710570 4.037056 4.059152 4.392723 4.447961

4.498769 4.508335 4.585216 4.774473 4.827863 4.893561
5.182205

[14] 5.417988 5.568407 5.647138 5.666598 5.956765 6.562305
6.628153

> sort(y)
[1] -0.3466269 0.2560427 0.8378082 1.4280921 1.6181263 1.6484644

2.0823331 2.1738134 2.9864973 3.3260533
[11] 3.8210475 3.8994514 4.2691191 4.3280371 4.5659308 4.9015815

4.9347916 5.1430118 6.0666133 6.8228439
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Calculating the number of pairs from the sorted values can now be quickly conducted
manually. The first value 3.641566 of the first population is larger than the first 10
observations of the second population. If we do this for each of the observations in
the first population we obtain: 10, 10, 12, 12, 14, 14, 14, 14, 15, 15, 15, 15, 18, 18,
18, 18, 18, 18, 19, and 19. Thus the Mann–Whitney U statistic is equal to U = 306
by summing up all these numbers. The mean and variance of the Mann–Whitney
U test (under the null hypothesis) are equal to μU = 200 and σ2

U = 4,100/3. Thus
the standardized statistic is calculated at 2.867 = [306 − 200]/√4,100/3, which
indicates that the null hypothesis H0 : Pr(Y1 > Y2) = 0.5 is rejected at significance
level α = 0.05, since the normal quantiles are equal to z1−α/2 = −zα/2 = 1.96. It
seems that the first population is stochastically greater than the second population.

In R we can carry out the Mann–Whitney U test as follows:

> wilcox.test(x,y,correct=FALSE,exact=FALSE)

Wilcoxon rank sum test

data: x and y
W = 306, p-value = 0.00414
alternative hypothesis: true location shift is not equal to 0

We need to eliminate the “exact” calculation of the p-value if we wish to use the
asymptotic test statistic. We also need to eliminate a continuity correction, which
is built in as the default calculation. The asymptotic test statistic is in most cases
appropriate, unless the sample sizes are small.8

The function wilcox.test is named after Frank Wilcoxon, because it calcu-
lates the Wilcoxon rank sum test. Frank Wilcoxon formulated a test statistic based
on the ranks of the observations, which later turned out to be identical to the Mann–
Whitney U test. They calculated different statistics, but they were not so different
after all.

7.3.5.2 The Sign Test for Two Related Samples

For two related datasets we observe the pairs of data (Y1,i ,Y2,i ) for the units
i = 1, 2, . . . , n. A relevant question for paired data is whether one component
is stochastically greater than the other component: H0 : Pr(Y1 > Y2) = 0.5. For
instance, if we test a new dermatological treatment against an existing treatment,
we could possibly use both arms on each patient, where one arm receives the new
treatment and the other arm receives the existing treatment. If the number of patients
for which the new treatment scores better than the old treatment is much larger than

8 The exact test makes use of permutations, where the index of the populations are permuted but the
observations are not. Then for each permutation, theU test can be calculated and the position of the
observed U from the original (non-permuted) data among all permuted values can be determined.
If the observed U is in the tail of the permuted values, the null hypothesis is rejected. For small
sample sizes the exact test is more appropriate, but for larger samples sizes the calculation of the
exact test can take a long time.
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0.5n, it becomes reasonable to think that the new treatment is better than the existing
treatment. The sign test makes this procedure or intuition precise.

The sign test ismathematically givenby S = ∑n
i=1 1(Y2,i<Y1,i ),with 1A the indicator

variable that is equal to one if A is true and zero otherwise. It represents the number
of units for which the first observation is larger than the second observation. Under
the null hypothesis (and when there are no ties Y1,i = Y2,i ) the statistic follows a
binomial distributionwith proportion p = 0.5 and n trials (i.e., comparisons between
Y1 and Y2). Thus the binomial distribution function can be used to determine when
S becomes too large or too small. The sign test can be easily executed with R using
the function binom.test. We have used the simulated data on pairs that we used
for the paired t-test.

> set.seed(21349)
> z <- rnorm(20, 3, 5)
> e1 <- rnorm(20, 0, 1)
> e2 <- rnorm(20, 0, 1)
> x <- z + e1
> y <- z + 1 + e2
>
> z<-ifelse(x-y>0,1,0)
> count <- sum(z)
> count
[1] 5
> binom.test(count,20)

Exact binomial test

data: count and 20
number of successes = 5, number of trials = 20, p-value = 0.04139
alternative hypothesis: true probability of success is not equal

to 0.5
95 percent confidence interval:
0.08657147 0.49104587
sample estimates:
probability of success

0.25

Thus from the 20 comparisons, only five resulted in a larger value of the first com-
ponent (x) compared to the second component (y). We had to create this count by
ourselves before we could put it into the binomial test function. The output shows
that the p-value, which was calculated from the binomial distribution, is just below
α = 0.05, which means that the null hypothesis H0 : Pr(Y1 > Y2) = 0.5 is rejected
at significance level α = 0.05. The estimated probability for Pr(Y1 > Y2) is equal
to 0.25 with 95% confidence interval [0.087, 0.491]. This confidence interval is not
calculated from asymptotic theory and also illustrates that the null hypothesis should
be rejected, since the value 0.5 is not contained in the interval.

The sign test needs a small adjustment when ties (Y1,i = Y2,i ) are present in the
data. In the case of ties we cannot judgewhich component of the pair is larger than the
other component. This means that these pairs cannot be used. These pairs should be
excluded from the calculations. The test statistic remains unchanged, but the number
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of trials n should be reduced by the number of ties. To illustrate this, assume that we
had two ties in the simulated pairs. These pairs with ties must have occurred in the
15 pairs that did not demonstrate Y1,i > Y2,i . Thus the test statistic remains S = 5,
but now the number of trials is 18, since two pairs did not give us a decision on
Y1,i > Y2,i or Y1,i < Y2,i . In this case, we should have used the following R code

> binom.test(count,18)

Exact binomial test

data: count and 18
number of successes = 5, number of trials = 18, p-value = 0.09625
alternative hypothesis: true probability of success is not equal

to 0.5
95 percent confidence interval:
0.09694921 0.53480197
sample estimates:
probability of success

0.2777778

Thus, if there had been two ties, we could not have rejected the null hypothesis. It is
therefore important to pay attention to ties if you want to use the sign test.

7.3.5.3 Wilcoxon’s Signed Rank Test for Two Related Samples

The advantage of the sign test is that we did not have to assume anything about
the distribution function of the pairs (Y1,i ,Y2,i ). Under the null hypothesis we could
determine the distribution function of our test statistic. Therefore,we could determine
when the test statistic would result in unlikely results if the null hypothesis is true.
The disadvantage of the sign test is that it does not consider the size of the distances
between the two components.

To illustrate this disadvantage, assume again that we are comparing two treat-
ments, where we observe the paired results (Y1,i ,Y2,i ) on treatment one and two.
If the number of pairs for which the first treatment performs better than the second
treatment (Y1,i > Y2,i ) is small, the sign test may conclude that the second treat-
ment outperforms the first treatment. However, if the difference Y1,i − Y2,i for the
two treatments with Y1,i > Y2,i is very large and the difference Y2,i − Y1,i for the
treatments Y1,i < Y2,i is very small, we may argue that the first treatment does bet-
ter, because the difference between the two treatments is negligible when the second
treatment shows better results, but the first treatment shows much better results when
it does better than the second treatment (although it does not occur frequently).

The Wilcoxon signed rank test takes into account these differences for the two
groups of pairs with Y1,i > Y2,i and Y1,i < Y2,i . It can be executed in the following
steps:

1. Calculate for each pair the difference Di = Y1,i − Y2,i .
2. Create for each pair an indicator 1(Y1,i>Y2,i ).
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3. Calculate for each pair the rank Ri of the absolute differences |Di |.
4. Calculate the sum of ranks for the positive differences:W+ = ∑n

i=1 Ri1(Y1,i>Y2,i ).

If the distribution function of the positive differences Di is equivalent to the distribu-
tion function of the negative differences Di , we would expect that the average rank
for the positive differences is equal to the average rank of the negative differences.
This translates to a null hypothesis on the median of the difference: H0 : mD = 0,
with mD the median of the distribution of all differences Di . If the average rank
for the positive differences is really different from the average rank of the negative
differences, the median of all differences can no longer be zero.

For the Wilcoxon signed rank test, we will make use of asymptotic theory again.
If the sample sizes are large enough and the null hypothesis is true, the sum of the
ranks for the positive differences W+ is approximately normal with mean μW and
variance σ2

W . The mean and variance are determined by μW = n(n + 1)/4 and the
variance is σ2

W = n(n + 1)(2n + 1)/24, respectively. Note that the mean is just half
of the sum of all ranks, as the sum of all ranks is equal to n(n + 1)/2. Similar to
the Mann–Whitney U test, we can standardize the Wilcoxon signed rank test to
Z = [W+ − μW ]/σW and compare this standardized statistic with the quantiles of
the standard normal distribution to reject the null hypothesis H0 : mD = 0 or not.

To illustrate the Wilcoxon signed rank test, consider the simulated paired data we
used for the paired t-test and the sign test. The following R code helps us understand
the calculations.

> set.seed(21349)
> z <- rnorm(20, 3, 5)
> e1 <- rnorm(20, 0, 1)
> e2 <- rnorm(20, 0, 1)
> x <- z + e1
> y <- z + 1 + e2
>
> d<-x-y
> ad<-abs(d)
> sgn<-sign(d)
> ad
[1] 0.83246900 1.17190367 0.36570753 0.97984688 0.34540792

1.99806325 2.81096726 0.06015728 0.94722108 0.27203432
[11] 1.49564909 1.15050241 0.57035769 1.00001388 0.92194825

2.09065266 2.46242541 0.44392413 2.42612844 1.07738070
> rank(ad)
[1] 7 14 4 10 3 16 20 1 9 2 15 13 6 11 8 17 19 5 18 12
> sgn
[1] -1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1

The sum of the ranks for the positive differences is now calculated asW+ = 4 + 3 +
2 + 15 + 5 = 29. The standardized statistic is then equal to [29 − 105]/√717.5 =
−2.837. This value is clearly outside the interval [−1.96, 1.96], which means that
the null hypothesis H0 : mD = 0 is rejected. The differences Di for the positive
differences Di > 0 are ranked lower than the differences Di for the negative differ-
ences Di . An average rank of 5.8 (= 29/5) for positive differences compares with an
average rank of 12.1 (= (210 − 29)/15) for negative difference. Thus we not only
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obtain a significantly low number of positive differences Di , we also see that these
differences are smaller than the differences for Di < 0.

Instead of doing these calculations manually, we could have calculated the results
with R using the function wilcox.test.

> wilcox.test(x,y,paired=TRUE, correct=FALSE, exact=FALSE)

Wilcoxon signed rank test

data: x and y
V = 29, p-value = 0.00455
alternative hypothesis: true location shift is not equal to 0

The output shows thatW+ is equal to 29 (although they used the notation V ) and that
the likelihood of this result (or lower values) under the null hypothesis is determined
as p = 0.005. Thus the null hypothesis should be rejected at significance level α =
0.05.

7.3.6 Tests for Equality of Variation from Two Independent
Samples

The term heteroskedasticity refers to differences in variation or variability. In hypoth-
esis testing this is often translated to a hypothesis on the variances or standard devi-
ations from two different populations, as we described for the two samples t-test.
Under the assumption of normality the most efficient test statistic is based on a ratio
of the two sample variances, but under non-normal data an alternative approach has
been suggested. Here we discuss the F-test for normal data and Levene’s test for
non-normal data.

7.3.6.1 The F-Test for Equal Variances

Under the two-sided null hypothesis H0 : σ1 = σ2, the ratio S21/S
2
2 has an F-

distribution with n1 − 1 and n2 − 1 degrees of freedom and the ratio S22/S
2
1 has

an F-distribution function with n2 − 1 and n1 − 1 degrees of freedom. If S21/S
2
2 or

S22/S
2
1 is large, then the null hypothesis H0 : σ1 = σ2 is rejected. We may choose

just one of the two ratios, since there is symmetry. If one ratio is large, the other
ratio must be small, or the other way around. Thus if we choose one of the ratios,
the null hypothesis is rejected when this ratio is large or when this ratio is small.
The critical value can be determined by using the function qf(1 − α/2,d1,d2) for
large ratios or qf(α/2,d1,d2) for small ratios, with d1 the degrees of freedom for
the sample variance in the numerator and d2 the degrees of freedom of the sample
variance in the denominator. The choice of degrees of freedom depends on which
ratio S21/S

2
2 or S22/S

2
1 is selected, but one of them is equal to n1 − 1 and the other to

n2 − 1. Note that we must use α/2 since we are using the two-sided test. The test
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statistic is referred to as the F-test. The function var.test(x, y, ratio =
1, alternative ="two.sided", conf.level = 0.95) can be used
to test equality of variances using R and is demonstrated in the code below:

> # Generating two samples with unequal variances:
> set.seed(21349)
> x <- rnorm(20, 0, 1)
> y <- rnorm(20, 0, 3)
> # Test for variances equal:
> var.test(x, y)

F test to compare two variances

data: x and y
F = 0.19217, num df = 19, denom df = 19, p-value = 0.0007381
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.07606166 0.48549812
sample estimates:
ratio of variances

0.1921661

Note thatRhas chosen the ratio S21/S
2
2 for the analysis. In this case, the null hypothesis

that the two variances σ2
1 and σ2

2 are equal is rejected, since the ratio of 0.19217 is
too unlikely to be generated under the null hypothesis. Having this ratio or smaller
ratios only occurs with probability 0.00074 under the null hypothesis. Note that an
observed F value larger than 3 or 4 (or smaller than 1/3 or 1/4) typically indicates
that the variances between the two populations are likely to be unequal (even if the
data in the two samples are not from a normal distribution). Thus the observed data
suggest that we should accept the alternative hypothesis that the variances in the
two populations are not equal. A 95% confidence interval for the ratio of the two
variances is also provided and is equal to [0.076, 0.4855]. If sample sizes gets large,
rejection of the null hypothesis can happen at values closer to one.

7.3.6.2 Levene’s Test for Equal Variation

For non-normal data the variability or variation around the mean or median is not
fully described by the standard deviation alone, as is the case for normal data.
Instead of comparing the two sample variances, an alternative measure of varia-
tion is created. Here the distance of each observation from its group mean or median
is calculated first. Thus for sample h we calculate distances Zh,i = |Yh,i − mh|, with
i = 1, 2, . . . , nh . The value mh represents some kind of location of the sample h,
like the average or median. Initially, Howard Levene suggested using the means for
the location mh in the calculation of the distances, while Morton Brown and Alan
Forsythe later suggested using the median.

If the distribution functions F1 and F2 for the two populations (h = 1, 2) are
the same, except for a difference in the population mean or median, the distances
Z1,i and Z2,i may be viewed as two samples from one and the same population of
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distances, i.e., the distances Z1,i and Z2,i would be drawn from the same distribution
of distances. To investigate if these samples of distances come from one distribution,
wemay study a difference in means. If the samples on distances Z1,i and Z2,i suggest
that they have different means, they do not come from the same distribution of
distances and there must exist differences between the two distribution functions F1
and F2 that are not induced by a shift in mean or median alone. This would imply
that a difference in variation in the two populations h = 1 and h = 2 is warranted,
since differences in the means between the two samples of distances Z1,i and Z2,i

indicate that one set of distances are on average larger than the other set of distances.
Levene’s test statistic just uses the t-test with equal variances on the two indepen-

dent samples of distances Z1,i and Z2,i to determine if the means of the population
of distances that they may represent are different. A two-sided t-test is used, since
there is no preference in knowing which variable X or Y has a higher or lower vari-
ability. Brown & Forsythe demonstrated that the use of the median for mh gives a
somewhat more robust statistic for many different distribution functions F1 and F2

than Levene’s choice of means. Thus the Brown & Forsythe version of Levene’s test
is often recommended over Levene’s test.

7.3.7 Tests for Independence Between Two Variables

In Chap.6 we discussed several measures of association, all quantifying some form
of dependency between two variables. Hypothesis tests are often carried out to test
the null hypothesis of independence, with the goal of rejecting this null hypothesis.
Demonstrating a dependency between two variables is sometimes all we need to
know. For instance, knowing that there exists a positive relation between eating
breakfast and performances in high school, may be enough to initiate advice to
high-school students to eat breakfast before they come to school (although it may be
better to also know the strength of this relation).A demonstrated dependency between
eating breakfast and school performance could motivate high-school students to eat
breakfast more regularly.

7.3.7.1 Correlation Tests for Numerical Variables

To test the dependency between two normally distributed variables X and Y , Pear-
son’s correlation coefficient can be applied. The null hypothesis of independence is
then formulated as H0 : ρP = 0 against the alternative hypothesis Ha : ρP �= 0, with
ρP the correlation coefficient of the bivariate normal distribution function (which
equals Pearson’s definition of correlation coefficient). Under normality, indepen-
dence is the same as being uncorrelated, but this may not be true when X and Y do
not follow a normal distribution.

The test statistic for the null hypothesis H0 : ρP = 0 is
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TP = rP
√
n − 2

√
1 − r2P

with rP = SXY /[SX SY ] Pearson’s product moment estimator given in Eq. (6.10).
Under the assumption of normality and under the null hypothesis H0 : ρP = 0 the
test statistic TP has a t-distribution with n − 2 degrees of freedom. Thus when the
observed value tP is larger than the upperα/2-quantile of the t-distributionwithn − 2
degrees of freedom or smaller than the lower α/2-quantile of the t-distribution with
n − 2 degrees of freedom, the null hypothesis H0 : ρP = 0 is rejected. If the observed
value tP does not deviate enough from zero we cannot reject the null hypothesis (but
this means that there is no evidence that the null hypothesis is correct).

The R function cor.test(x, y, alternative = "two.sided",
conf.level = 0.95) can be used to test the null hypothesis H0 : ρP = 0 when
the data on the X and Y variables are normally distributed. Here we simulate X and
Y as we have done earlier for testing two means from independent samples. Thus we
simulated data knowing that H0 : ρP = 0 is correct.

> set.seed(21349)
> x <- rnorm(20, 3, 1)
> y <- rnorm(20, 2, 1)
> cor.test(x,y)

Pearson’s product-moment correlation

data: x and y
t = -0.40839, df = 18, p-value = 0.6878
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.5164388  0.3620570
sample estimates:
        cor
-0.09581508

Note that in the simulation example provided above, the null hypothesis H0 : ρP = 0
is not rejected. This is reasonable in this case as there is no relationship between X and
Y in the simulated data generated. R directly provides the 95% confidence interval
for the correlation (which includes 0 in this case). Note that this confidence interval
is different from the calculation we proposed in Chap. 6, where we used Fisher’s
z-transformation on Pearson’s product moment estimator. Clearly, this alternative
confidence interval could also have been used to test H0 : ρP = 0 and is often rec-
ommended above TP . The reason is that the Fisher z-transformed Pearson’s product
moment estimator would more quickly reject the null hypothesis than TP when
the alternative hypothesis is true. Thus the Fisher z-transformed Pearson’s product
moment estimator has a slightly higher power than the test statistic TP , while they
both have the same type 1 error.

As an alternative approach we could also have used another correlation estimator,
like Kendall’s tau or Spearman’s rho estimators. Then the null hypothesis changes
(of course) to H0 : τK = 0 and H0 : ρS = 0 for Kendall’s tau and Spearman’s rho,
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respectively. If such a null hypothesis were true, the two variables X and Y may
still be dependent. It merely says that the two variables X and Y are uncorrelated.
The 95% confidence intervals based on the Fisher z-transformation, which were
discussed in Chap. 6, can then be used to test the corresponding null hypothesis.
These alternative correlation coefficients are typically used when X and/or Y are
continuous but not normally distributed. If the null hypothesis is rejected, i.e., the
value zero is not contained in the 95% confidence interval, the variables X and Y are
considered dependent.

If one or both variables X and Y are discrete, care should be taken in using any
of the described methods. In this case, there will most likely be ties, i.e., there exists
pairs of data for which the pairs cannot be ordered, either by the first dimension or by
the second dimension (or both). For such variables X and Y , the distribution function
of the test statistics just described does not has the same distribution function that was
used for the test statistic on continuous variables X and Y . Alternative distribution
functions for the test statistics have been developed, but this topic is outside the
scope of this book. One approach to handle this situation is to use bootstrap and
calculate the bootstrap quantiles of one of these correlation coefficients. If zero is not
contained within the lower and upper 2.5% bootstrap quantiles, the null hypothesis
of independence is rejected.

7.3.7.2 The χ2 Test for Categorical Variables

In Chap.6 we also discussed dependency or associations between two categorical
(nominal and ordinal) variables X and Y . Thus the null hypothesis is formulated as
H0 : Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y) against the alternative hypothesis
of Ha : Pr(X = x,Y = y) �= Pr(X = x)Pr(Y = y). The collected data are typically
presented by a contingency table and Pearson’s chi-square statistic is a proper statistic
for testing the independence between X and Y . The statistic was designed to compare
the observed cell counts for the contingency table with the expected cell counts for
the contingency table under independence.

Using K for the number of rows in the contingency table, M for the number of
columns, Pearson’s chi-square statistic is given by (see also Chap. 6):

χ2
P =

K∑

x=1

M∑

y=1

(Nxy − (Nx ·N·y/N ))2/(Nx ·N·y/N ),

with Nxy the observed count in cell (x, y) of the contingency table, Nx · the row total
for X = x , N·y the column total for Y = y, and N the total count in the contingency
table. The product Nx ·N·y/N is the expected count for cell (x, y)under independence.
Under the null hypothesis of independence, Pearson’s chi-square statistic follows
the χ2-distribution with (K − 1)(M − 1) degrees of freedom. Thus, the p-value for
testing the null hypothesis is found by calculating Pr(χ2 > x2P), the probability that
a chi-square distributed random variable χ2 exceeds the observed value x2P for χ2

P .
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The R function chisq.test(x), where x is a contingency table (a matrix) can
also be used to directly test H0 : Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y). The
following code generates data for a 2 × 2 contingency table and conducts Pearson’s
χ2 test (as we already illustrated in Chap. 6):

> # Generate a 2x2 table
> Table <- as.table(rbind(c(762, 327), c(484, 289)))
> dimnames(Table) <- list(study = c("Yes", "No"), exam = c("Pass"

, "Fail"))
> Table

exam
study Pass Fail
Yes 762 327
No 484 289

> chisq.test(Table)

Pearson’s Chi-squared test with Yates’ continuity correction

data: Table
X-squared = 10.73, df = 1, p-value = 0.001054

In this case the null hypothesis of independence is rejected.9

Note that the list of statistical tests introduced in this subsection is not at all
complete; many more test statistics for specific circumstances (e.g., for proportions
or for multiple groups) are known. Books like Field (2013) will list many of the
well-known test statistics and procedures for computing them. However, knowing
the appropriate test statistic by heart for each situation does not seem very useful; it
is much more useful to understand the basic principles behind hypothesis testing.

7.3.8 Tests for Normality

Many statistical techniques “require” that the data come from a normal distribution
(e.g., the t-test). Thus it becomes important to verify or evaluate whether the data has
come from a normal distribution. In the past many different solutions have been pro-
posed. We will describe the graphical approach and the Shapiro–Wilk test. Assume
that we have selected a sample of data Y1, Y2, . . . ,Yn .

An often used approach, which is somewhat subjective, is to visualize the data and
make a judgment. A common visualization method for this purpose is the quantile-
quantile or q-q plot. In this case, the ordered observations Y(1), Y(2), . . . ,Y(n) are
plotted against the quantiles of the normal distribution. The quantile qk that belongs
to Y(k) is given by qk = Φ−1((k − 0.375)/(n + 0.125)), with Φ the standard normal
distribution function. This is close to the quantile Φ−1(k/n), but the constants 0.375

9 Note that the χ2 value is slightly different than what you would obtain by computing χ2
P =

∑K
x=1

∑M
y=1(Nxy − (Nx ·N·y/N ))2/(Nx ·N·y/N ); this is due to the fact that R automatically uses

Yate’s “continuity” correction: always inspect the help files for an R function to know exactly how
the results are computed. In this case the help can be accessed using ?chisq.test.
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Fig. 7.7 q-q plots on height (left) and watching television (right) for high-school boys

and 0.125 are used to make the graphical approach somewhat less biased. Depending
on the software package, the q-q plot reports the theoretical quantiles qk on the hori-
zontal axis and the order statistics Y(k) (or the quantiles of the sample) on the vertical
axis. The function qqnorm in R plots the theoretical quantiles on the horizontal
axis. If the data Y1, Y2, . . . ,Yn come from a normal distribution, the graph (qk,Y(k))

would form approximately a straight line. The intercept of this line is an estimate of
the population mean and the slope of the line is then an estimate of the population
standard deviation.

To illustrate the q-q plot we use the data of the high-school children. The function
in R that provides a q-q plot is qqnorm. If you also want to have a straight line
through the data in the plot you have to run qqline after qqnorm. We applied the
two functions to the height measurements of the school children and to the amount
of television watching. We restricted the data to boys. The following code was used:

> boys <- high_school[high_school$GENDER=="Boy", ]
> qqnorm(boys$HEIGHT)
> qqline(boys$HEIGHT)
> qqnorm(boys$TV)
> qqline(boys$TV)

The two q-q plots are provided in Fig. 7.7.
For the variable height, the data seem tofit closer to the straight line than the data on

watching television. Thus the heightmeasure seems to bemore normal thanwatching
television. Actually, the non-normality for watching television is quite obvious, but
the judgment for height is somewhat arbitrary. Indeed, the height measurements also
seem to deviate from the line in the tails of the distribution function (the lower and
upper ends of the data). Thus it is not immediately obvious if the height is or is not
normally distributed.

Tomake the evaluation of normality less subjective, formal test statistics have been
developed. One such test statistic actually investigates howwell the line goes through
the points (qk,Y(k)). This is the Shapiro–Wilk test for normality. The test statistic is
of the formW = ∑n

k=1[an,kY(k)]/[S
√
n − 1], with an,k constants that depend on the
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sample size and on the normal quantiles and S the sample standard deviation. Large
values of W indicate that it is unlikely that the data was collected from a normal
distribution, but intuition on this value is missing. Instead we may use the p-value
that is calculated with the statistic. The function shapiro.test in R calculates
the Shapiro–Wilk normality test.

> set.seed(21349)
> sample<-sample(boys$HEIGHT,5000,replace=FALSE)
> shapiro.test(sample)

Shapiro-Wilk normality test

data: sample
W = 0.99288, p-value = 4.097e-15

The test does not allow for more than 5,000 observations, so that is why we draw a
random sample of 5,000 high-school students before testing for normality of their
height. The p-value suggests that the height of (this sample of) students is deviating
from normality. Together with the q-q plot, we conclude that height may not follow
a normal distribution.

The q-q plot and Shapiro–Wilk test together may help in assessing normality.
When the (sample) data deviate greatly from the normal distribution the properties
of test statistics that rely on normality assumptionswill not hold. Thismeans that their
p-values will need to be interpreted with more caution. There are many other formal
test statistics of normality, but we do not discuss these in this book. The Shapiro–
Wilk test is often considered the most appropriate normality test. It is, however,
sensitive to ties. Under normality ties cannot occur. Thus when there are many ties,
the Shapiro–Wilk test may show that the data is not normal. If these ties are caused
by rounding issues and the sampled data actually come from a normal distribution,
the Shapiro–Wilk test may incorrectly reject normality. For that reason it is important
to always look at the q-q plot and never just trust the p-value.

7.3.9 Tests for Outliers

Anoutlier is an observation that seems to deviate from the other observations such that
it arouses suspicion that some unintended mechanism has interfered with the random
sampling. This means that the observation is not drawn from the same population
distribution as the other observations.

Outliers are a nuisance for many calculations since they may highly affect the
estimator or test statistic, and therefore influence the conclusions strongly. To limit
their effect, one may be inclined to remove the outliers and continue with the remain-
ing observations. But this is really dangerous if there is no clear argument for why
the observation is an outlier (other than a statistical argument), since it could truly
belong to the population distribution (of which we did not know that it had such a
long tail). Outliers should only be removed when a reason or cause has been estab-
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lished; in all other siutations the outlier should not be removed. It is often considered
good practice to report the most conservative statistical analysis of the data. Thus, if
removal of the outlier results in the least favorable analysis, the outlier is removed
from the data, otherwise it remains part of the data.

In some practical cases, an outlier or a group of outliers are the main study of
interest. For instance, in fraud detection, fraudulent applications for credit cards or
fraudulent bank transactions may appear as outliers in the data. The outliers may
help find criminal activity and are thus the study of interest. In health sciences an
outlier observation may indicate a signal for a (symptom of a) disease, in particular
if the observation is (far) outside the normal range of values.10

Outlier detection is not an easy task. First of all, it is difficult to distinguishwhether
the outlier observation is truly caused by some kind of unintended mechanism or
whether is belongs to a population distribution that is just different than what we
anticipated. Secondly, statistical methods that were developed for checking only one
outlier observation are diminished in their detection capacity if multiple outliers
are present. This is called the masking effect and relates to the type 2 error rate in
hypothesis testing, since a real outlier is not being detected. Additionally, outlier
detection requires certain assumptions on the underlying population distribution.
Without such assumptions we can never make confident statements like we try to do
with hypothesis testing. If we are not willing to make such assumption, we all have
to agree to the same definition that an observation is called an outlier whenever the
observation satisfies some kind of predefined criterion.

There are many outlier detection methods, but here we will discuss the Grubbs
test and Tukey’s method. The Grubbs test was developed for normally distributed
data and it can be formulated in terms of hypothesis testing. Tukey’s method has
been implemented in many software packages for visualization of the data with a
box plot. John Tukey simply provided a definition for outliers, in the sense that an
observation is called an outlier when the observation is further away from the median
value than a predefined distance. In the box plot they are typically indicated by dots
or stars.

7.3.9.1 Grubbs Test for Outliers

The Grubbs test is sometimes called the extreme studentized deviate test or the
maximumnormed residual test. Thenull hypothesis is that noobservation is anoutlier,
while the alternative hypothesis is that there is one observation that is an outlier.
Thus, the Grubbs test is only searching for one outlier observation. The calculation
of the Grubbs test is quite easy, since it is equal to G = max {|Z1|, |Z2|, . . . , |Zn|},
with Zi = (Yi − Ȳ )/S the standardized observations (with Ȳ the average and S the
standard deviation).

The probability that G is larger than some critical value cα is equal to

10 The normal range of values represents an interval or range of values that seems common or likely
in a healthy population.
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Fig. 7.8 Critical values for
the Grubbs test for outliers:
dark gray curve:α = 0.05
and light gray
curve:α = 0.01

Pr (G > cα) ≈ 1 −
n∏

i=1

Pr (|Zi | ≤ cα) .

The larger the sample size, the better the approximation. This critical value can be
visualized for different values of n; see Fig. 7.8.

For large sample sizes the critical value seems to stabilize or becomes almost
constant. Forα = 0.05 the critical value becomes approximately equal to cα = 4 and
forα = 0.01 the critical value becomes approximately cα = 4.5. It is not uncommon
to qualify an observation as an outlier when the absolute standardized value is larger
than 4. Some software packages would even signal absolute standardized values
larger than 3 as potential outliers.

In R one can execute the Grubbs test with the function grubbs.test. This
requires the installation of the package outliers. The following code investigates
if there is one outlier in the height variable of the children at high school:

> library(outliers)
> grubbs.test(high_school$HEIGHT)

Grubbs test for one outlier

data: high_school$HEIGHT
G = 5.4735, U = 0.9994, p-value = 0.001099
alternative hypothesis: highest value 210 is an outlier

Based on the output, the null hypothesis that no observation is an outlier is rejected,
and we would accept the alternative hypothesis that there is an outlier.

7.3.9.2 Tukey’s Method

Tukey suggested that an observation is an outlier whenever the observation Yk is 1.5
times the interquartile range below thefirst quartile or 1.5 times the interquartile range
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Fig. 7.9 Expected
proportion of population
units outside Tukey’s outlier
criteria for the lognormal
distribution function

above the third quartile. To write this in mathematical terms, an observation is called
a lower-tail outlier when Yk < Q1 − 1.5IQR and it is called an upper-tail outlier
when Yk > Q3 + 1.5IQR, with IQR = Q3 − Q1 the interquartile range. Clearly, the
first observation that may satisfy the lower tail criterion would be the minimum,
while for the upper tail it is the maximum value.

Tukey’s method is often referred to as a method that does not depend on any
assumptions of the population distribution, since it is only based on quartiles. How-
ever, the shape of the population distribution does determine how likely an obser-
vation will satisfy the criterion and thus will be declared an outlier. If we con-
sider the full population, we may substitute the expected or true values for Q1 and
Q3 in the criteria and determine the proportion of the population that would sat-
isfy the lower and upper criteria. The lower criterion in the population is given
by F−1(0.25) − 1.5(F−1(0.75) − F−1(0.25)) and the upper criterion is given by
F−1(0.75) + 1.5(F−1(0.75) − F−1(0.25)).

For the normal distribution function Φ((x − μ)/σ), with Φ the standard normal
distribution function, these criteria become μ + Φ−1(0.25)σ − 1.5(Φ−1(0.75) −
Φ−1(0.25))σ = μ − 2.69796σ and μ + 2.69796σ for the lower and upper tail,
respectively. Thus the percentage of units from the population that fall outside these
criteria is approximately only 0.70%, which does not depend on the parameters μ
and σ. Thus under the assumption of normality, an outlier observation has 0.70%
probability to occur in the sample.

For the lognormal distribution function Φ((ln(x) − μ)/σ) though, the lower
and upper criteria now become exp(μ − 0.67449σ) − 1.5(exp(μ + 0.67449σ) −
exp(μ − 0.67449σ)) and exp(μ + 0.67449σ) + 1.5(exp(μ + 0.67449σ) − exp(μ −
0.67449σ)), respectively. Calculating the proportion of population units outside
Tukey’s criteria depends only on σ, not on μ. This proportion is visualized in Fig. 7.9.

Figure7.9 clearly indicates that for the lognormal distribution function the pro-
portion outside Tukey’s criteria can be as high as 10%. This would typically occur at
the upper tail and not on the lower tail, since the proportion below the lower tail cri-
terion would become equal to zero. Thus fixing the criteria for an outlier observation
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does not always imply that the occurrence of such observations in the sample will be
unlikely. For normal distribution functions, Tukey’s criteria for outlier observations
is unlikely if no outliers are present, but using Tukey’s criteria for other distribution
functions should be implemented with care. The code below shows the identifica-
tion of outliers using Tukey’s criteria in R using the boxplot.stats function.
Note that in the example the two added extreme values (−10 and 500) are indeed
identified.

> # Test tukey
> x <- rnorm(100,10,5)
> x <- c(x, -10, 500)
> boxplot.stats(x)$out
[1] -10 500

7.3.10 Equivalence Testing

The common practice of testing the (two-sided) null hypothesis has a few drawbacks.
As we have already noted, for (extremely) large samples wewill almost always reject
the null hypothesis. This might not be desirable, as rejecting the null hypothesis in
such cases does not actually imply that the (e.g.,) difference in means of interest is
indeed large. Furthermore, not rejecting the null hypothesis H0 : μ( f ) = μ0 is no
proof that the null hypothesis is true. Indeed, it is very easy not to reject the null
hypothesis: you just need to collect as little information as possible. If we would
collect only a few observations the confidence interval would be very wide and
the value μ0 is likely to fall inside this wide confidence interval, but this does not
guarantee that μ( f ) = μ0 or even close to it.

One way of dealing with these two issues on hypothesis testing is to reduce the
significance levelα to amuch lower value than the commonly usedα = 0.05.Wemay
useα = 0.001 or evenα = 0.0001 tomake the hypothesis statementsmore confident
than just 95%. An alternative approach, possibly in combination with lower levels of
α, is to use equivalence testing. Equivalence testing would first formulate a marginΔ

that would be used to form a range of values around the value μ0 that we would see as
equivalent settings. The null hypothesis is then formulated as H0 : |μ( f ) − μ0| > Δ

against the alternative hypothesis Ha : |μ( f ) − μ0| ≤ Δ. Thus, the null hypothesis
specifies non-equivalence: the difference betweenμ( f ) andμ0 is larger thanΔ. If the
null hypothesis is rejected, we have demonstrated with sufficient confidence (1 − α)
that the true population mean μ( f ) is equivalent to the value μ0. The levelΔ is called
the equivalence margin.

Using confidence intervals, a test for equivalence is reasonably simple. We just
need to calculate a 1 − 2α confidence interval on μ( f ) − μ0 and then compare it to
the interval [−Δ,Δ]. If the confidence interval falls fully in the interval [−Δ,Δ], the
null hypothesis H0 : |μ( f ) − μ0| > Δ is rejected at significance level α. To test at
significance level α, we need to calculate a 1 − 2α confidence interval. The reason is
that the equivalence test is actually the application of two one-sided tests: one test for
showing thatμ( f ) < μ0 + Δ and another test for showing thatμ( f ) > μ0 − Δ. Each
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test is done at significance level α. This is similar to having the 1 − 2α confidence
interval on μ( f ) − μ0 fall inside [−Δ,Δ].

In the case of equivalence testing, where the equivalence margin is given by
Δ > 0, we can formulate the following hypotheses:

1. Non − inferiority : H0 : μ1 − μ2 ≤ −Δ versus Ha : μ1 − μ2 > −Δ

2. Non − inferiority :H0 : μ1 − μ2 ≥ Δ versus Ha : μ1 − μ2 < Δ

3. Equivalence :H0 : |μ1 − μ2| ≥ Δ versus Ha : |μ1 − μ2| < Δ

(7.3)

The one-sided equivalence tests are referred to as non-inferiority tests.
Equivalence testing H0 : |μ( f ) − μ0| > Δ against Ha : |μ( f ) − μ0| ≤ Δ is

really different in concept from traditional hypothesis testing H0 : μ( f ) = μ0 against
Ha : μ( f ) �= μ0. To show this difference we have listed six different settings in
Fig. 7.10 for which we will discuss the rejections or not. The vertical dotted lines
represents the interval [−Δ,Δ] and the vertical solid line represents the difference
μ( f ) − μ0 = 0. The horizontal x-axis represents the difference μ( f ) − μ0 and each
dot in the figure represents an estimate of this difference. The horizontal lines through
the dots represent the 1 − 2α confidence intervals.

1. The 1 − 2α confidence interval fall completelywithin [−Δ,Δ], whichmeans that
the null hypothesis H0 : |μ( f ) − μ0| > Δ is being rejected. It is not completely
clear whether H0 : μ( f ) = μ0 is being rejected, since this can only be established
if the 1 − α confidence interval has been applied. If we assume that this 1 − α
interval would fit within [−Δ, 0], the null hypothesis H0 : μ( f ) = μ0 would also
be rejected. This is a setting that we described earlier for large datasets, where
the traditional hypothesis can be rejected for irrelevant differences.

2. The null hypothesis H0 : |μ( f ) − μ0| > Δ for equivalence is being rejected, indi-
cating that the population mean μ( f ) is equivalent to μ0. The traditional hypoth-
esis H0 : μ( f ) = μ0 is not being rejected, which implies that there is not enough
evidence to believe that the population mean μ( f ) is different from μ0. This
means that both conclusions seem to coincide, although this does not imply that
μ( f ) = μ0.

3. The traditional null hypothesis is being rejected (assuming that the 95% confi-
dence interval would not contain zero) and equivalence cannot be claimed. Thus
both approaches seem to have similar conclusions: μ( f ) is different and not
equivalent to μ0.

4. This is the same as in the previous setting, although the results lie on the other
side of the vertical line μ( f ) = μ0.

5. Again this is similar to the third setting. The fact that one side of the confidence
interval is contained in the interval [−Δ,Δ] does not change the conclusions.

6. Here we cannot demonstrate equivalence, but we cannot reject the traditional null
hypothesis either. Thus on the one hand there is not enough evidence to reject
μ( f ) = μ0, but there is not enough evidence either to reject that |μ( f ) − μ0| > Δ.
This seems contradictionary, but it is probably an issue of a lack of information,
since the 90% confidence interval is too wide.
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Fig. 7.10 Comparison
between equivalence testing
and traditional hypothesis
testing

Thenon-inferiority hypotheses look somewhat similar to the one-sidedhypotheses
we discussed earlier, but they are not. To illustrate this we consider the situation
where we want to compare a new treatment to an existing or an older treatment.
In the traditional hypothesis testing format we would investigate the null hypothesis
H0 : μNew ≤ μOld against Ha : μNew > μOld , assuming that a highermean is a better
clinical outcome. The collected data (typically through a randomized controlled
clinical trial) would then have to demonstrate that the null hypothesis is rejected.
Thus the new treatment must demonstrate superiority. Often new treatments are
not (much) better in their clinical outcome, but they bring a secondary benefit. For
instance, the new treatment is much less invasive. Superiority is then difficult to
demonstrate. Instead, we would like to show that the new treatment is not inferior
to the old treatment. Thus, the data must demonstrate that the new treatment is not
toomuch worse than the old treatment: Ha : μNew > μOld − Δ, withΔ > 0 the non-
inferiority margin. Thus, the null hypothesis becomes H0 : μNew ≤ μOld − Δ. If this
null hypothesis cannot be rejected, the new treatment is assumed inferior to the old
treatment, since non-inferiority could not be proven.

7.4 Conclusions

In this chapter we used the theory developed in the previous chapters to make deci-
sions regarding a population. Such decisions will always contain uncertainty; how-
ever, in some cases we can make quantitative statements regarding the quality of our
decisions.

We first introduced the bootstrap as an informal, but very generally applicable,
method of making decisions. The bootstrap allows us to quantify our uncertainty
around any sample statistic θ̂, and we can use its bootstrapped distribution function
to make decisions: if the value of θ̂ seems unlikely, we might reject it as a good
estimate for our population. Note that in some situations the bootstrap can be made
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precise (e.g., in terms of controlling type 1 and 2 errors), but we do not study these
further in this book.

After presenting the bootstrap, we discussed hypothesis testing: this often used
procedure for binary decision making controls the type 1 and type 2 errors involved.
We have discussed the rationale of null hypothesis testing, and we discussed the dis-
tributions of several test statistics under the assumption that the null-hypothesis was
true.We presented a number of well-knownmethods, but in any applied situation you
should always look up the state-of-art for the problem you are facing. We discussed
t- and F-tests, non-parametric tests for medians and variation, tests for associations,
normality tests and outlier tests. In practice, you would use R if you want to carry out
a hypothesis test: we discussed several R functions that allow you to conduct these
tests. We also discussed equivalence testing and non-inferiority testing, to be able to
demonstrate that the parameter of interest is equal to a value within a certain margin.

Finally, we would like to note that the methods for decision-making we pre-
sented here only “scratch the surface”: statistical decision theory is a large and active
research field. InChap.8wewill briefly encounter an alternative approach to decision
making. However, for now we have covered both a method that is extremely widely
applicable and easily available (the bootstrap), and a method that is very frequently
used (hypothesis testing). These methods allow you to make your first steps into
making decisions regarding a population based on sample data.

Problems

7.1 This assignment uses the dataset voting-demo.csv.

1. Look at the frequency distribution of the variable Choice. Use a non-parametric
bootstrap (with the number of bootstrap replicates M = 10,000) to create a his-
togram of the distribution of the proportion of people who vote for the SPD. Does
this follow a bell curve?

2. We now want to compare the average age of those who did vote and those who
did not vote. Note that in the sample the mean age of voters is 45.46, and the
mean age of non-voters is 39.18. Hence, we would estimate the difference to
be 6.28. We now want to say something about whether this is “significant”. Try
to compute the difference between voters and non-voters based on K = 10,000
non-parametric bootstrap replicates and make a histogram of the differences. In
which proportion of cases are the voters on average older than the non-voters?

3. Compute an online bootstrap distribution of the variance of the variable Age in
the dataset. Use the code we used in Sect. 7.2.4. However, now (a) run through the
dataset voting-demo.csv line by line, and (b) replace the update.mean
function by a function that computes the variance in a data stream (or online,
see https://www.researchgate.net/publication/306358951_Dealing_with_Data_
Streams_an_Online_Row-by-Row_Estimation_Tutorial for examples).

https://www.researchgate.net/publication/306358951_Dealing_with_Data_Streams_an_Online_Row-by-Row_Estimation_Tutorial
https://www.researchgate.net/publication/306358951_Dealing_with_Data_Streams_an_Online_Row-by-Row_Estimation_Tutorial
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7.2 This assignment uses the dataset high-school.csv and focusses on the
variable TV (i.e., the number of hours a student watches television per week).

1. Use a non-parametric bootstrap (with the number of bootstrap replicates M =
10,000) to create a histogram of the distribution of the average number of hours
students watch television.

2. Use a parametric (normal) bootstrap with the same number of replicates to create
a second histogram; how do the two compare?

3. Use both the non-parametric bootstrap replicates and the parametric bootstrap
replicates derived in the previous two questions to construct 95% confidence
intervals. How do these compare?

4. Compute the asymptotic 95% confidence interval for the mean; how does this
compare to those obtained using bootstrapping?

5. Repeat the above assignments for the sample variance (opposed to the mean).

7.3 This assignment uses the dataset high-school.csv. The variable of interest
is the allowance that children receive per week in euros. We are only interested in
those children that do receive an allowance (thus eliminate the children that do not get
any allowance). Hypothesis testing should be used with significance level α = 0.05.

1. Test whether themean allowance is equal to 10 euros per month using a two-sided
test.

2. Test whether the mean allowance is equivalent to 10 euros with equivalence
margin Δ = 2 euros.

3. Investigate whether the variable allowance is normally distributed. Explain what
you did and what your conclusion is.

4. Create a box plot of the log transformed allowance. How many observations are
considered outliers according to Tukey’s criterion?

5. Use the Grubbs test on the log transformed allowance. Do you think there is an
outlier?

6. Test whether the mean log transformed allowances of boys and girls are equal
using a t-test. Would you use equal or unequal variances? Why? What do you
conclude for the hypothesis test?

7. Test whether the allowances of girls are stochastically greater than the allowances
of boys using the Mann–WhitneyU test. Note that we are looking at a one-sided
test. What is your conclusion?

8. Test whether girls receive a similar allowance to boys, at least not less than the
non-inferiority margin of Δ = 2 euros.

7.4 This assignment uses the dataset high-school.csv. This time the variable
of interest is the amount of money that children earn per week, which is the variable
WORK. We will focus on those children who earn money. A hypothesis test should
be used with significance level α = 0.05.

1. Investigate whether the log transformed amount of money for boys is normally
distributed.

2. Investigate whether the log transformed amount of money for girls has an outlier.
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3. Investigate with Levene’s test whether the variability in the log transformed
amount of money differs between boys and girls.

4. Is there a difference in the average log transformed amount of money between
boys and girls? Which test statistic would you use? Explain.

5. Is the average log transformed amount of money of boys and girls equivalent
within equivalence margin 0.10?

6. Do breakfast eaters earn more money than non-breakfast eaters? Formulate the
null hypothesis and describe which test statistic would be best for this question.

7.5 In this exercise we will investigate dependency on variables of the face data.
We will use the variable on the second dimension and the rating variable.

1. Test whether the two variables are normally distributed.What is your conclusion?
2. Test whether the two variables are independent. What is the null hypothesis and

what test statistic did you use? Explain your choices.
3. We want to investigate whether there is a difference in correlation coefficient

between rating and the second dimension for women and men. Use a non para-
metric bootstrap approach to answer this question. What is your conclusion?
Explain why.

7.6 In this exercise we will investigate dependency between variables from the
voting data.

1. Determine whether religion and voting behavior are independent. Formulate the
null hypothesis and describe the test statistic. What do you conclude?

2. When the percentage of voting is within the margin of 10%, voting behavior
between subgroups is considered equivalent. Test the equivalence behavior for
religious and non-religious people. Describe what you did and describe your
conclusion.

3. Determinewhether voting behavior and voting choice are independent. Formulate
the null hypothesis and describe the test statistic. What do you conclude?
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Chapter 8
Bayesian Statistics

8.1 Introduction

In this book we have introduced both the practice of analyzing data using R, and
covered probability theory, including estimation and testing. For most of the text
we have, however, considered what some would call Frequentist statistics (the name
deriving from the notion of probability as a long-run frequency): in this school of
thought regarding probability it is generally assumed that population values are fixed
quantities (e.g., θ is, despite being unknown, theoretically knowable and has a fixed
value). Any uncertainty (and hence our resort to probability theory) arises from our
sampling procedure: because we use (ostensibly) random sampling we have access
to only one of the many possible samples that we could have obtained from the
population of interest, and when estimating θ (by, e.g., computing θ̂) we will need
to consider the fact that another sample might have produced a different value.

There is, however, another school of thought, calledBayesian statistics. Its name is
derived from Bayes’ Theorem, as this theorem is used almost constantly in this latter
stream of thought. We have introduced Bayes’ Theorem in Chap.3 when discussing
conditional events:

Pr(A|B) = Pr(B|A)Pr(A)

Pr(B)
. (8.1)

Both the Frequentist and the Bayesian school of thought accept Bayes’ rule as a
logical consequence derived from the probability axioms. However, in Bayesian
statistics the prominence of Bayes’ rule is much greater than it is in Frequentist
statistics. In Bayesian statistics probabilities are not solely regarded as long-run
frequencies, but rather, they are regarded as a tool to quantify the “degree of belief”
one holds in relation to a specific event. In this framework, probabilities can be
regarded as an extension to boolean logic (in which statements/events are true or
false, 0 or 1), to deal with events that have some probability (Jaynes 2003). Bayes
rule is subsequently used to update the degree of belief regarding an event in the
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face of new evidence: i.e., it is used to update Pr(A) in the formula above to include
the evidence provided by Pr(B), the result of which is expressed as Pr(A|B). As we
will see below, this approach takes on a very powerful meaning when we replace
Pr(A) by Pr(θ) (i.e., the distribution of the parameters) and Pr(B) by Pr(D) where
D relates to the data we observe in (e.g.,) a scientific study. In this interpretation,
Bayes’ rule provides us with a means of updating our belief regarding a population
parameter (Pr(θ)) when we observe sample data (Pr(D)). In this chapter we will
introduce this “Bayesian” school off thought and discuss its relations to Frequentist
thinking.

It is good to note that although philosophically the Bayesian and Frequentist
schools of thought are very different, we will, in this book, not strongly argue in
favor of one or the other. For a data scientists both approaches have their merits and
we strongly encourage applied data scientists to be able to move from one school of
thought to the other flexibly. In support of this flexible view it is good to know that
in many practical situations (but certainly not all!) the conclusions one would draw
from a Bayesian or a Frequentist analysis are similar (or even exactly the same).
This chapter merely provides an introduction and short discussion with regard to
Bayesian thinking; we could easily fill multiple books on Bayesian statistics alone
(which is something others have done; see for example Gelman et al. (2014)).

We will cover (in brief, and here and there informally) the following:

• The extension ofBayes’ Theorem for events to statements about population param-
eters: i.e., from Pr(A|B) to f (θ|D).

• Bayesian analysis by example: wewill examine the Bayesian estimation of various
population parameters for Bernoulli and Normally distributed populations.

• The general Bayesian approach: Bayesian decision-making.
• Bayesian hypothesis testing: the Bayes Factor.
• Choosing a prior distribution, i.e., choosing f (θ).
• Bayesian computation: the intractable (or simply difficult to compute) marginal
likelihood.

• A discussion of the differences and commonalities of Bayesian and Frequentist
methods.

8.2 Bayes’ Theorem for Population Parameters

In this section we explore how we get from Bayes law for events, as presented in
Chap.3, to themuchmore general interpretation of Bayes’ law as it is used inmodern
Bayesian statistical practice. Let us start by revisiting the derivation of Bayes’ law
itself: suppose we have two events of interest, A and B, that are not independent. In
this case we know, based on the axioms presented in Chap.3, that the conditional
probability of A given B is given by Pr(A|B) = Pr(A ∩ B)Pr(B). Or, in words, the
conditional probability is given by dividing the joint probability of A and B by the
(marginal) probability of B. Similarly,we can consider Pr(B|A) = Pr(A ∩ B)Pr(A).
Putting this together allows for the relatively simple derivation of Bayes’ law:
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Pr(A ∩ B) = Pr(A|B)Pr(B)

Pr(B ∩ A) = Pr(B|A)Pr(A)

Pr(A|B)Pr(B) = Pr(B|A)Pr(A)

Pr(A|B) = Pr(B|A)Pr(A)

Pr(B)

Here, the last line is the famous Bayes’ law, and it can be considered a device for
inverting conditional probabilities: it can be used to compute Pr(A|B)when Pr(B|A)

is observed.
Wehave already seen a number of examples of the use ofBayes’ law inChap.3, but

it is useful to recall an example of its practical use. Suppose that in a population of data
science students we know that about 2% are Bayesians whereas the remaining 98%
identify as Frequentist. Thus, we have Pr(B) = 0.02 and Pr(Bc) = 0.98. However,
the Bayesian data scientists do not always like to admit that they are indeed Bayesian:
whenweconduct a survey inwhichweask students about their preference the answers
to the question “Are you a Bayesian”may not always be fully accurate. Let us assume
that the survey is 95% accurate on classifying Bayesians (thus Pr(C |B) = 0.95), and
let us further assume that the survey is 97% accurate on negative classifications; i.e.,
Pr(Cc|Bc) = 0.97.We are now interested in learning the probability of a student truly
being a Bayesian, after the student has been classified as a Bayesian by the survey;
thus, we are interested in learning Pr(B|C). A few simple steps give us the answer.
It is first useful to compute the marginal probability of classifying a respondent as a
Bayesian, Pr(C) using the law of total probability:

Pr(C) = Pr(C ∩ B) + Pr(C ∩ Bc)

= Pr(C |B)Pr(B) + [1 − Pr(Cc|Bc)]Pr(Bc)

= 0.95 ∗ 0.02 + [1 − 0.97] ∗ 0.98

≈ 0.05

after which applying Bayes’ Theorem to compute the desired Pr(B|C) is straight-
forward:

Pr(B|C) = Pr(C |B)Pr(B)

Pr(C)

= 0.95 ∗ 0.02

0.05
≈ 0.38.

This computation shows that when a students is classified as a Bayesian in the survey
this event increases our belief regarding whether or not the student truly is a Bayesian
from 0.02 before the survey results came in (i.e., our prior belief was Pr(B) = 0.02)
to 0.38 after observing the survey result. This shows how Bayes’ Theorem can be
used to update our degree of belief regarding events when new evidence is observed.
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8.2.1 Bayes’ Law for Multiple Events

While Bayes’ Theorem as we have seen it up till now already has many useful
applications, its use can be greatly extended. Just as we extended our thinking about
probability fromevents (inChap.3) to randomvariables and distributions (inChaps. 4
and 5), so too Bayes’ Theorem can be generalized and put to use in many situations.
A first step towards such a generalization is to apply Bayes’ law to multiple events.
Suppose we consider three disjoint events A, B, and C , whose union comprises the
entire sample space of interest (i.e., they are exhaustive). Next, we are interested in
learning how our a priori belief regarding the probability of these events occurring
(i.e., Pr(A), Pr(B), and Pr(C)) changes when we observe new data D. Thus, we are
interested in Pr(A|D), Pr(B|D), and Pr(C |D). Focussing on Pr(A), we know from
Bayes’ rule that:

Pr(A|D) = Pr(D|A)Pr(A)

Pr(D)
.

Using the law of total probability and our assumptions regarding Pr(A), Pr(B), and
Pr(C) we also know that

Pr(D) = Pr(A ∩ D) + Pr(B ∩ D) + Pr(C ∩ D)

= Pr(D|A)Pr(A) + Pr(D|B)Pr(B) + Pr(D|C)Pr(C)

which we can substitute into our application of Bayes’ Theorem to obtain:

Pr(A|D) = Pr(D|A)Pr(A)

Pr(D|A)Pr(A) + Pr(D|B)Pr(B) + Pr(D|C)Pr(C)
.

The derivations above demonstrate that we can compute the probability—conditional
on the data—of each of the three events A, B, and C , of interest as long as we have
access to the unconditional (or prior) probabilities Pr(A), Pr(B), and Pr(C) and the
probability of the observed data given these events, Pr(D|A), Pr(D|B), and Pr(D|C).

8.2.2 Bayes’ Law for Competing Hypotheses

Effectively, applying the above allows one to state howmuch more or less likely spe-
cific events (A, B, etc.) become due to observing the data D. This itself is particularly
interesting when the events of interest concern rival (again disjoint and exhaustive)
hypotheses regarding (e.g.) an unknown parameter of interest. Suppose we assume
we are trying to learn about the value of a parameter of interest θ, and further sup-
pose we have a number of specific hypotheses regarding its value, e.g., “Hypothesis
A: θ < 0” (although we could effectively make any statement we want regarding
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the parameter values of interest). Let us further introduce the notation θi to refer to
the first hypothesis regarding θ (i.e., Hypothesis A). If we have k such hypotheses
regarding θ (thus we have θ1, . . . , θk) we can now compute the probability of each
of these hypothesis after observing some data by applying Bayes’ rule as we did
before:

Pr(θi |D) = Pr(D|θi )Pr(θi )
∑k

i=1 Pr(D|θi )Pr(θi )
.

Note that in the above we once again need both the marginal probabilities of the
hypothesis prior to observing the data, i.e., Pr(θi ), and the probability of the data given
a specific hypothesis, Pr(D|θi ). The marginal probability of the hypothesis is often
referred to as the prior probability, whereas the probability of the data conditional on
some hypothesis should be recognizable by now to readers as the likelihood that we
have encountered in previous chapters. The resulting conditional probability of the
hypothesis given the data is often called the posterior probability of the hypothesis.

8.2.3 Bayes’ Law for Statistical Models

Given our treatment above, it is straightforward to extend Bayesian reasoning to sta-
tistical models, i.e., the types of models we have been studying in previous chapters.
In previous chapters we were often interested in estimating (or otherwise making
decisions about) the value of some population parameter θ by computing θ̂. One
fairly general method of computing θ̂ was choosing the value of θ that maximized
the likelihood l(θ)where, when considering a dataset of n i.i.d. observations, we had
(see Chap.5):

l(θ) = l(θ|X1, X2, X3, . . . , Xn)

= Pr(X1|θ)Pr(X2|θ) . . . Pr(Xn|θ)
= Pr(D|θ).

Bayes theorem in a way provides an alternative to for exampleMaximum Likelihood
Estimation by—opposed to picking the value of θ thatmaximizes Pr(D|θ)—allowing
one to quantify the probability of a large number of possible values of θi after
observing the data:

Pr(θi |D) = Pr(D|θi )Pr(θi )
∑k

i=1 Pr(D|θi )Pr(θi )
= l(θi |X1, X2, X3, . . . , Xn)Pr(θi )

∑k
i=1 l(θi |X1, X2, X3, . . . , Xn)Pr(θi )

.
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At this point, it isn’t a large stretch to specify the prior probability Pr(θi ) off each
hypothesis i using a ProbabilityMass Function (PMF), as we have studied in Chap.4.
This highlights that Bayes’ Theorem can be used not just for events, but for random
variables. The general form of Bayes’ Theorem that is most often encountered in
Bayesian statistics generalizes the ideas presented above to random variables as these
are described by their distribution functions (i.e., their PMFs or PDFs):

f (θ|D) = l(θ) f (θ)
∫
l(θ) f (θ)dθ

. (8.2)

The expression above effectively describes that our posterior beliefs regarding the
parameter of interest—i.e., our belief after observing the data—can be quantified
using a (potentially continuous) PDF f (θ|D)which itself is obtained by multiplying
the likelihood l(θ) = Pr(D|θ) by our prior belief regarding the parameters f (θ) and
dividing by the so-called marginal likelihood

∫
l(θ) f (θ)dθ. The latter simply acts

as a Normalizing constant to make sure that f (θ|D) is a valid PDF.

8.2.4 The Fundamentals of Bayesian Data Analysis

Eq.8.2 is the main work-horse of Bayesian data analysis. Contrary to Frequentist
MLE estimation where a single point θ̂ is often the end-point of the analysis (i.e.,
her or his best guess regarding the true population value), to a Bayesian, f (θ|D)

effectively quantifies all that can be learned based on the observed data: it quantifies,
using aPDF, our belief regarding the population value after seeing the data.Generally,
the steps involved in conducting a Bayesian analysis are thus:

• Create a sampling model, i.e., specify the likelihood of the observed data as a
function of the parameters θ.

• Specify a prior distribution over the parameters f (θ). Note that we will often
encounter sampling models that involve multiple parameters and hence θ itself is
a vector and f (θ) is a multivariate distribution (PMF or PDF).

• Compute f (θ|D), i.e., compute the posterior distribution of θ after seeing the data
D.

To a Bayesian, that’s pretty much it; we have now updated our belief regarding the
population parameters of interest based on the data. In practice, however, f (θ|D)

is not always the final point of the analysis: often some summary of f (θ|D) is
communicated (akin to the selection of the MLE estimate θ̂ that we have seen for
frequentists analysis) such as it’s expected value E(θ|D) = ∫

θ f (θ|D)dθ. We will
look at these summaries and the practice of Bayesian analysis in more detail below.
First, however, we will examine a few concrete cases of a Bayesian data analysis.
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8.3 Bayesian Data Analysis by Example

In the previous section we extended Bayes’ Theorem from events to (distribution
functions of) random variables and we inserted a particular meaning: using θ and
the data D in our notation we showed how Bayes’ Theorem can, in theory, be used
to update one’s belief regarding a population parameter θ in the face of the evidence
provided by the data D. In this section we will examine two specific examples: first,
we will focus on a Bernoulli population: assuming our observations X1, . . . , Xn are
i.i.d. Bernoulli p, what can we learn about the parameter of interest θ = p based on
a set of realizations x1, . . . , xn? Second, after examining the Bernoulli population
case, we will examine the Normal population case in which we assume observations
X1, . . . Xn are i.i.d. N (μ,σ2).

8.3.1 Estimating the Parameter of a Bernoulli Population

Let θ denote the probability of heads when throwing a (possibly unfair) coin, and
let us treat the observations X1, . . . , Xn from the coin as i.i.d. Bernoulli(θ). In line
with the steps regarding a Bayesian analysis detailed above we first need to specify
the sampling model. Given our assumption of a Bernoulli population and using x to
denote the vector of all xi realizations, we have

l(θ) = p(x |θ)
=

n∏

i=1

θxi (1 − θ)1−xi

= θ
∑n

i=1 xi (1 − θ)n−∑n
i=1 xi

= θnx̄n (1 − θ)n(1−x̄n).

Next, we need to specify our prior beliefs regarding the parameter values by
specifying f (θ). Although prior choice is a heavily debated subject (see Sect. 8.5.1)
we will simply choose a reasonable and easy to work with prior in this case. A
reasonable prior has support (i.e., f (θ) > 0) for all plausible values of θ. As in
our case θ is a Bernoulli p for which 0 ≤ p ≤ 1 we should choose f (θ) such that
it has support on [0, 1]. Furthermore, it seems reasonable (again, more on this in
Sect. 8.5.1), in the absence of any other information, to choose a prior distribution that
gives equal likelihood to all plausible values of θ: the uniform distribution function on
[0, 1] thus seems a reasonable choice. The uniform on [0, 1] is however a special case
of a much more flexible distribution function called the beta distribution function.
The beta(α, β) distribution function is a continuous distribution function with PDF

f (θ) = Γ (α + β)

Γ (α)Γ (β)
θα−1(1 − θ)β−1.
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Fig. 8.1 Three beta
densities for different values
of it’s parameters α and β

for 0 < θ < 1 and zero otherwise. Here Γ () denotes the Gamma function Γ (x) =∫ ∞
0 sx−1e−sds. Note that α > 0 and β > 0. When we choose α = 1 and β = 1 the
resulting beta distribution function is actually a uniform distribution function on
[0, 1]. Figure8.1 shows the PDF of the beta for various alternative choices of α and
β. The horizontal line is given by α = β = 1 and shows that the uniform distribution
function on the unit interval is a special case of the beta distribution function. The
beta(1,1) is considered a relatively uninformative prior for the Bernoulli p. The
density with its peak at 0.5 is given by α = β = 5; as long as both parameters of the
beta are equal and larger than 1 the maximum of the density will be 0.5. When the
parameters are unequal this is no longer the case: the third density in the figure is
produced using α = 10 and β = 5.

Now that we have both our sampling distribution and our prior, we can compute
the posterior. Here we use a common trick used in many Bayesian analysis attempts:
we first compute the posterior up to some Normalizing constant (i.e., we ignore the
marginal likelihood for now), and later see if we can find the correct Normalizing
constant to ensure that f (θ|x) is indeed a valid probability distribution. We find:

f (θ|x) ∝ p(x |θ) f (θ)

= θ
∑n

i=1 xi (1 − θ)n−∑n
i=1 xi

Γ (α + β)

Γ (α)Γ (β)
θα−1(1 − θ)β−1

∝ θ(α+∑n
i=1 xi )−1(1 − θ)(β+n−∑n

i=1 xi )−1.

Hence, we find that in this specific problem the posterior f (θ|D) is proportional to
the density of a beta(α′,β′) distribution, with

• α′ = α + ∑n
i=1 xi ,• β′ = β + n − ∑n

i=1 xi .
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Since the posterior is proportional to the density of the beta, and we are only missing
the Normalizing constant, clearly, this will be the Normalizing constant of the beta.
Thus, we know that our posterior belief about θ is just a new beta distribution with
updated parameters. At this point the role of the prior in this model is alsomore easily
understood: the beta prior can be regarded as adding additional observations where
α specifies the a-priori number of successes, and β specifies the a-priori number of
failures.

The beta distribution is considered a conjugate prior distribution. Formally, when
F is a class of sampling distribution functions, andP is a class of prior distribution
functions, then the classP is called conjugate forF if

p(θ|x) ∈ P for all p(·|θ) ∈ F and p(·) ∈ P.

This definition is cumbersome, since if we choose P as the class of all distribution
functions, thenP is always conjugate. However, in practicewe aremost interested in
natural conjugate prior families, which arise by takingP to be the set of all densities
having the same functional form as the sampling distribution (i.e., the likelihood).

Practically, in R, you can use the rbeta() function to obtain samples from a
beta distribution. If you start with a prior using α = β = 1 and the vector x contains
your observations, then you can obtain n = 1,000 draws from the posterior using
rbeta(1000, 1+sum(x), 1+length(x)-sum(x)). Hence, we now have
both an analytical description of our posterior belief regarding θ after seeing a dataset,
and we can use R to obtain draws from this posterior distribution or to visualize it.

8.3.2 Estimating the Parameters of a Normal Population

Here we will examine the Bayesian analysis of data resulting from a Normal pop-
ulation. Thus, we will assume X1, . . . Xn are i.i.d. N (μ,σ2). Although the general
principles detailed above still hold—i.e., we need to specify a sampling model, and
a prior distribution to compute the posterior distribution—the Normal case is quite
a bit more complex, in part due to the fact that the Normal distribution function has
two parameters that might be of interest. To simplify matters, and to provide an idea
of the steps involved in computing the posterior distribution f (θ|D) = f (μ,σ2|D),
we first consider the case where the population variance σ2 is known, andwe are only
dealing with a single realization x1. Next, we will extend this to including multiple
observations. Finally, we will present the more general result for a Bayesian analysis
of n realizations from a Normal population where both μ and σ2 are unknown.
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8.3.3 Bayesian Analysis for Normal Populations Based on
Single Observation

To somewhat ease into the Bayesian analysis of Normal populations we will first
consider the situation in which we assume X1 ∼ N (μ,σ2), we only observe a sin-
gle realization x , and we assume σ2 known; hence, we only derive the posterior
distribution for μ. The sampling model is:

l(θ) = p(x |μ)

= 1√
2πσ2

e
−(x−μ)2

2σ2 ,

which is simply the Normal PDF we have seen in Chap.4. Since μ ∈ (−∞,∞) a
natural choice for a prior has support on the full real number line. It turns out that
the Normal distribution provides a reasonable choice of prior for μ:

f (μ) = 1
√
2πσ2

0

e
−(μ−μ0)2

2σ20 ,

where we use μ0 and σ2
0 to denote the parameters of this prior distribution (not to be

confused with μ and σ2 as they occur in the likelihood). We focus, as we did before,
on computing the posterior distribution up to the Normalizing constant:

f (μ|x) ∝ p(x |μ) f (μ)

= 1√
2πσ2

exp

(

− (x − μ)2

2σ2

)

× 1
√
2πσ2

0

exp

(

− (μ − μ0)
2

2σ2
0

)

= 1

2π
√

σ2σ2
0

exp

(

− (x − μ)2

2σ2
− (μ − μ0)

2

2σ2
0

)

= 1

2π
√

σ2σ2
0

exp

(

−μ2 − 2μμ0 + μ2
0

2σ2
0

− x2 − 2μx + μ2

2σ2

)

= c × exp

(

−μ2σ2 − 2μμ0σ
2 + μ2

0σ
2 + σ2

0x
2 − 2μσ2

0x + μ2σ2
0

2σ2
0σ

2

)

= c × exp

(

−μ2(σ2 + σ2
0) − 2μ(μ0σ

2 + σ2
0x) + (μ2

0σ
2 + σ2

0x
2)

2σ2
0σ

2

)

= c × exp

(

−
μ2 + 2μμ0σ

2+σ2
0 x

σ2+σ2
0

−
(

μ0σ
2+σ2

0 x
σ2+σ2

0

)2 + −
(

μ0σ
2+σ2

0 x
σ2+σ2

0

)2

2σ2
0σ

2

σ2+σ2
0

)
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× exp

(

−μ2
0σ

2 + σ2
0x

2

2σ2
0σ

2

)

∝ exp

{−
(
μ − μ0σ

2+xσ2
0

σ2+σ2
0

)2

2 σ2σ2
0

σ2+σ2
0

}

where c is a the Normalizing constant. Next, if we let

σ2
1 = σ2σ2

0

σ2 + σ2
0

= 1

σ−2 + σ−2
0

,

and

μ1 = μ0σ
2 + xσ2

0

σ2 + σ2
0

= μ0σ
−2 + xσ−2

0

σ−2 + σ−2
0

= σ2
1(μ0σ

−2
0 + xσ−2),

we obtain

σ−2
1 = σ−2 + σ−2

0

and

μ1σ
−2
1 = μ0σ

−2
0 + xσ−2.

After these derivations we see that

f (μ|x) ∝ e
(μ−μ1)2

2σ21

which is recognizable as the Normal PDF and hence the Normalizing constant that
we are after is 1√

2πσ2
1

and we find that

f (μ|x) = 1
√
2πσ2

1

e
(μ−μ1)2

2σ21 .

This derivation shows that if σ2 is assumed known, and we use a Normal prior for
μ, we find that the posterior for μ is itself a Normal: μ|X1 = x ∼ N (μ1,σ

2
1). It is

worthwhile to have another look at the definition of μ1 above to see that the posterior
mean μ1 is effectively a weighted average of the prior mean μ and the observation x .
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8.3.4 Bayesian Analysis for Normal Populations Based on
Multiple Observations

The analysis in the previous section gave an idea of the Bayesian analysis of data
originating from a Normal population; however, we considered σ2 known, and we
only considered a single data point x . It is much more realistic that we would be
dealing with a much larger set of realizations x1, . . . , xn . Here, we are assuming that
effectively these are realizations from n identically distributed, independent, random
variables Xi ∼ N (μ,σ2). Adding this step to our analysis is conceptually not hard
(although it takes some algebra). The only real changes affects the sampling model:
the likelihood is now specified as:

l(θ) = p(x1, . . . , xn|μ)

=
n∏

i=1

1√
2πσ2

e
−(xi−μ)2

2σ2 ,

Multiplying the likelihood l(θ) of this dataset by the (Normal) prior f (μ)we defined
in the previous section again gives us the posterior up to the Normalizing constant.
Working through all the algebra (see Gill 2014 for an example), we find that

f (μ|x1, . . . , xn) = 1
√
2πσ2

1

e
(μ−μ1)2

2σ21 .

where this time

σ2
1 =

(
1

σ2
0

+ 1

σ2/n

)2

and

μ1 = σ2
1

(
μ0

σ2
0

+ x̄

σ2/n

)

.

Thus, after following through the derivation, we find that the posterior distribution
for μ given the realizations x1, . . . , xn is itself again Normal as we found before.
Additionally, also in this case the posterior mean μ1 is a weighted average of the
prior mean μ0 and the data: it is simply a weighted average of the prior mean and the
mean of the observations x̄ = ∑n

i=1 xi/n. Note that in this case the variance of the
posterior is affected by the number of observations; the term σ2/n clearly shrinks
as the number of observations increases leading to a decrease in the variance of the
posterior. If n → ∞, then μ1 will converge to the sample mean, and σ2

1 will converge
to zero.
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8.3.5 Bayesian Analysis for Normal Populations with
Unknown Mean and Variance

To complete our Bayesian analysis of the Normal population we will also consider
the case in which both σ2 and μ are unknown. The sampling model does not change
much, although we do add σ2 explicitly as an unknown:

l(θ) = p(x1, . . . , xn|μ,σ2)

=
n∏

i=1

1√
2πσ2

e
−(xi−μ)2

2σ2 .

The prior choice, however, is more involved than it is in the examples we have
seen hitherto; this time we need a prior for the joint distribution function of μ and
σ2; hence, we are looking for a multivariate PDF f (μ,σ2) with the correct support
(note that σ2 ∈ (0,∞]). Many possible choices are available, but one often used
(conjugate) prior is the Normal-inverse-χ2 distribution. It’s PDF is:

f (μ,σ) = N Iχ2(μ0,κ0, ν0,σ
2
0)

= p(μ,σ2)

= p(μ|σ2)p(σ2)

= N (μ0,σ
2/κ0) × χ−2(ν0,σ

2
0)

= 1

Z(μ0,κ0, ν0,σ
2
0)

(σ2)−(ν0/2+1)/2 exp

(

− 1

2σ2
[ν0σ2

0 + κ0(μ0 − μ)2]
)

where

Z(μ0,κ0, ν0,σ
2
0) =

√
2π√
κ0

Γ (ν0/2)

(
2

ν0σ
2
0

)ν0/2

.

The above shows that our prior for σ2 is a scaled inverse-χ2 distribution and the prior
for μ conditional on σ is a Normal distribution; both of these are known and well-
understood univariate distribution functions.While the Normal-inverse-χ2 PDFmay
look unwieldy—see Gill (2014) for step-by-step derivations—the interesting result
for us is that the posterior f (μ,σ2|x1, . . . , xn) is itself again a Normal-inverse-χ2-
PDF:

f (μ,σ2|x1, . . . , xn) = N Iχ2(μn,κn, νn,σ
2
n)

with
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μn = κ0μ0 + nx̄

κn

κn = κ0 + n

νn = ν0 + n

σ2
n = 1

ν n

(

ν0σ
2
0 +

n∑

i=1

(xi − x̄)2 + nκ0

κ0 + n
(μ0 − x̄)2

)

.

Aswe have learned in Chap.6, whenworking with bivariate distribution functions
it is often interesting to look at the marginal distribution functions of the variables
involved. We will skip the derivations, but for the Normal-inverse-χ2 distribution
it is possible to derive both the marginal PDF of μ and σ2 in closed form. For the
posterior Normal-inverse-χ2 distribution provided above we find that

f (σ2|x1, . . . , xn) = χ−2(νn,σ
2
n) (8.3)

and

f (μ|x1, . . . , xn) = t (μn,σ
2
n/κn). (8.4)

Thus, the marginal posterior PDF of σ2 is a scaled inverse χ2 PDF with scale νn and
degrees of freedom σ2

n , while the marginal posterior distribution for μ is the familiar
t-distribution with mean μn and σ2

n/κn degrees of freedom.
In R it is easy to generate samples from the posterior for μ using the rt()

function. Sampling from the bivariate Normal-inverse-χ2 distribution is a bit more
involved. The following code defines three functions that jointly (together with the
functions available in core R, allow you to obtain samples from the Normal-inverse-
χ2 distribution:

# Sample from inverse gamma
> rinvgamma = function(N,a,b){
+ return (1/rgamma(N,a,rate = b))
+ }

# Sample from scaled inverse chi-squared
> rinvchisq = function(N,df,s2=1){
+ return (rinvgamma(N,a = df/2,b = df*s2/2))
+ }

# Sample from bivariate Normal Inverse Chi Squared
> rnorminvchisq = function(N,mu0,kappa0,nu0,sigma02){
+ sigmas_square <- rinvchisq(N, nu0, sigma02) + mus <-
sapply(sigmas_square, function(s2) rnorm(1,mu0,sqrt(s2/kappa0)))

+
+ return (rbind(mus, sigmas_square))
+ }
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8.4 Bayesian Decision-Making in Uncertainty

In the previous sections we first extended Bayes’ law from events to distributions,
and subsequently we showed how we can use these results to quantify our beliefs
regardingpopulationparameters conditional onobserveddata.Next,weprovided two
specific examples: we have demonstrated how to compute our posterior belief about
the parameter p for observations from a Bernoulli population, and similarly we have
shown how to update our beliefs regarding μ and σ2 when faced with observations
from a Normal population. More generally, a Bayesian analysis will, after choosing
a prior (more on that subject in the next section), allow you to compute (or at least
sample from) the posterior f (θ|D). However, simply providing the parameters of the
posterior or a batch of samples from the posterior often does not answer the questions
that a statistical analysis is supposed to answer: as we have seen in previous chapters
we would often like to provide a specific estimate for a population value, we would
like to make probabilistic statements regarding populations values, or we would
like to test specific hypotheses and make decisions. We have seen how many of
these tasks are accomplished in the Frequentist framework in prior chapters; here
we briefly highlight approaches that are often used in Bayesian analysis for similar
purposes.

8.4.1 Providing Point Estimates of Parameters

After obtaining either an analytical expression for f (θ|D), or, as is more often the
case in Bayesian analysis in practice, a way to obtain samples from this posterior
PDF, we might want to provide a so-called point estimate of the population value in
question. A point estimate is simply a single-number summary of the results obtained
regarding a single parameter. The Frequentist analogy in this casewould be providing
(e.g.) a maximum likelihood estimate of a population value.

In the Bayesian case providing point-estimates is conceptually very simple: we
have already seen variousways of summarizing distributions using (e.g.) the expected
value, themedian, or themode.When an analytical expression for f (θ|D) is available
these can often readily be computed. The expected value is

E(θ) =
∫

R

θ f(θ) dθ, (8.5)

whereas the median is the value of m for which
∫ m

∞
f(θ) dθ = 1

2
, (8.6)
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and the mode is the (potentially local) maximum of the distribution function, i.e.,
where f ′(θ) = 0. Note that the mode is, in the literature on Bayesian analysis, often
referred to as the Maximum A Posteriori (or MAP) estimate.

In some sense, which we will make more precise in the next subsection, the
expected value, the median, or the mode provide a Bayesian’s “best guess” towards
the population value if she or he is forced to make a single number statement. Note
that very often in practice f (θ|D) is not analytically available; rather, we are able
to use Markov Chain Monte-Carlo methods (see details below) to generate samples
from f (θ|D). Givenm samples of the posterior (i.e., given θ1, . . . , θm), computation
of the various point estimates is straight forward (and effectively brings us right back
to the definitions of the mean, median, and mode of a sample, as we discussed in
Chap.1): the core R functions mean() and median(), together with the function
get_mode() we defined in Chap.1 suffice.

8.4.1.1 A Formal Justification for Specific Point Estimates: Bayesian
Decision Theory

Which exact point estimate should be reported can be made (much) more formal by
considering the reporting of such a point estimate a (Bayesian) statistical decision
problem. Here we briefly introduce some of the basic ideas behind Bayesian decision
theory, and in doing so provide a rationale for reporting the expected value of the
posterior distribution of θ. This section is by no means an exhaustive discussion of
Bayesian decision theory; it is merely intended to be a short introduction to the topic
and a view on things to come in future courses in Bayesian statistics that you might
follow.1

Suppose we want to make a decision d based on the data x—note that we change
notation here slightly and use x for data as opposed to D—where d(x) ∈ D ; we
assume that the decision is an element of the decision space D (i.e., the space of all
possible decisions) and furthermore we assume that the decision will be a function
of the data. Subsequently, we stipulate that every time we make a decision, we can
loose something by making a “wrong” decision. Next, we define risk as the expected
loss (taking the expectation over the paremeter θ that we estimate in the process),
and we state that our goal when making decisions is to minimize risk. We can set
this up mathematically by quantifying the loss involved, which is done using a loss
function:

L = L (d(x), θ) ≥ 0

One interpretation of the loss function is that it gives a numerical (positive) value for
any decision d(x) given a value of a parameter θ. A specific example of a loss function
in a parameter estimation context is L(d, θ) = (d − θ)2, the so-called squared error
loss. This loss function basically states that if we make a specific decision d(x)
regarding the parameter θ based on the observed data x , we incur no loss if d = θ

1 For those interested we would recommend the book Robert (2007).
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and the further away from the actual parameter our choice is, the more loss we incur.
Note that L itself is a random variable (since it depends on the data) and thus we can
take (e.g.) its expectation or compute its variance.

Now, risk, as we stated above, is the posterior expected loss, which is a function
of the data due to the Pr(θ|x) term:

E (L(d(x), θ)|X = x) =
∫

Θ

L (d(x), θ) p(θ|x)dθ

Any decision d(x) that minimizes the posterior expected loss—given some loss
function—is called a Bayes optimal decision.

If we use the squared error loss function L(d(x), θ) = (d(x) − θ)2 introduced
above and denote E(θ|X = x) by μ(x), then (without detailing the proof) we can
state

E (L(d(x), θ)|X = x) = E
(
(d(x) − θ)2|X = x

)

= . . .

= (d(x) − μ)2 + VAR(θ|X = x)

which clearly is minimized when d(x) = μ(x) = E(θ|X = x). Thus, the posterior
mean minimizes the squared error loss, providing a decision-theoretic justification
for the reporting of the posterior mean as a point-estimate.2

The above derivation of the decision that minimizes the expected squared error
loss was general (e.g., we did not make any additional assumptions regarding the
priors or the likelihood), and hence we have just shown that the Bayes estimate under
squared error loss is always the posterior mean. Alternatively, if the loss function is
the absolute value function, L(d(x), θ) = |d(x) − θ|, we would obtain the posterior
median as the decision that minimizes the risk. In this way, a Bayesian analysis,
in combination with formal statistical decision theory, motivates specific decisions
regarding the parameters of interest.

8.4.2 Providing Interval Estimates of the Parameters

Next to point estimates, we often like to quantify our uncertainty regarding a param-
eter. In previous chapters we have frequently encountered the (Frequentist) confi-
dence interval as a tool for quantifying the uncertainty regarding an estimate. In
Bayesian data analysis it is common to consider credible intervals. As usual, no new
analysis is required: the Bayesian credible interval is merely a summary of the pos-
terior PDF f (θ|D). A 100%(1 − α) credible interval gives the region in parameter
space in which the (true) parameter value falls with probability (1 − α). Often, the
q% credible interval identifies the bounds of the middle q percent of posterior mass

2 For interested students we refer to Robert (2007) for a step-by-step derivation.
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Fig. 8.2 Posterior PDF of a parameter, likely and unlikely true population values θ̃, and the 95%
credible interval

(i.e., the mass outside of the interval is 1
2 (1 − q) on each side). An example of this

is given in Fig. 8.2. It has to be noted that credible intervals are not uniquely defined
for arbitrary posterior distribution functions and several definitions exist:

• Choosing the narrowest interval. For a unimodal distribution function this will
involve choosing those values of highest probability density including the mode.

• Choosing the interval where the probability of being below the interval is as likely
as being above it. This interval will include the median. This is sometimes called
the equal-tailed interval.

• Assuming that the mean exists, choosing the interval for which the mean is the
central point.

Also, credible intervals need not be a connected set. The shortest possible interval
with a given probability is called the Highest Posterior Density Interval (HPDI).

8.4.2.1 Comparing Confidence Intervals and Credible Intervals

For students first encountering credible intervals it is often unclear how these sum-
maries of the posterior PDF compare to confidence intervals (please do revisit Chap. 5
for our initial discussion of confidence intervals). Adding to this confusion is the fact
that in a number of situations the numerical values of a 100%(1 − α) credible inter-
val might coincide exactly with the numerical values of the 100%(1 − α) confidence
interval. This latter is, for example, true for the credible/confidence interval for the
mean parameter μ when dealing with Normal populations: the confidence classical
interval around x̄ is numerically exactly the same as the credible interval around the
posterior for μ (given a suitable choice of prior).
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However, this occasional numerical similarity does not imply that both intervals
quantify the same thing; far from it. The true meaning of the confidence interval is
very different from the true meaning of the credible interval, which lays bare a big
philosophical distinction between Bayesian and Frequentist analysis (which we will
discuss in more detail below). Recall the interpretation of the confidence interval
provided in Chap.5:

• The confidence interval quantifies that, if the same population is sampled on
numerous occasions and interval estimates are made on each occasion, the result-
ing intervals would include the true population parameter in (approximately)
100%(1 − α) of the cases.

In this definition we assume the true population value to be a fixed quantity; the
uncertainty captured by the interval is due to our sampling from the population.
The confidence interval is a probabilistic statement regarding the provided bounds:
it will include the true (fixed) population value in 100%(1 − α) of the cases it is
computed on a (similarly collected) sample. The interpretation of the credible interval
is different:

• Given our prior and our observed data, there is a 100%(1 − α) probability that
the (unobserved) value of θ is within the interval.

The credible interval is thus a statement about the population parameter taking
on specific values with a specific probability. For a more extensive discussion of
credible intervals and confidence intervals see Hespanhol et al. (2019).

8.4.3 Testing Hypotheses

As we encountered in previous chapters, specifically Chap.7, we would often like to
not only provide point or interval estimates, but would like to test specific hypothe-
ses. While there is a large literature on Bayesian hypothesis testing (see, e.g., Gu
et al. 2014; Wagenmakers et al. 2017), the simplest approach to Bayesian hypothesis
testing follows directly from our earlier discussion of extending Bayes’ Theorem
from events to multiple specific assumptions/hypothesis regarding parameter val-
ues: Bayes’ Theorem can be used to directly quantify the probability of a parameter
having a specific value (or being in a range of values). This idea can be extended to
quantify probability in favor of a specific hypothesis.

However, an alternative approach that is fairly popular for hypothesis testing in a
Bayesian framework is the use of so-called Bayes factors. The Bayes factor relies on
the idea that the posterior probability Pr(M |D) of a model M given data D is also
given by Bayes’ Theorem:

Pr(M |D) = Pr(D|M)Pr(M)

Pr(D)
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and the subsequent idea that we can compare the posterior probability of different
models M1, M2 and make a choice in favor of one or the other. Note that amodel here
often refers to a specific value or range of the parameters of a parametric statistical
model. Given this setup the term Pr(D|M) is effectively the likelihood of the data
under this specific model, and it thus represents the probability that the data are
produced under the assumptions encoded in the model. Evaluating this likelihood is
key to Bayesian model comparison. Given a model selection problem, in which we
have to choose between two models on the basis of observed data D, the plausibility
of the two different models M1 and M2, parametrized by model parameter vectors
θ1 and θ2, is assessed by the Bayes factor K given by:

K = Pr(D|M1)

Pr(D|M2)
=

∫
Pr(θ1|M1)Pr(D|θ1, M1) dθ1∫
Pr(θ2|M2)Pr(D|θ2, M2) dθ2

.

Hence, the Bayes factor quantifies the relative evidence, after seeing the data, in
favor of one model or the other. The Bayes factor K theoretically runs from 0 to
infinity: if K < 1, the Bayes factor provides evidence in favor of M2. If K > 1, it
provides evidence in favor of M1, and Bayes factors of K > 10 are often considered
strong evidence: in this case M2 would be rejected and M1 would be accepted. Thus
in Bayesian hypothesis testing the selected hypothesis, i.e., the hypothesis encoded
in M1 or M2, depends on the computed value of K .

The discussion above is a bit abstract but it can easily be clarified using a simple
example. Suppose we have a binary random variable and we want to compare a
model, M1, in which the probability of success is p = 1

2 , and another model M2

where p is unknown and we take a prior distribution for p that is uniform on [0, 1].
Thus, we are effectively trying to test whether our data provides evidence that p = 1

2
compared to p being anywhere between 0 and 1. Suppose we obtain a sample of
size n = 200 and find 115 successes and 85 failures. The likelihood can now be
calculated according to the binomial PDF:

(
200

115

)

p115(1 − p)85

Now, since for model M1 we assume p = 1
2 we find:

Pr(X = 115 | M1) =
(
200

115

) (
1

2

)200

= 0.005956....

while for M2 we assume we do not know p, and hence we obtain

Pr(X = 115 | M2) =
∫ 1

0

(
200

115

)

p115(1 − p)85dp = 1

201
= 0.004975....
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for model M2.3 The ratio of these two, and thus the Bayes factor K , is then 1.197,
which provides some—but very little—evidence in favor of model M1. Effectively a
Bayesian would conclude that both models are pretty much equally likely given the
observed data.

Note that a Frequentist hypothesis test of M1 (considered as a null hypothesis)
would have produced a very different result. Such a test says that M1 should be
rejected at the 5% significance level, since the probability of getting 115 or more
successes from a sample of 200 if p = 1

2 is 0.0400. Hence, while the Frequentist
would reject the null hypothesis H0 : p = 0.5 in this case, the Bayesian would not
decide that the alternative model M2 is convincingly more plausible than M1.4

The Bayes factor can be hard to compute for many types of tests, and it is still
an active area of research. For a number of standard tests, such as one-sample and
two-sample tests for means and proportions, simple to use R packages are available
(see for example: https://richarddmorey.github.io/BayesFactor/). For more compli-
cated models computing K can be challenging; however, the flexibility of the Bayes
factor in specifying the models means that Bayes factors can often be computed for
hypotheses that are hard (if not impossible) to test in a Frequentist framework.

8.5 Challenges Involved in the Bayesian Approach

Above we tried to provide an idea of the Bayesian school of thought in statistics
analysis: given a prior distribution function for the parameters of interest, and a
sampling model (i.e., the likelihood), we can compute the posterior PDF of the
parameters f (θ|D). This posterior PDF effectively captures all that we can learn
from the data, and hence the remainder of a Bayesian data analysis in effect simply
considers computing different summaries of f (θ|D).

While the Bayesian school of thought provides a simple framework for doing
data analysis that is extremely flexible and, according to some, philosophically more
appealing than the Frequentist school of thought (a discussion we will touch upon
in the next section), (applied) Bayesian data analysis is not without difficulties.
Although Bayesian thinking has been around for centuries (Thomas Bayes’s famous
Bayes’ Theorem was published in 1763, shortly after his death), a number of issues
have hindered its uptake. These issues have often been both philosophical and prac-
tical. We will focus on the latter challenges in this section, where we first discuss
the issue of prior choice, and subsequently discuss the computational difficulties that
are often involved in applied Bayesian analysis using models that are slightly more
complex than the models we have discussed up till now.

3 Note that this is the prior times the likelihood and subsequently the parameter p is integrated out.
4 For more on Bayes factors see Kass and Raftery (1995).

https://richarddmorey.github.io/BayesFactor/
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8.5.1 Choosing a Prior

One major challenge to Bayesian thinking has often been the choice of prior distri-
bution: how do we obtain a sensible and valid specification for f (θ)? As was clear
from our analysis of both Bernoulli and normal populations, the prior can play a large
role in the resulting posterior f (θ|D) and thus it is likely to also play a large role in
the final conclusions, i.e., the reported summaries of f (θ|D). How then should we
choose a good prior?

While some discard choosing a prior altogether on philosophical grounds, here we
simply discuss a number of attempts that have been conceived in the large literature
on prior choice to tackle the problem of selecting a prior. We have already encoun-
tered one class of priors, namely conjugate priors, which are appealing for their
computational ease. However, even when settling for a conjugate prior—although
one might argue that computational ease should not be the main argument when set-
ting up a data analysis—the values of the parameters in the Bayesian context often
called hyperparameters still need to be chosen, and hence opting for a conjugate
prior does not “solve” the issue of prior choice.

Two approaches to prior choice are often distinguished, effectively highlighting
two streams of thought regarding the meaning of the prior. One approach focusses
on constructing uninformative prior distribution functions. In some sense, uninfor-
mative priors seek to formalize the idea that the choice of prior should affect, as
little as possible, the resulting posterior. The main challenge for this approach is for-
malizing what one means exactly by the term “uninformative”. The other approach
to prior construction aims to construct priors that are informative: the prior should
reflect the knowledge we already have around the parameter. In this approach the
main challenge consists of moving from our current knowledge regarding some data
analysis problem—which is often not explicitly quantitative—to a, sometimes high
dimensional, probability distribution function that summarizes this knowledge.

8.5.1.1 Uninformative Priors

While the intuition behind uninformative priors is simple enough, the practice turns
out to be very challenging. Properly defining uninformative has been a challenge,
and we will discuss a few common approaches.

One approach that might seem feasible is that of choosing uniform priors. A
uniformprior for aBernoulli p—asweanalyzed above—canbe specifiedbychoosing
f (θ) = 1, 0 ≤ θ ≤ 1. It is not hard to extend this to f (θ) = [b − a]−1, a ≤ θ ≤ b
to cover more cases. And, somewhat surprisingly perhaps, extending even further
to f (θ) = c,−∞ ≤ θ ≤ ∞, while not a valid probability distribution and therefore
often called an improper prior, might lead to proper posterior distribution functions
and thus can be used for parameters whose ranges are not bounded.

Although uniform priors seem appealing and are very often used, they can often
hardly be considered uninformative as uniform priors are often not invariant to trans-
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formations: i.e., if we change the parametrization of the model, a uniform prior for
one specific parametrization often leads to a (very) informative—in the sense that
a lot of prior mass is on specific regions of the parameter space—prior in the new
parameter space. Such is for example true for the uniform distribution on p we
discussed above: if we change from the probability metric to analyzing the odds-
ratio than the previously thought uninformative uniform prior actually places a lot of
probability mass on small values of the odds-ratio. Furthermore, uniform priors are
often not the “highest variance priors”, although often a high variance prior can be
motivated to be less informative. For example, when considering the beta prior for
the analysis of a Bernoulli p, choosing α = β = 0.5 would provide less informa-
tion on the posterior than choosing the uniform α = β = 1. Actually, in this setting,
one could motivate that the highest variance prior α = β → 0 is actually the least
informative (see below).

In an attempt to solve some of the issues arising with uniform priors, Jeffreys
(1946) suggested constructing priors that are invariant to (certain types of) transfor-
mations. For a single parameter, Jeffreys’ prior is produced by taking the square root
of the negative expected value of the second derivative of the likelihood function
(i.e., the Fisher information matrix discussed in Chap. 5):

f (θ) =
[

−E(
d2

dθ2
log f (x |θ))

] 1
2

. (8.7)

While the above expression might look challenging, Jeffreys’ prior is often straight-
forward to calculate in many applied cases.

Another class of priors that is often deemed uninformative, next to Jeffreys’ priors
and uniform priors, are called reference priors: reference priors are constructed in
such a way that the likelihood dominates the posterior, i.e., the resulting posterior
is as little influenced by the prior as possible. This is formally done by maximizing
the Kullback–Leibner (1951) divergence of the posterior distribution to the prior
distribution. Reference priors are often easier to compute than Jeffreys’ priors for
multivariate cases (i.e., multiple parameters) while for the univariate case (i.e., single
parameter) both produce the same result.

To make the above discussion of uninformative priors a bit more tangible it is
useful to reconsider the results we found for the posterior distribution for a Bernoulli
population; we found that the posterior f (θ|D)was given by a beta PDFwith param-
eters:

• α′ = α + ∑n
i=1 xi ,• β′ = β + n − ∑n

i=1 xi .

In the specification of the posterior it is clear that the parameters of the prior, i.e.,
α and β, are combined with the number of successes

∑n
i=1 xi and the number of

failures n − ∑n
i=1 xi in the data. Thus, in this specific case, the prior can be thought

of as providing a specific number of prior observations: a prior using α = β = 1 as
parameters effectively encodes the information of two observations, one success and
one failure. As we noted before, a beta(1, 1) is uniform on [0, 1]. Clearly, in this case
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the uniform is not uninformative in the sense that it does effectively provide these
two additional data points that carry over to the posterior. Jeffreys’ prior (and the
reference prior), for this problem is α = β = 1

2 which is far from uniform, but it can
be considered as only adding a single observation to the posterior as opposed to two
in the uniform case. In this specific case it is also possible to choose α = β → ∞;
this prior is not proper, but it results in a posterior beta with parameters

• α′ = ∑n
i=1 xi ,• β′ = n − ∑n

i=1 xi

which—if at least one failure and one success are observed—can be considered as the
least informative. The above discussion mainly goes to show that although choosing
uninformative priors might sound appealing, it can be tricky to do so convincingly.
The problems are even stronger when larger models, with many more parameters,
are considered.

8.5.1.2 Informative Priors

Next to uninformative priors there is a class of priors that is considered informative;
these are predominantly separated from the non-informative priors by the fact that
they are designed to explicitly contain the information regarding the problem at hand
that is already available. Prior studies for example might provide results that one
would like to include in a subsequent estimation problem: theoretically, Bayesian
analysismethods are extremelywell suited to incorporate such prior results by encod-
ing them into the prior distribution that is used in the analysis. We stress the word
“theoretically” here, as summarizing the results of prior studies into probability dis-
tributions is not at all easy. A large literature on elicitation priors exists; these are
priors that are explicitly designed to capture knowledge that experts in a domain
might have regarding the plausible values of a parameter.

For example, when estimating the average height of a sample of college students
(and assuming these to come from aNormal population) in centimeters, onemight be
realistically able to provide bounds for the mean parameter μ (i.e., 100 < μ < 200)
and upper bound σ2 (i.e., σ2 < 1,000. However, even with this reasonably defined
input—in many cases we know much less about the problem at hand—theoretically
still an infinite number of bivariate prior distribution functions for (μ,σ2) could be
conceived that encode this information. Thus,while eliciting knowledge from experts
often helps in creating informative priors, there is often still a lot of uncertainty left,
even in domains in which much knowledge is available.

Next to elicitation priors, there are also many attempts to include quantitative data
from earlier studies into priors for new studies. In a sense this should be easy: if the
study examines the exact same question, the posterior of the previous study could
be used as the prior for the next (providing an example of the theoretical ease with
which Bayesian analysis can combine the results of many studies). However, often
studies are not exactly the same, and thus one does not wish to use the posterior
exactly; in these cases power priors are popular: power priors effectively use a part
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of the likelihood of a previous study to construct the posterior. Using x0 as the data
from a prior study we can compute

f (θ|x0,α0) = f (θ)[ f (x0|θ)]α0 (8.8)

where α0 ∈ [0, 1] and subsequently use f (θ|x0,α0) as the prior for our next study.
As the use of prior distributions is one of the main criticisms of the Bayesian

approach to statistical data analysis, many different ways of constructing priors have
emerged in the literature. We refer the interested student to Robert (2007) for a
much more extensive discussion of the issue. For now we would like to make two
additional remarks: first, conjugate priors can be considered uninformative (i.e., when
they are uniform), but can also be extremely informative; conjugacy is orthogonal
to informativeness. Second, priors can often be thought of as adding bias to an
estimator; inmany cases a point estimate provided by aBayesian analysis is biased (as
introduced in Chap.2). While bias is often considered a drawback in the Frequentist
literature, the improvements in MSE that often arise from (informative) priors are
considered appealing in the literature on Bayesian data analysis.

8.5.2 Bayesian Computation

Next to prior choice, the complexity of the computations involved in many Bayesian
analyses has posed a challenge for the Bayesian paradigm as a whole. For a long
time, effectively until we got access to fast computers, applied Bayesian analysis was
restricted to a (very) small number of parameters and/or conjugate priors: only in
these simple—and often too simplistic—cases was it practically possible to conduct
a Bayesian analysis. It is simple to see why Bayesian computations might become
challenging quickly; recall Bayes’ Theorem:

f (θ|D) = l(θ) f (θ)
∫
l(θ) f (θ)dθ

(8.9)

where the denominator is the integral over the prior times the likelihood (i.e., the
marginal likelihood). This integral, especially when the distribution functions con-
sidered are highly multivariate, might be very tricky to solve, which means that it
becomes hard (or impossible) to work with the posterior distribution.

Luckily, over the last few decades, we have largely solved these issues by resort-
ing to Markov Chain Monte Carlo (MCMC) methods. We have already encoun-
tered this approach in Chap.4: although it might be hard to work with a PMF
or PDF analytically, as long as we are able to generate samples from the desired
distribution function using a computer we can effectively compute the point esti-
mates and interval estimates of interest. A good and thorough overview of MCMC
methods as they are used in Bayesian analysis is provided in Gill (2014); here we
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highlight the basic ideas of two very popular numerical methods that are often used in
applied Bayesian analysis: theGibbs sampler and theMetropolis–Hastings sampler.

The basic idea behind Gibbs sampling is relatively simple; suppose we can break
up our analysis problem in such a way that, while we might not have analytical
expressions or a way to sample from the joint distribution function of the parameters
of interest, we can express the parameters of interest conditionally on the other
parameters. Furthermore, assume that we are able to generate draws from these
posterior distributions. Thus, we might have PDFs f (x |y) and g(y|x) and we would
like to obtain samples of their joint distribution function. In this case, Gibbs sampling
can be done by, after picking a starting point (x0, y0), drawing random values from
the conditionals as follows:

x1 ∼ f (x |y0) y1 ∼ f (y|x1) (8.10)

x2 ∼ f (x |y1) y2 ∼ f (y|x2) (8.11)

x3 ∼ f (x |y2) y3 ∼ f (y|x3) (8.12)

∼ . . . . . . (8.13)

xm ∼ f (x |ym−1) ym ∼ f (y|xm). (8.14)

Under relatively mild conditions the generated draws (x j , y j ) approximate draws
from the joint PDF f (x, y) very well (see Gill 2014 for more information). Note that
the sequence of samples x1, y1, . . . , xm, ym is often called a(n) (MCMC) chain.

While Gibbs sampling is often extremely useful, it does rely on the ability to sam-
ple from the conditional distribution functions of interest. The Metropolis–Hastings
sampler does not have this drawback and effectively allows sampling from any high-
dimensional target PDF f (x1, . . . , xn). Here we conceptually describe the classical
Metropolis sampler (the Metropolis–Hastings sampler extends the idea presented
here to non-symmetric proposal distributions) for the bivariate case. Suppose we
have a PDF f (x, y) that we wish to obtain samples from but we are unable to gener-
ate these samples directly. In this case, given a proposal PDF g(x ′, y′|x, y) that we
can sample from, and a starting point (x, y), we can

1. Sample (x ′, y′) from g(x ′, y′|x, y),
2. Sample a value u from a uniform [0, 1],
3. If f (x ′,y′)

f (x,y) > u then accept (x ′, y′) as the new destination,
4. Or else keep (x, y) as the new destination.

The scheme above will approximately provide (correlated) multivariate draws of
f (x, y) for a suitable choice of g(x ′, y′|x, y) (in this case one that is symmetrical in
its arguments, i.e., g(x ′, y′|x, y) = g(x, y|x ′, y′), although less restrictive versions
of the algorithm exist). The intuition behind the method is relatively simple: we
construct a sequence (or chain) of draws that spends more time (i.e., less often
changes value) in high-density regions of f (x, y) than in low-density ones and thus
a histogram over the obtained samples—which will contain more values that are
more probable—will converge to the sought-after distribution.
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Computational methods have, over the last few decades, become a major ingre-
dient of applied Bayesians data analysis. The Gibbs sampler and the Metropolis–
Hastings sampler have become invaluable tools, making it possible to address com-
plex statistical analysis problems using Bayesian methods. However, luckily, for
many applied Bayesian analyses it is no longer necessary to derive and implement
these samplers yourself; many general purpose software packages exist that allow
you to use—out of the box—the samplers described (and more advanced versions
thereof) without tedious analytical or engineering work. We will cover an example
of this software in the next section.

8.6 Software for Bayesian Analysis

In the previous section we discussed both prior choice and computation as two chal-
lenges that have hindered the (practical) adoption of Bayesian data analysis methods.
In the next section wewill revisit the role of the prior—and some of the philosophical
arguments in favor and against the use of priors. In this section, however, we will
demonstrate that, for a very large number of problems, the computational challenges
have by and large been solved. In recent years a number of software packages have
been created which, when provided with a sampling model (i.e., likelihood) and a
priorwill allowyou to obtain samples from the posterior distribution functionwithout
the necessity of carrying out analytical derivations or coding up MCMC samplers
like the Gibbs sampler or the Metropolis–Hastings sampler we introduced above.
Effectively, these software packages—also referred to as probabilistic programming
languages—automatically carry out analytical simplifications of known forms, and
choose from a variety of MCMC methods the one that is most suited for the prob-
lem at hand. For many models, even fairly complex high-dimensional models, these
software packages will be able to generate draws from the posterior f (θ|D) without
tedious (manual) computation. As we have highlighted before, once these draws are
available it is often simple to provide summaries of the posterior (i.e., expectations,
variances), or interval estimates of parameters.

We will provide an example of working with the probabilistic programming lan-
guage Stan (which is available for download at https://mc-stan.org). Stan is appealing
for its simple syntax, and the fact that it interfaces very well with R: it is easy to use R
for data processing and cleaning, call Stan from R to do inference, and subsequently
use R again to create summaries and plots of the posterior draws provided by Stan.

After installing Stan following the instructions on the website for your spe-
cific device, you can install the rstan package from cran (using the usual
install.packages() call) to start interfacing between R and Stan. Many users
will only interact with Stan via R and thus they solely use the rstan interface. In a
session in which you wish to use Stan, you simple instantiate the rstan package:

# Including the rstan package
library(rstan)

https://mc-stan.org
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8.6.1 A Simple Bernoulli Model Using Stan

To explain the basic idea behind Stan we will provide a simple example for the
Bayesian analysis of data originating from a Bernoulli population. We will start with
creating some data:

# Generating 10 observations from a fair coin:
set.seed(12345)
n <- 10
y <- rbinom(n, 1, 0.5)
y

Using this seed we end up with seven successes and three failures.
Although we have already seen how to analyse this data using a conjugate beta

prior leading to a beta(8, 4) posterior for p when using an uninformative prior, we
will focus on using Stan to analyze this same data. To do so, we follow the following
steps:

1. Wewrite themodel specification—both the samplingmodel and the priors—using
Stan.

2. We fit the model using a call to the stan() function specifying our model and
the data involved.

3. Finally,we extract the posterior draws from the fittedmodel and create summaries.

8.6.1.1 Specifying the Model

The following code specifies the Beta-Bernoulli model that we discussed earlier in
Stan:

write("// Stan model Bernoulli P data { // The input data
  int <lower = 1> N; // sample size
  int y[N]; // vector with data
}

parameters { // The parameter(s) of the model
  real<lower=0,upper=1> p;
}

model { // The model specification
  y ~ bernoulli(p);  // Sampling model
  p ~ beta(1,1);  // Prior
}",
"model1.stan")

The call to write() effectively writes the string that follows to the file
model1.stan. The code is relatively self-explanatory: all Stan needs to oper-
ate is a description of the data involved, a description of the parameters one wishes
to obtain posterior draws for, and the probabilistic models (i.e., the sample model
and the prior) involved in the analysis. Note that in Stan, comments are prefixed by
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two slashes (“//”). From here, Stan will be able to do all the work, even if the models
are fairly complex (and not conjugate).

8.6.1.2 Fitting the Model

After specifying the model, we can make a call to Stan, supplying both the model
and the data:

fit <- stan(file = "model1.stan", data = list(N=n, y=y))

In the call to Stan we provide a string pointing to the file containing the model
description, and we provide the data in a list that contains the names N and y that
we used when specifying the model. Note that this is the absolute minimum we
should provide to generate inferences: in any serious use of Stan one would like to
control the behavior of the samplers involved and set (e.g.,) the number of posterior
draws one would like to obtain. See the reference manual for rstan at https://cran.
r-project.org/web/packages/rstan/rstan.pdf for more information.

After calling Stan using the default configuration we can simply print the fit
object to get some initial results:

Chain 4:
> fit
Inference for Stan model: model1.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
p 0.66 0.00 0.13 0.38 0.57 0.67 0.76 0.89 1630 1
lp__ -8.17 0.02 0.74 -10.35 -8.35 -7.88 -7.69 -7.64 1906 1

Samples were drawn using NUTS(diag_e) at Tue Aug 18 11:45:30
2020.

For each parameter, n_eff is a crude measure of effective sample
size,

and Rhat is the potential scale reduction factor on split chains
(at

convergence, Rhat=1).

The above shows that we ran four different MCMC chains, each generating 2,000
posterior draws (ofwhich1,000 are discardeddue to thewarmup=1,000 argument).
The mean of the resulting 4,000 posterior draws is 0.66, which, given the seven
successes and three failures (i.e., an MLE estimate of p of 7

10 and a uniform prior
seems reasonable.

https://cran.r-project.org/web/packages/rstan/rstan.pdf
https://cran.r-project.org/web/packages/rstan/rstan.pdf
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8.6.1.3 Summarizing the Posterior

Aswehave seen above, it is custom in aBayesian analysis to provide a summary of the
posterior. Thefit object we created above contains a total ofm = 4,000 draws from
the posterior f (p|y). Using rstan these can easily be extracted and inspected:

> # Extract posterior
> posterior <- extract(fit)
>
> # Dimensions:
> dim(posterior$p)
[1] 4000
>
> # summarize:
> summary(posterior$p)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2399 0.5714 0.6704 0.6587 0.7574 0.9643

A call to plot(density(posterior$p)) provides Fig. 8.3
The example above provided a first glance into the use of Stan for conducting

Bayesian Data analysis. Although we demonstrated a very simple one-parameter
case, Stan readily extends to much more complicated models: as long as the data,
the model parameters, and the sampling model and priors are properly specified
Stan will allow you to generate samples from the (often multidimensional) posterior.
These draws can subsequently be summarized and/or plotted using R to compute the
Bayesian analysis. Thus, the emergence of probabilistic computing languages such
as Stan has by and large solved the computational challenges involved in Bayesian
data analysis.

Fig. 8.3 Posterior PDF of p
generated using Stan
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8.7 Bayesian and Frequentist Thinking Compared

In this last section we would like to highlight some of the differences between
Bayesian and Frequentists methods. Many text books on Bayesian methods will
start with such a discussion, often fiercely arguing that Bayesian methods are supe-
rior to Frequentist methods (see, for example, Gill 2014). This is not what we aim to
do here; we simply aim to identify differences, and content that both methods have
their merits and that students benefit from being familiar with both (and additionally,
both methods equally utilize the theoretical concepts, such as random variables and
distribution functions, that we introduced in earlier chapters).

A first striking difference between Bayesian and Frequentist thinking is of philo-
sophical nature: Frequentists effectively assume that population values are—albeit
unknown—fixed. Frequentists use probability theory, randomvariables, and distribu-
tion functions merely to deal with the randomness that is introduced by the (random)
sampling process that selects units from the population. On the contrary, Bayesians
use probability theory much more broadly; in a Bayesian framework probability is
often considered simply an extension of Boolean logic (see, e.g., Jaynes 2003) to
be able to deal with events that are not strictly true or false. This extension can be
used to quantify the degree of belief one has regarding all kinds of events; values of
population parameters being simply specific events in their own right.More formally,
for a Frequentist f (θ|D) is philosophically meaningless: θ is not a random variable
but a fixed quantity. For a Bayesian f (θ|D) is a natural quantity; it quantifies one’s
belief regarding θ after observing the data.

For a Frequentist, accepting θ as an random variable is not just philosophically
problematic, it also introduces a need for the prior f (θ), which to a devoted Frequen-
tist is often deemed subjective: we should not be adding “additional” information
to our analysis. Data analysis should rely solely on the data, and there is thus no
proper justification possible for the usage of priors. Conversely, Bayesians argue that
any analysis is subjective, as even the choice of the sampling model—which plays a
large role in both Bayesian and Frequentist analysis—is subjective. Thus, a statistical
analysis never depends solely on the data and the analyst always makes a number
of consequential choices. Making these choices and the assumptions involved in an
analysis explicit, to a Bayesian, seems better than hiding them in the likelihood func-
tion and the estimation method used. Additionally, one can try to choose priors that
are objective (see Sect. 8.5.1), thereby attempting to ensure that only the data affects
the outcomes of the analysis. Bayesians often support their argument by demon-
strating that for any Frequentist estimate a Bayesian prior and loss function can be
conceived that leads to the exact same estimate.

We do not think the philosophical disputes raised above will easily be solved.
However, they do not need to be resolved to utilize the applied benefits of both
methods when conducting a data analysis. Taking a more applied view, a number of
differences (and in some ways pros and cons) of Frequentist and Bayesian methods
can be identified. First of all, effectively due to the use of priors, the Bayesian analysis
framework makes a number of analyses possible that are hard (or sometimes even
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impossible) in a Frequentist framework. One example thereof includes dealing with
relatively extreme datasets. Consider for example the following five observations
from a Bernoulli population (0, 0, 0, 0, 0). To a Frequentist the (MLE) estimate of
the population pwould be 0. This however seems too extreme: canwe really conclude
that a success is impossible based on five failures? A Bayesian analysis of this same
data will—depending on the choice of prior and the loss function—lead to a point
estimate that is small, but larger than 0, quantifying the intuition that successes are,
albeit perhaps unlikely, still possible. Another example of an extreme dataset would
be a single observation from a normal population: in a Frequentist framework it
would be impossible to obtain MLE estimates for the mean and the variance in such
a case as this would result in determining two unknowns based on a single data point,
and no unique solution exists. Depending on the choice of prior, a Bayesian could
work with a single data point and update the (joint) posterior for the mean and the
variance.

At this point it is useful to note that Bayesian methods often, by virtue of the prior,
add bias to an estimator (Gelman et al. 2014). Thus, in many cases, reporting the
expected value (or the MAP) of the posterior will not provide an unbiased estimate
of the population value. However, often, the increase in bias, especially when the
prior is reasonable, leads to a decrease in MSE (Gelman et al. 2014).

Bayesian methods, however, are not always practically more feasible. We already
highlighted the computational complexities that arise in many Bayesian analyses;
sometimes a Frequentist view is easier to carry out than a Bayesian one (but some-
times this can be reversed). Additionally, one of the main benefits of Frequentist
estimators are their known operating characteristics: for example, in a Frequentist
framework—if the assumptions are valid—the type I and type II error rates of many
hypothesis tests are known. This is due to the fact that error rates over repeated sam-
pling are exactly what is of interest to a Frequentist: the sampling is what drives the
uncertainty in the estimate to begin with. Thus, if your interest is in properties of
estimators over repeated sampling, the Frequentist method readily provides answers.
To find the same answers using Bayesianmethodswe often have to resort to elaborate
simulations (Berry et al. 2010).

8.8 Conclusion

In this chapter we have introduced the Bayesian approach to statistical inference:
For a Bayesian the uncertainty regarding parameter estimates does not stem from
uncertainty over repeated sampling, but rather quantifies her/his degree of belief
regarding the parameter. After specifying a prior belief, we can use Bayes’ rule
to compute the posterior belief and we can use this posterior distribution function
of the parameters for subsequent decision-making. In this chapter we have tried to
highlight the general approach, and we have provided a simple analytical example
using conjugate priors. Next, we have highlighted how a Bayesian analysis allows
us to make decisions: we can either use the posterior distribution function of the
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parameters given the data directly to make decisions, or we can use more formal
approaches such as Bayesian decision theory or the Bayes factor. In both of these
latter cases we only scratched the surface: we want to provide students with a look
ahead to see what is coming in a more advance (Bayesian) statistics course, without
providing all the details. We hope that the current chapter at least provides a good
conceptual start for students who wish to study Bayesian methods in more detail.

Problems

8.1 In this assignment we want to explore Bayesian inference for the mean of a
Normal population. In this case we assume the data to be Normally distributed, and
we are interested in obtaining a posterior PDF for the mean μ after seeing the data.
More specifically, we consider the data y to be i.i.d.N (μ,σ2). Thus our likelihood
is Pr(y|θ) = p(y|μ,σ2). A full Bayesian analysis would require a prior for μ and
σ2; however, to simplify the problem, we are going to assume that σ2 is known. In
this case a Normal prior on μ, that is, μ ∼ N (μ0, τ

2
0 ), is conjugate and the posterior

for μ is given by
p(μ|y) = N (μ|μ1, τ

2
1 ),

where we use μ1 and τ 2
1 respectively to denote the posterior mean and variance.

These are given by

μ1 =
μ0

τ 2
0

+ n ȳ
σ2

1
τ 2
0

+ n
σ2

and

τ 2
1 =

(
1

τ 2
0

+ n

σ2

)−1

,

where n is the number of observations in y and ȳ = 1
n

∑n
i=1 yi is the sample mean.

Given this information, write the following R code:

1. Generate data y containing n = 50 observations from a Normal distribution with
μ = 10 and σ2 = 2.

2. Write a function that takes as arguments the data y and the priormean and variance
μ0, τ

2
0 , and returns the posterior mean and variance μ1, τ

2
1 .

3. Plot the density of the prior distribution function.
4. Add to the previous plot the density of the posterior distribution function in red.

Furthermore, add a vertical grey line at ȳ.
5. Play around with different choices of μ0, τ 2

0 , and n, and see how these affect the
posterior PDF Pr(μ|y).

6. Consider the relative likelihood L̃(μ) = L(μ)/L(μ̂), where L(μ) is the regular
likelihood as a function of μ and L(μ̂) is the likelihood evaluated at the maximum
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likelihood estimate μ̂. Add to the plot of the prior and posterior distribution the
relative likelihood L̃(μ) in grey.

8.2 Further examine, by writing the R code to simulate it, the example used in this
chapter of (a) estimating a Bernoulli θ, and (b) using E(θ|D) as a decision to obtain
a point estimate of the parameter in more detail. Here are the steps:

1. Write a function to simulate the data. Youwant to be able to generate s = ∑n
i=1 xi

for n i.i.d. Bernoulli(θ) observations.
2. Write a function that takes as arguments the parameters α and β for the beta()

prior and the (summarized) data s and n and returns the posterior parameters. Set
as default values for the prior α = 1 and β = 1.

3. Write a loss function that takes as arguments the decision d and the true value of
θ and computes the squared error loss.

4. Write a function that takes the two arguments of the Beta distribution (α and β)
and returns its expected value.

5. Choose a “true” θ (for example 0.2) and set n = 100. Now repeat the following
steps m = 1000 times:

• Simulate n = 100 observations for the true θ you chose before.
• Compute for 100 values in the range d ∈ [0, 1] the loss. Note that you will
have to store all these values in a 100 × 1,000 matrix (100 values for each of
the m = 1,000 repetitions).

• Compute the posterior mean given your current dataset. Store this in a vector
of length m = 1,000.

6. Create a figure depicting the average loss over the m = 1,000 simulation runs as
a function of d, and add a line depicting the average value of the posterior means
over the 1,000 simulations. What do you see?
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