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Preface
Purpose

The use of probability models and statistical methods for analyzing data has become
common practice in virtually all scientific disciplines. This book attempts to provide
a comprehensive introduction to those models and methods most likely to be encoun-
tered and used by students in their careers in engineering and the natural sciences.
Although the examples and exercises have been designed with scientists and engi-
neers in mind, most of the methods covered are basic to statistical analyses in many
other disciplines, so that students of business and the social sciences will also profit
from reading the book.

Approach

Students in a statistics course designed to serve other majors may be initially skeptical of
the value and relevance of the subject matter, but my experience is that students can be
turned on to statistics by the use of good examples and exercises that blend their every-
day experiences with their scientific interests. Consequently, I have worked hard to find
examples of real, rather than artificial, data—data that someone thought was worth col-
lecting and analyzing. Many of the methods presented, especially in the later chapters on
statistical inference, are illustrated by analyzing data taken from a published source, and
many of the exercises also involve working with such data. Sometimes the reader may
be unfamiliar with the context of a particular problem (as indeed I often was), but I have
found that students are more attracted by real problems with a somewhat strange context
than by patently artificial problems in a familiar setting.

Mathematical Level

The exposition is relatively modest in terms of mathematical development. Substantial
use of the calculus is made only in Chapter 4 and parts of Chapters 5 and 6. In particu-
lar, with the exception of an occasional remark or aside, calculus appears in the inference
part of the book only in the second section of Chapter 6. Matrix algebra is not used at all.
Thus almost all the exposition should be accessible to those whose mathematical back-
ground includes one semester or two quarters of differential and integral calculus.

Content

Chapter 1 begins with some basic concepts and terminology—population, sample,
descriptive and inferential statistics, enumerative versus analytic studies, and so on—
and continues with a survey of important graphical and numerical descriptive methods.
A rather traditional development of probability is given in Chapter 2, followed by
probability distributions of discrete and continuous random variables in Chapters 3 and
4, respectively. Joint distributions and their properties are discussed in the first part of
Chapter 5. The latter part of this chapter introduces statistics and their sampling distri-
butions, which form the bridge between probability and inference. The next three
chapters cover point estimation, statistical intervals, and hypothesis testing based on a
single sample. Methods of inference involving two independent samples and paired
data are presented in Chapter 9. The analysis of variance is the subject of Chapters 10
and 11 (single-factor and multifactor, respectively). Regression makes its initial
appearance in Chapter 12 (the simple linear regression model and correlation) and



returns for an extensive encore in Chapter 13. The last three chapters develop chi-
squared methods, distribution-free (nonparametric) procedures, and techniques from
statistical quality control.

Helping Students Learn

Although the book’s mathematical level should give most science and engineering
students little difficulty, working toward an understanding of the concepts and gain-
ing an appreciation for the logical development of the methodology may sometimes
require substantial effort. To help students gain such an understanding and appreci-
ation, I have provided numerous exercises ranging in difficulty from many that
involve routine application of text material to some that ask the reader to extend con-
cepts discussed in the text to somewhat new situations. There are many more exer-
cises than most instructors would want to assign during any particular course, but I
recommend that students be required to work a substantial number of them; in a
problem-solving discipline, active involvement of this sort is the surest way to iden-
tify and close the gaps in understanding that inevitably arise. Answers to most odd-
numbered exercises appear in the answer section at the back of the text. In addition,
a Student Solutions Manual, consisting of worked-out solutions to virtually all the
odd-numbered exercises, is available.

New for This Edition

• Sample exams begin on page 725. These exams cover descriptive statistics, prob-
ability concepts, discrete probability distributions, continuous probability distri-
butions, point estimation based on a sample, confidence intervals, and tests of
hypotheses. Sample exams are provided by Abram Kagan and Tinghui Yu of
University of Maryland.

• A Glossary of Symbols and Abbreviations appears following the index. This
handy reference presents the symbol/abbreviation with corresponding text page
number and a brief description.

• Online homework featuring text-specific solutions videos for many of the text’s
exercises are accessible in Enhanced WebAssign. Please contact your local sales
representative for information on how to assign online homework to your students. 

• New exercises and examples, many based on published sources and including real
data. Some of the exercises are more open-ended than traditional exercises that
pose very specific questions, and some of these involve material in earlier sections
and chapters.

• The material in Chapters 2 and 3 on probability properties, counting, and types of
random variables has been rewritten to achieve greater clarity.

• Section 3.6 on the Poisson distribution has been revised, including new material
on the Poisson approximation to the binomial distribution and reorganization of
the subsection on Poisson processes.

• Material in Section 4.4 on gamma and exponential distributions has been reordered
so that the latter now appears before the former. This will make it easier for those who
want to cover the exponential distribution but avoid the gamma distribution to do so.

• A brief introduction to mean square error in Section 6.1 now appears in order to
help motivate the property of unbiasedness, and there is a new example illustrat-
ing the possibility of having more than a single reasonable unbiased estimator.

• There is decreased emphasis on hand computation in multifactor ANOVA to
reflect the fact that appropriate software is now quite widely available, and resid-
ual plots for checking model assumptions are now included.

xiv Preface



• A myriad of small changes in phrasing have been made throughout the book to
improve explanations and polish the exposition.

• The Student Website at academic.cengage.com/statistics/devore includes JavaTM

applets created by Gary McClelland, specifically for this calculus-based text, as
well as datasets from the main text.
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1

Overview and Descriptive
Statistics

INTRODUCTION

Statistical concepts and methods are not only useful but indeed often indis-

pensable in understanding the world around us. They provide ways of gaining

new insights into the behavior of many phenomena that you will encounter in

your chosen field of specialization in engineering or science.

The discipline of statistics teaches us how to make intelligent judgments

and informed decisions in the presence of uncertainty and variation. Without

uncertainty or variation, there would be little need for statistical methods or stat-

isticians. If every component of a particular type had exactly the same lifetime, if

all resistors produced by a certain manufacturer had the same resistance value,

if pH determinations for soil specimens from a particular locale gave identical

results, and so on, then a single observation would reveal all desired information.

An interesting manifestation of variation arises in the course of perform-

ing emissions testing on motor vehicles. The expense and time requirements of

the Federal Test Procedure (FTP) preclude its widespread use in vehicle inspec-

tion programs. As a result, many agencies have developed less costly and quicker

tests, which it is hoped replicate FTP results. According to the journal article

“Motor Vehicle Emissions Variability” (J. of the Air and Waste Mgmt. Assoc.,

1996: 667–675), the acceptance of the FTP as a gold standard has led to the

widespread belief that repeated measurements on the same vehicle would yield

identical (or nearly identical) results. The authors of the article applied the FTP

to seven vehicles characterized as “high emitters.” Here are the results for one

such vehicle:

HC (gm/mile) 13.8 18.3 32.2 32.5

CO (gm/mile) 118 149 232 236

1



The substantial variation in both the HC and CO measurements casts consider-

able doubt on conventional wisdom and makes it much more difficult to make

precise assessments about emissions levels.

How can statistical techniques be used to gather information and draw

conclusions? Suppose, for example, that a materials engineer has developed a

coating for retarding corrosion in metal pipe under specified circumstances. If

this coating is applied to different segments of pipe, variation in environmental

conditions and in the segments themselves will result in more substantial cor-

rosion on some segments than on others. Methods of statistical analysis could

be used on data from such an experiment to decide whether the average

amount of corrosion exceeds an upper specification limit of some sort or to pre-

dict how much corrosion will occur on a single piece of pipe.

Alternatively, suppose the engineer has developed the coating in the

belief that it will be superior to the currently used coating. A comparative ex-

periment could be carried out to investigate this issue by applying the current

coating to some segments of pipe and the new coating to other segments.

This must be done with care lest the wrong conclusion emerge. For example,

perhaps the average amount of corrosion is identical for the two coatings.

However, the new coating may be applied to segments that have superior abil-

ity to resist corrosion and under less stressful environmental conditions com-

pared to the segments and conditions for the current coating. The investigator

would then likely observe a difference between the two coatings attributable

not to the coatings themselves, but just to extraneous variation. Statistics offers

not only methods for analyzing the results of experiments once they have been

carried out but also suggestions for how experiments can be performed in an

efficient manner to mitigate the effects of variation and have a better chance

of producing correct conclusions.

2 CHAPTER 1 Overview and Descriptive Statistics

1.1 Populations, Samples, and Processes

Engineers and scientists are constantly exposed to collections of facts, or data, both
in their professional capacities and in everyday activities. The discipline of statistics
provides methods for organizing and summarizing data and for drawing conclusions
based on information contained in the data.

An investigation will typically focus on a well-defined collection of objects
constituting a population of interest. In one study, the population might consist of all
gelatin capsules of a particular type produced during a specified period. Another
investigation might involve the population consisting of all individuals who received
a B.S. in engineering during the most recent academic year. When desired informa-
tion is available for all objects in the population, we have what is called a census.
Constraints on time, money, and other scarce resources usually make a census imprac-
tical or infeasible. Instead, a subset of the population—a sample—is selected in some



prescribed manner. Thus we might obtain a sample of bearings from a particular pro-
duction run as a basis for investigating whether bearings are conforming to manufac-
turing specifications, or we might select a sample of last year’s engineering graduates
to obtain feedback about the quality of the engineering curricula.

We are usually interested only in certain characteristics of the objects in a pop-
ulation: the number of flaws on the surface of each casing, the thickness of each cap-
sule wall, the gender of an engineering graduate, the age at which the individual
graduated, and so on. A characteristic may be categorical, such as gender or type of
malfunction, or it may be numerical in nature. In the former case, the value of the
characteristic is a category (e.g., female or insufficient solder), whereas in the latter
case, the value is a number (e.g., age � 23 years or diameter � .502 cm). A variable
is any characteristic whose value may change from one object to another in the pop-
ulation. We shall initially denote variables by lowercase letters from the end of our
alphabet. Examples include

x � brand of calculator owned by a student

y � number of visits to a particular website during a specified period

z � braking distance of an automobile under specified conditions

Data results from making observations either on a single variable or simultaneously
on two or more variables. A univariate data set consists of observations on a single
variable. For example, we might determine the type of transmission, automatic (A)
or manual (M), on each of ten automobiles recently purchased at a certain dealer-
ship, resulting in the categorical data set

M A A A M A A M A A

The following sample of lifetimes (hours) of brand D batteries put to a certain use is
a numerical univariate data set:

5.6 5.1 6.2 6.0 5.8 6.5 5.8 5.5

We have bivariate data when observations are made on each of two variables. Our data
set might consist of a (height, weight) pair for each basketball player on a team, with
the first observation as (72, 168), the second as (75, 212), and so on. If an engineer
determines the value of both x � component lifetime and y � reason for component
failure, the resulting data set is bivariate with one variable numerical and the other cat-
egorical. Multivariate data arises when observations are made on more than one vari-
able (so bivariate is a special case of multivariate). For example, a research physician
might determine the systolic blood pressure, diastolic blood pressure, and serum cho-
lesterol level for each patient participating in a study. Each observation would be a
triple of numbers, such as (120, 80, 146). In many multivariate data sets, some vari-
ables are numerical and others are categorical. Thus the annual automobile issue of
Consumer Reports gives values of such variables as type of vehicle (small, sporty,
compact, mid-size, large), city fuel efficiency (mpg), highway fuel efficiency (mpg),
drive train type (rear wheel, front wheel, four wheel), and so on.

Branches of Statistics
An investigator who has collected data may wish simply to summarize and describe
important features of the data. This entails using methods from descriptive statistics.
Some of these methods are graphical in nature; the construction of histograms,
boxlots, and scatter plots are primary examples. Other descriptive methods involve
calculation of numerical summary measures, such as means, standard deviations, and

1.1 Populations, Samples, and Processes 3



correlation coefficients. The wide availability of statistical computer software pack-
ages has made these tasks much easier to carry out than they used to be. Computers
are much more efficient than human beings at calculation and the creation of pictures
(once they have received appropriate instructions from the user!). This means that the
investigator doesn’t have to expend much effort on “grunt work” and will have more
time to study the data and extract important messages. Throughout this book, we will
present output from various packages such as MINITAB, SAS, S-Plus, and R. The R
software can be downloaded without charge from the site http://www.r-project.org.

The tragedy that befell the space shuttle Challenger and its astronauts in 1986 led to
a number of studies to investigate the reasons for mission failure. Attention quickly
focused on the behavior of the rocket engine’s O-rings. Here is data consisting of
observations on x � O-ring temperature (°F) for each test firing or actual launch of
the shuttle rocket engine (Presidential Commission on the Space Shuttle Challenger
Accident, Vol. 1, 1986: 129–131).

84 49 61 40 83 67 45 66 70 69 80 58
68 60 67 72 73 70 57 63 70 78 52 67
53 67 75 61 70 81 76 79 75 76 58 31

Without any organization, it is difficult to get a sense of what a typical or representa-
tive temperature might be, whether the values are highly concentrated about a typical
value or quite spread out, whether there are any gaps in the data, what percentage of
the values are in the 60s, and so on. Figure 1.1 shows what is called a stem-and-leaf
display of the data, as well as a histogram. Shortly, we will discuss construction and
interpretation of these pictorial summaries; for the moment, we hope you see how they
begin to tell us how the values of temperature are distributed along the measurement
scale. Some of these launches/firings were successful and others resulted in failure.

4 CHAPTER 1 Overview and Descriptive Statistics

Example 1.1

Figure 1.1 A MINITAB stem-and-leaf display and histogram of the O-ring temperature data

Stem-and-leaf of temp N � 36
Leaf Unit � 1.0
1 3 1
1 3
2 4 0
4 4 59
6 5 23
9 5 788
13 6 0113
(7) 6 6777789
16 7 000023
10 7 556689
4 8 0134

http://www.r-project.org


The lowest temperature is 31 degrees, much lower than the next-lowest temperature,
and this is the observation for the Challenger disaster. The presidential investigation
discovered that warm temperatures were needed for successful operation of the 
O-rings, and that 31 degrees was much too cold. In Chapter 13 we will develop a rela-
tionship between temperature and the likelihood of a successful launch. ■

Having obtained a sample from a population, an investigator would frequently
like to use sample information to draw some type of conclusion (make an inference
of some sort) about the population. That is, the sample is a means to an end rather
than an end in itself. Techniques for generalizing from a sample to a population are
gathered within the branch of our discipline called inferential statistics.

Material strength investigations provide a rich area of application for statistical meth-
ods. The article “Effects of Aggregates and Microfillers on the Flexural Properties of
Concrete” (Magazine of Concrete Research, 1997: 81–98) reported on a study of
strength properties of high-performance concrete obtained by using superplasticizers
and certain binders. The compressive strength of such concrete had previously been
investigated, but not much was known about flexural strength (a measure of ability to
resist failure in bending). The accompanying data on flexural strength (in MegaPascal,
MPa, where 1 Pa (Pascal) � 1.45 � 10�4 psi) appeared in the article cited:

5.9 7.2 7.3 6.3 8.1 6.8 7.0 7.6 6.8 6.5 7.0 6.3 7.9 9.0
8.2 8.7 7.8 9.7 7.4 7.7 9.7 7.8 7.7 11.6 11.3 11.8 10.7

Suppose we want an estimate of the average value of flexural strength for all beams
that could be made in this way (if we conceptualize a population of all such beams, we
are trying to estimate the population mean). It can be shown that, with a high degree
of confidence, the population mean strength is between 7.48 MPa and 8.80 MPa; 
we call this a confidence interval or interval estimate. Alternatively, this data could
be used to predict the flexural strength of a single beam of this type. With a high
degree of confidence, the strength of a single such beam will exceed 7.35 MPa; the
number 7.35 is called a lower prediction bound. ■

The main focus of this book is on presenting and illustrating methods of inferen-
tial statistics that are useful in scientific work. The most important types of inferential
procedures—point estimation, hypothesis testing, and estimation by confidence inter-
vals—are introduced in Chapters 6–8 and then used in more complicated settings in
Chapters 9–16. The remainder of this chapter presents methods from descriptive statis-
tics that are most used in the development of inference.

Chapters 2–5 present material from the discipline of probability. This mater-
ial ultimately forms a bridge between the descriptive and inferential techniques.
Mastery of probability leads to a better understanding of how inferential procedures
are developed and used, how statistical conclusions can be translated into everyday
language and interpreted, and when and where pitfalls can occur in applying the
methods. Probability and statistics both deal with questions involving populations
and samples, but do so in an “inverse manner” to one another.

In a probability problem, properties of the population under study are assumed
known (e.g., in a numerical population, some specified distribution of the population
values may be assumed), and questions regarding a sample taken from the popula-
tion are posed and answered. In a statistics problem, characteristics of a sample are
available to the experimenter, and this information enables the experimenter to draw
conclusions about the population. The relationship between the two disciplines can
be summarized by saying that probability reasons from the population to the sample

Example 1.2
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(deductive reasoning), whereas inferential statistics reasons from the sample to the
population (inductive reasoning). This is illustrated in Figure 1.2.

Before we can understand what a particular sample can tell us about the pop-
ulation, we should first understand the uncertainty associated with taking a sample
from a given population. This is why we study probability before statistics.

As an example of the contrasting focus of probability and inferential statistics,
consider drivers’ use of manual lap belts in cars equipped with automatic shoulder
belt systems. (The article “Automobile Seat Belts: Usage Patterns in Automatic Belt
Systems,” Human Factors, 1998: 126–135, summarizes usage data.) In probability,
we might assume that 50% of all drivers of cars equipped in this way in a certain
metropolitan area regularly use their lap belt (an assumption about the population),
so we might ask, “How likely is it that a sample of 100 such drivers will include at
least 70 who regularly use their lap belt?” or “How many of the drivers in a sample
of size 100 can we expect to regularly use their lap belt?” On the other hand, in infer-
ential statistics, we have sample information available; for example, a sample of 100
drivers of such cars revealed that 65 regularly use their lap belt. We might then ask,
“Does this provide substantial evidence for concluding that more than 50% of all
such drivers in this area regularly use their lap belt?” In this latter scenario, we are
attempting to use sample information to answer a question about the structure of the
entire population from which the sample was selected.

In the lap belt example, the population is well defined and concrete: all drivers
of cars equipped in a certain way in a particular metropolitan area. In Example 1.1,
however, a sample of O-ring temperatures is available, but it is from a population that
does not actually exist. Instead, it is convenient to think of the population as consist-
ing of all possible temperature measurements that might be made under similar exper-
imental conditions. Such a population is referred to as a conceptual or hypothetical
population. There are a number of problem situations in which we fit questions into
the framework of inferential statistics by conceptualizing a population.

Enumerative Versus Analytic Studies
W. E. Deming, a very influential American statistician who was a moving force in
Japan’s quality revolution during the 1950s and 1960s, introduced the distinction
between enumerative studies and analytic studies. In the former, interest is focused
on a finite, identifiable, unchanging collection of individuals or objects that make up
a population. A sampling frame—that is, a listing of the individuals or objects to
be sampled—is either available to an investigator or else can be constructed. For
example, the frame might consist of all signatures on a petition to qualify a certain
initiative for the ballot in an upcoming election; a sample is usually selected to ascer-
tain whether the number of valid signatures exceeds a specified value. As another
example, the frame may contain serial numbers of all furnaces manufactured by a
particular company during a certain time period; a sample may be selected to infer
something about the average lifetime of these units. The use of inferential methods
to be developed in this book is reasonably noncontroversial in such settings (though
statisticians may still argue over which particular methods should be used).
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Population

Probability

Inferential
statistics

Sample

Figure 1.2 The relationship between probability and inferential statistics



An analytic study is broadly defined as one that is not enumerative in nature.
Such studies are often carried out with the objective of improving a future product by
taking action on a process of some sort (e.g., recalibrating equipment or adjusting the
level of some input such as the amount of a catalyst). Data can often be obtained only
on an existing process, one that may differ in important respects from the future
process. There is thus no sampling frame listing the individuals or objects of interest.
For example, a sample of five turbines with a new design may be experimentally man-
ufactured and tested to investigate efficiency. These five could be viewed as a sample
from the conceptual population of all prototypes that could be manufactured under
similar conditions, but not necessarily as representative of the population of units
manufactured once regular production gets underway. Methods for using sample
information to draw conclusions about future production units may be problematic.
Someone with expertise in the area of turbine design and engineering (or whatever
other subject area is relevant) should be called upon to judge whether such extrapo-
lation is sensible. A good exposition of these issues is contained in the article
“Assumptions for Statistical Inference” by Gerald Hahn and William Meeker (The
American Statistician, 1993: 1–11).

Collecting Data
Statistics deals not only with the organization and analysis of data once it has been
collected but also with the development of techniques for collecting the data. If data
is not properly collected, an investigator may not be able to answer the questions
under consideration with a reasonable degree of confidence. One common problem is
that the target population—the one about which conclusions are to be drawn—may
be different from the population actually sampled. For example, advertisers would
like various kinds of information about the television-viewing habits of potential cus-
tomers. The most systematic information of this sort comes from placing monitoring
devices in a small number of homes across the United States. It has been conjectured
that placement of such devices in and of itself alters viewing behavior, so that char-
acteristics of the sample may be different from those of the target population.

When data collection entails selecting individuals or objects from a frame, the
simplest method for ensuring a representative selection is to take a simple random
sample. This is one for which any particular subset of the specified size (e.g., a sample
of size 100) has the same chance of being selected. For example, if the frame con-
sists of 1,000,000 serial numbers, the numbers 1, 2, . . . , up to 1,000,000 could be
placed on identical slips of paper. After placing these slips in a box and thoroughly
mixing, slips could be drawn one by one until the requisite sample size has been
obtained. Alternatively (and much to be preferred), a table of random numbers or a
computer’s random number generator could be employed.

Sometimes alternative sampling methods can be used to make the selection
process easier, to obtain extra information, or to increase the degree of confidence in
conclusions. One such method, stratified sampling, entails separating the population
units into nonoverlapping groups and taking a sample from each one. For example,
a manufacturer of DVD players might want information about customer satisfaction
for units produced during the previous year. If three different models were manu-
factured and sold, a separate sample could be selected from each of the three corre-
sponding strata. This would result in information on all three models and ensure that
no one model was over- or underrepresented in the entire sample.

Frequently a “convenience” sample is obtained by selecting individuals or ob-
jects without systematic randomization. As an example, a collection of bricks may be
stacked in such a way that it is extremely difficult for those in the center to be selected.
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If the bricks on the top and sides of the stack were somehow different from the
others, resulting sample data would not be representative of the population. Often an
investigator will assume that such a convenience sample approximates a random
sample, in which case a statistician’s repertoire of inferential methods can be used;
however, this is a judgment call. Most of the methods discussed herein are based on
a variation of simple random sampling described in Chapter 5.

Engineers and scientists often collect data by carrying out some sort of designed
experiment. This may involve deciding how to allocate several different treatments
(such as fertilizers or coatings for corrosion protection) to the various experimental
units (plots of land or pieces of pipe). Alternatively, an investigator may systematically
vary the levels or categories of certain factors (e.g., pressure or type of insulating mate-
rial) and observe the effect on some response variable (such as yield from a production
process).

An article in the New York Times (Jan. 27, 1987) reported that heart attack risk could
be reduced by taking aspirin. This conclusion was based on a designed experiment
involving both a control group of individuals who took a placebo having the appear-
ance of aspirin but known to be inert and a treatment group who took aspirin accord-
ing to a specified regimen. Subjects were randomly assigned to the groups to protect
against any biases and so that probability-based methods could be used to analyze
the data. Of the 11,034 individuals in the control group, 189 subsequently experi-
enced heart attacks, whereas only 104 of the 11,037 in the aspirin group had a heart
attack. The incidence rate of heart attacks in the treatment group was only about half
that in the control group. One possible explanation for this result is chance variation—
that aspirin really doesn’t have the desired effect and the observed difference is just
typical variation in the same way that tossing two identical coins would usually pro-
duce different numbers of heads. However, in this case, inferential methods suggest
that chance variation by itself cannot adequately explain the magnitude of the ob-
served difference. ■

An engineer wishes to investigate the effects of both adhesive type and conductor
material on bond strength when mounting an integrated circuit (IC) on a certain sub-
strate. Two adhesive types and two conductor materials are under consideration. Two
observations are made for each adhesive-type/conductor-material combination,
resulting in the accompanying data:
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Adhesive Type Conductor Material Observed Bond Strength Average

1 1 82, 77 79.5
1 2 75, 87 81.0
2 1 84, 80 82.0
2 2 78, 90 84.0

The resulting average bond strengths are pictured in Figure 1.3. It appears that adhe-
sive type 2 improves bond strength as compared with type 1 by about the same
amount whichever one of the conducting materials is used, with the 2, 2 combina-
tion being best. Inferential methods can again be used to judge whether these effects
are real or simply due to chance variation.

Suppose additionally that there are two cure times under consideration and
also two types of IC post coating. There are then 2 2 2 2 � 16 combinations
of these four factors, and our engineer may not have enough resources to make even

???

Example 1.3

Example 1.4



a single observation for each of these combinations. In Chapter 11, we will see how
the careful selection of a fraction of these possibilities will usually yield the desired
information ■
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Adhesive type 2

Adhesive type 1

Figure 1.3 Average bond strengths in Example 1.4

EXERCISES Section 1.1 (1–9)

1. Give one possible sample of size 4 from each of the follow-
ing populations:
a. All daily newspapers published in the United States
b. All companies listed on the New York Stock Exchange
c. All students at your college or university
d. All grade point averages of students at your college or

university

2. For each of the following hypothetical populations, give a
plausible sample of size 4:
a. All distances that might result when you throw a football
b. Page lengths of books published 5 years from now
c. All possible earthquake-strength measurements (Richter

scale) that might be recorded in California during the next
year

d. All possible yields (in grams) from a certain chemical
reaction carried out in a laboratory

3. Consider the population consisting of all computers of a cer-
tain brand and model, and focus on whether a computer
needs service while under warranty.
a. Pose several probability questions based on selecting a

sample of 100 such computers.
b. What inferential statistics question might be answered by

determining the number of such computers in a sample of
size 100 that need warranty service?

4. a. Give three different examples of concrete populations and
three different examples of hypothetical populations.

b. For one each of your concrete and your hypothetical pop-
ulations, give an example of a probability question and an
example of an inferential statistics question.

5. Many universities and colleges have instituted supplemental
instruction (SI) programs, in which a student facilitator meets

regularly with a small group of students enrolled in the
course to promote discussion of course material and enhance
subject mastery. Suppose that students in a large statistics
course (what else?) are randomly divided into a control group
that will not participate in SI and a treatment group that will
participate. At the end of the term, each student’s total score
in the course is determined.
a. Are the scores from the SI group a sample from an exist-

ing population? If so, what is it? If not, what is the rele-
vant conceptual population?

b. What do you think is the advantage of randomly dividing
the students into the two groups rather than letting each
student choose which group to join?

c. Why didn’t the investigators put all students in the treat-
ment group? Note: The article “Supplemental Instruction:
An Effective Component of Student Affairs Programming”
(J. of College Student Devel., 1997: 577–586) discusses the
analysis of data from several SI programs.

6. The California State University (CSU) system consists of 23
campuses, from San Diego State in the south to Humboldt
State near the Oregon border. A CSU administrator wishes to
make an inference about the average distance between the
hometowns of students and their campuses. Describe and dis-
cuss several different sampling methods that might be
employed. Would this be an enumerative or an analytic
study? Explain your reasoning.

7. A certain city divides naturally into ten district neighborhoods.
How might a real estate appraiser select a sample of single-
family homes that could be used as a basis for developing an
equation to predict appraised value from characteristics such as
age, size, number of bathrooms, distance to the nearest school,
and so on? Is the study enumerative or analytic?



Descriptive statistics can be divided into two general subject areas. In this section, we
consider representing a data set using visual techniques. In Sections 1.3 and 1.4, we
will develop some numerical summary measures for data sets. Many visual techniques
may already be familiar to you: frequency tables, tally sheets, histograms, pie charts,
bar graphs, scatter diagrams, and the like. Here we focus on a selected few of these
techniques that are most useful and relevant to probability and inferential statistics.

Notation
Some general notation will make it easier to apply our methods and formulas to a
wide variety of practical problems. The number of observations in a single sample,
that is, the sample size, will often be denoted by n, so that n � 4 for the sample of
universities {Stanford, Iowa State, Wyoming, Rochester} and also for the sample of
pH measurements {6.3, 6.2, 5.9, 6.5}. If two samples are simultaneously under con-
sideration, either m and n or n1 and n2 can be used to denote the numbers of obser-
vations. Thus if {29.7, 31.6, 30.9} and {28.7, 29.5, 29.4, 30.3} are thermal-efficiency
measurements for two different types of diesel engines, then m � 3 and n � 4.

Given a data set consisting of n observations on some variable x, the individ-
ual observations will be denoted by x1, x2, x3, . . . , xn. The subscript bears no rela-
tion to the magnitude of a particular observation. Thus x1 will not in general be the
smallest observation in the set, nor will xn typically be the largest. In many applica-
tions, x1 will be the first observation gathered by the experimenter, x2 the second, and
so on. The ith observation in the data set will be denoted by xi.

Stem-and-Leaf Displays
Consider a numerical data set x1, x2, . . . , xn for which each xi consists of at least two
digits. A quick way to obtain an informative visual representation of the data set is
to construct a stem-and-leaf display.
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8. The amount of flow through a solenoid valve in an automo-
bile’s pollution-control system is an important characteristic.
An experiment was carried out to study how flow rate de-
pended on three factors: armature length, spring load, and
bobbin depth. Two different levels (low and high) of each fac-
tor were chosen, and a single observation on flow was made
for each combination of levels.
a. The resulting data set consisted of how many observations?
b. Is this an enumerative or analytic study? Explain your 

reasoning.

9. In a famous experiment carried out in 1882, Michelson and
Newcomb obtained 66 observations on the time it took for
light to travel between two locations in Washington, D.C. A
few of the measurements (coded in a certain manner) were
31, 23, 32, 36, �2, 26, 27, and 31.
a. Why are these measurements not identical?
b. Is this an enumerative study? Why or why not?

1.2 Pictorial and Tabular Methods 
in Descriptive Statistics

Steps for Constructing a Stem-and-Leaf Display

1. Select one or more leading digits for the stem values. The trailing digits
become the leaves.

2. List possible stem values in a vertical column.

3. Record the leaf for every observation beside the corresponding stem value.

4. Indicate the units for stems and leaves someplace in the display.



If the data set consists of exam scores, each between 0 and 100, the score of 83
would have a stem of 8 and a leaf of 3. For a data set of automobile fuel efficiencies
(mpg), all between 8.1 and 47.8, we could use the tens digit as the stem, so 32.6
would then have a leaf of 2.6. In general, a display based on between 5 and 20 stems
is recommended.

The use of alcohol by college students is of great concern not only to those in the aca-
demic community but also, because of potential health and safety consequences, to
society at large. The article “Health and Behavioral Consequences of Binge Drinking
in College” (J. of the Amer. Med. Assoc., 1994: 1672–1677) reported on a compre-
hensive study of heavy drinking on campuses across the United States. A binge ep-
isode was defined as five or more drinks in a row for males and four or more for
females. Figure 1.4 shows a stem-and-leaf display of 140 values of x � the percent-
age of undergraduate students who are binge drinkers. (These values were not given
in the cited article, but our display agrees with a picture of the data that did appear.)
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Example 1.5

The first leaf on the stem 2 row is 1, which tells us that 21% of the students at
one of the colleges in the sample were binge drinkers. Without the identification of
stem digits and leaf digits on the display, we wouldn’t know whether the stem 2, leaf
1 observation should be read as 21%, 2.1%, or .21%.

When creating a display by hand, ordering the leaves from smallest to largest
on each line can be time-consuming. This ordering usually contributes little if any
extra information. Suppose the observations had been listed in alphabetical order by
school name, as

16% 33% 64% 37% 31% . . .

Then placing these values on the display in this order would result in the stem 1 row
having 6 as its first leaf, and the beginning of the stem 3 row would be

3 ⏐ 371 . . .

The display suggests that a typical or representative value is in the stem 4 row,
perhaps in the mid-40% range. The observations are not highly concentrated about
this typical value, as would be the case if all values were between 20% and 49%.
The display rises to a single peak as we move downward, and then declines; there
are no gaps in the display. The shape of the display is not perfectly symmetric, but
instead appears to stretch out a bit more in the direction of low leaves than in the
direction of high leaves. Lastly, there are no observations that are unusually far
from the bulk of the data (no outliers), as would be the case if one of the 26%
values had instead been 86%. The most surprising feature of this data is that, at
most colleges in the sample, at least one-quarter of the students are binge drinkers.
The problem of heavy drinking on campuses is much more pervasive than many
had suspected. ■

0 4
1 1345678889
2 1223456666777889999 Stem: tens digit

3 0112233344555666677777888899999 Leaf: ones digit

4 111222223344445566666677788888999
5 00111222233455666667777888899
6 01111244455666778

Figure 1.4 Stem-and-leaf display for percentage binge drinkers at each of 140 colleges



A stem-and-leaf display conveys information about the following aspects of
the data:

• identification of a typical or representative value

• extent of spread about the typical value

• presence of any gaps in the data

• extent of symmetry in the distribution of values

• number and location of peaks

• presence of any outlying values

Figure 1.5 presents stem-and-leaf displays for a random sample of lengths of golf
courses (yards) that have been designated by Golf Magazine as among the most chal-
lenging in the United States. Among the sample of 40 courses, the shortest is 6433 yards
long, and the longest is 7280 yards. The lengths appear to be distributed in a roughly
uniform fashion over the range of values in the sample. Notice that a stem choice here
of either a single digit (6 or 7) or three digits (643, . . . , 728) would yield an uninfor-
mative display, the first because of too few stems and the latter because of too many.

Statistical software packages do not generally produce displays with multiple-
digit stems. The MINITAB display in Figure 1.5(b) results from truncating each
observation by deleting the ones digit.
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Example 1.6

Example 1.7

Dotplots
A dotplot is an attractive summary of numerical data when the data set is reasonably
small or there are relatively few distinct data values. Each observation is represented
by a dot above the corresponding location on a horizontal measurement scale. When
a value occurs more than once, there is a dot for each occurrence, and these dots are
stacked vertically. As with a stem-and-leaf display, a dotplot gives information about
location, spread, extremes, and gaps.

Figure 1.6 shows a dotplot for the O-ring temperature data introduced in Example 1.1
in the previous section. A representative temperature value is one in the mid-60s (°F),
and there is quite a bit of spread about the center. The data stretches out more at the
lower end than at the upper end, and the smallest observation, 31, can fairly be de-
scribed as an outlier.

Figure 1.5 Stem-and-leaf displays of golf course yardages: (a) two-digit leaves; (b) display
from MINITAB with truncated one-digit leaves ■

64 35 64 33 70 Stem: Thousands and hundreds digits
65 26 27 06 83 Leaf: Tens and ones digits

66 05 94 14
67 90 70 00 98 70 45 13
68 90 70 73 50
69 00 27 36 04
70 51 05 11 40 50 22
71 31 69 68 05 13 65
72 80 09

Stem-and-leaf of yardage N � 40
Leaf Unit � 10

4 64 3367
8 65 0228
11 66 019
18 67 0147799
(4) 68 5779
18 69 0023
14 70 012455
8 71 013666
2 72 08

(a) (b)



If the data set discussed in Example 1.7 had consisted of 50 or 100 temperature
observations, each recorded to a tenth of a degree, it would have been much more cum-
bersome to construct a dotplot. Our next technique is well suited to such situations.

Histograms
Some numerical data is obtained by counting to determine the value of a variable
(the number of traffic citations a person received during the last year, the number of
persons arriving for service during a particular period), whereas other data is ob-
tained by taking measurements (weight of an individual, reaction time to a particular
stimulus). The prescription for drawing a histogram is generally different for these
two cases.
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Figure 1.6 A dotplot of the O-ring temperature data (°F) ■

Temperature
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DEFINITION A numerical variable is discrete if its set of possible values either is finite or
else can be listed in an infinite sequence (one in which there is a first number,
a second number, and so on). A numerical variable is continuous if its possi-
ble values consist of an entire interval on the number line.

A discrete variable x almost always results from counting, in which case pos-
sible values are 0, 1, 2, 3, . . . or some subset of these integers. Continuous variables
arise from making measurements. For example, if x is the pH of a chemical sub-
stance, then in theory x could be any number between 0 and 14: 7.0, 7.03, 7.032, and
so on. Of course, in practice there are limitations on the degree of accuracy of any
measuring instrument, so we may not be able to determine pH, reaction time, height,
and concentration to an arbitrarily large number of decimal places. However, from
the point of view of creating mathematical models for distributions of data, it is help-
ful to imagine an entire continuum of possible values.

Consider data consisting of observations on a discrete variable x. The frequency
of any particular x value is the number of times that value occurs in the data set. The
relative frequency of a value is the fraction or proportion of times the value occurs:

Suppose, for example, that our data set consists of 200 observations on x � the number
of courses a college student is taking this term. If 70 of these x values are 3, then

frequency of the x value 3: 70

relative frequency of the x value 3:

Multiplying a relative frequency by 100 gives a percentage; in the college-course
example, 35% of the students in the sample are taking three courses. The relative

70
200

5 .35

relative frequency of a value 5 number of times the value occurs
number of observations in the data set



frequencies, or percentages, are usually of more interest than the frequencies them-
selves. In theory, the relative frequencies should sum to 1, but in practice the sum
may differ slightly from 1 because of rounding. A frequency distribution is a tab-
ulation of the frequencies and/or relative frequencies.
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Constructing a Histogram for Discrete Data

First, determine the frequency and relative frequency of each x value. Then mark
possible x values on a horizontal scale. Above each value, draw a rectangle whose
height is the relative frequency (or alternatively, the frequency) of that value.

This construction ensures that the area of each rectangle is proportional to the relative
frequency of the value. Thus if the relative frequencies of x � 1 and x � 5 are .35
and .07, respectively, then the area of the rectangle above 1 is five times the area of
the rectangle above 5.

How unusual is a no-hitter or a one-hitter in a major league baseball game, and how
frequently does a team get more than 10, 15, or even 20 hits? Table 1.1 is a frequency
distribution for the number of hits per team per game for all nine-inning games that
were played between 1989 and 1993.

Example 1.8

Table 1.1 Frequency Distribution for Hits in Nine-Inning Games

Number Relative Number Relative
Hits/Game of Games Frequency Hits/Game of Games Frequency

0 20 .0010 14 569 .0294
1 72 .0037 15 393 .0203
2 209 .0108 16 253 .0131
3 527 .0272 17 171 .0088
4 1048 .0541 18 97 .0050
5 1457 .0752 19 53 .0027
6 1988 .1026 20 31 .0016
7 2256 .1164 21 19 .0010
8 2403 .1240 22 13 .0007
9 2256 .1164 23 5 .0003

10 1967 .1015 24 1 .0001
11 1509 .0779 25 0 .0000
12 1230 .0635 26 1 .0001
13 834 .0430 27 1 .0001

19,383 1.0005

The corresponding histogram in Figure 1.7 rises rather smoothly to a single
peak and then declines. The histogram extends a bit more on the right (toward large
values) than it does on the left—a slight “positive skew.”

Either from the tabulated information or from the histogram itself, we can
determine the following:

relative relative relative
� frequency � frequency � frequency

for x � 0 for x � 1 for x � 2

� .0010 � .0037 � .0108 � .0155

proportion of games with 
at most two hits



Similarly,

proportion of games with
between 5 and 10 hits (inclusive) 

� .0752 � .1026 � � .1015 � .6361

That is, roughly 64% of all these games resulted in between 5 and 10 (inclusive) 
hits. ■

Constructing a histogram for continuous data (measurements) entails subdivid-
ing the measurement axis into a suitable number of class intervals or classes, such
that each observation is contained in exactly one class. Suppose, for example, that
we have 50 observations on x � fuel efficiency of an automobile (mpg), the smallest
of which is 27.8 and the largest of which is 31.4. Then we could use the class bound-
aries 27.5, 28.0, 28.5, . . . , and 31.5 as shown here:

One potential difficulty is that occasionally an observation lies on a class boundary so
therefore does not fall in exactly one interval, for example, 29.0. One way to deal with
this problem is to use boundaries like 27.55, 28.05, . . . , 31.55. Adding a hundredths
digit to the class boundaries prevents observations from falling on the resulting
boundaries. Another approach is to use the classes 27.5–�28.0, 28.0–�28.5, . . . ,
31.0–�31.5. Then 29.0 falls in the class 29.0–�29.5 rather than in the class
28.5–�29.0. In other words, with this convention, an observation on a boundary is
placed in the interval to the right of the boundary. This is how MINITAB constructs
a histogram.

27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5

c
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Constructing a Histogram for Continuous Data: Equal Class Widths

Determine the frequency and relative frequency for each class. Mark the class
boundaries on a horizontal measurement axis. Above each class interval, draw a
rectangle whose height is the corresponding relative frequency (or frequency).

Figure 1.7 Histogram of number of hits per nine-inning game
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0

.10

0
Hits/game

20

Relative frequency



Power companies need information about customer usage to obtain accurate forecasts
of demands. Investigators from Wisconsin Power and Light determined energy con-
sumption (BTUs) during a particular period for a sample of 90 gas-heated homes. An
adjusted consumption value was calculated as follows:

adjusted consumption �

This resulted in the accompanying data (part of the stored data set FURNACE.MTW
available in MINITAB), which we have ordered from smallest to largest).

2.97 4.00 5.20 5.56 5.94 5.98 6.35 6.62 6.72 6.78
6.80 6.85 6.94 7.15 7.16 7.23 7.29 7.62 7.62 7.69
7.73 7.87 7.93 8.00 8.26 8.29 8.37 8.47 8.54 8.58
8.61 8.67 8.69 8.81 9.07 9.27 9.37 9.43 9.52 9.58
9.60 9.76 9.82 9.83 9.83 9.84 9.96 10.04 10.21 10.28

10.28 10.30 10.35 10.36 10.40 10.49 10.50 10.64 10.95 11.09
11.12 11.21 11.29 11.43 11.62 11.70 11.70 12.16 12.19 12.28
12.31 12.62 12.69 12.71 12.91 12.92 13.11 13.38 13.42 13.43
13.47 13.60 13.96 14.24 14.35 15.12 15.24 16.06 16.90 18.26

We let MINITAB select the class intervals. The most striking feature of the his-
togram in Figure 1.8 is its resemblance to a bell-shaped (and therefore symmetric)
curve, with the point of symmetry roughly at 10.

Class 1–�3 3–�5 5–�7 7–�9 9–�11 11–�13 13–�15 15–�17 17–�19
Frequency 1 1 11 21 25 17 9 4 1
Relative .011 .011 .122 .233 .278 .189 .100 .044 .011

frequency

consumption
����
(weather, in degree days)(house area)
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Example 1.9

From the histogram,

proportion of
observations .01 � .01 � .12 � .23 � .37 (exact value �
less than 9

34
90
5 .378d<

Figure 1.8 Histogram of the energy consumption data from Example 1.9



The relative frequency for the 9–�11 class is about .27, so we estimate that roughly
half of this, or .135, is between 9 and 10. Thus

proportion of observations
less than 10

The exact value of this proportion is 47/90 � .522. ■

There are no hard-and-fast rules concerning either the number of classes or the
choice of classes themselves. Between 5 and 20 classes will be satisfactory for most
data sets. Generally, the larger the number of observations in a data set, the more
classes should be used. A reasonable rule of thumb is

number of classes � �n�u�m�b�er� o�f�o�b�se�rv�at�io�n�s�

Equal-width classes may not be a sensible choice if a data set “stretches out”
to one side or the other. Figure 1.9 shows a dotplot of such a data set. Using a small
number of equal-width classes results in almost all observations falling in just one
or two of the classes. If a large number of equal-width classes are used, many classes
will have zero frequency. A sound choice is to use a few wider intervals near extreme
observations and narrower intervals in the region of high concentration.
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Corrosion of reinforcing steel is a serious problem in concrete structures located in
environments affected by severe weather conditions. For this reason, researchers
have been investigating the use of reinforcing bars made of composite material. One
study was carried out to develop guidelines for bonding glass-fiber-reinforced plas-
tic rebars to concrete (“Design Recommendations for Bond of GFRP Rebars to
Concrete,” J. of Structural Engr., 1996: 247–254). Consider the following 48 obser-
vations on measured bond strength:

Example 1.10

(a)

(b)

(c)

Figure 1.9 Selecting class intervals for “stretched-out” dots: (a) many short equal-width
intervals; (b) a few wide equal-width intervals; (c) unequal-width intervals

Constructing a Histogram for Continuous Data:
Unequal Class Widths

After determining frequencies and relative frequencies, calculate the height of
each rectangle using the formula

rectangle height �

The resulting rectangle heights are usually called densities, and the vertical scale
is the density scale. This prescription will also work when class widths are equal.

relative frequency of the class
����

class width

.37 � .135 � .505 (slightly more than 50%)<



11.5 12.1 9.9 9.3 7.8 6.2 6.6 7.0 13.4 17.1 9.3 5.6
5.7 5.4 5.2 5.1 4.9 10.7 15.2 8.5 4.2 4.0 3.9 3.8
3.6 3.4 20.6 25.5 13.8 12.6 13.1 8.9 8.2 10.7 14.2 7.6
5.2 5.5 5.1 5.0 5.2 4.8 4.1 3.8 3.7 3.6 3.6 3.6

Class 2–�4 4–�6 6–�8 8–�12 12–�20 20–�30
Frequency 9 15 5 9 8 2
Relative

frequency .1875 .3125 .1042 .1875 .1667 .0417

Density .094 .156 .052 .047 .021 .004

The resulting histogram appears in Figure 1.10. The right or upper tail stretches out
much farther than does the left or lower tail—a substantial departure from symmetry.
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Figure 1.10 A MINITAB density histogram for the bond strength data of Example 1.10 ■

When class widths are unequal, not using a density scale will give a picture with
distorted areas. For equal-class widths, the divisor is the same in each density calcula-
tion, and the extra arithmetic simply results in a rescaling of the vertical axis (i.e., the
histogram using relative frequency and the one using density will have exactly the same
appearance). A density histogram does have one interesting property. Multiplying both
sides of the formula for density by the class width gives

That is, the area of each rectangle is the relative frequency of the corresponding class.
Furthermore, since the sum of relative frequencies should be 1, the total area of all
rectangles in a density histogram is l. It is always possible to draw a histogram so
that the area equals the relative frequency (this is true also for a histogram of discrete
data)—just use the density scale. This property will play an important role in creat-
ing models for distributions in Chapter 4.

Histogram Shapes
Histograms come in a variety of shapes. A unimodal histogram is one that rises 
to a single peak and then declines. A bimodal histogram has two different peaks.
Bimodality can occur when the data set consists of observations on two quite differ-
ent kinds of individuals or objects. For example, consider a large data set consisting
of driving times for automobiles traveling between San Luis Obispo, California and
Monterey, California (exclusive of stopping time for sightseeing, eating, etc.). This

5 rectangle area

relative frequency 5 sclass widthdsdensityd 5 srectangle widthdsrectangle heightd



histogram would show two peaks, one for those cars that took the inland route
(roughly 2.5 hours) and another for those cars traveling up the coast (3.5–4 hours).
However, bimodality does not automatically follow in such situations. Only if the
two separate histograms are “far apart” relative to their spreads will bimodality occur
in the histogram of combined data. Thus a large data set consisting of heights of col-
lege students should not result in a bimodal histogram because the typical male
height of about 69 inches is not far enough above the typical female height of about
64–65 inches. A histogram with more than two peaks is said to be multimodal. Of
course, the number of peaks may well depend on the choice of class intervals, par-
ticularly with a small number of observations. The larger the number of classes, the
more likely it is that bimodality or multimodality will manifest itself.

A histogram is symmetric if the left half is a mirror image of the right half. A
unimodal histogram is positively skewed if the right or upper tail is stretched out com-
pared with the left or lower tail and negatively skewed if the stretching is to the left.
Figure 1.11 shows “smoothed” histograms, obtained by superimposing a smooth curve
on the rectangles, that illustrate the various possibilities.
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Example 1.11

Table 1.2 Frequency Distribution for the School Rating Data

Rating Frequency Relative Frequency

A 478 .191
B 893 .357
C 680 .272
D 178 .071
F 100 .040

Don’t know 172 .069

2501 1.000

Qualitative Data
Both a frequency distribution and a histogram can be constructed when the data set
is qualitative (categorical) in nature. In some cases, there will be a natural ordering of
classes—for example, freshmen, sophomores, juniors, seniors, graduate students—
whereas in other cases the order will be arbitrary—for example, Catholic, Jewish,
Protestant, and the like. With such categorical data, the intervals above which rec-
tangles are constructed should have equal width.

The Public Policy Institute of California carried out a telephone survey of 2501
California adult residents during April 2006 to ascertain how they felt about various
aspects of K-12 public education. One question asked was “Overall, how would you
rate the quality of public schools in your neighborhood today?” Table 1.2 displays
the frequencies and relative frequencies, and Figure 1.12 shows the corresponding
histogram (bar chart).

Figure 1.11 Smoothed histograms: (a) symmetric unimodal; (b) bimodal; (c) positively
skewed; and (d) negatively skewed

(a) (d)(b) (c)



More than half the respondents gave an A or B rating, and only slightly more than
10% gave a D or F rating. The percentages for parents of public school children were
somewhat more favorable to schools: 24%, 40%, 24%, 6%, 4%, and 2%. ■

Multivariate Data
Multivariate data is generally rather difficult to describe visually. Several methods for
doing so appear later in the book, notably scatter plots for bivariate numerical data.
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EXERCISES Section 1.2 (10–32)

10. Consider the strength data for beams given in Example 1.2.
a. Construct a stem-and-leaf display of the data. What

appears to be a representative strength value? Do the
observations appear to be highly concentrated about the
representative value or rather spread out?

b. Does the display appear to be reasonably symmetric
about a representative value, or would you describe its
shape in some other way?

c. Do there appear to be any outlying strength values?
d. What proportion of strength observations in this sample

exceed 10 MPa?

11. Every score in the following batch of exam scores is in the
60s, 70s, 80s, or 90s. A stem-and-leaf display with only
the four stems 6, 7, 8, and 9 would not give a very detailed
description of the distribution of scores. In such situations,
it is desirable to use repeated stems. Here we could repeat
the stem 6 twice, using 6L for scores in the low 60s (leaves
0, 1, 2, 3, and 4) and 6H for scores in the high 60s (leaves
5, 6, 7, 8, and 9). Similarly, the other stems can be repeated
twice to obtain a display consisting of eight rows. Construct
such a display for the given scores. What feature of the data
is highlighted by this display?

74 89 80 93 64 67 72 70 66 85 89 81 81
71 74 82 85 63 72 81 81 95 84 81 80 70
69 66 60 83 85 98 84 68 90 82 69 72 87
88

12. The accompanying specific gravity values for various wood
types used in construction appeared in the article “Bolted
Connection Design Values Based on European Yield
Model” (J. of Structural Engr., 1993: 2169–2186):

.31 .35 .36 .36 .37 .38 .40 .40 .40

.41 .41 .42 .42 .42 .42 .42 .43 .44

.45 .46 .46 .47 .48 .48 .48 .51 .54

.54 .55 .58 .62 .66 .66 .67 .68 .75 

Construct a stem-and-leaf display using repeated stems (see
the previous exercise), and comment on any interesting fea-
tures of the display.

13. Allowable mechanical properties for structural design of
metallic aerospace vehicles requires an approved method for
statistically analyzing empirical test data. The article
“Establishing Mechanical Property Allowables for Metals”
(J. of Testing and Evaluation, 1998: 293–299) used the accom-
panying data on tensile ultimate strength (ksi) as a basis for
addressing the difficulties in developing such a method.

122.2 124.2 124.3 125.6 126.3 126.5 126.5 127.2 127.3
127.5 127.9 128.6 128.8 129.0 129.2 129.4 129.6 130.2
130.4 130.8 131.3 131.4 131.4 131.5 131.6 131.6 131.8
131.8 132.3 132.4 132.4 132.5 132.5 132.5 132.5 132.6
132.7 132.9 133.0 133.1 133.1 133.1 133.1 133.2 133.2
133.2 133.3 133.3 133.5 133.5 133.5 133.8 133.9 134.0
134.0 134.0 134.0 134.1 134.2 134.3 134.4 134.4 134.6

R
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0.0
A B C D F Don’t know

Chart of Relative Frequency vs Rating

Figure 1.12 Histogram of the school rating data from MINITAB



134.7 134.7 134.7 134.8 134.8 134.8 134.9 134.9 135.2
135.2 135.2 135.3 135.3 135.4 135.5 135.5 135.6 135.6
135.7 135.8 135.8 135.8 135.8 135.8 135.9 135.9 135.9
135.9 136.0 136.0 136.1 136.2 136.2 136.3 136.4 136.4
136.6 136.8 136.9 136.9 137.0 137.1 137.2 137.6 137.6
137.8 137.8 137.8 137.9 137.9 138.2 138.2 138.3 138.3
138.4 138.4 138.4 138.5 138.5 138.6 138.7 138.7 139.0
139.1 139.5 139.6 139.8 139.8 140.0 140.0 140.7 140.7
140.9 140.9 141.2 141.4 141.5 141.6 142.9 143.4 143.5
143.6 143.8 143.8 143.9 144.1 144.5 144.5 147.7 147.7

a. Construct a stem-and-leaf display of the data by first
deleting (truncating) the tenths digit and then repeating
each stem value five times (once for leaves 1 and 2, a
second time for leaves 3 and 4, etc.). Why is it relatively
easy to identify a representative strength value?

b. Construct a histogram using equal-width classes with the
first class having a lower limit of 122 and an upper limit
of 124. Then comment on any interesting features of the
histogram.

14. The accompanying data set consists of observations on
shower-flow rate (L/min) for a sample of n � 129 houses in
Perth, Australia (“An Application of Bayes Methodology 
to the Analysis of Diary Records in a Water Use Study,”
J. Amer. Stat. Assoc., 1987: 705–711):

4.6 12.3 7.1 7.0 4.0 9.2 6.7 6.9 11.5 5.1
11.2 10.5 14.3 8.0 8.8 6.4 5.1 5.6 9.6 7.5

7.5 6.2 5.8 2.3 3.4 10.4 9.8 6.6 3.7 6.4
8.3 6.5 7.6 9.3 9.2 7.3 5.0 6.3 13.8 6.2
5.4 4.8 7.5 6.0 6.9 10.8 7.5 6.6 5.0 3.3
7.6 3.9 11.9 2.2 15.0 7.2 6.1 15.3 18.9 7.2
5.4 5.5 4.3 9.0 12.7 11.3 7.4 5.0 3.5 8.2
8.4 7.3 10.3 11.9 6.0 5.6 9.5 9.3 10.4 9.7
5.1 6.7 10.2 6.2 8.4 7.0 4.8 5.6 10.5 14.6

10.8 15.5 7.5 6.4 3.4 5.5 6.6 5.9 15.0 9.6
7.8 7.0 6.9 4.1 3.6 11.9 3.7 5.7 6.8 11.3
9.3 9.6 10.4 9.3 6.9 9.8 9.1 10.6 4.5 6.2
8.3 3.2 4.9 5.0 6.0 8.2 6.3 3.8 6.0

a. Construct a stem-and-leaf display of the data.
b. What is a typical, or representative, flow rate?
c. Does the display appear to be highly concentrated or

spread out?
d. Does the distribution of values appear to be reasonably

symmetric? If not, how would you describe the departure
from symmetry?

e. Would you describe any observation as being far from
the rest of the data (an outlier)?

15. A Consumer Reports article on peanut butter (Sept. 1990)
reported the following scores for various brands:

Creamy 56 44 62 36 39 53 50 65 45 40
56 68 41 30 40 50 56 30 22

Crunchy 62 53 75 42 47 40 34 62 52
50 34 42 36 75 80 47 56 62 

Construct a comparative stem-and-leaf display by listing
stems in the middle of your page and then displaying the
creamy leaves out to the right and the crunchy leaves out to the
left. Describe similarities and differences for the two types.

16. The article cited in Example 1.2 also gave the accompany-
ing strength observations for cylinders:

6.1 5.8 7.8 7.1 7.2 9.2 6.6 8.3 7.0 8.3
7.8 8.1 7.4 8.5 8.9 9.8 9.7 14.1 12.6 11.2

a. Construct a comparative stem-and-leaf display (see the
previous exercise) of the beam and cylinder data, and
then answer the questions in parts (b)–(d) of Exercise 10
for the observations on cylinders.

b. In what ways are the two sides of the display similar?
Are there any obvious differences between the beam
observations and the cylinder observations?

c. Construct a dotplot of the cylinder data.

17. Temperature transducers of a certain type are shipped in
batches of 50. A sample of 60 batches was selected, and the
number of transducers in each batch not conforming to design
specifications was determined, resulting in the following data:

2 1 2 4 0 1 3 2 0 5 3 3 1 3 2 4 7 0 2 3
0 4 2 1 3 1 1 3 4 1 2 3 2 2 8 4 5 1 3 1
5 0 2 3 2 1 0 6 4 2 1 6 0 3 3 3 6 1 2 3

a. Determine frequencies and relative frequencies for the
observed values of x � number of nonconforming trans-
ducers in a batch.

b. What proportion of batches in the sample have at most
five nonconforming transducers? What proportion have
fewer than five? What proportion have at least five non-
conforming units?

c. Draw a histogram of the data using relative frequency on
the vertical scale, and comment on its features.

18. In a study of author productivity (“Lotka’s Test,” Collection
Mgmt., 1982: 111–118), a large number of authors were
classified according to the number of articles they had pub-
lished during a certain period. The results were presented in
the accompanying frequency distribution:

Number
of papers 1 2 3 4 5 6 7 8
Frequency 784 204 127 50 33 28 19 19

Number
of papers 9 10 11 12 13 14 15 16 17
Frequency 6 7 6 7 4 4 5 3 3

a. Construct a histogram corresponding to this frequency
distribution. What is the most interesting feature of the
shape of the distribution?

b. What proportion of these authors published at least five
papers? At least ten papers? More than ten papers?

c. Suppose the five 15s, three 16s, and three 17s had been
lumped into a single category displayed as “�15.” Would
you be able to draw a histogram? Explain.
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d. Suppose that instead of the values 15, 16, and 17 being
listed separately, they had been combined into a 15–17
category with frequency 11. Would you be able to draw
a histogram? Explain.

19. The number of contaminating particles on a silicon wafer prior
to a certain rinsing process was determined for each wafer in
a sample of size 100, resulting in the following frequencies:

Number
of particles 0 1 2 3 4 5 6 7
Frequency 1 2 3 12 11 15 18 10

Number
of particles 8 9 10 11 12 13 14
Frequency 12 4 5 3 1 2 1

a. What proportion of the sampled wafers had at least one
particle? At least five particles?

b. What proportion of the sampled wafers had between five
and ten particles, inclusive? Strictly between five and ten
particles?

c. Draw a histogram using relative frequency on the vertical
axis. How would you describe the shape of the histogram?

20. The article “Determination of Most Representative
Subdivision” (J. of Energy Engr., 1993: 43–55) gave data on
various characteristics of subdivisions that could be used in
deciding whether to provide electrical power using overhead
lines or underground lines. Here are the values of the vari-
able x � total length of streets within a subdivision:

1280 5320 4390 2100 1240 3060 4770
1050 360 3330 3380 340 1000 960
1320 530 3350 540 3870 1250 2400
960 1120 2120 450 2250 2320 2400

3150 5700 5220 500 1850 2460 5850
2700 2730 1670 100 5770 3150 1890
510 240 396 1419 2109

a. Construct a stem-and-leaf display using the thousands
digit as the stem and the hundreds digit as the leaf, and
comment on the various features of the display.

b. Construct a histogram using class boundaries 0, 1000,
2000, 3000, 4000, 5000, and 6000. What proportion of
subdivisions have total length less than 2000? Between
2000 and 4000? How would you describe the shape of
the histogram?

21. The article cited in Exercise 20 also gave the following val-
ues of the variables y � number of culs-de-sac and z �
number of intersections:

y 1 0 1 0 0 2 0 1 1 1 2 1 0 0 1 1 0 1 1
z 1 8 6 1 1 5 3 0 0 4 4 0 0 1 2 1 4 0 4

y 1 1 0 0 0 1 1 2 0 1 2 2 1 1 0 2 1 1 0
z 0 3 0 1 1 0 1 3 2 4 6 6 0 1 1 8 3 3 5

y 1 5 0 3 0 1 1 0 0
z 0 5 2 3 1 0 0 0 3

a. Construct a histogram for the y data. What proportion of
these subdivisions had no culs-de-sac? At least one cul-
de-sac?

b. Construct a histogram for the z data. What proportion of
these subdivisions had at most five intersections? Fewer
than five intersections?

22. How does the speed of a runner vary over the course of 
a marathon (a distance of 42.195 km)? Consider determin-
ing both the time to run the first 5 km and the time to run
between the 35-km and 40-km points, and then subtracting
the former time from the latter time. A positive value of this
difference corresponds to a runner slowing down toward the
end of the race. The accompanying histogram is based on
times of runners who participated in several different
Japanese marathons (“Factors Affecting Runners’ Marathon
Performance,” Chance, Fall, 1993: 24–30).
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What are some interesting features of this histogram?
What is a typical difference value? Roughly what proportion
of the runners ran the late distance more quickly than the
early distance?

23. In a study of warp breakage during the weaving of fabric
(Technometrics, 1982: 63), 100 specimens of yarn were
tested. The number of cycles of strain to breakage was deter-
mined for each yarn specimen, resulting in the following data:

86 146 251 653 98 249 400 292 131 169
175 176 76 264 15 364 195 262 88 264
157 220 42 321 180 198 38 20 61 121
282 224 149 180 325 250 196 90 229 166

38 337 65 151 341 40 40 135 597 246
211 180 93 315 353 571 124 279 81 186
497 182 423 185 229 400 338 290 398 71
246 185 188 568 55 55 61 244 20 284
393 396 203 829 239 236 286 194 277 143
198 264 105 203 124 137 135 350 193 188

a. Construct a relative frequency histogram based on the
class intervals 0–�100, 100–�200, . . . , and comment
on features of the histogram.

b. Construct a histogram based on the following class inter-
vals: 0–�50, 50–�100, 100–�150, 150–�200,
200–�300, 300–�400, 400–�500, 500–�600, and
600–�900.

c. If weaving specifications require a breaking strength of at
least 100 cycles, what proportion of the yarn specimens
in this sample would be considered satisfactory?

24. The accompanying data set consists of observations on
shear strength (lb) of ultrasonic spot welds made on a cer-
tain type of alclad sheet. Construct a relative frequency his-
togram based on ten equal-width classes with boundaries
4000, 4200, . . . . [The histogram will agree with the one in
“Comparison of Properties of Joints Prepared by Ultrasonic
Welding and Other Means” (J. of Aircraft, 1983: 552–556).]
Comment on its features.

5434 4948 4521 4570 4990 5702 5241
5112 5015 4659 4806 4637 5670 4381
4820 5043 4886 4599 5288 5299 4848
5378 5260 5055 5828 5218 4859 4780
5027 5008 4609 4772 5133 5095 4618
4848 5089 5518 5333 5164 5342 5069
4755 4925 5001 4803 4951 5679 5256
5207 5621 4918 5138 4786 4500 5461
5049 4974 4592 4173 5296 4965 5170
4740 5173 4568 5653 5078 4900 4968
5248 5245 4723 5275 5419 5205 4452
5227 5555 5388 5498 4681 5076 4774
4931 4493 5309 5582 4308 4823 4417
5364 5640 5069 5188 5764 5273 5042
5189 4986

25. A transformation of data values by means of some mathe-
matical function, such as or 1/x, can often yield a set
of numbers that has “nicer” statistical properties than the

original data. In particular, it may be possible to find a
function for which the histogram of transformed values is
more symmetric (or, even better, more like a bell-shaped
curve) than the original data. As an example, the article
“Time Lapse Cinematographic Analysis of Beryllium–
Lung Fibroblast Interactions” (Environ. Research, 1983:
34–43) reported the results of experiments designed to
study the behavior of certain individual cells that had been
exposed to beryllium. An important characteristic of such
an individual cell is its interdivision time (IDT). IDTs were
determined for a large number of cells both in exposed
(treatment) and unexposed (control) conditions. The
authors of the article used a logarithmic transformation,
that is, transformed value � log(original value). Consider
the following representative IDT data:

IDT log10(IDT) IDT log10(IDT) IDT log10(IDT)

28.1 1.45 60.1 1.78 21.0 1.32
31.2 1.49 23.7 1.37 22.3 1.35
13.7 1.14 18.6 1.27 15.5 1.19
46.0 1.66 21.4 1.33 36.3 1.56
25.8 1.41 26.6 1.42 19.1 1.28
16.8 1.23 26.2 1.42 38.4 1.58
34.8 1.54 32.0 1.51 72.8 1.86
62.3 1.79 43.5 1.64 48.9 1.69
28.0 1.45 17.4 1.24 21.4 1.33
17.9 1.25 38.8 1.59 20.7 1.32
19.5 1.29 30.6 1.49 57.3 1.76
21.1 1.32 55.6 1.75 40.9 1.61
31.9 1.50 25.5 1.41
28.9 1.46 52.1 1.72

Use class intervals 10–�20, 20–�30, . . . to construct a his-
togram of the original data. Use intervals 1.1–�1.2,
1.2–�1.3, . . . to do the same for the transformed data. What
is the effect of the transformation?

26. Automated electron backscattered diffraction is now being
used in the study of fracture phenomena. The following
information on misorientation angle (degrees) was extracted
from the article “Observations on the Faceted Initiation Site
in the Dwell-Fatigue Tested Ti-6242 Alloy: Crystallographic
Orientation and Size Effects (Metallurgical and Materials
Trans., 2006: 1507–1518).

Class: 0–�5 5–�10 10–�15 15–�20
Rel freq: .177 .166 .175 .136

Class: 20–�30 30–�40 40–�60 60–�90
Rel freq: .194 .078 .044 .030

a. Is it true that more than 50% of the sampled angles are
smaller than 15 , as asserted in the paper?

b. What proportion of the sampled angles are at least 30 ?
c. Roughly what proportion of angles are between 10 and

25 ?
d. Construct a histogram and comment on any interesting

features.

8
8
8

8

2x
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27. The paper “Study on the Life Distribution of Microdrills”
(J. of Engr. Manufacture, 2002: 301–305) reported the fol-
lowing observations, listed in increasing order, on drill life-
time (number of holes that a drill machines before it breaks)
when holes were drilled in a certain brass alloy.

11 14 20 23 31 36 39 44 47 50
59 61 65 67 68 71 74 76 78 79
81 84 85 89 91 93 96 99 101 104

105 105 112 118 123 136 139 141 148 158
161 168 184 206 248 263 289 322 388 513

a. Why can a frequency distribution not be based on the
class intervals 0–50, 50–100, 100–150, and so on?

b. Construct a frequency distribution and histogram of the
data using class boundaries 0, 50, 100, . . . , and then
comment on interesting characteristics.

c. Construct a frequency distribution and histogram of the
natural logarithms of the lifetime observations, and com-
ment on interesting characteristics.

d. What proportion of the lifetime observations in this sam-
ple are less than 100? What proportion of the observa-
tions are at least 200?

28. Human measurements provide a rich area of application for
statistical methods. The article “A Longitudinal Study of the
Development of Elementary School Children’s Private
Speech” (Merrill-Palmer Q., 1990: 443–463) reported on a
study of children talking to themselves (private speech). It
was thought that private speech would be related to IQ,
because IQ is supposed to measure mental maturity, and it
was known that private speech decreases as students progress
through the primary grades. The study included 33 students
whose first-grade IQ scores are given here:

82 96 99 102 103 103 106 107 108 108 108 108
109 110 110 111 113 113 113 113 115 115 118 118
119 121 122 122 127 132 136 140 146

Describe the data and comment on any interesting features.

29. Consider the following data on type of health complaint
(J � joint swelling, F � fatigue, B � back pain, M � mus-
cle weakness, C � coughing, N � nose running/irritation,
O � other) made by tree planters. Obtain frequencies and
relative frequencies for the various categories, and draw a
histogram. (The data is consistent with percentages given
in the article “Physiological Effects of Work Stress and

Pesticide Exposure in Tree Planting by British Columbia
Silviculture Workers,” Ergonomics, 1993: 951–961.)

O O N J C F B B F O J O O M
O F F O O N O N J F J B O C
J O J J F N O B M O J M O B
O F J O O B N C O O O M B F
J O F N

30. A Pareto diagram is a variation of a histogram for categor-
ical data resulting from a quality control study. Each cate-
gory represents a different type of product nonconformity or
production problem. The categories are ordered so that the
one with the largest frequency appears on the far left, then
the category with the second largest frequency, and so on.
Suppose the following information on nonconformities in
circuit packs is obtained: failed component, 126; incorrect
component, 210; insufficient solder, 67; excess solder, 54;
missing component, 131. Construct a Pareto diagram.

31. The cumulative frequency and cumulative relative fre-
quency for a particular class interval are the sum of fre-
quencies and relative frequencies, respectively, for that
interval and all intervals lying below it. If, for example,
there are four intervals with frequencies 9, 16, 13, and 12,
then the cumulative frequencies are 9, 25, 38, and 50, and
the cumulative relative frequencies are .18, .50, .76, and
1.00. Compute the cumulative frequencies and cumulative
relative frequencies for the data of Exercise 24.

32. Fire load (MJ/m2) is the heat energy that could be released
per square meter of floor area by combustion of contents
and the structure itself. The article “Fire Loads in Office
Buildings” (J. of Structural Engr., 1997: 365–368) gave the
following cumulative percentages (read from a graph) for
fire loads in a sample of 388 rooms:

Value 0 150 300 450 600
Cumulative % 0 19.3 37.6 62.7 77.5

Value 750 900 1050 1200 1350
Cumulative % 87.2 93.8 95.7 98.6 99.1

Value 1500 1650 1800 1950
Cumulative % 99.5 99.6 99.8 100.0

a. Construct a relative frequency histogram and comment
on interesting features.

b. What proportion of fire loads are less than 600? At least
1200?

c. What proportion of the loads are between 600 and 1200?

1.3 Measures of Location

Visual summaries of data are excellent tools for obtaining preliminary impressions
and insights. More formal data analysis often requires the calculation and interpre-
tation of numerical summary measures. That is, from the data we try to extract sev-
eral summarizing numbers—numbers that might serve to characterize the data set



and convey some of its salient features. Our primary concern will be with numerical
data; some comments regarding categorical data appear at the end of the section.

Suppose, then, that our data set is of the form x1, x2, . . . , xn, where each xi is a
number. What features of such a set of numbers are of most interest and deserve empha-
sis? One important characteristic of a set of numbers is its location, and in particular its
center. This section presents methods for describing the location of a data set; in Section
1.4 we will turn to methods for measuring variability in a set of numbers.

The Mean
For a given set of numbers x1, x2, . . . , xn, the most familiar and useful measure of
the center is the mean, or arithmetic average of the set. Because we will almost
always think of the xis as constituting a sample, we will often refer to the arithmetic
average as the sample mean and denote it by .x
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The sample mean of observations x1, x2, . . . , xn is given by

The numerator of can be written more informally as �xi , where the
summation is over all sample observations.

x

x 5
x1 1 x2 1

c 1 xn
n 5

g
n

i51
xi

n

xDEFINITION

For reporting , we recommend using decimal accuracy of one digit more than the
accuracy of the xis. Thus if observations are stopping distances with x1 � 125, x2 �
131, and so on, we might have � 127.3 ft.

Caustic stress corrosion cracking of iron and steel has been studied because of fail-
ures around rivets in steel boilers and failures of steam rotors. Consider the accom-
panying observations on x � crack length (mm) as a result of constant load stress
corrosion tests on smooth bar tensile specimens for a fixed length of time. (The data
is consistent with a histogram and summary quantities from the article “On the Role
of Phosphorus in the Caustic Stress Corrosion Cracking of Low Alloy Steels,” Cor-
rosion Science, 1989: 53–68.)

x1 � 16.1 x2 � 9.6 x3 � 24.9 x4 � 20.4 x5 � 12.7 x6 � 21.2 x7 � 30.2

x8 � 25.8 x9 � 18.5 x10 � 10.3 x11 � 25.3 x12 � 14.0 x13 � 27.1 x14 � 45.0

x15 � 23.3 x16 � 24.2 x17 � 14.6 x18 � 8.9 x19 � 32.4 x20 � 11.8 x21 � 28.5

Figure 1.13 shows a stem-and-leaf display of the data; a crack length in the low 20s
appears to be “typical.”

x

x

Example 1.12

0H 96 89
1L 27 03 40 46 18
1H 61 85
2L 49 04 12 33 42 Stem: tens digit

2H 58 53 71 85 Leaf: one and tenths digit

3L 02 24
3H
4L
4H 50

Figure 1.13 A stem-and-leaf display of the crack-length data
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With � , the sample mean is

a value consistent with information conveyed by the stem-and-leaf display. ■

A physical interpretation of demonstrates how it measures the location (cen-
ter) of a sample. Think of drawing and scaling a horizontal measurement axis, and
then represent each sample observation by a 1-lb weight placed at the corresponding
point on the axis. The only point at which a fulcrum can be placed to balance the sys-
tem of weights is the point corresponding to the value of (see Figure 1.14).x

x

x 5 444.8
21

5 21.18

xi 5 444.8

Just as represents the average value of the observations in a sample, the aver-
age of all values in the population can be calculated. This average is called the pop-
ulation mean and is denoted by the Greek letter m. When there are N values in the
population (a finite population), then m � (sum of the N population values)/N. In
Chapters 3 and 4, we will give a more general definition for m that applies to both
finite and (conceptually) infinite populations. Just as is an interesting and impor-
tant measure of sample location, m is an interesting and important (often the most
important) characteristic of a population. In the chapters on statistical inference, we
will present methods based on the sample mean for drawing conclusions about a
population mean. For example, we might use the sample mean � 21.18 computed
in Example 1.12 as a point estimate (a single number that is our “best” guess) of
m � the true average crack length for all specimens treated as described.

The mean suffers from one deficiency that makes it an inappropriate measure
of center under some circumstances: Its value can be greatly affected by the presence
of even a single outlier (unusually large or small observation). In Example 1.12, the
value x14 � 45.0 is obviously an outlier. Without this observation, � 399.8/20 �
19.99; the outlier increases the mean by more than 1 mm. If the 45.0 mm observation
were replaced by the catastrophic value 295.0 mm, a really extreme outlier, then �
694.8/21 � 33.09, which is larger than all but one of the observations!

A sample of incomes often produces a few such outlying values (those lucky
few who earn astronomical amounts), and the use of average income as a measure
of location will often be misleading. Such examples suggest that we look for a mea-
sure that is less sensitive to outlying values than , and we will momentarily propose
one. However, although does have this potential defect, it is still the most widely
used measure, largely because there are many populations for which an extreme out-
lier in the sample would be highly unlikely. When sampling from such a population
(a normal or bell-shaped population being the most important example), the sample
mean will tend to be stable and quite representative of the sample.

The Median
The word median is synonymous with “middle,” and the sample median is indeed
the middle value once the observations are ordered from smallest to largest. When the
observations are denoted by x1, . . . , xn, we will use the symbol to represent the
sample median.

x|

x
x

x

x

x

x

x

Figure 1.14 The mean as the balance point for a system of weights

10 20 30 40

x = 21.18
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The risk of developing iron deficiency is especially high during pregnancy. The
problem with detecting such deficiency is that some methods for determining iron
status can be affected by the state of pregnancy itself. Consider the following ordered
observations on transferrin receptor concentration for a sample of women with lab-
oratory evidence of overt iron-deficiency anemia (“Serum Transferrin Receptor for
the Detection of Iron Deficiency in Pregnancy,” Amer. J. of Clinical Nutrition, 1991:
1077–1081):

7.6 8.3 9.3 9.4 9.4 9.7 10.4 11.5 11.9 15.2 16.2 20.4

Since n � 12 is even, the n/2 � sixth- and seventh-ordered values must be averaged:

Notice that if the largest observation, 20.4, had not appeared in the sample, the
resulting sample median for the n � 11 observations would have been the single
middle value, 9.7 (the (n � 1)/2 � sixth-ordered value). The sample mean is 

� , which is somewhat larger than the median because
of the outliers 15.2, 16.2, and 20.4. ■

The data in Example 1.13 illustrates an important property of in contrast to
: The sample median is very insensitive to outliers. If, for example, we increased

the two largest xis from 16.2 and 20.4 to 26.2 and 30.4, respectively, would be
unaffected. Thus, in the treatment of outlying data values, and are at opposite
ends of a spectrum.

Because the large values in the sample of Example 1.13 affect more than , �
for that data. Although and both provide a measure for the center of a data set,

they will not in general be equal because they focus on different aspects of the sample.
Analogous to as the middle value in the sample is a middle value in the pop-

ulation, the population median, denoted by . As with and m, we can think of
using the sample median to make an inference about . In Example 1.13, we might
use � 10.05 as an estimate of the median concentration in the entire population
from which the sample was selected. A median is often used to describe income or
salary data (because it is not greatly influenced by a few large salaries). If the median
salary for a sample of engineers were � $66,416, we might use this as a basis for
concluding that the median salary for all engineers exceeds $60,000.

x|

x|
m|x|

xm|
x|

x|xx
x|x|x

x|x
x|

x
x|

xi/n 5 139.3/12 5 11.61x 5

x| 5 9.7 1 10.4
2

5 10.05

The sample median is obtained by first ordering the n observations from small-
est to largest (with any repeated values included so that every sample observa-
tion appears in the ordered list). Then,

The single
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value if n
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� The average
of the two
middle � average of ��
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Example 1.13
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(a) Negative skew (b) Symmetric (c) Positive skew

Figure 1.15 Three different shapes for a population distribution

The population mean m and median will not generally be identical. If the pop-
ulation distribution is positively or negatively skewed, as pictured in Figure 1.15, then

. When this is the case, in making inferences we must first decide which of the
two population characteristics is of greater interest and then proceed accordingly.

Other Measures of Location:
Quartiles, Percentiles, and Trimmed Means
The median (population or sample) divides the data set into two parts of equal size.
To obtain finer measures of location, we could divide the data into more than two
such parts. Roughly speaking, quartiles divide the data set into four equal parts, with
the observations above the third quartile constituting the upper quarter of the data
set, the second quartile being identical to the median, and the first quartile separat-
ing the lower quarter from the upper three-quarters. Similarly, a data set (sample or
population) can be even more finely divided using percentiles; the 99th percentile
separates the highest 1% from the bottom 99%, and so on. Unless the number of
observations is a multiple of 100, care must be exercised in obtaining percentiles. We
will use percentiles in Chapter 4 in connection with certain models for infinite pop-
ulations and so postpone discussion until that point.

The mean is quite sensitive to a single outlier, whereas the median is impervi-
ous to many outliers. Since extreme behavior of either type might be undesirable, we
briefly consider alternative measures that are neither as sensitive as nor as insensi-
tive as . To motivate these alternatives, note that and are at opposite extremes
of the same “family” of measures. The mean is the average of all the data, whereas
the median results from eliminating all but the middle one or two values and then
averaging. To paraphrase, the mean involves trimming 0% from each end of the sample,
whereas for the median the maximum possible amount is trimmed from each end.
A trimmed mean is a compromise between and . A 10% trimmed mean, for
example, would be computed by eliminating the smallest 10% and the largest 10%
of the sample and then averaging what is left over.

The production of Bidri is a traditional craft of India. Bidri wares (bowls, vessels,
and so on) are cast from an alloy containing primarily zinc along with some copper.
Consider the following observations on copper content (%) for a sample of Bidri
artifacts in London’s Victoria and Albert Museum (“Enigmas of Bidri,” Surface
Engr., 2005: 333–339), listed in increasing order:

2.0 2.4 2.5 2.6 2.6 2.7 2.7 2.8 3.0 3.1 3.2 3.3    3.3

3.4 3.4 3.6 3.6 3.6 3.6 3.7 4.4 4.6 4.7 4.8 5.3 10.1

Figure 1.16 is a dotplot of the data. A prominent feature is the single outlier at the
upper end; the distribution is somewhat sparser in the region of larger values than
is the case for smaller values. The sample mean and median are 3.65 and 3.35, re-
spectively. A trimmed mean with a trimming percentage of 100(2/26) � 7.7%
results from eliminating the two smallest and two largest observations; this gives

x|x

x|xx|
x

m 2 m|

m|

Example 1.14
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. Trimming here eliminates the larger outlier and so pulls the trimmed
mean toward the median. ■

A trimmed mean with a moderate trimming percentage—someplace between
5% and 25%—will yield a measure of center that is neither as sensitive to outliers
as is the mean nor as insensitive as the median. If the desired trimming percentage
is 100a% and na is not an integer, the trimmed mean must be calculated by inter-
polation. For example, consider a� .10 for a 10% trimming percentage and n � 26
as in Example 1.14. Then would be the appropriate weighted average of the
7.7% trimmed mean calculated there and the 11.5% trimmed mean resulting from
trimming three observations from each end.

Categorical Data and Sample Proportions
When the data is categorical, a frequency distribution or relative frequency distribution
provides an effective tabular summary of the data. The natural numerical summary
quantities in this situation are the individual frequencies and the relative frequencies.
For example, if a survey of individuals who own digital cameras is undertaken to
study brand preference, then each individual in the sample would identify the brand
of camera that he or she owned, from which we could count the number owning
Canon, Sony, Kodak, and so on. Consider sampling a dichotomous population—one
that consists of only two categories (such as voted or did not vote in the last election,
does or does not own a digital camera, etc.). If we let x denote the number in the
sample falling in category 1, then the number in category 2 is n � x. The relative fre-
quency or sample proportion in category 1 is x/n and the sample proportion in cate-
gory 2 is 1 � x/n. Let’s denote a response that falls in category 1 by a 1 and a
response that falls in category 2 by a 0. A sample size of n � 10 might then yield the
responses, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1. The sample mean for this numerical sample is
(since number of 1s � x � 7)

More generally, focus attention on a particular category and code the sample
results so that a 1 is recorded for an observation in the category and a 0 for an
observation not in the category. Then the sample proportion of observations in the
category is the sample mean of the sequence of 1s and 0s. Thus a sample mean can
be used to summarize the results of a categorical sample. These remarks also apply
to situations in which categories are defined by grouping values in a numerical sam-
ple or population (e.g., we might be interested in knowing whether individuals have
owned their present automobile for at least 5 years, rather than studying the exact
length of ownership).

Analogous to the sample proportion x/n of individuals or objects falling in a
particular category, let p represent the proportion of those in the entire population
falling in the category. As with x/n, p is a quantity between 0 and 1, and while x/n is

x1 1
c1 xn
n 5

1 1 1 1 0 1c1 1 1 1
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5
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x
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xtrs10d

xtrs7.7d 5 3.42

Figure 1.16 Dotplot of copper contents from Example 1.14
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EXERCISES Section 1.3 (33–43)

33. The article “The Pedaling Technique of Elite Endurance
Cyclists” (Int. J. of Sport Biomechanics, 1991: 29–53)
reported the accompanying data on single-leg power at a
high workload:

244 191 160 187 180 176 174
205 211 183 211 180 194 200

a. Calculate and interpret the sample mean and median.
b. Suppose that the first observation had been 204 rather

than 244. How would the mean and median change?
c. Calculate a trimmed mean by eliminating the smallest

and largest sample observations. What is the correspond-
ing trimming percentage?

d. The article also reported values of single-leg power for a
low workload. The sample mean for n � 13 observations
was x� � 119.8 (actually 119.7692), and the 14th obser-
vation, somewhat of an outlier, was 159. What is the
value of x� for the entire sample?

34. Exposure to microbial products, especially endotoxin, may
have an impact on vulnerability to allergic diseases. The article
“Dust Sampling Methods for Endotoxin—An Essential, But
Underestimated Issue” (Indoor Air, 2006: 20–27) considered
various issues associated with determining endotoxin con-
centration. The following data on concentration (EU/mg) in
settled dust for one sample of urban homes and another of
farm homes was kindly supplied by the authors of the cited
article.

U: 6.0  5.0  11.0  33.0  4.0  5.0  80.0  18.0  35.0  17.0  23.0
F: 4.0  14.0  11.0  9.0  9.0  8.0  4.0  20.0  5.0  8.9  21.0

9.2  3.0  2.0  0.3

a. Determine the sample mean for each sample. How do
they compare?

b. Determine the sample median for each sample. How do
they compare? Why is the median for the urban sample
so different from the mean for that sample?

c. Calculate the trimmed mean for each sample by deleting the
smallest and largest observation. What are the correspond-
ing trimming percentages? How do the values of these
trimmed means compare to the corresponding means and
medians?

35. The minimum injection pressure (psi) for injection molding
specimens of high amylose corn was determined for eight

different specimens (higher pressure corresponds to greater
processing difficulty), resulting in the following observations
(from “Thermoplastic Starch Blends with a Polyethylene-
Co-Vinyl Alcohol: Processability and Physical Properties,”
Polymer Engr. and Science, 1994: 17–23):

15.0 13.0 18.0 14.5 12.0 11.0 8.9 8.0

a. Determine the values of the sample mean, sample 
median, and 12.5% trimmed mean, and compare these
values.

b. By how much could the smallest sample observation,
currently 8.0, be increased without affecting the value of
the sample median?

c. Suppose we want the values of the sample mean and
median when the observations are expressed in kilograms
per square inch (ksi) rather than psi. Is it necessary to
reexpress each observation in ksi, or can the values calcu-
lated in part (a) be used directly? [Hint: 1 kg � 2.2 lb.]

36. A sample of 26 offshore oil workers took part in a simulated
escape exercise, resulting in the accompanying data on time
(sec) to complete the escape (“Oxygen Consumption and
Ventilation During Escape from an Offshore Platform,”
Ergonomics, 1997: 281–292):

389 356 359 363 375 424 325 394 402
373 373 370 364 366 364 325 339 393
392 369 374 359 356 403 334 397

a. Construct a stem-and-leaf display of the data. How
does it suggest that the sample mean and median will
compare?

b. Calculate the values of the sample mean and median.
[Hint: �xi � 9638.]

c. By how much could the largest time, currently 424, be
increased without affecting the value of the sample
median? By how much could this value be decreased
without affecting the value of the sample median?

d. What are the values of x� and when the observations are
reexpressed in minutes?

37. The article “Snow Cover and Temperature Relationships in
North America and Eurasia” (J. Climate and Applied
Meteorology, 1983: 460–469) used statistical techniques to
relate the amount of snow cover on each continent to average

x|

a sample characteristic, p is a characteristic of the population. The relationship
between the two parallels the relationship between and and between and m. In
particular, we will subsequently use x/n to make inferences about p. If, for example,
a sample of 100 car owners reveals that 22 owned their car at least 5 years, then we
might use 22/100 � .22 as a point estimate of the proportion of all owners who have
owned their car at least 5 years. We will study the properties of x/n as an estimator
of p and see how x/n can be used to answer other inferential questions. With k cate-
gories (k � 2), we can use the k sample proportions to answer questions about the
population proportions p1, . . . , pk.

xm|x|
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continental temperature. Data presented there included the
following ten observations on October snow cover for
Eurasia during the years 1970–1979 (in million km2):

6.5 12.0 14.9 10.0 10.7 7.9 21.9 12.5 14.5 9.2

What would you report as a representative, or typical, value
of October snow cover for this period, and what prompted
your choice?

38. Blood pressure values are often reported to the nearest 
5 mmHg (100, 105, 110, etc.). Suppose the actual blood
pressure values for nine randomly selected individuals are

118.6 127.4 138.4 130.0 113.7 122.0 108.3
131.5 133.2

a. What is the median of the reported blood pressure values?
b. Suppose the blood pressure of the second individual is

127.6 rather than 127.4 (a small change in a single
value). How does this affect the median of the reported
values? What does this say about the sensitivity of the
median to rounding or grouping in the data?

39. The propagation of fatigue cracks in various aircraft parts
has been the subject of extensive study in recent years. The
accompanying data consists of propagation lives (flight
hours/104) to reach a given crack size in fastener holes
intended for use in military aircraft (“Statistical Crack
Propagation in Fastener Holes under Spectrum Loading,”
J. Aircraft, 1983: 1028–1032):

.736 .863 .865 .913 .915 .937 .983 1.007
1.011 1.064 1.109 1.132 1.140 1.153 1.253 1.394

a. Compute and compare the values of the sample mean
and median.

b. By how much could the largest sample observation be
decreased without affecting the value of the median?

40. Compute the sample median, 25% trimmed mean, 10%
trimmed mean, and sample mean for the lifetime data given
in Exercise 27, and compare these measures.

41. A sample of n � 10 automobiles was selected, and each
was subjected to a 5-mph crash test. Denoting a car with
no visible damage by S (for success) and a car with such
damage by F, results were as follows:

S S F S S S F F S S

a. What is the value of the sample proportion of successes
x/n?

b. Replace each S with a 1 and each F with a 0. Then cal-
culate x� for this numerically coded sample. How does x�
compare to x/n?

c. Suppose it is decided to include 15 more cars in the
experiment. How many of these would have to be S’s to
give x/n � .80 for the entire sample of 25 cars?

42. a. If a constant c is added to each xi in a sample, yielding
yi � xi � c, how do the sample mean and median of the
yi s relate to the mean and median of the xis? Verify your
conjectures.

b. If each xi is multiplied by a constant c, yielding yi � cxi,
answer the question of part (a). Again, verify your
conjectures.

43. An experiment to study the lifetime (in hours) for a certain
type of component involved putting ten components into
operation and observing them for 100 hours. Eight of the
components failed during that period, and those lifetimes
were recorded. Denote the lifetimes of the two components
still functioning after 100 hours by 100�. The resulting
sample observations were

48 79 100� 35 92 86 57 100� 17 29

Which of the measures of center discussed in this section
can be calculated, and what are the values of those meas-
ures? [Note: The data from this experiment is said to be
“censored on the right.”]

1.4 Measures of Variability

Reporting a measure of center gives only partial information about a data set or dis-
tribution. Different samples or populations may have identical measures of center
yet differ from one another in other important ways. Figure 1.17 shows dotplots of
three samples with the same mean and median, yet the extent of spread about the
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Figure 1.17 Samples with identical measures of center but different amounts of variability



center is different for all three samples. The first sample has the largest amount of
variability, the third has the smallest amount, and the second is intermediate to the
other two in this respect.

Measures of Variability for Sample Data
The simplest measure of variability in a sample is the range, which is the difference 
between the largest and smallest sample values. The value of the range for sample 1
in Figure 1.17 is much larger than it is for sample 3, reflecting more variability in
the first sample than in the third. A defect of the range, though, is that it depends on
only the two most extreme observations and disregards the positions of the remain-
ing n � 2 values. Samples 1 and 2 in Figure 1.17 have identical ranges, yet when we
take into account the observations between the two extremes, there is much less vari-
ability or dispersion in the second sample than in the first.

Our primary measures of variability involve the deviations from the mean,
x1 � x�, x2 � x�, . . . , xn � x�. That is, the deviations from the mean are obtained by
subtracting x� from each of the n sample observations. A deviation will be positive if
the observation is larger than the mean (to the right of the mean on the measurement
axis) and negative if the observation is smaller than the mean. If all the deviations are
small in magnitude, then all xis are close to the mean and there is little variability.
Alternatively, if some of the deviations are large in magnitude, then some xis lie far
from x�, suggesting a greater amount of variability. A simple way to combine the
deviations into a single quantity is to average them. Unfortunately, this is a bad idea:

sum of deviations � �
n

i�1
(xi � x�) � 0

so that the average deviation is always zero. The verification uses several standard
rules of summation and the fact that �x� � x� � x� � 
 
 
 � x� � nx�:

�(xi � x�) � �xi � �x� � �xi � nx� � �xi � n��
1
n

��xi� � 0

How can we prevent negative and positive deviations from counteracting one another
when they are combined? One possibility is to work with the absolute values of the
deviations and calculate the average absolute deviation �⏐xi � x�⏐/n. Because the
absolute value operation leads to a number of theoretical difficulties, consider
instead the squared deviations (x1 � x� )2, (x2 � x� )2, . . . , (xn � x� )2. Rather than use
the average squared deviation �(xi � x� )2/n, for several reasons we divide the sum
of squared deviations by n � 1 rather than n.
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DEFINITION The sample variance, denoted by s2, is given by

s2 � �
�(

n

xi

�

�

1

x�)2

� � �
n

S
�

xx

1
�

The sample standard deviation, denoted by s, is the (positive) square root of
the variance:

s � �s2�

Note that s2 and s are both nonnegative. The unit for s is the same as the unit for each
of the xis. If, for example, the observations are fuel efficiencies in miles per gallon,
then we might have s � 2.0 mpg. A rough interpretation of the sample standard
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deviation is that it is the size of a typical or representative deviation from the sample
mean within the given sample. Thus if s � 2.0 mpg, then some xis in the sample are
closer than 2.0 to x�, whereas others are farther away; 2.0 is a representative (or “stan-
dard”) deviation from the mean fuel efficiency. If s � 3.0 for a second sample of cars
of another type, a typical deviation in this sample is roughly 1.5 times what it is in the
first sample, an indication of more variability in the second sample.

Strength is an important characteristic of materials used in prefabricated housing.
Each of n � 11 prefabricated plate elements was subjected to a severe stress test and
the maximum width (mm) of the resulting cracks was recorded. The given data
(Table 1.3) appeared in the article “Prefabricated Ferrocement Ribbed Elements for
Low-Cost Housing” (J. Ferrocement, 1984: 347–364).

Effects of rounding account for the sum of deviations not being exactly zero. The
numerator of s2 is 11.9359; therefore s2 � 11.9359/(11 � 1) � 11.9359/10 �
1.19359 and s � �1�.1�9�3�5�9� � 1.0925 mm. ■

Motivation for s2

To explain the rationale for the divisor n � 1 in s2, note first that whereas s2 mea-
sures sample variability, there is a measure of variability in the population called the
population variance. We will use � 2 (the square of the lowercase Greek letter sigma)
to denote the population variance and � to denote the population standard deviation
(the square root of � 2). When the population is finite and consists of N values,

� 2 � �
N

i�1
(xi � �)2/N

which is the average of all squared deviations from the population mean (for the pop-
ulation, the divisor is N and not N � 1). More general definitions of � 2 appear in
Chapters 3 and 4.

Just as x� will be used to make inferences about the population mean �, we
should define the sample variance so that it can be used to make inferences about
� 2. Now note that � 2 involves squared deviations about the population mean �. If
we actually knew the value of �, then we could define the sample variance as the

Table 1.3 Data for Example 1.15

xi xi � x� (xi � x� )2

.684 �.9841 .9685
2.540 .8719 .7602

.924 �.7441 .5537
3.130 1.4619 2.1372
1.038 �.6301 .3970

.598 �1.0701 1.1451

.483 �1.1851 1.4045
3.520 1.8519 3.4295
1.285 �.3831 .1468
2.650 .9819 .9641
1.497 �.1711 .0293

�xi � 18.349 �(xi � x�) � �.0001 Sxx � �(xi � x�)2 � 11.9359

x� � 18.349/11 � 1.6681

Example 1.15
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average squared deviation of the sample xi s about �. However, the value of � is
almost never known, so the sum of squared deviations about x� must be used. But
the xi s tend to be closer to their average x� than to the population average �, so to
compensate for this the divisor n � 1 is used rather than n. In other words, if we
used a divisor n in the sample variance, then the resulting quantity would tend to
underestimate � 2 (produce estimated values that are too small on the average),
whereas dividing by the slightly smaller n � 1 corrects this underestimating.

It is customary to refer to s2 as being based on n � 1 degrees of freedom (df).
This terminology results from the fact that although s2 is based on the n quantities
x1 � x�, x2 � x�, . . . , xn � x�, these sum to 0, so specifying the values of any n � 1 of 
the quantities determines the remaining value. For example, if n � 4 and x1 � x� � 8,
x2 � x� � �6, and x4 � x� � �4, then automatically x3 � x� � 2, so only three of the
four values of xi � x� are freely determined (3 df).

A Computing Formula for s2

It is best to obtain s2 from statistical software or else use a calculator that allows
you to enter data into memory and then view s2 with a single keystroke. If your
calculator does not have this capability, there is an alternative formula for Sxx that
avoids calculating the deviations. The formula involves both (�xi)

2, summing and
then squaring, and �x2

i , squaring and then summing.

Proof Because x� � �xi/n, nx�2 � (�xi)
2/n. Then,

�(xi � x�)2 � �(x2
i � 2x� 
 xi � x�2) � �x2

i � 2x� �xi � �(x�)2

� �x2
i � 2x� 
 nx� � n(x�)2 � �x2

i � n(x�)2

The amount of light reflectance by leaves has been used for various purposes,
including evaluation of turf color, estimation of nitrogen status, and measurement of
biomass. The article “Leaf Reflectance–Nitrogen–Chlorophyll Relations in Buffel-
Grass” (Photogrammetric Engr. and Remote Sensing, 1985: 463–466) gave the fol-
lowing observations, obtained using spectrophotogrammetry, on leaf reflectance
under specified experimental conditions.

An alternative expression for the numerator of s2 is

Sxx � �(xi � x�)2 � �x2
i � �

(�
n
xi)

2

�

Example 1.16

Observation xi x2
i Observation xi x2

i

1 15.2 231.04 9 12.7 161.29
2 16.8 282.24 10 15.8 249.64
3 12.6 158.76 11 19.2 368.64
4 13.2 174.24 12 12.7 161.29
5 12.8 163.84 13 15.6 243.36
6 13.8 190.44 14 13.5 182.25
7 16.3 265.69 15 12.9 166.41
8 13.0 169.00

�xi � 216.1 �x2
i � 3168.13
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The computational formula now gives

Sxx � �x2
i � �

(�
n
xi)

2

� � 3168.13 � �
(21

1
6
5
.1)2

�

� 3168.13 � 3113.28 � 54.85

from which s2 � Sxx /(n � 1) � 54.85/14 � 3.92 and s � 1.98. ■

Both the defining formula and the computational formula for s2 can be sensitive to round-
ing, so as much decimal accuracy as possible should be used in intermediate calculations.

Several other properties of s2 can enhance understanding and facilitate com-
putation.

In words, Result 1 says that if a constant c is added to (or subtracted from) each data
value, the variance is unchanged. This is intuitive, since adding or subtracting c
shifts the location of the data set but leaves distances between data values un-
changed. According to Result 2, multiplication of each xi by c results in s2 being mul-
tiplied by a factor of c2. These properties can be proved by noting in Result 1 that
y� � x� � c and in Result 2 that y� � cx�.

Boxplots
Stem-and-leaf displays and histograms convey rather general impressions about a
data set, whereas a single summary such as the mean or standard deviation focuses
on just one aspect of the data. In recent years, a pictorial summary called a box-
plot has been used successfully to describe several of a data set’s most prominent
features. These features include (1) center, (2) spread, (3) the extent and nature of
any departure from symmetry, and (4) identification of “outliers,” observations
that lie unusually far from the main body of the data. Because even a single out-
lier can drastically affect the values of x� and s, a boxplot is based on measures
that are “resistant” to the presence of a few outliers—the median and a measure
of variability called the fourth spread.

Let x1, x2, . . . , xn be a sample and c be any nonzero constant.

1. If y1 � x1 � c, y2 � x2 � c, . . . , yn � xn � c, then s2
y � s2

x, and

2. If y1 � cx1, . . . , yn � cxn, then s2
y � c2s2

x, sy � ⏐c⏐sx,

where s2
x is the sample variance of the x’s and s2

y is the sample variance of 
the y’s.

PROPOSITION

DEFINITION Order the n observations from smallest to largest and separate the smallest half
from the largest half; the median ~x is included in both halves if n is odd. Then
the lower fourth is the median of the smallest half and the upper fourth is
the median of the largest half. A measure of spread that is resistant to outliers
is the fourth spread fs, given by

fs � upper fourth � lower fourth

Roughly speaking, the fourth spread is unaffected by the positions of those observations
in the smallest 25% or the largest 25% of the data. Hence it is resistant to outliers.

The simplest boxplot is based on the following five-number summary:

smallest xi lower fourth median upper fourth largest xi
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First, draw a horizontal measurement scale. Then place a rectangle above this axis;
the left edge of the rectangle is at the lower fourth, and the right edge is at the upper
fourth (so box width � fs). Place a vertical line segment or some other symbol inside
the rectangle at the location of the median; the position of the median symbol rela-
tive to the two edges conveys information about skewness in the middle 50% of the
data. Finally, draw “whiskers” out from either end of the rectangle to the smallest
and largest observations. A boxplot with a vertical orientation can also be drawn by
making obvious modifications in the construction process.

Ultrasound was used to gather the accompanying corrosion data on the thickness of
the floor plate of an aboveground tank used to store crude oil (“Statistical Analysis
of UT Corrosion Data from Floor Plates of a Crude Oil Aboveground Storage Tank,”
Materials Eval., 1994: 846–849); each observation is the largest pit depth in the
plate, expressed in milli-in.

40 52 55 60 70 75 85 85 90 90 92 94 94 95 98 100 115 125 125

The five-number summary is as follows:

smallest xi � 40 lower fourth � 72.5 � 90 upper fourth � 96.5
largest xi � 125

Figure 1.18 shows the resulting boxplot. The right edge of the box is much closer to
the median than is the left edge, indicating a very substantial skew in the middle half
of the data. The box width ( fs) is also reasonably large relative to the range of the
data (distance between the tips of the whiskers).

x|

Figure 1.19 shows MINITAB output from a request to describe the corrosion
data. The trimmed mean is the average of the 17 observations that remain after the
largest and smallest values are deleted (trimming percentage � 5%). Q1 and Q3 are
the lower and upper quartiles; these are similar to the fourths but are calculated in a
slightly different manner. SE Mean is s/�n�;� this will be an important quantity in our
subsequent work concerning inferences about �.

Example 1.17

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Figure 1.18 A boxplot of the corrosion data

40 50 60 70 80 90 100 110 120 130
Depth

Figure 1.19 MINITAB description of the pit-depth data ■

Variable N Mean Median TrMean StDev SE Mean
depth 19 86.32 90.00 86.76 23.32 5.35

Variable Minimum Maximum Q1 Q3
depth 40.00 125.00 70.00 98.00

Boxplots That Show Outliers
A boxplot can be embellished to indicate explicitly the presence of outliers. Many
inferential procedures are based on the assumption that the population distribution is
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normal (a certain type of bell curve). Even a single extreme outlier in the sample
warns the investigator that such procedures may be unreliable, and the presence of
several mild outliers conveys the same message.

Let’s now modify our previous construction of a boxplot by drawing a whisker
out from each end of the box to the smallest and largest observations that are not out-
liers. Each mild outlier is represented by a closed circle and each extreme outlier by
an open circle. Some statistical computer packages do not distinguish between mild
and extreme outliers.

The effects of partial discharges on the degradation of insulation cavity material have
important implications for the lifetimes of high-voltage components. Consider the fol-
lowing sample of n � 25 pulse widths from slow discharges in a cylindrical cavity made
of polyethylene. (This data is consistent with a histogram of 250 observations in the arti-
cle “Assessment of Dielectric Degradation by Ultrawide-band PD Detection,” IEEE
Trans. on Dielectrics and Elec. Insul., 1995: 744–760.) The article’s author notes the
impact of a wide variety of statistical tools on the interpretation of discharge data.

5.3 8.2 13.8 74.1 85.3 88.0 90.2 91.5 92.4 92.9 93.6 94.3 94.8
94.9 95.5 95.8 95.9 96.6 96.7 98.1 99.0 101.4 103.7 106.0 113.5

Relevant quantities are

x̃ � 94.8 lower fourth � 90.2 upper fourth � 96.7
fs � 6.5 1.5fs � 9.75 3fs � 19.50

Thus any observation smaller than 90.2 � 9.75 � 80.45 or larger than 96.7 �
9.75 � 106.45 is an outlier. There is one outlier at the upper end of the sample, and
four outliers are at the lower end. Because 90.2 � 19.5 � 70.7, the three observa-
tions 5.3, 8.2, and 13.8 are extreme outliers; the other two outliers are mild. The
whiskers extend out to 85.3 and 106.0, the most extreme observations that are not
outliers. The resulting boxplot is in Figure 1.20. There is a great deal of negative
skewness in the middle half of the sample as well as in the entire sample.

Comparative Boxplots
A comparative or side-by-side boxplot is a very effective way of revealing similari-
ties and differences between two or more data sets consisting of observations on the
same variable—fuel efficiency observations for four different types of automobiles,
crop yields for three different varieties, and so on.

DEFINITION Any observation farther than 1.5fs from the closest fourth is an outlier. An
outlier is extreme if it is more than 3fs from the nearest fourth, and it is mild
otherwise.

Example 1.18

Figure 1.20 A boxplot of the pulse width data showing mild and extreme outliers ■

0 50 100
Pulse width
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Figure 1.21 Stem-and-leaf display for Example 1.19

1. Cancer 2. No cancer

9683795 0 95768397678993
86071815066815233150 1 12271713114

12302731 2 99494191
8349 3 839

5 4
7 5 55

6
7 Stem: Tens digit

HI: 210 8 5 Leaf: Ones digit

In recent years, some evidence suggests that high indoor radon concentration may be
linked to the development of childhood cancers, but many health professionals remain
unconvinced. A recent article (“Indoor Radon and Childhood Cancer,” The Lancet,
1991: 1537–1538) presented the accompanying data on radon concentration (Bq/m3) in
two different samples of houses. The first sample consisted of houses in which a child
diagnosed with cancer had been residing. Houses in the second sample had no recorded
cases of childhood cancer. Figure 1.21 presents a stem-and-leaf display of the data.

The values of both the mean and median suggest that the cancer sample is centered
somewhat to the right of the no-cancer sample on the measurement scale. The mean,
however, exaggerates the magnitude of this shift, largely because of the observation
210 in the cancer sample. The values of s suggest more variability in the cancer
sample than in the no-cancer sample, but this impression is contradicted by the fourth
spreads. Again, the observation 210, an extreme outlier, is the culprit. Figure 1.22

Example 1.19

s fs

Cancer 22.8 16.0 31.7 11.0
No cancer 19.2 12.0 17.0 18.0

x|x

Numerical summary quantities are as follows:

0

50

100

150

200

Radon
concentration

No cancer Cancer

Figure 1.22 A boxplot of the data in Example 1.19, from S-Plus
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shows a comparative boxplot from the S-Plus computer package. The no-cancer
box is stretched out compared with the cancer box ( fs � 18 vs. fs � 11), and the
positions of the median lines in the two boxes show much more skewness in the
middle half of the no-cancer sample than the cancer sample. Outliers are repre-
sented by horizontal line segments, and there is no distinction between mild and
extreme outliers. ■

EXERCISES Section 1.4 (44–61)

44. The article “Oxygen Consumption During Fire Suppression:
Error of Heart Rate Estimation” (Ergonomics, 1991:
1469–1474) reported the following data on oxygen consump-
tion (mL/kg/min) for a sample of ten firefighters performing
a fire-suppression simulation:

29.5 49.3 30.6 28.2 28.0 26.3 33.9 29.4 23.5 31.6 
Compute the following:
a. The sample range
b. The sample variance s2 from the definition (i.e., by first

computing deviations, then squaring them, etc.)
c. The sample standard deviation
d. s2 using the shortcut method

45. The value of Young’s modulus (GPa) was determined for
cast plates consisting of certain intermetallic substrates,
resulting in the following sample observations (“Strength
and Modulus of a Molybdenum-Coated Ti-25Al-10Nb-3U-
1Mo Intermetallic,” J. of Materials Engr. and Performance,
1997: 46–50):

116.4 115.9 114.6 115.2 115.8

a. Calculate x� and the deviations from the mean.
b. Use the deviations calculated in part (a) to obtain the

sample variance and the sample standard deviation.
c. Calculate s2 by using the computational formula for the

numerator Sxx.
d. Subtract 100 from each observation to obtain a sample

of transformed values. Now calculate the sample vari-
ance of these transformed values, and compare it to s2

for the original data.

46. The accompanying observations on stabilized viscosity (cP)
for specimens of a certain grade of asphalt with 18% rubber
added are from the article “Viscosity Characteristics of
Rubber-Modified Asphalts” (J. of Materials in Civil Engr.,
1996: 153–156):

2781 2900 3013 2856 2888

a. What are the values of the sample mean and sample
median?

b. Calculate the sample variance using the computational
formula. [Hint: First subtract a convenient number from
each observation.]

47. Calculate and interpret the values of the sample median, sam-
ple mean, and sample standard deviation for the following

observations on fracture strength (MPa, read from a graph in
“Heat-Resistant Active Brazing of Silicon Nitride: Mechanical
Evaluation of Braze Joints,” Welding J., August, 1997):

87 93 96 98 105 114 128 131 142 168

48. Exercise 34 presented the following data on endotoxin con-
centration in settled dust both for a sample of urban homes
and for a sample of farm homes:

U: 6.0 5.0 11.0 33.0 4.0 5.0 80.0 18.0 35.0 17.0 23.0
F:  4.0 14.0 11.0 9.0 9.0 8.0 4.0 20.0 5.0 8.9 21.0

9.2 3.0 2.0 0.3

a. Determine the value of the sample standard deviation for
each sample, interpret these values, and then contrast vari-
ability in the two samples. [Hint: �xi � 237.0 for the urban
sample and � 128.4 for the farm sample, and �x2

i � 10,079
for the urban sample and 1617.94 for the farm sample.]

b. Compute the fourth spread for each sample and compare.
Do the fourth spreads convey the same message about
variability that the standard deviations do? Explain.

c. The authors of the cited article also provided endotoxin
concentrations in dust bag dust:

U: 34.0 49.0 13.0 33.0 24.0 24.0 35.0 104.0 34.0 40.0 38.0 1.0
F: 2.0 64.0  6.0 17.0 35.0 11.0 17.0 13.0 5.0 27.0 23.0

28.0 10.0 13.0 0.2

Construct a comparative boxplot (as did the cited paper) and
compare and contrast the four samples.

49. A study of the relationship between age and various visual
functions (such as acuity and depth perception) reported the
following observations on area of scleral lamina (mm2) from
human optic nerve heads (“Morphometry of Nerve Fiber
Bundle Pores in the Optic Nerve Head of the Human,”
Experimental Eye Research, 1988: 559–568):

2.75 2.62 2.74 3.85 2.34 2.74 3.93 4.21 3.88 
4.33 3.46 4.52 2.43 3.65 2.78 3.56 3.01

a. Calculate �xi and �x 2
i .

b. Use the values calculated in part (a) to compute the sam-
ple variance s2 and then the sample standard deviation s.

50. In 1997 a woman sued a computer keyboard manufacturer,
charging that her repetitive stress injuries were caused by
the keyboard (Genessy v. Digital Equipment Corp.). The
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injury awarded about $3.5 million for pain and suffering,
but the court then set aside that award as being unreasonable
compensation. In making this determination, the court iden-
tified a “normative” group of 27 similar cases and specified
a reasonable award as one within two standard deviations of
the mean of the awards in the 27 cases. The 27 awards were
(in $1000s) 37, 60, 75, 115, 135, 140, 149, 150, 238, 290,
340, 410, 600, 750, 750, 750, 1050, 1100, 1139, 1150, 1200,
1200, 1250, 1576, 1700, 1825, and 2000, from which �xi �
20,179, �x 2

i � 24,657,511. What is the maximum possible
amount that could be awarded under the two-standard-
deviation rule?

51. The article “A Thin-Film Oxygen Uptake Test for the
Evaluation of Automotive Crankcase Lubricants” (Lubric.
Engr., 1984: 75–83) reported the following data on oxidation-
induction time (min) for various commercial oils: 

87 103 130 160 180 195 132 145 211 105 145
153 152 138 87 99 93 119 129

a. Calculate the sample variance and standard deviation.
b. If the observations were reexpressed in hours, what

would be the resulting values of the sample variance and
sample standard deviation? Answer without actually per-
forming the reexpression.

52. The first four deviations from the mean in a sample of 
n � 5 reaction times were .3, .9, 1.0, and 1.3. What is the
fifth deviation from the mean? Give a sample for which
these are the five deviations from the mean.

53. Reconsider the data on area of scleral lamina given in
Exercise 49.
a. Determine the lower and upper fourths.
b. Calculate the value of the fourth spread.
c. If the two largest sample values, 4.33 and 4.52, had instead

been 5.33 and 5.52, how would this affect fs? Explain.
d. By how much could the observation 2.34 be increased

without affecting fs? Explain.
e. If an 18th observation, x18 � 4.60, is added to the sam-

ple, what is fs?

54. Consider the following observations on shear strength (MPa)
of a joint bonded in a particular manner (from a graph in the
article “Diffusion of Silicon Nitride to Austenitic Stainless
Steel without Interlayers,” Metallurgical Trans., 1993:
1835–1843).

22.2 40.4 16.4 73.7 36.6 109.9 
30.0 4.4 33.1 66.7 81.5

a. What are the values of the fourths, and what is the value
of fs?

b. Construct a boxplot based on the five-number summary,
and comment on its features.

c. How large or small does an observation have to be to
qualify as an outlier? As an extreme outlier?

d. By how much could the largest observation be decreased
without affecting fs?

55. Here is a stem-and-leaf display of the escape time data
introduced in Exercise 36 of this chapter.

32 55
33 49
34
35 6699
36 34469
37 03345
38 9
39 2347
40 23
41
42 4

a. Determine the value of the fourth spread.
b. Are there any outliers in the sample? Any extreme outliers?
c. Construct a boxplot and comment on its features.
d. By how much could the largest observation, currently

424, be decreased without affecting the value of the
fourth spread?

56. The amount of aluminum contamination (ppm) in plastic of
a certain type was determined for a sample of 26 plastic
specimens, resulting in the following data (“The Lognormal
Distribution for Modeling Quality Data when the Mean Is
Near Zero,” J. of Quality Technology, 1990: 105–110):

30 30 60 63 70 79 87 90 101
102 115 118 119 119 120 125 140 145
172 182 183 191 222 244 291 511

Construct a boxplot that shows outliers, and comment on its
features.

57. A sample of 20 glass bottles of a particular type was selected,
and the internal pressure strength of each bottle was deter-
mined. Consider the following partial sample information: 

median � 202.2 lower fourth � 196.0
upper fourth � 216.8

Three smallest observations 125.8 188.1 193.7
Three largest observations 221.3 230.5 250.2

a. Are there any outliers in the sample? Any extreme out-
liers?

b. Construct a boxplot that shows outliers, and comment on
any interesting features.

58. A company utilizes two different machines to manufacture
parts of a certain type. During a single shift, a sample of n �
20 parts produced by each machine is obtained, and the value
of a particular critical dimension for each part is determined.
The comparative boxplot at the top of page 41 is constructed
from the resulting data. Compare and contrast the two
samples.

59. Blood cocaine concentration (mg/L) was determined both
for a sample of individuals who had died from cocaine-
induced excited delirium (ED) and for a sample of those who
had died from a cocaine overdose without excited delirium;
survival time for people in both groups was at most 6 hours.
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Comparative boxplot for Exercise 58

The accompanying data was read from a comparative box-
plot in the article “Fatal Excited Delirium Following Co-
caine Use” (J. of Forensic Sciences, 1997: 25–31).

ED 0 0 0 0 .1 .1 .1 .1 .2 .2 .3 .3
.3 .4 .5 .7 .8 1.0 1.5 2.7 2.8
3.5 4.0 8.9 9.2 11.7 21.0

Non-ED 0 0 0 0 0 .1 .1 .1 .1 .2 .2 .2
.3 .3 .3 .4 .5 .5 .6 .8 .9 1.0
1.2 1.4 1.5 1.7 2.0 3.2 3.5 4.1
4.3 4.8 5.0 5.6 5.9 6.0 6.4 7.9
8.3 8.7 9.1 9.6 9.9 11.0 11.5
12.2 12.7 14.0 16.6 17.8

a. Determine the medians, fourths, and fourth spreads for
the two samples.

b. Are there any outliers in either sample? Any extreme 
outliers?

c. Construct a comparative boxplot, and use it as a basis for
comparing and contrasting the ED and non-ED samples.

60. Observations on burst strength (lb/in2) were obtained both
for test nozzle closure welds and for production cannister
nozzle welds (“Proper Procedures Are the Key to Welding
Radioactive Waste Cannisters,” Welding J., Aug. 1997:
61–67).

Test 7200 6100 7300 7300 8000 7400 
7300 7300 8000 6700 8300

Cannister 5250 5625 5900 5900 5700 6050
5800 6000 5875 6100 5850 6600

Construct a comparative boxplot and comment on interest-
ing features (the cited article did not include such a picture,
but the authors commented that they had looked at one).

61. The accompanying comparative boxplot of gasoline vapor
coefficients for vehicles in Detroit appeared in the article
“Receptor Modeling Approach to VOC Emission Inventory
Validation,” (J. of Envir. Engr., 1995: 483–490). Discuss any
interesting features.

6 a.m. 8 a.m. 12 noon 2 p.m. 10 p.m.
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Time
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Comparative boxplot for Exercise 61
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SUPPLEMENTARY EXERCISES (62–83)

62. Consider the following information on ultimate tensile
strength (lb/in) for a sample of n � 4 hard zirconium cop-
per wire specimens (from “Characterization Methods for
Fine Copper Wire,” Wire J. Intl., Aug., 1997: 74–80):

� 76,831 s � 180 smallest xi � 76,683
largest xi � 77,048

Determine the values of the two middle sample observations
(and don’t do it by successive guessing!).

63. The amount of radiation received at a greenhouse plays an
important role in determining the rate of photosynthesis.
The accompanying observations on incoming solar radia-
tion were read from a graph in the article “Radiation
Components over Bare and Planted Soils in a Greenhouse”
(Solar Energy, 1990: 1011–1016).

6.3 6.4 7.7 8.4 8.5 8.8 8.9
9.0 9.1 10.0 10.1 10.2 10.6 10.6

10.7 10.7 10.8 10.9 11.1 11.2 11.2
11.4 11.9 11.9 12.2 13.1

Use some of the methods discussed in this chapter to de-
scribe and summarize this data.

64. The following data on HC and CO emissions for one partic-
ular vehicle was given in the chapter introduction.

HC (gm/mi) 13.8 18.3 32.2 32.5
CO (gm/mi) 118   149    232   236

a. Compute the sample standard deviations for the HC and
CO observations. Does the widespread belief appear to
be justified?

b. The sample coefficient of variation s/ x� (or 100 s/ x�)
assesses the extent of variability relative to the mean.
Values of this coefficient for several different data sets
can be compared to determine which data sets exhibit
more or less variation. Carry out such a comparison for
the given data.

65. The accompanying frequency distribution of fracture strength
(MPa) observations for ceramic bars fired in a particular kiln
appeared in the article “Evaluating Tunnel Kiln Performance”
(Amer. Ceramic Soc. Bull., Aug. 1997: 59–63).

Class 81–�83 83–�85 85–�87 87–�89 89–�91
Frequency 6 7 17 30 43

Class 91–�93 93–�95 95–�97 97–�99
Frequency 28 22 13 3

a. Construct a histogram based on relative frequencies, and
comment on any interesting features.

b. What proportion of the strength observations are at least
85? Less than 95?

c. Roughly what proportion of the observations are less
than 90?

66. A deficiency of the trace element selenium in the diet can
negatively impact growth, immunity, muscle and neuromus-
cular function, and fertility. The introduction of selenium
supplements to dairy cows is justified when pastures have low
selenium levels. Authors of the paper “Effects of Short-Term
Supplementation with Selenised Yeast on Milk Production
and Composition of Lactating Cows” (Australian J. of Dairy
Tech., 2004: 199–203) supplied the following data on milk
selenium concentration (mg/L) for a sample of cows given a
selenium supplement and a control sample given no supple-
ment, both initially and after a 9-day period.

a. Do the initial Se concentrations for the supplement and
control samples appear to be similar? Use various tech-
niques from this chapter to summarize the data and an-
swer the question posed.

b. Again use methods from this chapter to summarize the data
and then describe how the final Se concentration values in
the treatment group differ from those in the control group.

67. Aortic stenosis refers to a narrowing of the aortic valve in the
heart. The paper “Correlation Analysis of Stenotic Aortic
Valve Flow Patterns Using Phase Contrast MRI” (Annals of
Biomed. Engr., 2005: 878–887) gave the following data on
aortic root diameter (cm) and gender for a sample of patients
having various degrees of aortic stenosis:

M:  3.7  3.4  3.7  4.0 3.9  3.8  3.4  3.6  3.1  4.0  3.4  3.8  3.5
F: 3.8  2.6 3.2 3.0  4.3 3.5  3.1 3.1 3.2 3.0

a. Compare and contrast the diameter observations for the
two genders.

b. Calculate a 10% trimmed mean for each of the two sam-
ples, and compare to other measures of center (for the
male sample, the interpolation method mentioned in
Section 1.3 must be used).

x

Init Final
Obs Init Se Cont Final Se Cont

1 11.4 9.1 138.3 9.3
2 9.6 8.7 104.0 8.8
3 10.1 9.7 96.4 8.8
4 8.5 10.8 89.0 10.1
5 10.3 10.9 88.0 9.6
6 10.6 10.6 103.8 8.6
7 11.8 10.1 147.3 10.4
8 9.8 12.3 97.1 12.4
9 10.9 8.8 172.6 9.3

10 10.3 10.4 146.3 9.5
11 10.2 10.9 99.0 8.4
12 11.4 10.4 122.3 8.7
13 9.2 11.6 103.0 12.5
14 10.6 10.9 117.8 9.1
15 10.8 121.5
16 8.2 93.0
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68. a. For what value of c is the quantity �(xi � c)2 mini-
mized? [Hint: Take the derivative with respect to c, set
equal to 0, and solve.]

b. Using the result of part (a), which of the two quantities
�(xi � x�)2 and �(xi � �)2 will be smaller than the other
(assuming that x� � �)?

69. a. Let a and b be constants and let yi � axi � b for i � 1,
2, . . . , n. What are the relationships between x� and y� and
between and ?

b. A sample of temperatures for initiating a certain chemi-
cal reaction yielded a sample average (°C) of 87.3 and a
sample standard deviation of 1.04. What are the sample
average and standard deviation measured in °F? [Hint: F �
�
9
5

� C � 32.]

70. Elevated energy consumption during exercise continues
after the workout ends. Because calories burned after exer-
cise contribute to weight loss and have other consequences,
it is important to understand this process. The paper “Effect
of Weight Training Exercise and Treadmill Exercise on
Post-Exercise Oxygen Consumption” (Medicine and Sci-
ence in Sports and Exercise, 1998: 518–522) reported the
accompanying data from a study in which oxygen con-
sumption (liters) was measured continuously for 30 minutes
for each of 15 subjects both after a weight training exercise
and after a treadmill exercise.

Subject 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15

Weight (x) 14.6 14.4 19.5 24.3 16.3 22.1
23.0 18.7 19.0 17.0 19.1 19.6
23.2 18.5 15.9

Treadmill (y) 11.3 5.3 9.1 15.2 10.1 19.6
20.8 10.3  10.3 2.6 16.6 22.4
23.6 12.6 4.4

a. Construct a comparative boxplot of the weight and tread-
mill observations, and comment on what you see.

b. Because the data is in the form of (x, y) pairs, with x and
y measurements on the same variable under two differ-
ent conditions, it is natural to focus on the differences
within pairs: d1 � x1 � y1, . . . , dn � xn � yn. Construct
a boxplot of the sample differences. What does it suggest?

71. Here is a description from MINITAB of the strength data
given in Exercise 13.

Variable N Mean Median TrMean StDev SE Mean
strength 153 135.39 135.40 135.41 4.59 0.37

Variable Minimum Maximum Q1 Q3
strength 122.20 147.70 132.95 138.25

a. Comment on any interesting features (the quartiles and
fourths are virtually identical here).

b. Construct a boxplot of the data based on the quartiles,
and comment on what you see.

72. Anxiety disorders and symptoms can often be effectively
treated with benzodiazepine medications. It is known that

animals exposed to stress exhibit a decrease in benzodiazepine
receptor binding in the frontal cortex. The paper “Decreased
Benzodiazepine Receptor Binding in Prefrontal Cortex in
Combat-Related Posttraumatic Stress Disorder” (Amer. J. of
Psychiatry, 2000: 1120–1126) described the first study of
benzodiazepine receptor binding in individuals suffering from
PTSD. The accompanying data on a receptor binding measure
(adjusted distribution volume) was read from a graph in 
the paper.

PTSD: 10, 20, 25, 28, 31, 35, 37, 38, 38, 39, 39,
42, 46

Healthy: 23, 39, 40, 41, 43, 47, 51, 58, 63, 66, 67,
69, 72 

Use various methods from this chapter to describe and sum-
marize the data.

73. The article “Can We Really Walk Straight?” (Amer. J. of
Physical Anthropology, 1992: 19–27) reported on an exper-
iment in which each of 20 healthy men was asked to walk as
straight as possible to a target 60 m away at normal speed.
Consider the following observations on cadence (number of
strides per second):

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96 

Use the methods developed in this chapter to summarize the
data; include an interpretation or discussion wherever
appropriate. [Note: The author of the article used a rather
sophisticated statistical analysis to conclude that people
cannot walk in a straight line and suggested several expla-
nations for this.]

74. The mode of a numerical data set is the value that occurs
most frequently in the set.
a. Determine the mode for the cadence data given in

Exercise 73.
b. For a categorical sample, how would you define the

modal category?

75. Specimens of three different types of rope wire were selected,
and the fatigue limit (MPa) was determined for each speci-
men, resulting in the accompanying data.

Type 1 350 350 350 358 370 370 370 371
371 372 372 384 391 391 392

Type 2 350 354 359 363 365 368 369 371
373 374 376 380 383 388 392

Type 3 350 361 362 364 364 365 366 371
377 377 377 379 380 380 392

a. Construct a comparative boxplot, and comment on simi-
larities and differences.

b. Construct a comparative dotplot (a dotplot for each sam-
ple with a common scale). Comment on similarities and
differences.

c. Does the comparative boxplot of part (a) give an inform-
ative assessment of similarities and differences? Explain
your reasoning.

sy
2sx

2
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76. The three measures of center introduced in this chapter are
the mean, median, and trimmed mean. Two additional meas-
ures of center that are occasionally used are the midrange,
which is the average of the smallest and largest observa-
tions, and the midfourth, which is the average of the two
fourths.Which of these five measures of center are resistant
to the effects of outliers and which are not? Explain your
reasoning.

77. Consider the following data on active repair time (hours) for
a sample of n � 46 airborne communications receivers:

.2 .3 .5 .5 .5 .6 .6 .7 .7 .7 .8 .8

.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0
2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7
5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

Construct the following:
a. A stem-and-leaf display in which the two largest values

are displayed separately in a row labeled HI.
b. A histogram based on six class intervals with 0 as the

lower limit of the first interval and interval widths of 2,
2, 2, 4, 10, and 10, respectively.

78. Consider a sample x1, x2, . . . , xn and suppose that the val-
ues of , s2, and s have been calculated.
a. Let yi � xi � for i � 1, . . . , n. How do the values of

s2 and s for the yis compare to the corresponding values
for the xis? Explain.

b. Let zi � (xi � )/s for i � 1, . . . , n. What are the values
of the sample variance and sample standard deviation for
the zis?

79. Let and denote the sample mean and variance for the
sample x1, . . . , xn and let and denote these quantities
when an additional observation is added to the sample.
a. Show how can be computed from and .
b. Show that

so that can be computed from , , and .
c. Suppose that a sample of 15 strands of drapery yarn has

resulted in a sample mean thread elongation of 12.58 mm
and a sample standard deviation of .512 mm. A 16th
strand results in an elongation value of 11.8. What are the
values of the sample mean and sample standard deviation
for all 16 elongation observations?

80. Lengths of bus routes for any particular transit system will
typically vary from one route to another. The article
“Planning of City Bus Routes” (J. of the Institution of
Engineers, 1995: 211–215) gives the following information
on lengths (km) for one particular system:

Length 6–�8 8–�10 10–�12 12–�14 14–�16
Frequency 6 23 30 35 32

Length 16–�18 18–�20 20–�22 22–�24 24–�26
Frequency 48 42 40 28 27

Length 26–�28 28–�30 30–�35 35–�40 40–�45
Frequency 26 14 27 11 2

a. Draw a histogram corresponding to these frequencies.
b. What proportion of these route lengths are less than 20?

What proportion of these routes have lengths of at least 30?
c. Roughly what is the value of the 90th percentile of the

route length distribution?
d. Roughly what is the median route length?

81. A study carried out to investigate the distribution of total
braking time (reaction time plus accelerator-to-brake move-
ment time, in ms) during real driving conditions at 60 km/hr
gave the following summary information on the distribution
of times (“A Field Study on Braking Responses during
Driving,” Ergonomics, 1995: 1903–1910):

mean � 535 median � 500 mode � 500
sd � 96 minimum � 220 maximum � 925

5th percentile � 400 10th percentile � 430
90th percentile � 640 95th percentile � 720

What can you conclude about the shape of a histogram of
this data? Explain your reasoning.

82. The sample data x1, x2, . . . , xn sometimes represents a time
series, where xt � the observed value of a response variable
x at time t. Often the observed series shows a great deal of
random variation, which makes it difficult to study longer-
term behavior. In such situations, it is desirable to produce a
smoothed version of the series. One technique for doing so
involves exponential smoothing. The value of a smoothing
constant a is chosen (0 � a � 1). Then with �

smoothed value at time t, we set , and for t � 2,
3, . . . , n, .
a. Consider the following time series in which xt � tem-

perature (°F) of effluent at a sewage treatment plant on
day t: 47, 54, 53, 50, 46, 46, 47, 50, 51, 50, 46, 52, 
50, 50. Plot each xt against t on a two-dimensional
coordinate system (a time-series plot). Does there appear
to be any pattern?

b. Calculate the s using a � .1. Repeat using a � .5.
Which value of a gives a smoother series?

c. Substitute on the right-hand
side of the expression for , then substitute in terms
of and , and so on. On how many of the values 
xt, xt-1, . . . , x1 does depend? What happens to the coef-
ficient on xt-k as k increases?

d. Refer to part (c). If t is large, how sensitive is to the ini-
tialization ? Explain.

[Note: A relevant reference is the article “Simple Statistics
for Interpreting Environmental Data,” Water Pollution Con-
trol Fed. J., 1981: 167–175.]

83. Consider numerical observations x1, . . . , xn. It is frequently of
interest to know whether the xi s are (at least approximately)
symmetrically distributed about some value. If n is at least
moderately large, the extent of symmetry can be assessed
from a stem-and-leaf display or histogram. However, if n is
not very large, such pictures are not particularly informative.
Consider the following alternative. Let y1 denote the smallest
xi, y2 the second smallest xi, and so on. Then plot the
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following pairs as points on a two-dimensional coordinate
system:

.There are n/2 points when n is even and
(n � 1)/2 when n is odd.
a. What does this plot look like when there is perfect sym-

metry in the data? What does it look like when observa-
tions stretch out more above the median than below it
(a long upper tail)?

b. The accompanying data on rainfall (acre-feet) from 26
seeded clouds is taken from the article “A Bayesian

Analysis of a Multiplicative Treatment Effect in Weather
Modification” (Technometrics, 1975: 161–166). Construct
the plot and comment on the extent of symmetry or nature
of departure from symmetry.

4.1 7.7 17.5 31.4 32.7 40.6 92.4
115.3 118.3 119.0 129.6 198.6 200.7 242.5
255.0 274.7 274.7 302.8 334.1 430.0 489.1
703.4 978.0 1656.0 1697.8 2745.6

x| 2 y3d,c
syn 2 x|, x| 2 y1d,syn21 2 x|, x| 2 y2d,syn22 2 x|,
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Probability2

INTRODUCTION

The term probability refers to the study of randomness and uncertainty. In any

situation in which one of a number of possible outcomes may occur, the disci-

pline of probability provides methods for quantifying the chances, or likeli-

hoods, associated with the various outcomes. The language of probability is

constantly used in an informal manner in both written and spoken contexts.

Examples include such statements as “It is likely that the Dow-Jones average

will increase by the end of the year,” “There is a 50–50 chance that the incum-

bent will seek reelection,” “There will probably be at least one section of that

course offered next year,” “The odds favor a quick settlement of the strike,”

and “It is expected that at least 20,000 concert tickets will be sold.” In this

chapter, we introduce some elementary probability concepts, indicate how

probabilities can be interpreted, and show how the rules of probability can be

applied to compute the probabilities of many interesting events. The method-

ology of probability will then permit us to express in precise language such

informal statements as those given above.

The study of probability as a branch of mathematics goes back over 300

years, where it had its genesis in connection with questions involving games of

chance. Many books are devoted exclusively to probability, but our objective

here is to cover only that part of the subject that has the most direct bearing

on problems of statistical inference.
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An experiment is any action or process whose outcome is subject to uncertainty.
Although the word experiment generally suggests a planned or carefully controlled
laboratory testing situation, we use it here in a much wider sense. Thus experiments
that may be of interest include tossing a coin once or several times, selecting a card
or cards from a deck, weighing a loaf of bread, ascertaining the commuting time
from home to work on a particular morning, obtaining blood types from a group of
individuals, or measuring the compressive strengths of different steel beams.

The Sample Space of an Experiment

The simplest experiment to which probability applies is one with two possible out-
comes. One such experiment consists of examining a single fuse to see whether it is
defective. The sample space for this experiment can be abbreviated as S � {N, D},
where N represents not defective, D represents defective, and the braces are used to
enclose the elements of a set. Another such experiment would involve tossing a
thumbtack and noting whether it landed point up or point down, with sample space
S � {U, D}, and yet another would consist of observing the gender of the next child
born at the local hospital, with S � {M, F}. ■

If we examine three fuses in sequence and note the result of each examination, then
an outcome for the entire experiment is any sequence of N’s and D’s of length 3, so

S � {NNN, NND, NDN, NDD, DNN, DND, DDN, DDD}

If we had tossed a thumbtack three times, the sample space would be obtained by
replacing N by U in S above, with a similar notational change yielding the sample space
for the experiment in which the genders of three newborn children are observed. ■

Two gas stations are located at a certain intersection. Each one has six gas pumps.
Consider the experiment in which the number of pumps in use at a particular time of
day is determined for each of the stations. An experimental outcome specifies how
many pumps are in use at the first station and how many are in use at the second one.
One possible outcome is (2, 2), another is (4, 1), and yet another is (1, 4). The 49
outcomesin S are displayed in the accompanying table. The sample space for the
experiment in which a six-sided die is thrown twice results from deleting the 0 row
and 0 column from the table, giving 36 outcomes.

Second Station

0 1 2 3 4 5 6

0 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)
1 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

First Station 3 (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

■

DEFINITION The sample space of an experiment, denoted by S, is the set of all possible
outcomes of that experiment.

Example 2.1

Example 2.2

Example 2.3

2.1 Sample Spaces and Events



If a new type-D flashlight battery has a voltage that is outside certain limits, that bat-
tery is characterized as a failure (F); if the battery has a voltage within the prescribed
limits, it is a success (S). Suppose an experiment consists of testing each battery as it
comes off an assembly line until we first observe a success. Although it may not be
very likely, a possible outcome of this experiment is that the first 10 (or 100 or 1000
or . . .) are F’s and the next one is an S. That is, for any positive integer n, we may
have to examine n batteries before seeing the first S. The sample space is S � {S, FS,
FFS, FFFS, . . .}, which contains an infinite number of possible outcomes. The same
abbreviated form of the sample space is appropriate for an experiment in which,
starting at a specified time, the gender of each newborn infant is recorded until the
birth of a male is observed. ■

Events
In our study of probability, we will be interested not only in the individual outcomes 
of S but also in various collections of outcomes from S.

48 CHAPTER 2 Probability

DEFINITION An event is any collection (subset) of outcomes contained in the sample space S.
An event is simple if it consists of exactly one outcome and compound if
it consists of more than one outcome.

When an experiment is performed, a particular event A is said to occur if the result-
ing experimental outcome is contained in A. In general, exactly one simple event will
occur, but many compound events will occur simultaneously.

Consider an experiment in which each of three vehicles taking a particular freeway exit
turns left (L) or right (R) at the end of the exit ramp. The eight possible outcomes that
comprise the sample space are LLL, RLL, LRL, LLR, LRR, RLR, RRL, and RRR. Thus
there are eight simple events, among which are E1 � {LLL} and E5 � {LRR}. Some
compound events include

A � {RLL, LRL, LLR} � the event that exactly one of the three vehicles 
turns right

B � {LLL, RLL, LRL, LLR} � the event that at most one of the vehicles 
turns right

C � {LLL, RRR} � the event that all three vehicles turn in the same direction

Suppose that when the experiment is performed, the outcome is LLL. Then the sim-
ple event E1 has occurred and so also have the events B and C (but not A). ■

When the number of pumps in use at each of two six-pump gas stations is observed,
there are 49 possible outcomes, so there are 49 simple events: E1 � {(0, 0)},
E2 � {(0, 1)}, . . . , E49 � {(6, 6)}. Examples of compound events are

A � {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} � the event that the 
number of pumps in use is the same for both stations

B � {(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)} � the event that the total number 
of pumps in use is four

C � {(0, 0), (0, 1), (1, 0), (1, 1)} � the event that at most one pump is  
in use at each station ■

Example 2.5

Example 2.6
(Example 2.3
continued)

Example 2.4



The sample space for the battery examination experiment contains an infinite num-
ber of outcomes, so there are an infinite number of simple events. Compound events
include

A � {S, FS, FFS} � the event that at most three batteries are examined

E � {FS, FFFS, FFFFFS, . . .} � the event that an even number of batteries
are examined ■

Some Relations from Set Theory
An event is just a set, so relationships and results from elementary set theory can be
used to study events. The following operations will be used to create new events
from given events.
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DEFINITION 1. The complement of an event A, denoted by A, is the set of all outcomes in
S that are not contained in A.

2. The union of two events A and B, denoted by A � B and read “A or B,” is
the event consisting of all outcomes that are either in A or in B or in both
events (so that the union includes outcomes for which both A and B occur as
well as outcomes for which exactly one occurs)—that is, all outcomes in at
least one of the events.

3. The intersection of two events A and B, denoted by A � B and read “A and
B,” is the event consisting of all outcomes that are in both A and B.

For the experiment in which the number of pumps in use at a single six-pump gas sta-
tion is observed, let A � {0, 1, 2, 3, 4}, B � {3, 4, 5, 6}, and C � {1, 3, 5}. Then

A � {5, 6}, A � B � {0, 1, 2, 3, 4, 5, 6} � S, A � C � {0, 1, 2, 3, 4, 5},

A � B � {3, 4}, A � C � {1, 3}, (A � C) � {0, 2, 4, 5, 6} ■

In the battery experiment, define A, B, and C by

A � {S, FS, FFS}, B � {S, FFS, FFFFS}, C � {FS, FFFS, FFFFFS, . . .}

Then

A � {FFFS, FFFFS, FFFFFS, . . .}, C � {S, FFS, FFFFS, . . .}

A � B � {S, FS, FFS, FFFFS}, A � B � {S, FFS} ■

Sometimes A and B have no outcomes in common, so that the intersection of
A and B contains no outcomes.

Example 2.8
(Example 2.3
continued)

Example 2.9
(Example 2.4
continued)

Example 2.10

DEFINITION Let denote the null event (the event consisting of no outcomes whatsoever).
When A � B � , A and B are said to be mutually exclusive or disjoint events.[

[

A small city has three automobile dealerships: a GM dealer selling Chevrolets,
Pontiacs, and Buicks; a Ford dealer selling Fords and Mercurys; and a Chrysler dealer
selling Plymouths and Chryslers. If an experiment consists of observing the brand of
the next car sold, then the events A � {Chevrolet, Pontiac, Buick} and B � {Ford,
Mercury} are mutually exclusive because the next car sold cannot be both a GM prod-
uct and a Ford product. ■

Example 2.7
(Example 2.4
continued)



The operations of union and intersection can be extended to more than two
events. For any three events A, B, and C, the event A � B � C is the set of outcomes
contained in at least one of the three events, whereas A � B � C is the set of out-
comes contained in all three events. Given events A1, A2, A3, . . . , these events are
said to be mutually exclusive (or pairwise disjoint) if no two events have any out-
comes in common.

A pictorial representation of events and manipulations with events is obtained by
using Venn diagrams. To construct a Venn diagram, draw a rectangle whose interior will
represent the sample space S. Then any event A is represented as the interior of a closed
curve (often a circle) contained in S. Figure 2.1 shows examples of Venn diagrams.
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A B

(a) Venn diagram of
      events A and B

A B

(e) Mutually exclusive
      events 

A B

(c) Shaded region
      is A � B

A

(d) Shaded region
      is A'

A B

(b) Shaded region
      is A � B

Figure 2.1 Venn diagrams

EXERCISES Section 2.1 (1–10)

1. Four universities—1, 2, 3, and 4—are participating in a hol-
iday basketball tournament. In the first round, 1 will play 2
and 3 will play 4. Then the two winners will play for the
championship, and the two losers will also play. One possi-
ble outcome can be denoted by 1324 (1 beats 2 and 3 beats
4 in first-round games, and then 1 beats 3 and 2 beats 4).
a. List all outcomes in S.
b. Let A denote the event that 1 wins the tournament. List

outcomes in A.
c. Let B denote the event that 2 gets into the championship

game. List outcomes in B.
d. What are the outcomes in A � B and in A � B? What are

the outcomes in A?

2. Suppose that vehicles taking a particular freeway exit can
turn right (R), turn left (L), or go straight (S). Consider
observing the direction for each of three successive vehicles.
a. List all outcomes in the event A that all three vehicles go

in the same direction.
b. List all outcomes in the event B that all three vehicles

take different directions.
c. List all outcomes in the event C that exactly two of the

three vehicles turn right.
d. List all outcomes in the event D that exactly two vehicles

go in the same direction.
e. List outcomes in D, C � D, and C � D.

3. Three components are connected to form a system as shown
in the accompanying diagram. Because the components in
the 2–3 subsystem are connected in parallel, that subsystem
will function if at least one of the two individual components
functions. For the entire system to function, component 1
must function and so must the 2–3 subsystem.

The experiment consists of determining the condition of
each component [S (success) for a functioning component
and F (failure) for a nonfunctioning component].
a. What outcomes are contained in the event A that

exactly two out of the three components function?
b. What outcomes are contained in the event B that at least

two of the components function?
c. What outcomes are contained in the event C that the sys-

tem functions?
d. List outcomes in C, A � C, A � C, B � C, and B � C.

4. Each of a sample of four home mortgages is classified as
fixed rate (F) or variable rate (V ).
a. What are the 16 outcomes in S ?
b. Which outcomes are in the event that exactly three of the

selected mortgages are fixed rate?
c. Which outcomes are in the event that all four mortgages

are of the same type?
d. Which outcomes are in the event that at most one of the

four is a variable-rate mortgage?
e. What is the union of the events in parts (c) and (d), and

what is the intersection of these two events?
f. What are the union and intersection of the two events in

parts (b) and (c)?

5. A family consisting of three persons—A, B, and C—belongs
to a medical clinic that always has a doctor at each of sta-
tions 1, 2, and 3. During a certain week, each member of the

2

1

3
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family visits the clinic once and is assigned at random to a
station. The experiment consists of recording the station
number for each member. One outcome is (1, 2, 1) for A to
station 1, B to station 2, and C to station 1.
a. List the 27 outcomes in the sample space.
b. List all outcomes in the event that all three members go

to the same station.
c. List all outcomes in the event that all members go to dif-

ferent stations.
d. List all outcomes in the event that no one goes to station 2.

6. A college library has five copies of a certain text on reserve.
Two copies (1 and 2) are first printings, and the other three
(3, 4, and 5) are second printings. A student examines these
books in random order, stopping only when a second print-
ing has been selected. One possible outcome is 5, and
another is 213.
a. List the outcomes in S.
b. Let A denote the event that exactly one book must be

examined. What outcomes are in A?
c. Let B be the event that book 5 is the one selected. What

outcomes are in B?
d. Let C be the event that book 1 is not examined. What

outcomes are in C?

7. An academic department has just completed voting by
secret ballot for a department head. The ballot box contains
four slips with votes for candidate A and three slips with
votes for candidate B. Suppose these slips are removed from
the box one by one.

a. List all possible outcomes.
b. Suppose a running tally is kept as slips are removed. For

what outcomes does A remain ahead of B throughout the
tally?

8. An engineering construction firm is currently working on
power plants at three different sites. Let Ai denote the event
that the plant at site i is completed by the contract date. Use
the operations of union, intersection, and complementation
to describe each of the following events in terms of A1, A2,
and A3, draw a Venn diagram, and shade the region corre-
sponding to each one.
a. At least one plant is completed by the contract date.
b. All plants are completed by the contract date.
c. Only the plant at site 1 is completed by the contract date.
d. Exactly one plant is completed by the contract date.
e. Either the plant at site 1 or both of the other two plants

are completed by the contract date.

9. Use Venn diagrams to verify the following two relationships
for any events A and B (these are called De Morgan’s laws):
a. (A � B) � A � B
b. (A � B) � A � B

10. a. In Example 2.10, identify three events that are mutually
exclusive.

b. Suppose there is no outcome common to all three of the
events A, B, and C. Are these three events necessarily
mutually exclusive? If your answer is yes, explain why;
if your answer is no, give a counterexample using the
experiment of Example 2.10.

Given an experiment and a sample space S, the objective of probability is to assign
to each event A a number P(A), called the probability of the event A, which will give
a precise measure of the chance that A will occur. To ensure that the probability
assignments will be consistent with our intuitive notions of probability, all assign-
ments should satisfy the following axioms (basic properties) of probability.

2.2 Axioms, Interpretations,
and Properties of Probability

You might wonder why the third axiom contains no reference to a finite col-
lection of disjoint events. It is because the corresponding property for a finite col-
lection can be derived from our three axioms. We want our axiom list to be as short
as possible and not contain any property that can be derived from others on the list.
Axiom 1 reflects the intuitive notion that the chance of A occurring should be

AXIOM 1

AXIOM 2

AXIOM 3

For any event A, P(A) � 0.

P(S ) � 1.

If A1, A2, A3, . . . is an infinite collection of disjoint events, then

PsA1 ´ A2 ´ A3 ´cd 5 g
`

i51
PsAid



nonnegative. The sample space is by definition the event that must occur when the
experiment is performed (S contains all possible outcomes), so Axiom 2 says that
the maximum possible probability of 1 is assigned to S. The third axiom formalizes
the idea that if we wish the probability that at least one of a number of events will
occur and no two of the events can occur simultaneously, then the chance of at least
one occurring is the sum of the chances of the individual events.
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Proof First consider the infinite collection Since
� the events in this collection are disjoint and The third

axiom then gives

This can happen only if 
Now suppose that A1, A2, . . . , Ak are disjoint events, and append to these the infi-

nite collection Again invoking the third axiom,

as desired. ■

Consider tossing a thumbtack in the air. When it comes to rest on the ground, either its
point will be up (the outcome U) or down (the outcome D). The sample space for this
event is therefore S � {U, D}. The axioms specify P(S ) � 1, so the probability assign-
ment will be completed by determining P(U) and P(D). Since U and D are disjoint and
their union is S, the foregoing proposition implies that

1 � P(S ) � P(U) � P(D)

It follows that P(D) � 1 � P(U). One possible assignment of probabilities is P(U) = .5,
P(D) � .5, whereas another possible assignment is P(U) � .75, P(D) � .25. In fact, let-
ting p represent any fixed number between 0 and 1, P(U) � p, P(D) � 1 � p is an
assignment consistent with the axioms. ■

Let’s return to the experiment in Example 2.4, in which batteries coming off an assem-
bly line are tested one by one until one having a voltage within prescribed limits is
found. The simple events are E1 � {S}, E2 � {FS}, E3 � {FFS}, E4 � {FFFS}, . . . .
Suppose the probability of any particular battery being satisfactory is .99. Then it can
be shown that P(E1) � .99, P(E2) � (.01)(.99), P(E3) � (.01)2(.99), . . . is an assign-
ment of probabilities to the simple events that satisfies the axioms. In particular,
because the Eis are disjoint and S � E1 � E2 � E3 � . . . , it must be the case that

1 � P(S ) � P(E1) � P(E2) � P(E3) � . . .

� .99[1 � .01 � (.01)2 � (.01)3 � . . .]

Here we have used the formula for the sum of a geometric series:

a 1 ar 1 ar 2 1 ar 3 1c 5
a

1 2 r

Pa ´k
i51

Aib 5 Pa ´`
i51

Aib 5 g
`

i51
PsAid 5 g

k

i51
PsAid

Ak11 5 [, Ak12 5 [, Ak13 5 [, . . . .

Ps[d 5 0.

Ps[d 5 g Ps[d

´ Ai 5 [.[ 5 [,[
A1 5 [, A2 5 [, A3 5 [, . . . . 

where is the null event (the event containing no outcomes what-
soever). This in turn implies that the property contained in Axiom 3 is valid for
a finite collection of events.

[Ps[d 5 0PROPOSITION

Example 2.11

Example 2.12



However, another legitimate (according to the axioms) probability assignment of
the same “geometric” type is obtained by replacing .99 by any other number p between
0 and 1 (and .01 by 1 � p). ■

Interpreting Probability
Examples 2.11 and 2.12 show that the axioms do not completely determine an assign-
ment of probabilities to events. The axioms serve only to rule out assignments incon-
sistent with our intuitive notions of probability. In the tack-tossing experiment of
Example 2.11, two particular assignments were suggested. The appropriate or correct
assignment depends on the nature of the thumbtack and also on one’s interpretation
of probability. The interpretation that is most frequently used and most easily under-
stood is based on the notion of relative frequencies.

Consider an experiment that can be repeatedly performed in an identical and
independent fashion, and let A be an event consisting of a fixed set of outcomes of
the experiment. Simple examples of such repeatable experiments include the tack-
tossing and die-tossing experiments previously discussed. If the experiment is per-
formed n times, on some of the replications the event A will occur (the outcome will
be in the set A), and on others, A will not occur. Let n(A) denote the number of repli-
cations on which A does occur. Then the ratio n(A)/n is called the relative frequency
of occurrence of the event A in the sequence of n replications. Empirical evidence,
based on the results of many of these sequences of repeatable experiments, indi-
cates that as n grows large, the relative frequency n(A)/n stabilizes, as pictured in
Figure 2.2. That is, as n gets arbitrarily large, the relative frequency approaches a
limiting value we refer to as the limiting relative frequency of the event A. The
objective interpretation of probability identifies this limiting relative frequency
with P(A).
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If probabilities are assigned to events in accordance with their limiting relative
frequencies, then we can interpret a statement such as “The probability of that coin
landing with the head facing up when it is tossed is .5” to mean that in a large number
of such tosses, a head will appear on approximately half the tosses and a tail on the
other half.

This relative frequency interpretation of probability is said to be objective
because it rests on a property of the experiment rather than on any particular indi-
vidual concerned with the experiment. For example, two different observers of a
sequence of coin tosses should both use the same probability assignments since the
observers have nothing to do with limiting relative frequency. In practice, this inter-
pretation is not as objective as it might seem, since the limiting relative frequency of
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an event will not be known. Thus we will have to assign probabilities based on our
beliefs about the limiting relative frequency of events under study. Fortunately, there
are many experiments for which there will be a consensus with respect to probabil-
ity assignments. When we speak of a fair coin, we shall mean P(H) � P(T) � .5,
and a fair die is one for which limiting relative frequencies of the six outcomes are
all �

1
6

�, suggesting probability assignments P({1}) � . . . � P({6}) � �
1
6

�.
Because the objective interpretation of probability is based on the notion of lim-

iting frequency, its applicability is limited to experimental situations that are repeat-
able. Yet the language of probability is often used in connection with situations that
are inherently unrepeatable. Examples include: “The chances are good for a peace
agreement”; “It is likely that our company will be awarded the contract”; and “Because
their best quarterback is injured, I expect them to score no more than 10 points against
us.” In such situations we would like, as before, to assign numerical probabilities to
various outcomes and events (e.g., the probability is .9 that we will get the contract).
We must therefore adopt an alternative interpretation of these probabilities. Because
different observers may have different prior information and opinions concerning
such experimental situations, probability assignments may now differ from individ-
ual to individual. Interpretations in such situations are thus referred to as subjective.
The book by Robert Winkler listed in the chapter references gives a very readable
survey of several subjective interpretations.

More Probability Properties

54 CHAPTER 2 Probability

Proof In Axiom 3, let k � 2, A1 � A, and A2 � A. Since by definition of A,
A � A � S while A and A are disjoint, 1 � P(S ) � P(A � A) � P(A) � P(A). ■

This proposition is surprisingly useful because there are many situations in
which P(A) is more easily obtained by direct methods than is P(A).

Consider a system of five identical components connected in series, as illustrated in
Figure 2.3.

Figure 2.3 A system of five components connected in series

Denote a component that fails by F and one that doesn’t fail by S (for success). Let A be
the event that the system fails. For A to occur, at least one of the individual components
must fail. Outcomes in A include SSFSS (1, 2, 4, and 5 all work, but 3 does not), FFSSS,
and so on. There are in fact 31 different outcomes in A. However, A, the event that the
system works, consists of the single outcome SSSSS. We will see in Section 2.5 that if
90% of all these components do not fail and different components fail independently of
one another, then P(A) � P(SSSSS) � .95 � .59. Thus P(A) � 1 � .59 � .41; so among
a large number of such systems, roughly 41% will fail. ■

In general, the foregoing proposition is useful when the event of interest can
be expressed as “at least . . . ,” since then the complement “less than . . .” may be

1 2 3 4 5

PROPOSITION For any event A, P(A) � P(A) � 1, from which P(A) � 1 � P(A).

Example 2.13



easier to work with (in some problems, “more than . . .” is easier to deal with than
“at most . . .”). When you are having difficulty calculating P(A) directly, think of
determining P(A).
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This is because 1 � P(A) � P(A) � P(A) since P(A) � 0.
When events A and B are mutually exclusive, P(A � B) � P(A) � P(B). For

events that are not mutually exclusive, adding P(A) and P(B) results in “double-
counting” outcomes in the intersection. The next result shows how to correct for this.

For any event A, P(A) � 1.PROPOSITION

For any two events A and B,

P(A � B) � P(A) � P(B) � P(A � B)

PROPOSITION

Proof Note first that A � B can be decomposed into two disjoint events, A and
B � A; the latter is the part of B that lies outside A. Furthermore, B itself is the union
of the two disjoint events A � B and A � B, so P(B) � P(A � B) � P(A � B).
Thus

P(A � B) � P(A) � P(B � A) � P(A) � [P(B) � P(A � B)]

� P(A) � P(B) � P(A � B)

Figure 2.4 Representing A � B as a union of disjoint events ■

In a certain residential suburb, 60% of all households subscribe to the metropolitan
newspaper published in a nearby city, 80% subscribe to the local paper, and 50% of
all households subscribe to both papers. If a household is selected at random, what
is the probability that it subscribes to (1) at least one of the two newspapers and (2)
exactly one of the two newspapers?

With A � {subscribes to the metropolitan paper} and B � {subscribes to the
local paper}, the given information implies that P(A) � .6, P(B) � .8, and P(A � B) �
.5. The foregoing proposition now yields

P(subscribes to at least one of the two newspapers)

� P(A � B) � P(A) � P(B) � P(A � B) � .6 � .8 � .5 � .9

The event that a household subscribes only to the local paper can be written as A � B
[(not metropolitan) and local]. Now Figure 2.4 implies that

.9 � P(A � B) � P(A) � P(A � B) � .6 � P(A � B)

from which P(A � B) � .3. Similarly, P(A � B) � P(A � B) � P(B) � .1. This is all
illustrated in Figure 2.5, from which we see that

P(exactly one) � P(A � B) � P(A � B) � .1 � .3 � .4

A B
� �

Example 2.14



Figure 2.5 Probabilities for Example 2.14 ■

The probability of a union of more than two events can be computed analogously.

.5.1 .3

P(A' � B)P(A � B' )
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For any three events A, B, and C,

P(A � B � C) � P(A) � P(B) � P(C) � P(A � B) � P(A � C)

� P(B � C) � P(A � B � C)

This can be seen by examining a Venn diagram of A � B � C, which is shown in
Figure 2.6. When P(A), P(B), and P(C) are added, certain intersections are counted
twice, so they must be subtracted out, but this results in P(A � B � C) being sub-
tracted once too often.

Figure 2.6 A � B � C

Determining Probabilities Systematically
Consider a sample space that is either finite or “countably infinite” (the latter means
that outcomes can be listed in an infinite sequence, so there is a first outcome, a
second outcome, a third outcome, and so on—for example, the battery testing sce-
nario of Example 2.4). Let E1, E2, E3, . . . denote the corresponding simple events,
each consisting of a single outcome. A sensible strategy for probability computation
is to first determine each simple event probability, with the requirement that
� Then the probability of any compound event A is computed by adding
together the P(Ei)s for all Ei s in A:

During off-peak hours a commuter train has five cars. Suppose a commuter is twice
as likely to select the middle car (#3) as to select either adjacent car (#2 or #4), and
is twice as likely to select either adjacent car as to select either end car (#1 or #5).
Let pi � P(car i is selected) � P(Ei). Then we have p3 � 2p2 � 2p4 and p2 � 2p1 �
2p5 � p4. This gives

implying p1 � p5 � .1, p2 � p4 � .2, p3 � .4. The probability that one of the three
middle cars is selected (a compound event) is then p2 � p3 � p4 � .8. ■

1 5 gPsEid 5 p1 1 2p1 1 4p1 1 2p1 1 p1 5 10p1

PsAd 5 g
all Ei s in A

PsEid

PsEid 5 1.

A B

C
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Equally Likely Outcomes
In many experiments consisting of N outcomes, it is reasonable to assign equal prob-
abilities to all N simple events. These include such obvious examples as tossing a fair
coin or fair die once or twice (or any fixed number of times), or selecting one or sev-
eral cards from a well-shuffled deck of 52. With p � P(Ei) for every i,

1 � �
N

i�1
P(Ei) � �

N

i�1
p � p � N so p �

That is, if there are N equally likely outcomes, the probability for each is 1/N.
Now consider an event A, with N(A) denoting the number of outcomes con-

tained in A. Then

P(A) � �
Ei in A

P(Ei) � �
Ei in A

�

Thus when outcomes are equally likely, computing probabilities reduces to
counting: determine both the number of outcomes N(A) in A and the number of out-
comes N in S, and form their ratio.

When two dice are rolled separately, there are N � 36 outcomes (delete the first row
and column from the table in Example 2.3). If both the dice are fair, all 36 outcomes
are equally likely, so P(Ei) � �

3
1
6
�. Then the event A � {sum of two numbers � 7}

consists of the six outcomes (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), so

P(A) � � � ■
1
�
6

6
�
36

N(A)
�

N

N(A)
�

N

1
�
N

1
�
N
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Example 2.16

EXERCISES Section 2.2 (11–28)

11. A mutual fund company offers its customers sev-
eral different funds: a money-market fund, three different
bond funds (short, intermediate, and long-term), two
stock funds (moderate and high-risk), and a balanced
fund. Among customers who own shares in just one fund,
the percentages of customers in the different funds are as
follows:

Money-market 20% High-risk stock 18%
Short bond 15% Moderate-risk
Intermediate stock 25%

bond 10% Balanced 7%
Long bond 5%

A customer who owns shares in just one fund is randomly
selected.

a. What is the probability that the selected individual owns
shares in the balanced fund?

b. What is the probability that the individual owns shares in
a bond fund?

c. What is the probability that the selected individual does
not own shares in a stock fund?

12. Consider randomly selecting a student at a certain university,
and let A denote the event that the selected individual has a

Visa credit card and B be the analogous event for a MasterCard.
Suppose that P(A) � .5, P(B) � .4, and P(A � B) �
.25.
a. Compute the probability that the selected individual has

at least one of the two types of cards (i.e., the probability
of the event A � B).

b. What is the probability that the selected individual has
neither type of card?

c. Describe, in terms of A and B, the event that the
selected student has a Visa card but not a MasterCard,
and then calculate the probability of this event.

13. A computer consulting firm presently has bids out on three
projects. Let Ai � {awarded project i}, for i � 1, 2, 3, 
and suppose that P(A1) � .22, P(A2) � .25, P(A3) � .28,
P(A1 � A2) � .11, P(A1 � A3) � .05, P(A2 � A3) � .07,
P(A1 � A2 � A3) � .01. Express in words each of the fol-
lowing events, and compute the probability of each event:
a. A1 � A2

b. A1 � A2 [Hint: (A1 � A2) � A1 � A2]
c. A1 � A2 � A3 d. A1 � A2 � A3
e. A1 � A2 � A3 f. (A1 � A2) � A3

14. A utility company offers a lifeline rate to any household
whose electricity usage falls below 240 kWh during a
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particular month. Let A denote the event that a randomly
selected household in a certain community does not
exceed the lifeline usage during January, and let B be the
analogous event for the month of July (A and B refer to
the same household). Suppose P(A) � .8, P(B) � .7, and
P(A � B) � .9. Compute the following:
a. P(A � B).
b. The probability that the lifeline usage amount is exceeded

in exactly one of the two months. Describe this event in
terms of A and B.

15. Consider the type of clothes dryer (gas or electric) pur-
chased by each of five different customers at a certain store.
a. If the probability that at most one of these purchases an

electric dryer is .428, what is the probability that at least
two purchase an electric dryer?

b. If P(all five purchase gas) � .116 and P(all five purchase
electric) � .005, what is the probability that at least one
of each type is purchased?

16. An individual is presented with three different glasses of
cola, labeled C, D, and P. He is asked to taste all three and
then list them in order of preference. Suppose the same cola
has actually been put into all three glasses.
a. What are the simple events in this ranking experiment,

and what probability would you assign to each one?
b. What is the probability that C is ranked first?
c. What is the probability that C is ranked first and D is

ranked last?

17. Let A denote the event that the next request for assistance
from a statistical software consultant relates to the SPSS
package, and let B be the event that the next request is for help
with SAS. Suppose that P(A) � .30 and P(B) � .50.
a. Why is it not the case that P(A) � P(B) � 1?
b. Calculate P(A).
c. Calculate P(A � B).
d. Calculate P(A � B).

18. A box contains four 40-W bulbs, five 60-W bulbs, and six
75-W bulbs. If bulbs are selected one by one in random
order, what is the probability that at least two bulbs must be
selected to obtain one that is rated 75 W?

19. Human visual inspection of solder joints on printed circuit
boards can be very subjective. Part of the problem stems
from the numerous types of solder defects (e.g., pad nonwet-
ting, knee visibility, voids) and even the degree to which a
joint possesses one or more of these defects. Consequently,
even highly trained inspectors can disagree on the disposi-
tion of a particular joint. In one batch of 10,000 joints,
inspector A found 724 that were judged defective, inspector
B found 751 such joints, and 1159 of the joints were judged
defective by at least one of the inspectors. Suppose that one
of the 10,000 joints is randomly selected.
a. What is the probability that the selected joint was judged

to be defective by neither of the two inspectors?
b. What is the probability that the selected joint was

judged to be defective by inspector B but not by
inspector A?

20. A certain factory operates three different shifts. Over 
the last year, 200 accidents have occurred at the factory.
Some of these can be attributed at least in part to unsafe
working conditions, whereas the others are unrelated to
working conditions. The accompanying table gives the per-
centage of accidents falling in each type of accident–shift
category.

Unsafe Unrelated to
Conditions Conditions

Day 10% 35%
Shift Swing 8% 20%

Night 5% 22%

Suppose one of the 200 accident reports is randomly
selected from a file of reports, and the shift and type of acci-
dent are determined.
a. What are the simple events?
b. What is the probability that the selected accident was attrib-

uted to unsafe conditions?
c. What is the probability that the selected accident did not

occur on the day shift?

21. An insurance company offers four different deductible lev-
els—none, low, medium, and high—for its homeowner’s
policyholders and three different levels—low, medium, and
high—for its automobile policyholders. The accompanying
table gives proportions for the various categories of policy-
holders who have both types of insurance. For example, the
proportion of individuals with both low homeowner’s
deductible and low auto deductible is .06 (6% of all such
individuals)

Homeowner’s

Auto N L M H

L .04 .06 .05 .03
M .07 .10 .20 .10
H .02 .03 .15 .15

Suppose an individual having both types of policies is ran-
domly selected.
a. What is the probability that the individual has a

medium auto deductible and a high homeowner’s
deductible?

b. What is the probability that the individual has a low auto
deductible? A low homeowner’s deductible?

c. What is the probability that the individual is in the same
category for both auto and homeowner’s deductibles?

d. Based on your answer in part (c), what is the probability
that the two categories are different?

e. What is the probability that the individual has at least one
low deductible level?

f. Using the answer in part (e), what is the probability that
neither deductible level is low?

22. The route used by a certain motorist in commuting to work
contains two intersections with traffic signals. The probability
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that he must stop at the first signal is .4, the analogous prob-
ability for the second signal is .5, and the probability that he
must stop at at least one of the two signals is .6. What is the
probability that he must stop
a. At both signals?
b. At the first signal but not at the second one?
c. At exactly one signal?

23. The computers of six faculty members in a certain depart-
ment are to be replaced. Two of the faculty members have
selected laptop machines and the other four have chosen
desktop machines. Suppose that only two of the setups can
be done on a particular day, and the two computers to be
set up are randomly selected from the six (implying 15
equally likely outcomes; if the computers are numbered 
1, 2, . . . , 6, then one outcome consists of computers 1 and
2, another consists of computers 1 and 3, and so on).
a. What is the probability that both selected setups are for

laptop computers?
b. What is the probability that both selected setups are

desktop machines?
c. What is the probability that at least one selected setup is

for a desktop computer?
d. What is the probability that at least one computer of each

type is chosen for setup?

24. Show that if one event A is contained in another event B
(i.e., A is a subset of B), then P(A) � P(B). [Hint: For such
A and B, A and B � A are disjoint and B � A � (B � A),
as can be seen from a Venn diagram.] For general A and B,
what does this imply about the relationship among P(A � B),
P(A), and P(A � B)?

25. The three major options on a certain type of new car are an
automatic transmission (A), a sunroof (B), and a stereo with
compact disc player (C). If 70% of all purchasers request A,
80% request B, 75% request C, 85% request A or B, 90%
request A or C, 95% request B or C, and 98% request A or
B or C, compute the probabilities of the following events.
[Hint: “A or B” is the event that at least one of the two
options is requested; try drawing a Venn diagram and label-
ing all regions.]
a. The next purchaser will request at least one of the three

options.
b. The next purchaser will select none of the three options.

c. The next purchaser will request only an automatic trans-
mission and not either of the other two options.

d. The next purchaser will select exactly one of these three
options.

26. A certain system can experience three different types of
defects. Let Ai (i � 1, 2, 3) denote the event that the system
has a defect of type i. Suppose that

P(A1) � .12 P(A2) � .07 P(A3) � .05
P(A1 � A2) � .13 P(A1 � A3) � .14
P(A2 � A3) � .10 P(A1 � A2 � A3) � .01

a. What is the probability that the system does not have a
type 1 defect?

b. What is the probability that the system has both type 1
and type 2 defects?

c. What is the probability that the system has both type 1
and type 2 defects but not a type 3 defect?

d. What is the probability that the system has at most two
of these defects?

27. An academic department with five faculty members—
Anderson, Box, Cox, Cramer, and Fisher—must select two
of its members to serve on a personnel review committee.
Because the work will be time-consuming, no one is anx-
ious to serve, so it is decided that the representative will be
selected by putting five slips of paper in a box, mixing them,
and selecting two.
a. What is the probability that both Anderson and Box will

be selected? [Hint: List the equally likely outcomes.]
b. What is the probability that at least one of the two mem-

bers whose name begins with C is selected?
c. If the five faculty members have taught for 3, 6, 7, 10,

and 14 years, respectively, at the university, what is the
probability that the two chosen representatives have at
least 15 years’ teaching experience at the university?

28. In Exercise 5, suppose that any incoming individual is
equally likely to be assigned to any of the three stations irre-
spective of where other individuals have been assigned.
What is the probability that
a. All three family members are assigned to the same station?
b. At most two family members are assigned to the same

station?
c. Every family member is assigned to a different station?

2.3 Counting Techniques

When the various outcomes of an experiment are equally likely (the same probabil-
ity is assigned to each simple event), the task of computing probabilities reduces to
counting. Letting N denote the number of outcomes in a sample space and N(A) rep-
resent the number of outcomes contained in an event A,

P(A) � (2.1)
N(A)
�

N



If a list of the outcomes is easily obtained and N is small, then N and N(A) can be
determined without the benefit of any general counting principles.

There are, however, many experiments for which the effort involved in con-
structing such a list is prohibitive because N is quite large. By exploiting some gen-
eral counting rules, it is possible to compute probabilities of the form (2.1) without
a listing of outcomes. These rules are also useful in many problems involving out-
comes that are not equally likely. Several of the rules developed here will be used in
studying probability distributions in the next chapter.

The Product Rule for Ordered Pairs
Our first counting rule applies to any situation in which a set (event) consists of ordered
pairs of objects and we wish to count the number of such pairs. By an ordered pair, we
mean that, if O1 and O2 are objects, then the pair (O1, O2) is different from the pair (O2,
O1). For example, if an individual selects one airline for a trip from Los Angeles to
Chicago and (after transacting business in Chicago) a second one for continuing on to
New York, one possibility is (American, United), another is (United, American), and
still another is (United, United).

60 CHAPTER 2 Probability

If the first element or object of an ordered pair can be selected in n1 ways, and for
each of these n1 ways the second element of the pair can be selected in n2 ways,
then the number of pairs is n1n2.

PROPOSITION

A homeowner doing some remodeling requires the services of both a plumbing contrac-
tor and an electrical contractor. If there are 12 plumbing contractors and 9 electrical con-
tractors available in the area, in how many ways can the contractors be chosen? If we
denote the plumbers by P1, . . . , P12 and the electricians by Q1, . . . , Q9, then we wish the
number of pairs of the form (Pi, Qj). With n1 � 12 and n2 � 9, the product rule yields
N � (12)(9) � 108 possible ways of choosing the two types of contractors. ■

In Example 2.17, the choice of the second element of the pair did not depend
on which first element was chosen or occurred. As long as there is the same number
of choices of the second element for each first element, the product rule is valid even
when the set of possible second elements depends on the first element.

A family has just moved to a new city and requires the services of both an obstetri-
cian and a pediatrician. There are two easily accessible medical clinics, each having
two obstetricians and three pediatricians. The family will obtain maximum health
insurance benefits by joining a clinic and selecting both doctors from that clinic. In
how many ways can this be done? Denote the obstetricians by O1, O2, O3, and O4

and the pediatricians by P1, . . . , P6. Then we wish the number of pairs (Oi, Pj) for
which Oi and Pj are associated with the same clinic. Because there are four obstetri-
cians, n1 � 4, and for each there are three choices of pediatrician, so n2 � 3.
Applying the product rule gives N � n1n2 � 12 possible choices. ■

In many counting and probability problems, a configuration called a tree diagram can
be used to represent pictorially all the possibilities. The tree diagram associated with
Example 2.18 appears in Figure 2.7. Starting from a point on the left side of the dia-
gram, for each possible first element of a pair a straight-line segment emanates right-
ward. Each of these lines is referred to as a first-generation branch. Now for any given

Example 2.17

Example 2.18



first-generation branch we construct another line segment emanating from the tip of
the branch for each possible choice of a second element of the pair. Each such line seg-
ment is a second-generation branch. Because there are four obstetricians, there are four
first-generation branches, and three pediatricians for each obstetrician yields three
second-generation branches emanating from each first-generation branch.

Generalizing, suppose there are n1 first-generation branches, and for each
first-generation branch there are n2 second-generation branches. The total number
of second-generation branches is then n1n2. Since the end of each second-generation
branch corresponds to exactly one possible pair (choosing a first element and then
a second puts us at the end of exactly one second-generation branch), there are n1n2

pairs, verifying the product rule.
The construction of a tree diagram does not depend on having the same num-

ber of second-generation branches emanating from each first-generation branch. If
the second clinic had four pediatricians, then there would be only three branches
emanating from two of the first-generation branches and four emanating from each
of the other two first-generation branches. A tree diagram can thus be used to repre-
sent pictorially experiments other than those to which the product rule applies.

A More General Product Rule
If a six-sided die is tossed five times in succession rather than just twice, then each
possible outcome is an ordered collection of five numbers such as (1, 3, 1, 2, 4) or
(6, 5, 2, 2, 2). We will call an ordered collection of k objects a k-tuple (so a pair is a
2-tuple and a triple is a 3-tuple). Each outcome of the die-tossing experiment is then
a 5-tuple.
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O1

O2

O3

O4

P1

P2

P3
P1

P2

P3
P4

P5

P6
P4

P5

P6

Figure 2.7 Tree diagram for Example 2.18

Product Rule for k-Tuples

Suppose a set consists of ordered collections of k elements (k-tuples) and that
there are n1 possible choices for the first element; for each choice of the first
element, there are n2 possible choices of the second element; . . . ; for each pos-
sible choice of the first k � 1 elements, there are nk choices of the kth element.
Then there are n1n2 � . . . � nk possible k-tuples.



This more general rule can also be illustrated by a tree diagram; simply construct
a more elaborate diagram by adding third-generation branches emanating from the tip
of each second generation, then fourth-generation branches, and so on, until finally 
kth-generation branches are added.

Suppose the home remodeling job involves first purchasing several kitchen appliances.
They will all be purchased from the same dealer, and there are five dealers in the area.
With the dealers denoted by D1, . . . , D5, there are N � n1n2n3 � (5)(12)(9) � 540
3-tuples of the form (Di, Pj , Qk), so there are 540 ways to choose first an appliance
dealer, then a plumbing contractor, and finally an electrical contractor. ■

If each clinic has both three specialists in internal medicine and two general surgeons,
there are n1n2n3n4 � (4)(3)(3)(2) � 72 ways to select one doctor of each type such
that all doctors practice at the same clinic. ■

Permutations and Combinations
Consider a group of n distinct individuals or objects (“distinct” means that there is some
characteristic that differentiates any particular individual or object from any other). How
many ways are there to select a subset of size k from the group? For example, if a Little
League team has 15 players on its roster, how many ways are there to select 9 players
to form a starting lineup? Or if you have 10 unread mysteries on your bookshelf and
want to select 3 to take on a short vacation, how many ways are there to do this?

An answer to the general question just posed requires that we distinguish
between two cases. In some situations, such as the baseball scenario, the order of
selection is important. For example, Angela being the pitcher and Ben the catcher
gives a different lineup from the one in which Angela is catcher and Ben is pitcher.
Often, though, order is not important and one is interested only in which individuals
or objects are selected, as would be the case in the book selection scenario.
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Example 2.19
(Example 2.17
continued)

Example 2.20
(Example 2.18
continued)

DEFINITION An ordered subset is called a permutation. The number of permutations of size
k that can be formed from the n individuals or objects in a group will be denoted
by Pk,n. An unordered subset is called a combination. One way to denote the
number of combinations is Ck,n, but we shall instead use notation that is quite
common in probability books: n

k , read “n choose k”.BA

The number of permutations can be determined by using our earlier counting
rule for k-tuples. Suppose, for example, that a college of engineering has seven
departments, which we denote by a, b, c, d, e, f, and g. Each department has one rep-
resentative on the college’s student council. From these seven representatives, one is
to be chosen chair, another is to be selected vice-chair, and a third will be secretary.
How many ways are there to select the three officers? That is, how many permuta-
tions of size 3 can be formed from the 7 representatives? To answer this question,
think of forming a triple (3-tuple) in which the first element is the chair, the second is
the vice-chair, and the third is the secretary. One such triple is (a, g, b), another is 
(b, g, a), and yet another is  (d, f, b). Now the chair can be selected in any of n1 � 7
ways. For each way of selecting the chair, there are n2 � 6 ways to select the vice-chair,
and hence 7 � 6 � 42 (chair, vice-chair pairs). Finally, for each way of selecting a chair
and vice-chair, there are n3 � 5 ways of choosing the secretary. This gives

P3,7 5 s7ds6ds5d 5 210



as the number of permutations of size 3 that can be formed from 7 distinct individ-
uals. A tree diagram representation would show three generations of branches.

The expression for P3,7 can be rewritten with the aid of factorial notation.
Recall that 7! (read “7 factorial”) is compact notation for the descending product of
integers (7)(6)(5)(4)(3)(2)(1). More generally, for any positive integer m, m! �
m(m � 1)(m � 2) � . . . � (2)(1). This gives 1! � 1, and we also define 0! � 1. Then

More generally,

� . . . �

Multiplying and dividing this by (n � k)! gives a compact expression for the number
of permutations.

sn 2 sk 2 2ddsn 2 sk 2 1ddPk,n 5 nsn 2 1dsn 2 2d

P3,7 5 s7ds6ds5d 5
s7ds6ds5ds4!d

s4!d
5

7!
4!
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There are ten teaching assistants available for grading papers in a calculus course at
a large university. The first exam consists of four questions, and the professor wishes
to select a different assistant to grade each question (only one assistant per question).
In how many ways can the assistants be chosen for grading? Here n � group size �
10 and k � subset size � 4. The number of permutations is

That is, the professor could give 5040 different four-question exams without using
the same assignment of graders to questions, by which time all the teaching assis-
tants would hopefully have finished their degree programs! ■

Now let’s move on to combinations (i.e., unordered subsets) Again refer to the
student council scenario, and suppose that three of the seven representatives are to
be selected to attend a statewide convention. The order of selection is not important;
all that matters is which three get selected. So we are looking for (7

3), the number of
combinations of size 3 that can be formed from the 7 individuals. Consider for a
moment the combination a,c,g. These three individuals can be ordered in 3! � 6
ways to produce permutations:

a,c,g a,g,c c,a,g c,g,a g,a,c g,c,a

Similarly, there are 3! � 6 ways to order the combination b,c,e to produce permu-
tations, and in fact 3! ways to order any particular combination of size 3 to produce
permutations. This implies the following relationship between the number of com-
binations and the number of permutations:

It would not be too difficult to list the 35 combinations, but there is no need to do so if
we are interested only in how many there are. Notice that the number of permutations

P3,7 5 s3!d ? Q7
3
R1 Q7

3
R 5 P3,7

3!
5

7!
s3!ds4!d

5
s7ds6ds5d
s3ds2ds1d

5 35

P4,10 5
10!

s10 2 4d!
5

10!
6!
5 10s9ds8ds7d 5 5040

Pk,n 5
n!

sn 2 kd!
PROPOSITION

Example 2.21



210 far exceeds the number of combinations; the former is larger than the latter by a fac-
tor of 3! since that is how many ways each combination can be ordered.

Generalizing the foregoing line of reasoning gives a simple relationship between
the number of permutations and the number of combinations that yields a concise
expression for the latter quantity.
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Example 2.22

Example 2.23

Notice that (n
n) � 1 and (n

0) � 1 since there is only one way to choose a set of (all)
n elements or of no elements, and (n

1) � n since there are n subsets of size 1.

A bridge hand consists of any 13 cards selected from a 52-card deck without regard to
order. There are (5

1
2
3) � 52!/13!39! different bridge hands, which works out to approxi-

mately 635 billion. Since there are 13 cards in each suit, the number of hands consist-
ing entirely of clubs and/or spades (no red cards) is (2

1
6
3) � 26!/13!13! � 10,400,600.

One of these (2
1
6
3) hands consists entirely of spades, and one consists entirely of clubs, so

there are [(2
1
6
3) � 2] hands that consist entirely of clubs and spades with both suits rep-

resented in the hand. Suppose a bridge hand is dealt from a well-shuffled deck (i.e., 13
cards are randomly selected from among the 52 possibilities) and let

A � {the hand consists entirely of spades and clubs with both suits represented}

B � {the hand consists of exactly two suits}

The N � (5
1
2
3) possible outcomes are equally likely, so

P(A) � � � .0000164

Since there are (4
2) � 6 combinations consisting of two suits, of which spades and

clubs is one such combination,

P(B) � � .0000983

That is, a hand consisting entirely of cards from exactly two of the four suits will
occur roughly once in every 10,000 hands. If you play bridge only once a month, it
is likely that you will never be dealt such a hand. ■

A university warehouse has received a shipment of 25 printers, of which 10 are laser
printers and 15 are inkjet models. If 6 of these 25 are selected at random to be
checked by a particular technician, what is the probability that exactly 3 of those
selected are laser printers (so that the other 3 are inkjets)?

Let D3 � {exactly 3 of the 6 selected are inkjet printers}. Assuming that any
particular set of 6 printers is as likely to be chosen as is any other set of 6, we have
equally likely outcomes, so P(D3) � N(D3)/N, where N is the number of ways of
choosing 6 printers from the 25 and N(D3) is the number of ways of choosing 3 laser
printers and 3 inkjet models. Thus N � (2

6
5). To obtain N(D3), think of first choosing

3 of the 15 inkjet models and then 3 of the laser printers. There are (1
3
5) ways of choos-

ing the 3 inkjet models, and there are (1
3
0) ways of choosing the 3 laser printers; N(D3)
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is now the product of these two numbers (visualize a tree diagram—we are really
using a product rule argument here), so

P(D3) � � � � .3083

Let D4 � {exactly 4 of the 6 printers selected are inkjet models} and define D5 and
D6 in an analogous manner. Then the probability that at least 3 inkjet printers are
selected is

P(D3 � D4 � D5 � D6) � P(D3) � P(D4) � P(D5) � P(D6)

� � � � � .8530
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EXERCISES Section 2.3 (29–44)

29. As of April 2006, roughly 50 million .com web domain names
were registered (e.g., yahoo.com).
a. How many domain names consisting of just two letters in

sequence can be formed? How many domain names of
length two are there if digits as well as letters are per-
mitted as characters? [Note: A character length of three
or more is now mandated.]

b. How many domain names are there consisting of three
letters in sequence? How many of this length are there if
either letters or digits are permitted? [Note: All are cur-
rently taken.]

c. Answer the questions posed in (b) for four-character
sequences.

d. As of April 2006, 97,786 of the four-character sequences
using either letters or digits had not yet been claimed. If
a four-character name is randomly selected, what is the
probability that it is already owned?

30. A friend of mine is giving a dinner party. His current wine
supply includes 8 bottles of zinfandel, 10 of merlot, and 12
of cabernet (he only drinks red wine), all from different
wineries.
a. If he wants to serve 3 bottles of zinfandel and serving

order is important, how many ways are there to do this?
b. If 6 bottles of wine are to be randomly selected from the

30 for serving, how many ways are there to do this?
c. If 6 bottles are randomly selected, how many ways are

there to obtain two bottles of each variety?
d. If 6 bottles are randomly selected, what is the probability

that this results in two bottles of each variety being chosen?
e. If 6 bottles are randomly selected, what is the probabil-

ity that all of them are the same variety.

31. a. Beethoven wrote 9 symphonies and Mozart wrote 27
piano concertos. If a university radio station announcer
wishes to play first a Beethoven symphony and then a
Mozart concerto, in how many ways can this be
done?

b. The station manager decides that on each successive night
(7 days per week), a Beethoven symphony will be played,
followed by a Mozart piano concerto, followed by a
Schubert string quartet (of which there are 15). For roughly
how many years could this policy be continued before
exactly the same program would have to be repeated?

32. A stereo store is offering a special price on a complete set of
components (receiver, compact disc player, speakers, cassette
deck). A purchaser is offered a choice of manufacturer for each
component:

Receiver: Kenwood, Onkyo, Pioneer, Sony, Sherwood
Compact disc player: Onkyo, Pioneer, Sony, Technics
Speakers: Boston, Infinity, Polk
Cassette deck: Onkyo, Sony, Teac, Technics

A switchboard display in the store allows a customer to
hook together any selection of components (consisting of
one of each type). Use the product rules to answer the fol-
lowing questions:
a. In how many ways can one component of each type be

selected?
b. In how many ways can components be selected if 

both the receiver and the compact disc player are to 
be Sony?
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c. In how many ways can components be selected if none is
to be Sony?

d. In how many ways can a selection be made if at least one
Sony component is to be included?

e. If someone flips switches on the selection in a com-
pletely random fashion, what is the probability that the
system selected contains at least one Sony component?
Exactly one Sony component?

33. Again consider a Little League team that has 15 players on
its roster.
a. How many ways are there to select 9 players for the start-

ing lineup?
b. How many ways are there to select 9 players for the start-

ing lineup and a batting order for the 9 starters?
c. Suppose 5 of the 15 players are left-handed. How many

ways are there to select 3 left-handed outfielders and have
all 6 other positions occupied by right-handed players?

34. Shortly after being put into service, some buses manufactured
by a certain company have developed cracks on the underside
of the main frame. Suppose a particular city has 25 of these
buses, and cracks have actually appeared in 8 of them.
a. How many ways are there to select a sample of 5 buses

from the 25 for a thorough inspection?
b. In how many ways can a sample of 5 buses contain

exactly 4 with visible cracks?
c. If a sample of 5 buses is chosen at random, what is the

probability that exactly 4 of the 5 will have visible cracks?
d. If buses are selected as in part (c), what is the probability

that at least 4 of those selected will have visible cracks?

35. A production facility employs 20 workers on the day shift,
15 workers on the swing shift, and 10 workers on the grave-
yard shift. A quality control consultant is to select 6 of these
workers for in-depth interviews. Suppose the selection is
made in such a way that any particular group of 6 workers
has the same chance of being selected as does any other
group (drawing 6 slips without replacement from among 45).
a. How many selections result in all 6 workers coming from

the day shift? What is the probability that all 6 selected
workers will be from the day shift?

b. What is the probability that all 6 selected workers will be
from the same shift?

c. What is the probability that at least two different shifts
will be represented among the selected workers?

d. What is the probability that at least one of the shifts will
be unrepresented in the sample of workers?

36. An academic department with five faculty members nar-
rowed its choice for department head to either candidate A
or candidate B. Each member then voted on a slip of paper
for one of the candidates. Suppose there are actually three
votes for A and two for B. If the slips are selected for tally-
ing in random order, what is the probability that A remains
ahead of B throughout the vote count (e.g., this event occurs
if the selected ordering is AABAB, but not for ABBAA)?

37. An experimenter is studying the effects of temperature, pres-
sure, and type of catalyst on yield from a certain chemical

reaction. Three different temperatures, four different pres-
sures, and five different catalysts are under consideration.
a. If any particular experimental run involves the use of a

single temperature, pressure, and catalyst, how many
experimental runs are possible?

b. How many experimental runs are there that involve use
of the lowest temperature and two lowest pressures?

c. Suppose that five different experimental runs are to be made
on the first day of experimentation. If the five are randomly
selected from among all the possibilities, so that any group
of five has the same probability of selection, what is the
probability that a different catalyst is used on each run?

38. A box in a certain supply room contains four 40-W light-
bulbs, five 60-W bulbs, and six 75-W bulbs. Suppose that
three bulbs are randomly selected.
a. What is the probability that exactly two of the selected

bulbs are rated 75 W?
b. What is the probability that all three of the selected bulbs

have the same rating?
c. What is the probability that one bulb of each type is

selected?
d. Suppose now that bulbs are to be selected one by one

until a 75-W bulb is found. What is the probability that it
is necessary to examine at least six bulbs?

39. Fifteen telephones have just been received at an authorized
service center. Five of these telephones are cellular, five
are cordless, and the other five are corded phones. Suppose
that these components are randomly allocated the numbers
1, 2, . . . , 15 to establish the order in which they will be
serviced.
a. What is the probability that all the cordless phones are

among the first ten to be serviced?
b. What is the probability that after servicing ten of these

phones, phones of only two of the three types remain to
be serviced?

c. What is the probability that two phones of each type are
among the first six serviced?

40. Three molecules of type A, three of type B, three of type C,
and three of type D are to be linked together to form a chain
molecule. One such chain molecule is ABCDABCDABCD,
and another is BCDDAAABDBCC.
a. How many such chain molecules are there? [Hint: If the

three A’s were distinguishable from one another—A1, A2,
A3—and the B’s, C’s, and D’s were also, how many mol-
ecules would there be? How is this number reduced
when the subscripts are removed from the A’s?]

b. Suppose a chain molecule of the type described is ran-
domly selected. What is the probability that all three
molecules of each type end up next to one another (such
as in BBBAAADDDCCC)?

41. A mathematics professor wishes to schedule an appoint-
ment with each of her eight teaching assistants, four men
and four women, to discuss her calculus course. Suppose
all possible orderings of appointments are equally likely to
be selected.
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a. What is the probability that at least one female assistant
is among the first three with whom the professor meets?

b. What is the probability that after the first five appointments
she has met with all female assistants?

c. Suppose the professor has the same eight assistants the fol-
lowing semester and again schedules appointments without
regard to the ordering during the first semester. What is the
probability that the orderings of appointments are different?

42. Three married couples have purchased theater tickets and are
seated in a row consisting of just six seats. If they take their
seats in a completely random fashion (random order), what
is the probability that Jim and Paula (husband and wife) sit
in the two seats on the far left? What is the probability that

Jim and Paula end up sitting next to one another? What is the
probability that at least one of the wives ends up sitting next
to her husband?

43. In five-card poker, a straight consists of five cards with adja-
cent denominations (e.g., 9 of clubs, 10 of hearts, jack of
hearts, queen of spades, and king of clubs). Assuming that
aces can be high or low, if you are dealt a five-card hand,
what is the probability that it will be a straight with high
card 10? What is the probability that it will be a straight?
What is the probability that it will be a straight flush (all
cards in the same suit)?

44. Show that (n
k) � (n�

n
k). Give an interpretation involving sub-

sets.

2.4 Conditional Probability

The probabilities assigned to various events depend on what is known about the exper-
imental situation when the assignment is made. Subsequent to the initial assignment,
partial information relevant to the outcome of the experiment may become available.
Such information may cause us to revise some of our probability assignments. For a
particular event A, we have used P(A) to represent the probability assigned to A; we
now think of P(A) as the original or unconditional probability of the event A.

In this section, we examine how the information “an event B has occurred” affects
the probability assigned to A. For example, A might refer to an individual having a par-
ticular disease in the presence of certain symptoms. If a blood test is performed on the
individual and the result is negative (B � negative blood test), then the probability of
having the disease will change (it should decrease, but not usually to zero, since blood
tests are not infallible). We will use the notation P(A⏐B) to represent the conditional
probability of A given that the event B has occurred. B is the “conditioning event.”

As an example, consider the event A that a randomly selected student at your
university obtained all desired classes during the previous term’s registration cycle.
Presumably P(A) is not very large. However, suppose the selected student is an ath-
lete who gets special registration priority (the event B). Then P(A⏐B) should be sub-
stantially larger than P(A), although perhaps still not close to 1.

Complex components are assembled in a plant that uses two different assembly
lines, A and A. Line A uses older equipment than A, so it is somewhat slower and
less reliable. Suppose on a given day line A has assembled 8 components, of which
2 have been identified as defective (B) and 6 as nondefective (B), whereas A has
produced 1 defective and 9 nondefective components. This information is summa-
rized in the accompanying table.

Example 2.24

Condition

B B

A 2 6
Line A� 1 9

Unaware of this information, the sales manager randomly selects 1 of these 18 
components for a demonstration. Prior to the demonstration



P(line A component selected) � P(A) � � � .44

However, if the chosen component turns out to be defective, then the event B has
occurred, so the component must have been 1 of the 3 in the B column of the table.
Since these 3 components are equally likely among themselves after B has occurred,

P(A⏐B) � �
2

3
� � � (2.2)

■

In Equation (2.2), the conditional probability is expressed as a ratio of uncondi-
tional probabilities: The numerator is the probability of the intersection of the two
events, whereas the denominator is the probability of the conditioning event B. A
Venn diagram illuminates this relationship (Figure 2.8).

Figure 2.8 Motivating the definition of conditional probability

Given that B has occurred, the relevant sample space is no longer S but consists
of outcomes in B; A has occurred if and only if one of the outcomes in the intersection
occurred, so the conditional probability of A given B is proportional to P(A � B). The
proportionality constant 1/P(B) is used to ensure that the probability P(B⏐B) of the
new sample space B equals 1.

The Definition of Conditional Probability
Example 2.24 demonstrates that when outcomes are equally likely, computation of
conditional probabilities can be based on intuition. When experiments are more
complicated, though, intuition may fail us, so a general definition of conditional
probability is needed that will yield intuitive answers in simple problems. The Venn
diagram and Equation (2.2) suggest how to proceed.

A

B

P(A � B)
��

P(B)

�
1

2

8
�

�

�
1

3

8
�

8
�
18

N(A)
�

N
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DEFINITION For any two events A and B with P(B) � 0, the conditional probability of A
given that B has occurred is defined by

P(A⏐B) � (2.3)
P(A � B)
��

P(B)

Suppose that of all individuals buying a certain digital camera, 60% include an optional
memory card in their purchase, 40% include an extra battery, and 30% include both a
card and battery. Consider randomly selecting a buyer and let A � {memory card pur-
chased} and B � {battery purchased}. Then P(A) � .60, P(B) � .40, and P(both pur-
chased) � P(A � B) � .30. Given that the selected individual purchased an extra
battery, the probability that an optional card was also purchased is

P(A⏐B) � � � .75
.30
�
.40

P(A � B)
��

P(B)

Example 2.25



That is, of all those purchasing an extra battery, 75% purchased an optional memory
card. Similarly,

P(battery⏐memory card) � P(B⏐A) � � � .50

Notice that P(A⏐B) � P(A) and P(B⏐A) � P(B). ■

The event whose probability is desired might be a union or intersection of other
events, and the same could be true of the conditioning event.

A news magazine publishes three columns entitled “Art” (A), “Books” (B), and
“Cinema” (C). Reading habits of a randomly selected reader with respect to these
columns are

Read regularly A B C A � B A � C B � C A � B � C
Probability .14 .23 .37 .08 .09 .13 .05

Figure 2.9 illustrates relevant probabilities.

Figure 2.9 Venn diagram for Example 2.26

We thus have

P(A⏐B) � � � .348

P(A⏐B � C) � � � � .255

P(A⏐reads at least one) � P(A⏐A � B � C) �

� � � .286

and

P(A � B⏐C) � � � .459 ■

The Multiplication Rule for P(A � B)
The definition of conditional probability yields the following result, obtained by
multiplying both sides of Equation (2.3) by P(B).

.04 � .05 � .08
��

.37

P((A � B) � C)
��

P(C)

.14
�
.49

P(A)
��
P(A � B � C)

P(A � (A � B � C))
���

P(A � B � C)

.12
�
.47

.04 � .05 � .03
��

.47

P(A � (B � C))
��

P(B � C)

.08
�
.23

P(A � B)
��

P(B)

.02 .03 .07
.05

.04 .08

.20
.51

A B

C

.30
�
.60

P(A � B)
��

P(A)
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Example 2.26

The Multiplication Rule

P(A � B) � P(A⏐B) � P(B)



This rule is important because it is often the case that P(A � B) is desired,
whereas both P(B) and P(A⏐B) can be specified from the problem description.
Consideration of P(B⏐A) gives P(A � B) � P(B⏐A) � P(A).

Four individuals have responded to a request by a blood bank for blood donations. None
of them has donated before, so their blood types are unknown. Suppose only type O�
is desired and only one of the four actually has this type. If the potential donors are
selected in random order for typing, what is the probability that at least three individu-
als must be typed to obtain the desired type?

Making the identification B � {first type not O�} and A � {second type not
O�}, P(B) � �

3
4

�. Given that the first type is not O�, two of the three individuals left are
not O�, so P(A⏐B) � �

2
3

�. The multiplication rule now gives

P(at least three individuals are typed) � P(A � B)

� P(A⏐B) � P(B)

� � �

� .5 ■

The multiplication rule is most useful when the experiment consists of several
stages in succession. The conditioning event B then describes the outcome of the first
stage and A the outcome of the second, so that P(A⏐B)—conditioning on what occurs
first—will often be known. The rule is easily extended to experiments involving more
than two stages. For example,

P(A1 � A2 � A3) � P(A3⏐A1 � A2) � P(A1 � A2)

� P(A3⏐A1 � A2) � P(A2⏐A1) � P(A1) (2.4)

where A1 occurs first, followed by A2, and finally A3.

For the blood typing experiment of Example 2.27,

P(third type is O�) � P(third is⏐first isn’t � second isn’t)

� P(second isn’t⏐first isn’t) � P(first isn’t)

� � � � � .25 ■

When the experiment of interest consists of a sequence of several stages, it is
convenient to represent these with a tree diagram. Once we have an appropriate tree
diagram, probabilities and conditional probabilities can be entered on the various
branches; this will make repeated use of the multiplication rule quite straightforward.

A chain of video stores sells three different brands of DVD players. Of its DVD
player sales, 50% are brand 1 (the least expensive), 30% are brand 2, and 20% are
brand 3. Each manufacturer offers a 1-year warranty on parts and labor. It is known
that 25% of brand 1’s DVD players require warranty repair work, whereas the cor-
responding percentages for brands 2 and 3 are 20% and 10%, respectively.

1. What is the probability that a randomly selected purchaser has bought a brand 1
DVD player that will need repair while under warranty?

2. What is the probability that a randomly selected purchaser has a DVD player that
will need repair while under warranty?

3. If a customer returns to the store with a DVD player that needs warranty repair work,
what is the probability that it is a brand 1 DVD player A brand 2 DVD player?
A brand 3 DVD player?

1
�
4

3
�
4

2
�
3

1
�
2

6
�
12

3
�
4

2
�
3
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Example 2.27

Example 2.28

Example 2.29



The first stage of the problem involves a customer selecting one of the three
brands of DVD player. Let Ai � {brand i is purchased}, for i � 1, 2, and 3. Then
P(A1) � .50, P(A2) � .30, and P(A3) � .20. Once a brand of DVD player is selected,
the second stage involves observing whether the selected DVD player needs war-
ranty repair. With B � {needs repair} and B � {doesn’t need repair}, the given
information implies that P(B⏐A1) � .25, P(B⏐A2) � .20, and P(B⏐A3) � .10.

The tree diagram representing this experimental situation is shown in Figure 2.10.
The initial branches correspond to different brands of DVD players; there are two
second-generation branches emanating from the tip of each initial branch, one for
“needs repair” and the other for “doesn’t need repair.” The probability P(Ai) appears
on the ith initial branch, whereas the conditional probabilities P(B⏐Ai) and P(B�⏐Ai)
appear on the second-generation branches. To the right of each second-generation
branch corresponding to the occurrence of B, we display the product of probabilities
on the branches leading out to that point. This is simply the multiplication rule in
action. The answer to the question posed in 1 is thus P(A1 � B) � P(B⏐A1) �
P(A1) � .125. The answer to question 2 is

P(B) � P[(brand 1 and repair) or (brand 2 and repair) or (brand 3 and repair)]

� P(A1 � B) � P(A2 � B) � P(A3 � B)

� .125 � .060 � .020 � .205
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Brand 2

Bran
d 1

Brand 3

P(A
3 ) � .20

P(A 1)
� .5

0

P(A2) � .30
P(B  �  A2) � .20

Repair

P(B'   �  A2) � .80
No repair

P(B  �  A3) � .10

Repair

P(B'  �  A3) � .90
No repair

P(B'   �  A1) � .75
No repair

P(B �  A1) � .25

Repair

P(B �  A3) � P(A3) � P(B � A3) � .020

P(B   �  A2) � P(A2) � P(B � A2) � .060

P(B �  A1) � P(A1) � P(B � A1) � .125

P(B) � .205

Figure 2.10 Tree diagram for Example 2.29

Finally,

P(A1⏐B) � � � .61

P(A2⏐B) � � � .29

and

P(A3⏐B) � 1 � P(A1⏐B) � P(A2⏐B) � .10

.060
�
.205

P(A2 � B)
��

P(B)

.125
�
.205

P(A1 � B)
��

P(B)



The initial or prior probability of brand 1 is .50. Once it is known that the
selected DVD player needed repair, the posterior probability of brand 1 increases to
.61. This is because brand 1 DVD players are more likely to need warranty repair
than are the other brands. The posterior probability of brand 3 is P(A3⏐B) � .10,
which is much less than the prior probability P(A3) � .20. ■

Bayes’ Theorem
The computation of a posterior probability P(Aj⏐B) from given prior probabilities
P(Ai) and conditional probabilities P(B⏐Ai) occupies a central position in elementary
probability. The general rule for such computations, which is really just a simple
application of the multiplication rule, goes back to Reverend Thomas Bayes, who
lived in the eighteenth century. To state it we first need another result. Recall that
events A1, . . . , Ak are mutually exclusive if no two have any common outcomes. The
events are exhaustive if one Ai must occur, so that A1 � . . . � Ak � S.
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The Law of Total Probability

Let A1, . . . , Ak be mutually exclusive and exhaustive events. Then for any
other event B,

P(B) � P(B⏐A1)P(A1) � . . . � P(B⏐Ak)P(Ak) (2.5)

� �
k

i�1
P(B⏐Ai)P(Ai)

Proof Because the Ai s are mutually exclusive and exhaustive, if B occurs it must
be in conjunction with exactly one of the Ai’s. That is, B � (A1 � B) � . . . � 
(Ak � B), where the events (Ai � B) are mutually exclusive. This “partitioning of B”
is illustrated in Figure 2.11. Thus

P(B) � �
k

i�1
P(Ai � B) � �

k

i�1
P(B⏐Ai)P(Ai)

as desired.

Figure 2.11 Partition of B by mutually exclusive and exhaustive Ai’s ■

An example of the use of Equation (2.5) appeared in answering question 2 of
Example 2.29, where A1 � {brand 1}, A2 � {brand 2}, A3 � {brand 3}, and B �
{repair}.

A1

A2

A3

B

A4



The transition from the second to the third expression in (2.6) rests on using the
multiplication rule in the numerator and the law of total probability in the denomina-
tor. The proliferation of events and subscripts in (2.6) can be a bit intimidating to
probability newcomers. As long as there are relatively few events in the partition, a
tree diagram (as in Example 2.29) can be used as a basis for calculating posterior
probabilities without ever referring explicitly to Bayes’ theorem.

Incidence of a rare disease. Only 1 in 1000 adults is afflicted with a rare disease for
which a diagnostic test has been developed. The test is such that when an individual
actually has the disease, a positive result will occur 99% of the time, whereas an
individual without the disease will show a positive test result only 2% of the time. If
a randomly selected individual is tested and the result is positive, what is the proba-
bility that the individual has the disease?

To use Bayes’ theorem, let A1 � {individual has the disease}, A2 � {individ-
ual does not have the disease}, and B � {positive test result}. Then P(A1) � .001,
P(A2) � .999, P(B⏐A1) � .99, and P(B⏐A2) � .02. The tree diagram for this prob-
lem is in Figure 2.12.
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Example 2.30

A
2 � Doesn't have disease

A1
� Has disease.001

.999 .02

B � �Test

.98

B' � �Test

.01

B' � �Test

.99

B � �Test

P(A1 � B) � .00099

P(A2 � B) � .01998

Figure 2.12 Tree diagram for the rare-disease problem

Next to each branch corresponding to a positive test result, the multiplication
rule yields the recorded probabilities. Therefore, P(B) � .00099 � .01998 � .02097,
from which we have

P(A1⏐B) � � � .047

This result seems counterintuitive; the diagnostic test appears so accurate we expect
someone with a positive test result to be highly likely to have the disease, whereas the
computed conditional probability is only .047. However, because the disease is rare
and the test only moderately reliable, most positive test results arise from errors rather

.00099
�
.02097

P(A1 � B)
��

P(B)

Bayes’ Theorem

Let A1, A2, . . . , Ak be a collection of k mutually exclusive and exhaustive events
with prior probabilities P(Ai) (i � 1, . . . , k). Then for any other event B for
which P(B) � 0, the posterior probability of Aj given that B has occurred is

P(Aj⏐B) � � j � 1, . . . , k (2.6)
P(B⏐Aj)P(Aj)

��

�
k

i�1
P(B⏐Ai) � P(Ai)

P(Aj � B)
��

P(B)



than from diseased individuals. The probability of having the disease has increased
by a multiplicative factor of 47 (from prior .001 to posterior .047); but to get a further
increase in the posterior probability, a diagnostic test with much smaller error rates is
needed. If the disease were not so rare (e.g., 25% incidence in the population), then
the error rates for the present test would provide good diagnoses. ■
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45. The population of a particular country consists of three eth-
nic groups. Each individual belongs to one of the four major
blood groups. The accompanying joint probability table
gives the proportions of individuals in the various ethnic
group–blood group combinations.

Suppose that an individual is randomly selected from the
population, and define events by A � {type A selected},
B � {type B selected}, and C � {ethnic group 3 selected}.
a. Calculate P(A), P(C), and P(A � C).
b. Calculate both P(A⏐C) and P(C⏐A), and explain in con-

text what each of these probabilities represents.
c. If the selected individual does not have type B blood, what

is the probability that he or she is from ethnic group 1?

46. Suppose an individual is randomly selected from the popu-
lation of all adult males living in the United States. Let A be
the event that the selected individual is over 6 ft in height,
and let B be the event that the selected individual is a pro-
fessional basketball player. Which do you think is larger,
P(A⏐B) or P(B⏐A)? Why?

47. Return to the credit card scenario of Exercise 12 (Section
2.2), where A � {Visa}, B � {MasterCard}, P(A) � .5,
P(B) � .4, and P(A � B) � .25. Calculate and interpret
each of the following probabilities (a Venn diagram might
help).
a. P(B⏐A) b. P(B⏐A)
c. P(A⏐B) d. P(A⏐B)
e. Given that the selected individual has at least one card,

what is the probability that he or she has a Visa card?

48. Reconsider the system defect situation described in Exercise
26 (Section 2.2).
a. Given that the system has a type 1 defect, what is the

probability that it has a type 2 defect?
b. Given that the system has a type 1 defect, what is the

probability that it has all three types of defects?
c. Given that the system has at least one type of defect, what

is the probability that it has exactly one type of defect?

d. Given that the system has both of the first two types of
defects, what is the probability that it does not have the
third type of defect?

49. If two bulbs are randomly selected from the box of light-
bulbs described in Exercise 38 (Section 2.3) and at least one
of them is found to be rated 75 W, what is the probability
that both of them are 75-W bulbs? Given that at least one of
the two selected is not rated 75 W, what is the probability
that both selected bulbs have the same rating?

50. A department store sells sport shirts in three sizes (small,
medium, and large), three patterns (plaid, print, and
stripe), and two sleeve lengths (long and short). The
accompanying tables give the proportions of shirts sold in
the various category combinations.

Short-sleeved

Pattern

Size Pl Pr St

S .04 .02 .05
M .08 .07 .12
L .03 .07 .08

Long-sleeved

Pattern

Size Pl Pr St

S .03 .02 .03
M .10 .05 .07
L .04 .02 .08

a. What is the probability that the next shirt sold is a
medium, long-sleeved, print shirt?

b. What is the probability that the next shirt sold is a
medium print shirt?

c. What is the probability that the next shirt sold is a short-
sleeved shirt? A long-sleeved shirt?

d. What is the probability that the size of the next shirt sold is
medium? That the pattern of the next shirt sold is a print?

e. Given that the shirt just sold was a short-sleeved plaid,
what is the probability that its size was medium?

f. Given that the shirt just sold was a medium plaid, what is
the probability that it was short-sleeved? Long-sleeved?

EXERCISES Section 2.4 (45–69)

Blood Group

O A B AB

1 .082 .106 .008 .004
Ethnic Group 2 .135 .141 .018 .006

3 .215 .200 .065 .020
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51. One box contains six red balls and four green balls, and a
second box contains seven red balls and three green balls. A
ball is randomly chosen from the first box and placed in the
second box. Then a ball is randomly selected from the sec-
ond box and placed in the first box.
a. What is the probability that a red ball is selected from the

first box and a red ball is selected from the second box?
b. At the conclusion of the selection process, what is the

probability that the numbers of red and green balls in the
first box are identical to the numbers at the beginning?

52. A system consists of two identical pumps, #1 and #2. If one
pump fails, the system will still operate. However, because of
the added strain, the extra remaining pump is now more likely
to fail than was originally the case. That is, r � P(#2 fails ⏐
#1 fails) � P(#2 fails) � q. If at least one pump fails by the
end of the pump design life in 7% of all systems and both
pumps fail during that period in only 1%, what is the proba-
bility that pump #1 will fail during the pump design life?

53. A certain shop repairs both audio and video components.
Let A denote the event that the next component brought in
for repair is an audio component, and let B be the event that
the next component is a compact disc player (so the event B
is contained in A). Suppose that P(A) � .6 and P(B) � .05.
What is P(B⏐A)?

54. In Exercise 13, Ai � {awarded project i}, for i � 1, 2, 3.
Use the probabilities given there to compute the following
probabilities, and explain in words the meaning of each one.
a. P(A2⏐A1) b. P(A2 � A3⏐A1) c. P(A2 � A3⏐A1)
d. P(A1 � A2 � A3⏐A1 � A2 � A3).

55. Deer ticks can be carriers of either Lyme disease or human
granulocytic ehrlichiosis (HGE). Based on a recent study,
suppose that 16% of all ticks in a certain location carry
Lyme disease, 10% carry HGE, and 10% of the ticks that
carry at least one of these diseases in fact carry both of
them. If a randomly selected tick is found to have carried
HGE, what is the probability that the selected tick is also a
carrier of Lyme disease?

56. For any events A and B with P(B) � 0, show that P(A⏐B) �
P(A⏐B) � 1.

57. If P(B⏐A) � P(B), show that P(B⏐A) � P(B). [Hint: Add
P(B⏐A) to both sides of the given inequality and then use
the result of Exercise 56.]

58. Show that for any three events A, B, and C with P(C) � 0,
P(A � B⏐C) � P(A⏐C) � P(B⏐C) � P(A � B⏐C).

59. At a certain gas station, 40% of the customers use regular
gas (A1), 35% use plus gas (A2), and 25% use premium (A3).
Of those customers using regular gas, only 30% fill their
tanks (event B). Of those customers using plus, 60% fill
their tanks, whereas of those using premium, 50% fill their
tanks.
a. What is the probability that the next customer will

request plus gas and fill the tank (A2 � B)?
b. What is the probability that the next customer fills the

tank?

c. If the next customer fills the tank, what is the probability
that regular gas is requested? Plus? Premium?

60. Seventy percent of the light aircraft that disappear while in
flight in a certain country are subsequently discovered. Of
the aircraft that are discovered, 60% have an emergency
locator, whereas 90% of the aircraft not discovered do not
have such a locator. Suppose a light aircraft has disappeared.
a. If it has an emergency locator, what is the probability

that it will not be discovered?
b. If it does not have an emergency locator, what is the

probability that it will be discovered?

61. Components of a certain type are shipped to a supplier in
batches of ten. Suppose that 50% of all such batches contain
no defective components, 30% contain one defective com-
ponent, and 20% contain two defective components. Two
components from a batch are randomly selected and tested.
What are the probabilities associated with 0, 1, and 2 defec-
tive components being in the batch under each of the fol-
lowing conditions?
a. Neither tested component is defective.
b. One of the two tested components is defective. [Hint:

Draw a tree diagram with three first-generation branches
for the three different types of batches.]

62. A company that manufactures video cameras produces a
basic model and a deluxe model. Over the past year, 40% of
the cameras sold have been of the basic model. Of those
buying the basic model, 30% purchase an extended war-
ranty, whereas 50% of all deluxe purchasers do so. If you
learn that a randomly selected purchaser has an extended
warranty, how likely is it that he or she has a basic model?

63. For customers purchasing a refrigerator at a certain appli-
ance store, let A be the event that the refrigerator was man-
ufactured in the U.S., B be the event that the refrigerator had
an icemaker, and C be the event that the customer purchased
an extended warranty. Relevant probabilities are.

P(A) � .75 P(B⏐A) � .9 P(B⏐A) � .8

P(C⏐A � B) � .8 P(C⏐A � B) � .6

P(C⏐A � B) � .7 P(C⏐A � B) � .3

a. Construct a tree diagram consisting of first-, second-, and
third-generation branches and place an event label and
appropriate probability next to each branch.

b. Compute P(A � B � C).
c. Compute P(B � C).
d. Compute P(C).
e. Compute P(A⏐B � C), the probability of a U.S. purchase

given that an icemaker and extended warranty are also
purchased.

64. In Example 2.30, suppose that the incidence rate for the dis-
ease is 1 in 25 rather than 1 in 1000. What then is the prob-
ability of a positive test result? Given that the test result is
positive, what is the probability that the individual has the
disease? Given a negative test result, what is the probability
that the individual does not have the disease?



The definition of conditional probability enables us to revise the probability P(A)
originally assigned to A when we are subsequently informed that another event B has
occurred; the new probability of A is P(A⏐B). In our examples, it was frequently the
case that P(A⏐B) differed from the unconditional probability P(A), indicating that the
information “B has occurred” resulted in a change in the chance of A occurring.
Often the chance that A will occur or has occurred is not affected by knowledge that
B has occurred, so that P(A⏐B) � P(A). It is then natural to regard A and B as inde-
pendent events, meaning that the occurrence or nonoccurrence of one event has no
bearing on the chance that the other will occur.
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65. At a large university, in the never-ending quest for a satis-
factory textbook, the Statistics Department has tried a differ-
ent text during each of the last three quarters. During the fall
quarter, 500 students used the text by Professor Mean; dur-
ing the winter quarter, 300 students used the text by
Professor Median; and during the spring quarter, 200 stu-
dents used the text by Professor Mode. A survey at the end
of each quarter showed that 200 students were satisfied with
Mean’s book, 150 were satisfied with Median’s book, and
160 were satisfied with Mode’s book. If a student who took
statistics during one of these quarters is selected at random
and admits to having been satisfied with the text, is the stu-
dent most likely to have used the book by Mean, Median, or
Mode? Who is the least likely author? [Hint: Draw a tree dia-
gram or use Bayes’ theorem.]

66. Consider the following information about travelers on vaca-
tion (based partly on a recent Travelocity poll): 40% check
work email, 30% use a cell phone to stay connected to work,
25% bring a laptop with them, 23% both check work e-mail
and use a cell phone to stay connected, and 51% neither
check work email nor use a cell phone to stay connected nor
bring a laptop. In addition, 88 out of every 100 who bring a
laptop also check work email, and 70 out of every 100 who
use a cell phone to stay connected also bring a laptop.
a. What is the probability that a randomly selected traveler

who checks work email also uses a cell phone to stay
connected?

b. What is the probability that someone who brings a laptop
on vacation also uses a cell phone to stay connected?

c. If the randomly selected traveler checked work email and
brought a laptop, what is the probability that he/she uses
a cell phone to stay connected?

67. There has been a great deal of controversy over the last several
years regarding what types of surveillance are appropriate to
prevent terrorism. Suppose a particular surveillance system
has a 99% chance of correctly identifying a future terrorist and
a 99.9% chance of correctly identifying someone who is not a
future terrorist. If there are 1000 future terrorists in a population
of 300 million, and one of these 300 million is randomly

selected, scrutinized by the system, and identified as a future
terrorist, what is the probability that he/she actually is a future
terrorist? Does the value of this probability make you uneasy
about using the surveillance system? Explain.

68. A friend who lives in Los Angeles makes frequent consult-
ing trips to Washington, D.C.; 50% of the time she travels
on airline #1, 30% of the time on airline #2, and the remain-
ing 20% of the time on airline #3. For airline #1, flights are
late into D.C. 30% of the time and late into L.A. 10% of the
time. For airline #2, these percentages are 25% and 20%,
whereas for airline #3 the percentages are 40% and 25%. If
we learn that on a particular trip she arrived late at exactly
one of the two destinations, what are the posterior proba-
bilities of having flown on airlines #1, #2, and #3? Assume
that the chance of a late arrival in L.A. is unaffected by
what happens on the flight to D.C. [Hint: From the tip of
each first-generation branch on a tree diagram, draw three
second-generation branches labeled, respectively, 0 late, 1
late, and 2 late.]

69. In Exercise 59, consider the following additional informa-
tion on credit card usage:

70% of all regular fill-up customers use a credit card.

50% of all regular non-fill-up customers use a credit card.

60% of all plus fill-up customers use a credit card.

50% of all plus non-fill-up customers use a credit card.

50% of all premium fill-up customers use a credit card.

40% of all premium non-fill-up customers use a credit card.

Compute the probability of each of the following events for
the next customer to arrive (a tree diagram might help).
a. {plus and fill-up and credit card}
b. {premium and non-fill-up and credit card}
c. {premium and credit card}
d. {fill-up and credit card}
e. {credit card}
f. If the next customer uses a credit card, what is the prob-

ability that premium was requested?

2.5 Independence



The definition of independence might seem “unsymmetric” because we do not
also demand that P(B⏐A) � P(B). However, using the definition of conditional prob-
ability and the multiplication rule,

P(B⏐A) � � (2.7)

The right-hand side of Equation (2.7) is P(B) if and only if P(A⏐B) � P(A)
(independence), so the equality in the definition implies the other equality (and vice
versa). It is also straightforward to show that if A and B are independent, then so are
the following pairs of events: (1) A and B, (2) A and B, and (3) A and B.

Consider a gas station with six pumps numbered 1, 2, . . . , 6 and let Ei denote the
simple event that a randomly selected customer uses pump i ( i � 1, . . . , 6). Suppose
that P(E1) � P(E6) � .10, P(E2) � P(E5) � .15, and P(E3) � P(E4) � .25. Define
events A, B, C by A � {2, 4, 6}, B � {1, 2, 3}, and C � {2, 3, 4, 5}. We then have
P(A) � .50, P(A⏐B) � .30, and P(A⏐C) � .50. That is, events A and B are depen-
dent, whereas events A and C are independent. Intuitively, A and C are independent
because the relative division of probability among even- and odd-numbered pumps
is the same among pumps 2, 3, 4, 5 as it is among all six pumps. ■

Let A and B be any two mutually exclusive events with P(A) � 0. For example, for
a randomly chosen automobile, let A � {the car has four cylinders} and B � {the
car has six cylinders}. Since the events are mutually exclusive, if B occurs, then A
cannot possibly have occurred, so P(A⏐B) � 0 � P(A). The message here is that if
two events are mutually exclusive, they cannot be independent. When A and B are
mutually exclusive, the information that A occurred says something about B (it can-
not have occurred), so independence is precluded. ■

The Multiplication Rule for P(A � B)
Frequently the nature of an experiment suggests that two events A and B should be
assumed independent. This is the case, for example, if a manufacturer receives a cir-
cuit board from each of two different suppliers, each board is tested on arrival, and
A � {first is defective} and B � {second is defective}. If P(A) � .1, it should also be
the case that P(A⏐B) � .1; knowing the condition of the second board shouldn’t pro-
vide information about the condition of the first. Our next result shows how to com-
pute P(A � B) when the events are independent.

P(A⏐B)P(B)
��

P(A)

P(A � B)
��

P(A)
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DEFINITION Two events A and B are independent if P(A⏐B) � P(A) and are dependent
otherwise.

A and B are independent if and only if

P(A � B) � P(A) � P(B) (2.8)

PROPOSITION

Example 2.31

Example 2.32



To paraphrase the proposition, A and B are independent events iff* the proba-
bility that they both occur (A � B) is the product of the two individual probabilities.
The verification is as follows:

P(A � B) � P(A⏐B) � P(B) � P(A) � P(B) (2.9)

where the second equality in Equation (2.9) is valid iff A and B are independent.
Because of the equivalence of independence with Equation (2.8), the latter can be
used as a definition of independence.

It is known that 30% of a certain company’s washing machines require service while
under warranty, whereas only 10% of its dryers need such service. If someone pur-
chases both a washer and a dryer made by this company, what is the probability that
both machines need warranty service?

Let A denote the event that the washer needs service while under warranty, and
let B be defined analogously for the dryer. Then P(A) � .30 and P(B) � .10. Assuming
that the two machines function independently of one another, the desired probability is

P(A � B) � P(A) � P(B) � (.30)(.10) � .03 ■

It is straightforward to show that A and B are independent iff A and B are inde-
pendent, A and B are independent, and Aand B are independent. Thus in Example
2.33, the probability that neither machine needs service is

P(A � B) � P(A) � P(B) � (.70)(.90) � .63

Each day, Monday through Friday, a batch of components sent by a first supplier arrives
at a certain inspection facility. Two days a week, a batch also arrives from a second sup-
plier. Eighty percent of all supplier 1’s batches pass inspection, and 90% of supplier 2’s
do likewise. What is the probability that, on a randomly selected day, two batches pass
inspection? We will answer this assuming that on days when two batches are tested,
whether the first batch passes is independent of whether the second batch does so.
Figure 2.13 displays the relevant information.
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* iff is an abbreviation for “if and only if.”

Example 2.33

Example 2.34

2 batches

1 batch
.6

.4 .8

1st passes

.2

1st fails

.2

Fails

.8

Passes

.9

2nd passes

.1

2nd fails
.9

2nd passes

.1

2nd fails

.4 �  (.8 �  .9)

Figure 2.13 Tree diagram for Example 2.34

P(two pass) � P(two received � both pass)

� P(both pass⏐two received) � P(two received)

� [(.8)(.9)](.4) � .288 ■



Independence of More Than Two Events
The notion of independence of two events can be extended to collections of more
than two events. Although it is possible to extend the definition for two independent
events by working in terms of conditional and unconditional probabilities, it is more
direct and less cumbersome to proceed along the lines of the last proposition.
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Events A1, . . . , An are mutually independent if for every k (k � 2, 3, . . . , n) and
every subset of indices i1, i2, . . . , ik,

P(Ai1
� Ai2

� . . . � Aik
) � P(Ai1

) � P(Ai2
) � . . . � P(Aik

).

DEFINITION

To paraphrase the definition, the events are mutually independent if the probabil-
ity of the intersection of any subset of the n events is equal to the product of the indi-
vidual probabilities. In using the multiplication property for more than two independent
events, it is legitimate to replace one or more of the Ais by their complements (e.g., if
A1, A2, and A3 are independent events, so are A1, A2, and A3). As was the case with two
events, we frequently specify at the outset of a problem the independence of certain
events. The probability of an intersection can then be calculated via multiplication.

The article “Reliability Evaluation of Solar Photovoltaic Arrays” (Solar Energy, 2002:
129–141) presents various configurations of solar photovoltaic arrays consisting of
crystalline silicon solar cells. Consider first the system illustrated in Figure 2.14(a).

Example 2.35

There are two subsystems connected in parallel, each one containing three cells. In
order for the system to function, at least one of the two parallel subsystems must work.
Within each subsystem, the three cells are connected in series, so a subsystem will
work only if all cells in the subsystem work. Consider a particular lifetime value t0, and
supose we want to determine the probability that the system lifetime exceeds t0. Let Ai

denote the event that the lifetime of cell i exceeds t0 (i � 1, 2, . . . , 6). We assume that
the Ais are independent events (whether any particular cell lasts more than t0 hours has
no bearing on whether or not any other cell does) and that P(Ai) � .9 for every i since
the cells are identical. Then

P(system lifetime exceeds t0) � P[(A1 � A2 � A3) � (A4 � A5 � A6)]

� P(A1 � A2 � A3) � P(A4 � A5 � A6)

� P [(A1 � A2 � A3) � (A4 � A5 � A6)]

� (.9)(.9)(.9) � (.9)(.9)(.9) � (.9)(.9)(.9)(.9)(.9)(.9) � .927

Alternatively,

P(system lifetime exceeds t0) � 1 � P(both subsystem lives are � t0)

� 1 � [P(subsystem life is � t0)]
2

� 1 � [1 � P(subsystem life is � t0)]
2

� 1 � [1 � (.9)3]2 � .927

1 2 3

4 5 6

1 2 3

4 5 6

(a) (b)

Figure 2.14 System configurations for Example 2.35: (a) series-parallel; (b) total-cross-tied



Next consider the total-cross-tied system shown in Figure 2.14(b), obtained from the 
series-parallel array by connecting ties across each column of junctions. Now the
system fails as soon as an entire column fails, and system lifetime exceeds t0 only if
the life of every column does so. For this configuration,

P(system lifetime is at least t0) � [P(column lifetime exceeds t0)]
3

� [1 � P(column lifetime is � t0)]
3

� [1 � P(both cells in a column have lifetime � t0)]
3

� [1 � (1 � .9)2]3 � .970 ■
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70. Reconsider the credit card scenario of Exercise 47 (Section
2.4), and show that A and B are dependent first by using the
definition of independence and then by verifying that the
multiplication property does not hold.

71. An oil exploration company currently has two active proj-
ects, one in Asia and the other in Europe. Let A be the event
that the Asian project is successful and B be the event that
the European project is successful. Suppose that A and B are
independent events with  P(A) � .4 and P(B) � .7.
a. If the Asian project is not successful, what is the proba-

bility that the European project is also not successful?
Explain your reasoning.

b. What is the probability that at least one of the two proj-
ects will be successful?

c. Given that at least one of the two projects is successful,
what is the probability that only the Asian project is suc-
cessful?

72. In Exercise 13, is any Ai independent of any other Aj?
Answer using the multiplication property for independent
events.

73. If A and B are independent events, show that A and B are
also independent. [Hint: First establish a relationship be-
tween P(A � B), P(B), and P(A � B).]

74. Suppose that the proportions of blood phenotypes in a par-
ticular population are as follows:

A B AB O

.42 .10 .04 .44

Assuming that the phenotypes of two randomly selected indi-
viduals are independent of one another, what is the probabil-
ity that both phenotypes are O? What is the probability that
the phenotypes of two randomly selected individuals match?

75. One of the assumptions underlying the theory of control
charting (see Chapter 16) is that successive plotted points are
independent of one another. Each plotted point can signal

either that a manufacturing process is operating correctly or
that there is some sort of malfunction. Even when a process
is running correctly, there is a small probability that a par-
ticular point will signal a problem with the process. Suppose
that this probability is .05. What is the probability that at
least one of 10 successive points indicates a problem when
in fact the process is operating correctly? Answer this ques-
tion for 25 successive points.

76. The probability that a grader will make a marking error on
any particular question of a multiple-choice exam is .1. If
there are ten questions and questions are marked indepen-
dently, what is the probability that no errors are made? That
at least one error is made? If there are n questions and the
probability of a marking error is p rather than .1, give
expressions for these two probabilities.

77. An aircraft seam requires 25 rivets. The seam will have to be
reworked if any of these rivets is defective. Suppose rivets
are defective independently of one another, each with the
same probability.
a. If 20% of all seams need reworking, what is the proba-

bility that a rivet is defective?
b. How small should the probability of a defective rivet be

to ensure that only 10% of all seams need reworking?

78. A boiler has five identical relief valves. The probability that
any particular valve will open on demand is .95. Assuming
independent operation of the valves, calculate P(at least one
valve opens) and P(at least one valve fails to open).

79. Two pumps connected in parallel fail independently of one
another on any given day. The probability that only the older
pump will fail is .10, and the probability that only the newer
pump will fail is .05. What is the probability that the pump-
ing system will fail on any given day (which happens if both
pumps fail)?

80. Consider the system of components connected as in the
accompanying picture. Components 1 and 2 are connected
in parallel, so that subsystem works iff either 1 or 2 works;

EXERCISES Section 2.5 (70–89)
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since 3 and 4 are connected in series, that subsystem works
iff both 3 and 4 work. If components work independently
of one another and P(component works) � .9, calculate
P(system works).

81. Refer back to the series-parallel system configuration intro-
duced in Example 2.35, and suppose that there are only two
cells rather than three in each parallel subsystem [in Figure
2.14(a), eliminate cells 3 and 6, and renumber cells 4 and 5
as 3 and 4]. Using P(Ai) � .9, the probability that system
lifetime exceeds t0 is easily seen to be .9639. To what value
would .9 have to be changed in order to increase the system
lifetime reliability from .9639 to .99? [Hint: Let P(Ai) � p,
express system reliability in terms of p, and then let x � p2.]

82. Consider independently rolling two fair dice, one red and
the other green. Let A be the event that the red die shows 3
dots, B be the event that the green die shows 4 dots, and C
be the event that the total number of dots showing on the
two dice is 7. Are these events pairwise independent (i.e.,
are A and B independent events, are A and C independent,
and are B and C independent)? Are the three events mutu-
ally independent?

83. Components arriving at a distributor are checked for defects
by two different inspectors (each component is checked by
both inspectors). The first inspector detects 90% of all
defectives that are present, and the second inspector does
likewise. At least one inspector does not detect a defect on
20% of all defective components. What is the probability
that the following occur?
a. A defective component will be detected only by the first

inspector? By exactly one of the two inspectors?
b. All three defective components in a batch escape detec-

tion by both inspectors (assuming inspections of differ-
ent components are independent of one another)?

84. Seventy percent of all vehicles examined at a certain emis-
sions inspection station pass the inspection. Assuming that
successive vehicles pass or fail independently of one
another, calculate the following probabilities:
a. P(all of the next three vehicles inspected pass)
b. P(at least one of the next three inspected fails)
c. P(exactly one of the next three inspected passes)
d. P(at most one of the next three vehicles inspected

passes)
e. Given that at least one of the next three vehicles passes

inspection, what is the probability that all three pass (a
conditional probability)?

85. A quality control inspector is inspecting newly produced
items for faults. The inspector searches an item for faults in

a series of independent fixations, each of a fixed duration.
Given that a flaw is actually present, let p denote the proba-
bility that the flaw is detected during any one fixation (this
model is discussed in “Human Performance in Sampling
Inspection,” Human Factors, 1979: 99–105).
a. Assuming that an item has a flaw, what is the probability

that it is detected by the end of the second fixation (once
a flaw has been detected, the sequence of fixations
terminates)?

b. Give an expression for the probability that a flaw will be
detected by the end of the nth fixation.

c. If when a flaw has not been detected in three fixations,
the item is passed, what is the probability that a flawed
item will pass inspection?

d. Suppose 10% of all items contain a flaw [P(randomly
chosen item is flawed) � .1]. With the assumption of
part (c), what is the probability that a randomly chosen
item will pass inspection (it will automatically pass if it
is not flawed, but could also pass if it is flawed)?

e. Given that an item has passed inspection (no flaws in three
fixations), what is the probability that it is actually flawed?
Calculate for p � .5.

86. a. A lumber company has just taken delivery on a lot of
10,000 2 � 4 boards. Suppose that 20% of these boards
(2,000) are actually too green to be used in first-quality
construction. Two boards are selected at random, one
after the other. Let A � {the first board is green} and
B � {the second board is green}. Compute P(A), P(B),
and P(A � B) (a tree diagram might help). Are A and B
independent?

b. With A and B independent and P(A) � P(B) � .2, what is
P(A � B)? How much difference is there between this
answer and P(A � B) in part (a)? For purposes of calculat-
ing P(A � B), can we assume that A and B of part (a) are
independent to obtain essentially the correct probability?

c. Suppose the lot consists of ten boards, of which two are
green. Does the assumption of independence now yield
approximately the correct answer for P(A � B)? What is
the critical difference between the situation here and that
of part (a)? When do you think that an independence
assumption would be valid in obtaining an approximately
correct answer to P(A � B)?

87. Refer to the assumptions stated in Exercise 80 and answer
the question posed there for the system in the accompanying
picture. How would the probability change if this were a
subsystem connected in parallel to the subsystem pictured in
Figure 2.14(a)?

88. Professor Stan der Deviation can take one of two routes on
his way home from work. On the first route, there are four
railroad crossings. The probability that he will be stopped by
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a train at any particular one of the crossings is .1, and trains
operate independently at the four crossings. The other route
is longer but there are only two crossings, independent of one
another, with the same stoppage probability for each as on
the first route. On a particular day, Professor Deviation has a
meeting scheduled at home for a certain time. Whichever
route he takes, he calculates that he will be late if he is
stopped by trains at at least half the crossings encountered.
a. Which route should he take to minimize the probability

of being late to the meeting?
b. If he tosses a fair coin to decide on a route and he is late,

what is the probability that he took the four-crossing route?

89. Suppose identical tags are placed on both the left ear and the
right ear of a fox. The fox is then let loose for a period of
time. Consider the two events C1 � {left ear tag is lost} and
C2 � {right ear tag is lost}. Let � � P(C1) � P(C2), and
assume C1 and C2 are independent events. Derive an expres-
sion (involving �) for the probability that exactly one tag is
lost given that at most one is lost (“Ear Tag Loss in Red
Foxes,” J. Wildlife Mgmt., 1976: 164–167). [Hint: Draw a
tree diagram in which the two initial branches refer to
whether the left ear tag was lost.]

SUPPLEMENTARY EXERCISES (90–114)

90. A small manufacturing company will start operating a night
shift. There are 20 machinists employed by the company.
a. If a night crew consists of 3 machinists, how many dif-

ferent crews are possible?
b. If the machinists are ranked 1, 2, . . . , 20 in order of

competence, how many of these crews would not have
the best machinist?

c. How many of the crews would have at least 1 of the 10
best machinists?

d. If one of these crews is selected at random to work on a
particular night, what is the probability that the best
machinist will not work that night?

91. A factory uses three production lines to manufacture cans of a
certain type. The accompanying table gives percentages of
nonconforming cans, categorized by type of nonconformance,
for each of the three lines during a particular time period.

Line 1 Line 2 Line 3

Blemish 15 12 20
Crack 50 44 40
Pull-Tab Problem 21 28 24
Surface Defect 10 8 15
Other 4 8 2

During this period, line 1 produced 500 nonconforming
cans, line 2 produced 400 such cans, and line 3 was respon-
sible for 600 nonconforming cans. Suppose that one of
these 1500 cans is randomly selected.
a. What is the probability that the can was produced by

line 1? That the reason for nonconformance is a crack?
b. If the selected can came from line 1, what is the proba-

bility that it had a blemish?
c. Given that the selected can had a surface defect, what is

the probability that it came from line 1?

92. An employee of the records office at a certain university
currently has ten forms on his desk awaiting processing. Six
of these are withdrawal petitions and the other four are
course substitution requests.

a. If he randomly selects six of these forms to give to a sub-
ordinate, what is the probability that only one of the two
types of forms remains on his desk?

b. Suppose he has time to process only four of these
forms before leaving for the day. If these four are ran-
domly selected one by one, what is the probability that
each succeeding form is of a different type from its
predecessor?

93. One satellite is scheduled to be launched from Cape
Canaveral in Florida, and another launching is scheduled
for Vandenberg Air Force Base in California. Let A denote
the event that the Vandenberg launch goes off on schedule,
and let B represent the event that the Cape Canaveral
launch goes off on schedule. If A and B are independent
events with P(A) � P(B) and P(A � B) � .626, P(A �
B) � .144, determine the values of P(A) and P(B).

94. A transmitter is sending a message by using a binary code,
namely, a sequence of 0’s and 1’s. Each transmitted bit (0 or
1) must pass through three relays to reach the receiver. At
each relay, the probability is .20 that the bit sent will be dif-
ferent from the bit received (a reversal). Assume that the
relays operate independently of one another.

Transmitter 0 Relay 1 0 Relay 2 0 Relay 3 0 Receiver

a. If a 1 is sent from the transmitter, what is the probability
that a 1 is sent by all three relays?

b. If a 1 is sent from the transmitter, what is the probability
that a 1 is received by the receiver? [Hint: The eight
experimental outcomes can be displayed on a tree dia-
gram with three generations of branches, one generation
for each relay.]

c. Suppose 70% of all bits sent from the transmitter are 1s.
If a 1 is received by the receiver, what is the probability
that a 1 was sent?

95. Individual A has a circle of five close friends (B, C, D, E,
and F). A has heard a certain rumor from outside the circle
and has invited the five friends to a party to circulate the
rumor. To begin, A selects one of the five at random and tells
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the rumor to the chosen individual. That individual then
selects at random one of the four remaining individuals and
repeats the rumor. Continuing, a new individual is selected
from those not already having heard the rumor by the indi-
vidual who has just heard it, until everyone has been told.
a. What is the probability that the rumor is repeated in the

order B, C, D, E, and F?
b. What is the probability that F is the third person at the

party to be told the rumor?
c. What is the probability that F is the last person to hear

the rumor?

96. Refer to Exercise 95. If at each stage the person who cur-
rently “has” the rumor does not know who has already
heard it and selects the next recipient at random from all
five possible individuals, what is the probability that F has
still not heard the rumor after it has been told ten times at
the party?

97. A chemical engineer is interested in determining whether
a certain trace impurity is present in a product. An experi-
ment has a probability of .80 of detecting the impurity if it
is present. The probability of not detecting the impurity if
it is absent is .90. The prior probabilities of the impurity
being present and being absent are .40 and .60, respec-
tively. Three separate experiments result in only two detec-
tions. What is the posterior probability that the impurity is
present?

98. Each contestant on a quiz show is asked to specify one of
six possible categories from which questions will be asked.
Suppose P(contestant requests category i) � �

1
6

� and suc-
cessive contestants choose their categories independently
of one another. If there are three contestants on each show
and all three contestants on a particular show select differ-
ent categories, what is the probability that exactly one has
selected category 1?

99. Fasteners used in aircraft manufacturing are slightly
crimped so that they lock enough to avoid loosening dur-
ing vibration. Suppose that 95% of all fasteners pass an ini-
tial inspection. Of the 5% that fail, 20% are so seriously
defective that they must be scrapped. The remaining fas-
teners are sent to a recrimping operation, where 40% can-
not be salvaged and are discarded. The other 60% of these
fasteners are corrected by the recrimping process and sub-
sequently pass inspection.
a. What is the probability that a randomly selected incom-

ing fastener will pass inspection either initially or after
recrimping?

b. Given that a fastener passed inspection, what is the
probability that it passed the initial inspection and did
not need recrimping?

100. One percent of all individuals in a certain population are
carriers of a particular disease. A diagnostic test for this
disease has a 90% detection rate for carriers and a 5%
detection rate for noncarriers. Suppose the test is applied
independently to two different blood samples from the
same randomly selected individual.

a. What is the probability that both tests yield the same
result?

b. If both tests are positive, what is the probability that the
selected individual is a carrier?

101. A system consists of two components. The probability that
the second component functions in a satisfactory manner
during its design life is .9, the probability that at least one of
the two components does so is .96, and the probability that
both components do so is .75. Given that the first component
functions in a satisfactory manner throughout its design life,
what is the probability that the second one does also?

102. A certain company sends 40% of its overnight mail parcels
via express mail service E1. Of these parcels, 2% arrive
after the guaranteed delivery time (denote the event “late
delivery” by L). If a record of an overnight mailing is ran-
domly selected from the company’s file, what is the prob-
ability that the parcel went via E1 and was late?

103. Refer to Exercise 102. Suppose that 50% of the overnight
parcels are sent via express mail service E2 and the remain-
ing 10% are sent via E3. Of those sent via E2, only 1% arrive
late, whereas 5% of the parcels handled by E3 arrive late.
a. What is the probability that a randomly selected parcel

arrived late?
b. If a randomly selected parcel has arrived on time, what

is the probability that it was not sent via E1?

104. A company uses three different assembly lines—A1, A2,
and A3—to manufacture a particular component. Of those
manufactured by line A1, 5% need rework to remedy a
defect, whereas 8% of A2’s components need rework and
10% of A3’s need rework. Suppose that 50% of all compo-
nents are produced by line A1, 30% are produced by line
A2, and 20% come from line A3. If a randomly selected
component needs rework, what is the probability that it
came from line A1? From line A2? From line A3?

105. Disregarding the possibility of a February 29 birthday, sup-
pose a randomly selected individual is equally likely to
have been born on any one of the other 365 days.
a. If ten people are randomly selected, what is the proba-

bility that all have different birthdays? That at least two
have the same birthday?

b. With k replacing ten in part (a), what is the smallest k
for which there is at least a 50–50 chance that two or
more people will have the same birthday?

c. If ten people are randomly selected, what is the proba-
bility that either at least two have the same birthday or
at least two have the same last three digits of their
Social Security numbers? [Note: The article “Methods
for Studying Coincidences” (F. Mosteller and P.
Diaconis, J. Amer. Stat. Assoc., 1989: 853–861) dis-
cusses problems of this type.]

106. One method used to distinguish between granitic (G) and
basaltic (B) rocks is to examine a portion of the infrared
spectrum of the sun’s energy reflected from the rock surface.
Let R1, R2, and R3 denote measured spectrum intensities at
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three different wavelengths; typically, for granite R1 �
R2 � R3, whereas for basalt R3 � R1 � R2. When measure-
ments are made remotely (using aircraft), various order-
ings of the Ri s may arise whether the rock is basalt or 
granite. Flights over regions of known composition have
yielded the following information:

Granite Basalt

R1 � R2 � R3 60% 10%
R1 � R3 � R2 25% 20%
R3 � R1 � R2 15% 70%

Suppose that for a randomly selected rock in a certain
region, P(granite) � .25 and P(basalt) � .75.
a. Show that P(granite⏐R1 � R2 � R3) � P(basalt⏐R1 �

R2 � R3). If measurements yielded R1 � R2 � R3,
would you classify the rock as granite or basalt?

b. If measurements yielded R1 � R3 � R2, how would you
classify the rock? Answer the same question for R3 �
R1 � R2.

c. Using the classification rules indicated in parts (a) and
(b), when selecting a rock from this region, what is the
probability of an erroneous classification? [Hint: Either
G could be classified as B or B as G, and P(B) and P(G)
are known.]

d. If P(granite) � p rather than .25, are there values of p
(other than 1) for which one would always classify a
rock as granite?

107. A subject is allowed a sequence of glimpses to detect a tar-
get. Let Gi � {the target is detected on the ith glimpse},
with pi � P(Gi). Suppose the Gis are independent events
and write an expression for the probability that the target
has been detected by the end of the nth glimpse. [Note:
This model is discussed in “Predicting Aircraft
Detectability,” Human Factors, 1979: 277–291.]

108. In a Little League baseball game, team A’s pitcher throws
a strike 50% of the time and a ball 50% of the time, suc-
cessive pitches are independent of one another, and the
pitcher never hits a batter. Knowing this, team B’s manager
has instructed the first batter not to swing at anything.
Calculate the probability that
a. The batter walks on the fourth pitch
b. The batter walks on the sixth pitch (so two of the first

five must be strikes), using a counting argument or con-
structing a tree diagram

c. The batter walks
d. The first batter up scores while no one is out (assuming

that each batter pursues a no-swing strategy)

109. Four engineers, A, B, C, and D, have been scheduled for
job interviews at 10 A.M. on Friday, January 13, at Random
Sampling, Inc. The personnel manager has scheduled the
four for interview rooms 1, 2, 3, and 4, respectively.
However, the manager’s secretary does not know this, so

assigns them to the four rooms in a completely random
fashion (what else!). What is the probability that
a. All four end up in the correct rooms?
b. None of the four ends up in the correct room?

110. A particular airline has 10 A.M. flights from Chicago to
New York, Atlanta, and Los Angeles. Let A denote the
event that the New York flight is full and define events 
B and C analogously for the other two flights. Suppose
P(A) � .6, P(B) � .5, P(C) � .4 and the three events are
independent. What is the probability that
a. All three flights are full? That at least one flight is not

full?
b. Only the New York flight is full? That exactly one of the

three flights is full?

111. A personnel manager is to interview four candidates for a
job. These are ranked 1, 2, 3, and 4 in order of preference
and will be interviewed in random order. However, at the
conclusion of each interview, the manager will know only
how the current candidate compares to those previously
interviewed. For example, the interview order 3, 4, 1, 2
generates no information after the first interview, shows
that the second candidate is worse than the first, and that
the third is better than the first two. However, the order 3,
4, 2, 1 would generate the same information after each of
the first three interviews. The manager wants to hire the
best candidate but must make an irrevocable hire/no hire
decision after each interview. Consider the following strat-
egy: Automatically reject the first s candidates and then
hire the first subsequent candidate who is best among those
already interviewed (if no such candidate appears, the last
one interviewed is hired).

For example, with s � 2, the order 3, 4, 1, 2 would
result in the best being hired, whereas the order 3, 1, 2, 4
would not. Of the four possible s values (0, 1, 2, and 3),
which one maximizes P(best is hired)? [Hint: Write out the
24 equally likely interview orderings: s � 0 means that the
first candidate is automatically hired.]

112. Consider four independent events A1, A2, A3, and A4 and let
pi � P(Ai) for i � 1, 2, 3, 4. Express the probability that at
least one of these four events occurs in terms of the pis,
and do the same for the probability that at least two of the
events occur.

113. A box contains the following four slips of paper, each hav-
ing exactly the same dimensions: (1) win prize 1; (2) win
prize 2; (3) win prize 3; (4) win prizes 1, 2, and 3. One slip
will be randomly selected. Let A1 � {win prize 1}, A2 �
{win prize 2}, and A3 � {win prize 3}. Show that A1 and
A2 are independent, that A1 and A3 are independent, and
that A2 and A3 are also independent (this is pairwise inde-
pendence). However, show that P(A1 � A2 � A3) �
P(A1) 
 P(A2) 
 P(A3), so the three events are not mutually
independent.

114. Show that if A1, A2, and A3 are independent events, then
P(A1⏐ A2 � A3) � P(A1).
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Discrete Random
Variables and
Probability Distributions

3

INTRODUCTION

Whether an experiment yields qualitative or quantitative outcomes, methods of

statistical analysis require that we focus on certain numerical aspects of the

data (such as a sample proportion x /n, mean x
_
, or standard deviation s). The

concept of a random variable allows us to pass from the experimental out-

comes themselves to a numerical function of the outcomes. There are two fun-

damentally different types of random variables—discrete random variables and

continuous random variables. In this chapter, we examine the basic properties

and discuss the most important examples of discrete variables. Chapter 4 fo-

cuses on continuous random variables.



In any experiment, there are numerous characteristics that can be observed or mea-
sured, but in most cases an experimenter will focus on some specific aspect or
aspects of a sample. For example, in a study of commuting patterns in a metropoli-
tan area, each individual in a sample might be asked about commuting distance and
the number of people commuting in the same vehicle, but not about IQ, income,
family size, and other such characteristics. Alternatively, a researcher may test a
sample of components and record only the number that have failed within 1000
hours, rather than record the individual failure times.

In general, each outcome of an experiment can be associated with a number
by specifying a rule of association (e.g., the number among the sample of ten
components that fail to last 1000 hours or the total weight of baggage for a sample
of 25 airline passengers). Such a rule of association is called a random variable—
a variable because different numerical values are possible and random because the
observed value depends on which of the possible experimental outcomes results
(Figure 3.1).

Figure 3.1 A random variable

�2 �1 0 1 2

3.1 Random Variables 87

3.1 Random Variables

DEFINITION For a given sample space S of some experiment, a random variable (rv) is any
rule that associates a number with each outcome in S. In mathematical language,
a random variable is a function whose domain is the sample space and whose
range is the set of real numbers.

Random variables are customarily denoted by uppercase letters, such as X and
Y, near the end of our alphabet. In contrast to our previous use of a lowercase letter,
such as x, to denote a variable, we will now use lowercase letters to represent some
particular value of the corresponding random variable. The notation X(s) � x means
that x is the value associated with the outcome s by the rv X.

When a student attempts to log on to a computer time-sharing system, either all ports
are busy (F), in which case the student will fail to obtain access, or else there is at
least one port free (S), in which case the student will be successful in accessing the
system. With S � {S, F}, define an rv X by

X(S) � 1 X(F) � 0

The rv X indicates whether (1) or not (0) the student can log on. ■

The rv X in Example 3.1 was specified by explicitly listing each element of S and
the associated number. Such a listing is tedious if S contains more than a few out-
comes, but it can frequently be avoided.

Example 3.1



Consider the experiment in which a telephone number in a certain area code is dialed
using a random number dialer (such devices are used extensively by polling organi-
zations), and define an rv Y by

Y � { 1 if the selected number is unlisted

0 if the selected number is listed in the directory

For example, if 5282966 appears in the telephone directory, then Y(5282966) � 0,
whereas Y(7727350) � 1 tells us that the number 7727350 is unlisted. A word
description of this sort is more economical than a complete listing, so we will use
such a description whenever possible. ■

In Examples 3.1 and 3.2, the only possible values of the random variable were 
0 and 1. Such a random variable arises frequently enough to be given a special name,
after the individual who first studied it.
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Example 3.2

DEFINITION Any random variable whose only possible values are 0 and 1 is called a Bernoulli
random variable.

We will sometimes want to define and study several different random variables
from the same sample space.

Example 2.3 described an experiment in which the number of pumps in use at each
of two gas stations was determined. Define rv’s X, Y, and U by

X � the total number of pumps in use at the two stations

Y � the difference between the number of pumps in use at station 1 and the
number in use at station 2

U � the maximum of the numbers of pumps in use at the two stations

If this experiment is performed and s � (2, 3) results, then X((2, 3)) � 2 � 3 � 5, so we
say that the observed value of X was x � 5. Similarly, the observed value of Y would be
y � 2 � 3 � �1, and the observed value of U would be u � max(2, 3) � 3. ■

Each of the random variables of Examples 3.1–3.3 can assume only a finite
number of possible values. This need not be the case.

In Example 2.4, we considered the experiment in which batteries were examined
until a good one (S) was obtained. The sample space was S � {S, FS, FFS, . . .}.
Define an rv X by

X � the number of batteries examined before the experiment terminates

Then X(S) � 1, X(FS) � 2, X(FFS) � 3, . . . , X(FFFFFFS) � 7, and so on. Any posi-
tive integer is a possible value of X, so the set of possible values is infinite. ■

Suppose that in some random fashion, a location (latitude and longitude) in the conti-
nental United States is selected. Define an rv Y by

Y � the height above sea level at the selected location

For example, if the selected location were (39°50N, 98°35W), then we might have
Y((39°50N, 98°35W)) � 1748.26 ft. The largest possible value of Y is 14,494

Example 3.3

Example 3.4

Example 3.5



(Mt. Whitney), and the smallest possible value is �282 (Death Valley). The set of
all possible values of Y is the set of all numbers in the interval between �282 and
14,494—that is,

{y: y is a number, �282 � y � 14,494}

and there are an infinite number of numbers in this interval. ■

Two Types of Random Variables
In Section 1.2, we distinguished between data resulting from observations on a count-
ing variable and data obtained by observing values of a measurement variable. A
slightly more formal distinction characterizes two different types of random variables.
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DEFINITION A discrete random variable is an rv whose possible values either constitute a
finite set or else can be listed in an infinite sequence in which there is a first
element, a second element, and so on (“countably” infinite).

A random variable is continuous if both of the following apply:

1. Its set of possible values consists either of all numbers in a single interval
on the number line (possibly infinite in extent, e.g., from � to ) or all
numbers in a disjoint union of such intervals (e.g., [0, 10] � [20, 30]).

2. No possible value of the variable has positive probability, that is, P(X � c) � 0
for any possible value c.

``

Although any interval on the number line contains an infinite number of numbers, it
can be shown that there is no way to create an infinite listing of all these values––there
are just too many of them. The second condition describing a continuous random vari-
able is perhaps counterintuitive, since it would seem to imply a total probability of zero
for all possible values. But we shall see in Chapter 4 that intervals of values have pos-
itive probability; the probability of an interval will decrease to zero as the width of the
interval shrinks to zero.

All random variables in Examples 3.1–3.4 are discrete. As another example, suppose
we select married couples at random and do a blood test on each person until we find
a husband and wife who both have the same Rh factor. With X � the number of
blood tests to be performed, possible values of X are D � {2, 4, 6, 8, . . .}. Since the
possible values have been listed in sequence, X is a discrete rv. ■

To study basic properties of discrete rv’s, only the tools of discrete mathematics––
summation and differences—are required. The study of continuous variables requires
the continuous mathematics of the calculus—integrals and derivatives.

Example 3.6

EXERCISES Section 3.1 (1–10)

1. A concrete beam may fail either by shear (S) or flexure (F).
Suppose that three failed beams are randomly selected and
the type of failure is determined for each one. Let X � the
number of beams among the three selected that failed by
shear. List each outcome in the sample space along with the
associated value of X.

2. Give three examples of Bernoulli rv’s (other than those in
the text).

3. Using the experiment in Example 3.3, define two more ran-
dom variables and list the possible values of each.
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4. Let X � the number of nonzero digits in a randomly se-
lected zip code. What are the possible values of X? Give
three possible outcomes and their associated X values.

5. If the sample space S is an infinite set, does this necessarily
imply that any rv X defined from S will have an infinite set
of possible values? If yes, say why. If no, give an example.

6. Starting at a fixed time, each car entering an intersection is
observed to see whether it turns left (L), right (R), or goes
straight ahead (A). The experiment terminates as soon as a
car is observed to turn left. Let X � the number of cars
observed. What are possible X values? List five outcomes
and their associated X values.

7. For each random variable defined here, describe the set of
possible values for the variable, and state whether the vari-
able is discrete.
a. X � the number of unbroken eggs in a randomly chosen

standard egg carton
b. Y � the number of students on a class list for a particu-

lar course who are absent on the first day of classes
c. U � the number of times a duffer has to swing at a golf

ball before hitting it
d. X � the length of a randomly selected rattlesnake
e. Z � the amount of royalties earned from the sale of a

first edition of 10,000 textbooks
f. Y � the pH of a randomly chosen soil sample
g. X � the tension (psi) at which a randomly selected ten-

nis racket has been strung
h. X � the total number of coin tosses required for three

individuals to obtain a match (HHH or TTT )

8. Each time a component is tested, the trial is a success (S) or
failure (F). Suppose the component is tested repeatedly until
a success occurs on three consecutive trials. Let Y denote the
number of trials necessary to achieve this. List all outcomes
corresponding to the five smallest possible values of Y, and
state which Y value is associated with each one.

9. An individual named Claudius is located at the point 0 in the
accompanying diagram.

Using an appropriate randomization device (such as a tetra-
hedral die, one having four sides), Claudius first moves to one
of the four locations B1, B2, B3, B4. Once at one of these loca-
tions, another randomization device is used to decide whether
Claudius next returns to 0 or next visits one of the other two
adjacent points. This process then continues; after each move,
another move to one of the (new) adjacent points is deter-
mined by tossing an appropriate die or coin.
a. Let X � the number of moves that Claudius makes

before first returning to 0. What are possible values of X?
Is X discrete or continuous?

b. If moves are allowed also along the diagonal paths con-
necting 0 to A1, A2, A3, and A4, respectively, answer the
questions in part (a).

10. The number of pumps in use at both a six-pump station and
a four-pump station will be determined. Give the possible
values for each of the following random variables:
a. T � the total number of pumps in use
b. X � the difference between the numbers in use at sta-

tions 1 and 2
c. U � the maximum number of pumps in use at either

station
d. Z � the number of stations having exactly two pumps 

in use

B2 A3A2

0
B1

A1 B4 A4

B3

3.2 Probability Distributions 
for Discrete Random Variables

Probabilities assigned to various outcomes in S in turn determine probabilities associ-
ated with the values of any particular rv X. The probability distribution of X says how
the total probability of 1 is distributed among (allocated to) the various possible X val-
ues. Suppose, for example, that a business has just purchased four laser printers, and
let X be the number among these that require service during the warranty period.
Possible X values are then 0, 1, 2, 3, and 4. The probability distribution will tell us how
the probability of 1 is subdivided among these five possible values—how much prob-
ability is associated with the X value 0, how much is apportioned to the X value 1, and
so on. We will use the following notation for the probabilities in the distribution:

p(0) � the probability of the X value 0 � P(X � 0)

p(1) � the probability of the X value 1 � P(X � 1)

and so on. In general, p(x) will denote the probability assigned to the value x.



3.2 Probability Distributions for Discrete Random Variables 91

A certain gas station has six pumps. Let X denote the number of pumps that are in
use at a particular time of day. Suppose that the probability distribution of X is as
given in the following table; the first row of the table lists the possible X values and
the second row gives the probability of each such value.

In words, for every possible value x of the random variable, the pmf specifies
the probability of observing that value when the experiment is performed. The con-
ditions p(x) � 0 and �all possible x p(x) � 1 are required of any pmf.

The pmf of X in the previous example was simply given in the problem
description. We now consider several examples in which various probability proper-
ties are exploited to obtain the desired distribution.

Six lots of components are ready to be shipped by a certain supplier. The number of
defective components in each lot is as follows:

Lot 1 2 3 4 5 6
Number of defectives 0 2 0 1 2 0

One of these lots is to be randomly selected for shipment to a particular customer.
Let X be the number of defectives in the selected lot. The three possible X values are

DEFINITION The probability distribution or probability mass function (pmf) of a discrete
rv is defined for every number x by p(x) � P(X � x) � P(all s � S: X(s) � x).

Example 3.8

Example 3.7

x 0 1 2 3 4 5 6

p(x) .05 .10 .15 .25 .20 .15 .10

We can now use elementary probability properties to calculate other probabilities of
interest. For example, the probability that at most 2 pumps are in use is

P(X � 2) � P(X � 0 or 1 or 2) � p(0) � p(1) � p(2) � .05 � .10 � .15 � .30

Since the event at least 3 pumps are in use is complementary to at most 2 pumps are
in use,

P(X � 3) � 1 � P(X � 2) � 1 � .30 � .70

which can, of course, also be obtained by adding together probabilities for the
values, 3, 4, 5, and 6. The probability that between 2 and 5 pumps inclusive are in
use is

P(2 � X � 5) � P(X � 2, 3, 4, or 5) � .15 � .25 � .20 �.15 � .75

whereas the probability that the number of pumps in use is strictly between 2 and 
5 is

P(2 � X � 5) � P(X � 3 or 4) � .25 � .20 � .45 ■



0, 1, and 2. Of the six equally likely simple events, three result in X � 0, one in
X � 1, and the other two in X � 2. Then

p(0) � P(X � 0) � P(lot 1 or 3 or 6 is sent) � �
3

6
� � .500

p(1) � P(X � 1) � P(lot 4 is sent) � �
1

6
� � .167

p(2) � P(X � 2) � P(lot 2 or 5 is sent) � �
2

6
� � .333

That is, a probability of .500 is distributed to the X value 0, a probability of .167 is
placed on the X value 1, and the remaining probability, .333, is associated with the X
value 2. The values of X along with their probabilities collectively specify the pmf. If
this experiment were repeated over and over again, in the long run X � 0 would occur
one-half of the time, X � 1 one-sixth of the time, and X � 2 one-third of the time. ■

Consider whether the next person buying a computer at a university book store buys
a laptop or a desktop model. Let

X � { 1 if the customer purchases a laptop computer

0 if the customer purchases a desktop computer

If 20% of all purchasers during that week select a laptop, the pmf for X is

p(0) � P(X � 0) � P(next customer purchases a desktop model) � .8

p(1) � P(X � 1) � P(next customer purchases a laptop model) � .2

p(x) � P(X � x) � 0 for x � 0 or 1

An equivalent description is

p(x) � { .8 if x � 0

.2 if x � 1

0 if x � 0 or 1

Figure 3.2 is a picture of this pmf, called a line graph. X is, of course, a Bernoulli rv
and p(x) is a Bernoulli pmf.

Figure 3.2 The line graph for the pmf in Example 3.9 ■

Consider a group of five potential blood donors—a, b, c, d, and e—of whom only a
and b have type O� blood. Five blood samples, one from each individual, will be

1

1
x

p(x)

0
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Example 3.9

Example 3.10



typed in random order until an O� individual is identified. Let the rv Y � the number
of typings necessary to identify an O� individual. Then the pmf of Y is

p(1) � P(Y � 1) � P(a or b typed first) � � .4

p(2) � P(Y � 2) � P(c, d, or e first, and then a or b)

� P(c, d, or e first) � P(a or b next⏐c, d, or e first) � � � .3

p(3) � P(Y � 3) � P(c, d, or e first and second, and then a or b)

� � �� �� � � .2

p(4) � P(Y � 4) � P(c, d, and e all done first) � � �� �� � � .1

p(y) � 0 if y � 1, 2, 3, 4

In tabular form, the pmf is

1
�
3

2
�
4

3
�
5

2
�
3

2
�
4

3
�
5

2
�
4

3
�
5

2
�
5
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y 1 2 3 4

p(y) .4 .3 .2 .1

where any y value not listed receives zero probability. Figure 3.3 shows a line graph
of the pmf.

Figure 3.3 The line graph for the pmf in Example 3.10 ■

The name “probability mass function” is suggested by a model used in physics
for a system of “point masses.” In this model, masses are distributed at various loca-
tions x along a one-dimensional axis. Our pmf describes how the total probability
mass of 1 is distributed at various points along the axis of possible values of the ran-
dom variable (where and how much mass at each x).

Another useful pictorial representation of a pmf, called a probability his-
togram, is similar to histograms discussed in Chapter 1. Above each y with p(y) � 0,
construct a rectangle centered at y. The height of each rectangle is proportional to
p(y), and the base is the same for all rectangles. When possible values are equally
spaced, the base is frequently chosen as the distance between successive y values
(though it could be smaller). Figure 3.4 shows two probability histograms.

Figure 3.4 Probability histograms: (a) Example 3.9; (b) Example 3.10

0 1 1 2 3 4

(a) (b)

.5

p(y)

1
y

0 2 3 4



It is often helpful to think of a pmf as specifying a mathematical model for a discrete
population.

Consider selecting at random a student who is among the 15,000 registered for the 
current term at Mega University. Let X � the number of courses for which the
selected student is registered, and suppose that X has the following pmf:
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x 1 2 3 4 5 6 7

p(x) .01 .03 .13 .25 .39 .17 .02

One way to view this situation is to think of the population as consisting of
15,000 individuals, each having his or her own X value; the proportion with each X
value is given by p(x). An alternative viewpoint is to forget about the students and
think of the population itself as consisting of the X values: There are some 1s in the
population, some 2s, . . . , and finally some 7s. The population then consists of the
numbers 1, 2, . . . , 7 (so is discrete), and p(x) gives a model for the distribution of
population values. ■

Once we have such a population model, we will use it to compute values of pop-
ulation characteristics (e.g., the mean m) and make inferences about such characteristics.

A Parameter of a Probability Distribution
In Example 3.9, we had p(0) � .8 and p(1) � .2 because 20% of all purchasers
selected a laptop computer. At another bookstore, it may be the case that p(0) � .9
and p(1) � .1. More generally, the pmf of any Bernoulli rv can be expressed in the
form p(1) � � and p(0) � 1 � �, where 0 � � � 1. Because the pmf depends on the
particular value of �, we often write p(x; �) rather than just p(x):

p(x; �) � { 1 � � if x � 0

� if x � 1 (3.1)

0 otherwise

Then each choice of � in Expression (3.1) yields a different pmf.

Example 3.11

DEFINITION Suppose p(x) depends on a quantity that can be assigned any one of a number
of possible values, with each different value determining a different probability
distribution. Such a quantity is called a parameter of the distribution. The col-
lection of all probability distributions for different values of the parameter is
called a family of probability distributions.

The quantity � in Expression (3.1) is a parameter. Each different number �
between 0 and 1 determines a different member of a family of distributions; two such
members are

p(x; .6) � { .4 if x � 0

and p(x; .5) � { .5 if x � 0

.6 if x � 1  .5 if x � 1

0 otherwise 0 otherwise

Every probability distribution for a Bernoulli rv has the form of Expression (3.1), so it
is called the family of Bernoulli distributions.



Starting at a fixed time, we observe the gender of each newborn child at a certain
hospital until a boy (B) is born. Let p � P(B), assume that successive births are inde-
pendent, and define the rv X by X � number of births observed. Then

p(1) � P(X � 1) � P(B) � p

p(2) � P(X � 2) � P(GB) � P(G) � P(B) � (1 � p)p

and

p(3) � P(X � 3) � P(GGB) � P(G) � P(G) � P(B) � (1 � p)2p

Continuing in this way, a general formula emerges:

p(x) � { (1 � p)x�1p x � 1, 2, 3, . . .

0 otherwise
(3.2)

The quantity p in Expression (3.2) represents a number between 0 and 1 and is a
parameter of the probability distribution. In the gender example, p � .51 might be
appropriate, but if we were looking for the first child with Rh-positive blood, then
we might have p � .85. ■

The Cumulative Distribution Function
For some fixed value x, we often wish to compute the probability that the observed
value of X will be at most x. For example, the pmf in Example 3.8 was

Ï .500 x � 0

p(x) � Ì .167 x � 1
.333 x � 2

Ó 0 otherwise

The probability that X is at most 1 is then

P(X � 1) � p(0) � p(1) � .500 � .167 � .667

In this example, X � 1.5 iff X � 1, so

P(X � 1.5) � P(X � 1) � .667

Similarly,

P(X � 0) � P(X � 0) � .5, P(X � .75) � .5

And in fact for any x satisfying 0 � x � 1, P(X � x) � .5. The largest possible X
value is 2, so

P(X � 2) � 1, P(X � 3.7) � 1, P(X � 20.5) � 1

and so on. Notice that P(X � 1) � P(X � 1) since the latter includes the probability
of the X value 1, whereas the former does not. More generally, when X is discrete
and x is a possible value of the variable, P(X � x) � P(X � x).
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Example 3.12

DEFINITION The cumulative distribution function (cdf) F(x) of a discrete rv variable X with
pmf p(x) is defined for every number x by

F(x) � P(X � x) � �
y: y�x

p(y) (3.3)

For any number x, F(x) is the probability that the observed value of X will be
at most x.



The pmf of Y (the number of blood typings) in Example 3.10 was
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We first determine F(y) for each value in the set {1, 2, 3, 4} of possible values:

F(1) � P(Y � 1) � P(Y � 1) � p(1) � .4

F(2) � P(Y � 2) � P(Y � 1 or 2) � p(1) � p(2) � .7

F(3) � P(Y � 3) � P(Y � 1 or 2 or 3) � p(1) � p(2) � p(3) � .9

F(4) � P(Y � 4) � P(Y � 1 or 2 or 3 or 4) � 1

Now for any other number y, F(y) will equal the value of F at the closest possible
value of Y to the left of y. For example, F(2.7) � P(Y � 2.7) � P(Y � 2) � .7, and
F(3.999) � F(3) � .9. The cdf is thus

Ï 0 if y � 1

Ô .4 if 1 � y � 2
F(y) � Ì .7 if 2 � y � 3

Ô .9 if 3 � y � 4

Ó 1 if 4 � y

A graph of F(y) is shown in Figure 3.5.

Figure 3.5 A graph of the cdf of Example 3.13 ■

For X a discrete rv, the graph of F(x) will have a jump at every possible value
of X and will be flat between possible values. Such a graph is called a step function.

In Example 3.12, any positive integer was a possible X value, and the pmf was

p(x) � { (1 � p)x�1p x � 1, 2, 3, . . .

0 otherwise

For any positive integer x,

F(x) � �
y�x

p(y) � �
x

y�1
(1 � p)y�1 p � p

x

�
�1

y�0
(1 � p)y (3.4)

To evaluate this sum, we use the fact that the partial sum of a geometric series is

�
k

y�0
ay �

Using this in Equation (3.4), with a � 1 � p and k � x � 1, gives

F(x) � p � � 1 � (1 � p) x x a positive integer
1 � (1 � p)x

��
1 � (1 � p)

1 � ak�1

��
1 � a

1
y

F(y)

2 3 4

1

y 1 2 3 4

p(y) .4 .3 .2 .1

Example 3.13

Example 3.14



Since F is constant in between positive integers,

F(x) � { 0 x � 1
1 � (1 � p)[x] x � 1

(3.5)

where [x] is the largest integer � x (e.g., [2.7] � 2). Thus if p � .51 as in the birth
example, then the probability of having to examine at most five births to see the first
boy is F(5) � 1 � (.49)5 � 1 � .0282 � .9718, whereas F(10) � 1.0000. This cdf
is graphed in Figure 3.6.

Figure 3.6 A graph of F(x) for Example 3.14 ■

In examples thus far, the cdf has been derived from the pmf. This process can
be reversed to obtain the pmf from the cdf whenever the latter function is available.
For example, consider again the rv of Example 3.7 (the number of pumps in use at
a gas station); possible X values are 0, 1, . . . , 6. Then

p(3) � P(X � 3)

� [p(0) � p(1) � p(2) � p(3)] � [p(0) � p(1) � p(2)]

� P(X � 3) � P(X � 2)

� F(3) � F(2)

More generally, the probability that X falls in a specified interval is easily obtained
from the cdf. For example,

P(2 � X � 4) � p(2) � p(3) � p(4)

� [p(0) � . . . � p(4)] � [p(0) � p(1)]

� P(X � 4) � P(X � 1)

� F(4) � F(1)

Notice that P(2 � X � 4) � F(4) � F(2). This is because the X value 2 is included in
2 � X � 4, so we do not want to subtract out its probability. However, P(2 � X � 4) �
F(4) � F(2) because X � 2 is not included in the interval 2 � X � 4.

x

F(x)
1

0 1 2 3 4 5 50 51
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For any two numbers a and b with a � b,

P(a � X � b) � F(b) � F(a�)

where “a�” represents the largest possible X value that is strictly less than a. In
particular, if the only possible values are integers and if a and b are integers, then

P(a � X � b) � P(X � a or a � 1 or . . . or b)

� F(b) � F(a � 1)

Taking a � b yields P(X � a) � F(a) � F(a � 1) in this case.

PROPOSITION



The reason for subtracting F(a�) rather than F(a) is that we want to include
P(X � a); F(b) � F(a) gives P(a � X � b). This proposition will be used extensively
when computing binomial and Poisson probabilities in Sections 3.4 and 3.6.

Let X � the number of days of sick leave taken by a randomly selected employee 
of a large company during a particular year. If the maximum number of allowable
sick days per year is 14, possible values of X are 0, 1, . . . , 14. With F(0) � .58,
F(1) � .72, F(2) � .76, F(3) � .81, F(4) � .88, and F(5) � .94,

P(2 � X � 5) � P(X � 2, 3, 4, or 5) � F(5) � F(1) � .22

and

P(X � 3) � F(3) � F(2) � .05 ■
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Example 3.15

EXERCISES Section 3.2 (11–28)

11. An automobile service facility specializing in engine tune-ups
knows that 45% of all tune-ups are done on four-cylinder
automobiles, 40% on six-cylinder automobiles, and 15% on
eight-cylinder automobiles. Let X � the number of cylinders
on the next car to be tuned.
a. What is the pmf of X?
b. Draw both a line graph and a probability histogram for

the pmf of part (a).
c. What is the probability that the next car tuned has at least

six cylinders? More than six cylinders?

12. Airlines sometimes overbook flights. Suppose that for a
plane with 50 seats, 55 passengers have tickets. Define the
random variable Y as the number of ticketed passengers who
actually show up for the flight. The probability mass func-
tion of Y appears in the accompanying table.

a. What is the probability that the flight will accommodate
all ticketed passengers who show up?

b. What is the probability that not all ticketed passengers
who show up can be accommodated?

c. If you are the first person on the standby list (which
means you will be the first one to get on the plane if there
are any seats available after all ticketed passengers have
been accommodated), what is the probability that you
will be able to take the flight? What is this probability if
you are the third person on the standby list?

13. A mail-order computer business has six telephone lines. Let
X denote the number of lines in use at a specified time.
Suppose the pmf of X is as given in the accompanying table.

Calculate the probability of each of the following events.
a. {at most three lines are in use}
b. {fewer than three lines are in use}
c. {at least three lines are in use}
d. {between two and five lines, inclusive, are in use}
e. {between two and four lines, inclusive, are not in use}
f. {at least four lines are not in use}

14. A contractor is required by a county planning department to
submit one, two, three, four, or five forms (depending on
the nature of the project) in applying for a building permit.
Let Y � the number of forms required of the next applicant.
The probability that y forms are required is known to be
proportional to y—that is, p(y) � ky for y � 1, . . . , 5.
a. What is the value of k? [Hint: �5

y�1 p(y) � 1.]
b. What is the probability that at most three forms are

required?
c. What is the probability that between two and four forms

(inclusive) are required?
d. Could p(y) � y2/50 for y � 1, . . . , 5 be the pmf of Y?

15. Many manufacturers have quality control programs that in-
clude inspection of incoming materials for defects. Sup-
pose a computer manufacturer receives computer boards 
in lots of five. Two boards are selected from each lot for
inspection. We can represent possible outcomes of the selec-
tion process by pairs. For example, the pair (1, 2) represents
the selection of boards 1 and 2 for inspection.
a. List the ten different possible outcomes.
b. Suppose that boards 1 and 2 are the only defective boards in

a lot of five. Two boards are to be chosen at random. Define
X to be the number of defective boards observed among
those inspected. Find the probability distribution of X.

c. Let F(x) denote the cdf of X. First determine F(0) �
P(X � 0), F(1), and F(2); then obtain F(x) for all other x.

16. Some parts of California are particularly earthquake-prone.
Suppose that in one metropolitan area, 30% of all homeown-
ers are insured against earthquake damage. Four homeowners

y 45 46 47 48 49 50 51 52 53 54 55

p(y) .05 .10 .12 .14 .25 .17 .06 .05 .03 .02 .01

x 0 1 2 3 4 5 6

p(x) .10 .15 .20 .25 .20 .06 .04
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are to be selected at random; let X denote the number among
the four who have earthquake insurance.
a. Find the probability distribution of X. [Hint: Let S denote

a homeowner who has insurance and F one who does not.
Then one possible outcome is SFSS, with probability
(.3)(.7)(.3)(.3) and associated X value 3. There are 15 other
outcomes.]

b. Draw the corresponding probability histogram.
c. What is the most likely value for X?
d. What is the probability that at least two of the four

selected have earthquake insurance?

17. A new battery’s voltage may be acceptable (A) or unaccept-
able (U). A certain flashlight requires two batteries, so bat-
teries will be independently selected and tested until two
acceptable ones have been found. Suppose that 90% of all
batteries have acceptable voltages. Let Y denote the number
of batteries that must be tested.
a. What is p(2), that is P(Y � 2)?
b. What is p(3)? [Hint: There are two different outcomes

that result in Y � 3.]
c. To have Y � 5, what must be true of the fifth battery

selected? List the four outcomes for which Y � 5 and
then determine p(5).

d. Use the pattern in your answers for parts (a)–(c) to
obtain a general formula for p(y).

18. Two fair six-sided dice are tossed independently. Let M � the
maximum of the two tosses (so M(1, 5) � 5, M(3, 3) � 3, etc.).
a. What is the pmf of M? [Hint: First determine p(1), then

p(2), and so on.]
b. Determine the cdf of M and graph it.

19. A library subscribes to two different weekly news maga-
zines, each of which is supposed to arrive in Wednesday’s
mail. In actuality, each one may arrive on Wednesday,
Thursday, Friday, or Saturday. Suppose the two arrive inde-
pendently of one another, and for each one P(Wed.) � .3,
P(Thurs.) � .4, P(Fri.) � .2, and P(Sat.) � .1. Let Y � the
number of days beyond Wednesday that it takes for both
magazines to arrive (so possible Y values are 0, 1, 2, or 3).
Compute the pmf of Y. [Hint: There are 16 possible out-
comes; Y(W, W ) � 0, Y(F, Th) � 2, and so on.]

20. Three couples and two single individuals have been invited
to an investment seminar and have agreed to attend. Suppose
the probability that any particular couple or individual
arrives late is .4 (a couple will travel together in the same
vehicle, so either both people will be on time or else both
will arrive late). Assume that different couples and individu-
als are on time or late independently of one another. Let 
X � the number of people who arrive late for the seminar.
a. Determine the probability mass function of X. [Hint:

label the three couples #1, #2, and #3 and the two indi-
viduals #4 and #5.]

b. Obtain the cumulative distribution function of X, and use
it to calculate P(2 � X � 6).

21. Suppose that you read through this year’s issues of the New
York Times and record each number that appears in a news

article—the income of a CEO, the number of cases of wine
produced by a winery, the total charitable contribution of a
politician during the previous tax year, the age of a celebrity,
and so on. Now focus on the leading digit of each number,
which could be 1, 2, . . . , 8, or 9. Your first thought might be
that the leading digit X of a randomly selected number would
be equally likely to be one of the nine possibilities (a discrete
uniform distribution). However, much empirical evidence as
well as some theoretical arguments suggest an alternative
probability distribution called Benford’s law:

p(x) � P(1st digit is x) � log10 (1 � 1/x) x � 1, 2, . . . , 9

a. Compute the individual probabilities and compare to the
corresponding discrete uniform distribution.

b. Obtain the cdf of X.
c. Using the cdf, what is the probability that the leading

digit is at most 3? At least 5?
[Note: Benford’s law is the basis for some auditing pro-
cedures used to detect fraud in financial reporting—for
example, by the Internal Revenue Service.]

22. Refer to Exercise 13, and calculate and graph the cdf F(x).
Then use it to calculate the probabilities of the events
given in parts (a)–(d) of that problem.

23. A consumer organization that evaluates new automobiles
customarily reports the number of major defects in each
car examined. Let X denote the number of major defects in
a randomly selected car of a certain type. The cdf of X is
as follows:

Ï 0 x � 0

Ô .06 0 � x � 1

Ô .19 1 � x � 2

F(x) � Ì .39 2 � x � 3

Ô .67 3 � x � 4

Ô .92 4 � x � 5

Ô .97 5 � x � 6

Ó 1 6 � x

Calculate the following probabilities directly from the cdf:
a. p(2), that is, P(X � 2) b. P(X � 3)
c. P(2 � X � 5) d. P(2 � X � 5)

24. An insurance company offers its policyholders a number 
of different premium payment options. For a randomly
selected policyholder, let X � the number of months
between successive payments. The cdf of X is as follows:

Ï 0 x � 1

Ô .30 1 � x � 3

F(x) � Ì
.40 3 � x � 4

.45 4 � x � 6

Ô .60 6 � x � 12

Ó 1 12 � x



Consider a university having 15,000 students and let X � the number of courses 
for which a randomly selected student is registered. The pmf of X follows. Since
p(1) � .01, we know that (.01) � (15,000) � 150 of the students are registered for
one course, and similarly for the other x values.

(3.6)

The average number of courses per student, or the average value of X in the
population, results from computing the total number of courses taken by all students
and dividing by the total number of students. Since each of 150 students is taking
one course, these 150 contribute 150 courses to the total. Similarly, 450 students
contribute 2(450) courses, and so on. The population average value of X is then

� 4.57 (3.7)

Since 150/15,000 � .01 � p(1), 450/15,000 � .03 � p(2), and so on, an alternative
expression for (3.7) is

1 � p(1) � 2 � p(2) � . . . � 7 � p(7) (3.8)

Expression (3.8) shows that to compute the population average value of X, we
need only the possible values of X along with their probabilities (proportions). In
particular, the population size is irrelevant as long as the pmf is given by (3.6). The
average or mean value of X is then a weighted average of the possible values 1, . . . , 7,
where the weights are the probabilities of those values.

1(150) � 2(450) � 3(1950) � . . . � 7(300)
�����

15,000
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a. What is the pmf of X?
b. Using just the cdf, compute P(3 � X � 6) and P(4 � X).

25. In Example 3.12, let Y � the number of girls born before
the experiment terminates. With p � P(B) and 1 � p �
P(G), what is the pmf of Y? [Hint: First list the possible
values of Y, starting with the smallest, and proceed until
you see a general formula.]

26. Alvie Singer lives at 0 in the accompanying diagram and has
four friends who live at A, B, C, and D. One day Alvie
decides to go visiting, so he tosses a fair coin twice to decide
which of the four to visit. Once at a friend’s house, he will
either return home or else proceed to one of the two adjacent
houses (such as 0, A, or C when at B), with each of the three
possibilities having probability �

1
3

�. In this way, Alvie contin-
ues to visit friends until he returns home.

a. Let X � the number of times that Alvie visits a friend.
Derive the pmf of X.

b. Let Y � the number of straight-line segments that Alvie
traverses (including those leading to and from 0). What
is the pmf of Y?

c. Suppose that female friends live at A and C and male
friends at B and D. If Z � the number of visits to female
friends, what is the pmf of Z?

27. After all students have left the classroom, a statistics profes-
sor notices that four copies of the text were left under desks.
At the beginning of the next lecture, the professor distributes
the four books in a completely random fashion to each of the
four students (1, 2, 3, and 4) who claim to have left books.
One possible outcome is that 1 receives 2’s book, 2 receives
4’s book, 3 receives his or her own book, and 4 receives 1’s
book. This outcome can be abbreviated as (2, 4, 3, 1).
a. List the other 23 possible outcomes.
b. Let X denote the number of students who receive their

own book. Determine the pmf of X.

28. Show that the cdf F(x) is a nondecreasing function; that is,
x1 � x2 implies that F(x1) � F(x2). Under what condition
will F(x1) � F(x2)?

B

C

A

D

0

3.3 Expected Values

x 1 2 3 4 5 6 7

p (x) .01 .03 .13 .25 .39 .17 .02

Number registered 150 450 1950 3750 5850 2550 300



The Expected Value of X
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DEFINITION Let X be a discrete rv with set of possible values D and pmf p(x). The expected
value or mean value of X, denoted by E(X) or �X, is

E(X) � �X � �
x�D

x � p(x)

When it is clear to which X the expected value refers, � rather than �X is often
used.

For the pmf in (3.6),

� � 1 � p(1) � 2 � p(2) � . . . � 7 � p(7)

� (1)(.01) � 2(.03) � . . . � (7)(.02)

� .01 � .06 � .39 � 1.00 � 1.95 � 1.02 � .14 � 4.57

If we think of the population as consisting of the X values 1, 2, . . . , 7, then � � 4.57
is the population mean. In the sequel, we will often refer to � as the population mean
rather than the mean of X in the population. ■

In Example 3.16, the expected value � was 4.57, which is not a possible value
of X. The word expected should be interpreted with caution because one would not
expect to see an X value of 4.57 when a single student is selected.

Just after birth, each newborn child is rated on a scale called the Apgar scale. The
possible ratings are 0, 1, . . . , 10, with the child’s rating determined by color, mus-
cle tone, respiratory effort, heartbeat, and reflex irritability (the best possible score
is 10). Let X be the Apgar score of a randomly selected child born at a certain hos-
pital during the next year, and suppose that the pmf of X is

x 0 1 2 3 4 5 6 7 8 9 10

p(x) .002 .001 .002 .005 .02 .04 .18 .37 .25 .12 .01

Then the mean value of X is

E(X) � � � 0(.002) � 1(.001) � 2(.002)

� . . .� 8(.25) � 9(.12) � 10(.01)

� 7.15

Again, � is not a possible value of the variable X. Also, because the variable refers to
a future child, there is no concrete existing population to which � refers. Instead, we
think of the pmf as a model for a conceptual population consisting of the values 0, 1,
2, . . . , 10. The mean value of this conceptual population is then � � 7.15. ■

Let X � 1 if a randomly selected component needs warranty service and � 0 other-
wise. Then X is a Bernoulli rv with pmf

Ï 1 � p x � 0

p(x) � Ì p x � 1

Ó 0 x � 0, 1

Example 3.16

Example 3.17

Example 3.18



from which E(X) � 0 � p(0) � 1 � p(1) � 0(1 � p) � 1(p) � p. That is, the ex-
pected value of X is just the probability that X takes on the value 1. If we conceptu-
alize a population consisting of 0s in proportion 1 � p and 1s in proportion p, then
the population average is � � p. ■

The general form for the pmf of X � number of children born up to and including
the first boy is

p(x) � { p(1 � p)x�1 x � 1, 2, 3, . . .

0 otherwise

From the definition,

E(X) � �
D

x � p(x) � �
�

x�1
xp(1 � p)x�1 � p �

�

x�1
�� (1 � p)x� (3.9)

If we interchange the order of taking the derivative and the summation, the sum is that
of a geometric series. After the sum is computed, the derivative is taken, and the final
result is E(X) � 1/p. If p is near 1, we expect to see a boy very soon, whereas if p is
near 0, we expect many births before the first boy. For p � .5, E(X) � 2. ■

There is another frequently used interpretation of m. Consider the pmf

p(x) � { (.5) � (.5)x�1 if x � 1, 2, 3, . . .

0 otherwise

This is the pmf of X � the number of tosses of a fair coin necessary to obtain the
first H (a special case of Example 3.19). Suppose we observe a value x from this pmf
(toss a coin until an H appears), then observe independently another value (keep
tossing), then another, and so on. If after observing a very large number of x values,
we average them, the resulting sample average will be very near to � � 2. That is,
� can be interpreted as the long-run average observed value of X when the experi-
ment is performed repeatedly.

Let X, the number of interviews a student has prior to getting a job, have pmf

p(x) � { k/x2 x � 1, 2, 3, . . .

0 otherwise

where k is chosen so that ��
x�1 (k/x2) � 1. (In a mathematics course on infinite

series, it is shown that ��
x�1 (1/x2) � �, which implies that such a k exists, but its

exact value need not concern us.) The expected value of X is

� � E(X ) � �
�

x�1
x � � k �

�

x�1
(3.10)

The sum on the right of Equation (3.10) is the famous harmonic series of math-
ematics and can be shown to equal �. E(X) is not finite here because p(x) does not
decrease sufficiently fast as x increases; statisticians say that the probability distri-
bution of X has “a heavy tail.” If a sequence of X values is chosen using this distri-
bution, the sample average will not settle down to some finite number but will tend
to grow without bound.

Statisticians use the phrase “heavy tails” in connection with any distribution hav-
ing a large amount of probability far from � (so heavy tails do not require � � �). Such
heavy tails make it difficult to make inferences about �. ■

1
�
x

k
�
x2

d
�
dp
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Example 3.19

Example 3.20



The Expected Value of a Function
Often we will be interested in the expected value of some function h(X) rather than X itself.

Suppose a bookstore purchases ten copies of a book at $6.00 each to sell at $12.00
with the understanding that at the end of a 3-month period any unsold copies can be
redeemed for $2.00. If X � the number of copies sold, then net revenue � h(X) �
12X � 2(10 � X) � 60 � 10X � 40. ■

An easy way of computing the expected value of h(X) is suggested by the fol-
lowing example.

Let X � the number of cylinders in the engine of the next car to be tuned up at a cer-
tain facility. The cost of a tune-up is related to X by h(X) � 20 � 3X � .5X 2. Since
X is a random variable, so is h(X); denote this latter rv by Y. The pmf’s of X and Y
are as follows:
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Example 3.21

Example 3.22

Example 3.23

x 4 6 8 y 40 56 76

p(x) .5 .3 .2 p(y) .5 .3 .2

With D* denoting possible values of Y,

E(Y ) � E[h(X)] � �
D*

y � p(y) (3.11)

� (40)(.5) � (56)(.3) � (76)(.2)

� h(4) � (.5) � h(6) � (.3) � h(8) � (.2)

� �
D

h(x) � p(x)

According to Equation (3.11), it was not necessary to determine the pmf of Y to
obtain E(Y); instead, the desired expected value is a weighted average of the possi-
ble h(x) (rather than x) values. ■

If the rv X has a set of possible values D and pmf p(x), then the expected value 
of any function h(X), denoted by E[h(X)] or �h(X), is computed by 

E[h(X)] � �
D

h(x) � p(x)

PROPOSITION

That is, E[h(X)] is computed in the same way that E(X) itself is, except that
h(x) is substituted in place of x.

A computer store has purchased three computers of a certain type at $500 apiece. It will
sell them for $1000 apiece. The manufacturer has agreed to repurchase any computers 
still unsold after a specified period at $200 apiece. Let X denote the number of computers
sold, and suppose that p(0) � .1, p(1) � .2, p(2) � .3, and p(3) � .4. With h(X) denoting the
profit associated with selling X units, the given information implies that h(X) � reve-
nue � cost � 1000X � 200(3 � X) � 1500 � 800X � 900. The expected profit is then

E[h(X)] � h(0) � p(0) � h(1) � p(1) � h(2) � p(2) � h(3) � p(3)

� (�900)(.1) � (�100)(.2) � (700)(.3) � (1500)(.4)

� $700 ■



Rules of Expected Value
The h(X) function of interest is quite frequently a linear function aX � b. In this
case, E[h(X)] is easily computed from E(X).
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To paraphrase, the expected value of a linear function equals the linear func-
tion evaluated at the expected value E(X). Since h(X) in Example 3.23 is linear and
E(X) � 2, E[h(X)] � 800(2) � 900 � $700, as before.

Proof

E(aX � b) � �
D

(ax � b) � p(x) � a�
D

x � p(x) � b�
D

p(x)

� aE(X) � b ■

Two special cases of the proposition yield two important rules of expected value.

E(aX � b) � a � E(X) � b

(Or, using alternative notation, �aX�b � a � �X � b.)

PROPOSITION

1. For any constant a, E(aX) � a � E(X) (take b � 0). (3.12)
2. For any constant b, E(X � b) � E(X) � b (take a � 1).

Multiplication of X by a constant a changes the unit of measurement (from
dollars to cents, where a � 100, inches to cm, where a � 2.54, etc.). Rule 1 says that
the expected value in the new units equals the expected value in the old units multi-
plied by the conversion factor a. Similarly, if a constant b is added to each possible
value of X, then the expected value will be shifted by that same constant amount.

The Variance of X
The expected value of X describes where the probability distribution is centered. Using
the physical analogy of placing point mass p(x) at the value x on a one-dimensional axis,
if the axis were then supported by a fulcrum placed at �, there would be no tendency
for the axis to tilt. This is illustrated for two different distributions in Figure 3.7.

Figure 3.7 Two different probability distributions with m � 4

Although both distributions pictured in Figure 3.7 have the same center �, the dis-
tribution of Figure 3.7(b) has greater spread or variability or dispersion than does that of
Figure 3.7(a). We will use the variance of X to assess the amount of variability in (the dis-
tribution of) X, just as s2 was used in Chapter 1 to measure variability in a sample.

p(x)

.5

1 2 3
(a)

5

p(x)

.5

1 2 3 5 6 7 8
(b)



The quantity h(X) � (X � �)2 is the squared deviation of X from its mean,
and � 2 is the expected squared deviation, i.e., the weighted average of squared
deviations, where the weights are probabilities from the distribution. If most 
of the probability distribution is close to �, then � 2 will be relatively small.
However, if there are x values far from � that have large p(x), then � 2 will be
quite large.

If X is the number of cylinders on the next car to be tuned at a service facility, with pmf
as given in Example 3.22 [p(4) � .5, p(6) � .3, p(8) � .2, from which � � 5.4], then

V(X) � �2 � �
8

x�4
(x � 5.4)2 � p(x)

� (4 � 5.4)2(.5) � (6 � 5.4)2(.3) � (8 � 5.4)2(.2) � 2.44

The standard deviation of X is � � �2�.4�4� � 1.562. ■

When the pmf p(x) specifies a mathematical model for the distribution of pop-
ulation values, both �2 and � measure the spread of values in the population; � 2 is
the population variance, and � is the population standard deviation.

A Shortcut Formula for �2

The number of arithmetic operations necessary to compute � 2 can be reduced by
using an alternative computing formula.
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DEFINITION Let X have pmf p(x) and expected value �. Then the variance of X, denoted
by V(X) or �2

X, or just �2, is

V(X) � �
D

(x � �)2 � p(x) � E[(X � �)2]

The standard deviation (SD) of X is

�X � ���2
X�

Example 3.24

V(X) � � 2 � ��
D

x2 � p(x)� � �2 � E(X 2) � [E(X)]2PROPOSITION

In using this formula, E(X 2) is computed first without any subtraction; then E(X) is
computed, squared, and subtracted (once) from E(X 2).

The pmf of the number of cylinders X on the next car to be tuned at a certain facil-
ity was given in Example 3.24 as p(4) � .5, p(6) � .3, and p(8) � .2, from which
� � 5.4 and

E(X 2) � (42)(.5) � (62)(.3) � (82)(.2) � 31.6

Thus � 2 � 31.6 � (5.4)2 � 2.44 as in Example 3.24. ■

Example 3.25



Proof of the Shortcut Formula
Expand (x � �)2 in the definition of �2 to obtain x2 � 2�x � �2, and then carry �
through to each of the three terms:

� 2 � �
D

x2 � p(x) � 2� � �
D

x � p(x) � �2 �
D

p(x)

� E(X 2) � 2� � � � �2 � E(X 2) � �2 ■

Rules of Variance
The variance of h(X) is the expected value of the squared difference between h(X)
and its expected value:

V[h(X)] � �2
h (X) � �

D
{h(x) � E[h(X)]}2 � p(x) (3.13)

When h(X) � aX � b, a linear function,

h(x) � E[h(X)] � ax � b � (am � b) � a(x � m)

Substituting this into (3.13) gives a simple relationship between V[h(X)] and V(X):
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In particular,

(3.14)saX 5 |a| ? sX, sX1b 5 sX

VsaX 1 bd 5 s2
aX1b 5 a2 ? s2

X  and  saX1b 5 |a| ? sxPROPOSITION

The absolute value is necessary because a might be negative, yet a standard devia-
tion cannot be. Usually multiplication by a corresponds to a change in the unit of
measurement (e.g., kg to lb or dollars to euros). According to the first relation in
(3.14), the sd in the new unit is the original sd multiplied by the conversion factor.
The second relation says that adding or subtracting a constant does not impact vari-
ability; it just rigidly shifts the distribution to the right or left.

In the computer sales problem of Example 3.23, E(X) � 2 and

E(X 2) � (0)2(.1) � (1)2(.2) � (2)2(.3) � (3)2(.4) � 5

so V(X) � 5 � (2)2 � 1. The profit function h(X) � 800X � 900 then has variance
(800)2 � V(X) � (640,000)(1) � 640,000 and standard deviation 800. ■

Example 3.26

EXERCISES Section 3.3 (29–45)

29. The pmf for X � the number of major defects on a randomly
selected appliance of a certain type is

Compute the following:
a. E(X)
b. V(X) directly from the definition

c. The standard deviation of X
d. V(X) using the shortcut formula

30. An individual who has automobile insurance from a certain
company is randomly selected. Let Y be the number of mov-
ing violations for which the individual was cited during the
last 3 years. The pmf of Y is

x 0 1 2 3 4

p(x) .08 .15 .45 .27 .05

y 0 1 2 3

p(y) .60 .25 .10 .05
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a. Compute E(Y ).
b. Suppose an individual with Y violations incurs a sur-

charge of $100Y 2. Calculate the expected amount of the
surcharge.

31. Refer to Exercise 12 and calculate V(Y ) and �Y. Then deter-
mine the probability that Y is within 1 standard deviation of
its mean value.

32. An appliance dealer sells three different models of upright
freezers having 13.5, 15.9, and 19.1 cubic feet of storage
space, respectively. Let X � the amount of storage space
purchased by the next customer to buy a freezer. Suppose
that X has pmf

a. Compute E(X), E(X 2), and V(X).
b. If the price of a freezer having capacity X cubic feet is

25X � 8.5, what is the expected price paid by the next
customer to buy a freezer?

c. What is the variance of the price 25X � 8.5 paid by the
next customer?

d. Suppose that although the rated capacity of a freezer is
X, the actual capacity is h(X) � X � .01X 2. What is the
expected actual capacity of the freezer purchased by the
next customer?

33. Let X be a Bernoulli rv with pmf as in Example 3.18.
a. Compute E(X 2).
b. Show that V(X) � p(1 � p).
c. Compute E(X 79).

34. Suppose that the number of plants of a particular type found
in a rectangular region (called a quadrat by ecologists) in a
certain geographic area is an rv X with pmf

p(x) � { c/x3 x � 1, 2, 3, . . .

0 otherwise

Is E(X) finite? Justify your answer (this is another distribution
that statisticians would call heavy-tailed).

35. A small market orders copies of a certain magazine for its
magazine rack each week. Let X � demand for the maga-
zine, with pmf

Suppose the store owner actually pays $1.00 for each copy of
the magazine and the price to customers is $2.00. If magazines
left at the end of the week have no salvage value, is it better to
order three or four copies of the magazine? [Hint: For both
three and four copies ordered, express net revenue as a func-
tion of demand X, and then compute the expected revenue.]

36. Let X be the damage incurred (in $) in a certain type of acci-
dent during a given year. Possible X values are 0, 1000,

5000, and 10000, with probabilities .8, .1, .08, and .02,
respectively. A particular company offers a $500 deductible
policy. If the company wishes its expected profit to be $100,
what premium amount should it charge?

37. The n candidates for a job have been ranked 1, 2, 
3, . . . , n. Let X � the rank of a randomly selected candi-
date, so that X has pmf

p(x) � { 1/n x � 1, 2, 3, . . . , n

0 otherwise

(this is called the discrete uniform distribution). Compute
E(X) and V(X) using the shortcut formula. [Hint: The sum
of the first n positive integers is n(n � 1)/2, whereas the sum
of their squares is n(n � 1)(2n � 1)/6.]

38. Let X � the outcome when a fair die is rolled once. If
before the die is rolled you are offered either (1/3.5) dol-
lars or h(X) � 1/X dollars, would you accept the guaran-
teed amount or would you gamble? [Note: It is not gener-
ally true that 1/E(X) � E(1/X).]

39. A chemical supply company currently has in stock 100 lb of
a certain chemical, which it sells to customers in 5-lb lots.
Let X � the number of lots ordered by a randomly chosen
customer, and suppose that X has pmf

Compute E(X) and V(X). Then compute the expected num-
ber of pounds left after the next customer’s order is shipped
and the variance of the number of pounds left. [Hint: The
number of pounds left is a linear function of X.]

40. a. Draw a line graph of the pmf of X in Exercise 35. Then
determine the pmf of �X and draw its line graph. From
these two pictures, what can you say about V(X) and
V(�X)?

b. Use the proposition involving V(aX � b) to establish a
general relationship between V(X) and V(�X).

41. Use the definition in Expression (3.13) to prove that 
V(aX � b) � a2 � �2

X. [Hint: With h(X) � aX � b, E[h(X)] �
a� � b where � � E(X).]

42. Suppose E(X) � 5 and E[X(X � 1)] � 27.5. What is
a. E(X 2)? [Hint: E[X(X � 1)] � E[X 2 � X] � E(X 2) �

E(X)]?
b. V(X)?
c. The general relationship among the quantities E(X),

E[X(X � 1)], and V(X)?

43. Write a general rule for E(X � c) where c is a constant.
What happens when you let c � �, the expected value of X?

44. A result called Chebyshev’s inequality states that for any
probability distribution of an rv X and any number k that is
at least 1, P(⏐X � �⏐ � k�) � 1/k2. In words, the probabil-
ity that the value of X lies at least k standard deviations from
its mean is at most 1/k2.

x 13.5 15.9 19.1

p(x) .2 .5 .3

x 1 2 3 4 5 6

p(x) �
1
1
5
� �

1
2
5
� �

1
3
5
� �

1
4
5
� �

1
3
5
� �

1
2
5
�

x 1 2 3 4

p(x) .2 .4 .3 .1



The same coin is tossed successively and independently n times. We arbitrarily use S
to denote the outcome H (heads) and F to denote the outcome T (tails). Then this
experiment satisfies Conditions 1–4. Tossing a thumbtack n times, with S � point up
and F � point down, also results in a binomial experiment. ■

Many experiments involve a sequence of independent trials for which there are
more than two possible outcomes on any one trial. A binomial experiment can then
be created by dividing the possible outcomes into two groups.

The color of pea seeds is determined by a single genetic locus. If the two alleles at
this locus are AA or Aa (the genotype), then the pea will be yellow (the phenotype),
and if the allele is aa, the pea will be green. Suppose we pair off 20 Aa seeds and
cross the two seeds in each of the ten pairs to obtain ten new genotypes. Call each
new genotype a success S if it is aa and a failure otherwise. Then with this identifi-
cation of S and F, the experiment is binomial with n � 10 and p � P(aa genotype).
If each member of the pair is equally likely to contribute a or A, then p � P(a) �
P(a) � (�

1
2

�)(�
1
2

�) � �
1
4

�. ■

Suppose a certain city has 50 licensed restaurants, of which 15 currently have at least
one serious health code violation and the other 35 have no serious violations. There
are five inspectors, each of whom will inspect one restaurant during the coming
week. The name of each restaurant is written on a different slip of paper, and after
the slips are thoroughly mixed, each inspector in turn draws one of the slips without
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a. What is the value of the upper bound for k � 2? k � 3?
k � 4? k � 5? k � 10?

b. Compute � and � for the distribution of Exercise 13.
Then evaluate P(⏐X � �⏐ � k�) for the values of k
given in part (a). What does this suggest about the upper
bound relative to the corresponding probability?

c. Let X have possible values �1, 0, and 1, with probabilities
�
1
1
8
�, �

8
9

�, and �
1
1
8
�, respectively. What is P(⏐X � �⏐ � 3�), and

how does it compare to the corresponding bound?
d. Give a distribution for which P(⏐X � �⏐ � 5�) � .04.

45. If a � X � b, show that a � E(X) � b.

There are many experiments that conform either exactly or approximately to the fol-
lowing list of requirements:

1. The experiment consists of a sequence of n smaller experiments called trials,
where n is fixed in advance of the experiment.

2. Each trial can result in one of the same two possible outcomes (dichotomous
trials), which we denote by success (S) and failure (F).

3. The trials are independent, so that the outcome on any particular trial does not
influence the outcome on any other trial.

4. The probability of success is constant from trial to trial; we denote this probability
by p.

3.4 The Binomial Probability Distribution

DEFINITION An experiment for which Conditions 1–4 are satisfied is called a binomial
experiment.

Example 3.27

Example 3.28

Example 3.29



replacement. Label the ith trial as a success if the ith restaurant selected (i � 1, . . . , 5)
has no serious violations. Then ■

P(S on first trial) � � .70

and

P(S on second trial) � P(SS ) � P(FS)

� P(second S⏐first S) P(first S)

� P(second S⏐first F ) P(first F)

� � � � � � � � � � .70

Similarly, it can be shown that P(S on ith trial) � .70 for i � 3, 4, 5. However,

P(S on fifth trial⏐SSSS) � � .67

whereas

P(S on fifth trial⏐FFFF) � � .76

The experiment is not binomial because the trials are not independent. In gen-
eral, if sampling is without replacement, the experiment will not yield independent
trials. If each slip had been replaced after being drawn, then trials would have been
independent, but this might have resulted in the same restaurant being inspected by
more than one inspector. ■

A certain state has 500,000 licensed drivers, of whom 400,000 are insured. A sam-
ple of 10 drivers is chosen without replacement. The ith trial is labeled S if the ith
driver chosen is insured. Although this situation would seem identical to that of
Example 3.29, the important difference is that the size of the population being sam-
pled is very large relative to the sample size. In this case

P(S on 2⏐S on 1) � � .80000

and

P(S on 10⏐S on first 9) � � .799996 � .80000

These calculations suggest that although the trials are not exactly independent, the con-
ditional probabilities differ so slightly from one another that for practical purposes the
trials can be regarded as independent with constant P(S) � .8. Thus, to a very good
approximation, the experiment is binomial with n � 10 and p � .8. ■

We will use the following rule of thumb in deciding whether a “without-
replacement” experiment can be treated as a binomial experiment.

399,991
�
499,991

399,999
�
499,999

35
�
46

31
�
46

35
�
50

15
�
49

34
�
49

35
�
50

15
�
50

35
�
49

35
�
50

34
�
49

35
�
50
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Example 3.30

RULE Consider sampling without replacement from a dichotomous population of size
N. If the sample size (number of trials) n is at most 5% of the population size,
the experiment can be analyzed as though it were exactly a binomial experiment.

By “analyzed,” we mean that probabilities based on the binomial experiment assump-
tions will be quite close to the actual “without-replacement” probabilities, which are



typically more difficult to calculate. In Example 3.29, n/N � 5/50 � .1 � .05, so the
binomial experiment is not a good approximation, but in Example 3.30, n/N �
10/500,000 � .05.

The Binomial Random Variable and Distribution
In most binomial experiments, it is the total number of S’s, rather than knowledge of
exactly which trials yielded S’s, that is of interest.
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DEFINITION The binomial random variable X associated with a binomial experiment con-
sisting of n trials is defined as

X � the number of S’s among the n trials

NOTATION Because the pmf of a binomial rv X depends on the two parameters n and p,
we denote the pmf by b(x; n, p).

Suppose, for example, that n � 3. Then there are eight possible outcomes for the
experiment:

SSS SSF SFS SFF FSS FSF FFS FFF

From the definition of X, X(SSF) � 2, X(SFF) � 1, and so on. Possible values for X
in an n-trial experiment are x � 0, 1, 2, . . . , n. We will often write X 	 Bin(n, p) to
indicate that X is a binomial rv based on n trials with success probability p.

Consider first the case n � 4 for which each outcome, its probability, and
corresponding x value are listed in Table 3.1. For example,

P(SSFS) � P(S) � P(S) � P(F) � P(S) (independent trials)

� p � p � (1 � p) � p (constant P(S))

� p3 � (1 � p)

Table 3.1 Outcomes and Probabilities for a Binomial Experiment with four Trials

Outcome x Probability Outcome x Probability

SSSS 4 p4 FSSS 3 p3(1 � p)
SSSF 3 p3(1 � p) FSSF 2 p2(1 � p)2

SSFS 3 p3(1 � p) FSFS 2 p2(1 � p)2

SSFF 2 p2(1 � p)2 FSFF 1 p(1 � p)3

SFSS 3 p3(1 � p) FFSS 2 p2(1 � p)2

SFSF 2 p2(1 � p)2 FFSF 1 p(1 � p)3

SFFS 2 p2(1 � p)2 FFFS 1 p(1 � p)3

SFFF 1 p(1 � p)3 FFFF 0 (1 � p)4

In this special case, we wish b(x; 4, p) for x � 0, 1, 2, 3, and 4. For b(3; 4, p),
let’s identify which of the 16 outcomes yield an x value of 3 and sum the probabili-
ties associated with each such outcome:

b(3; 4, p) � P(FSSS) � P(SFSS) � P(SSFS) � P(SSSF) � 4p3(1 � p)



There are four outcomes with x � 3 and each has probability p3(1 � p) (the order of
S’s and F’s is not important, but only the number of S’s), so

b(3; 4, p) � {number of outcomes} � {probability of any particular}with X � 3 outcome with X � 3

Similarly, b(2; 4, p) � 6p2(1 � p)2, which is also the product of the number of out-
comes with X � 2 and the probability of any such outcome.

In general,

b(x; n, p) � {number of sequences of } � {probability of any          }length n consisting of x S’s particular such sequence

Since the ordering of S’s and F’s is not important, the second factor in the previous
equation is px(1 � p)n�x (e.g., the first x trials resulting in S and the last n � x result-
ing in F). The first factor is the number of ways of choosing x of the n trials to be
S’s—that is, the number of combinations of size x that can be constructed from n
distinct objects (trials here).
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THEOREM

Each of six randomly selected cola drinkers is given a glass containing cola S and one
containing cola F. The glasses are identical in appearance except for a code on the bot-
tom to identify the cola. Suppose there is actually no tendency among cola drinkers
to prefer one cola to the other. Then p � P(a selected individual prefers S) � .5, so
with X � the number among the six who prefer S, X 	 Bin(6, .5).

Thus

P(X � 3) � b(3; 6, .5) � � �(.5)3(.5)3 � 20(.5)6 � .313

The probability that at least three prefer S is

P(3 � X) � �
6

x�3
b(x; 6, .5) � �

6

x�3
� �(.5)x(.5)6�x � .656

and the probability that at most one prefers S is

P(X � 1) � �
1

x�0
b(x; 6, .5) � .109 ■

Using Binomial Tables*
Even for a relatively small value of n, the computation of binomial probabilities can
be tedious. Appendix Table A.1 tabulates the cdf F(x) � P(X � x) for n � 5, 10, 15,
20, 25 in combination with selected values of p. Various other probabilities can then
be calculated using the proposition on cdf’s from Section 3.2. A table entry of 0 sig-
nifies only that the probability is 0 to three significant digits since all table entries
are actually positive.

6

x

6

3

Example 3.31

* Statistical software packages such as MINITAB and R will provide the pmf or cdf almost instanta-
neously upon request for any value of p and n ranging from 2 up into the millions. There is also an R
command for calculating the probability that X lies in some interval.

b(x; n, p) � { � � px(1 � p)n�x x � 0, 1, 2, . . . n

0 otherwise

n

x



Suppose that 20% of all copies of a particular textbook fail a certain binding strength
test. Let X denote the number among 15 randomly selected copies that fail the test.
Then X has a binomial distribution with n � 15 and p � .2.

1. The probability that at most 8 fail the test is

P(X � 8) � �
8

y�0
b(y; 15, .2) � B(8; 15, .2)

which is the entry in the x � 8 row and the p � .2 column of the n � 15 bino-
mial table. From Appendix Table A.1, the probability is B(8; 15, .2) � .999.

2. The probability that exactly 8 fail is

P(X � 8) � P(X � 8) � P(X � 7) � B(8; 15, .2) � B(7; 15, .2)

which is the difference between two consecutive entries in the p � .2 column.
The result is .999 � .996 � .003.

3. The probability that at least 8 fail is

P(X � 8) � 1 � P(X � 7) � 1 � B(7; 15, .2)

� 1 � �entry in x � 7 �row of p � .2 column

� 1 � .996 � .004

4. Finally, the probability that between 4 and 7, inclusive, fail is

P(4 � X � 7) � P(X � 4, 5, 6, or 7) � P(X � 7) � P(X � 3)

� B(7; 15, .2) � B(3; 15, .2) � .996 � .648 � .348

Notice that this latter probability is the difference between entries in the x � 7 and
x � 3 rows, not the x � 7 and x � 4 rows. ■

An electronics manufacturer claims that at most 10% of its power supply units need
service during the warranty period. To investigate this claim, technicians at a testing
laboratory purchase 20 units and subject each one to accelerated testing to simulate
use during the warranty period. Let p denote the probability that a power supply unit
needs repair during the period (the proportion of all such units that need repair). The
laboratory technicians must decide whether the data resulting from the experiment
supports the claim that p � .10. Let X denote the number among the 20 sampled that
need repair, so X 	 Bin(20, p). Consider the decision rule

Reject the claim that p � .10 in favor of the conclusion that p � .10 if x � 5
(where x is the observed value of X), and consider the claim plausible if x � 4.

The probability that the claim is rejected when p � .10 (an incorrect conclusion) is

P(X � 5 when p � .10) � 1 � B(4; 20, .1) � 1 � .957 � .043
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For X 	 Bin(n, p), the cdf will be denoted by

P(X � x) � B(x; n, p) � �
x

y�0
b(y; n, p) x � 0, 1, . . . , n

NOTATION

Example 3.32

Example 3.33



The probability that the claim is not rejected when p � .20 (a different type of incor-
rect conclusion) is

P(X � 4 when p � .2) � B(4; 20, .2) � .630

The first probability is rather small, but the second is intolerably large. When p � .20,
so that the manufacturer has grossly understated the percentage of units that need ser-
vice, and the stated decision rule is used, 63% of all samples will result in the manu-
facturer’s claim being judged plausible!

One might think that the probability of this second type of erroneous conclu-
sion could be made smaller by changing the cutoff value 5 in the decision rule to
something else. However, although replacing 5 by a smaller number would yield a
probability smaller than .630, the other probability would then increase. The only
way to make both “error probabilities” small is to base the decision rule on an exper-
iment involving many more units. ■

The Mean and Variance of X
For n � 1, the binomial distribution becomes the Bernoulli distribution. From
Example 3.18, the mean value of a Bernoulli variable is � � p, so the expected num-
ber of S’s on any single trial is p. Since a binomial experiment consists of n trials,
intuition suggests that for X 	 Bin(n, p), E(X) � np, the product of the number of
trials and the probability of success on a single trial. The expression for V(X) is not
so intuitive.
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If X 	 Bin(n, p), then E(X) � np, V(X) � np(1 � p) � npq, and �X � �n�p�q�
(where q � 1 � p).

PROPOSITION

Thus, calculating the mean and variance of a binomial rv does not necessitate eval-
uating summations. The proof of the result for E(X) is sketched in Exercise 64.

If 75% of all purchases at a certain store are made with a credit card and X is the
number among ten randomly selected purchases made with a credit card, then 
X 	 Bin(10, .75). Thus E(X) � np � (10)(.75) � 7.5, V(X) � npq � 10(.75)(.25) �
1.875, and � � �1.�87�5�. Again, even though X can take on only integer values, E(X)
need not be an integer. If we perform a large number of independent binomial exper-
iments, each with n � 10 trials and p � .75, then the average number of S’s per
experiment will be close to 7.5. ■

Example 3.34

EXERCISES Section 3.4 (46–67)

46. Compute the following binomial probabilities directly from
the formula for b(x; n, p):
a. b(3; 8, .35)
b. b(5; 8, .6)
c. P(3 � X � 5) when n � 7 and p � .6
d. P(1 � X) when n � 9 and p � .1

47. Use Appendix Table A.1 to obtain the following probabilities:
a. B(4; 15, .3)
b. b(4; 15, .3)

c. b(6; 15, .7)
d. P(2 � X � 4) when X 	 Bin(15, .3)
e. P(2 � X) when X 	 Bin(15, .3)
f. P(X � 1) when X 	 Bin(15, .7)
g. P(2 � X � 6) when X 	 Bin(15, .3)

48. When circuit boards used in the manufacture of compact
disc players are tested, the long-run percentage of defectives
is 5%. Let X � the number of defective boards in a random
sample of size n � 25, so X 	 Bin(25, .05).
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a. Determine P(X � 2).
b. Determine P(X � 5).
c. Determine P(1 � X � 4).
d. What is the probability that none of the 25 boards is

defective?
e. Calculate the expected value and standard deviation of X.

49. A company that produces fine crystal knows from experi-
ence that 10% of its goblets have cosmetic flaws and must
be classified as “seconds.”
a. Among six randomly selected goblets, how likely is it

that only one is a second?
b. Among six randomly selected goblets, what is the prob-

ability that at least two are seconds?
c. If goblets are examined one by one, what is the probabil-

ity that at most five must be selected to find four that are
not seconds?

50. A particular telephone number is used to receive both voice
calls and fax messages. Suppose that 25% of the incoming
calls involve fax messages, and consider a sample of 25
incoming calls. What is the probability that
a. At most 6 of the calls involve a fax message?
b. Exactly 6 of the calls involve a fax message?
c. At least 6 of the calls involve a fax message?
d. More than 6 of the calls involve a fax message?

51. Refer to the previous exercise.
a. What is the expected number of calls among the 25 that

involve a fax message?
b. What is the standard deviation of the number among the

25 calls that involve a fax message?
c. What is the probability that the number of calls among

the 25 that involve a fax transmission exceeds the expected
number by more than 2 standard deviations?

52. Suppose that 30% of all students who have to buy a text for a
particular course want a new copy (the successes!), whereas
the other 70% want a used copy. Consider randomly selecting
25 purchasers.
a. What are the mean value and standard deviation of the

number who want a new copy of the book?
b. What is the probability that the number who want new

copies is more than two standard deviations away from
the mean value?

c. The bookstore has 15 new copies and 15 used copies in
stock. If 25 people come in one by one to purchase this
text, what is the probability that all 25 will get the type of
book they want from current stock? [Hint: Let X � the
number who want a new copy. For what values of X will
all 15 get what they want?]

d. Suppose that new copies cost $100 and used copies cost
$70. Assume the bookstore currently has 50 new copies
and 50 used copies. What is the expected value of total
revenue from the sale of the next 25 copies purchased? Be
sure to indicate what rule of expected value you are using.
[Hint: Let h(X) � the revenue when X of the 25 purchasers
want new copies. Express this as a linear function.]

53. Exercise 30 (Section 3.3) gave the pmf of Y, the number of
traffic citations for a randomly selected individual insured
by a particular company. What is the probability that among
15 randomly chosen such individuals
a. At least 10 have no citations?
b. Fewer than half have at least one citation?
c. The number that have at least one citation is between 5

and 10, inclusive?*

54. A particular type of tennis racket comes in a midsize version
and an oversize version. Sixty percent of all customers at a
certain store want the oversize version.
a. Among ten randomly selected customers who want this

type of racket, what is the probability that at least six
want the oversize version?

b. Among ten randomly selected customers, what is the
probability that the number who want the oversize ver-
sion is within 1 standard deviation of the mean value?

c. The store currently has seven rackets of each version.
What is the probability that all of the next ten customers
who want this racket can get the version they want from
current stock?

55. Twenty percent of all telephones of a certain type are sub-
mitted for service while under warranty. Of these, 60% can
be repaired, whereas the other 40% must be replaced with
new units. If a company purchases ten of these telephones,
what is the probability that exactly two will end up being
replaced under warranty?

56. The College Board reports that 2% of the 2 million high
school students who take the SAT each year receive special
accommodations because of documented disabilities (Los
Angeles Times, July 16, 2002). Consider a random sample of
25 students who have recently taken the test.
a. What is the probability that exactly 1 received a special

accommodation?
b. What is the probability that at least 1 received a special

accommodation?
c. What is the probability that at least 2 received a special

accommodation?
d. What is the probability that the number among the 25

who received a special accommodation is within 2 stan-
dard deviations of the number you would expect to be
accommodated?

e. Suppose that a student who does not receive a special
accommodation is allowed 3 hours for the exam, whereas
an accommodated student is allowed 4.5 hours. What
would you expect the average time allowed the 25 selected
students to be?

57. Suppose that 90% of all batteries from a certain supplier have
acceptable voltages. A certain type of flashlight requires two
type-D batteries, and the flashlight will work only if both 
its batteries have acceptable voltages. Among ten randomly

* “Between a and b, inclusive” is equivalent to (a � X � b).
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selected flashlights, what is the probability that at least nine
will work? What assumptions did you make in the course of
answering the question posed?

58. A very large batch of components has arrived at a distribu-
tor. The batch can be characterized as acceptable only if the
proportion of defective components is at most .10. The dis-
tributor decides to randomly select 10 components and to
accept the batch only if the number of defective components
in the sample is at most 2.
a. What is the probability that the batch will be accepted

when the actual proportion of defectives is .01? .05? .10?
.20? .25?

b. Let p denote the actual proportion of defectives in the
batch. A graph of P(batch is accepted) as a function of p,
with p on the horizontal axis and P(batch is accepted) on
the vertical axis, is called the operating characteristic
curve for the acceptance sampling plan. Use the results
of part (a) to sketch this curve for 0 � p � 1.

c. Repeat parts (a) and (b) with “1” replacing “2” in the
acceptance sampling plan.

d. Repeat parts (a) and (b) with “15” replacing “10” in the
acceptance sampling plan.

e. Which of the three sampling plans, that of part (a), (c), or
(d), appears most satisfactory, and why?

59. An ordinance requiring that a smoke detector be installed in
all previously constructed houses has been in effect in a par-
ticular city for 1 year. The fire department is concerned that
many houses remain without detectors. Let p � the true pro-
portion of such houses having detectors, and suppose that a
random sample of 25 homes is inspected. If the sample
strongly indicates that fewer than 80% of all houses have a
detector, the fire department will campaign for a mandatory
inspection program. Because of the costliness of the program,
the department prefers not to call for such inspections unless
sample evidence strongly argues for their necessity. Let X
denote the number of homes with detectors among the 25
sampled. Consider rejecting the claim that p � .8 if x � 15.
a. What is the probability that the claim is rejected when

the actual value of p is .8?
b. What is the probability of not rejecting the claim when

p � .7? When p � .6?
c. How do the “error probabilities” of parts (a) and (b) change

if the value 15 in the decision rule is replaced by 14?

60. A toll bridge charges $1.00 for passenger cars and $2.50 for
other vehicles. Suppose that during daytime hours, 60% of
all vehicles are passenger cars. If 25 vehicles cross the bridge
during a particular daytime period, what is the resulting
expected toll revenue? [Hint: Let X � the number of passen-
ger cars; then the toll revenue h(X) is a linear function of X.]

61. A student who is trying to write a paper for a course has a
choice of two topics, A and B. If topic A is chosen, the stu-
dent will order two books through interlibrary loan, whereas
if topic B is chosen, the student will order four books. The
student believes that a good paper necessitates receiving and

using at least half the books ordered for either topic chosen.
If the probability that a book ordered through interlibrary
loan actually arrives in time is .9 and books arrive indepen-
dently of one another, which topic should the student choose
to maximize the probability of writing a good paper? What if
the arrival probability is only .5 instead of .9?

62. a. For fixed n, are there values of p (0 � p � 1) for which
V(X) � 0? Explain why this is so.

b. For what value of p is V(X) maximized? [Hint: Either
graph V(X) as a function of p or else take a derivative.]

63. a. Show that b(x; n, 1 � p) � b(n � x; n, p).
b. Show that B(x; n, 1 � p) � 1 � B(n � x � 1; n, p).

[Hint: At most x S’s is equivalent to at least (n � x) F’s.]
c. What do parts (a) and (b) imply about the necessity 

of including values of p greater than .5 in Appendix 
Table A.1?

64. Show that E(X) � np when X is a binomial random variable.
[Hint: First express E(X) as a sum with lower limit x � 1.
Then factor out np, let y � x � 1 so that the sum is from 
y � 0 to y � n � 1, and show that the sum equals 1.]

65. Customers at a gas station pay with a credit card (A), debit
card (B), or cash (C). Assume that successive customers
make independent choices, with P(A) � .5, P(B) � .2, and
P(C) � .3.
a. Among the next 100 customers, what are the mean and

variance of the number who pay with a debit card?
Explain your reasoning.

b. Answer part (a) for the number among the 100 who don’t
pay with cash.

66. An airport limousine can accommodate up to four passen-
gers on any one trip. The company will accept a maximum
of six reservations for a trip, and a passenger must have a
reservation. From previous records, 20% of all those mak-
ing reservations do not appear for the trip. Answer the fol-
lowing questions, assuming independence wherever
appropriate.
a. If six reservations are made, what is the probability

that at least one individual with a reservation cannot be
accommodated on the trip?

b. If six reservations are made, what is the expected num-
ber of available places when the limousine departs?

c. Suppose the probability distribution of the number of
reservations made is given in the accompanying table.

Let X denote the number of passengers on a randomly
selected trip. Obtain the probability mass function of X.

67. Refer to Chebyshev’s inequality given in Exercise 44.
Calculate P(⏐X � �⏐ � k�) for k � 2 and k � 3 when
X 	 Bin(20, .5), and compare to the corresponding upper
bound. Repeat for X 	 Bin(20, .75).

Number of reservations 3 4 5 6

Probability .1 .2 .3 .4



The hypergeometric and negative binomial distributions are both related to the bino-
mial distribution. Whereas the binomial distribution is the approximate probability
model for sampling without replacement from a finite dichotomous (S–F) popula-
tion, the hypergeometric distribution is the exact probability model for the number
of S’s in the sample. The binomial rv X is the number of S’s when the number n of
trials is fixed, whereas the negative binomial distribution arises from fixing the num-
ber of S’s desired and letting the number of trials be random.

The Hypergeometric Distribution
The assumptions leading to the hypergeometric distribution are as follows:

1. The population or set to be sampled consists of N individuals, objects, or ele-
ments (a finite population).

2. Each individual can be characterized as a success (S) or a failure (F), and there
are M successes in the population.

3. A sample of n individuals is selected without replacement in such a way that
each subset of size n is equally likely to be chosen.

The random variable of interest is X � the number of S’s in the sample. The prob-
ability distribution of X depends on the parameters n, M, and N, so we wish to
obtain P(X � x) � h(x; n, M, N).

During a particular period a university’s information technology office received 20 ser-
vice orders for problems with printers, of which 8 were laser printers and 12 were inkjet
models. A sample of 5 of these service orders is to be selected for inclusion in a cus-
tomer satisfaction survey. Suppose that the 5 are selected in a completely random fash-
ion, so that any particular subset of size 5 has the same chance of being selected as does
any other subset (think of putting the numbers 1, 2, . . . , 20 on 20 identical slips of
paper, mixing up the slips, and choosing 5 of them). What then is the probability that
exactly x (x � 0, 1, 2, 3, 4, or 5) of the selected service orders were for inkjet printers?

Here, the population size is N � 20, the sample size is n � 5, and the 
number of S’s (inkjet � S) and F’s in the population are M � 12 and N � M � 8,
respectively. Consider the value x � 2. Because all outcomes (each consisting of
5 particular orders) are equally likely,

P(X � 2) � h(2; 5, 12, 20) �

The number of possible outcomes in the experiment is the number of ways of select-
ing 5 from the 20 objects without regard to order—that is, (2

5
0). To count the number

of outcomes having X � 2, note that there are (1
2
2) ways of selecting 2 of the inkjet

orders, and for each such way there are (8
3) ways of selecting the 3 laser orders to fill

out the sample. The product rule from Chapter 2 then gives (1
2
2)(8

3) as the number of
outcomes with X � 2, so

h(2; 5, 12, 20) � � � .238 ■
77
�
323

�1

2

2��8

3�
��

�2

5

0�

number of outcomes having X � 2
����

number of possible outcomes

116 CHAPTER 3 Discrete Random Variables and Probability Distributions

3.5 Hypergeometric and Negative 
Binomial Distributions
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In general, if the sample size n is smaller than the number of successes in the
population (M), then the largest possible X value is n. However, if M � n (e.g., a
sample size of 25 and only 15 successes in the population), then X can be at most M.
Similarly, whenever the number of population failures (N � M) exceeds the sample
size, the smallest possible X value is 0 (since all sampled individuals might then be
failures). However, if N � M � n, the smallest possible X value is n � (N � M).
Thus, the possible values of X satisfy the restriction max(0, n � (N � M)) � x
� min(n, M). An argument parallel to that of the previous example gives the pmf of X.
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If X is the number of S’s in a completely random sample of size n drawn from
a population consisting of M S’s and (N � M) F’s, then the probability distri-
bution of X, called the hypergeometric distribution, is given by

P(X � x) � h(x; n, M, N) � (3.15)

for x an integer satisfying max(0, n � N � M) � x � min(n, M).

�M

x ��
N

n

�

�

M

x �
��

�N

n�

PROPOSITION

In Example 3.35, n � 5, M � 12, and N � 20, so h(x; 5, 12, 20) for x � 0, 1, 2, 3, 4,
5 can be obtained by substituting these numbers into Equation (3.15).

Five individuals from an animal population thought to be near extinction in a cer-
tain region have been caught, tagged, and released to mix into the population. After
they have had an opportunity to mix, a random sample of 10 of these animals is
selected. Let X � the number of tagged animals in the second sample. If there are
actually 25 animals of this type in the region, what is the probability that (a) X � 2?
(b) X � 2?

The parameter values are n � 10, M � 5 (5 tagged animals in the population),
and N � 25, so

h(x; 10, 5, 25) � x � 0, 1, 2, 3, 4, 5

For part (a),

P(X � 2) � h(2; 10, 5, 25) � � .385

For part (b),

P(X � 2) � P(X � 0, 1, or 2) � �
2

x�0
h(x; 10, 5, 25)

� .057 � .257 � .385 � .699 ■

Comprehensive tables of the hypergeometric distribution are available, but be-
cause the distribution has three parameters, these tables require much more space
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than tables for the binomial distribution. MINITAB and other statistical software
packages will easily generate hypergeometric probabilities.

As in the binomial case, there are simple expressions for E(X) and V(X) for
hypergeometric rv’s.
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The mean and variance of the hypergeometric rv X having pmf h(x; n, M, N) are

E(X) � n � V(X) � � � � n � � �1 � �M
�
N

M
�
N

N � n
�
N � 1

M
�
N

PROPOSITION

The ratio M/N is the proportion of S’s in the population. If we replace M/N by
p in E(X) and V(X), we get

E(X) � np

V(X) � � � � np(1 � p)
(3.16)

Expression (3.16) shows that the means of the binomial and hypergeometric rv’s are
equal, whereas the variances of the two rv’s differ by the factor (N � n)/(N � 1),
often called the finite population correction factor. This factor is less than 1, so the
hypergeometric variable has smaller variance than does the binomial rv. The correc-
tion factor can be written (1 � n/N)/(1 � 1/N), which is approximately 1 when n is
small relative to N.

In the animal-tagging example, n � 10, M � 5, and N � 25, so p � �
2
5
5
� � .2 and

E(X) � 10(.2) � 2

V(X) � (10)(.2)(.8) � (.625)(1.6) � 1

If the sampling was carried out with replacement, V(X) � 1.6.
Suppose the population size N is not actually known, so the value x is observed

and we wish to estimate N. It is reasonable to equate the observed sample proportion
of S’s, x/n, with the population proportion, M/N, giving the estimate

N̂ �

If M � 100, n � 40, and x � 16, then N̂ � 250. ■

Our general rule of thumb in Section 3.4 stated that if sampling was without
replacement but n/N was at most .05, then the binomial distribution could be used to
compute approximate probabilities involving the number of S’s in the sample. A
more precise statement is as follows: Let the population size, N, and number of
population S’s, M, get large with the ratio M/N approaching p. Then h(x; n, M, N)
approaches b(x; n, p); so for n/N small, the two are approximately equal provided that
p is not too near either 0 or 1. This is the rationale for our rule of thumb.

The Negative Binomial Distribution
The negative binomial rv and distribution are based on an experiment satisfying the
following conditions:

M � n
�

x

15
�
24

N � n
�
N � 1
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1. The experiment consists of a sequence of independent trials.

2. Each trial can result in either a success (S) or a failure (F).

3. The probability of success is constant from trial to trial, so P(S on trial i) � p for
i � 1, 2, 3 . . . .

4. The experiment continues (trials are performed) until a total of r successes have
been observed, where r is a specified positive integer.

The random variable of interest is X � the number of failures that precede the r th
success; X is called a negative binomial random variable because, in contrast to
the binomial rv, the number of successes is fixed and the number of trials is random.

Possible values of X are 0, 1, 2, . . . . Let nb(x; r, p) denote the pmf of X. The event
{X � x} is equivalent to {r � 1 S’s in the first (x � r � 1) trials and an S on the (x � r)th
trial} (e.g., if r � 5 and x � 10, then there must be four S’s in the first 14 trials and trial
15 must be an S). Since trials are independent,

nb(x; r, p) � P(X � x)

� P(r � 1 S’s on the first x � r � 1 trials) � P(S) (3.17)

The first probability on the far right of Expression (3.17) is the binomial probability

� �pr�1(1 � p)x where P(S) � p
x � r � 1

r � 1
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The pmf of the negative binomial rv X with parameters r � number of S’s and
p � P(S) is

nb(x; r, p) � � �pr(1 � p)x x � 0, 1, 2, . . .
x � r � 1

r � 1

PROPOSITION

A pediatrician wishes to recruit 5 couples, each of whom is expecting their first child,
to participate in a new natural childbirth regimen. Let p � P(a randomly selected cou-
ple agrees to participate). If p � .2, what is the probability that 15 couples must be
asked before 5 are found who agree to participate? That is, with S � {agrees to partic-
ipate}, what is the probability that 10 F’s occur before the fifth S? Substituting r � 5,
p � .2, and x � 10 into nb(x; r, p) gives

nb(10; 5, .2) � � �(.2)5(.8)10 � .034

The probability that at most 10 F’s are observed (at most 15 couples are asked) is

P(X � 10) � �
10

x�0
nb(x; 5, .2) � (.2)5 �

10

x�0
� �(.8)x � .164 ■

In some sources, the negative binomial rv is taken to be the number of trials 
X � r rather than the number of failures.

In the special case r � 1, the pmf is

nb(x; 1, p) � (1 � p)xp x � 0, 1, 2, . . . (3.18)

In Example 3.12, we derived the pmf for the number of trials necessary to obtain the
first S, and the pmf there is similar to Expression (3.18). Both X � number of F’s and
Y � number of trials ( � 1 � X) are referred to in the literature as geometric random
variables, and the pmf in Expression (3.18) is called the geometric distribution.

x � 4

4

14

4
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In Example 3.19, the expected number of trials until the first S was shown to
be 1/p, so that the expected number of F’s until the first S is (1/p) � 1 � (1 � p)/p.
Intuitively, we would expect to see r � (1 � p)/p F’s before the rth S, and this is
indeed E(X). There is also a simple formula for V(X).
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If X is a negative binomial rv with pmf nb(x; r, p), then

E(X) � V(X) �
r(1 � p)
�

p2

r(1 � p)
�

p

PROPOSITION

Finally, by expanding the binomial coefficient in front of pr(1 � p)x and doing some
cancellation, it can be seen that nb(x; r, p) is well defined even when r is not an inte-
ger. This generalized negative binomial distribution has been found to fit observed
data quite well in a wide variety of applications.

EXERCISES Section 3.5 (68–78)

68. A certain type of digital camera comes in either a 3-
megapixel version or a 4-megapixel version. A camera store
has received a shipment of 15 of these cameras, of which 6
have 3-megapixel resolution. Suppose that 5 of these cam-
eras are randomly selected to be stored behind the counter;
the other 10 are placed in a storeroom. Let X � the number
of 3-megapixel cameras among the 5 selected for behind-
the-counter storage.
a. What kind of a distribution does X have (name and val-

ues of all parameters)?
b. Compute P(X � 2), P(X � 2), and P(X � 2).
c. Calculate the mean value and standard deviation of X.

69. Each of 12 refrigerators of a certain type has been returned
to a distributor because of an audible, high-pitched, oscillat-
ing noise when the refrigerator is running. Suppose that 7 
of these refrigerators have a defective compressor and the
other 5 have less serious problems. If the refrigerators are
examined in random order, let X be the number among the
first 6 examined that have a defective compressor. Compute
the following:
a. P(X � 5)
b. P(X � 4)
c. The probability that X exceeds its mean value by more

than 1 standard deviation.
d. Consider a large shipment of 400 refrigerators, of which

40 have defective compressors. If X is the number among
15 randomly selected refrigerators that have defective
compressors, describe a less tedious way to calculate (at
least approximately) P(X � 5) than to use the hypergeo-
metric pmf.

70. An instructor who taught two sections of engineering statis-
tics last term, the first with 20 students and the second with
30, decided to assign a term project. After all projects had
been turned in, the instructor randomly ordered them before
grading. Consider the first 15 graded projects.

a. What is the probability that exactly 10 of these are from
the second section?

b. What is the probability that at least 10 of these are from
the second section?

c. What is the probability that at least 10 of these are from
the same section?

d. What are the mean value and standard deviation of the
number among these 15 that are from the second section?

e. What are the mean value and standard deviation of the
number of projects not among these first 15 that are from
the second section?

71. A geologist has collected 10 specimens of basaltic rock
and 10 specimens of granite. The geologist instructs a lab-
oratory assistant to randomly select 15 of the specimens
for analysis.
a. What is the pmf of the number of granite specimens

selected for analysis?
b. What is the probability that all specimens of one of the

two types of rock are selected for analysis?
c. What is the probability that the number of granite speci-

mens selected for analysis is within 1 standard deviation
of its mean value?

72. A personnel director interviewing 11 senior engineers for
four job openings has scheduled six interviews for the first
day and five for the second day of interviewing. Assume that
the candidates are interviewed in random order.
a. What is the probability that x of the top four candidates

are interviewed on the first day?
b. How many of the top four candidates can be expected to

be interviewed on the first day?

73. Twenty pairs of individuals playing in a bridge tournament
have been seeded 1, . . . , 20. In the first part of the tourna-
ment, the 20 are randomly divided into 10 east–west pairs
and 10 north–south pairs.
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a. What is the probability that x of the top 10 pairs end up
playing east–west?

b. What is the probability that all of the top five pairs end
up playing the same direction?

c. If there are 2n pairs, what is the pmf of X � the number
among the top n pairs who end up playing east–west?
What are E(X) and V(X)?

74. A second-stage smog alert has been called in a certain area of
Los Angeles County in which there are 50 industrial firms. An
inspector will visit 10 randomly selected firms to check for
violations of regulations.
a. If 15 of the firms are actually violating at least one regula-

tion, what is the pmf of the number of firms visited by the
inspector that are in violation of at least one regulation?

b. If there are 500 firms in the area, of which 150 are in vio-
lation, approximate the pmf of part (a) by a simpler pmf.

c. For X � the number among the 10 visited that are in vio-
lation, compute E(X) and V(X) both for the exact pmf and
the approximating pmf in part (b).

75. Suppose that p � P(male birth) � .5. A couple wishes to
have exactly two female children in their family. They will
have children until this condition is fulfilled.

a. What is the probability that the family has x male
children?

b. What is the probability that the family has four children?
c. What is the probability that the family has at most four

children?
d. How many male children would you expect this family to

have? How many children would you expect this family
to have?

76. A family decides to have children until it has three children
of the same gender. Assuming P(B) � P(G) � .5, what is
the pmf of X � the number of children in the family?

77. Three brothers and their wives decide to have children
until each family has two female children. What is the
pmf of X � the total number of male children born to
the brothers? What is E(X ), and how does it compare to
the expected number of male children born to each
brother?

78. Individual A has a red die and B has a green die (both fair).
If they each roll until they obtain five “doubles” (1–1, . . . ,
6–6), what is the pmf of X � the total number of times a die
is rolled? What are E(X) and V(X)?

3.6 The Poisson Probability Distribution

The binomial, hypergeometric, and negative binomial distributions were all derived
by starting with an experiment consisting of trials or draws and applying the laws of
probability to various outcomes of the experiment. There is no simple experiment on
which the Poisson distribution is based, though we will shortly describe how it can
be obtained by certain limiting operations.

DEFINITION A random variable X is said to have a Poisson distribution with parameter �
(� � 0) if the pmf of X is

p(x; �) � x � 0, 1, 2, . . .
e���x

�
x!

The value of � is frequently a rate per unit time or per unit area. The letter e in
p(x; �) represents the base of the natural logarithm system; its numerical value is
approximately 2.71828. Because � must be positive, p(x; �) � 0 for all possible x
values. The fact that ��

x�0p(x; �) � 1 is a consequence of the Maclaurin infinite
series expansion of e �, which appears in most calculus texts:

e � � 1 � � � � � . . . � �
�

x�0
(3.19)

If the two extreme terms in Expression (3.19) are multiplied by e�� and then e�� is
placed inside the summation, the result is

1 � �
�

x�0
e��

which shows that p(x; �) fulfills the second condition necessary for specifying a pmf.
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Let X denote the number of creatures of a particular type captured in a trap during a
given time period. Suppose that X has a Poisson distribution with � � 4.5, so on
average traps will contain 4.5 creatures. [The article “Dispersal Dynamics of the
Bivalve Gemma Gemma in a Patchy Environment (Ecological Monographs, 1995:
1–20) suggests this model; the bivalve Gemma gemma is a small clam.] The proba-
bility that a trap contains exactly five creatures is

P(X � 5) � � .1708

The probability that a trap has at most five creatures is

P(X � 5) � �
5

x�0
� e�4.5�1 � 4.5 � � . . . � � � .7029 ■

The Poisson Distribution as a Limit
The rationale for using the Poisson distribution in many situations is provided by the
following proposition.

(4.5)5

�
5!

(4.5)2

�
2!

e�4.5(4.5)x

�
x!

e�4.5(4.5)5

�
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Example 3.39

Example 3.40

Suppose that in the binomial pmf b(x; n, p), we let n 0 � and p 0 0 in such
a way that np approaches a value � � 0. Then b(x; n, p) 0 p(x; �).

PROPOSITION

According to this proposition, in any binomial experiment in which n is large
and p is small, b(x; n, p) � p(x; �), where � � np. As a rule of thumb, this approxi-
mation can safely be applied if n � 50 and np � 5.

If a publisher of nontechnical books takes great pains to ensure that its books are free
of typographical errors, so that the probability of any given page containing at least
one such error is .005 and errors are independent from page to page, what is the
probability that one of its 400-page novels will contain exactly one page with errors?
At most three pages with errors?

With S denoting a page containing at least one error and F an error-free page,
the number X of pages containing at least one error is a binomial rv with n � 400
and p � .005, so np � 2. We wish

P(X � 1) � b(1; 400, .005) � p(1; 2) � � .270671

The binomial value is b(1; 400, .005) � .270669, so the approximation is very good.
Similarly,

P(X � 3) � �
3

x�0
p(x, 2) � �

3

x�0
e�2

� .135335 � .270671 � .270671 � .180447

� .8571

and this again is quite close to the binomial value P(X � 3) � .8576. ■

Table 3.2 shows the Poisson distribution for � � 3 along with three binomial
distributions with np � 3, and Figure 3.8 (from S-Plus) plots the Poisson along with
the first two binomial distributions. The approximation is of limited use for n � 30,
but of course the accuracy is better for n � 100 and much better for n � 300.
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Appendix Table A.2 exhibits the cdf F(x; �) for � � .1, .2, . . . , 1, 2, . . . , 10, 15,
and 20. For example, if � � 2, then P(X � 3) � F(3; 2) � .857 as in Example 3.40,
whereas P(X � 3) � F(3; 2) � F(2; 2) � .180. Alternatively, many statistical com-
puter packages will generate p(x; �) and F(x; �) upon request.

The Mean and Variance of X
Since b(x; n, p) 0 p(x; �) as n 0 �, p 0 0, np 0 �, the mean and variance of 
a binomial variable should approach those of a Poisson variable. These limits are 
np 0 � and np(1 � p) 0 �.
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Table 3.2 Comparing the Poisson and Three Binomial Distributions

x n � 30, p � .1 n � 100, p � .03 n � 300, p � .01 Poisson, � � 3

0 0.042391 0.047553 0.049041 0.049787
1 0.141304 0.147070 0.148609 0.149361
2 0.227656 0.225153 0.224414 0.224042
3 0.236088 0.227474 0.225170 0.224042
4 0.177066 0.170606 0.168877 0.168031
5 0.102305 0.101308 0.100985 0.100819
6 0.047363 0.049610 0.050153 0.050409
7 0.018043 0.020604 0.021277 0.021604
8 0.005764 0.007408 0.007871 0.008102
9 0.001565 0.002342 0.002580 0.002701

10 0.000365 0.000659 0.000758 0.000810
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Figure 3.8 Comparing a Poisson and two binomial distributions

If X has a Poisson distribution with parameter �, then E(X) � V(X) � �.PROPOSITION

These results can also be derived directly from the definitions of mean and variance.

Both the expected number of creatures trapped and the variance of the number
trapped equal 4.5, and �X � ��� � �4�.5� � 2.12. ■

Example 3.41
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The Poisson Process
A very important application of the Poisson distribution arises in connection with the
occurrence of events of some type over time. Events of interest might be visits to a
particular website, pulses of some sort recorded by a counter, email messages sent
to a particular address, accidents in an industrial facility, or cosmic ray showers
observed by astronomers at a particular observatory. We make the following assump-
tions about the way in which the events of interest occur:

1. There exists a parameter � � 0 such that for any short time interval of length �t,
the probability that exactly one event is received is � � �t � o(�t).*

2. The probability of more than one event being received during �t is o(�t) [which,
along with Assumption 1, implies that the probability of no events during �t is
1 � � � �t � o(�t)].

3. The number of events received during the time interval �t is independent of the
number received prior to this time interval.

Informally, Assumption 1 says that for a short interval of time, the probability of
receiving a single event is approximately proportional to the length of the time
interval, where � is the constant of proportionality. Now let Pk(t) denote the
probability that k events will be observed during any particular time interval of
length t.
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Pk(t) � e��t � (�t)k/k!, so that the number of events during a time interval of
length t is a Poisson rv with parameter � � �t. The expected number of events
during any such time interval is then �t, so the expected number during a unit
interval of time is �.

PROPOSITION

The occurrence of events over time as described is called a Poisson process; the
parameter a specifies the rate for the process.

Suppose pulses arrive at a counter at an average rate of six per minute, so that � � 6.
To find the probability that in a .5-min interval at least one pulse is received, note that
the number of pulses in such an interval has a Poisson distribution with parameter
�t � 6(.5) � 3 (.5 min is used because � is expressed as a rate per minute). Then
with X � the number of pulses received in the 30-sec interval,

P(1 � X) � 1 � P(X � 0) � 1 � � .950 ■

Instead of observing events over time, consider observing events of some type
that occur in a two- or three-dimensional region. For example, we might select on a
map a certain region R of a forest, go to that region, and count the number of trees.
Each tree would represent an event occurring at a particular point in space. Under
assumptions similar to 1–3, it can be shown that the number of events occurring in
a region R has a Poisson distribution with parameter � � a(R), where a(R) is the area
of R. The quantity � is the expected number of events per unit area or volume.

e�3(3)0

�
0!

Example 3.42

* A quantity is o(�t) (read “little o of delta t”) if, as �t approaches 0, so does o(�t)/�t. That is, o(�t) is even
more negligible (approaches 0 faster) than �t itself. The quantity (�t)2 has this property, but sin(�t) does not.
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EXERCISES Section 3.6 (79–93)

79. Let X, the number of flaws on the surface of a randomly
selected boiler of a certain type, have a Poisson distribution
with parameter � � 5. Use Appendix Table A.2 to compute
the following probabilities:
a. P(X � 8) b. P(X � 8) c. P(9 � X)
d. P(5 � X � 8) e. P(5 � X � 8)

80. Suppose the number X of tornadoes observed in a particular
region during a 1-year period has a Poisson distribution with
� � 8.
a. Compute P(X � 5).
b. Compute P(6 � X � 9).
c. Compute P(10 � X).
d. What is the probability that the observed number of tor-

nadoes exceeds the expected number by more than 1
standard deviation?

81. Suppose that the number of drivers who travel between a
particular origin and destination during a designated time
period has a Poisson distribution with parameter � � 20
(suggested in the article “Dynamic Ride Sharing: Theory
and Practice,” J. of Transp. Engr., 1997: 308–312). What is
the probability that the number of drivers will
a. Be at most 10?
b. Exceed 20?
c. Be between 10 and 20, inclusive? Be strictly between 10

and 20?
d. Be within 2 standard deviations of the mean value?

82. Consider writing onto a computer disk and then sending it
through a certifier that counts the number of missing pulses.
Suppose this number X has a Poisson distribution with
parameter � � .2. (Suggested in “Average Sample Number
for Semi-Curtailed Sampling Using the Poisson Distribu-
tion,” J. Quality Technology, 1983: 126–129.)
a. What is the probability that a disk has exactly one miss-

ing pulse?
b. What is the probability that a disk has at least two miss-

ing pulses?
c. If two disks are independently selected, what is the proba-

bility that neither contains a missing pulse?

83. An article in the Los Angeles Times (Dec. 3, 1993) reports
that 1 in 200 people carry the defective gene that causes
inherited colon cancer. In a sample of 1000 individuals,
what is the approximate distribution of the number who
carry this gene? Use this distribution to calculate the
approximate probability that
a. Between 5 and 8 (inclusive) carry the gene.
b. At least 8 carry the gene.

84. Suppose that only .10% of all computers of a certain type
experience CPU failure during the warranty period. Con-
sider a sample of 10,000 computers.
a. What are the expected value and standard deviation of the

number of computers in the sample that have the defect?

b. What is the (approximate) probability that more than 10
sampled computers have the defect?

c. What is the (approximate) probability that no sampled
computers have the defect?

85. Suppose small aircraft arrive at a certain airport according
to a Poisson process with rate � � 8 per hour, so that the
number of arrivals during a time period of t hours is a
Poisson rv with parameter � � 8t.
a. What is the probability that exactly 6 small aircraft arrive

during a 1-hour period? At least 6? At least 10?
b. What are the expected value and standard deviation of the

number of small aircraft that arrive during a 90-min period?
c. What is the probability that at least 20 small aircraft

arrive during a 2�
1
2

�-hour period? That at most 10 arrive
during this period?

86. The number of people arriving for treatment at an emer-
gency room can be modeled by a Poisson process with a
rate parameter of five per hour.
a. What is the probability that exactly four arrivals occur

during a particular hour?
b. What is the probability that at least four people arrive

during a particular hour?
c. How many people do you expect to arrive during a 45-

min period?

87. The number of requests for assistance received by a towing
service is a Poisson process with rate � � 4 per hour.
a. Compute the probability that exactly ten requests are

received during a particular 2-hour period.
b. If the operators of the towing service take a 30-min break

for lunch, what is the probability that they do not miss
any calls for assistance?

c. How many calls would you expect during their break?

88. In proof testing of circuit boards, the probability that any
particular diode will fail is .01. Suppose a circuit board con-
tains 200 diodes.
a. How many diodes would you expect to fail, and what is the

standard deviation of the number that are expected to fail?
b. What is the (approximate) probability that at least four

diodes will fail on a randomly selected board?
c. If five boards are shipped to a particular customer, how

likely is it that at least four of them will work properly?
(A board works properly only if all its diodes work.)

89. The article “Reliability-Based Service-Life Assessment of
Aging Concrete Structures” (J. Structural Engr., 1993:
1600–1621) suggests that a Poisson process can be used to
represent the occurrence of structural loads over time. Suppose
the mean time between occurrences of loads is .5 year.
a. How many loads can be expected to occur during a 2-

year period?
b. What is the probability that more than five loads occur

during a 2-year period?
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c. How long must a time period be so that the probability of
no loads occurring during that period is at most .1?

90. Let X have a Poisson distribution with parameter �. Show
that E(X) � � directly from the definition of expected
value. [Hint: The first term in the sum equals 0, and then x
can be canceled. Now factor out � and show that what is left
sums to 1.]

91. Suppose that trees are distributed in a forest according to a
two-dimensional Poisson process with parameter �, the
expected number of trees per acre, equal to 80.
a. What is the probability that in a certain quarter-acre plot,

there will be at most 16 trees?
b. If the forest covers 85,000 acres, what is the expected

number of trees in the forest?
c. Suppose you select a point in the forest and construct a

circle of radius .1 mile. Let X � the number of trees
within that circular region. What is the pmf of X? [Hint:
1 sq mile � 640 acres.]

92. Automobiles arrive at a vehicle equipment inspection sta-
tion according to a Poisson process with rate � � 10 per
hour. Suppose that with probability .5 an arriving vehicle
will have no equipment violations.
a. What is the probability that exactly ten arrive during the

hour and all ten have no violations?

b. For any fixed y � 10, what is the probability that y arrive
during the hour, of which ten have no violations?

c. What is the probability that ten “no-violation” cars arrive
during the next hour? [Hint: Sum the probabilities in part
(b) from y � 10 to �.]

93. a. In a Poisson process, what has to happen in both the
time interval (0, t) and the interval (t, t � �t) so that no
events occur in the entire interval (0, t � �t)? Use this
and Assumptions 1–3 to write a relationship between
P0(t � �t) and P0(t).

b. Use the result of part (a) to write an expression for the
difference P0(t � �t) � P0(t). Then divide by �t and let
�t 0 0 to obtain an equation involving (d/dt)P0(t), the
derivative of P0(t) with respect to t.

c. Verify that P0(t) � e��t satisfies the equation of part (b).
d. It can be shown in a manner similar to parts (a) and (b)

that the Pk(t)s must satisfy the system of differential
equations

Pk(t) � �Pk�1(t) � �Pk(t)

k � 1, 2, 3, . . .

Verify that Pk(t) � e��t(�t)k/k! satisfies the system. (This
is actually the only solution.)

d
�
dt

94. Consider a deck consisting of seven cards, marked 1, 2, . . . ,
7. Three of these cards are selected at random. Define an rv
W by W � the sum of the resulting numbers, and compute
the pmf of W. Then compute � and � 2. [Hint: Consider out-
comes as unordered, so that (1, 3, 7) and (3, 1, 7) are not dif-
ferent outcomes. Then there are 35 outcomes, and they can
be listed. (This type of rv actually arises in connection with
a hypothesis test called Wilcoxon’s rank-sum test, in which
there is an x sample and a y sample and W is the sum of the
ranks of the x’s in the combined sample.)]

95. After shuffling a deck of 52 cards, a dealer deals out 5. Let
X � the number of suits represented in the five-card hand.
a. Show that the pmf of X is

[Hint: p(1) � 4P(all are spades), p(2) � 6P(only spades
and hearts with at least one of each suit), and p(4)
� 4P(2 spades � one of each other suit).]
b. Compute �, � 2, and �.

96. The negative binomial rv X was defined as the number of
F’s preceding the rth S. Let Y � the number of trials neces-
sary to obtain the rth S. In the same manner in which the
pmf of X was derived, derive the pmf of Y.

97. Of all customers purchasing automatic garage-door openers,
75% purchase a chain-driven model. Let X � the number
among the next 15 purchasers who select the chain-driven
model.
a. What is the pmf of X?
b. Compute P(X � 10).
c. Compute P(6 � X � 10).
d. Compute � and � 2.
e. If the store currently has in stock 10 chain-

driven models and 8 shaft-driven models, what is the
probability that the requests of these 15 customers can all
be met from existing stock?

98. A friend recently planned a camping trip. He had two flash-
lights, one that required a single 6-V battery and another
that used two size-D batteries. He had previously packed
two 6-V and four size-D batteries in his camper. Suppose
the probability that any particular battery works is p and that
batteries work or fail independently of one another. Our
friend wants to take just one flashlight. For what values of p
should he take the 6-V flashlight?

99. A k-out-of-n system is one that will function if and only if at
least k of the n individual components in the system function.
If individual components function independently of one
another, each with probability .9, what is the probability that
a 3-out-of-5 system functions?

SUPPLEMENTARY EXERCISES (94–122)

x 1 2 3 4

p(x) .002 .146 .588 .264
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100. A manufacturer of flashlight batteries wishes to control
the quality of its product by rejecting any lot in which the
proportion of batteries having unacceptable voltage ap-
pears to be too high. To this end, out of each large lot
(10,000 batteries), 25 will be selected and tested. If at
least 5 of these generate an unacceptable voltage, the
entire lot will be rejected. What is the probability that a lot
will be rejected if
a. 5% of the batteries in the lot have unacceptable volt-

ages?
b. 10% of the batteries in the lot have unacceptable volt-

ages?
c. 20% of the batteries in the lot have unacceptable volt-

ages?
d. What would happen to the probabilities in parts (a)–(c) if

the critical rejection number were increased from 5 to 6?

101. Of the people passing through an airport metal detector,
.5% activate it; let X � the number among a randomly
selected group of 500 who activate the detector.
a. What is the (approximate) pmf of X?
b. Compute P(X � 5).
c. Compute P(5 � X).

102. An educational consulting firm is trying to decide whether
high school students who have never before used a hand-
held calculator can solve a certain type of problem more
easily with a calculator that uses reverse Polish logic or
one that does not use this logic. A sample of 25 students is
selected and allowed to practice on both calculators. Then
each student is asked to work one problem on the reverse
Polish calculator and a similar problem on the other. Let
p � P(S), where S indicates that a student worked the
problem more quickly using reverse Polish logic than
without, and let X � number of S’s.
a. If p � .5, what is P(7 � X � 18)?
b. If p � .8, what is P(7 � X � 18)?
c. If the claim that p � .5 is to be rejected when either X �

7 or X � 18, what is the probability of rejecting the claim
when it is actually correct?

d. If the decision to reject the claim p � .5 is made as in
part (c), what is the probability that the claim is not
rejected when p � .6? When p � .8?

e. What decision rule would you choose for rejecting the
claim p � .5 if you wanted the probability in part (c) to
be at most .01?

103. Consider a disease whose presence can be identified by
carrying out a blood test. Let p denote the probability that
a randomly selected individual has the disease. Suppose n
individuals are independently selected for testing. One way
to proceed is to carry out a separate test on each of the n
blood samples. A potentially more economical approach,
group testing, was introduced during World War II to iden-
tify syphilitic men among army inductees. First, take a part
of each blood sample, combine these specimens, and carry
out a single test. If no one has the disease, the result will
be negative, and only the one test is required. If at least one
individual is diseased, the test on the combined sample will

yield a positive result, in which case the n individual tests
are then carried out. If p � .1 and n � 3, what is the
expected number of tests using this procedure? What is the
expected number when n � 5? [The article “Random
Multiple-Access Communication and Group Testing”
(IEEE Trans. on Commun., 1984: 769–774) applied these
ideas to a communication system in which the dichotomy
was active/idle user rather than diseased/nondiseased.]

104. Let p1 denote the probability that any particular code sym-
bol is erroneously transmitted through a communication
system. Assume that on different symbols, errors occur
independently of one another. Suppose also that with
probability p2 an erroneous symbol is corrected upon
receipt. Let X denote the number of correct symbols in a
message block consisting of n symbols (after the correc-
tion process has ended). What is the probability distribu-
tion of X?

105. The purchaser of a power-generating unit requires c con-
secutive successful start-ups before the unit will be
accepted. Assume that the outcomes of individual start-
ups are independent of one another. Let p denote the prob-
ability that any particular start-up is successful. The ran-
dom variable of interest is X � the number of start-ups
that must be made prior to acceptance. Give the pmf of X
for the case c � 2. If p � .9, what is P(X � 8)? [Hint: For
x � 5, express p(x) “recursively” in terms of the pmf eval-
uated at the smaller values x � 3, x � 4, . . . , 2.] (This
problem was suggested by the article “Evaluation of a
Start-Up Demonstration Test,” J. Quality Technology,
1983: 103–106.)

106. A plan for an executive travelers’ club has been devel-
oped by an airline on the premise that 10% of its current
customers would qualify for membership.
a. Assuming the validity of this premise, among 25 ran-

domly selected current customers, what is the probabil-
ity that between 2 and 6 (inclusive) qualify for mem-
bership?

b. Again assuming the validity of the premise, what are
the expected number of customers who qualify and the
standard deviation of the number who qualify in a ran-
dom sample of 100 current customers?

c. Let X denote the number in a random sample of 25 cur-
rent customers who qualify for membership. Consider
rejecting the company’s premise in favor of the claim
that p � .10 if x � 7. What is the probability that the
company’s premise is rejected when it is actually valid?

d. Refer to the decision rule introduced in part (c). What
is the probability that the company’s premise is not
rejected even though p � .20 (i.e., 20% qualify)?

107. Forty percent of seeds from maize (modern-day corn) ears
carry single spikelets, and the other 60% carry paired
spikelets. A seed with single spikelets will produce an ear
with single spikelets 29% of the time, whereas a seed with
paired spikelets will produce an ear with single spikelets
26% of the time. Consider randomly selecting ten seeds.



128 CHAPTER 3 Discrete Random Variables and Probability Distributions

a. What is the probability that exactly five of these seeds
carry a single spikelet and produce an ear with a single
spikelet?

b. What is the probability that exactly five of the ears pro-
duced by these seeds have single spikelets? What is the
probability that at most five ears have single spikelets?

108. A trial has just resulted in a hung jury because eight mem-
bers of the jury were in favor of a guilty verdict and the
other four were for acquittal. If the jurors leave the jury
room in random order and each of the first four leaving
the room is accosted by a reporter in quest of an interview,
what is the pmf of X � the number of jurors favoring
acquittal among those interviewed? How many of those
favoring acquittal do you expect to be interviewed?

109. A reservation service employs five information operators
who receive requests for information independently of
one another, each according to a Poisson process with
rate � � 2 per minute.
a. What is the probability that during a given 1-min

period, the first operator receives no requests?
b. What is the probability that during a given 1-min

period, exactly four of the five operators receive no
requests?

c. Write an expression for the probability that during a given
1-min period, all of the operators receive exactly the same
number of requests.

110. Grasshoppers are distributed at random in a large field
according to a Poisson distribution with parameter � � 2
per square yard. How large should the radius R of a circu-
lar sampling region be taken so that the probability of find-
ing at least one in the region equals .99?

111. A newsstand has ordered five copies of a certain issue of a
photography magazine. Let X � the number of individuals
who come in to purchase this magazine. If X has a Poisson
distribution with parameter � � 4, what is the expected
number of copies that are sold?

112. Individuals A and B begin to play a sequence of chess
games. Let S � {A wins a game}, and suppose that out-
comes of successive games are independent with P(S) � p
and P(F) � 1 � p (they never draw). They will play until
one of them wins ten games. Let X � the number of games
played (with possible values 10, 11, . . . , 19).
a. For x � 10, 11, . . . , 19, obtain an expression for p(x) �

P(X � x).
b. If a draw is possible, with p � P(S), q � P(F), 1 � p �

q � P(draw), what are the possible values of X? What
is P(20 � X)? [Hint: P(20 � X) � 1 � P(X � 20).]

113. A test for the presence of a certain disease has probability
.20 of giving a false-positive reading (indicating that an
individual has the disease when this is not the case) and
probability .10 of giving a false-negative result. Suppose
that ten individuals are tested, five of whom have the dis-
ease and five of whom do not. Let X � the number of pos-
itive readings that result.

a. Does X have a binomial distribution? Explain your rea-
soning.

b. What is the probability that exactly three of the ten test
results are positive?

114. The generalized negative binomial pmf is given by

nb(x; r, p) � k(r, x) � pr(1 � p)x

x � 0, 1, 2, . . .

Let X, the number of plants of a certain species found in a
particular region, have this distribution with p � .3 and r �
2.5. What is P(X � 4)? What is the probability that at least
one plant is found?

115. Define a function p(x; �, �) by 

p(x; �, �) � { e�� � e�� x � 0, 1, 2, . . .

0 otherwise

a. Show that p(x; �, �) satisfies the two conditions neces-
sary for specifying a pmf, [Note: If a firm employs two
typists, one of whom makes typographical errors at the
rate of � per page and the other at rate � per page and
they each do half the firm’s typing, then p(x; �, �) is the
pmf of X � the number of errors on a randomly chosen
page.]

b. If the first typist (rate �) types 60% of all pages, what
is the pmf of X of part (a)?

c. What is E(X) for p(x; �, �) given by the displayed
expression?

d. What is � 2 for p(x; �, �) given by that expression?

116. The mode of a discrete random variable X with pmf p(x) is
that value x* for which p(x) is largest (the most probable x
value).
a. Let X 	 Bin(n, p). By considering the ratio b(x � 1; n,

p)/b(x; n, p), show that b(x; n, p) increases with x as
long as x � np � (1 � p). Conclude that the mode x* is
the integer satisfying (n � 1)p � 1 � x* � (n � 1)p.

b. Show that if X has a Poisson distribution with parame-
ter �, the mode is the largest integer less than �. If � is
an integer, show that both � � 1 and � are modes.

117. A computer disk storage device has ten concentric tracks,
numbered 1, 2, . . . , 10 from outermost to innermost, and
a single access arm. Let pi � the probability that any par-
ticular request for data will take the arm to track i (i �
1, . . . , 10). Assume that the tracks accessed in successive
seeks are independent. Let X � the number of tracks over
which the access arm passes during two successive
requests (excluding the track that the arm has just left, so
possible X values are x � 0, 1, . . . , 9). Compute the pmf
of X. [Hint: P(the arm is now on track i and X � j) �
P(X � j⏐arm now on i) � pi. After the conditional proba-
bility is written in terms of p1, . . . , p10, by the law of total
probability, the desired probability is obtained by summing
over i.]
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118. If X is a hypergeometric rv, show directly from the definition
that E(X) � nM/N (consider only the case n � M). [Hint:
Factor nM/N out of the sum for E(X), and show that the terms
inside the sum are of the form h(y; n � 1, M � 1, N � 1),
where y � x � 1.]

119. Use the fact that

�
all x

(x � �)2p(x) � �
x:⏐x��⏐�k�

(x � �)2p(x)

to prove Chebyshev’s inequality given in Exercise 44.

120. The simple Poisson process of Section 3.6 is characterized
by a constant rate � at which events occur per unit time. A
generalization of this is to suppose that the probability of
exactly one event occurring in the interval [t, t � �t] is
�(t) � �t � o(�t). It can then be shown that the number of
events occurring during an interval [t1, t2] has a Poisson
distribution with parameter

� � 
t2

t1
�(t) dt

The occurrence of events over time in this situation is
called a nonhomogeneous Poisson process. The article
“Inference Based on Retrospective Ascertainment,” J.
Amer. Stat. Assoc., 1989: 360–372, considers the intensity
function

�(t) � ea�bt

as appropriate for events involving transmission of HIV
(the AIDS virus) via blood transfusions. Suppose that a �
2 and b � .6 (close to values suggested in the paper), with
time in years.
a. What is the expected number of events in the interval

[0, 4]? In [2, 6]?
b. What is the probability that at most 15 events occur in

the interval [0, .9907]?

121. Consider a collection A1, . . . , Ak of mutually exclusive and
exhaustive events, and a random variable X whose dis-
tribution depends on which of the Ai’s occurs (e.g., a
commuter might select one of three possible routes from
home to work, with X representing the commute time). 
Let E(X⏐Ai) denote the expected value of X given that 
the event Ai occurs. Then it can be shown that E(X) �
�E (X⏐Ai) P(Ai), the weighted average of the individual
“conditional expectations” where the weights are the prob-
abilities of the partitioning events.
a. The expected duration of a voice call to a particular

telephone number is 3 minutes, whereas the expected
duration of a data call to that same number is 1 minute.
If 75% of all calls are voice calls, what is the expected
duration of the next call?

b. A deli sells three different types of chocolate chip cook-
ies. The number of chocolate chips in a type i cookie
has a Poisson distribution with parameter �i � i � 1
(i � 1, 2, 3). If 20% of all customers purchasing a
chocolate chip cookie select the first type, 50% choose
the second type, and the remaining 30% opt for the
third type, what is the expected number of chips in a
cookie purchased by the next customer?

122. Consider a communication source that transmits packets
containing digitized speech. After each transmission, the
receiver sends a message indicating whether the transmis-
sion was successful or unsuccessful. If a transmission is
unsuccessful, the packet is re-sent. Suppose a voice packet
can be transmitted a maximum of 10 times. Assuming that
the results of successive transmissions are independent of
one another and that the probability of any particular trans-
mission being successful is p, determine the probability
mass function of the rv X � the number of times a packet
is transmitted. Then obtain an expression for the expected
number of times a packet is transmitted.

?
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4

INTRODUCTION

Chapter 3 concentrated on the development of probability distributions for dis-

crete random variables. In this chapter, we study the second general type of

random variable that arises in many applied problems. Sections 4.1 and 4.2

present the basic definitions and properties of continuous random variables and

their probability distributions. In Section 4.3, we study in detail the normal ran-

dom variable and distribution, unquestionably the most important and useful in

probability and statistics. Sections 4.4 and 4.5 discuss some other continuous

distributions that are often used in applied work. In Section 4.6, we introduce

a method for assessing whether given sample data is consistent with a speci-

fied distribution.



A discrete random variable (rv) is one whose possible values either constitute a finite
set or else can be listed in an infinite sequence (a list in which there is a first element,
a second element, etc.). A random variable whose set of possible values is an entire
interval of numbers is not discrete.

Recall from Chapter 3 that a random variable X is continuous if (1) possible
values comprise either a single interval on the number line (for some A � B, any
number x between A and B is a possible value) or a union of disjoint intervals, and
(2) P(X � c) � 0 for any number c that is a possible value of X.

If in the study of the ecology of a lake, we make depth measurements at randomly
chosen locations, then X � the depth at such a location is a continuous rv. Here A is
the minimum depth in the region being sampled, and B is the maximum depth. ■

If a chemical compound is randomly selected and its pH X is determined, then X is a
continuous rv because any pH value between 0 and 14 is possible. If more is known
about the compound selected for analysis, then the set of possible values might be a
subinterval of [0, 14], such as 5.5 � x � 6.5, but X would still be continuous. ■

Let X represent the amount of time a randomly selected customer spends waiting for
a haircut before his/her haircut commences. Your first thought might be that X is a
continuous random variable, since a measurement is required to determine its value.
However, there are customers lucky enough to have no wait whatsoever before climb-
ing into the barber’s chair. So it must be the case that P(X � 0) � 0. Conditional on
no chairs being empty, though, the waiting time will be continuous since X could
then assume any value between some minimum possible time A and a maximum
possible time B. This random variable is neither purely discrete nor purely continu-
ous but instead is a mixture of the two types. ■

One might argue that although in principle variables such as height, weight,
and temperature are continuous, in practice the limitations of our measuring instru-
ments restrict us to a discrete (though sometimes very finely subdivided) world.
However, continuous models often approximate real-world situations very well, and
continuous mathematics (the calculus) is frequently easier to work with than math-
ematics of discrete variables and distributions.

Probability Distributions for Continuous Variables
Suppose the variable X of interest is the depth of a lake at a randomly chosen point
on the surface. Let M � the maximum depth (in meters), so that any number in the
interval [0, M] is a possible value of X. If we “discretize” X by measuring depth to the
nearest meter, then possible values are nonnegative integers less than or equal to M.
The resulting discrete distribution of depth can be pictured using a probability his-
togram. If we draw the histogram so that the area of the rectangle above any possible
integer k is the proportion of the lake whose depth is (to the nearest meter) k, then the
total area of all rectangles is 1. A possible histogram appears in Figure 4.1(a).

If depth is measured much more accurately and the same measurement axis
as in Figure 4.1(a) is used, each rectangle in the resulting probability histogram is
much narrower, though the total area of all rectangles is still 1. A possible histogram
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is pictured in Figure 4.1(b); it has a much smoother appearance than the histogram
in Figure 4.1(a). If we continue in this way to measure depth more and more finely,
the resulting sequence of histograms approaches a smooth curve, such as is pictured
in Figure 4.1(c). Because for each histogram the total area of all rectangles equals 1,
the total area under the smooth curve is also 1. The probability that the depth at a
randomly chosen point is between a and b is just the area under the smooth curve
between a and b. It is exactly a smooth curve of the type pictured in Figure 4.1(c)
that specifies a continuous probability distribution.
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(a) (b) (c)

0 M 0 M 0 M

Figure 4.1 (a) Probability histogram of depth measured to the nearest meter; (b) probability
histogram of depth measured to the nearest centimeter; (c) a limit of a sequence of discrete
histograms

For f (x) to be a legitimate pdf, it must satisfy the following two conditions:

1. f(x) � 0 for all x

2. 
�

��
f(x) dx � area under the entire graph of f (x)

� 1

The direction of an imperfection with respect to a reference line on a circular object
such as a tire, brake rotor, or flywheel is, in general, subject to uncertainty. Consider the
reference line connecting the valve stem on a tire to the center point, and let X be the
angle measured clockwise to the location of an imperfection. One possible pdf for X is

f (x) �
�
3

1
60
� 0 � x � 360

0 otherwise

DEFINITION Let X be a continuous rv. Then a probability distribution or probability den-
sity function (pdf) of X is a function f (x) such that for any two numbers a and
b with a � b,

P(a � X � b) � 
b

a
f (x) dx

That is, the probability that X takes on a value in the interval [a, b] is the area
above this interval and under the graph of the density function, as illustrated
in Figure 4.2. The graph of f (x) is often referred to as the density curve.

a b
x

Figure 4.2 P(a � X � b) � the area under the density curve between a and b

Example 4.4

Ï

ÌÓ



The pdf is graphed in Figure 4.3. Clearly f (x) � 0. The area under the density curve
is just the area of a rectangle: (height)(base) � (�

3
1
60
�)(360) � 1. The probability that

the angle is between 90° and 180° is

P(90 � X � 180) � 
180

90
dx � ⏐

x�180

x�90

� � .25

The probability that the angle of occurrence is within 90° of the reference line is

P(0 � X � 90) � P(270 � X � 360) � .25 � .25 � .50

1
�
4

x
�
360

1
�
360
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Because whenever 0 � a � b � 360 in Example 4.4, P(a � X � b) depends only on
the width b � a of the interval, X is said to have a uniform distribution.

Shaded area � P(90 � X �180)

x

1
360

f(x)

0 360
x

f(x)

36027018090

Figure 4.3 The pdf and probability from Example 4.4 ■

DEFINITION A continuous rv X is said to have a uniform distribution on the interval [A, B]
if the pdf of X is

f (x; A, B) � �
B �

1

A
� A � x � B

0 otherwise

The graph of any uniform pdf looks like the graph in Figure 4.3 except that the inter-
val of positive density is [A, B] rather than [0, 360].

In the discrete case, a probability mass function (pmf) tells us how little
“blobs” of probability mass of various magnitudes are distributed along the mea-
surement axis. In the continuous case, probability density is “smeared” in a continu-
ous fashion along the interval of possible values. When density is smeared uniformly
over the interval, a uniform pdf, as in Figure 4.3, results.

When X is a discrete random variable, each possible value is assigned positive
probability. This is not true of a continuous random variable (that is, the second con-
dition of the definition is satisfied) because the area under a density curve that lies
above any single value is zero:


c

c

c � e

c � e

The fact that P(X � c) � 0 when X is continuous has an important practical
consequence: The probability that X lies in some interval between a and b does not
depend on whether the lower limit a or the upper limit b is included in the probability
calculation:

P(a � X � b) � P(a � X � b) � P(a � X � b) � P(a � X � b) (4.1)

fsxddx 5 0fsxddx 5 lim
eS0

PsX 5 cd 5
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If X is discrete and both a and b are possible values (e.g., X is binomial with n � 20
and a � 5, b � 10), then all four of these probabilities are different.

The zero probability condition has a physical analog. Consider a solid circular rod
with cross-sectional area � 1 in2. Place the rod alongside a measurement axis and sup-
pose that the density of the rod at any point x is given by the value f (x) of a density func-
tion. Then if the rod is sliced at points a and b and this segment is removed, the amount
of mass removed is 
b

a f (x) dx; if the rod is sliced just at the point c, no mass is removed.
Mass is assigned to interval segments of the rod but not to individual points.

“Time headway” in traffic flow is the elapsed time between the time that one car fin-
ishes passing a fixed point and the instant that the next car begins to pass that point. Let
X � the time headway for two randomly chosen consecutive cars on a freeway during
a period of heavy flow. The following pdf of X is essentially the one suggested in “The
Statistical Properties of Freeway Traffic” (Transp. Res., vol. 11: 221–228):

f (x) � .15e�.15(x�.5) x � .5
0 otherwise

The graph of f (x) is given in Figure 4.4; there is no density associated with
headway times less than .5, and headway density decreases rapidly (exponentially
fast) as x increases from .5. Clearly, f (x) � 0; to show that 
�

�� f (x) dx � 1, we use
the calculus result 
�

a e�kx dx � (1/k)e�k � a. Then


�

��
f (x) dx � 
�

.5
.15e�.15(x�.5) dx � .15e.075 
�

.5
e�.15x dx

� .15e.075 � �
.1
1
5
�e� (.15)(.5) � 1
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Example 4.5

0

.15

2

.5

4 6 8 10
x

f (x)

P(X � 5)

Figure 4.4 The density curve for headway time in Example 4.5

The probability that headway time is at most 5 sec is

P(X � 5) � 
5

��
f (x) dx � 
5

.5
.15e�.15(x�.5) dx

� .15e.075 
5

.5
e�.15x dx � .15e.075 � � �

.1
1
5
� e�.15x⏐

x�5

x�.5

� e.075(�e�.75 � e�.075) � 1.078(�.472 � .928) � .491

� P(less than 5 sec) � P(X � 5) ■

Unlike discrete distributions such as the binomial, hypergeometric, and nega-
tive binomial, the distribution of any given continuous rv cannot usually be derived
using simple probabilistic arguments. Instead, one must make a judicious choice of
pdf based on prior knowledge and available data. Fortunately, there are some gen-
eral families of pdf’s that have been found to fit well in a wide variety of experi-
mental situations; several of these are discussed later in the chapter.
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Just as in the discrete case, it is often helpful to think of the population of inter-
est as consisting of X values rather than individuals or objects. The pdf is then a
model for the distribution of values in this numerical population, and from this
model various population characteristics (such as the mean) can be calculated.
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EXERCISES Section 4.1 (1–10)

1. Let X denote the amount of time for which a book on 2-hour
reserve at a college library is checked out by a randomly
selected student and suppose that X has density function

f(x) �
.5x 0 � x � 2
0 otherwise

Calculate the following probabilities:
a. P(X � 1)
b. P(.5 � X � 1.5)
c. P(1.5 � X)

2. Suppose the reaction temperature X (in °C) in a certain chem-
ical process has a uniform distribution with A � �5 and 
B � 5.
a. Compute P(X � 0).
b. Compute P(�2.5 � X � 2.5).
c. Compute P(�2 � X � 3).
d. For k satisfying � 5 � k � k � 4 � 5, compute P(k � X �

k � 4).

3. The error involved in making a certain measurement is a con-
tinuous rv X with pdf

f(x) �
.09375(4 � x2) �2 � x � 2

0 otherwise

a. Sketch the graph of f (x).
b. Compute P(X � 0).
c. Compute P(�1 � X � 1).
d. Compute P(X � �.5 or X � .5).

4. Let X denote the vibratory stress (psi) on a wind turbine blade
at a particular wind speed in a wind tunnel. The article “Blade
Fatigue Life Assessment with Application to VAWTS” (J.
Solar Energy Engr., 1982: 107–111) proposes the Rayleigh
distribution, with pdf

f(x; 	) �
�
	

x
2
� � e�x2/(2	

2) x � 0

0 otherwise

as a model for the X distribution.
a. Verify that f (x; 	) is a legitimate pdf.
b. Suppose 	 � 100 (a value suggested by a graph in the arti-

cle). What is the probability that X is at most 200? Less
than 200? At least 200?

c. What is the probability that X is between 100 and 200
(again assuming 	 � 100)?

d. Give an expression for P(X � x).

5. A college professor never finishes his lecture before the end
of the hour and always finishes his lectures within 2 min after

the hour. Let X � the time that elapses between the end of the
hour and the end of the lecture and suppose the pdf of X is

f(x) �
kx2 0 � x � 2
0 otherwise

a. Find the value of k and draw the corresponding density
curve. [Hint: Total area under the graph of f(x) is 1.]

b. What is the probability that the lecture ends within 1 min
of the end of the hour?

c. What is the probability that the lecture continues beyond
the hour for between 60 and 90 sec?

d. What is the probability that the lecture continues for at
least 90 sec beyond the end of the hour?

6. The actual tracking weight of a stereo cartridge that is set to
track at 3 g on a particular changer can be regarded as a con-
tinuous rv X with pdf

f(x) �
k[1 � (x � 3)2] 2 � x � 4
0 otherwise

a. Sketch the graph of f(x).
b. Find the value of k.
c. What is the probability that the actual tracking weight is

greater than the prescribed weight?
d. What is the probability that the actual weight is within .25 g

of the prescribed weight?
e. What is the probability that the actual weight differs from the

prescribed weight by more than .5 g?

7. The time X (min) for a lab assistant to prepare the equipment
for a certain experiment is believed to have a uniform distribu-
tion with A � 25 and B � 35.
a. Determine the pdf of X and sketch the corresponding den-

sity curve.
b. What is the probability that preparation time exceeds 33

min?
c. What is the probability that preparation time is within 2

min of the mean time? [Hint: Identify � from the graph of
f(x).]

d. For any a such that 25 � a � a � 2 � 35, what is the
probability that preparation time is between a and a � 2
min?

8. In commuting to work, I must first get on a bus near my
house and then transfer to a second bus. If the waiting time
(in minutes) at each stop has a uniform distribution with 
A � 0 and B � 5, then it can be shown that my total waiting
time Y has the pdf
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Several of the most important concepts introduced in the study of discrete distribu-
tions also play an important role for continuous distributions. Definitions analogous
to those in Chapter 3 involve replacing summation by integration.

The Cumulative Distribution Function
The cumulative distribution function (cdf) F(x) for a discrete rv X gives, for any speci-
fied number x, the probability P(X � x). It is obtained by summing the pmf p(y) over all
possible values y satisfying y � x. The cdf of a continuous rv gives the same probabili-
ties P(X � x) and is obtained by integrating the pdf f(y) between the limits �� and x.
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�
2
1
5
� y 0 � y � 5

f(y) �
�
2

5
� � �

2
1
5
� y 5 � y � 10

0 y � 0 or y � 10

a. Sketch a graph of the pdf of Y.

b. Verify that 
�

��
f(y) dy � 1.

c. What is the probability that total waiting time is at most 3
min?

d. What is the probability that total waiting time is at most 8
min?

e. What is the probability that total waiting time is between
3 and 8 min?

f. What is the probability that total waiting time is either less
than 2 min or more than 6 min?

9. Consider again the pdf of X � time headway given in Ex-
ample 4.5. What is the probability that time headway is

a. At most 6 sec?
b. More than 6 sec? At least 6 sec?
c. Between 5 and 6 sec?

10. A family of pdf’s that has been used to approximate the dis-
tribution of income, city population size, and size of firms is
the Pareto family. The family has two parameters, k and 	,
both � 0, and the pdf is

f(x; k, 	) �
�
k
x
�
k�

	
1

k

� x � 	

0 x � 	

a. Sketch the graph of f(x; k, 	).
b. Verify that the total area under the graph equals 1.
c. If the rv X has pdf f(x; k, 	), for any fixed b � 	, obtain

an expression for P(X � b).
d. For 	 � a � b, obtain an expression for the probability

P(a � X � b).

4.2 Cumulative Distribution Functions 
and Expected Values

DEFINITION The cumulative distribution function F(x) for a continuous rv X is defined
for every number x by

F(x) � P(X � x) � 
x

��
f (y) dy

For each x, F(x) is the area under the density curve to the left of x. This is illus-
trated in Figure 4.5, where F(x) increases smoothly as x increases.
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Figure 4.5 A pdf and associated cdf
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The entire cdf is

0 x � A

F(x) � �
B
x �

�

A
A

� A � x � B

1 x � B

The graph of this cdf appears in Figure 4.7.
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Let X, the thickness of a certain metal sheet, have a uniform distribution on [A, B].
The density function is shown in Figure 4.6. For x � A, F(x) � 0, since there is no
area under the graph of the density function to the left of such an x. For x � B,
F(x) � 1, since all the area is accumulated to the left of such an x. Finally, for A �
x � B,

F(x) � 
x

��
f (y) dy � 
x

A
�
B �

1
A

� dy � �
B �

1
A

� � y
⏐
⏐
⏐

y�x

y�A

� �
B
x �

�

A
A

�

Example 4.6

f (x)

1
B�A

A B

1
B�A

A Bx x

Shaded area � F(x)

Figure 4.6 The pdf for a uniform distribution

F (x)

A B x

1

Figure 4.7 The cdf for a uniform distribution ■

Using F(x) to Compute Probabilities
The importance of the cdf here, just as for discrete rv’s, is that probabilities of vari-
ous intervals can be computed from a formula for or table of F(x).

Let X be a continuous rv with pdf f (x) and cdf F(x). Then for any number a,

P(X � a) � 1 � F(a)

and for any two numbers a and b with a � b,

P(a � X � b) � F(b) � F(a)

PROPOSITION
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Figure 4.8 illustrates the second part of this proposition; the desired probability is the
shaded area under the density curve between a and b, and it equals the difference
between the two shaded cumulative areas. This is different from what is appropriate for
a discrete integer valued random variable (e.g., binomial or Poisson): P(a � X � b) �
F(b) � F(a � 1) when a and b are integers.
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a b

f (x)

b a

� �

Figure 4.8 Computing P(a � X � b) from cumulative probabilities

Suppose the pdf of the magnitude X of a dynamic load on a bridge (in newtons)
is given by

f(x) �
�
1
8

� � �
3
8

� x 0 � x � 2

0 otherwise

For any number x between 0 and 2,

F(x) � 
x

��
f(y) dy � 
x

0 ��
1
8

� � �
3
8

� y� dy � �
8
x

� � �
1
3
6
� x2

Thus

0 x � 0

F(x) � �
8
x

� � �
1
3
6
� x2 0 � x � 2

1 2 � x

The graphs of f(x) and F(x) are shown in Figure 4.9. The probability that the load is
between 1 and 1.5 is

P(1 � X � 1.5) � F(1.5) � F(1)

� ��
1
8

� (1.5) � �
1
3
6
� (1.5)2� � ��

1
8

� (1) � �
1
3
6
� (1)2�

� �
1
6

9
4
� � .297

The probability that the load exceeds 1 is

P(X � 1) � 1 � P(X � 1) � 1 � F(1) � 1 � ��
1
8

� (1) � �
1
3
6
� (1)2�

� �
1
1

1
6
� � .688

Example 4.7

1
8

7
8

0 2

f (x)

2

F (x)

1

x x

Figure 4.9 The pdf and cdf for Example 4.7 ■
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Once the cdf has been obtained, any probability involving X can easily be cal-
culated without any further integration.

Obtaining f (x) from F(x)
For X discrete, the pmf is obtained from the cdf by taking the difference between two
F(x) values. The continuous analog of a difference is a derivative. The following re-
sult is a consequence of the Fundamental Theorem of Calculus.

4.2 Cumulative Distribution Functions and Expected Values 139

If X is a continuous rv with pdf f(x) and cdf F(x), then at every x at which the 
derivative F(x) exists, F(x) � f(x).

PROPOSITION

When X has a uniform distribution, F(x) is differentiable except at x � A and x � B,
where the graph of F(x) has sharp corners. Since F(x) � 0 for x � A and F(x) � 1
for x � B, F(x) � 0 � f(x) for such x. For A � x � B,

F(x) � �
d
d
x
� ��B

x �

�

A
A

�� � �
B �

1
A

� � f(x) ■

Percentiles of a Continuous Distribution
When we say that an individual’s test score was at the 85th percentile of the popu-
lation, we mean that 85% of all population scores were below that score and 15%
were above. Similarly, the 40th percentile is the score that exceeds 40% of all scores
and is exceeded by 60% of all scores.

DEFINITION Let p be a number between 0 and 1. The (100p)th percentile of the distribution
of a continuous rv X, denoted by 
(p), is defined by

p � F(
(p)) � 

(p)

��
f (y) dy (4.2)

According to Expression (4.2), 
(p) is that value on the measurement axis such that
100p% of the area under the graph of f(x) lies to the left of 
(p) and 100(1 � p)%
lies to the right. Thus 
(.75), the 75th percentile, is such that the area under the graph
of f(x) to the left of 
(.75) is .75. Figure 4.10 illustrates the definition.

Figure 4.10 The (100p)th percentile of a continuous distribution

Example 4.8
(Example 4.6
continued)

Shaded area � p

  (p)�

f (x) F(x)

�p � F(  (p))

x

1

  (p)�



The distribution of the amount of gravel (in tons) sold by a particular construction 
supply company in a given week is a continuous rv X with pdf

f(x) �
�
3
2

� (1 � x2) 0 � x � 1

0 otherwise

The cdf of sales for any x between 0 and 1 is

F(x) � 
x

0
�
3
2

� (1 � y2) dy � �
3
2

� �y � �
y
3

3

��
⏐
⏐
⏐

y�x

y�0

� �
3
2

� �x � �
x
3

3

��
The graphs of both f(x) and F(x) appear in Figure 4.11. The (100p)th percentile of
this distribution satisfies the equation

p � F(
(p)) � �
3
2

� �
(p) � �
(
(

3
p))3

��
that is,

(
(p))3 � 3
(p) � 2p � 0

For the 50th percentile, p � .5, and the equation to be solved is 
3 � 3
 � 1 � 0;
the solution is 
 � 
(.5) � .347. If the distribution remains the same from week to
week, then in the long run 50% of all weeks will result in sales of less than .347 ton
and 50% in more than .347 ton.
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1.5

0 1 x

f (x)

1

0 1 x

F(x)

.5

.347

Figure 4.11 The pdf and cdf for Example 4.9 ■

DEFINITION The median of a continuous distribution, denoted by , is the 50th percentile,
so satisfies .5 � F( ). That is, half the area under the density curve is to the
left of �̃ and half is to the right of .m|

m|m|
m|

A continuous distribution whose pdf is symmetric—the graph of the pdf to the left
of some point is a mirror image of the graph to the right of that point—has median
�̃ equal to the point of symmetry, since half the area under the curve lies to either
side of this point. Figure 4.12 gives several examples. The error in a measurement
of a physical quantity is often assumed to have a symmetric distribution.

Example 4.9

f (x)

x x x

f (x) f (x)

A 	 B˜ 	̃ 	̃

Figure 4.12 Medians of symmetric distributions

Ï

Ì
Ó



The pdf of weekly gravel sales X was

f (x) �
�
3
2

� (1 � x2) 0 � x � 1

0 otherwise

so

E(X) � 
�

��
x � f (x) dx � 
1

0
x � �

3
2

� (1 � x2) dx

� �
3
2

� 
1

0
(x � x3) dx � �

3
2

� ��
x
2

2

� � �
x
4

4

��
⏐
⏐
⏐

x�1

x�0

� �
3
8

� ■

When the pdf f(x) specifies a model for the distribution of values in a numer-
ical population, then � is the population mean, which is the most frequently used
measure of population location or center.

Often we wish to compute the expected value of some function h(X) of the rv
X. If we think of h(X) as a new rv Y, techniques from mathematical statistics can be
used to derive the pdf of Y, and E(Y) can be computed from the definition. Fortunately,
as in the discrete case, there is an easier way to compute E[h(X)].
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DEFINITION The expected or mean value of a continuous rv X with pdf f(x) is

�X � E(X) � 
�

��
x � f(x) dx

If X is a continuous rv with pdf f(x) and h(X) is any function of X, then

E[h(X)] � �h(X) � 
�

��
h(x) � f(x) dx

PROPOSITION

Two species are competing in a region for control of a limited amount of a certain re-
source. Let X � the proportion of the resource controlled by species 1 and suppose X
has pdf

f(x) �
1 0 � x � 1
0 otherwise

which is a uniform distribution on [0, 1]. (In her book Ecological Diversity, E. C.
Pielou calls this the “broken-stick” model for resource allocation, since it is analogous

Example 4.10
(Example 4.9
continued)

Example 4.11

Expected Values
For a discrete random variable X, E(X) was obtained by summing x � p(x) over pos-
sible X values. Here we replace summation by integration and the pmf by the pdf to
get a continuous weighted average.

Ï

Ì
Ó

Ï
Ì
Ó



to breaking a stick at a randomly chosen point.) Then the species that controls the
majority of this resource controls the amount

h(X) � max(X, 1 � X) �

1 � X if 0 � X � �
1
2

�

X if �
1
2

� � X � 1

The expected amount controlled by the species having majority control is then

E[h(X)] � 
�

��
max(x, 1 � x) � f(x) dx � 
1

0
max(x, 1 � x) � 1 dx

� 
1/2

0
(1 � x) � 1 dx � 
1

1/2
x � 1 dx � �

3
4

� ■

For h(X) a linear function, E[h(X)] � E(aX � b) � aE(X) � b.

In the discrete case, the variance of X was defined as the expected squared deviation
from m and was calculated by summation. Here again integration replaces summation.
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DEFINITION The variance of a continuous random variable X with pdf f(x) and mean value � is

�2
X � V(X) � 
�

��
(x � �)2 � f(x) dx � E[(X � �)2]

The standard deviation (SD) of X is �X � �V�(X�)� .

The variance and standard deviation give quantitative measures of how much spread
there is in the distribution or population of x values. The easiest way to compute �2

is to gain use a shortcut formula.

V(X) � E(X 2) � [E(X)]2PROPOSITION

For X � weekly gravel sales, we computed E(X) � �
3
8

�. Since

E(X 2) � 
�

��
x2 � f(x) dx � 
1

0
x2 � �

3
2

� (1 � x2) dx

� 
1

0
�
3
2

�(x2 � x 4) dx � �
1
5

�

V(X) � �
1
5

� � ��
3
8

��
2

� �
3
1
2
9
0

� � .059 and �X � .244 ■

When h(X) � aX � b, the expected value and variance of h(X) satisfy the same
properties as in the discrete case: E[h(X)] � a� � b and V[h(X)] � a2��2.

Example 4.12
(Example 4.10
continued)

EXERCISES Section 4.2 (11–27)

11. The cdf of checkout duration X as described in Exercise 1 is

x � 0

F(x) � �
x
4

2

� 0 � x � 2

1 2 � x

Use this to compute the following:
a. P(X � 1)
b. P(.5 � X � 1)
c. P(X � .5)
d. The median checkout duration [solve .5 � F( )]
e. F(x) to obtain the density function f(x)

m|m|
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f. E(X)
g. V(X) and �X

h. If the borrower is charged an amount h(X) � X 2 when
checkout duration is X, compute the expected charge
E[h(X)].

12. The cdf for X (� measurement error) of Exercise 3 is

0 x � �2

F(x) � �
1
2

� � �
3
3
2
� �4x � �

x
3

3

�� �2 � x � 2

1 2 � x

a. Compute P(X � 0).
b. Compute P(�1 � X � 1).
c. Compute P(.5 � X).
d. Verify that f(x) is as given in Exercise 3 by obtaining

F(x).
e. Verify that � 0.

13. Example 4.5 introduced the concept of time headway in
traffic flow and proposed a particular distribution for X �
the headway between two randomly selected consecutive
cars (sec). Suppose that in a different traffic environment,
the distribution of time headway has the form

f(x) �
�
k
x4

x � 1

0 x � 1

a. Determine the value of k for which f(x) is a legitimate
pdf.

b. Obtain the cumulative distribution function.
c. Use the cdf from (b) to determine the probability that

headway exceeds 2 sec and also the probability that
headway is between 2 and 3 sec.

d. Obtain the mean value of headway and the standard devi-
ation of headway.

e. What is the probability that headway is within 1 standard
deviation of the mean value?

14. The article “Modeling Sediment and Water Column
Interactions for Hydrophobic Pollutants” (Water Research,
1984: 1169–1174) suggests the uniform distribution on the
interval (7.5, 20) as a model for depth (cm) of the bioturba-
tion layer in sediment in a certain region.
a. What are the mean and variance of depth?
b. What is the cdf of depth?
c. What is the probability that observed depth is at most 10?

Between 10 and 15?
d. What is the probability that the observed depth is within

1 standard deviation of the mean value? Within 2 stan-
dard deviations?

15. Let X denote the amount of space occupied by an article
placed in a 1-ft3 packing container. The pdf of X is

f(x) �
90x8(1 � x) 0 � x � 1

0 otherwise

a. Graph the pdf. Then obtain the cdf of X and graph it.
b. What is P(X � .5) [i.e., F(.5)]?

c. Using the cdf from (a), what is P(.25 � X � .5)? What is
P(.25 � X � .5)?

d. What is the 75th percentile of the distribution?
e. Compute E(X) and �X.
f. What is the probability that X is more than 1 standard

deviation from its mean value?

16. Answer parts (a)–(f) of Exercise 15 with X � lecture time
past the hour given in Exercise 5.

17. Let X have a uniform distribution on the interval 
[A, B].
a. Obtain an expression for the (100p)th percentile.
b. Compute E(X), V(X), and �X.
c. For n a positive integer, compute E(Xn).

18. Let X denote the voltage at the output of a microphone, and
suppose that X has a uniform distribution on the interval
from �1 to 1. The voltage is processed by a “hard limiter”
with cutoff values �.5 and .5, so the limiter output is a ran-
dom variable Y related to X by Y � X if |X| � .5, Y � .5 if 
X � .5, and Y � �.5 if X � �.5.
a. What is P(Y � .5)?
b. Obtain the cumulative distribution function of Y and

graph it.

19. Let X be a continuous rv with cdf

0 x � 0

F(x) � �
4
x

� �1 � ln��
4
x

��� 0 � x � 4

1 x � 4

[This type of cdf is suggested in the article “Variability in
Measured Bedload-Transport Rates” (Water Resources
Bull., 1985: 39–48) as a model for a certain hydrologic vari-
able.] What is
a. P(X � 1)?
b. P(1 � X � 3)?
c. The pdf of X?

20. Consider the pdf for total waiting time Y for two buses

�
2
1
5
� y 0 � y � 5

f(y) �
�
2
5

� � �
2
1
5
� y 5 � y � 10

0 otherwise

introduced in Exercise 8.
a. Compute and sketch the cdf of Y. [Hint: Consider sepa-

rately 0 � y � 5 and 5 � y � 10 in computing F(y). A
graph of the pdf should be helpful.]

b. Obtain an expression for the (100p)th percentile. [Hint:
Consider separately 0 � p � .5 and .5 � p � 1.]

c. Compute E(Y) and V(Y). How do these compare with the
expected waiting time and variance for a single bus when
the time is uniformly distributed on [0, 5]?

21. An ecologist wishes to mark off a circular sampling region
having radius 10 m. However, the radius of the resulting
region is actually a random variable R with pdf

m|
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What is the expected area of the resulting circular region?

22. The weekly demand for propane gas (in 1000s of gallons)
from a particular facility is an rv X with pdf

f(x) �
2�1 � �

x
1
2
�� 1 � x � 2

0 otherwise

a. Compute the cdf of X.
b. Obtain an expression for the (100p)th percentile. What is

the value of ?
c. Compute E(X) and V(X).
d. If 1.5 thousand gallons are in stock at the beginning of the

week and no new supply is due in during the week, how
much of the 1.5 thousand gallons is expected to be left at
the end of the week? [Hint: Let h(x) � amount left when
demand � x.]

23. If the temperature at which a certain compound melts is a
random variable with mean value 120°C and standard devi-
ation 2°C, what are the mean temperature and standard devi-
ation measured in °F? [Hint: °F � 1.8°C � 32.]

24. Let X have the Pareto pdf

f(x; k, 	) �
�
k
x
�
k�

	
1

k

� x � 	

0 x � 	

introduced in Exercise 10.
a. If k � 1, compute E(X).
b. What can you say about E(X) if k � 1?
c. If k � 2, show that V(X) � k	2(k � 1)�2(k � 2)�1.
d. If k � 2, what can you say about V(X)?
e. What conditions on k are necessary to ensure that E(Xn)

is finite?

25. Let X be the temperature in °C at which a certain chemical
reaction takes place, and let Y be the temperature in °F
(so Y � 1.8X � 32).

a. If the median of the X distribution is , show that 1.8 �
32 is the median of the Y distribution.

b. How is the 90th percentile of the Y distribution related to
the 90th percentile of the X distribution? Verify your con-
jecture.

c. More generally, if Y � aX � b, how is any particular per-
centile of the Y distribution related to the corresponding
percentile of the X distribution?

26. Let X be the total medical expenses (in 1000s of dollars)
incurred by a particular individual during a given year.
Although X is a discrete random variable, suppose its distri-
bution is quite well approximated by a continuous distribu-
tion with pdf f(x) � k(1 � x/2.5)�7 for x � 0.
a. What is the value of k?
b. Graph the pdf of X.
c. What are the expected value and standard deviation of

total medical expenses?
d. This individual is covered by an insurance plan that entails

a $500 deductible provision (so the first $500 worth of
expenses are paid by the individual). Then the plan will
pay 80% of any additional expenses exceeding $500, and
the maximum payment by the individual (including the
deductible amount) is $2500. Let Y denote the amount of
this individual’s medical expenses paid by the insurance
company. What is the expected value of Y?
[Hint: First figure out what value of X corresponds to the
maximum out-of-pocket expense of $2500. Then write an
expression for Y as a function of X (which involves several
different pieces) and calculate the expected value of this
function.]

27. When a dart is thrown at a circular target, consider the
location of the landing point relative to the bull’s eye. Let
X be the angle in degrees measured from the horizontal,
and assume that X is uniformly distributed on [0, 360].
Define Y to be the transformed variable Y � h(X) �
(2�/360)X ��, so Y is the angle measured in radians and
Y is between �� and �. Obtain E(Y ) and �Y by first obtain-
ing E(X) and �X, and then using the fact that h(X) is a lin-
ear function of X.

m|m|

m|

f(r) �
�
3
4

�[1 � (10 � r)2] 9 � r � 11

0 otherwise

4.3 The Normal Distribution

The normal distribution is the most important one in all of probability and statistics.
Many numerical populations have distributions that can be fit very closely by an
appropriate normal curve. Examples include heights, weights, and other physical
characteristics (the famous 1903 Biometrika article “On the Laws of Inheritance in
Man” discussed many examples of this sort), measurement errors in scientific exper-
iments, anthropometric measurements on fossils, reaction times in psychological
experiments, measurements of intelligence and aptitude, scores on various tests, and
numerous economic measures and indicators. Even when the underlying distribution
is discrete, the normal curve often gives an excellent approximation. In addition,
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DEFINITION A continuous rv X is said to have a normal distribution with parameters � and
� (or � and � 2), where �� � � � � and 0 � �, if the pdf of X is

f(x; �, �) � e�(x��)2/(2�
2) �� � x � � (4.3)1

22p s

Again e denotes the base of the natural logarithm system and equals approximately
2.71828, and � represents the familiar mathematical constant with approximate
value 3.14159. The statement that X is normally distributed with parameters � and
� 2 is often abbreviated X 	 N(�, � 2).

Clearly f(x; �, �) � 0 but a somewhat complicated calculus argument must
be used to verify that 
�

��
f(x; �, �) dx � 1. It can be shown that E(X) �� and

V(X) � � 2, so the parameters are the mean and the standard deviation of X. Figure
4.13 presents graphs of f(x; �, �) for several different (�, �) pairs. Each density
curve is symmetric about � and bell-shaped, so the center of the bell (point of sym-
metry) is both the mean of the distribution and the median. The value of � is the dis-
tance from � to the inflection points of the curve (the points at which the curve
changes from turning downward to turning upward). Large values of � yield graphs
that are quite spread out about �, whereas small values of � yield graphs with a high
peak above � and most of the area under the graph quite close to �. Thus a large �
implies that a value of X far from � may well be observed, whereas such a value is
quite unlikely when � is small.

Figure 4.13 Normal density curves

The Standard Normal Distribution
To compute P(a � X � b) when X is a normal rv with parameters � and �, we must
determine


b

a
e�(x��)2/(2�

2) dx (4.4)

None of the standard integration techniques can be used to evaluate Expression (4.4).
Instead, for � � 0 and � � 1, Expression (4.4) has been calculated using numerical
techniques and tabulated for certain values of a and b. This table can also be used to
compute probabilities for any other values of � and � under consideration.

1

22p s

even when individual variables themselves are not normally distributed, sums and
averages of the variables will under suitable conditions have approximately a normal
distribution; this is the content of the Central Limit Theorem discussed in the next
chapter.

	 	 	

⎧ ⎨ ⎩
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The standard normal distribution does not frequently serve as a model for a
naturally arising population. Instead, it is a reference distribution from which infor-
mation about other normal distributions can be obtained. Appendix Table A.3 gives
�(z) � P(Z � z), the area under the standard normal density curve to the left of z,
for z � �3.49, �3.48, . . . , 3.48, 3.49. Figure 4.14 illustrates the type of cumulative
area (probability) tabulated in Table A.3. From this table, various other probabilities
involving Z can be calculated.
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DEFINITION The normal distribution with parameter values � � 0 and � � 1 is called the
standard normal distribution. A random variable having a standard normal
distribution is called a standard normal random variable and will be de-
noted by Z. The pdf of Z is

f (z; 0, 1) � �
�

1

2���
� e� z2/2 �� � z � �

The graph of f(z; 0, 1) is called the standard normal (or z) curve. The cdf of
Z is P(Z � z) � 
z

�� f(y; 0, 1) dy, which we will denote by �(z).

0 z

Shaded area � �(z)

Standard normal (z) curve

Figure 4.14 Standard normal cumulative areas tabulated in Appendix Table A.3

Let’s determine the following standard normal probabilities: (a) P(Z � 1.25), (b)
P(Z � 1.25), (c) P(Z � �1.25), and (d) P(�.38 � Z � 1.25).

a. P(Z � 1.25) � �(1.25), a probability that is tabulated in Appendix Table A.3 at
the intersection of the row marked 1.2 and the column marked .05. The number
there is .8944, so P(Z � 1.25) � .8944. Figure 4.15(a) illustrates this probability.

Shaded area � �(1.25) z curve

0
(a)

1.25

z curve

0
(b)

1.25

Figure 4.15 Normal curve areas (probabilities) for Example 4.13

Example 4.13

b. P(Z � 1.25) � 1 � P(Z � 1.25) � 1 � �(1.25), the area under the z curve to the
right of 1.25 (an upper-tail area). Then �(1.25) � .8944 implies that P(Z � 1.25) �
.1056. Since Z is a continuous rv, P(Z � 1.25) � .1056. See Figure 4.15(b).

c. P(Z � �1.25) � �(�1.25), a lower-tail area. Directly from Appendix Table A.3,
�(�1.25) � .1056. By symmetry of the z curve, this is the same answer as in 
part (b).



d. P(�.38 � Z � 1.25) is the area under the standard normal curve above the inter-
val whose left endpoint is �.38 and whose right endpoint is 1.25. From Section
4.2, if X is a continuous rv with cdf F(x), then P(a � X � b) � F(b) � F(a).
Thus P(�.38 � Z � 1.25) � �(1.25) � �(�.38) � .8944 � .3520 � .5424.
(See Figure 4.16.)
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0�.38 1.25 0 1.25 0�.38

z curve

� �

Figure 4.16 P(�.38 � Z � 1.25) as the difference between two cumulative areas ■

Percentiles of the Standard Normal Distribution
For any p between 0 and 1, Appendix Table A.3 can be used to obtain the (100p)th
percentile of the standard normal distribution.

The 99th percentile of the standard normal distribution is that value on the hori-
zontal axis such that the area under the z curve to the left of the value is .9900.
Appendix Table A.3 gives for fixed z the area under the standard normal curve to
the left of z, whereas here we have the area and want the value of z. This is the
“inverse” problem to P(Z � z) � ? so the table is used in an inverse fashion: Find
in the middle of the table .9900; the row and column in which it lies identify the
99th z percentile. Here .9901 lies at the intersection of the row marked 2.3 and
column marked .03, so the 99th percentile is (approximately) z � 2.33. (See
Figure 4.17.) By symmetry, the first percentile is as far below 0 as the 99th is
above 0, so equals �2.33 (1% lies below the first and also above the 99th). (See
Figure 4.18.)

Example 4.14

Shaded area � .9900

z curve

99th percentile

0

Figure 4.17 Finding the 99th percentile

Shaded area � .01

z curve

2.33 � 99th percentile�2.33 � 1st percentile

0

Figure 4.18 The relationship between the 1st and 99th percentiles ■



In general, the (100p)th percentile is identified by the row and column of
Appendix Table A.3 in which the entry p is found (e.g., the 67th percentile is ob-
tained by finding .6700 in the body of the table, which gives z � .44). If p does not
appear, the number closest to it is often used, although linear interpolation gives a
more accurate answer. For example, to find the 95th percentile, we look for .9500
inside the table. Although .9500 does not appear, both .9495 and .9505 do, corre-
sponding to z � 1.64 and 1.65, respectively. Since .9500 is halfway between the two
probabilities that do appear, we will use 1.645 as the 95th percentile and �1.645 as
the 5th percentile.

z	 Notation
In statistical inference, we will need the values on the horizontal z axis that capture
certain small tail areas under the standard normal curve.
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Notation

z� will denote the value on the z axis for which � of the area under the z curve
lies to the right of z�. (See Figure 4.19.)

For example, z.10 captures upper-tail area .10 and z.01 captures upper-tail area .01.

Figure 4.19 z	 notation Illustrated

Since � of the area under the z curve lies to the right of z�, 1 � � of the area
lies to its left. Thus z� is the 100(1 � �)th percentile of the standard normal distri-
bution. By symmetry the area under the standard normal curve to the left of �z� is
also �. The z�s are usually referred to as z critical values. Table 4.1 lists the most
useful z percentiles and z� values.

Table 4.1 Standard Normal Percentiles and Critical Values

Percentile 90 95 97.5 99 99.5 99.9 99.95
� (tail area) .1 .05 .025 .01 .005 .001 .0005
z� � 100(1 � �)th 1.28 1.645 1.96 2.33 2.58 3.08 3.27

percentile

z.05 is the 100(1 � .05)th � 95th percentile of the standard normal distribution, so
z.05 � 1.645. The area under the standard normal curve to the left of �z.05 is also .05.
(See Figure 4.20.)

Shaded area � P(Z �  z�) � �Shaded area � P(Z �  z   ) �z curve

z�

0

Example 4.15



Nonstandard Normal Distributions
When X 	 N(�, � 2), probabilities involving X are computed by “standardizing.” The
standardized variable is (X � �)/�. Subtracting � shifts the mean from � to zero, and
then dividing by � scales the variable so that the standard deviation is 1 rather than �.
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Shaded area � .05 Shaded area � .05

z curve

z.05 � 95th percentile � 1.645�1.645 � �z.05

0

Figure 4.20 Finding z.05 ■

If X has a normal distribution with mean � and standard deviation �, then

Z � �
X �

�

�
�

has a standard normal distribution. Thus

P(a � X � b) � P��a �

�

�
� � Z � �

b �

�

�
��

� ���b �

�

�
�� � ���a �

�

�
��

P(X � a) � ���a �

�

�
�� P(X � b) � 1 � ���b �

�

�
��

PROPOSITION

The key idea of the proposition is that by standardizing, any probability involving 
X can be expressed as a probability involving a standard normal rv Z, so that
Appendix Table A.3 can be used. This is illustrated in Figure 4.21. The proposition
can be proved by writing the cdf of Z � (X � �)/� as

P(Z � z) � P(X � �z � �) � 
� z��

��
f(x; �, �) dx

Using a result from calculus, this integral can be differentiated with respect to z to
yield the desired pdf f(z; 0, 1).

	 x 0

N(   , 2)	 � N(0, 1)

(x �   )/�	

�

Figure 4.21 Equality of nonstandard and standard normal curve areas



The time that it takes a driver to react to the brake lights on a decelerating vehi-
cle is critical in helping to avoid rear-end collisions. The article “Fast-Rise Brake
Lamp as a Collision-Prevention Device” (Ergonomics, 1993: 391–395) suggests
that reaction time for an in-traffic response to a brake signal from standard brake
lights can be modeled with a normal distribution having mean value 1.25 sec and
standard deviation of .46 sec. What is the probability that reaction time is be-
tween 1.00 sec and 1.75 sec? If we let X denote reaction time, then standardizing
gives

1.00 � X � 1.75

if and only if

�
1.00

4.
�

6
1.25

� � �
X �

.4
1
6
.25

� � �
1.75

.
�

46
1.25

�

Thus

P(1.00 � X � 1.75) � P��1.00
.
�

46
1.25

� � Z � �
1.75

.
�

46
1.25

��
� P(�.54 � Z � 1.09) � �(1.09) � �(�.54)

� .8621 � .2946 � .5675

150 CHAPTER 4 Continuous Random Variables and Probability Distributions

1.25

1.751.00

0

1.09
.54

Normal,   � 1.25,   � .46 P(1.00 � X � 1.75)

z curve

	 �

Figure 4.22 Normal curves for Example 4.16

This is illustrated in Figure 4.22. Similarly, if we view 2 sec as a critically long reac-
tion time, the probability that actual reaction time will exceed this value is

P(X � 2) � P�Z � �
2 �

.4
1
6
.25

�� � P(Z � 1.63) � 1 � �(1.63) � .0516 ■

Standardizing amounts to nothing more than calculating a distance from the mean
value and then reexpressing the distance as some number of standard deviations.
Thus, if � � 100 and � � 15, then x � 130 corresponds to z � (130 � 100)/15 �
30/15 � 2.00. That is, 130 is 2 standard deviations above (to the right of) the mean
value. Similarly, standardizing 85 gives (85 � 100)/15 � �1.00, so 85 is 1 standard
deviation below the mean. The z table applies to any normal distribution provided
that we think in terms of number of standard deviations away from the mean value.

The breakdown voltage of a randomly chosen diode of a particular type is known
to be normally distributed. What is the probability that a diode’s breakdown volt-
age is within 1 standard deviation of its mean value? This question can be answered

Example 4.16

Example 4.17



without knowing either � or �, as long as the distribution is known to be normal;
the answer is the same for any normal distribution:

P(X is within 1 standard deviation of its mean) � P(� � � � X � � � �)

� P��� � �

�

� �
� � Z � �

� � �

�

� �
��

� P(�1.00 � Z � 1.00)

� �(1.00) � �(�1.00) � .6826

The probability that X is within 2 standard deviations is P(�2.00 � Z � 2.00) �
.9544 and within 3 standard deviations is P(�3.00 � Z � 3.00) � .9974. ■

The results of Example 4.17 are often reported in percentage form and referred
to as the empirical rule (because empirical evidence has shown that histograms of
real data can very frequently be approximated by normal curves).
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If the population distribution of a variable is (approximately) normal, then

1. Roughly 68% of the values are within 1 SD of the mean.
2. Roughly 95% of the values are within 2 SDs of the mean.
3. Roughly 99.7% of the values are within 3 SDs of the mean.

It is indeed unusual to observe a value from a normal population that is much farther
than 2 standard deviations from �. These results will be important in the develop-
ment of hypothesis-testing procedures in later chapters.

Percentiles of an Arbitrary Normal Distribution
The (100p)th percentile of a normal distribution with mean � and standard deviation
� is easily related to the (100p)th percentile of the standard normal distribution.

PROPOSITION
� � � � � � �

(100p)th for
standard normal

(100p)th percentile
for normal (m, s)

Another way of saying this is that if z is the desired percentile for the standard nor-
mal distribution, then the desired percentile for the normal (�, �) distribution is z
standard deviations from �.

The amount of distilled water dispensed by a certain machine is normally dis-
tributed with mean value 64 oz and standard deviation .78 oz. What container size
c will ensure that overflow occurs only .5% of the time? If X denotes the amount
dispensed, the desired condition is that P(X � c) � .005, or, equivalently, that
P(X � c) � .995. Thus c is the 99.5th percentile of the normal distribution with
� � 64 and � � .78. The 99.5th percentile of the standard normal distribution is
2.58, so

c � 
(.995) � 64 � (2.58)(.78) � 64 � 2.0 � 66 oz

This is illustrated in Figure 4.23.

Example 4.18



The Normal Distribution and Discrete Populations
The normal distribution is often used as an approximation to the distribution of val-
ues in a discrete population. In such situations, extra care should be taken to ensure
that probabilities are computed in an accurate manner.

IQ in a particular population (as measured by a standard test) is known to be approx-
imately normally distributed with � � 100 and � � 15. What is the probability that
a randomly selected individual has an IQ of at least 125? Letting X � the IQ of a
randomly chosen person, we wish P(X � 125). The temptation here is to standard-
ize X � 125 as in previous examples. However, the IQ population distribution is
actually discrete, since IQs are integer-valued. So the normal curve is an approxi-
mation to a discrete probability histogram, as pictured in Figure 4.24.

The rectangles of the histogram are centered at integers, so IQs of at least 125 cor-
respond to rectangles beginning at 124.5, as shaded in Figure 4.24. Thus we really want
the area under the approximating normal curve to the right of 124.5. Standardizing this
value gives P(Z � 1.63) � .0516, whereas standardizing 125 results in P(Z � 1.67) �
.0475. The difference is not great, but the answer .0516 is more accurate. Similarly,
P(X � 125) would be approximated by the area between 124.5 and 125.5, since the area
under the normal curve above the single value 125 is zero.
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Shaded area � .995

c � 99.5th percentile � 66.0

     � 64	

Figure 4.23 Distribution of amount dispensed for Example 4.18 ■

Example 4.19

125

Figure 4.24 A normal approximation to a discrete distribution ■

The correction for discreteness of the underlying distribution in Example 4.19
is often called a continuity correction. It is useful in the following application of
the normal distribution to the computation of binomial probabilities.

Approximating the Binomial Distribution
Recall that the mean value and standard deviation of a binomial random variable
X are �X � np and �X � �n�p�q�, respectively. Figure 4.25 displays a binomial
probability histogram for the binomial distribution with n � 20, p � .6, for which
� � 20(.6) � 12 and � � �2�0�(.�6�)(�.4�)� � 2.19. A normal curve with this � and � has
been superimposed on the probability histogram. Although the probability histogram



is a bit skewed (because p � .5), the normal curve gives a very good approximation,
especially in the middle part of the picture. The area of any rectangle (probability of
any particular X value) except those in the extreme tails can be accurately approxi-
mated by the corresponding normal curve area. For example, P(X � 10) � B(10;
20, .6) � B(9; 20, .6) � .117, whereas the area under the normal curve between 9.5
and 10.5 is P(�1.14 � Z � �.68) � .1212.

More generally, as long as the binomial probability histogram is not too
skewed, binomial probabilities can be well approximated by normal curve areas. It
is then customary to say that X has approximately a normal distribution.
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Figure 4.25 Binomial probability histogram for n � 20, p � .6 with normal approximation
curve superimposed

Let X be a binomial rv based on n trials with success probability p. Then if 
the binomial probability histogram is not too skewed, X has approximately a 
normal distribution with � � np and � � �n�p�q�. In particular, for x � a pos-
sible value of X,

P(X � x) � B(x; n, p) � � �
� ���x �

�
.5

n�p�
�

q�
np

��
In practice, the approximation is adequate provided that both np � 10 and
nq � 10, since there is then enough symmetry in the underlying binomial
distribution.

area under the normal curve
to the left of x � .5

PROPOSITION

A direct proof of this result is quite difficult. In the next chapter we’ll see that it is a
consequence of a more general result called the Central Limit Theorem. In all hon-
esty, this approximation is not so important for probability calculation as it once was.
This is because software can now calculate binomial probabilities exactly for quite
large values of n.

Suppose that 25% of all licensed drivers in a particular state do not have insurance. 
Let X be the number of uninsured drivers in a random sample of size 50 (somewhat
perversely, a success is an uninsured driver), so that p � .25. Then � � 12.5 and 

Example 4.20



� � 3.06. Since np � 50(.25) � 12.5 � 10 and nq � 37.5 � 10, the approximation
can safely be applied:

P(X � 10) � B(10; 50, .25) � ���10 �

3
.5
.0

�

6
12.5

��
� �(�.65) � .2578

Similarly, the probability that between 5 and 15 (inclusive) of the selected drivers are
uninsured is

P(5 � X � 15) � B(15; 50, .25) � B(4; 50, .25)

� ���15.5
3
�

.06
12.5

�� � ���4.5
3
�

.06
12.5
�� � .8320

The exact probabilities are .2622 and .8348, respectively, so the approximations are
quite good. In the last calculation, the probability P(5 � X � 15) is being approxi-
mated by the area under the normal curve between 4.5 and 15.5—the continuity cor-
rection is used for both the upper and lower limits. ■

When the objective of our investigation is to make an inference about a popula-
tion proportion p, interest will focus on the sample proportion of successes X/n rather
than on X itself. Because this proportion is just X multiplied by the constant 1/n, it will
also have approximately a normal distribution (with mean � � p and standard deviation
� � �p�q�/n�) provided that both np � 10 and nq � 10. This normal approximation is
the basis for several inferential procedures to be discussed in later chapters.
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EXERCISES Section 4.3 (28–58)

28. Let Z be a standard normal random variable and calculate
the following probabilities, drawing pictures wherever
appropriate.
a. P(0 � Z � 2.17)
b. P(0 � Z � 1)
c. P(�2.50 � Z � 0)
d. P(�2.50 � Z � 2.50)
e. P(Z � 1.37)
f. P(�1.75 � Z)
g. P(�1.50 � Z � 2.00)
h. P(1.37 � Z � 2.50)
i. P(1.50 � Z)
j. P(⏐Z⏐ � 2.50)

29. In each case, determine the value of the constant c that
makes the probability statement correct.
a. �(c) � .9838
b. P(0 � Z � c) � .291
c. P(c � Z) � .121
d. P(�c � Z � c) � .668
e. P(c � ⏐Z⏐) � .016

30. Find the following percentiles for the standard normal dis-
tribution. Interpolate where appropriate.
a. 91st b. 9th c. 75th
d. 25th e. 6th

31. Determine z� for the following:
a. � � .0055 b. � � .09
c. � � .663

32. If X is a normal rv with mean 80 and standard deviation 10,
compute the following probabilities by standardizing:
a. P(X � 100) b. P(X � 80)
c. P(65 � X � 100) d. P(70 � X)
e. P(85 � X � 95) f. P(⏐X � 80⏐ � 10)

33. Suppose the force acting on a column that helps to support a
building is normally distributed with mean 15.0 kips and stan-
dard deviation 1.25 kips. What is the probability that the force
a. Is at most 18 kips?
b. Is between 10 and 12 kips?
c. Differs from 15.0 kips by at most 1.5 standard deviations?

34. The article “Reliability of Domestic-Waste Biofilm Reactors”
(J. of Envir. Engr., 1995: 785–790) suggests that substrate
concentration (mg/cm3) of influent to a reactor is normally
distributed with � � .30 and � � .06.
a. What is the probability that the concentration exceeds .25?
b. What is the probability that the concentration is at 

most .10?
c. How would you characterize the largest 5% of all con-

centration values?
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35. Suppose the diameter at breast height (in.) of trees of a cer-
tain type is normally distributed with � � 8.8 and � � 2.8, as
suggested in the article “Simulating a Harvester-Forwarder
Softwood Thinning” (Forest Products J., May 1997: 36–41).
a. What is the probability that the diameter of a randomly

selected tree will be at least 10 in.? Will exceed 10 in.?
b. What is the probability that the diameter of a randomly

selected tree will exceed 20 in.?
c. What is the probability that the diameter of a randomly

selected tree will be between 5 and 10 in.?
d. What value c is such that the interval (8.8 � c, 8.8 � c)

includes 98% of all diameter values?
e. If four trees are independently selected, what is the prob-

ability that at least one has a diameter exceeding 10 in.?

36. Spray drift is a constant concern for pesticide applicators
and agricultural producers. The inverse relationship between
droplet size and drift potential is well known. The paper
“Effects of 2,4-D Formulation and Quinclorac on Spray
Droplet Size and Deposition” (Weed Technology, 2005:
1030–1036) investigated the effects of herbicide formula-
tion on spray atomization. A figure in the paper suggested
the normal distribution with mean 1050 mm and standard
deviation 150 mm was a reasonable model for droplet size
for water (the “control treatment”) sprayed through a 
760 ml/min nozzle.
a. What is the probability that the size of a single droplet is

less than 1500 mm? At least 1000 mm?
b. What is the probability that the size of a single droplet is

between 1000 and 1500 mm?
c. How would you characterize the smallest 2% of all

droplets?
d. If the sizes of five independently selected droplets are

measured, what is the probability that at least one ex-
ceeds 1500 mm?

37. Suppose that blood chloride concentration (mmol/L) has a
normal distribution with mean 104 and standard deviation
5 (information in the article “Mathematical Model of
Chloride Concentration in Human Blood,” J. of Med. Engr.
and Tech., 2006: 25–30, including a normal probability plot
as described in Section 4.6, supports this assumption).
a. What is the probability that chloride concentration

equals 105? Is less than 105? Is at most 105?
b. What is the probability that chloride concentration dif-

fers from the mean by more than 1 standard deviation?
Does this probability depend on the values of m and s?

c. How would you characterize the most extreme .1% of
chloride concentration values?

38. There are two machines available for cutting corks intended
for use in wine bottles. The first produces corks with diam-
eters that are normally distributed with mean 3 cm and
standard deviation .1 cm. The second machine produces
corks with diameters that have a normal distribution with
mean 3.04 cm and standard deviation .02 cm. Acceptable
corks have diameters between 2.9 cm and 3.1 cm. Which
machine is more likely to produce an acceptable cork?

39. a. If a normal distribution has � � 30 and � � 5, what is
the 91st percentile of the distribution?

b. What is the 6th percentile of the distribution?
c. The width of a line etched on an integrated circuit chip is

normally distributed with mean 3.000 �m and standard
deviation .140. What width value separates the widest
10% of all such lines from the other 90%?

40. The article “Monte Carlo Simulation—Tool for Better
Understanding of LRFD” (J. Structural Engr., 1993:
1586–1599) suggests that yield strength (ksi) for A36 grade
steel is normally distributed with � � 43 and � � 4.5.
a. What is the probability that yield strength is at most 40?

Greater than 60?
b. What yield strength value separates the strongest 75%

from the others?

41. The automatic opening device of a military cargo parachute
has been designed to open when the parachute is 200 m
above the ground. Suppose opening altitude actually has a
normal distribution with mean value 200 m and standard
deviation 30 m. Equipment damage will occur if the para-
chute opens at an altitude of less than 100 m. What is the
probability that there is equipment damage to the payload of
at least one of five independently dropped parachutes?

42. The temperature reading from a thermocouple placed in a
constant-temperature medium is normally distributed with
mean �, the actual temperature of the medium, and standard
deviation �. What would the value of � have to be to ensure
that 95% of all readings are within .1° of �?

43. The distribution of resistance for resistors of a certain type
is known to be normal, with 10% of all resistors having a
resistance exceeding 10.256 ohms and 5% having a resis-
tance smaller than 9.671 ohms. What are the mean value and
standard deviation of the resistance distribution?

44. If bolt thread length is normally distributed, what is the
probability that the thread length of a randomly selected
bolt is
a. Within 1.5 SDs of its mean value?
b. Farther than 2.5 SDs from its mean value?
c. Between 1 and 2 SDs from its mean value?

45. A machine that produces ball bearings has initially been
set so that the true average diameter of the bearings it pro-
duces is .500 in. A bearing is acceptable if its diameter is
within .004 in. of this target value. Suppose, however, that
the setting has changed during the course of production,
so that the bearings have normally distributed diameters
with mean value .499 in. and standard deviation .002 in.
What percentage of the bearings produced will not be
acceptable?

46. The Rockwell hardness of a metal is determined by impress-
ing a hardened point into the surface of the metal and then
measuring the depth of penetration of the point. Suppose the
Rockwell hardness of a particular alloy is normally distrib-
uted with mean 70 and standard deviation 3. (Rockwell
hardness is measured on a continuous scale.)
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a. If a specimen is acceptable only if its hardness is
between 67 and 75, what is the probability that a ran-
domly chosen specimen has an acceptable hardness?

b. If the acceptable range of hardness is (70 � c, 70 � c),
for what value of c would 95% of all specimens have
acceptable hardness?

c. If the acceptable range is as in part (a) and the hardness
of each of ten randomly selected specimens is indepen-
dently determined, what is the expected number of accept-
able specimens among the ten?

d. What is the probability that at most eight of ten inde-
pendently selected specimens have a hardness of less
than 73.84? [Hint: Y � the number among the ten speci-
mens with hardness less than 73.84 is a binomial vari-
able; what is p?]

47. The weight distribution of parcels sent in a certain manner is
normal with mean value 12 lb and standard deviation 3.5 lb.
The parcel service wishes to establish a weight value c
beyond which there will be a surcharge. What value of c is
such that 99% of all parcels are at least 1 lb under the sur-
charge weight?

48. Suppose Appendix Table A.3 contained �(z) only for z � 0.
Explain how you could still compute
a. P(�1.72 � Z � �.55)
b. P(�1.72 � Z � .55)

Is it necessary to table �(z) for z negative? What property of
the standard normal curve justifies your answer?

49. Consider babies born in the “normal” range of 37–43 weeks
gestational age. Extensive data supports the assumption that
for such babies born in the United States, birth weight is nor-
mally distributed with mean 3432 g and standard deviation
482 g. [The article “Are Babies Normal?” (The American
Statistician (1999): 298–302) analyzed data from a particu-
lar year; for a sensible choice of class intervals, a histogram
did not look at all normal but after further investigations it
was determined that this was due to some hospitals measur-
ing weight in grams and others measuring to the nearest
ounce and then converting to grams. A modified choice of
class intervals that allowed for this gave a histogram that was
well described by a normal distribution.]
a. What is the probability that the birth weight of a ran-

domly selected baby of this type exceeds 4000 grams? Is
between 3000 and 4000 grams?

b. What is the probability that the birth weight of a ran-
domly selected baby of this type is either less than 2000
grams or greater than 5000 grams?

c. What is the probability that the birth weight of a randomly
selected baby of this type exceeds 7 lb?

d. How would you characterize the most extreme .1% of all
birth weights?

e. If X is a random variable with a normal distribution and
a is a numerical constant (a � 0), then Y � aX also has a
normal distribution. Use this to determine the distribution
of birth weight expressed in pounds (shape, mean, and
standard deviation), and then recalculate the probability

from part (c). How does this compare to your previous
answer?

50. In response to concerns about nutritional contents of fast
foods, McDonald’s has announced that it will use a new
cooking oil for its french fries that will decrease substan-
tially trans fatty acid levels and increase the amount of more
beneficial polyunsaturated fat. The company claims that 97
out of 100 people cannot detect a difference in taste between
the new and old oils. Assuming that this figure is correct (as
a long-run proportion), what is the approximate probability
that in a random sample of 1000 individuals who have pur-
chased fries at McDonald’s,
a. At least 40 can taste the difference between the two oils?
b. At most 5% can taste the difference between the two oils?

51. Chebyshev’s inequality, (see Exercise 44 Chapter 3), is valid
for continuous as well as discrete distributions. It states that
for any number k satisfying k � 1, P(⏐X � �⏐ � k�) � 1/k2

(see Exercise 44 in Chapter 3 for an interpretation). Obtain
this probability in the case of a normal distribution for k �
1, 2, and 3, and compare to the upper bound.

52. Let X denote the number of flaws along a 100-m reel of mag-
netic tape (an integer-valued variable). Suppose X has approx-
imately a normal distribution with � � 25 and � � 5. Use the
continuity correction to calculate the probability that the
number of flaws is
a. Between 20 and 30, inclusive.
b. At most 30. Less than 30.

53. Let X have a binomial distribution with parameters n � 25
and p. Calculate each of the following probabilities using
the normal approximation (with the continuity correction)
for the cases p � .5, .6, and .8 and compare to the exact
probabilities calculated from Appendix Table A.1.
a. P(15 � X � 20)
b. P(X � 15)
c. P(20 � X)

54. Suppose that 10% of all steel shafts produced by a certain
process are nonconforming but can be reworked (rather than
having to be scrapped). Consider a random sample of 200
shafts, and let X denote the number among these that are
nonconforming and can be reworked. What is the (approxi-
mate) probability that X is
a. At most 30?
b. Less than 30?
c. Between 15 and 25 (inclusive)?

55. Suppose only 75% of all drivers in a certain state regularly
wear a seat belt. A random sample of 500 drivers is selected.
What is the probability that
a. Between 360 and 400 (inclusive) of the drivers in the

sample regularly wear a seat belt?
b. Fewer than 400 of those in the sample regularly wear a

seat belt?

56. Show that the relationship between a general normal per-
centile and the corresponding z percentile is as stated in this
section.



The density curve corresponding to any normal distribution is bell-shaped and there-
fore symmetric. There are many practical situations in which the variable of interest
to an investigator might have a skewed distribution. One family of distributions that
has this property is the gamma family. We first consider a special case, the expo-
nential distribution, and then generalize later in the section.

The Exponential Distribution
The family of exponential distributions provides probability models that are very
widely used in engineering and science disciplines.
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57. a. Show that if X has a normal distribution with parame-
ters � and �, then Y � aX � b (a linear function of X)
also has a normal distribution. What are the parameters
of the distribution of Y [i.e., E(Y ) and V(Y )]? [Hint:
Write the cdf of Y, P(Y � y), as an integral involving
the pdf of X, and then differentiate with respect to y to
get the pdf of Y.]

b. If when measured in °C, temperature is normally distrib-
uted with mean 115 and standard deviation 2, what can be
said about the distribution of temperature measured in °F?

58. There is no nice formula for the standard normal cdf �(z),
but several good approximations have been published in art-
icles. The following is from “Approximations for Hand

Calculators Using Small Integer Coefficients” (Mathematics
of Computation, 1977: 214–222). For 0 � z � 5.5,

P(Z � z) � 1 � �(z)

� .5 exp ��� ��
The relative error of this approximation is less than
.042%. Use this to calculate approximations to the follow-
ing probabilities, and compare whenever possible to the
probabilities obtained from Appendix Table A.3.
a. P(Z � 1) b. P(Z � �3)
c. P(�4 � Z � 4) d. P(Z � 5)

(83z � 351)z � 562
���

703/z � 165

4.4 The Exponential and Gamma Distributions

DEFINITION X is said to have an exponential distribution with parameter � (� � 0) if the
pdf of X is

f(x; �) �
�e�lx x � 0

0 otherwise (4.5)

Some sources write the exponential pdf in the form (1/b)e�x/b, so that b � 1/l.
The expected value of an exponentially distributed random variable X is


�

0

Obtaining this expected value necessitates doing an integration by parts. The vari-
ance of X can be computed using the fact that V(X) � E(X2) � [E(X)]2. The deter-
mination of E(X2) requires integrating by parts twice in succession. The results of
these integrations are as follows:

Both the mean and standard deviation of the exponential distribution equal 1/l.
Graphs of several exponential pdf’s are in Figure 4.26.

m 5
1
l

    s2 5
1
l2

x le2lx dxEsXd 5

Ï
Ì
Ó



The exponential pdf is easily integrated to obtain the cdf.
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0 x � 0

1 � e��x x � 0

Suppose the response time X at a certain on-line computer terminal (the elapsed time
between the end of a user’s inquiry and the beginning of the system’s response to
that inquiry) has an exponential distribution with expected response time equal to 5
sec. Then E(X) � 1/� � 5, so � � .2. The probability that the response time is at
most 10 sec is

P(X � 10) � F(10; .2) � 1 � e�(.2)(10) � 1 � e�2 � 1 � .135 � .865

The probability that response time is between 5 and 10 sec is

P(5 � X � 10) � F(10; .2) � F(5; .2)

� (1 � e�2) � (1 � e�1) � .233 ■

The exponential distribution is frequently used as a model for the distribution of
times between the occurrence of successive events, such as customers arriving at a
service facility or calls coming in to a switchboard. The reason for this is that the expo-
nential distribution is closely related to the Poisson process discussed in Chapter 3.

Example 4.21

Suppose that the number of events occurring in any time interval of length t
has a Poisson distribution with parameter �t (where �, the rate of the event
process, is the expected number of events occurring in 1 unit of time) and that
numbers of occurrences in nonoverlapping intervals are independent of one
another. Then the distribution of elapsed time between the occurrence of two
successive events is exponential with parameter � � �.

PROPOSITION

Figure 4.26 Exponential density curves

Although a complete proof is beyond the scope of the text, the result is easily veri-
fied for the time X1 until the first event occurs:

P(X1 � t) � 1 � P(X1 � t) � 1 � P[no events in (0, t)]

� 1 � �
e��t

0
�

!
(�t)0

� � 1 � e��t

which is exactly the cdf of the exponential distribution.

Ï
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Suppose that calls are received at a 24-hour “suicide hotline” according to a Poisson
process with rate � � .5 call per day. Then the number of days X between succes-
sive calls has an exponential distribution with parameter value .5, so the probability
that more than 2 days elapse between calls is

P(X � 2) � 1 � P(X � 2) � 1 � F(2; .5) � e�(.5)(2) � .368

The expected time between successive calls is 1/.5 � 2 days. ■

Another important application of the exponential distribution is to model the
distribution of component lifetime. A partial reason for the popularity of such appli-
cations is the “memoryless” property of the exponential distribution. Suppose com-
ponent lifetime is exponentially distributed with parameter �. After putting the 
component into service, we leave for a period of t0 hours and then return to find 
the component still working; what now is the probability that it lasts at least an
additional t hours? In symbols, we wish P(X � t � t0⏐X � t0). By the definition of
conditional probability,

P(X � t � t0⏐X � t0) �

But the event X � t0 in the numerator is redundant, since both events can occur if
and only if X � t � t0. Therefore,

P(X � t � t0⏐X � t0) � �
P(

P
X
(X
�

�

t �

t0)
t0)� � � e��t

This conditional probability is identical to the original probability P(X � t) that the
component lasted t hours. Thus the distribution of additional lifetime is exactly the
same as the original distribution of lifetime, so at each point in time the component
shows no effect of wear. In other words, the distribution of remaining lifetime is inde-
pendent of current age.

Although the memoryless property can be justified at least approximately in
many applied problems, in other situations components deteriorate with age or occa-
sionally improve with age (at least up to a certain point). More general lifetime mod-
els are then furnished by the gamma, Weibull, and lognormal distributions (the lat-
ter two are discussed in the next section).

The Gamma Function
To define the family of gamma distributions, we first need to introduce a function
that plays an important role in many branches of mathematics.

1 � F(t � t0; �)
��

1 � F(t0; �)

P[(X � t � t0) � (X � t0)]���
P(X � t0)
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Example 4.22

DEFINITION For a � 0, the gamma function �(�) is defined by

�(�) � 
�

0
x��1 e�x dx (4.6)

The most important properties of the gamma function are the following:

1. For any � � 1, �(�) � (� � 1) � �(� � 1) [via integration by parts]

2. For any positive integer, n, �(n) � (n � 1)!

3. ���
1
2

�� � ���



By Expression (4.6), if we let

f(x; �) �
�
x�

�

�

(

1

�

e

)

�x

� x � 0

0 otherwise
(4.7)

then f(x; �) � 0 and 
�
0 f(x; �) dx � �(�)/�(�) � 1, so f(x; �) satisfies the two basic

properties of a pdf.

The Gamma Distribution
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The exponential distribution results from taking � � 1 and b � 1/�.
Figure 4.27(a) illustrates the graphs of the gamma pdf f(x; �, �) (4.8) for sev-

eral (�, �) pairs, whereas Figure 4.27(b) presents graphs of the standard gamma
pdf. For the standard pdf, when � � 1, f(x; �) is strictly decreasing as x increases
from 0; when � � 1, f(x; �) rises from 0 at x � 0 to a maximum and then decreases.
The parameter � in (4.8) is called the scale parameter because values other than 1
either stretch or compress the pdf in the x direction.

DEFINITION A continuous random variable X is said to have a gamma distribution if the
pdf of X is

f(x; �, �) �
�
���

1
(�)
� x��1e�x/� x � 0

(4.8)
0 otherwise

where the parameters � and � satisfy � � 0, � � 0. The standard gamma
distribution has � � 1, so the pdf of a standard gamma rv is given by (4.7).
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Figure 4.27 (a) Gamma density curves; (b) standard gamma density curves

The mean and variance of a random variable X having the gamma distribution 
f(x; �, �) are

E(X) � � � �� V(X) � � 2 � ��2

When X is a standard gamma rv, the cdf of X,

F(x; �) � 
x

0
�
y�

�

�

(

1

�

e

)

�y

� dy x � 0 (4.9)
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is called the incomplete gamma function [sometimes the incomplete gamma func-
tion refers to Expression (4.9) without the denominator �(�) in the integrand]. There
are extensive tables of F(x; �) available; in Appendix Table A.4, we present a small
tabulation for � � 1, 2, . . . , 10 and x � 1, 2, . . . , 15.

Suppose the reaction time X of a randomly selected individual to a certain stimulus
has a standard gamma distribution with � � 2. Since

P(a � X � b) � F(b) � F(a)

when X is continuous,

P(3 � X � 5) � F(5; 2) � F(3; 2) � .960 � .801 � .159

The probability that the reaction time is more than 4 sec is

P(X � 4) � 1 � P(X � 4) � 1 � F(4; 2) � 1 � .908 � .092 ■

The incomplete gamma function can also be used to compute probabilities
involving nonstandard gamma distributions. These probabilities can also be obtained
almost instantaneously from various software packages.
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Example 4.23

Example 4.24

Let X have a gamma distribution with parameters � and �. Then for any x � 0,
the cdf of X is given by

P(X � x) � F(x; �, �) � F��
�

x
�; ��

where F(�; �) is the incomplete gamma function.

PROPOSITION

Suppose the survival time X in weeks of a randomly selected male mouse exposed
to 240 rads of gamma radiation has a gamma distribution with � � 8 and � � 15.
(Data in Survival Distributions: Reliability Applications in the Biomedical Services,
by A. J. Gross and V. Clark, suggests � � 8.5 and � � 13.3.) The expected survival
time is E(X) � (8)(15) � 120 weeks, whereas V(X) � (8)(15)2 � 1800 and
�X � �1�8�0�0� � 42.43 weeks. The probability that a mouse survives between 60 and
120 weeks is

P(60 � X � 120) � P(X � 120) � P(X � 60)

� F(120/15; 8) � F(60/15; 8)

� F(8; 8) � F(4; 8) � .547 � .051 � .496

The probability that a mouse survives at least 30 weeks is

P(X � 30) � 1 � P(X � 30) � 1 � P(X � 30)

� 1 � F(30/15; 8) � .999 ■

The Chi-Squared Distribution
The chi-squared distribution is important because it is the basis for a number of pro-
cedures in statistical inference. The central role played by the chi-squared distribution
in inference springs from its relationship to normal distributions (see Exercise 71).
We’ll discuss this distribution in more detail in later chapters.
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DEFINITION Let � be a positive integer. Then a random variable X is said to have a chi-
squared distribution with parameter � if the pdf of X is the gamma density
with � � �/2 and � � 2. The pdf of a chi-squared rv is thus

f(x; �) �
�
2�/2�

1
(�/2)
� x (� /2)�1 e�x/2 x � 0 (4.10)

0 x � 0

The parameter � is called the number of degrees of freedom (df) of X. The
symbol �2 is often used in place of “chi-squared.”

EXERCISES Section 4.4 (59–71)

59. Let X � the time between two successive arrivals at the
drive-up window of a local bank. If X has an exponential
distribution with � � 1 (which is identical to a standard
gamma distribution with � � 1), compute the following:
a. The expected time between two successive arrivals
b. The standard deviation of the time between successive

arrivals
c. P(X � 4)
d. P(2 � X � 5)

60. Let X denote the distance (m) that an animal moves from 
its birth site to the first territorial vacancy it encounters.
Suppose that for banner-tailed kangaroo rats, X has an expo-
nential distribution with parameter � � .01386 (as sug-
gested in the article “Competition and Dispersal from
Multiple Nests,” Ecology, 1997: 873–883).
a. What is the probability that the distance is at most 100 m?

At most 200 m? Between 100 and 200 m?
b. What is the probability that distance exceeds the mean

distance by more than 2 standard deviations?
c. What is the value of the median distance?

61. Extensive experience with fans of a certain type used in
diesel engines has suggested that the exponential distribu-
tion provides a good model for time until failure. Suppose
the mean time until failure is 25,000 hours. What is the
probability that
a. A randomly selected fan will last at least 20,000 hours?

At most 30,000 hours? Between 20,000 and 30,000
hours?

b. The lifetime of a fan exceeds the mean value by more than
2 standard deviations? More than 3 standard deviations?

62. The paper “Microwave Obsevations of Daily Antarctic Sea-
Ice Edge Expansion and Contribution Rates” (IEEE Geosci.
and Remote Sensing Letters, 2006: 54–58) states that “The
distribution of the daily sea-ice advance/retreat from each
sensor is similar and is approximately double exponential.”
The proposed double exponential distribution has density
function f(x) � .5�e��|x| for � � � x � �. The standard
deviation is given as 40.9 km.

a. What is the value of the parameter �?
b. What is the probability that the extent of daily sea-

ice change is within 1 standard deviation of the mean
value?

63. A consumer is trying to decide between two long-distance
calling plans. The first one charges a flat rate of 10¢ per
minute, whereas the second charges a flat rate of 99¢ for
calls up to 20 minutes in duration and then 10¢ for each
additional minute exceeding 20 (assume that calls lasting a
noninteger number of minutes are charged proportionately
to a whole-minute’s charge). Suppose the consumer’s distri-
bution of call duration is exponential with parameter l.
a. Explain intuitively how the choice of calling plan should

depend on what the expected call duration is.
b. Which plan is better if expected call duration is 10 min-

utes? 15 minutes? [Hint: Let h1(x) denote the cost for the
first plan when call duration is x minutes and let h2(x) be
the cost function for the second plan. Give expressions
for these two cost functions, and then determine the
expected cost for each plan.]

64. Evaluate the following:
a. �(6) b. �(5/2)
c. F(4; 5) (the incomplete gamma function)
d. F(5; 4) e. F(0; 4)

65. Let X have a standard gamma distribution with � � 7.
Evaluate the following:
a. P(X � 5) b. P(X � 5) c. P(X � 8)
d. P(3 � X � 8) e. P(3 � X � 8)
f. P(X � 4 or X � 6)

66. Suppose the time spent by a randomly selected student who
uses a terminal connected to a local time-sharing computer
facility has a gamma distribution with mean 20 min and
variance 80 min2.
a. What are the values of � and �?
b. What is the probability that a student uses the terminal

for at most 24 min?
c. What is the probability that a student spends between 20

and 40 min using the terminal?
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67. Suppose that when a transistor of a certain type is subjected
to an accelerated life test, the lifetime X (in weeks) has a
gamma distribution with mean 24 weeks and standard devi-
ation 12 weeks.
a. What is the probability that a transistor will last between

12 and 24 weeks?
b. What is the probability that a transistor will last at most

24 weeks? Is the median of the lifetime distribution less
than 24? Why or why not?

c. What is the 99th percentile of the lifetime distribution?
d. Suppose the test will actually be terminated after t

weeks. What value of t is such that only .5% of all tran-
sistors would still be operating at termination?

68. The special case of the gamma distribution in which � is a
positive integer n is called an Erlang distribution. If we
replace � by 1/� in Expression (4.8), the Erlang pdf is

f(x; �, n) �
�
�(

(
�

n
x
�

)n�

1

1e
)

�

!

�x

� x � 0

0 x � 0

It can be shown that if the times between successive events
are independent, each with an exponential distribution with
parameter �, then the total time X that elapses before all of
the next n events occur has pdf f(x; �, n).
a. What is the expected value of X? If the time (in minutes)

between arrivals of successive customers is exponen-
tially distributed with � � .5, how much time can be
expected to elapse before the tenth customer arrives?

b. If customer interarrival time is exponentially distributed
with � � .5, what is the probability that the tenth cus-
tomer (after the one who has just arrived) will arrive
within the next 30 min?

c. The event {X � t} occurs iff at least n events occur in the
next t units of time. Use the fact that the number of events
occurring in an interval of length t has a Poisson distri-
bution with parameter �t to write an expression (involving

Poisson probabilities) for the Erlang cdf F(t; �, n) �
P(X � t).

69. A system consists of five identical components connected in
series as shown:

As soon as one component fails, the entire system will fail.
Suppose each component has a lifetime that is exponentially
distributed with � � .01 and that components fail indepen-
dently of one another. Define events Ai � {ith component
lasts at least t hours}, i � 1, . . . , 5, so that the Ais are inde-
pendent events. Let X � the time at which the system
fails—that is, the shortest (minimum) lifetime among the
five components.
a. The event {X � t} is equivalent to what event involving

A1, . . . , A5?
b. Using the independence of the Ais, compute P(X � t).

Then obtain F(t) � P(X � t) and the pdf of X. What type
of distribution does X have?

c. Suppose there are n components, each having exponen-
tial lifetime with parameter �. What type of distribution
does X have?

70. If X has an exponential distribution with parameter �, derive
a general expression for the (100p)th percentile of the dis-
tribution. Then specialize to obtain the median.

71. a. The event {X 2 � y} is equivalent to what event involving
X itself?

b. If X has a standard normal distribution, use part (a) to
write the integral that equals P(X 2 � y). Then differenti-
ate this with respect to y to obtain the pdf of X 2 [the
square of a N(0, 1) variable]. Finally, show that X 2 has a
chi-squared distribution with � � 1 df [see (4.10)].
[Hint: Use the following identity.]

�
d
d
y
� 
b(y)

a(y)
f(x) dx � f [b(y)] � b(y) � f [a(y)] � a(y)

1 2 3 4 5

4.5 Other Continuous Distributions

The normal, gamma (including exponential), and uniform families of distributions
provide a wide variety of probability models for continuous variables, but there are
many practical situations in which no member of these families fits a set of observed
data very well. Statisticians and other investigators have developed other families of
distributions that are often appropriate in practice.

The Weibull Distribution
The family of Weibull distributions was introduced by the Swedish physicist
Waloddi Weibull in 1939; his 1951 article “A Statistical Distribution Function of
Wide Applicability” (J. Applied Mechanics, vol. 18: 293–297) discusses a number of
applications.
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In some situations, there are theoretical justifications for the appropriateness
of the Weibull distribution, but in many applications f(x; �, �) simply provides a
good fit to observed data for particular values of � and �. When � � 1, the pdf
reduces to the exponential distribution (with � � 1/�), so the exponential distribu-
tion is a special case of both the gamma and Weibull distributions. However, there
are gamma distributions that are not Weibull distributions and vice versa, so one
family is not a subset of the other. Both � and � can be varied to obtain a number of
different distributional shapes, as illustrated in Figure 4.28. � is a scale parameter,
so different values stretch or compress the graph in the x direction.

Integrating to obtain E(X) and E(X2) yields

� � ���1 � �
�

1
�� � 2 � �2���1 � �

�

2
�� � ���1 � �

�

1
���

2

�
The computation of � and � 2 thus necessitates using the gamma function.

The integration 
x
0 f(y; �, �) dy is easily carried out to obtain the cdf of X.
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DEFINITION A random variable X is said to have a Weibull distribution with parameters
� and � (� � 0, � � 0) if the pdf of X is

f(x; �, �) �
�
�

�
�
� x��1e�(x/�)

�

x � 0
(4.11)

0 x � 0

The cdf of a Weibull rv having parameters � and � is

0 x � 0
F(x; �, �) �

1 � e�(x/�)
�

x � 0
(4.12)

In recent years the Weibull distribution has been used to model engine emissions of
various pollutants. Let X denote the amount of NOx emission (g/gal) from a randomly
selected four-stroke engine of a certain type, and suppose that X has a Weibull distri-
bution with � � 2 and � � 10 (suggested by information in the article “Quantification
of Variability and Uncertainty in Lawn and Garden Equipment NOx and Total
Hydrocarbon Emission Factors,” J. of the Air and Waste Management Assoc., 2002:
435–448). The corresponding density curve looks exactly like the one in Figure 4.28
for � � 2, � � 1 except that now the values 50 and 100 replace 5 and 10 on the hori-
zontal axis (because � is a “scale parameter”). Then

P(X � 10) � F(10; 2, 10) � 1 � e�(10/10)2

� 1 � e�1 � .632

Similarly, P(X � 25) � .998, so the distribution is almost entirely concentrated on
values between 0 and 25. The value c, which separates the 5% of all engines having
the largest amounts of NOx emissions from the remaining 95%, satisfies

.95 � 1 � e�(c/10)2

Isolating the exponential term on one side, taking logarithms, and solving the resulting
equation gives c  17.3 as the 95th percentile of the emission distribution. ■

Example 4.25
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In practical situations, a Weibull model may be reasonable except that the
smallest possible X value may be some value  not assumed to be zero (this would
also apply to a gamma model). The quantity  can then be regarded as a third
parameter of the distribution, which is what Weibull did in his original work. For,
say,  � 3, all curves in Figure 4.28 would be shifted 3 units to the right. This is
equivalent to saying that X � has the pdf (4.11), so that the cdf of X is obtained
by replacing x in (4.12) by x � .
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Figure 4.28 Weibull density curves

Let X � the corrosion weight loss for a small square magnesium alloy plate immersed
for 7 days in an inhibited aqueous 20% solution of MgBr2. Suppose the minimum pos-
sible weight loss is  � 3 and that the excess X � 3 over this minimum has a Weibull
distribution with � � 2 and � � 4. (This example was considered in “Practical
Applications of the Weibull Distribution,” Industrial Quality Control, Aug. 1964:
71–78; values for � and � were taken to be 1.8 and 3.67, respectively, though a slightly
different choice of parameters was used in the article.) The cdf of X is then

0 x � 3
F(x; �, �, ) � F(x; 2, 4, 3) �

1 � e�[(x�3)/4]2

x � 3

Example 4.26
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Therefore,

P(X � 3.5) � 1 � F(3.5; 2, 4, 3) � e�.0156 � .985

and

P(7 � X � 9) � 1 � e�2.25 � (1 � e�1) � .895 � .632 � .263 ■

The Lognormal Distribution
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Be careful here; the parameters � and � are not the mean and standard deviation of
X but of ln(X). The mean and variance of X can be shown to be

E(X) � e���
2/2 V(X) � e2���

2

� (e�
2

� 1)

In Chapter 5, we will present a theoretical justification for this distribution in
connection with the Central Limit Theorem, but as with other distributions, the log-
normal can be used as a model even in the absence of such justification. Figure 4.29
illustrates graphs of the lognormal pdf; although a normal curve is symmetric, a log-
normal curve has a positive skew.

Because ln(X) has a normal distribution, the cdf of X can be expressed in terms
of the cdf �(z) of a standard normal rv Z.

DEFINITION A nonnegative rv X is said to have a lognormal distribution if the rv Y � ln(X)
has a normal distribution. The resulting pdf of a lognormal rv when ln(X) is
normally distributed with parameters � and � is

f(x; �, �) �
�
�2���

1

�x
� e�[ln(x)��]2/(2�

2) x � 0

0 x � 0
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Figure 4.29 Lognormal density curves

F(x; �, �) � P(X � x) � P[ln(X) � ln(x)]

� P�Z � �
ln(x)

�

� �
�� � ���ln(x)

�

� �
�� x � 0 (4.13)
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The lognormal distribution is frequently used as a model for various material prop-
erties. The article “Reliability of Wood Joist Floor Systems with Creep” (J. of
Structural Engr., 1995: 946–954) suggests that the lognormal distribution with � �
.375 and � � .25 is a plausible model for X � the modulus of elasticity (MOE, in
106 psi) of wood joist floor systems constructed from #2 grade hem-fir. The mean
value and variance of MOE are

E(X) � e.375 � (.25)2/2 � e.40625 � 1.50

V(X) � e.8125(e.0625 � 1) � .1453

The probability that MOE is between 1 and 2 is

P(1 � X � 2) � P(ln(1) � ln(X) � ln(2))

� P(0 � ln(X) � .693)

� P��0 �

.2
.
5
375
� � Z � �

.693
.
�

25
.375

��
� �(1.27) �� (�1.50) � .8312

What value c is such that only 1% of all systems have an MOE exceeding c? We wish
the c for which

.99 � P(X � c) � P�Z � �
ln(c)

.2
�

5
.375

��
from which (ln(c) � .375)/.25 � 2.33 and c � 2.605. Thus 2.605 is the 99th per-
centile of the MOE distribution. ■

The Beta Distribution
All families of continuous distributions discussed so far except for the uniform 
distribution have positive density over an infinite interval (though typically the 
density function decreases rapidly to zero beyond a few standard deviations from 
the mean). The beta distribution provides positive density only for X in an interval
of finite length.
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Example 4.27

DEFINITION A random variable X is said to have a beta distribution with parameters �, �
(both positive), A, and B if the pdf of X is

f(x; �, �, A, B) �
�
B �

1
A

� � �
�

�

(�
(�

) �

�

�

�

(�
)
)

� ��B
x �

�

A
A

��
��1

��B
B

�

�

A
x

��
��1

A � x � B

0 otherwise

The case A � 0, B � 1 gives the standard beta distribution.

Figure 4.30 illustrates several standard beta pdf’s. Graphs of the general pdf are 
similar, except they are shifted and then stretched or compressed to fit over [A, B].
Unless � and � are integers, integration of the pdf to calculate probabilities is 
difficult. Either a table of the incomplete beta function or appropriate software
should be used. The mean and variance of X are

� � A � (B � A) � �
� �

�

�
� � 2 �

(B � A)2��
���
(� � �)2(� � � � 1)
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Project managers often use a method labeled PERT—for program evaluation and
review technique—to coordinate the various activities making up a large project.
(One successful application was in the construction of the Apollo spacecraft.) A
standard assumption in PERT analysis is that the time necessary to complete any
particular activity once it has been started has a beta distribution with A � the
optimistic time (if everything goes well) and B � the pessimistic time (if every-
thing goes badly). Suppose that in constructing a single-family house, the time X
(in days) necessary for laying the foundation has a beta distribution with A � 2,
B � 5, � � 2, and � � 3. Then �/(� � �) � .4, so E(X) � 2 � (3)(.4) � 3.2. For
these values of � and �, the pdf of X is a simple polynomial function. The proba-
bility that it takes at most 3 days to lay the foundation is

P(X � 3) � 
3

2
�
1
3

� � �
1
4
!2
!
!

� ��x �

3
2

�� ��5 �

3
x

��
2

dx

� �
2
4
7
� 
3

2
(x � 2)(5 � x)2 dx � �

2
4
7
� � �

1
4
1
� � �

1
2

1
7
� � .407 ■

The standard beta distribution is commonly used to model variation in the pro-
portion or percentage of a quantity occurring in different samples, such as the pro-
portion of a 24-hour day that an individual is asleep or the proportion of a certain
element in a chemical compound.

168 CHAPTER 4 Continuous Random Variables and Probability Distributions

.2 .4 .6 .8 1

1

2

3

4

5

0

� � .5

   � 2
   � .5
� 
� 

   � 5
   � 2
� 

� 

� 

� 

x

f(x;   ,   )��

Figure 4.30 Standard beta density curves

Example 4.28

EXERCISES Section 4.5 (72–86)

72. The lifetime X (in hundreds of hours) of a certain type of
vacuum tube has a Weibull distribution with parameters
a � 2 and b� 3. Compute the following:
a. E(X) and V(X)
b. P(X � 6)
c. P(1.5 � X � 6)

(This Weibull distribution is suggested as a model for time
in service in “On the Assessment of Equipment Reliability:
Trading Data Collection Costs for Precision,” J. Engr.
Manuf., 1991: 105–109.)

73. The authors of the article “A Probabilistic Insulation Life
Model for Combined Thermal-Electrical Stresses” (IEEE
Trans. on Elect. Insulation, 1985: 519–522) state that “the
Weibull distribution is widely used in statistical problems
relating to aging of solid insulating materials subjected to
aging and stress.” They propose the use of the distribution as
a model for time (in hours) to failure of solid insulating spec-
imens subjected to AC voltage. The values of the parameters
depend on the voltage and temperature; suppose � � 2.5 and
� � 200 (values suggested by data in the article).
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a. What is the probability that a specimen’s lifetime is at
most 250? Less than 250? More than 300?

b. What is the probability that a specimen’s lifetime is
between 100 and 250?

c. What value is such that exactly 50% of all specimens
have lifetimes exceeding that value?

74. Let X � the time (in 10�1 weeks) from shipment of a defec-
tive product until the customer returns the product. Suppose
that the minimum return time is  � 3.5 and that the excess
X � 3.5 over the minimum has a Weibull distribution with
parameters � � 2 and � � 1.5 (see the Industrial Quality
Control article referenced in Example 4.26).
a. What is the cdf of X?
b. What are the expected return time and variance of return

time? [Hint: First obtain E(X � 3.5) and V(X � 3.5).]
c. Compute P(X � 5).
d. Compute P(5 � X � 8).

75. Let X have a Weibull distribution with the pdf from
Expression (4.11). Verify that � � ��(1 � 1/�). [Hint: In
the integral for E(X), make the change of variable y �
(x/�)�, so that x � �y1/�.]

76. a. In Exercise 72, what is the median lifetime of such
tubes? [Hint: Use Expression (4.12).]

b. In Exercise 74, what is the median return time?
c. If X has a Weibull distribution with the cdf from Expression

(4.12), obtain a general expression for the (100p)th per-
centile of the distribution.

d. In Exercise 74, the company wants to refuse to accept
returns after t weeks. For what value of t will only 10%
of all returns be refused?

77. The authors of the paper from which the data in Exercise
1.27 was extracted suggested that a reasonable probability
model for drill lifetime was a lognormal distribution with
� � 4.5 and � � .8.
a. What are the mean value and standard deviation of

lifetime?
b. What is the probability that lifetime is at most 100?
c. What is the probability that lifetime is at least 200?

Greater than 200?

78. The article “On Assessing the Accuracy of Offshore 
Wind Turbine Reliability-Based Design Loads from the
Environmental Contour Method” (Intl. J. of Offshore and
Polar Engr., 2005: 132–140) proposes the Weibull distribu-
tion with a� 1.817 and b� .863 as a model for 1-hour sig-
nificant wave height (m) at a certain site.
a. What is the probability that wave height is at most .5 m?
b. What is the probability that wave height exceeds its

mean value by more than one standard deviation?
c. What is the median of the wave-height distribution?
d. For 0 � p � 1, give a general expression for the 100pth

percentile of the wave-height distribution.

79. Let X � the hourly median power (in decibels) of received
radio signals transmitted between two cities. The authors of
the article “Families of Distributions for Hourly Median

Power and Instantaneous Power of Received Radio Signals”
(J. Research National Bureau of Standards, vol. 67D, 1963:
753–762) argue that the lognormal distribution provides a
reasonable probability model for X. If the parameter values
are � � 3.5 and � � 1.2, calculate the following:
a. The mean value and standard deviation of received power.
b. The probability that received power is between 50 and

250 dB.
c. The probability that X is less than its mean value. Why is

this probability not .5?

80. a. Use Equation (4.13) to write a formula for the median �~

of the lognormal distribution. What is the median for the
power distribution of Exercise 79?

b. Recalling that z� is our notation for the 100(1 � �) per-
centile of the standard normal distribution, write an
expression for the 100(1 � �) percentile of the lognormal
distribution. In Exercise 79, what value will received
power exceed only 5% of the time?

81. A theoretical justification based on a certain material failure
mechanism underlies the assumption that ductile strength X
of a material has a lognormal distribution. Suppose the
parameters are � � 5 and � � .1.
a. Compute E(X) and V(X).
b. Compute P(X � 125).
c. Compute P(110 � X � 125).
d. What is the value of median ductile strength?
e. If ten different samples of an alloy steel of this type were

subjected to a strength test, how many would you expect
to have strength of at least 125?

f. If the smallest 5% of strength values were unacceptable,
what would the minimum acceptable strength be?

82. The article “The Statistics of Phytotoxic Air Pollutants”
(J. Royal Stat. Soc., 1989: 183–198) suggests the lognormal
distribution as a model for SO2 concentration above a certain
forest. Suppose the parameter values are � � 1.9 and � � .9.
a. What are the mean value and standard deviation of con-

centration?
b. What is the probability that concentration is at most 10?

Between 5 and 10?

83. What condition on � and � is necessary for the standard
beta pdf to be symmetric?

84. Suppose the proportion X of surface area in a randomly
selected quadrate that is covered by a certain plant has a
standard beta distribution with � � 5 and � � 2.
a. Compute E(X) and V(X).
b. Compute P(X � .2).
c. Compute P(.2 � X � .4).
d. What is the expected proportion of the sampling region

not covered by the plant?

85. Let X have a standard beta density with parameters � and �.
a. Verify the formula for E(X) given in the section.
b. Compute E[(1 � X)m]. If X represents the proportion of a

substance consisting of a particular ingredient, what is the
expected proportion that does not consist of this ingredient?



An investigator will often have obtained a numerical sample x1, x2, . . . , xn and wish to
know whether it is plausible that it came from a population distribution of some par-
ticular type (e.g., from a normal distribution). For one thing, many formal procedures
from statistical inference are based on the assumption that the population distribution
is of a specified type. The use of such a procedure is inappropriate if the actual under-
lying probability distribution differs greatly from the assumed type. Additionally, un-
derstanding the underlying distribution can sometimes give insight into the physical
mechanisms involved in generating the data. An effective way to check a distributional
assumption is to construct what is called a probability plot. The essence of such a plot
is that if the distribution on which the plot is based is correct, the points in the plot will
fall close to a straight line. If the actual distribution is quite different from the one used
to construct the plot, the points should depart substantially from a linear pattern.

Sample Percentiles
The details involved in constructing probability plots differ a bit from source to source.
The basis for our construction is a comparison between percentiles of the sample data
and the corresponding percentiles of the distribution under consideration. Recall that
the (100p)th percentile of a continuous distribution with cdf F(�) is the number 
(p)
that satisfies F(
(p)) � p. That is, 
(p) is the number on the measurement scale
such that the area under the density curve to the left of 
(p) is p. Thus the 50th per-
centile 
(.5) satisfies F(
(.5)) � .5, and the 90th percentile satisfies F(
(.9)) � .9.
Consider as an example the standard normal distribution, for which we have denoted
the cdf by �(�). From Appendix Table A.3, we find the 20th percentile by locating
the row and column in which .2000 (or a number as close to it as possible) appears
inside the table. Since .2005 appears at the intersection of the �.8 row and the .04 col-
umn, the 20th percentile is approximately �.84. Similarly, the 25th percentile of the
standard normal distribution is (using linear interpolation) approximately �.675.

Roughly speaking, sample percentiles are defined in the same way that per-
centiles of a population distribution are defined. The 50th-sample percentile should
separate the smallest 50% of the sample from the largest 50%, the 90th percentile
should be such that 90% of the sample lies below that value and 10% lies above, and so
on. Unfortunately, we run into problems when we actually try to compute the sam-
ple percentiles for a particular sample of n observations. If, for example, n � 10,
we can split off 20% of these values or 30% of the data, but there is no value that
will split off exactly 23% of these ten observations. To proceed further, we need an
operational definition of sample percentiles (this is one place where different
people do slightly different things). Recall that when n is odd, the sample median
or 50th-sample percentile is the middle value in the ordered list, for example, the
sixth largest value when n � 11. This amounts to regarding the middle observation
as being half in the lower half of the data and half in the upper half. Similarly, sup-
pose n � 10. Then if we call the third smallest value the 25th percentile, we are
regarding that value as being half in the lower group (consisting of the two smallest
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86. Stress is applied to a 20-in. steel bar that is clamped in a fixed
position at each end. Let Y � the distance from the left end
at which the bar snaps. Suppose Y/20 has a standard beta dis-
tribution with E(Y) � 10 and V(Y) � �

10
7
0

�.

a. What are the parameters of the relevant standard beta
distribution?

b. Compute P(8 � Y � 12).
c. Compute the probability that the bar snaps more than 2

in. from where you expect it to.

4.6 Probability Plots



observations) and half in the upper group (the seven largest observations). This
leads to the following general definition of sample percentiles.
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DEFINITION Order the n sample observations from smallest to largest. Then the ith smallest
observation in the list is taken to be the [100(i � .5)/n]th sample percentile.

Once the percentage values 100(i � .5)/n (i � 1, 2, . . . , n) have been calculated,
sample percentiles corresponding to intermediate percentages can be obtained by lin-
ear interpolation. For example, if n � 10, the percentages corresponding to the ordered
sample observations are 100(1 � .5)/10 � 5%, 100(2 � .5)/10 � 15%, 25%, . . . , and
100(10 � .5)/10 � 95%. The 10th percentile is then halfway between the 5th per-
centile (smallest sample observation) and the 15th percentile (second smallest obser-
vation). For our purposes, such interpolation is not necessary because a probability plot
will be based only on the percentages 100(i � .5)/n corresponding to the n sample
observations.

A Probability Plot
Suppose now that for percentages 100(i � .5)/n (i � 1, . . . , n) the percentiles are
determined for a specified population distribution whose plausibility is being inves-
tigated. If the sample was actually selected from the specified distribution, the sam-
ple percentiles (ordered sample observations) should be reasonably close to the 
corresponding population distribution percentiles. That is, for i � 1, 2, . . . , n there
should be reasonable agreement between the ith smallest sample observation and the
[100(i � .5)/n]th percentile for the specified distribution. Consider the (population
percentile, sample percentile) pairs—that is, the pairs

� , �
for i � 1, . . . , n. Each such pair can be plotted as a point on a two-dimensional coor-
dinate system. If the sample percentiles are close to the corresponding population
distribution percentiles, the first number in each pair will be roughly equal to the sec-
ond number. The plotted points will then fall close to a 45° line. Substantial devia-
tions of the plotted points from a 45° line cast doubt on the assumption that the 
distribution under consideration is the correct one.

The value of a certain physical constant is known to an experimenter. The experi-
menter makes n � 10 independent measurements of this value using a particular
measurement device and records the resulting measurement errors (error � observed
value � true value). These observations appear in the accompanying table.

Percentage 5 15 25 35 45

z percentile �1.645 �1.037 �.675 �.385 �.126

Sample observation �1.91 �1.25 �.75 �.53 .20

Percentage 55 65 75 85 95

z percentile .126 .385 .675 1.037 1.645

Sample observation .35 .72 .87 1.40 1.56

ith smallest sample
observation

[100(i � .5)/n]th percentile
of the distribution

Example 4.29



Is it plausible that the random variable measurement error has a standard normal dis-
tribution? The needed standard normal (z) percentiles are also displayed in the table.
Thus the points in the probability plot are (�1.645, �1.91), (�1.037, �1.25), . . . , and
(1.645, 1.56). Figure 4.31 shows the resulting plot. Although the points deviate a bit
from the 45° line, the predominant impression is that this line fits the points very
well. The plot suggests that the standard normal distribution is a reasonable proba-
bility model for measurement error.
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Observed
value

z percentile

45° line1.6

1.2

.8

�1.6 �1.2 �.8 �.4 .4 .8 1.2 1.6

.4

�.4

�.8

�1.2

�1.6

�1.8

Figure 4.31 Plots of pairs (z percentile, observed value) for the data of Example 4.29:
first sample

Figure 4.32 shows a plot of pairs (z percentile, observation) for a second sample
of ten observations. The 45° line gives a good fit to the middle part of the sample but
not to the extremes. The plot has a well-defined S-shaped appearance. The two small-
est sample observations are considerably larger than the corresponding z percentiles

Observed
value

z percentile

45° line

1.2

.8

�1.6 �1.2 �.8 �.4 .4 .8 1.2 1.6

.4

�.4

�.8

�1.2

S-shaped curve

Figure 4.32 Plots of pairs (z percentile, observed value) for the data of Example 4.29:
second sample



(the points on the far left of the plot are well above the 45° line). Similarly, the two
largest sample observations are much smaller than the associated z percentiles. This
plot indicates that the standard normal distribution would not be a plausible choice for
the probability model that gave rise to these observed measurement errors. ■

An investigator is typically not interested in knowing just whether a specified
probability distribution, such as the standard normal distribution (normal with � �
0 and � � 1) or the exponential distribution with � � .1, is a plausible model for the
population distribution from which the sample was selected. Instead, the issue is
whether some member of a family of probability distributions specifies a plausible
model—the family of normal distributions, the family of exponential distributions,
the family of Weibull distributions, and so on. The values of the parameters of a dis-
tribution are usually not specified at the outset. If the family of Weibull distributions
is under consideration as a model for lifetime data, are there any values of the param-
eters � and � for which the corresponding Weibull distribution gives a good fit to the
data? Fortunately, it is almost always the case that just one probability plot will suf-
fice for assessing the plausibility of an entire family. If the plot deviates substantially
from a straight line, no member of the family is plausible. When the plot is quite
straight, further work is necessary to estimate values of the parameters that yield the
most reasonable distribution of the specified type.

Let’s focus on a plot for checking normality. Such a plot is useful in applied
work because many formal statistical procedures give accurate inferences only when
the population distribution is at least approximately normal. These procedures
should generally not be used if the normal probability plot shows a very pronounced
departure from linearity. The key to constructing an omnibus normal probability plot
is the relationship between standard normal (z) percentiles and those for any other
normal distribution:

� � � � � (corresponding z percentile)

Consider first the case, � � 0. If each observation is exactly equal to the correspond-
ing normal percentile for some value of �, the pairs (� � [z percentile], observation)
fall on a 45° line, which has slope 1. This implies that the (z percentile, observation)
pairs fall on a line passing through (0, 0) (i.e., one with y-intercept 0) but having
slope � rather than 1. The effect of a nonzero value of � is simply to change the 
y-intercept from 0 to �.

percentile for a normal
(�, �) distribution
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A plot of the n pairs

([100(i � .5)/n]th z percentile, ith smallest observation)

on a two-dimensional coordinate system is called a normal probability plot. If
the sample observations are in fact drawn from a normal distribution with mean
value � and standard deviation �, the points should fall close to a straight line
with slope � and intercept �. Thus a plot for which the points fall close to some
straight line suggests that the assumption of a normal population distribution is
plausible.

The accompanying sample consisting of n � 20 observations on dielectric break-
down voltage of a piece of epoxy resin appeared in the article “Maximum Likelihood
Estimation in the 3-Parameter Weibull Distribution (IEEE Trans. on Dielectrics and

Example 4.30



Elec. Insul., 1996: 43–55). The values of (i � .5)/n for which z percentiles are
needed are (1 � .5)/20 � .025, (2 � .5)/20 � .075, . . . , and .975.

Observation 24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94
z percentile �1.96 �1.44 �1.15 �.93 �.76 �.60 �.45 �.32 �.19 �.06

Observation 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88
z percentile .06 .19 .32 .45 .60 .76 .93 1.15 1.44 1.96

Figure 4.33 shows the resulting normal probability plot. The pattern in the plot is
quite straight, indicating it is plausible that the population distribution of dielectric
breakdown voltage is normal.
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Figure 4.33 Normal probability plot for the dielectric breakdown voltage sample ■

There is an alternative version of a normal probability plot in which the z per-
centile axis is replaced by a nonlinear probability axis. The scaling on this axis is
constructed so that plotted points should again fall close to a line when the sampled
distribution is normal. Figure 4.34 shows such a plot from MINITAB for the break-
down voltage data of Example 4.30.
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Figure 4.34 Normal probability plot of the breakdown voltage data from MINITAB



A nonnormal population distribution can often be placed in one of the follow-
ing three categories:

1. It is symmetric and has “lighter tails” than does a normal distribution; that is, the
density curve declines more rapidly out in the tails than does a normal curve.

2. It is symmetric and heavy-tailed compared to a normal distribution.

3. It is skewed.

A uniform distribution is light-tailed, since its density function drops to zero out-
side a finite interval. The density function f(x) � 1/[�(1 � x2)] for �� � x � �
is heavy-tailed, since 1/(1 � x2) declines much less rapidly than does e�x2/2.
Lognormal and Weibull distributions are among those that are skewed. When the
points in a normal probability plot do not adhere to a straight line, the pattern will
frequently suggest that the population distribution is in a particular one of these
three categories.

When the distribution from which the sample is selected is light-tailed, the
largest and smallest observations are usually not as extreme as would be expected
from a normal random sample. Visualize a straight line drawn through the middle
part of the plot; points on the far right tend to be below the line (observed value � z
percentile), whereas points on the left end of the plot tend to fall above the straight
line (observed value � z percentile). The result is an S-shaped pattern of the type
pictured in Figure 4.32.

A sample from a heavy-tailed distribution also tends to produce an S-shaped
plot. However, in contrast to the light-tailed case, the left end of the plot curves
downward (observed � z percentile), as shown in Figure 4.35(a). If the underlying
distribution is positively skewed (a short left tail and a long right tail), the smallest
sample observations will be larger than expected from a normal sample and so will
the largest observations. In this case, points on both ends of the plot will fall above
a straight line through the middle part, yielding a curved pattern, as illustrated in
Figure 4.35(b). A sample from a lognormal distribution will usually produce such a
pattern. A plot of (z percentile, ln(x)) pairs should then resemble a straight line.
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Figure 4.35 Probability plots that suggest a nonnormal distribution: (a) a plot consistent
with a heavy-tailed distribution; (b) a plot consistent with a positively skewed distribution



Even when the population distribution is normal, the sample percentiles will
not coincide exactly with the theoretical percentiles because of sampling variability.
How much can the points in the probability plot deviate from a straight-line pattern
before the assumption of population normality is no longer plausible? This is not an
easy question to answer. Generally speaking, a small sample from a normal distri-
bution is more likely to yield a plot with a nonlinear pattern than is a large sample.
The book Fitting Equations to Data (see the Chapter 13 bibliography) presents the
results of a simulation study in which numerous samples of different sizes were
selected from normal distributions. The authors concluded that there is typically
greater variation in the appearance of the probability plot for sample sizes smaller
than 30, and only for much larger sample sizes does a linear pattern generally pre-
dominate. When a plot is based on a small sample size, only a very substantial de-
parture from linearity should be taken as conclusive evidence of nonnormality. A
similar comment applies to probability plots for checking the plausibility of other
types of distributions.

Beyond Normality
Consider a family of probability distributions involving two parameters, �1 and �2,
and let F(x; �1, �2) denote the corresponding cdf’s. The family of normal distribu-
tions is one such family, with �1 � �, �2 � �, and F(x; �, �) � �[(x � �)/�].
Another example is the Weibull family, with �1 � �, �2 � �, and

F(x; �, �) � 1 � e�(x/�)
�

Still another family of this type is the gamma family, for which the cdf is an integral
involving the incomplete gamma function that cannot be expressed in any simpler
form.

The parameters �1 and �2 are said to be location and scale parameters, respec-
tively, if F(x; �1, �2) is a function of (x � �1)/�2. The parameters � and � of the nor-
mal family are location and scale parameters, respectively. Changing � shifts the
location of the bell-shaped density curve to the right or left, and changing � amounts
to stretching or compressing the measurement scale (the scale on the horizontal axis
when the density function is graphed). Another example is given by the cdf

F(x; �1, �2) � 1 � e�e(x��1)/�2 �� � x � �

A random variable with this cdf is said to have an extreme value distribution. It is
used in applications involving component lifetime and material strength.

Although the form of the extreme value cdf might at first glance suggest that �1

is the point of symmetry for the density function, and therefore the mean and median,
this is not the case. Instead, P(X � �1) � F(�1; �1, �2) � 1 � e�1 � .632, and the den-
sity function f(x; �1, �2) � F(x; �1, �2) is negatively skewed (a long lower tail).
Similarly, the scale parameter �2 is not the standard deviation (� � �1 � .5772�2 and
� � 1.283�2). However, changing the value of �1 does change the location of the den-
sity curve, whereas a change in �2 rescales the measurement axis.

The parameter � of the Weibull distribution is a scale parameter, but � is not
a location parameter. The parameter � is usually referred to as a shape parameter.
A similar comment applies to the parameters � and � of the gamma distribution. In
the usual form, the density function for any member of either the gamma or Weibull
distribution is positive for x � 0 and zero otherwise. A location parameter can be
introduced as a third parameter � (we did this for the Weibull distribution) to shift
the density function so that it is positive if x � � and zero otherwise.
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When the family under consideration has only location and scale parameters,
the issue of whether any member of the family is a plausible population distribution
can be addressed via a single, easily constructed probability plot. One first obtains
the percentiles of the standard distribution, the one with 	1 � 0 and 	2 � 1, for per-
centages 100(i � .5)/n (i � 1, . . . , n). The n (standardized percentile, observation)
pairs give the points in the plot. This is exactly what we did to obtain an omnibus
normal probability plot. Somewhat surprisingly, this methodology can be applied to
yield an omnibus Weibull probability plot. The key result is that if X has a Weibull
distribution with shape parameter � and scale parameter �, then the transformed
variable ln(X) has an extreme value distribution with location parameter 	1 � ln(�)
and scale parameter 1�� . Thus a plot of the (extreme value standardized percentile,
ln(x)) pairs showing a strong linear pattern provides support for choosing the Weibull
distribution as a population model.

The accompanying observations are on lifetime (in hours) of power apparatus insula-
tion when thermal and electrical stress acceleration were fixed at particular values
(“On the Estimation of Life of Power Apparatus Insulation Under Combined Electrical
and Thermal Stress,” IEEE Trans. on Electrical Insulation, 1985: 70–78). A Weibull
probability plot necessitates first computing the 5th, 15th, . . . , and 95th percentiles of
the standard extreme value distribution. The (100p)th percentile 
(p) satisfies

p � F(
(p)) � 1 � e�e
 (p)

from which 
(p) � ln[�ln(1 � p)].

Percentile �2.97 �1.82 �1.25 �.84 �.51

x 282 501 741 851 1072

ln(x) 5.64 6.22 6.61 6.75 6.98

Percentile �.23 .05 .33 .64 1.10

x 1122 1202 1585 1905 2138

ln(x) 7.02 7.09 7.37 7.55 7.67

The pairs (�2.97, 5.64), (�1.82, 6.22), . . . , (1.10, 7.67) are plotted as points in Figure
4.36. The straightness of the plot argues strongly for using the Weibull distribution as a
model for insulation life, a conclusion also reached by the author of the cited article.
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Figure 4.36 A Weibull probability plot of the insulation lifetime data ■
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The gamma distribution is an example of a family involving a shape parame-
ter for which there is no transformation h(�) such that h(X) has a distribution that
depends only on location and scale parameters. Construction of a probability plot
necessitates first estimating the shape parameter from sample data (some methods
for doing this are described in Chapter 6). Sometimes an investigator wishes to know
whether the transformed variable X	 has a normal distribution for some value of 	 (by
convention, 	 � 0 is identified with the logarithmic transformation, in which case X
has a lognormal distribution). The book Graphical Methods for Data Analysis, listed
in the Chapter 1 bibliography, discusses this type of problem as well as other refine-
ments of probability plotting. Fortunately, the wide availability of various probabil-
ity plots with statistical software packages means that the user can often sidestep
technical details.
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EXERCISES Section 4.6 (87–97)

87. The accompanying normal probability plot was constructed
from a sample of 30 readings on tension for mesh screens
behind the surface of video display tubes used in computer
monitors. Does it appear plausible that the tension distribu-
tion is normal?

88. Consider the following ten observations on bearing lifetime
(in hours):

152.7 172.0 172.5 173.3 193.0
204.7 216.5 234.9 262.6 422.6

Construct a normal probability plot and comment on the
plausibility of the normal distribution as a model for bearing
lifetime (data from “Modified Moment Estimation for the
Three-Parameter Lognormal Distribution,” J. Quality
Technology, 1985: 92–99).

89. Construct a normal probability plot for the following sam-
ple of observations on coating thickness for low-viscosity
paint (“Achieving a Target Value for a Manufacturing
Process: A Case Study,” J. of Quality Technology, 1992:
22–26). Would you feel comfortable estimating population
mean thickness using a method that assumed a normal pop-
ulation distribution?

90. The article “A Probabilistic Model of Fracture in Concrete
and Size Effects on Fracture Toughness” (Magazine of Con-
crete Res., 1996: 311–320) gives arguments for why the dis-
tribution of fracture toughness in concrete specimens should
have a Weibull distribution and presents several histograms
of data that appear well fit by superimposed Weibull curves.
Consider the following sample of size n � 18 observations
on toughness for high-strength concrete (consistent with one
of the histograms); values of pi � (i � .5)/18 are also given.

Observation .47 .58 .65 .69 .72 .74
pi .0278 .0833 .1389 .1944 .2500 .3056

Observation .77 .79 .80 .81 .82 .84
pi .3611 .4167 .4722 .5278 .5833 .6389

Observation .86 .89 .91 .95 1.01 1.04
pi .6944 .7500 .8056 .8611 .9167 .9722

Construct a Weibull probability plot and comment.

91. Construct a normal probability plot for the fatigue-crack
propagation data given in Exercise 39 (Chapter 1). Does it
appear plausible that propagation life has a normal distribu-
tion? Explain.

92. The article “The Load-Life Relationship for M50 Bearings
with Silicon Nitride Ceramic Balls” (Lubrication Engr.,
1984: 153–159) reports the accompanying data on bearing
load life (million revs.) for bearings tested at a 6.45 kN load.

47.1 68.1 68.1 90.8 103.6 106.0 115.0

126.0 146.6 229.0 240.0 240.0 278.0 278.0

289.0 289.0 367.0 385.9 392.0 505.0

–2 –1

200

0 1 2
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300

350

z percentile

Tension

.83 .88 .88 1.04 1.09 1.12 1.29 1.31

1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83
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a. Construct a normal probability plot. Is normality plausible?
b. Construct a Weibull probability plot. Is the Weibull dis-

tribution family plausible?

93. Construct a probability plot that will allow you to assess the
plausibility of the lognormal distribution as a model for the
rainfall data of Exercise 83 (Chapter 1).

94. The accompanying observations are precipitation values dur-
ing March over a 30-year period in Minneapolis–St. Paul.

a. Construct and interpret a normal probability plot for this
data set.

b. Calculate the square root of each value and then con-
struct a normal probability plot based on this trans-
formed data. Does it seem plausible that the square root
of precipitation is normally distributed?

c. Repeat part (b) after transforming by cube roots.

95. Use a statistical software package to construct a normal
probability plot of the tensile ultimate strength data given in
Exercise 13 of Chapter 1, and comment.

96. Let the ordered sample observations be denoted by y1,
y2, . . . , yn (y1 being the smallest and yn the largest). Our sug-
gested check for normality is to plot the (��1((i � .5)/n), yi)
pairs. Suppose we believe that the observations come from
a distribution with mean 0, and let w1, . . . , wn be the ordered
absolute values of the xi s. A half-normal plot is a proba-
bility plot of the wi s. More specifically, since P(⏐Z⏐ � w) �
P(�w � � � w) � 2�(w) � 1, a half-normal plot is a plot of
the (��1{[(i � .5)/n � 1]/2}, wi) pairs. The virtue of this plot
is that small or large outliers in the original sample will now
appear only at the upper end of the plot rather than at both
ends. Construct a half-normal plot for the following sample
of measurement errors, and comment: �3.78, �1.27, 1.44,
�.39, 12.38, �43.40, 1.15, �3.96, �2.34, 30.84.

97. The following failure time observations (1000s of hours)
resulted from accelerated life testing of 16 integrated circuit
chips of a certain type:

Use the corresponding percentiles of the exponential distri-
bution with � � 1 to construct a probability plot. Then
explain why the plot assesses the plausibility of the sample
having been generated from any exponential distribution.

.77 1.20 3.00 1.62 2.81 2.48

1.74 .47 3.09 1.31 1.87 .96

.81 1.43 1.51 .32 1.18 1.89

1.20 3.37 2.10 .59 1.35 .90

1.95 2.20 .52 .81 4.75 2.05

82.8 11.6 359.5 502.5 307.8 179.7

242.0 26.5 244.8 304.3 379.1 212.6

229.9 558.9 366.7 204.6

98. Let X � the time it takes a read/write head to locate a
desired record on a computer disk memory device once the
head has been positioned over the correct track. If the disks
rotate once every 25 millisec, a reasonable assumption is
that X is uniformly distributed on the interval [0, 25].
a. Compute P(10 � X � 20).
b. Compute P(X � 10).
c. Obtain the cdf F(X).
d. Compute E(X) and �X.

99. A 12-in. bar that is clamped at both ends is to be subjected
to an increasing amount of stress until it snaps. Let Y � the
distance from the left end at which the break occurs.
Suppose Y has pdf

f(y) � ��
2
1
4
��y�1 � �

1
y
2
�� 0 � y � 12

0 otherwise

Compute the following:
a. The cdf of Y, and graph it.
b. P(Y � 4), P(Y � 6), and P(4 � Y � 6)
c. E(Y ), E(Y 2), and V(Y )
d. The probability that the break point occurs more than 2

in. from the expected break point

e. The expected length of the shorter segment when the
break occurs

100. Let X denote the time to failure (in years) of a certain
hydraulic component. Suppose the pdf of X is f(x) �
32/(x � 4)3 for x � 0.
a. Verify that f(x) is a legitimate pdf.
b. Determine the cdf.
c. Use the result of part (b) to calculate the probability that

time to failure is between 2 and 5 years.
d. What is the expected time to failure?
e. If the component has a salvage value equal to 100/(4 � x)

when its time to failure is x, what is the expected sal-
vage value?

101. The completion time X for a certain task has cdf F(x) given
by

0 x � 0

�
x
3

3

� 0 � x � 1

1 � �
1
2

���
7
3

� � x� ��
7
4

� � �
3
4

� x� 1 � x � �
7
3

�

1 x � �
7
3

�

SUPPLEMENTARY EXERCISES (98–128)
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a. Obtain the pdf f(x) and sketch its graph.
b. Compute P(.5 � X � 2).
c. Compute E(X).

102. The breakdown voltage of a randomly chosen diode of a
certain type is known to be normally distributed with mean
value 40 V and standard deviation 1.5 V.
a. What is the probability that the voltage of a single diode

is between 39 and 42?
b. What value is such that only 15% of all diodes have

voltages exceeding that value?
c. If four diodes are independently selected, what is the

probability that at least one has a voltage exceeding 42?

103. The article “Computer Assisted Net Weight Control”
(Quality Progress, 1983: 22–25) suggests a normal dis-
tribution with mean 137.2 oz and standard deviation 1.6
oz for the actual contents of jars of a certain type. The
stated contents was 135 oz.
a. What is the probability that a single jar contains more

than the stated contents?
b. Among ten randomly selected jars, what is the proba-

bility that at least eight contain more than the stated
contents?

c. Assuming that the mean remains at 137.2, to what value
would the standard deviation have to be changed so that
95% of all jars contain more than the stated contents?

104. When circuit boards used in the manufacture of compact
disc players are tested, the long-run percentage of defec-
tives is 5%. Suppose that a batch of 250 boards has been
received and that the condition of any particular board is
independent of that of any other board.
a. What is the approximate probability that at least 10% of

the boards in the batch are defective?
b. What is the approximate probability that there are

exactly 10 defectives in the batch?

105. The article “Characterization of Room Temperature
Damping in Aluminum-Indium Alloys” (Metallurgical
Trans., 1993: 1611–1619) suggests that Al matrix grain size
(�m) for an alloy consisting of 2% indium could be mod-
eled with a normal distribution with a mean value 96 and
standard deviation 14.

a. What is the probability that grain size exceeds 100?
b. What is the probability that grain size is between 50 and

80?
c. What interval (a, b) includes the central 90% of all grain

sizes (so that 5% are below a and 5% are above b)?

106. The reaction time (in seconds) to a certain stimulus is a
continuous random variable with pdf

f(x) �
�
3
2

� � �
x
1
2
� 1 � x � 3

0 otherwise

a. Obtain the cdf.
b. What is the probability that reaction time is at most 2.5

sec? Between 1.5 and 2.5 sec?
c. Compute the expected reaction time.

d. Compute the standard deviation of reaction time.
e. If an individual takes more than 1.5 sec to react, a light

comes on and stays on either until one further second
has elapsed or until the person reacts (whichever hap-
pens first). Determine the expected amount of time that
the light remains lit. [Hint: Let h(X) � the time that the
light is on as a function of reaction time X.]

107. Let X denote the temperature at which a certain chemical
reaction takes place. Suppose that X has pdf

f(x) �
�
1
9

�(4 � x2) �1 � x � 2

0 otherwise

a. Sketch the graph of f(x).
b. Determine the cdf and sketch it.
c. Is 0 the median temperature at which the reaction takes

place? If not, is the median temperature smaller or
larger than 0?

d. Suppose this reaction is independently carried out once
in each of ten different labs and that the pdf of reaction
time in each lab is as given. Let Y � the number among
the ten labs at which the temperature exceeds 1. What
kind of distribution does Y have? (Give the name and
values of any parameters.)

108. The article “Determination of the MTF of Positive
Photoresists Using the Monte Carlo Method” (Photographic
Sci. and Engr., 1983: 254–260) proposes the exponential
distribution with parameter � � .93 as a model for the dis-
tribution of a photon’s free path length (�m) under certain
circumstances. Suppose this is the correct model.
a. What is the expected path length, and what is the stan-

dard deviation of path length?
b. What is the probability that path length exceeds 3.0?

What is the probability that path length is between 1.0
and 3.0?

c. What value is exceeded by only 10% of all path
lengths?

109. The article “The Prediction of Corrosion by Statistical
Analysis of Corrosion Profiles” (Corrosion Science, 1985:
305–315) suggests the following cdf for the depth X of the
deepest pit in an experiment involving the exposure of car-
bon manganese steel to acidified seawater.

F(x; �, �) � e�e�(x��)/�
�� � x � �

The authors propose the values � � 150 and � � 90. As-
sume this to be the correct model.
a. What is the probability that the depth of the deepest pit

is at most 150? At most 300? Between 150 and 300?
b. Below what value will the depth of the maximum pit

be observed in 90% of all such experiments?
c. What is the density function of X?
d. The density function can be shown to be unimodal (a

single peak). Above what value on the measurement
axis does this peak occur? (This value is the mode.)
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e. It can be shown that E(X) � .5772� � �. What is the
mean for the given values of � and �, and how does it
compare to the median and mode? Sketch the graph of
the density function. [Note: This is called the largest
extreme value distribution.]

110. A component has lifetime X that is exponentially distrib-
uted with parameter �.
a. If the cost of operation per unit time is c, what is the

expected cost of operating this component over its life-
time?

b. Instead of a constant cost rate c as in part (a), suppose
the cost rate is c(1 � .5eax) with a � 0, so that the cost
per unit time is less than c when the component is new
and gets more expensive as the component ages. Now
compute the expected cost of operation over the life-
time of the component.

111. The mode of a continuous distribution is the value x* that
maximizes f(x).
a. What is the mode of a normal distribution with param-

eters � and �?
b. Does the uniform distribution with parameters A and B

have a single mode? Why or why not?
c. What is the mode of an exponential distribution with

parameter �? (Draw a picture.)
d. If X has a gamma distribution with parameters � and �,

and � � 1, find the mode. [Hint: ln[ f(x)] will be max-
imized iff f (x) is, and it may be simpler to take the deriv-
ative of ln[ f(x)].]

e. What is the mode of a chi-squared distribution having �
degrees of freedom?

112. The article “Error Distribution in Navigation” (J. Institute
of Navigation, 1971: 429–442) suggests that the frequency
distribution of positive errors (magnitudes of errors) is well
approximated by an exponential distribution. Let X � the
lateral position error (nautical miles), which can be either
negative or positive. Suppose the pdf of X is

f(x) � (.1)e�.2⏐x⏐ �� � x � �

a. Sketch a graph of f(x) and verify that f(x) is a legitimate
pdf (show that it integrates to 1).

b. Obtain the cdf of X and sketch it.
c. Compute P(X � 0), P(X � 2), P(�1 � X � 2), and the

probability that an error of more than 2 miles is made.

113. In some systems, a customer is allocated to one of two
service facilities. If the service time for a customer served
by facility i has an exponential distribution with parameter
�i (i � 1, 2) and p is the proportion of all customers served
by facility 1, then the pdf of X � the service time of a ran-
domly selected customer is

f(x; �1, �2, p) �
p�1e

��
1
x � (1 � p)�2e

��
2
x x � 0

0 otherwise

This is often called the hyperexponential or mixed expo-
nential distribution. This distribution is also proposed as a

model for rainfall amount in “Modeling Monsoon Affected
Rainfall of Pakistan by Point Processes” (J. Water Re-
sources Planning and Mgmnt., 1992: 671–688).
a. Verify that f(x; �1, �2, p) is indeed a pdf.
b. What is the cdf F(x; �1, �2, p)?
c. If X has f(x; �1, �2, p) as its pdf, what is E(X)?
d. Using the fact that E(X 2) � 2/�2 when X has an expo-

nential distribution with parameter �, compute E(X 2)
when X has pdf f(x; �1, �2, p). Then compute V(X).

e. The coefficient of variation of a random variable (or
distribution) is CV � �/�. What is CV for an exponen-
tial rv? What can you say about the value of CV when X
has a hyperexponential distribution?

f. What is CV for an Erlang distribution with parameters �
and n as defined in Exercise 68? [Note: In applied work,
the sample CV is used to decide which of the three dis-
tributions might be appropriate.]

114. Suppose a particular state allows individuals filing tax
returns to itemize deductions only if the total of all item-
ized deductions is at least $5000. Let X (in 1000s of dol-
lars) be the total of itemized deductions on a randomly
chosen form. Assume that X has the pdf

f(x; �) � 
k/x� x � 5
0 otherwise

a. Find the value of k. What restriction on � is necessary?
b. What is the cdf of X?
c. What is the expected total deduction on a randomly

chosen form? What restriction on � is necessary for
E(X) to be finite?

d. Show that ln(X/5) has an exponential distribution with
parameter � � 1.

115. Let Ii be the input current to a transistor and I0 be the 
output current. Then the current gain is proportional 
to ln(I0/Ii). Suppose the constant of proportionality is 1
(which amounts to choosing a particular unit of measure-
ment), so that current gain � X � ln(I0/Ii). Assume X is
normally distributed with � � 1 and � � .05.
a. What type of distribution does the ratio I0/Ii have?
b. What is the probability that the output current is more

than twice the input current?
c. What are the expected value and variance of the ratio of

output to input current?

116. The article “Response of SiCf /Si3N4 Composites Under
Static and Cyclic Loading—An Experimental and Sta-
tistical Analysis” (J. of Engr. Materials and Technology,
1997: 186–193) suggests that tensile strength (MPa) of
composites under specified conditions can be modeled by
a Weibull distribution with � � 9 and � � 180.
a. Sketch a graph of the density function.
b. What is the probability that the strength of a randomly

selected specimen will exceed 175? Will be between
150 and 175?

c. If two randomly selected specimens are chosen and
their strengths are independent of one another, what is
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the probability that at least one has a strength between
150 and 175?

d. What strength value separates the weakest 10% of all
specimens from the remaining 90%?

117. Let Z have a standard normal distribution and define a new
rv Y by Y � �Z � �. Show that Y has a normal distribution
with parameters � and �. [Hint: Y � y iff Z � ? Use this to
find the cdf of Y and then differentiate it with respect to y.]

118. a. Suppose the lifetime X of a component, when measured
in hours, has a gamma distribution with parameters �
and �. Let Y � the lifetime measured in minutes.
Derive the pdf of Y. [Hint: Y � y iff X � y/60. Use this
to obtain the cdf of Y and then differentiate to obtain
the pdf.]

b. If X has a gamma distribution with parameters � and �,
what is the probability distribution of Y � cX?

119. In Exercises 111 and 112, as well as many other situations,
one has the pdf f(x) of X and wishes to know the pdf of Y �
h(X). Assume that h(�) is an invertible function, so that y �
h(x) can be solved for x to yield x � k(y). Then it can be
shown that the pdf of Y is

g(y) � f [k(y)] � ⏐k(y)⏐

a. If X has a uniform distribution with A � 0 and B � 1,
derive the pdf of Y � �ln(X).

b. Work Exercise 117, using this result.
c. Work Exercise 118(b), using this result.

120. Based on data from a dart-throwing experiment, the article
“Shooting Darts” (Chance, Summer 1997, 16–19) pro-
posed that the horizontal and vertical errors from aiming at
a point target should be independent of one another, each
with a normal distribution having mean 0 and variance �2.
It can then be shown that the pdf of the distance V from the
target to the landing point is

f(v) � � e�v2/2�2 v � 0

a. This pdf is a member of what family introduced in this
chapter?

b. If � � 20 mm (close to the value suggested in the paper),
what is the probability that a dart will land within 25 mm
(roughly 1 in.) of the target?

121. The article “Three Sisters Give Birth on the Same Day”
(Chance, Spring 2001, 23–25) used the fact that three Utah
sisters had all given birth on March 11, 1998 as a basis for
posing some interesting questions regarding birth coinci-
dences.
a. Disregarding leap year and assuming that the other

365 days are equally likely, what is the probability that
three randomly selected births all occur on March 11?
Be sure to indicate what, if any, extra assumptions you
are making.

b. With the assumptions used in part (a), what is the prob-
ability that three randomly selected births all occur on
the same day?

c. The author suggested that, based on extensive data, the
length of gestation (time between conception and birth)
could be modeled as having a normal distribution with
mean value 280 days and standard deviation 19.88 days.
The due dates for the three Utah sisters were March 15,
April 1, and April 4, respectively. Assuming that all
three due dates are at the mean of the distribution, what
is the probability that all births occurred on March 11?
[Hint: The deviation of birth date from due date is nor-
mally distributed with mean 0.]

d. Explain how you would use the information in part (c)
to calculate the probability of a common birth date.

122. Let X denote the lifetime of a component, with f(x) and
F(x) the pdf and cdf of X. The probability that the compo-
nent fails in the interval (x, x � �x) is approximately f(x)
� �x. The conditional probability that it fails in (x, x � �x)
given that it has lasted at least x is f(x) � �x/[1 � F(x)].
Dividing this by �x produces the failure rate function:

r(x) � �
1 �

f (x
F
)
(x)

�

An increasing failure rate function indicates that older
components are increasingly likely to wear out, whereas a
decreasing failure rate is evidence of increasing reliability
with age. In practice, a “bathtub-shaped” failure is often
assumed.
a. If X is exponentially distributed, what is r(x)?
b. If X has a Weibull distribution with parameters � and �,

what is r(x)? For what parameter values will r(x) be
increasing? For what parameter values will r(x) de-
crease with x?

c. Since r(x) � �(d/dx)ln[1 � F(x)], ln[1 � F(x)] � �
 r(x)
dx. Suppose

r(x) �
��1 � �

�

x
�� 0 � x � �

0 otherwise

so that if a component lasts � hours, it will last forever
(while seemingly unreasonable, this model can be used to
study just “initial wearout”). What are the cdf and pdf of X?

123. Let U have a uniform distribution on the interval [0, 1].
Then observed values having this distribution can be ob-
tained from a computer’s random number generator. Let
X � �(1/�)ln(1 � U).
a. Show that X has an exponential distribution with param-

eter �. [Hint: The cdf of X is F(x) � P(X � x); X � x is
equivalent to U � ?]

b. How would you use part (a) and a random number gen-
erator to obtain observed values from an exponential
distribution with parameter � � 10?

124. Consider an rv X with mean � and standard deviation �,
and let g(X) be a specified function of X. The first-order
Taylor series approximation to g(X) in the neighborhood of
� is

g(X) � g(�) � g(�) � (X � �)

v
�
�2
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The right-hand side of this equation is a linear function of
X. If the distribution of X is concentrated in an interval over
which g(�) is approximately linear [e.g., �x� is approxi-
mately linear in (1, 2)], then the equation yields approxi-
mations to E(g(X)) and V(g(X)).
a. Give expressions for these approximations. [Hint: Use

rules of expected value and variance for a linear func-
tion aX � b.]

b. If the voltage v across a medium is fixed but current I is
random, then resistance will also be a random variable
related to I by R � v/I. If �I � 20 and �I � .5, calculate
approximations to �R and �R.

125. A function g(x) is convex if the chord connecting any two
points on the function’s graph lies above the graph. When
g(x) is differentiable, an equivalent condition is that for
every x, the tangent line at x lies entirely on or below the
graph. (See the figures below.) How does g(�) � g(E(X))
compare to E(g(X))? [Hint: The equation of the tangent line
at x �� is y � g(�) � g(�) � (x � �). Use the condition of
convexity, substitute X for x, and take expected values. Note:
Unless g(x) is linear, the resulting inequality (usually called
Jensen’s inequality) is strict (� rather than �); it is valid for
both continuous and discrete rv’s.]

126. Let X have a Weibull distribution with parameters � � 2
and �. Show that Y � 2X 2/�2 has a chi-squared distribution
with � � 2. [Hint: The cdf of Y is P(Y � y); express this
probability in the form P(X � g(y)), use the fact that X has
cdf of the form in Expression (4.12), and differentiate with
respect to y to obtain the pdf of Y.]

127. An individual’s credit score is a number calculated based
on that person’s credit history which helps a lender deter-
mine how much he/she should be loaned or what credit
limit should be established for a credit card. An article in
the Los Angeles Times gave data which suggested that a
beta distribution with parameters A � 150, B � 850, a �
8, b � 2 would provide a reasonable approximation to the
distribution of American credit scores. [Note: credit scores
are integer-valued].
a. Let X represent a randomly selected American credit

score. What are the mean value and standard devia-
tion of this random variable? What is the probability
that X is within 1 standard deviation of its mean
value?

b. What is the approximate probability that a randomly
selected score will exceed 750 (which lenders consider
a very good score)?

128. Let V denote rainfall volume and W denote runoff volume
(both in mm). According to the article “Runoff Quality
Analysis of Urban Catchments with Analytical Probability
Models” (J. of Water Resource Planning and Management,
2006: 4–14), the runoff volume will be 0 if V � �d and will
be k(V � �d) if V � �d . Here �d is the volume of depres-
sion storage (a constant) and k (also a constant) is the
runoff coefficient. The cited article proposes an exponen-
tial distribution with parameter � for V.
a. Obtain an expression for the cdf of W. [Note: W is nei-

ther purely continuous nor purely discrete; instead it has
a “mixed” distribution with a discrete component at 0
and is continuous for values w � 0.]

b. What is the pdf of W for w � 0? Use this to obtain an
expression for the expected value of runoff volume.

Tangent
line

x
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Joint Probability
Distributions and
Random Samples

5

INTRODUCTION

In Chapters 3 and 4, we studied probability models for a single random variable.

Many problems in probability and statistics involve several random variables

simultaneously. In this chapter, we first discuss probability models for the joint

(i.e., simultaneous) behavior of several random variables, putting special emphasis

on the case in which the variables are independent of one another. We then study

expected values of functions of several random variables, including covariance and

correlation as measures of the degree of association between two variables.

The last three sections of the chapter consider functions of n random vari-

ables X1, X2, . . . , Xn, focusing especially on their average (X1 � . . . � Xn)/n.

We call any such function, itself a random variable, a statistic. Methods from

probability are used to obtain information about the distribution of a statistic. The

premier result of this type is the Central Limit Theorem (CLT), the basis for many

inferential procedures involving large sample sizes.



There are many experimental situations in which more than one random variable (rv) will
be of interest to an investigator. We first consider joint probability distributions for two
discrete rv’s, then for two continuous variables, and finally for more than two variables.

Two Discrete Random Variables
The probability mass function (pmf) of a single discrete rv X specifies how much
probability mass is placed on each possible X value. The joint pmf of two discrete
rv’s X and Y describes how much probability mass is placed on each possible pair of
values (x, y).
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5.1 Jointly Distributed Random Variables

DEFINITION Let X and Y be two discrete rv’s defined on the sample space S of an experi-
ment. The joint probability mass function p(x, y) is defined for each pair of
numbers (x, y) by

p(x, y) � P(X � x and Y � y)

It must be the case that p(x, y) � 0 and �
x

�
y

p(x, y) � 1.

Now let A be any set consisting of pairs of (x, y) values (e.g., A � {(x, y):
x � y � 5} or {(x, y): max(x, y) � 3}). Then the probability P[(X, Y ) � A]
is obtained by summing the joint pmf over pairs in A:

P[(X, Y) � A] � �
(x, y)

�
� A

p(x, y)

A large insurance agency services a number of customers who have purchased both a
homeowner’s policy and an automobile policy from the agency. For each type of pol-
icy, a deductible amount must be specified. For an automobile policy, the choices are
$100 and $250, whereas for a homeowner’s policy, the choices are 0, $100, and $200.
Suppose an individual with both types of policy is selected at random from the agency’s
files. Let X � the deductible amount on the auto policy and Y � the deductible
amount on the homeowner’s policy. Possible (X, Y) pairs are then (100, 0), (100, 100),
(100, 200), (250, 0), (250, 100), and (250, 200); the joint pmf specifies the probability
associated with each one of these pairs, with any other pair having probability zero.
Suppose the joint pmf is given in the accompanying joint probability table:

y
p(x, y) | 0 100 200

x 100 | .20 .10 .20
250 | .05 .15 .30

Then p(100, 100) � P(X � 100 and Y � 100) � P($100 deductible on both poli-
cies) � .10. The probability P(Y � 100) is computed by summing probabilities of all
(x, y) pairs for which y � 100:

P(Y � 100) � p(100, 100) � p(250, 100) � p(100, 200) � p(250, 200)

� .75 ■

Example 5.1



The pmf of one of the variables alone is obtained by summing p(x, y) over val-
ues of the other variable. The result is called a marginal pmf because when the p(x, y)
values appear in a rectangular table, the sums are just marginal (row or column) totals.
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DEFINITION The marginal probability mass functions of X and of Y, denoted by pX(x)
and pY(y), respectively, are given by

pX(x) � �
y

p(x, y) pY(y) � �
x

p(x, y)

Thus to obtain the marginal pmf of X evaluated at, say, x � 100, the probabilities 
p(100, y) are added over all possible y values. Doing this for each possible X value
gives the marginal pmf of X alone (without reference to Y ). From the marginal pmf’s,
probabilities of events involving only X or only Y can be computed.

The possible X values are x � 100 and x � 250, so computing row totals in the joint 
probability table yields

pX(100) � p(100, 0) � p(100, 100) � p(100, 200) � .50

and

pX(250) � p(250, 0) � p(250, 100) � p(250, 200) � .50

The marginal pmf of X is then

pX(x) � {.5 x � 100, 250

0 otherwise

Similarly, the marginal pmf of Y is obtained from column totals as

⎧.25 y � 0, 100

pY(y) � ⎨.50 y � 200

⎩ 0 otherwise

so P(Y � 100) � pY(100) � pY(200) � .75 as before. ■

Two Continuous Random Variables
The probability that the observed value of a continuous rv X lies in a one-dimensional
set A (such as an interval) is obtained by integrating the pdf f(x) over the set A.
Similarly, the probability that the pair (X, Y ) of continuous rv’s falls in a two-
dimensional set A (such as a rectangle) is obtained by integrating a function called
the joint density function.

Example 5.2
(Example 5.1
continued)

DEFINITION Let X and Y be continuous rv’s. A joint probability density function f(x, y) for

these two variables is a function satisfying f(x, y) � 0 and 
�

��

�

��
f(x, y) dx dy � 1.

Then for any two-dimensional set A

P[(X, Y) � A] � 

A


f(x, y) dx dy

In particular, if A is the two-dimensional rectangle {(x, y): a � x � b, c � y � d},
then

P[(X, Y ) � A] � P(a � X � b, c � Y � d) � 
b

a

d

c
f(x, y) dy dx



We can think of f(x, y) as specifying a surface at height f(x, y) above the point
(x, y) in a three-dimensional coordinate system. Then P[(X, Y) � A] is the volume
underneath this surface and above the region A, analogous to the area under a curve
in the one-dimensional case. This is illustrated in Figure 5.1.
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f (x, y) y

x

A � Shaded
          rectangle

Surface f (x, y)

Figure 5.1 P[(X, Y) � A � volume under density surface above A

A bank operates both a drive-up facility and a walk-up window. On a randomly
selected day, let X � the proportion of time that the drive-up facility is in use (at least
one customer is being served or waiting to be served) and Y � the proportion of time
that the walk-up window is in use. Then the set of possible values for (X, Y) is the
rectangle D � {(x, y): 0 � x � 1, 0 � y � 1}. Suppose the joint pdf of (X, Y) is
given by

f(x, y) � { (x � y2) 0 � x � 1, 0 � y � 1

0 otherwise

To verify that this is a legitimate pdf, note that f(x, y) � 0 and


�

��

�

��
f (x, y) dx dy � 
1

0

1

0
�
6

5
� (x � y2) dx dy

� 
1

0

1

0
�
6

5
� x dx dy � 
1

0

1

0
�
6

5
� y2 dx dy

� 
1

0
�
6

5
� x dx � 
1

0
�
6

5
� y2 dy � �

1

6

0
� � �

1

6

5
� � 1

The probability that neither facility is busy more than one-quarter of the time is

P�0 � X � �
1

4
�, 0 � Y � �

1

4
�� � 
1/4

0

1/4

0
�
6

5
� (x � y2) dx dy

� �
6

5
� 
1/4

0

1/4

0
x dx dy � �

6

5
� 
1/4

0

1/4

0
y2 dx dy

� �
2

6

0
� � �

x

2

2

�⏐
x�1/4

x�0

� �
2

6

0
� � �

y

3

3

�⏐
y�1/4

y�0

� �
6

7

40
�

� .0109 ■

As with joint pmf’s, from the joint pdf of X and Y, each of the two marginal
density functions can be computed.

6
�
5
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The marginal pdf of X, which gives the probability distribution of busy time for the 
drive-up facility without reference to the walk-up window, is

fX(x) � 
�

�� 
f (x, y) dy � 
1

0
�
6

5
� (x � y2) dy � �

6

5
� x � �

2

5
�

for 0 � x � 1 and 0 otherwise. The marginal pdf of Y is

fY(y) � {�
6

5
� y2 � �

3

5
� 0 � y � 1

0 otherwise

Then

P��
1

4
� � Y � �

3

4
�� � 
3/4

1/4
fY(y) dy � �

3

8

7

0
� � .4625 ■

In Example 5.3, the region of positive joint density was a rectangle, which
made computation of the marginal pdf’s relatively easy. Consider now an example in
which the region of positive density is more complicated.

A nut company markets cans of deluxe mixed nuts containing almonds, cashews,
and peanuts. Suppose the net weight of each can is exactly 1 lb, but the weight con-
tribution of each type of nut is random. Because the three weights sum to 1, a joint
probability model for any two gives all necessary information about the weight of
the third type. Let X � the weight of almonds in a selected can and Y � the weight
of cashews. Then the region of positive density is D � {(x, y): 0 � x � 1, 0 � y � 1,
x � y � 1}, the shaded region pictured in Figure 5.2.
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DEFINITION The marginal probability density functions of X and Y, denoted by fX(x) and
fY(y), respectively, are given by

fX(x) � 
�

�� 
f (x, y) dy for �� � x � �

fY(y) � 
�

�� 
f (x, y) dx for �� � y � �

Example 5.4
(Example 5.3
continued)
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Figure 5.2 Region of positive density for Example 5.5

Now let the joint pdf for (X, Y) be

f (x, y) � {24xy 0 � x � 1, 0 � y � 1, x � y � 1
0 otherwise



For any fixed x, f(x, y) increases with y; for fixed y, f(x, y) increases with x. This is
appropriate because the word deluxe implies that most of the can should consist of
almonds and cashews rather than peanuts, so that the density function should be
large near the upper boundary and small near the origin. The surface determined by
f(x, y) slopes upward from zero as (x, y) moves away from either axis.

Clearly, f(x, y) � 0. To verify the second condition on a joint pdf, recall that a
double integral is computed as an iterated integral by holding one variable fixed
(such as x as in Figure 5.2), integrating over values of the other variable lying along
the straight line passing through the value of the fixed variable, and finally integrat-
ing over all possible values of the fixed variable. Thus


�

��

�

��
f (x, y) dy dx � 


D

 f (x, y) dy dx � 
1

0 �

1�x

0
24xy dy� dx

� 
1

0
24x ��

y

2

2

�⏐
y�1�x

y�0
� dx � 
1

0
12x(1 � x)2 dx � 1

To compute the probability that the two types of nuts together make up at most 50%
of the can, let A � {(x, y): 0 � x � 1, 0 � y � 1, and x � y � .5}, as shown in
Figure 5.3. Then

P((X, Y ) � A) � 

A

 f (x, y) dx dy � 
.5

0

.5�x

0
24xy dy dx � .0625

The marginal pdf for almonds is obtained by holding X fixed at x and integrating the
joint pdf f(x, y) along the vertical line through x:

fX(x) � 
�

��
f (x, y) dy � {
1�x

0
24xy dy � 12x(1 � x)2 0 � x � 1

0 otherwise
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Figure 5.3 Computing P[(X, Y ) � A] for Example 5.5

By symmetry of f(x, y) and the region D, the marginal pdf of Y is obtained by replac-
ing x and X in fX(x) by y and Y, respectively. ■

Independent Random Variables
In many situations, information about the observed value of one of the two variables
X and Y gives information about the value of the other variable. In Example 5.1, the
marginal probability of X at x � 250 was .5, as was the probability that X � 100. If,
however, we are told that the selected individual had Y � 0, then X � 100 is four
times as likely as X � 250. Thus there is a dependence between the two variables.



In Chapter 2, we pointed out that one way of defining independence of two
events is via the condition P(A � B) � P(A) � P(B). Here is an analogous definition
for the independence of two rv’s.
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DEFINITION Two random variables X and Y are said to be independent if for every pair of
x and y values,

p(x, y) � pX(x) � pY(y) when X and Y are discrete

or (5.1)

f(x, y) � fX(x) � fY(y) when X and Y are continuous

If (5.1) is not satisfied for all (x, y), then X and Y are said to be dependent.

The definition says that two variables are independent if their joint pmf or pdf is the
product of the two marginal pmf’s or pdf’s.

In the insurance situation of Examples 5.1 and 5.2,

p(100, 100) � .10 � (.5)(.25) � pX(100) � pY(100)

so X and Y are not independent. Independence of X and Y requires that every entry
in the joint probability table be the product of the corresponding row and column
marginal probabilities. ■

Because f (x, y) has the form of a product, X and Y would appear to be independent.
However, although fX(�

3
4

�) � fY(�
3
4

�) � �
1
9
6
�, f (�

3
4

�, �
3
4

�) � 0 � �
1
9
6
� � �

1
9
6
�, so the variables are not in

fact independent. To be independent, f (x, y) must have the form g(x) � h(y) and the
region of positive density must be a rectangle whose sides are parallel to the coor-
dinate axes. ■

Independence of two random variables is most useful when the description of
the experiment under study suggests that X and Y have no effect on one another. Then
once the marginal pmf’s or pdf’s have been specified, the joint pmf or pdf is simply
the product of the two marginal functions. It follows that

P(a � X � b, c � Y � d) � P(a � X � b) � P(c � Y � d)

Suppose that the lifetimes of two components are independent of one another and that
the first lifetime, X1, has an exponential distribution with parameter �1 whereas the
second, X2, has an exponential distribution with parameter �2. Then the joint pdf is

f (x1, x2) � fX1
(x1) � fX2

(x2)

� ��1e
��1x1 � �2e

��2x2 � �1�2e
��1x1��2x2 x1 � 0, x2 � 0

0 otherwise

Let �1 � 1/1000 and �2 � 1/1200, so that the expected lifetimes are 1000 hours and
1200 hours, respectively. The probability that both component lifetimes are at least
1500 hours is

P(1500 � X1, 1500 � X2) � P(1500 � X1) � P(1500 � X2)

� e��1(1500) � e��2(1500)

� (.2231)(.2865) � .0639 ■
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Example 5.8

Example 5.7
(Example 5.5
continued)



More Than Two Random Variables
To model the joint behavior of more than two random variables, we extend the con-
cept of a joint distribution of two variables.
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DEFINITION If X1, X2, . . . , Xn are all discrete random variables, the joint pmf of the vari-
ables is the function

p(x1, x2, . . . , xn) � P(X1 � x1, X2 � x2, . . . , Xn � xn)

If the variables are continuous, the joint pdf of X1, . . . , Xn is the function 
f (x1, x2, . . . , xn) such that for any n intervals [a1, b1], . . . , [an, bn],

P(a1 � X1 � b1, . . . , an � Xn � bn) � 
b1

a1

. . . 
bn

an

f(x1, . . . , xn) dxn . . . dx1

In a binomial experiment, each trial could result in one of only two possible
outcomes. Consider now an experiment consisting of n independent and identical tri-
als, in which each trial can result in any one of r possible outcomes. Let pi � P(out-
come i on any particular trial), and define random variables by Xi � the number of
trials resulting in outcome i (i � 1, . . . , r). Such an experiment is called a multino-
mial experiment, and the joint pmf of X1, . . . , Xr is called the multinomial distri-
bution. By using a counting argument analogous to the one used in deriving the
binomial distribution, the joint pmf of X1, . . . , Xr can be shown to be

p(x1, . . . , xr)

� { p1
x1 � . . . � pxr

r xi � 0, 1, 2, . . . , with x1 � . . . � xr � n

0 otherwise

The case r � 2 gives the binomial distribution, with X1 � number of successes and
X2 � n � X1 � number of failures.

If the allele of each of ten independently obtained pea sections is determined and
p1 � P(AA), p2 � P(Aa), p3 � P(aa), X1 � number of AA’s, X2 � number of Aa’s,
and X3 � number of aa’s, then the multinomial pmf for these Xi s is

p(x1, x2, x3) � px1
1 px2

2 px3
3 xi � 0, 1, . . . and x1 � x2 � x3 � 10

With p1 � p3 � .25, p2 � .5,

P(X1 � 2, X2 � 5, X3 � 3) � p(2, 5, 3)

� (.25)2(.5)5(.25)3 � .0769 ■

When a certain method is used to collect a fixed volume of rock samples in a region,
there are four resulting rock types. Let X1, X2, and X3 denote the proportion by vol-
ume of rock types 1, 2, and 3 in a randomly selected sample (the proportion of rock
type 4 is 1 � X1 � X2 � X3, so a variable X4 would be redundant). If the joint pdf of
X1, X2, X3 is

f(x1, x2, x3) � �kx1x2(1 � x3) 0 � x1 � 1, 0 � x2 � 1, 0 � x3 � 1, x1 � x2 � x3 � 1
0 otherwise

10!
�
2! 5! 3!

10!
��
(x1!)(x2!)(x3!)

n!
���
(x1!)(x2!) � . . . � (xr!)
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then k is determined by

1 � 
�

��

�

��

�

�� 
f (x1, x2, x3) dx3 dx2 dx1

� 
1

0 �

1�x1

0 �

1�x1�x2

0
kx1x2(1 � x3) dx3� dx2� dx1

This iterated integral has value k/144, so k � 144. The probability that rocks of
types 1 and 2 together account for at most 50% of the sample is

P(X1 � X2 � .5) � 


 f (x1, x2, x3) dx3 dx2 dx1
0�xi�1 for i�1, 2, 3{x1�x2�x3�1, x1�x2�.5}

� 
.5

0 �

.5�x1

0 �

1�x1�x2

0
144x1x2(1 � x3) dx3� dx2� dx1

� .6066 ■

The notion of independence of more than two random variables is similar to
the notion of independence of more than two events.
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DEFINITION The random variables X1, X2, . . . , Xn are said to be independent if for every
subset Xi1

, Xi2
, . . . , Xik

of the variables (each pair, each triple, and so on), the
joint pmf or pdf of the subset is equal to the product of the marginal pmf’s or
pdf’s.

Thus if the variables are independent with n � 4, then the joint pmf or pdf of any
two variables is the product of the two marginals, and similarly for any three vari-
ables and all four variables together. Most important, once we are told that n vari-
ables are independent, then the joint pmf or pdf is the product of the n marginals.

If X1, . . . , Xn represent the lifetimes of n components, the components operate inde-
pendently of one another, and each lifetime is exponentially distributed with param-
eter �, then

f (x1, x2, . . . , xn) � (�e��x1) � (�e��x2) � . . . � (�e��xn)

� ��ne���xi x1 � 0, x2 � 0, . . . , xn � 0
0 otherwise

If these n components constitute a system that will fail as soon as a single compo-
nent fails, then the probability that the system lasts past time t is

P(X1 � t, . . . , Xn � t) � 
∞

t

. . . 
∞

t
f (x1, . . . , xn) dx1 . . . dxn

� �

∞

t
�e��x1 dx1� . . . �


∞

t
�e��xn dxn�

� (e��t)n � e�n�t

Therefore,

P(system lifetime � t) � 1 � e�n�t for t � 0

Example 5.11



which shows that system lifetime has an exponential distribution with parameter n�;
the expected value of system lifetime is 1/n�. ■

In many experimental situations to be considered in this book, independence
is a reasonable assumption, so that specifying the joint distribution reduces to decid-
ing on appropriate marginal distributions.

Conditional Distributions
Suppose X � the number of major defects in a randomly selected new automobile and
Y � the number of minor defects in that same auto. If we learn that the selected car has
one major defect, what now is the probability that the car has at most three minor
defects—that is, what is P(Y � 3⏐X � 1)? Similarly, if X and Y denote the lifetimes
of the front and rear tires on a motorcycle, and it happens that X � 10,000 miles,
what now is the probability that Y is at most 15,000 miles, and what is the expected
lifetime of the rear tire “conditional on” this value of X? Questions of this sort can
be answered by studying conditional probability distributions.
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DEFINITION Let X and Y be two continuous rv’s with joint pdf f(x, y) and marginal X pdf
fX(x). Then for any X value x for which fX(x) � 0, the conditional probability
density function of Y given that X � x is

fY⏐X(y⏐x) � �
f

f

(

X

x

(

,

x

y

)

)
� �� � y � �

If X and Y are discrete, replacing pdf’s by pmf’s in this definition gives the
conditional probability mass function of Y when X � x.

Notice that the definition of fY⏐X(y⏐x) parallels that of P(B⏐A), the conditional prob-
ability that B will occur, given that A has occurred. Once the conditional pdf or pmf
has been determined, questions of the type posed at the outset of this subsection can
be answered by integrating or summing over an appropriate set of Y values.

Reconsider the situation of Examples 5.3 and 5.4 involving X � the proportion of
time that a bank’s drive-up facility is busy and Y � the analogous proportion for the
walk-up window. The conditional pdf of Y given that X � .8 is 

fY⏐X(y⏐.8) � � �
1

1

.

.

2

2

(

(

.

.

8

8

)

�

�

y

.

2

4

)
� � �

3

1

4
�(24 � 30y2) 0 � y � 1

The probability that the walk-up facility is busy at most half the time given that X � .8
is then

P(Y � .5⏐X � .8) � 
.5

�� 
fY⏐X(y⏐.8) dy � 
.5

0
�
3

1

4
�(24 � 30y2) dy � .390

Using the marginal pdf of Y gives P(Y � .5) � .350. Also E(Y ) � .6, whereas
the expected proportion of time that the walk-up facility is busy given that X � .8
(a conditional expectation) is

E(Y⏐X � .8) � 
�

��
y � fY⏐X(y⏐.8) dy � �

3

1

4
�
1

0
y(24 � 30y2) dy � .574 ■

f(.8, y)
�
fX(.8)
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EXERCISES Section 5.1 (1–21)

1. A service station has both self-service and full-service islands.
On each island, there is a single regular unleaded pump with
two hoses. Let X denote the number of hoses being used on the
self-service island at a particular time, and let Y denote the num-
ber of hoses on the full-service island in use at that time. The
joint pmf of X and Y appears in the accompanying tabulation.

p(x, y) | 0 2

0 | .10 .04 .02
x 1 | .08 .20 .06

2 | .06 .14 .30

a. What is P(X � 1 and Y � 1)?
b. Compute P(X � 1 and Y � 1).
c. Give a word description of the event {X � 0 and Y � 0},

and compute the probability of this event.
d. Compute the marginal pmf of X and of Y. Using pX(x),

what is P(X � 1)?
e. Are X and Y independent rv’s? Explain.

2. When an automobile is stopped by a roving safety patrol,
each tire is checked for tire wear, and each headlight is
checked to see whether it is properly aimed. Let X denote the
number of headlights that need adjustment, and let Y denote
the number of defective tires.
a. If X and Y are independent with pX(0) � .5, pX(1) � .3,

pX(2) � .2, and pY(0) � .6, pY(1) � .1, pY(2) � pY(3) �
.05, pY(4) � .2, display the joint pmf of (X, Y) in a joint
probability table.

b. Compute P(X � 1 and Y � 1) from the joint probability
table, and verify that it equals the product P(X � 1) �
P(Y � 1).

c. What is P(X � Y � 0) (the probability of no violations)?
d. Compute P(X � Y � 1).

3. A certain market has both an express checkout line and a
superexpress checkout line. Let X1 denote the number of cus-
tomers in line at the express checkout at a particular time of
day, and let X2 denote the number of customers in line at the
superexpress checkout at the same time. Suppose the joint
pmf of X1 and X2 is as given in the accompanying table.

x2

| 0 1 2 3

0 | .08 .07 .04 .00
1 | .06 .15 .05 .04

x1 2 | .05 .04 .10 .06
3 | .00 .03 .04 .07
4 | .00 .01 .05 .06

a. What is P(X1 � 1, X2 � 1), that is, the probability that
there is exactly one customer in each line?

b. What is P(X1 � X2), that is, the probability that the num-
bers of customers in the two lines are identical?

c. Let A denote the event that there are at least two more cus-
tomers in one line than in the other line. Express A in terms
of X1 and X2, and calculate the probability of this event.

d. What is the probability that the total number of customers
in the two lines is exactly four? At least four?

4. Return to the situation described in Exercise 3.
a. Determine the marginal pmf of X1, and then calculate the

expected number of customers in line at the express
checkout.

b. Determine the marginal pmf of X2.
c. By inspection of the probabilities P(X1 � 4), P(X2 � 0),

and P(X1 � 4, X2 � 0), are X1 and X2 independent random
variables? Explain.

5. The number of customers waiting for gift-wrap service at a
department store is an rv X with possible values 0, 1, 2, 3, 4
and corresponding probabilities .1, .2, .3, .25, .15. A ran-
domly selected customer will have 1, 2, or 3 packages for
wrapping with probabilities .6, .3, and .1, respectively. Let
Y � the total number of packages to be wrapped for the cus-
tomers waiting in line (assume that the number of packages
submitted by one customer is independent of the number sub-
mitted by any other customer).
a. Determine P(X � 3, Y � 3), i.e., p(3, 3).
b. Determine p(4, 11).

6. Let X denote the number of Canon digital cameras sold dur-
ing a particular week by a certain store. The pmf of X is

x | 0 1 2 3 4

pX(x) | .1 .2 .3 .25 .15

Sixty percent of all customers who purchase these cameras
also buy an extended warranty. Let Y denote the number of
purchasers during this week who buy an extended warranty.
a. What is P(X � 4, Y � 2)? [Hint: This probability equals

P(Y � 2⏐X � 4) � P(X � 4); now think of the four pur-
chases as four trials of a binomial experiment, with success
on a trial corresponding to buying an extended warranty.]

b. Calculate P(X � Y).
c. Determine the joint pmf of X and Y and then the marginal

pmf of Y.

7. The joint probability distribution of the number X of cars and
the number Y of buses per signal cycle at a proposed left-turn
lane is displayed in the accompanying joint probability table.

p(x, y) | 0 2

0 | .025 .015 .010
1 | .050 .030 .020
2 | .125 .075 .050

x 3 | .150 .090 .060
4 | .100 .060 .040
5 | .050 .030 .020

y
1

y
1
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a. What is the probability that there is exactly one car and
exactly one bus during a cycle?

b. What is the probability that there is at most one car and at
most one bus during a cycle?

c. What is the probability that there is exactly one car during
a cycle? Exactly one bus?

d. Suppose the left-turn lane is to have a capacity of five cars
and one bus is equivalent to three cars. What is the prob-
ability of an overflow during a cycle?

e. Are X and Y independent rv’s? Explain.

8. A stockroom currently has 30 components of a certain type,
of which 8 were provided by supplier 1, 10 by supplier 2,
and 12 by supplier 3. Six of these are to be randomly
selected for a particular assembly. Let X � the number of
supplier 1s components selected, Y � the number of sup-
plier 2s components selected, and p(x, y) denote the joint
pmf of X and Y.
a. What is p(3, 2)? [Hint: Each sample of size 6 is equally

likely to be selected. Therefore, p(3, 2) � (number of
outcomes with X � 3 and Y � 2)/(total number of out-
comes). Now use the product rule for counting to obtain
the numerator and denominator.]

b. Using the logic of part (a), obtain p(x, y). (This can be
thought of as a multivariate hypergeometric distribution—
sampling without replacement from a finite population
consisting of more than two categories.)

9. Each front tire on a particular type of vehicle is supposed to
be filled to a pressure of 26 psi. Suppose the actual air pres-
sure in each tire is a random variable—X for the right tire
and Y for the left tire, with joint pdf

f(x, y) � {K(x2 � y2) 20 � x � 30, 20 � y � 30
0 otherwise

a. What is the value of K?
b. What is the probability that both tires are underfilled?
c. What is the probability that the difference in air pressure

between the two tires is at most 2 psi?
d. Determine the (marginal) distribution of air pressure in

the right tire alone.
e. Are X and Y independent rv’s?

10. Annie and Alvie have agreed to meet between 5:00 P.M.
and 6:00 P.M. for dinner at a local health-food restaurant.
Let X � Annie’s arrival time and Y � Alvie’s arrival time.
Suppose X and Y are independent with each uniformly
distributed on the interval [5, 6].
a. What is the joint pdf of X and Y?
b. What is the probability that they both arrive between

5:15 and 5:45?
c. If the first one to arrive will wait only 10 min before leav-

ing to eat elsewhere, what is the probability that they
have dinner at the health-food restaurant? [Hint: The
event of interest is A � {(x, y):⏐x � y⏐ � �

1
6

�}.]

11. Two different professors have just submitted final exams for
duplication. Let X denote the number of typographical

errors on the first professor’s exam and Y denote the number
of such errors on the second exam. Suppose X has a Poisson
distribution with parameter �, Y has a Poisson distribution
with parameter 	, and X and Y are independent.
a. What is the joint pmf of X and Y?
b. What is the probability that at most one error is made on

both exams combined?
c. Obtain a general expression for the probability that the

total number of errors in the two exams is m (where m is a
nonnegative integer). [Hint: A � {(x, y): x � y � m} �
{(m, 0), (m � 1, 1), . . . , (1, m � 1), (0, m)}. Now sum
the joint pmf over (x, y) � A and use the binomial theo-
rem, which says that

�
m

k�0
� �akbm�k � (a � b)m

for any a, b.]

12. Two components of a minicomputer have the following
joint pdf for their useful lifetimes X and Y:

f(x, y) � {xe�x(1�y) x � 0 and y � 0
0 otherwise

a. What is the probability that the lifetime X of the first
component exceeds 3?

b. What are the marginal pdf’s of X and Y? Are the two life-
times independent? Explain.

c. What is the probability that the lifetime of at least one
component exceeds 3?

13. You have two lightbulbs for a particular lamp. Let X � the
lifetime of the first bulb and Y � the lifetime of the second
bulb (both in 1000s of hours). Suppose that X and Y are inde-
pendent and that each has an exponential distribution with
parameter � � 1.
a. What is the joint pdf of X and Y?
b. What is the probability that each bulb lasts at most 1000

hours (i.e., X � 1 and Y � 1)?
c. What is the probability that the total lifetime of the two

bulbs is at most 2? [Hint: Draw a picture of the region
A � {(x, y): x � 0, y � 0, x � y � 2} before integrating.]

d. What is the probability that the total lifetime is between
1 and 2?

14. Suppose that you have ten lightbulbs, that the lifetime of
each is independent of all the other lifetimes, and that each
lifetime has an exponential distribution with parameter �.
a. What is the probability that all ten bulbs fail before time t?
b. What is the probability that exactly k of the ten bulbs fail

before time t?
c. Suppose that nine of the bulbs have lifetimes that are

exponentially distributed with parameter � and that the
remaining bulb has a lifetime that is exponentially dis-
tributed with parameter 	 (it is made by another manu-
facturer). What is the probability that exactly five of the
ten bulbs fail before time t?

m

k



15. Consider a system consisting of three components as pic-
tured. The system will continue to function as long as the
first component functions and either component 2 or com-
ponent 3 functions. Let X1, X2, and X3 denote the lifetimes
of components 1, 2, and 3, respectively. Suppose the Xis are
independent of one another and each Xi has an exponential
distribution with parameter �.

a. Let Y denote the system lifetime. Obtain the cumulative
distribution function of Y and differentiate to obtain the
pdf. [Hint: F(y) � P(Y � y); express the event {Y � y}
in terms of unions and/or intersections of the three events
{X1 � y}, {X2 � y}, and {X3 � y}.]

b. Compute the expected system lifetime.

16. a. For f(x1, x2, x3) as given in Example 5.10, compute the
joint marginal density function of X1 and X3 alone (by
integrating over x2).

b. What is the probability that rocks of types 1 and 3 together
make up at most 50% of the sample? [Hint: Use the result
of part (a).]

c. Compute the marginal pdf of X1 alone. [Hint: Use the
result of part (a).]

17. An ecologist wishes to select a point inside a circular sam-
pling region according to a uniform distribution (in practice
this could be done by first selecting a direction and then
a distance from the center in that direction). Let X � the
x coordinate of the point selected and Y � the y coordinate
of the point selected. If the circle is centered at (0, 0) and has
radius R, then the joint pdf of X and Y is

f(x, y) � {�
�

1

R2
� x2 � y2 � R2

0 otherwise

a. What is the probability that the selected point is within
R/2 of the center of the circular region? [Hint: Draw a pic-
ture of the region of positive density D. Because f(x, y) is
constant on D, computing a probability reduces to com-
puting an area.]

b. What is the probability that both X and Y differ from 0 by
at most R/2?

c. Answer part (b) for R/�2� replacing R/2.
d. What is the marginal pdf of X? Of Y? Are X and Y inde-

pendent?

18. Refer to Exercise 1 and answer the following questions:
a. Given that X � 1, determine the conditional pmf of

Y—i.e., pY⏐X(0⏐1), pY⏐X(1⏐1), and pY⏐X(2⏐1).
b. Given that two hoses are in use at the self-service island,

what is the conditional pmf of the number of hoses in use
on the full-service island?

c. Use the result of part (b) to calculate the conditional
probability P(Y � 1⏐X � 2).

d. Given that two hoses are in use at the full-service island,
what is the conditional pmf of the number in use at the
self-service island?

19. The joint pdf of pressures for right and left front tires is
given in Exercise 9.
a. Determine the conditional pdf of Y given that X � x and

the conditional pdf of X given that Y � y.
b. If the pressure in the right tire is found to be 22 psi,

what is the probability that the left tire has a pressure
of at least 25 psi? Compare this to P(Y � 25).

c. If the pressure in the right tire is found to be 22 psi,
what is the expected pressure in the left tire, and what
is the standard deviation of pressure in this tire?

20. Let X1, X2, X3, X4, X5, and X6 denote the numbers of blue,
brown, green, orange, red, and yellow M&M candies,
respectively, in a sample of size n. Then these Xis have a
multinomial distribution. According to the M&M web site,
the color proportions are p1 � .24, p2 � .13, p3 � .16, p4 �
.20, p5 � .13, and p6 � .14.
a. If n � 12, what is the probability that there are exactly

two M&Ms of each color?
b. For n � 20, what is the probability that there are at most

five orange candies? [Hint: Think of an orange candy as
a success and any other color as a failure.]

c. In a sample of 20 M&Ms, what is the probability that the
number of candies that are blue, green, or orange is at
least 10?

21. Let X1, X2, and X3 be the lifetimes of components 1, 2, and
3 in a three-component system.
a. How would you define the conditional pdf of X3 given

that X1 � x1 and X2 � x2?
b. How would you define the conditional joint pdf of X2 and

X3 given that X1 � x1?

1

3

2
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5.2 Expected Values, Covariance,
and Correlation
We previously saw that any function h(X) of a single rv X is itself a random variable.
However, to compute E[h(X)], it was not necessary to obtain the probability distri-
bution of h(X); instead, E[h(X)] was computed as a weighted average of h(x) values,
where the weight function was the pmf p(x) or pdf f(x) of X. A similar result holds
for a function h(X, Y) of two jointly distributed random variables.



Five friends have purchased tickets to a certain concert. If the tickets are for seats
1–5 in a particular row and the tickets are randomly distributed among the five, what
is the expected number of seats separating any particular two of the five? Let X and
Y denote the seat numbers of the first and second individuals, respectively. Possible
(X, Y ) pairs are {(1, 2), (1, 3), . . . , (5, 4)}, and the joint pmf of (X, Y) is

p(x, y) � {�
2

1

0
� x � 1, . . . , 5; y � 1, . . . , 5; x � y

0 otherwise

The number of seats separating the two individuals is h(X, Y) � ⏐X � Y⏐ � 1. The 
accompanying table gives h(x, y) for each possible (x, y) pair.

h(x, y) | 1 2 4 5

1 | — 0 1 2 3
2 | 0 — 0 1 2

y 3 | 1 0 — 0 1
4 | 2 1 0 — 0
5 | 3 2 1 0 —

Thus

E[h(X, Y )] � ��
(x, y)

h(x, y) � p(x, y) � �
5

x�1
�
5

y�1
(⏐x � y⏐ � 1) � � 1 ■

x � y

In Example 5.5, the joint pdf of the amount X of almonds and amount Y of cashews
in a 1-lb can of nuts was

f (x, y) � {24xy 0 � x � 1, 0 � y � 1, x � y � 1
0 otherwise

If 1 lb of almonds costs the company $1.00, 1 lb of cashews costs $1.50, and 1 lb of
peanuts costs $.50, then the total cost of the contents of a can is

h(X, Y ) � (1)X � (1.5)Y � (.5)(1 � X � Y ) � .5 � .5X � Y

(since 1 � X � Y of the weight consists of peanuts). The expected total cost is

E[h(X, Y )] � 
�

��

�

��
h(x, y) � f (x, y) dx dy

� 
1

0

1�x

0
(.5 � .5x � y) � 24xy dy dx � $1.10 ■

The method of computing the expected value of a function h(X1, . . . , Xn) of 
n random variables is similar to that for two random variables. If the Xi s are dis-
crete, E[h(X1, . . . , Xn)] is an n-dimensional sum; if the Xi s are continuous, it is
an n-dimensional integral.

1
�
20

x

3

5.2 Expected Values, Covariance, and Correlation 197

Let X and Y be jointly distributed rv’s with pmf p(x, y) or pdf f (x, y) according
to whether the variables are discrete or continuous. Then the expected value of
a function h(X, Y ), denoted by E[h(X, Y )] or �h(X, Y ), is given by 

E [h(X, Y )]
�
x

�
y

h(x, y) � p(x, y) if X and Y are discrete

� {
∞

�∞

∞

�∞
h(x, y) � f (x, y) dx dy if X and Y are continuous

PROPOSITION

Example 5.13

Example 5.14
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Covariance
When two random variables X and Y are not independent, it is frequently of interest
to assess how strongly they are related to one another.

DEFINITION The covariance between two rv’s X and Y is

Cov(X, Y ) � E[(X � �X)(Y � �Y)]

�
x

�
y

(x � �X)(y � �Y)p(x, y) X, Y discrete

� {
�

��

�

��
(x � �X)(y � �Y)f (x, y) dx dy X, Y continuous

That is, since X � �X and Y � �Y are the deviations of the two variables from their
respective mean values, the covariance is the expected product of deviations. Note
that Cov(X, X) � E[(X � �X)2] � V(X).

The rationale for the definition is as follows. Suppose X and Y have a strong
positive relationship to one another, by which we mean that large values of X tend
to occur with large values of Y and small values of X with small values of Y. Then
most of the probability mass or density will be associated with (x � �X) and (y � �Y),
either both positive (both X and Y above their respective means) or both negative,
so the product (x � �X)(y � �Y) will tend to be positive. Thus for a strong positive
relationship, Cov(X, Y ) should be quite positive. For a strong negative relationship,
the signs of (x � �X) and (y � �Y) will tend to be opposite, yielding a negative
product. Thus for a strong negative relationship, Cov(X, Y ) should be quite nega-
tive. If X and Y are not strongly related, positive and negative products will tend to
cancel one another, yielding a covariance near 0. Figure 5.4 illustrates the different
possibilities. The covariance depends on both the set of possible pairs and the prob-
abilities. In Figure 5.4, the probabilities could be changed without altering the set
of possible pairs, and this could drastically change the value of Cov(X, Y ).

	   X
(c)

	   X
(b)

	Y	Y

y

	Y

	   X
(a)

x


      �

�      


y

x


      �

�      


y

x

Figure 5.4 p(x, y ) � 1/10 for each of ten pairs corresponding to indicated points; (a) positive
covariance; (b) negative covariance; (c) covariance near zero

Example 5.15 The joint and marginal pmf’s for X � automobile policy deductible amount and Y �
homeowner policy deductible amount in Example 5.1 were

p(x, y) | 0 200 x | 100 250 y | 0 100 200

x
100 | .20 .10 .20 pX(x) | .5 .5 pY(y) | .25 .25 .5
250 | .05 .15 .30

y

100
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from which �X � �xpX(x) � 175 and �Y � 125. Therefore,

Cov(X, Y ) � ��
(x, y)

(x � 175)(y � 125)p(x, y)

� (100 � 175)(0 � 125)(.20) � . . .

� (250 � 175)(200 � 125)(.30)

� 1875 ■

The following shortcut formula for Cov(X, Y ) simplifies the computations.

According to this formula, no intermediate subtractions are necessary; only at the end
of the computation is �X � �Y subtracted from E(XY). The proof involves expanding
(X � �X)(Y � �Y) and then taking the expected value of each term separately.

The joint and marginal pdf’s of X � amount of almonds and Y � amount of cashews
were

f(x, y) � {24xy 0 � x � 1, 0 � y � 1, x � y � 1
0 otherwise

fX(x) � {12x(1 � x)2 0 � x � 1
0 otherwise

with fY(y) obtained by replacing x by y in fX(x). It is easily verified that �X � �Y � �
2
5

�,
and

E(XY ) � 
�

��

�

��
xy f (x, y) dx dy � 
1

0

1�x

0
xy � 24xy dy dx

� 8
1

0
x2(1 � x)3 dx � �

1

2

5
�

Thus Cov(X, Y ) � �
1
2
5
� � (�

2
5

�)(�
2
5

�) � �
1
2
5
� � �

2
4
5
� � ��

7
2
5
�. A negative covariance is reasonable

here because more almonds in the can implies fewer cashews. ■

It might appear that the relationship in the insurance example is quite strong
since Cov(X, Y ) � 1875, whereas Cov(X, Y) � � �

7
2
5
� in the nut example would seem

to imply quite a weak relationship. Unfortunately, the covariance has a serious defect
that makes it impossible to interpret a computed value. In the insurance example,
suppose we had expressed the deductible amount in cents rather than in dollars. Then
100X would replace X, 100Y would replace Y, and the resulting covariance would be
Cov(100X, 100Y ) � (100)(100)Cov(X, Y) � 18,750,000. If, on the other hand, the
deductible amount had been expressed in hundreds of dollars, the computed covari-
ance would have been (.01)(.01)(1875) � .1875. The defect of covariance is that its
computed value depends critically on the units of measurement. Ideally, the choice
of units should have no effect on a measure of strength of relationship. This is
achieved by scaling the covariance.

Cov(X, Y) � E(XY) � �X � �YPROPOSITION

Example 5.16
(Example 5.5
continued)
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Correlation

DEFINITION The correlation coefficient of X and Y, denoted by Corr(X, Y ), �X,Y, or just �,
is defined by

�X,Y � �
C

�

ov

X

(

�

X

�

,

Y

Y)
�

It is easily verified that in the insurance scenario of Example 5.15, E(X2) � 36,250,
� 2

X � 36,250 � (175)2 � 5625, �X � 75, E(Y 2) � 22,500, � 2
Y � 6875, and �Y �

82.92. This gives

� � � .301 ■

The following proposition shows that � remedies the defect of Cov(X, Y ) and
also suggests how to recognize the existence of a strong (linear) relationship.

1875
��
(75)(82.92)

Example 5.17

1. If a and c are either both positive or both negative,

Corr(aX � b, cY � d) � Corr(X, Y )

2. For any two rv’s X and Y, �1 � Corr(X, Y) � 1.

PROPOSITION

1. If X and Y are independent, then � � 0, but � � 0 does not imply inde-
pendence.

2. � � 1 or �1 iff Y � aX � b for some numbers a and b with a � 0.

PROPOSITION

Statement 1 says precisely that the correlation coefficient is not affected by a linear
change in the units of measurement (if, say, X � temperature in °C, then 9X/5 � 32 �
temperature in °F). According to Statement 2, the strongest possible positive relation-
ship is evidenced by � � �1, whereas the strongest possible negative relationship cor-
responds to � � �1. The proof of the first statement is sketched in Exercise 35, and that
of the second appears in Supplementary Exercise 87 at the end of the chapter. For
descriptive purposes, the relationship will be described as strong if ⏐�⏐ � .8, moderate
if .5 � ⏐�⏐ � .8, and weak if ⏐�⏐ � .5.

If we think of p(x, y) or f(x, y) as prescribing a mathematical model for how the
two numerical variables X and Y are distributed in some population (height and weight,
verbal SAT score and quantitative SAT score, etc.), then � is a population character-
istic or parameter that measures how strongly X and Y are related in the population.
In Chapter 12, we will consider taking a sample of pairs (x1, y1), . . . , (xn, yn) from the
population. The sample correlation coefficient r will then be defined and used to make
inferences about �.

The correlation coefficient � is actually not a completely general measure of
the strength of a relationship.

This proposition says that � is a measure of the degree of linear relationship between 
X and Y, and only when the two variables are perfectly related in a linear manner will �
be as positive or negative as it can be. A � less than 1 in absolute value indicates only
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that the relationship is not completely linear, but there may still be a very strong non-
linear relation. Also, � � 0 does not imply that X and Y are independent, but only that
there is complete absence of a linear relationship. When � � 0, X and Y are said to be
uncorrelated. Two variables could be uncorrelated yet highly dependent because there
is a strong nonlinear relationship, so be careful not to conclude too much from know-
ing that � � 0.

Let X and Y be discrete rv’s with joint pmf

p(x, y) � {�
1

4
� (x, y) � (�4, 1), (4, �1), (2, 2), (�2, �2)

0 otherwise

The points that receive positive probability mass are identified on the (x, y) coordi-
nate system in Figure 5.5. It is evident from the figure that the value of X is completely
determined by the value of Y and vice versa, so the two variables are completely
dependent. However, by symmetry �X � �Y � 0 and E(XY) � (�4)�

1
4

� � (�4)�
1
4

� �
(4)�

1
4

� � (4)�
1
4

� � 0, so Cov(X, Y) � E(XY) � �X � �Y � 0 and thus �X,Y � 0. Although
there is perfect dependence, there is also complete absence of any linear relationship!

Example 5.18

2

1


1


2

1 2 3 4
1
2
3
4

Figure 5.5 The population of pairs for Example 5.18 ■

A value of � near 1 does not necessarily imply that increasing the value of
X causes Y to increase. It implies only that large X values are associated with
large Y values. For example, in the population of children, vocabulary size and num-
ber of cavities are quite positively correlated, but it is certainly not true that cavities
cause vocabulary to grow. Instead, the values of both these variables tend to increase
as the value of age, a third variable, increases. For children of a fixed age, there is
probably a very low correlation between number of cavities and vocabulary size. In
summary, association (a high correlation) is not the same as causation.

EXERCISES Section 5.2 (22–36)

22. An instructor has given a short quiz consisting of two parts.
For a randomly selected student, let X � the number of points
earned on the first part and Y � the number of points earned
on the second part. Suppose that the joint pmf of X and Y is
given in the accompanying table.

y
p(x, y) | 0 5 10 15

0 | .02 .06 .02 .10
x 5 | .04 .15 .20 .10

10 | .01 .15 .14 .01

a. If the score recorded in the grade book is the total num-
ber of points earned on the two parts, what is the expected
recorded score E(X � Y)?

b. If the maximum of the two scores is recorded, what is the
expected recorded score?

23. The difference between the number of customers in line at
the express checkout and the number in line at the super-
express checkout in Exercise 3 is X1 � X2. Calculate the
expected difference.

24. Six individuals, including A and B, take seats around a circu-
lar table in a completely random fashion. Suppose the seats
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are numbered 1, . . . , 6. Let X � A’s seat number and Y � B’s
seat number. If A sends a written message around the table
to B in the direction in which they are closest, how many
individuals (including A and B) would you expect to handle
the message?

25. A surveyor wishes to lay out a square region with each side
having length L. However, because of measurement error, he
instead lays out a rectangle in which the north–south sides
both have length X and the east–west sides both have length
Y. Suppose that X and Y are independent and that each 
is uniformly distributed on the interval [L � A, L � A]
(where 0 � A � L). What is the expected area of the result-
ing rectangle?

26. Consider a small ferry that can accommodate cars and buses.
The toll for cars is $3, and the toll for buses is $10. Let X and
Y denote the number of cars and buses, respectively, carried
on a single trip. Suppose the joint distribution of X and Y is
as given in the table of Exercise 7. Compute the expected
revenue from a single trip.

27. Annie and Alvie have agreed to meet for lunch between noon
(0:00 P.M.) and 1:00 P.M. Denote Annie’s arrival time by X,
Alvie’s by Y, and suppose X and Y are independent with pdf’s

fX(x) � {3x2 0 � x � 1
0 otherwise

fY(y) � {2y 0 � y � 1
0 otherwise

What is the expected amount of time that the one who
arrives first must wait for the other person? [Hint: h(X, Y ) �

⏐X � Y⏐.]

28. Show that if X and Y are independent rv’s, then E(XY) �
E(X) � E(Y). Then apply this in Exercise 25. [Hint: Consider
the continuous case with f(x, y) � fX(x) � fY(y).]

29. Compute the correlation coefficient � for X and Y of
Example 5.16 (the covariance has already been computed).

30. a. Compute the covariance for X and Y in Exercise 22.
b. Compute � for X and Y in the same exercise.

31. a. Compute the covariance between X and Y in Exercise 9.
b. Compute the correlation coefficient � for this X and Y.

32. Reconsider the minicomputer component lifetimes X and
Y as described in Exercise 12. Determine E(XY ). What can
be said about Cov(X, Y ) and �?

33. Use the result of Exercise 28 to show that when X and Y are
independent, Cov(X, Y) � Corr(X, Y) � 0.

34. a. Recalling the definition of � 2 for a single rv X, write a
formula that would be appropriate for computing the vari-
ance of a function h(X, Y) of two random variables.
[Hint: Remember that variance is just a special expected
value.]

b. Use this formula to compute the variance of the recorded
score h(X, Y) [� max(X, Y)] in part (b) of Exercise 22.

35. a. Use the rules of expected value to show that Cov(aX � b,
cY � d) � ac Cov(X, Y).

b. Use part (a) along with the rules of variance and standard
deviation to show that Corr(aX � b, cY � d) � Corr(X, Y)
when a and c have the same sign.

c. What happens if a and c have opposite signs?

36. Show that if Y � aX � b (a � 0), then Corr(X, Y) � �1 or �1.
Under what conditions will � � �1?

5.3 Statistics and Their Distributions

The observations in a single sample were denoted in Chapter 1 by x1, x2, . . . , xn.
Consider selecting two different samples of size n from the same population distri-
bution. The xi s in the second sample will virtually always differ at least a bit from
those in the first sample. For example, a first sample of n � 3 cars of a particular
type might result in fuel efficiencies x1 � 30.7, x2 � 29.4, x3 � 31.1, whereas a sec-
ond sample may give x1 � 28.8, x2 � 30.0, and x3 � 31.1. Before we obtain data,
there is uncertainty about the value of each xi. Because of this uncertainty, before the
data becomes available we view each observation as a random variable and denote
the sample by X1, X2, . . . , Xn (uppercase letters for random variables).

This variation in observed values in turn implies that the value of any function 
of the sample observations—such as the sample mean, sample standard deviation, or
sample fourth spread—also varies from sample to sample. That is, prior to obtaining 
x1, . . . , xn, there is uncertainty as to the value of x�, the value of s, and so on.

Suppose that material strength for a randomly selected specimen of a particular type
has a Weibull distribution with parameter values � � 2 (shape) and � � 5 (scale).

Example 5.19
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The corresponding density curve is shown in Figure 5.6. Formulas from Section 4.5
give

� � E(X) � 4.4311 ~� � 4.1628 � 2 � V(X) � 5.365 � � 2.316

The mean exceeds the median because of the distribution’s positive skew.

Figure 5.6 The Weibull density curve for Example 5.19

We used MINITAB to generate six different samples, each with n � 10, from
this distribution (material strengths for six different groups of ten specimens each).
The results appear in Table 5.1, followed by the values of the sample mean, sample
median, and sample standard deviation for each sample. Notice first that the ten
observations in any particular sample are all different from those in any other sam-
ple. Second, the six values of the sample mean are all different from one another, as
are the six values of the sample median and the six values of the sample standard
deviation. The same is true of the sample 10% trimmed means, sample fourth spreads,
and so on.

0 5 10
0

15

.05

.10

.15

x

f(x)

Table 5.1 Samples from the Weibull Distribution of Example 5.19

Sample 1 2 3 4 5 6

1 6.1171 5.07611 3.46710 1.55601 3.12372 8.93795
2 4.1600 6.79279 2.71938 4.56941 6.09685 3.92487
3 3.1950 4.43259 5.88129 4.79870 3.41181 8.76202
4 0.6694 8.55752 5.14915 2.49759 1.65409 7.05569
5 1.8552 6.82487 4.99635 2.33267 2.29512 2.30932
6 5.2316 7.39958 5.86887 4.01295 2.12583 5.94195
7 2.7609 2.14755 6.05918 9.08845 3.20938 6.74166
8 10.2185 8.50628 1.80119 3.25728 3.23209 1.75468
9 5.2438 5.49510 4.21994 3.70132 6.84426 4.91827

10 4.5590 4.04525 2.12934 5.50134 4.20694 7.26081
4.401 5.928 4.229 4.132 3.620 5.761

x̃ 4.360 6.144 4.608 3.857 3.221 6.342
s 2.642 2.062 1.611 2.124 1.678 2.496

x
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Thus the sample mean, regarded as a statistic (before a sample has been selected or
an experiment carried out), is denoted by X�; the calculated value of this statistic is x�.
Similarly, S represents the sample standard deviation thought of as a statistic, and its
computed value is s. If samples of two different types of bricks are selected and the
individual compressive strengths are denoted by X1, . . . , Xm and Y1, . . . , Yn, respec-
tively, then the statistic X� � Y�, the difference between the two sample mean com-
pressive strengths, is often of great interest.

Any statistic, being a random variable, has a probability distribution. In particu-
lar, the sample mean X� has a probability distribution. Suppose, for example, that n � 2
components are randomly selected and the number of breakdowns while under war-
ranty is determined for each one. Possible values for the sample mean number of
breakdowns X� are 0 (if X1 � X2 � 0), .5 (if either X1 � 0 and X2 � 1 or X1 � 1 and
X2 � 0), 1, 1.5, . . . . The probability distribution of X� specifies P(X� � 0), P(X� � .5), and
so on, from which other probabilities such as P(1 � X� � 3) and P(X� � 2.5) can be cal-
culated. Similarly, if for a sample of size n � 2, the only possible values of the sample
variance are 0, 12.5, and 50 (which is the case if X1 and X2 can each take on only the
values 40, 45, or 50), then the probability distribution of S2 gives P(S2 � 0),
P(S2 � 12.5), and P(S2 � 50). The probability distribution of a statistic is sometimes
referred to as its sampling distribution to emphasize that it describes how the statistic
varies in value across all samples that might be selected.

Random Samples
The probability distribution of any particular statistic depends not only on the pop-
ulation distribution (normal, uniform, etc.) and the sample size n but also on the
method of sampling. Consider selecting a sample of size n � 2 from a population
consisting of just the three values 1, 5, and 10, and suppose that the statistic of
interest is the sample variance. If sampling is done “with replacement,” then
S 2 � 0 will result if X1 � X2. However, S 2 cannot equal 0 if sampling is “without
replacement.” So P(S 2 � 0) � 0 for one sampling method, and this probability is

DEFINITION A statistic is any quantity whose value can be calculated from sample data.
Prior to obtaining data, there is uncertainty as to what value of any particular sta-
tistic will result. Therefore, a statistic is a random variable and will be denoted
by an uppercase letter; a lowercase letter is used to represent the calculated or
observed value of the statistic.

Furthermore, the value of the sample mean from any particular sample can be
regarded as a point estimate (“point” because it is a single number, corresponding to
a single point on the number line) of the population mean �, whose value is known
to be 4.4311. None of the estimates from these six samples is identical to what is
being estimated. The estimates from the second and sixth samples are much too
large, whereas the fifth sample gives a substantial underestimate. Similarly, the sam-
ple standard deviation gives a point estimate of the population standard deviation. All
six of the resulting estimates are in error by at least a small amount.

In summary, the values of the individual sample observations vary from sample
to sample, so in general the value of any quantity computed from sample data, and the
value of a sample characteristic used as an estimate of the corresponding population
characteristic, will virtually never coincide with what is being estimated. ■
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positive for the other method. Our next definition describes a sampling method
often encountered (at least approximately) in practice.

DEFINITION The rv’s X1, X2, . . . , Xn are said to form a (simple) random sample of size
n if

1. The Xi s are independent rv’s.

2. Every Xi has the same probability distribution.

Conditions 1 and 2 can be paraphrased by saying that the Xi s are independent and
identically distributed (iid). If sampling is either with replacement or from an infi-
nite (conceptual) population, Conditions 1 and 2 are satisfied exactly. These condi-
tions will be approximately satisfied if sampling is without replacement, yet the
sample size n is much smaller than the population size N. In practice, if n/N � .05
(at most 5% of the population is sampled), we can proceed as if the Xi s form a ran-
dom sample. The virtue of this sampling method is that the probability distribution
of any statistic can be more easily obtained than for any other sampling method.

There are two general methods for obtaining information about a statistic’s
sampling distribution. One method involves calculations based on probability rules,
and the other involves carrying out a simulation experiment.

Deriving a Sampling Distribution
Probability rules can be used to obtain the distribution of a statistic provided that it
is a “fairly simple” function of the Xi s and either there are relatively few different X
values in the population or else the population distribution has a “nice” form. Our
next two examples illustrate such situations.

A large automobile service center charges $40, $45, and $50 for a tune-up of four-,
six-, and eight-cylinder cars, respectively. If 20% of its tune-ups are done on four-
cylinder cars, 30% on six-cylinder cars, and 50% on eight-cylinder cars, then the prob-
ability distribution of revenue from a single randomly selected tune-up is given by

x | 40 45 50

p(x) | .2 .3 .5 with � � 46.5, � 2 � 15.25
(5.2)

Suppose on a particular day only two servicing jobs involve tune-ups. Let X1 � the
revenue from the first tune-up and X2 � the revenue from the second. Suppose that
X1 and X2 are independent, each with the probability distribution shown in (5.2)
[so that X1 and X2 constitute a random sample from the distribution (5.2)]. Table 5.2
lists possible (x1, x2) pairs, the probability of each [computed using (5.2) and the
assumption of independence], and the resulting x� and s2 values. Now to obtain the
probability distribution of X�, the sample average revenue per tune-up, we must con-
sider each possible value x� and compute its probability. For example, x� � 45 occurs
three times in the table with probabilities .10, .09, and .10, so

pX�(45) � P(X� � 45) � .10 � .09 � .10 � .29
Similarly,

pS 2(50) � P(S 2 � 50) � P(X1 � 40, X2 � 50 or X1 � 50, X2 � 40)

� .10 � .10 � .20

Example 5.20



206 CHAPTER 5 Joint Probability Distributions and Random Samples

Table 5.2 Outcomes, Probabilities, and Values
of and s2 for Example 5.20

x1 x2 p(x1, x2) x� s2

40 40 .04 40 0
40 45 .06 42.5 12.5
40 50 .10 45 50
45 40 .06 42.5 12.5
45 45 .09 45 0
45 50 .15 47.5 12.5
50 40 .10 45 50
50 45 .15 47.5 12.5
50 50 .25 50 0

x

.3

.2

.5

.04
.12

.29 .30
.25

4540 50 40 42.5 45 47.5 50

Figure 5.7 Probability histograms for the underlying distribution and X� distribution in Example 5.20

The complete sampling distributions of X� and S 2 appear in (5.3) and (5.4).

x� | 40 42.5 45 47.5 50

pX�(x�) | .04 .12 .29 .30 .25 
(5.3)

s2 | 0 12.5 50

pS2(s2) | .38 .42 .20
(5.4)

Figure 5.7 pictures a probability histogram for both the original distribution (5.2)
and the X� distribution (5.3). The figure suggests first that the mean (expected value)
of the X� distribution is equal to the mean 46.5 of the original distribution, since both
histograms appear to be centered at the same place.

From (5.3),

�X� � E(X�) � �x�pX�(x�) � (40)(.04) � . . . � (50)(.25) � 46.5 � �

Second, it appears that the X� distribution has smaller spread (variability) than the
original distribution, since probability mass has moved in toward the mean. Again
from (5.3),

� 2
X� � V(X�) � �x�

2 � pX�(x�) � �2
X�

� (40)2(.04) � . . . � (50)2(.25) � (46.5)2

� 7.625 � �

The variance of X� is precisely half that of the original variance (because n � 2).
The mean value of S 2 is

�S2 � E(S2) � �s2 � pS2(s2)

� (0)(.38) � (12.5)(.42) � (50)(.20) � 15.25 � � 2

� 2

�
2

15.25
�

2
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That is, the X� sampling distribution is centered at the population mean �, and the S 2

sampling distribution is centered at the population variance � 2.
If four tune-ups had been done on the day of interest, the sample average

revenue X� would be based on a random sample of four Xis, each having the distribu-
tion (5.2). More calculation eventually yields the pmf of X� for n � 4 as

x� | 40 41.25 42.5 43.75 45 46.25 47.5 48.75 50

pX�(x�) | .0016 .0096 .0376 .0936 .1761 .2340 .2350 .1500 .0625

From this, �X� � 46.50 �� and �
2
X� � 3.8125 � � 2/4. Figure 5.8 is a probability his-

togram of this pmf.

40 42.5 45 47.5 50

Figure 5.8 Probability histogram for X� based on n � 4 in Example 5.20 ■

Example 5.20 should suggest first of all that the computation of pX�(x�) and
pS

2(s2) can be tedious. If the original distribution (5.2) had allowed for more than
three possible values 40, 45, and 50, then even for n � 2 the computations would
have been more involved. The example should also suggest, however, that there are
some general relationships between E(X�), V(X�), E(S 2), and the mean � and variance
� 2 of the original distribution. These are stated in the next section. Now consider an
example in which the random sample is drawn from a continuous distribution.

Service time for a certain type of bank transaction is a random variable having an expo-
nential distribution with parameter �. Suppose X1 and X2 are service times for two dif-
ferent customers, assumed independent of each other. Consider the total service time
To � X1 � X2 for the two customers, also a statistic. The cdf of To is, for t � 0,

FT0
(t) � P(X1 � X2 � t) � 

 f(x1, x2) dx1 dx2

{(x1, x2):x1�x2�t}

� 
t

0

t�x1

0
�e��x1 � �e��x2 dx2 dx1 � 
t

0
[�e��x1 � �e��t] dx1

� 1 � e��t � �te��t

The region of integration is pictured in Figure 5.9.

Example 5.21
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x
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 x1)

Figure 5.9 Region of integration to obtain cdf of To in Example 5.21
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The pdf of To is obtained by differentiating FTo
(t):

fT0
(t) � {�2te��t t � 0

0 t � 0 (5.5)

This is a gamma pdf (� � 2 and � � 1/�). The pdf of X� � To/2 is obtained from the
relation {X� � x�} iff {To � 2x�} as

fX�(x�) � {4�2x�e�2�x� x� � 0
0 x� � 0 (5.6)

The mean and variance of the underlying exponential distribution are � � 1/� and
� 2 � 1/�2. From Expressions (5.5) and (5.6), it can be verified that E(X�) � 1/�,
V(X�) � 1/(2�2), E(To) � 2/�, and V(To) � 2/�2. These results again suggest some
general relationships between means and variances of X�, To, and the underlying dis-
tribution. ■

Simulation Experiments
The second method of obtaining information about a statistic’s sampling distribution
is to perform a simulation experiment. This method is usually used when a deriva-
tion via probability rules is too difficult or complicated to be carried out. Such an
experiment is virtually always done with the aid of a computer. The following char-
acteristics of an experiment must be specified:

1. The statistic of interest (X�, S, a particular trimmed mean, etc.)

2. The population distribution (normal with � � 100 and � � 15, uniform with
lower limit A � 5 and upper limit B � 10, etc.)

3. The sample size n (e.g., n � 10 or n � 50)

4. The number of replications k (e.g., k � 500)

Then use a computer to obtain k different random samples, each of size n, from the
designated population distribution. For each such sample, calculate the value of the sta-
tistic and construct a histogram of the k calculated values. This histogram gives the
approximate sampling distribution of the statistic. The larger the value of k, the better
the approximation will tend to be (the actual sampling distribution emerges as k 0 �).
In practice, k � 500 or 1000 is usually enough if the statistic is “fairly simple.”

The population distribution for our first simulation study is normal with � � 8.25
and � � .75, as pictured in Figure 5.10. [The article “Platelet Size in Myocardial
Infarction” (British Med. J., 1983: 449–451) suggests this distribution for platelet
volume in individuals with no history of serious heart problems.]

Example 5.22

�

6.00 6.75 7.50 9.00 9.75 10.50

� 8.25	

⎧⎨⎩

    � .75

Figure 5.10 Normal distribution, with � � 8.25 and � � .75
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We actually performed four different experiments, with 500 replications for each
one. In the first experiment, 500 samples of n � 5 observations each were generated
using MINITAB, and the sample sizes for the other three were n � 10, n � 20, and
n � 30, respectively. The sample mean was calculated for each sample, and the
resulting histograms of x� values appear in Figure 5.11.
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Figure 5.11 Sample histograms for x� based on 500 samples, each consisting of n observations:
(a) n � 5; (b) n � 10; (c) n � 20; (d) n � 30

The first thing to notice about the histograms is their shape. To a reasonable
approximation, each of the four looks like a normal curve. The resemblance would
be even more striking if each histogram had been based on many more than 500 x�
values. Second, each histogram is centered approximately at 8.25, the mean of the
population being sampled. Had the histograms been based on an unending sequence
of x� values, their centers would have been exactly the population mean, 8.25.
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The final aspect of the histograms to note is their spread relative to one
another. The smaller the value of n, the greater the extent to which the sampling
distribution spreads out about the mean value. This is why the histograms for n � 20
and n � 30 are based on narrower class intervals than those for the two smaller
sample sizes. For the larger sample sizes, most of the x� values are quite close to
8.25. This is the effect of averaging. When n is small, a single unusual x value can
result in an x� value far from the center. With a larger sample size, any unusual x
values, when averaged in with the other sample values, still tend to yield an x�
value close to �. Combining these insights yields a result that should appeal to
your intuition: X� based on a large n tends to be closer to � than does X� based
on a small n. ■

Consider a simulation experiment in which the population distribution is quite
skewed. Figure 5.12 shows the density curve for lifetimes of a certain type of elec-
tronic control [this is actually a lognormal distribution with E(ln(X)) � 3 and
V(ln(X)) � .16]. Again the statistic of interest is the sample mean X�. The experiment
utilized 500 replications and considered the same four sample sizes as in Example
5.22. The resulting histograms along with a normal probability plot from MINITAB
for the 500 x� values based on n � 30 are shown in Figure 5.13.

Example 5.23
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Figure 5.12 Density curve for the simulation experiment of Example 5.23 [E(X) � 21.7584,
V(X) � 82.1449]

Unlike the normal case, these histograms all differ in shape. In particular, they
become progressively less skewed as the sample size n increases. The average of the
500 x� values for the four different sample sizes are all quite close to the mean value
of the population distribution. If each histogram had been based on an unending
sequence of x� values rather than just 500, all four would have been centered at
exactly 21.7584. Thus different values of n change the shape but not the center of the
sampling distribution of X�. Comparison of the four histograms in Figure 5.13 also
shows that as n increases, the spread of the histograms decreases. Increasing n
results in a greater degree of concentration about the population mean value and
makes the histogram look more like a normal curve. The histogram of Figure 5.13(d)
and the normal probability plot in Figure 5.13(e) provide convincing evidence that a
sample size of n � 30 is sufficient to overcome the skewness of the population dis-
tribution and give an approximately normal X� sampling distribution.
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Figure 5.13 Results of the simulation experiment of Example 5.23: (a) x� histogram for n � 5; (b)
x� histogram for n � 10; (c) xx� histogram for n � 20; (d) x� histogram for n � 30; (e) normal prob-
ability plot for n � 30 (from MINITAB) ■
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EXERCISES Section 5.3 (37–45)

37. A particular brand of dishwasher soap is sold in three
sizes: 25 oz, 40 oz, and 65 oz. Twenty percent of all pur-
chasers select a 25-oz box, 50% select a 40-oz box, and the
remaining 30% choose a 65-oz box. Let X1 and X2 denote
the package sizes selected by two independently selected
purchasers.
a. Determine the sampling distribution of X�, calculate E(X�),

and compare to �.
b. Determine the sampling distribution of the sample vari-

ance S 2, calculate E(S 2), and compare to � 2.

38. There are two traffic lights on my way to work. Let X1 be the
number of lights at which I must stop, and suppose that the
distribution of X1 is as follows:

x1 | 0 1 2 � � 1.1, � 2 � .49

p(x1) | .2 .5 .3

Let X2 be the number of lights at which I must stop on the
way home; X2 is independent of X1. Assume that X2 has the
same distribution as X1, so that X1, X2 is a random sample of
size n � 2.
a. Let To � X1 � X2, and determine the probability distri-

bution of To.
b. Calculate �To

. How does it relate to �, the population
mean?

c. Calculate � 2
To

. How does it relate to � 2, the population
variance?

39. It is known that 80% of all brand A zip drives work in a sat-
isfactory manner throughout the warranty period (are “suc-
cesses”). Suppose that n � 10 drives are randomly selected.
Let X � the number of successes in the sample. The statis-
tic X/n is the sample proportion (fraction) of successes.
Obtain the sampling distribution of this statistic. [Hint: One
possible value of X/n is .3, corresponding to X � 3. What is
the probability of this value (what kind of random variable
is X)?]

40. A box contains ten sealed envelopes numbered 
1, . . . , 10. The first five contain no money, the next three
each contains $5, and there is a $10 bill in each of the last
two. A sample of size 3 is selected with replacement (so
we have a random sample), and you get the largest amount
in any of the envelopes selected. If X1, X2, and X3 denote
the amounts in the selected envelopes, the statistic of
interest is M � the maximum of X1, X2, and X3.
a. Obtain the probability distribution of this statistic.
b. Describe how you would carry out a simulation experi-

ment to compare the distributions of M for various sam-
ple sizes. How would you guess the distribution would
change as n increases?

41. Let X be the number of packages being mailed by a ran-
domly selected customer at a certain shipping facility.
Suppose the distribution of X is as follows:

x | 1 2 3 4

p(x) | .4 .3 .2 .1

a. Consider a random sample of size n � 2 (two customers),
and let X� be the sample mean number of packages shipped.
Obtain the probability distribution of X�.

b. Refer to part (a) and calculate P(X� � 2.5).
c. Again consider a random sample of size n � 2, but now

focus on the statistic R � the sample range (difference
between the largest and smallest values in the sample).
Obtain the distribution of R. [Hint: Calculate the value of R
for each outcome and use the probabilities from part (a).]

d. If a random sample of size n � 4 is selected, what is
P(X� � 1.5)? [Hint: You should not have to list all possi-
ble outcomes, only those for which x� � 1.5.]

42. A company maintains three offices in a certain region, each
staffed by two employees. Information concerning yearly
salaries (1000s of dollars) is as follows:

Office 1 1 2 2 3 3
Employee 1 2 3 4 5 6
Salary 29.7 33.6 30.2 33.6 25.8 29.7

a. Suppose two of these employees are randomly selected
from among the six (without replacement). Determine
the sampling distribution of the sample mean salary X�.

b. Suppose one of the three offices is randomly selected.
Let X1 and X2 denote the salaries of the two employees.
Determine the sampling distribution of X�.

c. How does E(X�) from parts (a) and (b) compare to the
population mean salary �?

43. Suppose the amount of liquid dispensed by a certain machine
is uniformly distributed with lower limit A � 8 oz and upper
limit B � 10 oz. Describe how you would carry out simula-
tion experiments to compare the sampling distribution of
the (sample) fourth spread for sample sizes n � 5, 10, 20,
and 30.

44. Carry out a simulation experiment using a statistical com-
puter package or other software to study the sampling dis-
tribution of X� when the population distribution is Weibull
with � � 2 and � � 5, as in Example 5.19. Consider the
four sample sizes n � 5, 10, 20, and 30, and in each case use
500 replications. For which of these sample sizes does the X�
sampling distribution appear to be approximately normal?

45. Carry out a simulation experiment using a statistical com-
puter package or other software to study the sampling dis-
tribution of X� when the population distribution is lognormal
with E(ln(X)) � 3 and V(ln(X)) � 1. Consider the four sam-
ple sizes n � 10, 20, 30, and 50, and in each case use 500
replications. For which of these sample sizes does the X�
sampling distribution appear to be approximately normal?
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The importance of the sample mean X� springs from its use in drawing conclusions
about the population mean �. Some of the most frequently used inferential proce-
dures are based on properties of the sampling distribution of X�. A preview of these
properties appeared in the calculations and simulation experiments of the previous
section, where we noted relationships between E(X�) and � and also among V(X�), � 2,
and n.

5.4 The Distribution of the Sample Mean

Let X1, X2, . . . , Xn be a random sample from a distribution with mean value �
and standard deviation �. Then

1. E(X�) � �X� � �

2. V(X�) � � 2
X� � � 2/n and �X� � �/�n�

In addition, with To � X1 � . . . � Xn (the sample total), E(To) � n�,
V(To) � n� 2, and �To

� �n��.

PROPOSITION

Example 5.24

Proofs of these results are deferred to the next section. According to Result 1, the
sampling (i.e., probability) distribution of X� is centered precisely at the mean of the
population from which the sample has been selected. Result 2 shows that the X� dis-
tribution becomes more concentrated about � as the sample size n increases. In
marked contrast, the distribution of To becomes more spread out as n increases.
Averaging moves probability in toward the middle, whereas totaling spreads proba-
bility out over a wider and wider range of values.

In a notched tensile fatigue test on a titanium specimen, the expected number of
cycles to first acoustic emission (used to indicate crack initiation) is � � 28,000, and
the standard deviation of the number of cycles is � � 5000. Let X1, X2, . . . , X25 be
a random sample of size 25, where each Xi is the number of cycles on a different
randomly selected specimen. Then the expected value of the sample mean number
of cycles until first emission is E(X�) � � � 28,000, and the expected total number of
cycles for the 25 specimens is E(To) � n� � 25(28,000) � 700,000. The standard
deviations of X� and To are

�X� � �/�n� � � 1000

�To
� �n�� � �2�5�(5000) � 25,000

If the sample size increases to n � 100, E(X�) is unchanged, but ��� � 500, half of its
previous value (the sample size must be quadrupled to halve the standard deviation
of X�). ■

The Case of a Normal Population Distribution
The simulation experiment of Example 5.22 indicated that when the population dis-
tribution is normal, each histogram of x� values is well approximated by a normal
curve.

5000
�
�2�5�
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We know everything there is to know about the X� and To distributions when the pop-
ulation distribution is normal. In particular, probabilities such as P(a � X� � b) and
P(c � To � d) can be obtained simply by standardizing. Figure 5.14 illustrates the
proposition.

Let X1, X2, . . . , Xn be a random sample from a normal distribution with mean
� and standard deviation �. Then for any n, X� is normally distributed (with
mean � and standard deviation �/�n�), as is To (with mean n� and standard
deviation �n��).*

PROPOSITION

X distribution when n � 10

X distribution when n � 4

Population distribution

Figure 5.14 A normal population distribution and X� sampling distributions

The time that it takes a randomly selected rat of a certain subspecies to find its
way through a maze is a normally distributed rv with � � 1.5 min and � � .35
min. Suppose five rats are selected. Let X1, . . . , X5 denote their times in the maze.
Assuming the Xi s to be a random sample from this normal distribution, what is the
probability that the total time To � X1 � . . . � X5 for the five is between 6 and 8
min? By the proposition, To has a normal distribution with �To

� n� � 5(1.5) � 7.5
and variance �2

To
� n�2 � 5(.1225) � .6125, so �To

� .783. To standardize To, subtract
�To

and divide by �To
:

P(6 � To � 8) � P� � Z � �
� P(�1.92 � Z � .64) � �(.64) � �(�1.92) � .7115

Determination of the probability that the sample average time X� (a normally distrib-
uted variable) is at most 2.0 min requires �X� � � � 1.5 and �X� � �/�n� �
.35/�5� � .1565. Then

P(X� � 2.0) � P�Z � � � P(Z � 3.19) � �(3.19) � .9993 ■
2.0 � 1.5
��

.1565

8 � 7.5
�

.783

6 � 7.5
�

.783

Example 5.25

* A proof of the result for To when n � 2 is possible using the method in Example 5.21, but the details
are messy. The general result is usually proved using a theoretical tool called a moment generating
function. One of the chapter references can be consulted for more information.
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The Central Limit Theorem
When the Xi s are normally distributed, so is X� for every sample size n. The simula-
tion experiment of Example 5.23 suggests that even when the population distribution
is highly nonnormal, averaging produces a distribution more bell-shaped than the
one being sampled. A reasonable conjecture is that if n is large, a suitable normal
curve will approximate the actual distribution of X�. The formal statement of this
result is the most important theorem of probability.

Example 5.26

THEOREM The Central Limit Theorem (CLT)

Let X1, X2, . . . , Xn be a random sample from a distribution with mean � and
variance �2. Then if n is sufficiently large, X� has approximately a normal dis-
tribution with �X� �� and �2

X� � �2/n, and To also has approximately a normal
distribution with �To

� n�, �2
To

� n�2. The larger the value of n, the better the
approximation.

Figure 5.15 illustrates the Central Limit Theorem. According to the CLT, when n is
large and we wish to calculate a probability such as P(a � X� � b), we need only
“pretend” that X� is normal, standardize it, and use the normal table. The resulting
answer will be approximately correct. The exact answer could be obtained only by
first finding the distribution of X�, so the CLT provides a truly impressive shortcut.
The proof of the theorem involves much advanced mathematics.

	

X distribution for
small to moderate n

Population
distribution

X distribution for
large n (approximately normal)

Figure 5.15 The Central Limit Theorem illustrated

The amount of a particular impurity in a batch of a certain chemical product is a ran-
dom variable with mean value 4.0 g and standard deviation 1.5 g. If 50 batches are
independently prepared, what is the (approximate) probability that the sample aver-
age amount of impurity X� is between 3.5 and 3.8 g? According to the rule of thumb
to be stated shortly, n � 50 is large enough for the CLT to be applicable. X� then
has approximately a normal distribution with mean value �X� � 4.0 and �X� �
1.5/�5�0� � .2121, so

P(3.5 � X� � 3.8) � P� � Z � �
� �(�.94) � �(�2.36) � .1645 ■

A certain consumer organization customarily reports the number of major defects
for each new automobile that it tests. Suppose the number of such defects for a
certain model is a random variable with mean value 3.2 and standard deviation 2.4.

3.8 � 4.0
��

.2121

3.5 � 4.0
��

.2121

Example 5.27



216 CHAPTER 5 Joint Probability Distributions and Random Samples

.175
.15

.125

.10
.075

.05

.025

42.5 45 47.5 50	40

(b)

Figure 5.16 (a) Probability distribution of X� for n � 8; (b) probability histogram and normal
approximation to the distribution of X� when the original distribution is as in Example 5.20

Among 100 randomly selected cars of this model, how likely is it that the sample aver-
age number of major defects exceeds 4? Let Xi denote the number of major defects for
the ith car in the random sample. Notice that Xi is a discrete rv, but the CLT is applica-
ble whether the variable of interest is discrete or continuous. Also, although the fact that
the standard deviation of this nonnegative variable is quite large relative to the mean
value suggests that its distribution is positively skewed, the large sample size implies
that X� does have approximately a normal distribution. Using �X� � 3.2 and �X� � .24,

P(X� � 4) � P�Z � � � 1 � �(3.33) � .0004 ■

The CLT provides insight into why many random variables have probability
distributions that are approximately normal. For example, the measurement error in
a scientific experiment can be thought of as the sum of a number of underlying per-
turbations and errors of small magnitude.

Although the usefulness of the CLT for inference will soon be apparent, the
intuitive content of the result gives many beginning students difficulty. Again look-
ing back to Figure 5.7, the probability histogram on the left is a picture of the dis-
tribution being sampled. It is discrete and quite skewed so does not look at all like a
normal distribution. The distribution of X� for n � 2 starts to exhibit some symmetry,
and this is even more pronounced for n � 4 in Figure 5.8. Figure 5.16 contains the
probability distribution of X� for n � 8, as well as a probability histogram for this dis-
tribution. With �X� � � � 46.5 and �X� � �/�n� � 3.905/�8� � 1.38, if we fit a nor-
mal curve with this mean and standard deviation through the histogram of X�, the
areas of rectangles in the probability histogram are reasonably well approximated by
the normal curve areas, at least in the central part of the distribution. The picture for
To is similar except that the horizontal scale is much more spread out, with To rang-
ing from 320 (x� � 40) to 400 (x� � 50).

4 � 3.2
�

.24

x� | 40 40.625 41.25 41.875 42.5 43.125

p(x�) | .0000 .0000 .0003 .0012 .0038 .0112

x� | 43.75 44.375 45 45.625 46.25 46.875

p(x�) | .0274 .0556 .0954 .1378 .1704 .1746

x� | 47.5 48.125 48.75 49.375 50

p(x�) | .1474 .0998 .0519 .0188 .0039

(a)



5.4 The Distribution of the Sample Mean 217

A practical difficulty in applying the CLT is in knowing when n is sufficiently
large. The problem is that the accuracy of the approximation for a particular n depends
on the shape of the original underlying distribution being sampled. If the underlying dis-
tribution is close to a normal density curve, then the approximation will be good even
for a small n, whereas if it is far from being normal, then a large n will be required.

0 1

(a)

0 1

(b)

Figure 5.17 Two Bernoulli distributions: (a) p 5 � 4 (reasonably symmetric); (b) p 5 � 1 (very
skewed)

Recall from Section 4.5 that X has a lognormal distribution if ln(X) has a nor-
mal distribution.

Let X1, X2, . . . , Xn be a random sample from a distribution for which only pos-
itive values are possible [P(Xi � 0) � 1]. Then if n is sufficiently large, the
product Y � X1X2 � . . . � Xn has approximately a lognormal distribution.

PROPOSITION

Rule of Thumb

If n � 30, the Central Limit Theorem can be used.

There are population distributions for which even an n of 40 or 50 does not suffice,
but such distributions are rarely encountered in practice. On the other hand, the rule
of thumb is often conservative; for many population distributions, an n much less
then 30 would suffice. For example, in the case of a uniform population distribution,
the CLT gives a good approximation for n � 12.

Other Applications of the Central Limit Theorem
The CLT can be used to justify the normal approximation to the binomial distribu-
tion discussed in Chapter 4. Recall that a binomial variable X is the number of suc-
cesses in a binomial experiment consisting of n independent success/failure trials
with p � P(S) for any particular trial. Define new rv’s X1, X2, . . . , Xn by

Xi � {1 if the ith trial results in a success
(i � 1, . . . , n)

0 if the ith trial results in a failure

Because the trials are independent and P(S) is constant from trial to trial, the Xi s are
iid (a random sample from a Bernoulli distribution). The CLT then implies that if n
is sufficiently large, both the sum and the average of the Xis have approximately nor-
mal distributions. When the Xis are summed, a 1 is added for every S that occurs and
a 0 for every F, so X1 � . . . � Xn � X. The sample mean of the Xis is X/n, the sam-
ple proportion of successes. That is, both X and X/n are approximately normal when
n is large. The necessary sample size for this approximation depends on the value of
p: When p is close to .5, the distribution of each Xi is reasonably symmetric (see
Figure 5.17), whereas the distribution is quite skewed when p is near 0 or 1. Using
the approximation only if both np � 10 and n(1 � p) � 10 ensures that n is large
enough to overcome any skewness in the underlying Bernoulli distribution.
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To verify this, note that

ln(Y ) � ln(X1) � ln(X2) � . . . � ln(Xn)

Since ln(Y ) is a sum of independent and identically distributed rv’s [the ln(Xi)s], it
is approximately normal when n is large, so Y itself has approximately a lognormal
distribution. As an example of the applicability of this result, Bury (Statistical
Models in Applied Science, Wiley, p. 590) argues that the damage process in plastic
flow and crack propagation is a multiplicative process, so that variables such as per-
centage elongation and rupture strength have approximately lognormal distributions.

EXERCISES Section 5.4 (46–57)

46. The inside diameter of a randomly selected piston ring is a
random variable with mean value 12 cm and standard devi-
ation .04 cm.
a. If X� is the sample mean diameter for a random sample of

n � 16 rings, where is the sampling distribution of X�
centered, and what is the standard deviation of the X� dis-
tribution?

b. Answer the questions posed in part (a) for a sample size
of n � 64 rings.

c. For which of the two random samples, the one of part
(a) or the one of part (b), is X� more likely to be within
.01 cm of 12 cm? Explain your reasoning.

47. Refer to Exercise 46. Suppose the distribution of diameter is
normal.
a. Calculate P(11.99 � X� � 12.01) when n � 16.
b. How likely is it that the sample mean diameter exceeds

12.01 when n � 25?

48. Let X1, X2, . . . , X100 denote the actual net weights of 100
randomly selected 50-lb bags of fertilizer.
a. If the expected weight of each bag is 50 and the variance

is 1, calculate P(49.9 � X� � 50.1) (approximately)
using the CLT.

b. If the expected weight is 49.8 lb rather than 50 lb so that on
average bags are underfilled, calculate P(49.9 � X� � 50.1).

49. There are 40 students in an elementary statistics class. On
the basis of years of experience, the instructor knows that
the time needed to grade a randomly chosen first examina-
tion paper is a random variable with an expected value of
6 min and a standard deviation of 6 min.
a. If grading times are independent and the instructor begins

grading at 6:50 P.M. and grades continuously, what is the
(approximate) probability that he is through grading before
the 11:00 P.M. TV news begins?

b. If the sports report begins at 11:10, what is the proba-
bility that he misses part of the report if he waits until
grading is done before turning on the TV?

50. The breaking strength of a rivet has a mean value of 10,000
psi and a standard deviation of 500 psi.
a. What is the probability that the sample mean breaking

strength for a random sample of 40 rivets is between
9900 and 10,200?

b. If the sample size had been 15 rather than 40, could the
probability requested in part (a) be calculated from the
given information?

51. The time taken by a randomly selected applicant for a mort-
gage to fill out a certain form has a normal distribution with
mean value 10 min and standard deviation 2 min. If five
individuals fill out a form on one day and six on another,
what is the probability that the sample average amount of
time taken on each day is at most 11 min?

52. The lifetime of a certain type of battery is normally distrib-
uted with mean value 10 hours and standard deviation 1 hour.
There are four batteries in a package. What lifetime value is
such that the total lifetime of all batteries in a package
exceeds that value for only 5% of all packages?

53. Rockwell hardness of pins of a certain type is known to have
a mean value of 50 and a standard deviation of 1.2.
a. If the distribution is normal, what is the probability that

the sample mean hardness for a random sample of 9 pins
is at least 51?

b. What is the (approximate) probability that the sample
mean hardness for a random sample of 40 pins is at
least 51?

54. Suppose the sediment density (g/cm) of a randomly selected
specimen from a certain region is normally distributed with
mean 2.65 and standard deviation .85 (suggested in “Modeling
Sediment and Water Column Interactions for Hydrophobic
Pollutants,” Water Research, 1984: 1169–1174).
a. If a random sample of 25 specimens is selected, what is

the probability that the sample average sediment density
is at most 3.00? Between 2.65 and 3.00?

b. How large a sample size would be required to ensure that
the first probability in part (a) is at least .99?

55. The number of parking tickets issued in a certain city on any
given weekday has a Poisson distribution with parameter
� � 50. What is the approximate probability that
a. Between 35 and 70 tickets are given out on a particular

day? [Hint: When � is large, a Poisson rv has approxi-
mately a normal distribution.]

b. The total number of tickets given out during a 5-day
week is between 225 and 275?
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56. A binary communication channel transmits a sequence of
“bits” (0s and 1s). Suppose that for any particular bit trans-
mitted, there is a 10% chance of a transmission error (a 0
becoming a 1 or a 1 becoming a 0). Assume that bit errors
occur independently of one another.
a. Consider transmitting 1000 bits. What is the approximate

probability that at most 125 transmission errors occur?
b. Suppose the same 1000-bit message is sent two different

times independently of one another. What is the approxi-

mate probability that the number of errors in the first trans-
mission is within 50 of the number of errors in the second?

57. Suppose the distribution of the time X (in hours) spent by stu-
dents at a certain university on a particular project is gamma
with parameters � � 50 and � � 2. Because � is large, it can
be shown that X has approximately a normal distribution. Use
this fact to compute the probability that a randomly selected
student spends at most 125 hours on the project.

5.5 The Distribution of a Linear Combination

The sample mean X� and sample total To are special cases of a type of random vari-
able that arises very frequently in statistical applications.

DEFINITION Given a collection of n random variables X1, . . . , Xn and n numerical constants
a1, . . . , an, the rv

Y � a1X1 � . . . � anXn � �
n

i�1
aiXi (5.7)

is called a linear combination of the Xis.

Taking a1 � a2 � . . . � an � 1 gives Y � X1 � . . . � Xn � To, and a1 � a2 � . . . �
an � �

1
n

� yields Y � �
1
n

� X1 � . . . � �
1
n

�Xn � �
1
n

�(X1 � . . . � Xn) � �
1
n

�To � X�. Notice that we are
not requiring the Xis to be independent or identically distributed. All the Xis could have
different distributions and therefore different mean values and variances. We first con-
sider the expected value and variance of a linear combination.

Let X1, X2, . . . , Xn have mean values �1, . . . , �n, respectively, and variances 
� 2

1, . . . , � 2
n, respectively.

1. Whether or not the Xis are independent,

E(a1X1 � a2X2 � . . . � anXn) � a1E(X1) � a2E(X2) � . . . � anE(Xn)

� a1�1 � . . . � an�n (5.8)

2. If X1, . . . , Xn are independent,

V(a1X1 � a2X2 � . . . � anXn) � a2
1V(X1) � a2

2V(X2) � . . . � a2
nV(Xn)

� a2
1�

2
1 � . . . � a2

n�
2
n (5.9)

and

� a1X1�. . .�anXn
� ��a 2

1�
2
1��� .� .� .� ��a 2

n�� 2
n� (5.10)

3. For any X1, . . . , Xn,

V(a1X1 � . . . � anXn) � �
n

i�1
�
n

j�1
aiaj COV(Xi, Xj) (5.11)

PROPOSITION
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Proofs are sketched out at the end of the section. A paraphrase of (5.8) is that the 
expected value of a linear combination is the same linear combination of the expected
values—for example, E(2X1 � 5X2) � 2�1 � 5�2. The result (5.9) in Statement 2 is
a special case of (5.11) in Statement 3; when the Xis are independent, Cov(Xi, Xj) � 0
for i � j and � V(Xi) for i � j (this simplification actually occurs when the Xis are
uncorrelated, a weaker condition than independence). Specializing to the case of a
random sample (Xis iid) with ai � 1/n for every i gives E(X�) � � and V(X�) � �2/n,
as discussed in Section 5.4. A similar comment applies to the rules for To.

A gas station sells three grades of gasoline: regular, extra, and super. These are priced
at $21.20, $21.35, and $21.50 per gallon, respectively. Let X1, X2, and X3 denote the
amounts of these grades purchased (gallons) on a particular day. Suppose the Xis are
independent with �1 � 1000, �2 � 500, �3 � 300, �1 � 100, �2 � 80, and �3 � 50.
The revenue from sales is Y � 21.2X1 � 21.35X2 � 21.5X3, and

E(Y ) � 21.2�1 � 21.35�2 � 21.5�3 � $4125

V(Y ) � (21.2)2� 2
1 � (21.35)2� 2

2 � (21.5)2� 2
3 � 104,025

�Y � �104,02�5� � $322.53 ■

The Difference Between Two Random Variables
An important special case of a linear combination results from taking n � 2, a1 � 1,
and a2 � �1:

Y � a1X1 � a2X2 � X1 � X2

We then have the following corollary to the proposition.

Example 5.28

Example 5.29

COROLLARY E(X1 � X2) � E(X1) � E(X2) and, if X1 and X2 are independent, V(X1 � X2) �
V(X1) � V(X2).

The expected value of a difference is the difference of the two expected values, but
the variance of a difference between two independent variables is the sum, not the
difference, of the two variances. There is just as much variability in X1 � X2 as in
X1 � X2 [writing X1 � X2 � X1 � (�1)X2, (�1)X2 has the same amount of variabil-
ity as X2 itself].

A certain automobile manufacturer equips a particular model with either a six-cylinder
engine or a four-cylinder engine. Let X1 and X2 be fuel efficiencies for independently
and randomly selected six-cylinder and four-cylinder cars, respectively. With �1 � 22,
�2 � 26, �1 � 1.2, and �2 � 1.5,

E(X1 � X2) � �1 � �2 � 22 � 26 � �4

V(X1 � X2) � � 2
1 � � 2

2 � (1.2)2 � (1.5)2 � 3.69

�X1�X2
� �3�.6�9� � 1.92

If we relabel so that X1 refers to the four-cylinder car, then E(X1 � X2) � 4, but the
variance of the difference is still 3.69. ■

The Case of Normal Random Variables
When the Xis form a random sample from a normal distribution, X� and To are both
normally distributed. Here is a more general result concerning linear combinations.
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The total revenue from the sale of the three grades of gasoline on a particular day
was Y � 21.2X1 � 21.35X2 � 21.5X3, and we calculated �Y � 4125 and (assuming
independence) �Y � 322.53. If the Xis are normally distributed, the probability that
revenue exceeds 4500 is

P(Y � 4500) � P�Z � �
� P(Z � 1.16) � 1 � �(1.16) � .1230 ■

The CLT can also be generalized so it applies to certain linear combinations.
Roughly speaking, if n is large and no individual term is likely to contribute too
much to the overall value, then Y has approximately a normal distribution.

Proofs for the case n � 2
For the result concerning expected values, suppose that X1 and X2 are continuous
with joint pdf f(x1, x2). Then

E(a1X1 � a2X2) � 
�

��

�

��
(a1x1 � a2x2) f (x1, x2) dx1 dx2

� a1
�

��

�

��
x1 f (x1, x2) dx2 dx1

� a2
�

��

�

��
x2 f (x1, x2) dx1 dx2

� a1
�

��
x1 fX1

(x1) dx1 � a2
�

��
x2 fX2

(x2) dx2

� a1E(X1) � a2E(X2)

Summation replaces integration in the discrete case. The argument for the variance
result does not require specifying whether either variable is discrete or continuous.
Recalling that V(Y) � E[(Y � �Y)2],

V(a1X1 � a2X2) � E{[a1X1 � a2X2 � (a1�1 � a2�2)]
2}

� E{a 2
1(X1 � �1)

2 � a 2
2(X2 � �2)

2 � 2a1a2(X1 � �1)(X2 � �2)}

The expression inside the braces is a linear combination of the variables Y1 � (X1 � �1)
2,

Y2 � (X2 � �2)
2, and Y3 � (X1 � �1)(X2 � �2), so carrying the E operation through to

the three terms gives a2
1V(X1) � a2

2V(X2) � 2a1a2 Cov(X1, X2) as required. ■

4500 � 4125
��

322.53

If X1, X2, . . . , Xn are independent, normally distributed rv’s (with possibly dif-
ferent means and/or variances), then any linear combination of the Xi s also
has a normal distribution. In particular, the difference X1 � X2 between two
independent, normally distributed variables is itself normally distributed.

PROPOSITION

Example 5.30
(Example 5.28
continued)

EXERCISES Section 5.5 (58–74)

58. A shipping company handles containers in three different
sizes: (1) 27 ft3 (3 � 3 � 3), (2) 125 ft3, and (3) 512 ft3. Let
Xi (i � 1, 2, 3) denote the number of type i containers
shipped during a given week. With �i � E(Xi) and �2

i � V(Xi),

suppose that the mean values and standard deviations are as
follows:
�1 � 200 �2 � 250 �3 � 100
�1 � 10 �2 � 12 �3 � 8
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a. Assuming that X1, X2, X3 are independent, calculate the
expected value and variance of the total volume shipped.
[Hint: Volume � 27X1 � 125X2 � 512X3.]

b. Would your calculations necessarily be correct if the Xis
were not independent? Explain.

59. Let X1, X2, and X3 represent the times necessary to perform
three successive repair tasks at a certain service facility.
Suppose they are independent, normal rv’s with expected val-
ues �1, �2, and �3 and variances �2

1, �2
2, and �2

3, respectively.
a. If � � �2 � �3 � 60 and � 2

1 � � 2
2 � � 2

3 � 15, calculate
P(X1 � X2 � X3 � 200). What is P(150 � X1 � X2 �
X3 � 200)?

b. Using the �is and �is given in part (a), calculate P(55 � X�)
and P(58 � X� � 62).

c. Using the �is and �is given in part (a), calculate
P(�10 � X1 � .5X2 � .5X3 � 5).

d. If �1 � 40, �2 � 50, �3 � 60, � 2
1 � 10, � 2

2 � 12, and
� 2

3 � 14, calculate P(X1 � X2 � X3 � 160) and P(X1 �
X2 � 2 X3).

60. Five automobiles of the same type are to be driven on a
300-mile trip. The first two will use an economy brand of
gasoline, and the other three will use a name brand. Let X1, X2,
X3, X4, and X5 be the observed fuel efficiencies (mpg) for the
five cars. Suppose these variables are independent and nor-
mally distributed with �1 � �2 � 20, �3 � �4 � �5 � 21,
and �2 � 4 for the economy brand and 3.5 for the name brand.
Define an rv Y by

Y � �

so that Y is a measure of the difference in efficiency between
economy gas and name-brand gas. Compute P(0 � Y) and
P(�1 � Y � 1). [Hint: Y � a1X1 � . . . � a5X5, with a1 �
�
2
1
�, . . . , a5 � ��

1
3

�.]

61. Exercise 26 introduced random variables X and Y, the num-
ber of cars and buses, respectively, carried by a ferry on a sin-
gle trip. The joint pmf of X and Y is given in the table in
Exercise 7. It is readily verified that X and Y are independent.
a. Compute the expected value, variance, and standard de-

viation of the total number of vehicles on a single trip.
b. If each car is charged $3 and each bus $10, compute the

expected value, variance, and standard deviation of the
revenue resulting from a single trip.

62. Manufacture of a certain component requires three different
machining operations. Machining time for each operation
has a normal distribution, and the three times are indepen-
dent of one another. The mean values are 15, 30, and 20
min, respectively, and the standard deviations are 1, 2, and 1.5
min, respectively. What is the probability that it takes at
most 1 hour of machining time to produce a randomly
selected component?

63. Refer to Exercise 3.
a. Calculate the covariance between X1 � the number of

customers in the express checkout and X2 � the number
of customers in the superexpress checkout.

b. Calculate V(X1 � X2). How does this compare to
V(X1) � V(X2)?

64. Suppose your waiting time for a bus in the morning is uni-
formly distributed on [0, 8], whereas waiting time in the
evening is uniformly distributed on [0, 10] independent of
morning waiting time.
a. If you take the bus each morning and evening for a week,

what is your total expected waiting time? [Hint: Define
rv’s X1, . . . , X10 and use a rule of expected value.]

b. What is the variance of your total waiting time?
c. What are the expected value and variance of the differ-

ence between morning and evening waiting times on a
given day?

d. What are the expected value and variance of the difference
between total morning waiting time and total evening
waiting time for a particular week?

65. Suppose that when the pH of a certain chemical compound is
5.00, the pH measured by a randomly selected beginning
chemistry student is a random variable with mean 5.00 and
standard deviation .2. A large batch of the compound is subdi-
vided and a sample given to each student in a morning lab and
each student in an afternoon lab. Let X� � the average pH as
determined by the morning students and Y� � the average pH
as determined by the afternoon students.
a. If pH is a normal variable and there are 25 students in

each lab, compute P(�.1 � X� � Y� � .1). [Hint: X� � Y� is a
linear combination of normal variables, so is normally
distributed. Compute �X��Y� and �X��Y�.]

b. If there are 36 students in each lab, but pH determina-
tions are not assumed normal, calculate (approximately)
P(�.1 � X� � Y� � .1).

66. If two loads are applied to a cantilever beam as shown in the
accompanying drawing, the bending moment at 0 due to the
loads is a1X1 � a2X2.

a. Suppose that X1 and X2 are independent rv’s with means
2 and 4 kips, respectively, and standard deviations .5 and
1.0 kip, respectively. If a1 � 5 ft and a2 � 10 ft, what is
the expected bending moment and what is the standard
deviation of the bending moment?

b. If X1 and X2 are normally distributed, what is the proba-
bility that the bending moment will exceed 75 kip-ft?

c. Suppose the positions of the two loads are random vari-
ables. Denoting them by A1 and A2, assume that these
variables have means of 5 and 10 ft, respectively, that
each has a standard deviation of .5, and that all Ais and
Xis are independent of one another. What is the expected
moment now?

d. For the situation of part (c), what is the variance of the
bending moment?

X1 X2

a1 a2

0

X3 � X4 � X5
��

3

X1 � X2
�

2
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e. If the situation is as described in part (a) except that
Corr(X1, X2) � .5 (so that the two loads are not inde-
pendent), what is the variance of the bending moment?

67. One piece of PVC pipe is to be inserted inside another
piece. The length of the first piece is normally distributed
with mean value 20 in. and standard deviation .5 in. The
length of the second piece is a normal rv with mean and
standard deviation 15 in. and .4 in., respectively. The
amount of overlap is normally distributed with mean value 
1 in. and standard deviation .1 in. Assuming that the lengths
and amount of overlap are independent of one another,
what is the probability that the total length after insertion is
between 34.5 in. and 35 in.?

68. Two airplanes are flying in the same direction in adjacent
parallel corridors. At time t � 0, the first airplane is 10 km
ahead of the second one. Suppose the speed of the first plane
(km/hr) is normally distributed with mean 520 and standard
deviation 10 and the second plane’s speed is also normally
distributed with mean and standard deviation 500 and 10,
respectively.
a. What is the probability that after 2 hr of flying, the sec-

ond plane has not caught up to the first plane?
b. Determine the probability that the planes are separated

by at most 10 km after 2 hr.

69. Three different roads feed into a particular freeway
entrance. Suppose that during a fixed time period, the num-
ber of cars coming from each road onto the freeway is a ran-
dom variable, with expected value and standard deviation as
given in the table.

| Road 1 Road 2 Road 3

Expected value | 800 1000 600
Standard deviation | 16 25 18

a. What is the expected total number of cars entering the
freeway at this point during the period? [Hint: Let Xi �
the number from road i.]

b. What is the variance of the total number of entering
cars? Have you made any assumptions about the rela-
tionship between the numbers of cars on the different
roads?

c. With Xi denoting the number of cars entering from road i
during the period, suppose that Cov(X1, X2) � 80,
Cov(X1, X3) � 90, and Cov(X2, X3) � 100 (so that the
three streams of traffic are not independent). Compute
the expected total number of entering cars and the stan-
dard deviation of the total.

70. Consider a random sample of size n from a continuous distri-
bution having median 0 so that the probability of any one
observation being positive is .5. Disregarding the signs of the
observations, rank them from smallest to largest in absolute
value, and let W � the sum of the ranks of the observations
having positive signs. For example, if the observations are
�.3, �.7, �2.1, and �2.5, then the ranks of positive observa-
tions are 2 and 3, so W � 5. In Chapter 15, W will be called

Wilcoxon’s signed-rank statistic. W can be represented as
follows:

W � 1 � Y1 � 2 � Y2 � 3 � Y3 � . . . � n � Yn

� �
n

i�1
i � Yi

where the Yis are independent Bernoulli rv’s, each with
p � .5 (Yi � 1 corresponds to the observation with rank i
being positive).
a. Determine E(Yi) and then E(W) using the equation for W.

[Hint: The first n positive integers sum to n(n � 1)/2.]
b. Determine V(Yi) and then V(W) [Hint: The sum of the

squares of the first n positive integers can be expressed
as n(n � 1)(2n � 1)/6.]

71. In Exercise 66, the weight of the beam itself contributes to
the bending moment. Assume that the beam is of uniform
thickness and density so that the resulting load is uniformly
distributed on the beam. If the weight of the beam is ran-
dom, the resulting load from the weight is also random;
denote this load by W (kip-ft).
a. If the beam is 12 ft long, W has mean 1.5 and standard

deviation .25, and the fixed loads are as described in part
(a) of Exercise 66, what are the expected value and vari-
ance of the bending moment? [Hint: If the load due to
the beam were w kip-ft, the contribution to the bending
moment would be w 
12

0
x dx.]

b. If all three variables (X1, X2, and W) are normally dis-
tributed, what is the probability that the bending moment
will be at most 200 kip-ft?

72. I have three errands to take care of in the Administration
Building. Let Xi � the time that it takes for the ith errand
(i � 1, 2, 3), and let X4 � the total time in minutes that I spend
walking to and from the building and between each errand.
Suppose the Xis are independent, normally distributed, with
the following means and standard deviations: �1 � 15,
�1 � 4, �2 � 5, �2 � 1, �3 � 8, �3 � 2, �4 � 12, �4 � 3.
I plan to leave my office at precisely 10:00 A.M. and wish to
post a note on my door that reads, “I will return by t A.M.”
What time t should I write down if I want the probability of
my arriving after t to be .01?

73. Suppose the expected tensile strength of type-A steel is 105
ksi and the standard deviation of tensile strength is 8 ksi. For
type-B steel, suppose the expected tensile strength and stan-
dard deviation of tensile strength are 100 ksi and 6 ksi,
respectively. Let X� � the sample average tensile strength of
a random sample of 40 type-A specimens, and let Y� � the
sample average tensile strength of a random sample of 35
type-B specimens.
a. What is the approximate distribution of X�? Of Y�?
b. What is the approximate distribution of X� � Y�? Justify

your answer.
c. Calculate (approximately) P(�1 � X� � Y� � 1).
d. Calculate P(X� � Y� � 10). If you actually observed

X� � Y� � 10, would you doubt that �1 � �2 � 5?
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74. In an area having sandy soil, 50 small trees of a certain type
were planted, and another 50 trees were planted in an area
having clay soil. Let X � the number of trees planted in
sandy soil that survive 1 year and Y � the number of trees
planted in clay soil that survive 1 year. If the probability that

a tree planted in sandy soil will survive 1 year is .7 and the
probability of 1-year survival in clay soil is .6, compute an
approximation to P(�5 � X � Y � 5) (do not bother with
the continuity correction).

SUPPLEMENTARY EXERCISES (75–95)

75. A restaurant serves three fixed-price dinners costing $12,
$15, and $20. For a randomly selected couple dining at this
restaurant, let X � the cost of the man’s dinner and Y � the
cost of the woman’s dinner. The joint pmf of X and Y is
given in the following table:

y
p(x, y) | 12 15 20

12 | .05 .05 .10
x 15 | .05 .10 .35

20 | 0 .20 .10

a. Compute the marginal pmf’s of X and Y.
b. What is the probability that the man’s and the woman’s

dinner cost at most $15 each?
c. Are X and Y independent? Justify your answer.
d. What is the expected total cost of the dinner for the two

people?
e. Suppose that when a couple opens fortune cookies at the

conclusion of the meal, they find the message “You will
receive as a refund the difference between the cost of the
more expensive and the less expensive meal that you have
chosen.” How much does the restaurant expect to refund?

76. In cost estimation, the total cost of a project is the sum of
component task costs. Each of these costs is a random vari-
able with a probability distribution. It is customary to obtain
information about the total cost distribution by adding
together characteristics of the individual component cost
distributions—this is called the “roll-up” procedure. For
example, E(X1 � . . . � Xn) � E(X1) � . . . � E(Xn), so the
roll-up procedure is valid for mean cost. Suppose that there
are two component tasks and that X1 and X2 are indepen-
dent, normally distributed random variables. Is the roll-up
procedure valid for the 75th percentile? That is, is the 75th
percentile of the distribution of X1 � X2 the same as the sum
of the 75th percentiles of the two individual distributions? If
not, what is the relationship between the percentile of the
sum and the sum of percentiles? For what percentiles is the
roll-up procedure valid in this case?

77. A health-food store stocks two different brands of a certain
type of grain. Let X � the amount (lb) of brand A on hand
and Y � the amount of brand B on hand. Suppose the joint
pdf of X and Y is

f(x, y) � {kxy x � 0, y � 0, 20 � x � y � 30
0 otherwise

a. Draw the region of positive density and determine the
value of k.

b. Are X and Y independent? Answer by first deriving the
marginal pdf of each variable.

c. Compute P(X � Y � 25).
d. What is the expected total amount of this grain on hand?
e. Compute Cov(X, Y) and Corr(X, Y).
f. What is the variance of the total amount of grain on hand?

78. Let X1, X2, . . . , Xn be random variables denoting n inde-
pendent bids for an item that is for sale. Suppose each Xi is
uniformly distributed on the interval [100, 200]. If the seller
sells to the highest bidder, how much can he expect to earn
on the sale? [Hint: Let Y � max(X1, X2, . . . , Xn). First find
FY (y) by noting that Y � y iff each Xi is � y. Then obtain
the pdf and E(Y).]

79. Suppose that for a certain individual, calorie intake at break-
fast is a random variable with expected value 500 and stan-
dard deviation 50, calorie intake at lunch is random with
expected value 900 and standard deviation 100, and calorie
intake at dinner is a random variable with expected value
2000 and standard deviation 180. Assuming that intakes at
different meals are independent of one another, what is the
probability that average calorie intake per day over the next
(365-day) year is at most 3500? [Hint: Let Xi, Yi, and Zi

denote the three calorie intakes on day i. Then total intake is
given by �(Xi � Yi � Zi).]

80. The mean weight of luggage checked by a randomly se-
lected tourist-class passenger flying between two cities on a
certain airline is 40 lb, and the standard deviation is 10 lb.
The mean and standard deviation for a business-class pas-
senger are 30 lb and 6 lb, respectively.
a. If there are 12 business-class passengers and 50 tourist-

class passengers on a particular flight, what are the ex-
pected value of total luggage weight and the standard
deviation of total luggage weight?

b. If individual luggage weights are independent, normally
distributed rv’s, what is the probability that total luggage
weight is at most 2500 lb?

81. We have seen that if E(X1) � E(X2) � . . . � E(Xn) � �, then
E(X1 � . . . � Xn) � n�. In some applications, the number of
Xi s under consideration is not a fixed number n but instead is
an rv N. For example, let N � the number of components that
are brought into a repair shop on a particular day, and let Xi

denote the repair shop time for the ith component. Then the
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total repair time is X1 � X2 � . . . � XN, the sum of a random
number of random variables. When N is independent of the
Xis, it can be shown that

E(X1 � . . . � XN) � E(N) � �

a. If the expected number of components brought in on a
particularly day is 10 and expected repair time for a
randomly submitted component is 40 min, what is the
expected total repair time for components submitted on
any particular day?

b. Suppose components of a certain type come in for repair
according to a Poisson process with a rate of 5 per hour.
The expected number of defects per component is 3.5.
What is the expected value of the total number of defects
on components submitted for repair during a 4-hour
period? Be sure to indicate how your answer follows
from the general result just given.

82. Suppose the proportion of rural voters in a certain state who
favor a particular gubernatorial candidate is .45 and the pro-
portion of suburban and urban voters favoring the candidate
is .60. If a sample of 200 rural voters and 300 urban and sub-
urban voters is obtained, what is the approximate probabil-
ity that at least 250 of these voters favor this candidate?

83. Let � denote the true pH of a chemical compound. A se-
quence of n independent sample pH determinations will be
made. Suppose each sample pH is a random variable with
expected value � and standard deviation .1. How many
determinations are required if we wish the probability that
the sample average is within .02 of the true pH to be at least
.95? What theorem justifies your probability calculation?

84. If the amount of soft drink that I consume on any given day is
independent of consumption on any other day and is normally
distributed with � � 13 oz and � � 2 and if I currently have
two six-packs of 16-oz bottles, what is the probability that I
still have some soft drink left at the end of 2 weeks (14 days)?

85. Refer to Exercise 58, and suppose that the Xis are inde-
pendent with each one having a normal distribution. What is
the probability that the total volume shipped is at most
100,000 ft3?

86. A student has a class that is supposed to end at 9:00 A.M.
and another that is supposed to begin at 9:10 A.M. Suppose
the actual ending time of the 9 A.M. class is a normally dis-
tributed rv X1 with mean 9:02 and standard deviation 1.5
min and that the starting time of the next class is also a
normally distributed rv X2 with mean 9�10 and standard
deviation 1 min. Suppose also that the time necessary to
get from one classroom to the other is a normally distrib-
uted rv X3 with mean 6 min and standard deviation 1 min.
What is the probability that the student makes it to the sec-
ond class before the lecture starts? (Assume independence
of X1, X2, and X3, which is reasonable if the student pays
no attention to the finishing time of the first class.)

87. a. Use the general formula for the variance of a linear com-
bination to write an expression for V(aX � Y). Then let

a � �Y/�X, and show that � � �1. [Hint: Variance is
always � 0, and Cov(X, Y) � �X � �Y � �.]

b. By considering V(aX � Y), conclude that � � 1.
c. Use the fact that V(W) � 0 only if W is a constant to

show that � � 1 only if Y � aX � b.

88. Suppose a randomly chosen individual’s verbal score X and
quantitative score Y on a nationally administered aptitude
examination have joint pdf

f(x, y) � {�
2

5
�(2x � 3y) 0 � x � 1, 0 � y � 1

0 otherwise

You are asked to provide a prediction t of the individual’s
total score X � Y. The error of prediction is the mean
squared error E[(X � Y � t)2]. What value of t minimizes
the error of prediction?

89. a. Let X1 have a chi-squared distribution with parameter �1

(see Section 4.4), and let X2 be independent of X1 and
have a chi-squared distribution with parameter �2. Use
the technique of Example 5.21 to show that X1 � X2 has
a chi-squared distribution with parameter �1 � �2.

b. In Exercise 71 of Chapter 4, you were asked to show that
if Z is a standard normal rv, then Z 2 has a chi-squared
distribution with � � 1. Let Z1, Z2, . . . , Zn be n inde-
pendent standard normal rv’s. What is the distribution of
Z2

1 � . . . � Z2
n? Justify your answer.

c. Let X1, . . . , Xn be a random sample from a normal dis-
tribution with mean � and variance � 2. What is the dis-
tribution of the sum Y � �n

i�1 [(Xi � �)/�]2? Justify your
answer.

90. a. Show that Cov(X, Y � Z) � Cov(X, Y ) � Cov(X, Z).
b. Let X1 and X2 be quantitative and verbal scores on one

aptitude exam, and let Y1 and Y2 be corresponding scores
on another exam. If Cov(X1, Y1) � 5, Cov(X1, Y2) � 1,
Cov(X2, Y1) � 2, and Cov(X2, Y2) � 8, what is the
covariance between the two total scores X1 � X2 and
Y1 � Y2?

91. A rock specimen from a particular area is randomly selected
and weighed two different times. Let W denote the actual
weight and X1 and X2 the two measured weights. Then X1 �
W � E1 and X2 � W � E2, where E1 and E2 are the two
measurement errors. Suppose that the Eis are independent
of one another and of W and that V(E1) � V(E2) � � 2

E.
a. Express �, the correlation coefficient between the two

measured weights X1 and X2, in terms of �2
W, the variance

of actual weight, and �2
X, the variance of measured weight.

b. Compute � when �W � 1 kg and �E � .01 kg.

92. Let A denote the percentage of one constituent in a ran-
domly selected rock specimen, and let B denote the per-
centage of a second constituent in that same specimen.
Suppose D and E are measurement errors in determining the
values of A and B so that measured values are X � A � D
and Y � B � E, respectively. Assume that measurement
errors are independent of one another and of actual values.
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a. Show that

Corr(X, Y) � Corr(A, B) � �C�o�rr�(X�1,� X�2)� � �C�o�rr�(Y�1,� Y�2)�
where X1 and X2 are replicate measurements on the value
of A, and Y1 and Y2 are defined analogously with respect
to B. What effect does the presence of measurement error
have on the correlation?

b. What is the maximum value of Corr(X, Y ) when
Corr(X1, X2) � .8100 and Corr(Y1, Y2) � .9025? Is this
disturbing?

93. Let X1, . . . , Xn be independent rv’s with mean values �1, . . . ,
�n and variances �2

1, . . . , �
2
n. Consider a function h(x1, . . . ,

xn), and use it to define a new rv Y � h(X1, . . . , Xn). Under
rather general conditions on the h function, if the �is are all
small relative to the corresponding �i s, it can be shown that
E(Y) � h(�1, . . . , �n) and

V(Y) � � �
2

� � 2
1 � . . . � � �

2

� � 2
n

where each partial derivative is evaluated at (x1, . . . , xn) �
(�1, . . . , �n). Suppose three resistors with resistances X1, X2,

X3 are connected in parallel across a battery with voltage X4.
Then by Ohm’s law, the current is

Y � X4 ��
X

1

1

� � �
X

1

2

� � �
X

1

3

��
Let �1 � 10 ohms, �1 � 1.0 ohm, �2 � 15 ohms, �2 �
1.0 ohm, �3 � 20 ohms, �3 � 1.5 ohms, �4 � 120 V,
�4 � 4.0 V. Calculate the approximate expected value and
standard deviation of the current (suggested by “Random
Samplings,” CHEMTECH, 1984: 696–697).

94. A more accurate approximation to E[h(X1, . . . , Xn)] in
Exercise 93 is

h(�1, . . . , �n) � �
1

2
��2

1� � � . . . � �
1

2
��2

n� �
Compute this for Y � h(X1, X2, X3, X4) given in Exercise
93, and compare it to the leading term h(�1, . . . , �n).

95. Let X and Y be independent standard normal random vari-
ables, and define a new rv by U � .6X � .8Y.
a. Determine Corr(X, U).
b. How would you alter U to obtain Corr(X, U) � � for a
specified value of �?

∂2h
�
∂x2

n

∂2h
�
∂x2

1

∂h
�
∂xn

∂h
�
∂x1
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Point Estimation

INTRODUCTION

Given a parameter of interest, such as a population mean m or population pro-

portion p, the objective of point estimation is to use a sample to compute a

number that represents in some sense a good guess for the true value of the

parameter. The resulting number is called a point estimate. In Section 6.1, we

present some general concepts of point estimation. In Section 6.2, we describe

and illustrate two important methods for obtaining point estimates: the method

of moments and the method of maximum likelihood.

6



Statistical inference is almost always directed toward drawing some type of conclu-
sion about one or more parameters (population characteristics). To do so requires
that an investigator obtain sample data from each of the populations under study.
Conclusions can then be based on the computed values of various sample quantities.
For example, let 	 (a parameter) denote the true average breaking strength of wire
connections used in bonding semiconductor wafers. A random sample of n � 10
connections might be made, and the breaking strength of each one determined,
resulting in observed strengths x1, x2, . . . , x10. The sample mean breaking strength x�
could then be used to draw a conclusion about the value of 	. Similarly, if � 2 is the
variance of the breaking strength distribution (population variance, another parame-
ter), the value of the sample variance s2 can be used to infer something about � 2.

When discussing general concepts and methods of inference, it is convenient
to have a generic symbol for the parameter of interest. We will use the Greek letter �
for this purpose. The objective of point estimation is to select a single number, based
on sample data, that represents a sensible value for �. Suppose, for example, that the
parameter of interest is 	, the true average lifetime of batteries of a certain type. A
random sample of n � 3 batteries might yield observed lifetimes (hours) x1 � 5.0,
x2 � 6.4, x3 � 5.9. The computed value of the sample mean lifetime is x� � 5.77, and
it is reasonable to regard 5.77 as a very plausible value of 	—our “best guess” for
the value of 	 based on the available sample information.

Suppose we want to estimate a parameter of a single population (e.g., 	 or �)
based on a random sample of size n. Recall from the previous chapter that before data
is available, the sample observations must be considered random variables (rv’s) X1,
X2, . . . , Xn. It follows that any function of the Xi s—that is, any statistic—such as the
sample mean X� or sample standard deviation S is also a random variable. The same is
true if available data consists of more than one sample. For example, we can represent
tensile strengths of m type 1 specimens and n type 2 specimens by X1, . . . , Xm and
Y1, . . . , Yn, respectively. The difference between the two sample mean strengths is
X� � Y�, the natural statistic for making inferences about 	1 � 	2, the difference
between the population mean strengths.
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6.1 Some General Concepts of Point Estimation

In the battery example just given, the estimator used to obtain the point estimate
of 	 was X�, and the point estimate of 	 was 5.77. If the three observed lifetimes had
instead been x1 � 5.6, x2 � 4.5, and x3 � 6.1, use of the estimator X� would have
resulted in the estimate x� � (5.6 � 4.5 � 6.1)/3 � 5.40. The symbol �̂ (“theta hat”)
is customarily used to denote both the estimator of � and the point estimate resulting
from a given sample.* Thus 	̂ � X� is read as “the point estimator of 	 is the sample

DEFINITION A point estimate of a parameter � is a single number that can be regarded as
a sensible value for �. A point estimate is obtained by selecting a suitable sta-
tistic and computing its value from the given sample data. The selected statis-
tic is called the point estimator of �.

* Following earlier notation, we could use �̂ (an uppercase theta) for the estimator, but this is cumber-
some to write.



mean X�.” The statement “the point estimate of 	 is 5.77” can be written concisely as
	̂ � 5.77. Notice that in writing �̂ � 72.5, there is no indication of how this point esti-
mate was obtained (what statistic was used). It is recommended that both the esti-
mator and the resulting estimate be reported.

An automobile manufacturer has developed a new type of bumper, which is sup-
posed to absorb impacts with less damage than previous bumpers. The manufacturer
has used this bumper in a sequence of 25 controlled crashes against a wall, each at
10 mph, using one of its compact car models. Let X � the number of crashes that
result in no visible damage to the automobile. The parameter to be estimated is p �
the proportion of all such crashes that result in no damage [alternatively, p � P(no
damage in a single crash)]. If X is observed to be x � 15, the most reasonable esti-
mator and estimate are

estimator p̂ � �
X
n

� estimate � �
n
x

� � �
1
2

5
5
� � .60 ■

If for each parameter of interest there were only one reasonable point estima-
tor, there would not be much to point estimation. In most problems, though, there
will be more than one reasonable estimator.

Reconsider the accompanying 20 observations on dielectric breakdown voltage for
pieces of epoxy resin first introduced in Example 4.30 (Section 4.6).

24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94

27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88

The pattern in the normal probability plot given there is quite straight, so we now
assume that the distribution of breakdown voltage is normal with mean value 	.
Because normal distributions are symmetric, 	 is also the median lifetime of the
distribution. The given observations are then assumed to be the result of a random
sample X1, X2, . . . , X20 from this normal distribution. Consider the following esti-
mators and resulting estimates for 	:

a. Estimator � X�, estimate � x� � �xi /n � 555.86/20 � 27.793

b. Estimator � , estimate � � (27.94 � 27.98)/2 � 27.960

c. Estimator � [min(Xi) � max(Xi)]/2 � the average of the two extreme lifetimes,
estimate � [min(xi) � max(xi)]/2 � (24.46 � 30.88)/2 � 27.670

d. Estimator � X�tr(10), the 10% trimmed mean (discard the smallest and largest
10% of the sample and then average),

estimate � x�tr(10)

�

� 27.838

Each one of the estimators (a)–(d) uses a different measure of the center of the sample
to estimate 	. Which of the estimates is closest to the true value? We cannot answer
this without knowing the true value. A question that can be answered is, “Which esti-
mator, when used on other samples of Xi s, will tend to produce estimates closest to the
true value?” We will shortly consider this type of question. ■

555.86 � 24.46 � 25.61 � 29.50 � 30.88
�����

16

x|X|
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In the near future there will be increasing interest in developing low-cost Mg-based
alloys for various casting processes. It is therefore important to have practical ways
of determining various mechanical properties of such alloys. The article “On the
Development of a New Approach for the Determination of Yield Strength in Mg-
based Alloys” (Light Metal Age, Oct. 1998: 50–53) proposed an ultrasonic method
for this purpose. Consider the following sample of observations on elastic modulus
(GPa) of AZ91D alloy specimens from a die-casting process:

44.2 43.9 44.7 44.2 44.0 43.8 44.6 43.1

Assume that these observations are the result of a random sample X1, . . . , X8

from the population distribution of elastic modulus under such circumstances. We want
to estimate the population variance �2. A natural estimator is the sample variance:

�̂ 2 � S2 � �
�(

n

Xi

�

�

1

X�)2

� �

The corresponding estimate is

�̂ 2 � s2 � �

� .25125 � .251

The estimate of � would then be �̂ � s � �.2�5�1�2�5� � .501.
An alternative estimator would result from using divisor n instead of n � 1

(i.e., the average squared deviation):

�̂ 2 � estimate � �
1.75

8
875
� � .220

We will shortly indicate why many statisticians prefer S2 to the estimator with di-
visor n. ■

In the best of all possible worlds, we could find an estimator �̂ for which �̂ ��
always. However, �̂ is a function of the sample Xi s, so it is a random variable. For
some samples, �̂ will yield a value larger than �, whereas for other samples �̂ will
underestimate �. If we write

�̂ � � � error of estimation

then an accurate estimator would be one resulting in small estimation errors, so that
estimated values will be near the true value.

A sensible way to quantify the idea of �̂ being close to � is to consider the
squared error (�̂ � �)2. For some samples, �̂ will be quite close to � and the resulting
squared error will be near 0. Other samples may give values of �̂ far from �, corre-
sponding to very large squared errors. An omnibus measure of accuracy is the expected
or mean square error MSE � E[(�̂ � �)2]. If a first estimator has smaller MSE than
does a second, it is natural to say that the first estimator is the better one. However,
MSE will generally depend on the value of �. What often happens is that one esti-
mator will have smaller MSE for some values of � and larger MSE for other values.
Finding an estimator with smallest MSE is typically not possible.

One way out of this dilemma is to restrict attention just to estimators that have
some specified desirable property and then find the best estimator in this restricted
group. A popular property of this sort in the statistical community is unbiasedness.

�(Xi � X�)2

��
n

15,533.79 � (352.5)2/8
���

7

�x2
i � (�xi)

2/8
��

7

�X2
i � (�Xi)

2/n
��

n � 1
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Unbiased Estimators
Suppose we have two measuring instruments; one instrument has been accurately cal-
ibrated, but the other systematically gives readings smaller than the true value being
measured. When each instrument is used repeatedly on the same object, because of
measurement error, the observed measurements will not be identical. However, the
measurements produced by the first instrument will be distributed about the true value
in such a way that on average this instrument measures what it purports to measure,
so it is called an unbiased instrument. The second instrument yields observations that
have a systematic error component or bias.
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Figure 6.1 The pdf’s of a biased estimator �̂1 and an unbiased estimator �̂2 for
a parameter u

That is, �̂ is unbiased if its probability (i.e., sampling) distribution is always “cen-
tered” at the true value of the parameter. Suppose  �̂ is an unbiased estimator; then if
� � 100, the �̂ sampling distribution is centered at 100; if � � 27.5, then the �̂ sam-
pling distribution is centered at 27.5, and so on. Figure 6.1 pictures the distributions
of several biased and unbiased estimators. Note that “centered” here means that the
expected value, not the median, of the distribution of �̂ is equal to �.

It may seem as though it is necessary to know the value of � (in which case 
estimation is unnecessary) to see whether �̂ is unbiased. This is not usually the
case, though, because unbiasedness is a general property of the estimator’s sam-
pling distribution—where it is centered—which is typically not dependent on any
particular parameter value.

In Example 6.1, the sample proportion X/n was used as an estimator of p, where
X, the number of sample successes, had a binomial distribution with parameters n
and p. Thus

E( p̂) � E��
X
n

�� � �
1
n

� E(X) � �
1
n

� (np) � p

DEFINITION A point estimator �̂ is said to be an unbiased estimator of � if E(�̂ ) � � for
every possible value of �. If �̂ is not unbiased, the difference E(�̂) � � is called
the bias of �̂.

When X is a binomial rv with parameters n and p, the sample proportion 
p̂ � X/n is an unbiased estimator of p.

PROPOSITION

No matter what the true value of p is, the distribution of the estimator p̂ will be cen-
tered at the true value.



Suppose that X, the reaction time to a certain stimulus, has a uniform distribution on the
interval from 0 to an unknown upper limit � (so the density function of X is rectangular
in shape with height 1/� for 0 � x � �). It is desired to estimate � on the basis of a ran-
dom sample X1, X2, . . . , Xn of reaction times. Since � is the largest possible time in the
entire population of reaction times, consider as a first estimator the largest sample reac-
tion time: �̂1 � max(X1, . . . , Xn). If n � 5 and x1 � 4.2, x2 � 1.7, x3 � 2.4, x4 � 3.9,
x5 � 1.3, the point estimate of � is�̂1 � max(4.2, 1.7, 2.4, 3.9, 1.3) � 4.2.

Unbiasedness implies that some samples will yield estimates that exceed � and
other samples will yield estimates smaller than �—otherwise � could not possibly be
the center (balance point) of �̂1’s distribution. However, our proposed estimator will
never overestimate � (the largest sample value cannot exceed the largest population
value) and will underestimate � unless the largest sample value equals �. This intu-
itive argument shows that �̂1 is a biased estimator. More precisely, it can be shown

(see Exercise 32) that

E(�̂1) � �
n �

n
1

� � � � � �since �
n �

n
1

� � 1�
The bias of �̂1 is given by n�/(n � 1) � � � ��/(n � 1), which approaches 0 as n
gets large.

It is easy to modify �̂1 to obtain an unbiased estimator of �. Consider the 
estimator

�̂2 � �
n �

n
1

� � max(X1, . . . , Xn)

Using this estimator on the data gives the estimate (6/5)(4.2) � 5.04. The fact that
(n � 1)/n � 1 implies that �̂2 will overestimate � for some samples and underesti-
mate it for others. The mean value of this estimator is

E(�̂2) � E��n �

n
1

� max(X1, . . . , Xn)� � �
n �

n
1

� � E[max(X1, . . . , Xn)]

� �
n �

n
1

� � �
n �

n
1

� � � �

If�̂2 is used repeatedly on different samples to estimate �, some estimates will be too
large and others will be too small, but in the long run there will be no systematic ten-
dency to underestimate or overestimate �. ■
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Principle of Unbiased Estimation

When choosing among several different estimators of �, select one that is 
unbiased.

Let X1, X2, . . . , Xn be a random sample from a distribution with mean 	 and
variance � 2. Then the estimator

�̂ 2 � S2 �

is an unbiased estimator of � 2.

�(Xi � X�)2

��
n � 1

PROPOSITION

According to this principle, the unbiased estimator �̂2 in Example 6.4 should be
preferred to the biased estimator �̂1. Consider now the problem of estimating � 2.

Example 6.4



Proof For any rv Y, V(Y) � E(Y2) � [E(Y)]2, so E(Y2) � V(Y) � [E(Y)]2. Applying
this to

S2 � �
n �

1
1

� ��X2
i � �

gives

E(S2) � �
n �

1
1

� ��E(X2
i) � �

1
n

� E[(�Xi)
2]�

� �
n �

1
1

� ��(� 2 � 	2) � �
1
n

� {V(�Xi) � [E(�Xi)]
2}�

� �
n �

1
1

� �n� 2 � n	2 � �
1
n

� n� 2 � �
1
n

� (n	)2�
� �

n �

1
1

� {n� 2 � � 2} � � 2 (as desired) ■

The estimator that uses divisor n can be expressed as (n � 1)S2/n, so

E� � � �
n �

n
1

� E(S2) � �
n �

n
1

� � 2

This estimator is therefore not unbiased. The bias is (n � 1)� 2/n � � 2 � �� 2/n.
Because the bias is negative, the estimator with divisor n tends to underestimate � 2,
and this is why the divisor n � 1 is preferred by many statisticians (though when n
is large, the bias is small and there is little difference between the two).

Although S2 is unbiased for � 2, S is a biased estimator of � (its bias is small
unless n is quite small). However, there are other good reasons to use S as an esti-
mator, especially when the population distribution is normal. These will become
more apparent when we discuss confidence intervals and hypothesis testing in the
next several chapters.

In Example 6.2, we proposed several different estimators for the mean 	 of a nor-
mal distribution. If there were a unique unbiased estimator for 	, the estimation prob-
lem would be resolved by using that estimator. Unfortunately, this is not the case.

(n � 1)S2

��
n

(�Xi)
2

�
n
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The fact that X� is unbiased is just a restatement of one of our rules of expected value:
E(X�) �	 for every possible value of 	 (for discrete as well as continuous distribu-
tions). The unbiasedness of the other estimators is more difficult to verify.

The next example introduces another situation in which there are several un-
biased estimators for a particular parameter.

Under certain circumstances organic contaminants adhere readily to wafer sur-
faces and cause deterioration in semiconductor manufacturing devices. The paper
“Ceramic Chemical Filter for Removal of Organic Contaminants” (J. of the Institute
of Environmental Sciences and Technology, 2003: 59–65) discussed a recently devel-
oped alternative to conventional charcoal filters for removing organic airborne mo-
lecular contamination in cleanroom applications. One aspect of the investigation of
filter performance involved studying how contaminant concentration in air related
to concentration on a wafer surface after prolonged exposure. Consider the following

If X1, X2, . . . , Xn is a random sample from a distribution with mean 	, then X�
is an unbiased estimator of 	. If in addition the distribution is continuous and
symmetric, then and any trimmed mean are also unbiased estimators of 	.X|

PROPOSITION

Example 6.5



representative data on x � DBP concentration in air and y � DBP concentration on a
wafer surface after 4-hour exposure (both in mg/m3, where DBP � dibutyl phthalate).

Obs. i: 1 2 3 4 5 6
x: .8 1.3 1.5 3.0 11.6 26.6
y: .6 1.1 4.5 3.5 14.4 29.1

The authors comment that “DBP adhesion on the wafer surface was roughly pro-
portional to the DBP concentration in air.” Figure 6.2 shows a plot of y versus x—
i.e., of the (x, y) pairs.
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If y were exactly proportional to x, we would have y � bx for some value b, which
says that the (x, y) points in the plot would lie exactly on a straight line with slope b
passing through (0,0). But this is only approximately the case. So we now assume
that for any fixed x, wafer DBP is a random variable Y having mean value bx. That
is, we postulate that the mean value of Y is related to x by a line passing through
(0,0) but that the observed value of Y will typically deviate from this line (this is
referred to in the statistical literature as “regression through the origin”).

We now wish to estimate the slope parameter b. Consider the following three
estimators:

#1: �̂ � � #2: �̂ � #3: �̂ �

The resulting estimates based on the given data are 1.3497, 1.1875, and 1.1222,
respectively. So the estimate definitely depends on which estimator is used. If one of
these three estimators were unbiased and the other two were biased, there would be a
good case for using the unbiased one. But all three are unbiased; the argument relies
on the fact that each one is a linear function of the Yi s (we are assuming here that the
xis are fixed, not random):

E� � � � � � � � �� � � �

E� � � E��Yi� � ���xi� � ���xi� � �

E� � � E��xiYi� � ��xi �xi� � ���xi
2� � �

■
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Figure 6.2 Plot of the DBP data from Example 6.5
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In both the foregoing example and the situation involving estimating a normal pop-
ulation mean, the principle of unbiasedness (prefer an unbiased estimator to a biased
one) cannot be invoked to select an estimator. What we now need is a criterion for
choosing among unbiased estimators.

Estimators with Minimum Variance
Suppose �̂1 and �̂2 are two estimators of � that are both unbiased. Then, although the
distribution of each estimator is centered at the true value of �, the spreads of the
distributions about the true value may be different.
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Figure 6.3 pictures the pdf’s of two unbiased estimators, with �̂1 having smaller
variance than �̂2. Then �̂1 is more likely than �̂2 to produce an estimate close to the
true �. The MVUE is, in a certain sense, the most likely among all unbiased estima-
tors to produce an estimate close to the true �.

Principle of Minimum Variance Unbiased Estimation

Among all estimators of � that are unbiased, choose the one that has minimum
variance. The resulting �̂ is called the minimum variance unbiased estima-
tor (MVUE) of �.

pdf of 2�̂

�

pdf of 1�̂

Figure 6.3 Graphs of the pdf’s of two different unbiased estimators

In Example 6.5, suppose each Yi is normally distributed with mean bxi and variance
�2 (the assumption of constant variance). Then it can be shown that the third esti-
mator �̂ � � xi Yi /� x2

i not only has smaller variance than either of the other two
unbiased estimators, but in fact is the MVUE—it has smaller variance than any other
unbiased estimator of b.

We argued in Example 6.4 that when X1, . . . , Xn is a random sample from a uniform
distribution on [0, �], the estimator

�̂1 � �
n �

n
1

� � max(X1, . . . , Xn)

is unbiased for � (we previously denoted this estimator by �̂2). This is not the only
unbiased estimator of �. The expected value of a uniformly distributed rv is just the
midpoint of the interval of positive density, so E(Xi) � �/2. This implies that E(X�) �
�/2, from which E(2X�) � �. That is, the estimator �̂2 � 2X� is unbiased for �.

If X is uniformly distributed on the interval from A, B, then V(X) � � 2 �
(B � A)2/12. Thus, in our situation, V(Xi) � �2/12, V(X�) � � 2/n � �2/(12n), and
V(�̂2) � V(2X�) � 4V(X�) � � 2/(3n). The results of Exercise 32 can be used to show

Example 6.6



that V(�̂1) � �2/[n(n � 2)]. The estimator �̂1 has smaller variance than does �̂2 if
3n � n(n � 2)—that is, if 0 � n2 � n � n(n � 1). As long as n � 1, V(�̂1) � V(�̂2),
so �̂1 is a better estimator than �̂2. More advanced methods can be used to show that
�̂1 is the MVUE of �—every other unbiased estimator of � has variance that exceeds
� 2/[n(n � 2)]. ■

One of the triumphs of mathematical statistics has been the development of
methodology for identifying the MVUE in a wide variety of situations. The most
important result of this type for our purposes concerns estimating the mean 	 of a
normal distribution.
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Let X1, . . . , Xn be a random sample from a normal distribution with parame-
ters 	 and �. Then the estimator 	̂ � X� is the MVUE for 	.

THEOREM

Whenever we are convinced that the population being sampled is normal, the result
says that X� should be used to estimate 	. In Example 6.2, then, our estimate would
be x� � 27.793.

In some situations, it is possible to obtain an estimator with small bias that would
be preferred to the best unbiased estimator. This is illustrated in Figure 6.4. However,
MVUEs are often easier to obtain than the type of biased estimator whose distribution
is pictured.

pdf of 2, the MVUE�̂

�

pdf of 1, a biased estimator�̂

Figure 6.4 A biased estimator that is preferable to the MVUE

Some Complications
The last theorem does not say that in estimating a population mean 	, the estimator
X� should be used irrespective of the distribution being sampled.

Suppose we wish to estimate the thermal conductivity 	 of a certain material. Using
standard measurement techniques, we will obtain a random sample X1, . . . , Xn of n
thermal conductivity measurements. Let’s assume that the population distribution is a
member of one of the following three families:

f (x) � e�(x�	)2/(2� 2 ) �∞ � x � ∞ (6.1)

f (x) ��
�[1 � (

1
x � 	)2]
� �∞ � x � ∞ (6.2)

f (x) � {�
2
1
c
� �c � x � 	 � c

(6.3)
0 otherwise

1
�
�2�����2�
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The pdf (6.1) is the normal distribution, (6.2) is called the Cauchy distribution, and
(6.3) is a uniform distribution. All three distributions are symmetric about 	, and in
fact the Cauchy distribution is bell-shaped but with much heavier tails (more proba-
bility farther out) than the normal curve. The uniform distribution has no tails. The
four estimators for 	 considered earlier are X�, , X�e (the average of the two extreme
observations), and X�tr(10), a trimmed mean.

The very important moral here is that the best estimator for 	 depends cru-
cially on which distribution is being sampled. In particular,

1. If the random sample comes from a normal distribution, then X� is the best of the
four estimators, since it has minimum variance among all unbiased estimators.

2. If the random sample comes from a Cauchy distribution, then X� and X�e are terri-
ble estimators for 	, whereas is quite good (the MVUE is not known); X� is bad
because it is very sensitive to outlying observations, and the heavy tails of the
Cauchy distribution make a few such observations likely to appear in any sample.

3. If the underlying distribution is uniform, the best estimator is X�e; this estimator is
greatly influenced by outlying observations, but the lack of tails makes such ob-
servations impossible.

4. The trimmed mean is best in none of these three situations but works reasonably
well in all three. That is, X�tr(10) does not suffer too much in comparison with the
best procedure in any of the three situations. ■

More generally, recent research in statistics has established that when estimating
a point of symmetry 	 of a continuous probability distribution, a trimmed mean with
trimming proportion 10% or 20% (from each end of the sample) produces reasonably
behaved estimates over a very wide range of possible models. For this reason, a trimmed
mean with small trimming percentage is said to be a robust estimator.

In some situations, the choice is not between two different estimators con-
structed from the same sample, but instead between estimators based on two dif-
ferent experiments.

Suppose a certain type of component has a lifetime distribution that is exponential with
parameter � so that expected lifetime is 	 � 1/�. A sample of n such components is
selected, and each is put into operation. If the experiment is continued until all n life-
times, X1, . . . , Xn, have been observed, then X� is an unbiased estimator of 	.

In some experiments, though, the components are left in operation only until
the time of the rth failure, where r � n. This procedure is referred to as censoring.
Let Y1 denote the time of the first failure (the minimum lifetime among the n com-
ponents), Y2 denote the time at which the second failure occurs (the second smallest
lifetime), and so on. Since the experiment terminates at time Yr , the total accumu-
lated lifetime at termination is

Tr �
r

�
i �1

Yi � (n � r)Yr

We now demonstrate that 	̂ � Tr /r is an unbiased estimator for 	. To do so, we need
two properties of exponential variables:

1. The memoryless property (see Section 4.4), which says that at any time point,
remaining lifetime has the same exponential distribution as original lifetime.

2. If X1, . . . , Xk are independent, each exponential with parameter �, then
min (X1, . . . , Xk) is exponential with parameter k� and has expected value 1/(k�).

X|

X|
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Since all n components last until Y1, n � 1 last an additional Y2 � Y1, n � 2 an
additional Y3 � Y2 amount of time, and so on, another expression for Tr is

Tr � nY1 � (n � 1)(Y2 � Y1) � (n � 2)(Y3 � Y2) � 
 
 


� (n � r � 1)(Yr � Yr�1)

But Y1 is the minimum of n exponential variables, so E(Y1) � 1/(n�). Similarly, Y2 � Y1

is the smallest of the n � 1 remaining lifetimes, each exponential with parameter �
(by the memoryless property), so E(Y2 � Y1) � 1/[(n � 1)�]. Continuing, E(Yi�1 � Yi) �
1/[(n � i)�], so

E(Tr ) � nE(Y1) � (n � 1)E(Y2 � Y1) � 
 
 
 � (n � r � 1)E(Yr � Yr �1)

� n � �
n
1
�
� � (n � 1) � �

(n �

1
1)�
� � 
 
 
 � (n � r � 1) � �

(n � r
1
� 1)�
�

� �
�

r
�

Therefore, E(Tr /r) � (1/r)E(Tr ) � (1/r) � (r/�) � 1/� �	 as claimed.
As an example, suppose 20 components are put on test and r � 10. Then if the

first ten failure times are 11, 15, 29, 33, 35, 40, 47, 55, 58, and 72, the estimate of 	 is

	̂ � � 111.5

The advantage of the experiment with censoring is that it terminates more quickly
than the uncensored experiment. However, it can be shown that V(Tr /r) � 1/(�2r), which
is larger than 1/(�2n), the variance of X� in the uncensored experiment. ■

Reporting a Point Estimate: The Standard Error
Besides reporting the value of a point estimate, some indication of its precision should
be given. The usual measure of precision is the standard error of the estimator used.

11 � 15 � 
 
 
 � 72 � (10)(72)
����

10
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DEFINITION The standard error of an estimator �̂ is its standard deviation ��̂ � �V�(�̂�)�. If the
standard error itself involves unknown parameters whose values can be estimated,
substitution of these estimates into ��̂ yields the estimated standard error (esti-
mated standard deviation) of the estimator. The estimated standard error can be
denoted either by �̂�̂ (the ˆ over � emphasizes that ��̂ is being estimated) or by s�̂.

Assuming that breakdown voltage is normally distributed, 	̂ � X� is the best estimator
of 	. If the value of � is known to be 1.5, the standard error of X� is �X� � �/�n� �
1.5/�2�0� � .335. If, as is usually the case, the value of � is unknown, the estimate
�̂ � s � 1.462 is substituted into �X� to obtain the estimated standard error �̂X� � sX� �
s/�n� � 1.462/�2�0� � .327. ■

The standard error of p̂ � X/n is

�p̂ � �V�(X�/n�)� � ��
V�n

(X�2�)
�� � ��

n
n�p

2

q
�� � ��

p
n�q
��

Since p and q � 1 � p are unknown (else why estimate?), we substitute p̂ � x/n
and q̂ � 1 � x/n into �p̂, yielding the estimated standard error �̂p̂ � �p̂�q̂/�n� �

Example 6.9
(Example 6.2
continued)

Example 6.10
(Example 6.1
continued)



�(.�6�)(�.4�)/�2�5� � .098. Alternatively, since the largest value of pq is attained when p �
q � .5, an upper bound on the standard error is �1�/(�4�n�)� � .10. ■

When the point estimator �̂ has approximately a normal distribution, which
will often be the case when n is large, then we can be reasonably confident that the
true value of � lies within approximately 2 standard errors (standard deviations) of �̂.
Thus if a sample of n � 36 component lifetimes gives 	̂ � x� � 28.50 and s � 3.60,
then s/�n� � .60, so within 2 estimated standard errors of 	̂ translates to the interval
28.50 � (2)(.60) � (27.30, 29.70).

If �̂ is not necessarily approximately normal but is unbiased, then it can be
shown that the estimate will deviate from � by as much as 4 standard errors at most
6% of the time. We would then expect the true value to lie within 4 standard errors
of �̂ (and this is a very conservative statement, since it applies to any unbiased �̂ ).
Summarizing, the standard error tells us roughly within what distance of �̂ we can
expect the true value of � to lie.

The form of the estimator �̂ may be sufficiently complicated so that stan-
dard statistical theory cannot be applied to obtain an expression for ��̂. This is
true, for example, in the case � � �, �̂ � S; the standard deviation of the statistic
S, �S, cannot in general be determined. In recent years, a new computer-intensive
method called the bootstrap has been introduced to address this problem. Suppose
that the population pdf is f (x; �), a member of a particular parametric family, and
that data x1, x2, . . . , xn gives �̂ � 21.7. We now use the computer to obtain “boot-
strap samples” from the pdf f (x; 21.7), and for each sample we calculate a “boot-
strap estimate” �̂*:

First bootstrap sample: x*1, x*2, . . . , x*n; estimate ��̂*1

Second bootstrap sample: x*1, x*2, . . . , x*n; estimate ��̂*2







Bth bootstrap sample: x*1, x*2, . . . , x*n; estimate ��̂*B

B � 100 or 200 is often used. Now let ��* � ��̂*i /B, the sample mean of the boot-
strap estimates. The bootstrap estimate of �̂’s standard error is now just the sample
standard deviation of the �̂*i s:

S�̂ � ��
B� �

1� 1
�� ��(�̂�*i��� ���*)�2�

(In the bootstrap literature, B is often used in place of B � 1; for typical values of B,
there is usually little difference between the resulting estimates.)

A theoretical model suggests that X, the time to breakdown of an insulating fluid
between electrodes at a particular voltage, has f(x; �) � �e��x, an exponential distribu-
tion. A random sample of n � 10 breakdown times (min) gives the following data:

41.53 18.73 2.99 30.34 12.33 117.52 73.02 223.63 4.00 26.78

Since E(X) � 1/�, E(X�) � 1/�, so a reasonable estimate of � is �̂ � 1/x� � 1/55.087 �
.018153. We then used a statistical computer package to obtain B � 100 bootstrap
samples, each of size 10, from f(x; .018153). The first such sample was 41.00, 109.70,
16.78, 6.31, 6.76, 5.62, 60.96, 78.81, 192.25, 27.61, from which �x*i � 545.8
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and�̂*1 � 1/54.58 � .01832. The average of the 100 bootstrap estimates is ��* � .02153,
and the sample standard deviation of these 100 estimates is s�̂ � .0091, the bootstrap
estimate of �̂’s standard error. A histogram of the 100 �̂*i s was somewhat positively
skewed, suggesting that the sampling distribution of �̂ also has this property. ■

Sometimes an investigator wishes to estimate a population characteristic with-
out assuming that the population distribution belongs to a particular parametric family.
An instance of this occurred in Example 6.7, where a 10% trimmed mean was pro-
posed for estimating a symmetric population distribution’s center �. The data of
Example 6.2 gave �̂ � x�tr(10) � 27.838, but now there is no assumed f(x; �), so how
can we obtain a bootstrap sample? The answer is to regard the sample itself as con-
stituting the population (the n � 20 observations in Example 6.2) and take B differ-
ent samples, each of size n, with replacement from this population. The book by
Bradley Efron and Robert Tibshirani or the one by John Rice listed in the chapter
bibliography provides more information.
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EXERCISES Section 6.1 (1–19)

1. The accompanying data on flexural strength (MPa) for con-
crete beams of a certain type was introduced in Example 1.2.

5.9 7.2 7.3 6.3 8.1 6.8 7.0

7.6 6.8 6.5 7.0 6.3 7.9 9.0

8.2 8.7 7.8 9.7 7.4 7.7 9.7

7.8 7.7 11.6 11.3 11.8 10.7

a. Calculate a point estimate of the mean value of strength
for the conceptual population of all beams manufactured
in this fashion, and state which estimator you used.
[Hint: �xi � 219.8.]

b. Calculate a point estimate of the strength value that sep-
arates the weakest 50% of all such beams from the
strongest 50%, and state which estimator you used.

c. Calculate and interpret a point estimate of the population
standard deviation �. Which estimator did you use?
[Hint: �x2

i � 1860.94.]
d. Calculate a point estimate of the proportion of all such

beams whose flexural strength exceeds 10 MPa. [Hint:
Think of an observation as a “success” if it exceeds 10.]

e. Calculate a point estimate of the population coefficient of
variation �/	, and state which estimator you used.

2. A sample of 20 students who had recently taken elementary
statistics yielded the following information on brand of
calculator owned (T � Texas Instruments, H � Hewlett
Packard, C � Casio, S � Sharp):

T T H T C T T S C H

S S T H C T T T H T

a. Estimate the true proportion of all such students who
own a Texas Instruments calculator.

b. Of the 10 students who owned a TI calculator, 4 had
graphing calculators. Estimate the proportion of students
who do not own a TI graphing calculator.

3. Consider the following sample of observations on coating
thickness for low-viscosity paint (“Achieving a Target Value
for a Manufacturing Process: A Case Study,” J. of Quality
Technology, 1992: 22–26):

.83 .88 .88 1.04 1.09 1.12 1.29 1.31

1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83

Assume that the distribution of coating thickness is normal
(a normal probability plot strongly supports this assumption).
a. Calculate a point estimate of the mean value of coating

thickness, and state which estimator you used.
b. Calculate a point estimate of the median of the coating

thickness distribution, and state which estimator you used.
c. Calculate a point estimate of the value that separates the

largest 10% of all values in the thickness distribution
from the remaining 90%, and state which estimator you
used. [Hint: Express what you are trying to estimate in
terms of 	 and �.]

d. Estimate P(X � 1.5), i.e., the proportion of all thickness
values less than 1.5. [Hint: If you knew the values of 	
and �, you could calculate this probability. These values
are not available, but they can be estimated.]

e. What is the estimated standard error of the estimator that
you used in part (b)?

4. The article from which the data of Exercise 1 was extracted
also gave the accompanying strength observations for
cylinders:

6.1 5.8 7.8 7.1 7.2 9.2 6.6 8.3 7.0 8.3

7.8 8.1 7.4 8.5 8.9 9.8 9.7 14.1 12.6 11.2



Prior to obtaining data, denote the beam strengths by X1, . . . , Xm

and the cylinder strengths by Y1, . . . , Yn. Suppose that the
Xis constitute a random sample from a distribution with
mean �1 and standard deviation �1 and that the Yi s form a
random sample (independent of the Xi s) from another dis-
tribution with mean �2 and standard deviation �2.
a. Use rules of expected value to show that X� � Y� is an

unbiased estimator of �1 � �2. Calculate the estimate for
the given data.

b. Use rules of variance from Chapter 5 to obtain an ex-
pression for the variance and standard deviation (stan-
dard error) of the estimator in part (a), and then compute
the estimated standard error.

c. Calculate a point estimate of the ratio �1/�2 of the two
standard deviations.

d. Suppose a single beam and a single cylinder are ran-
domly selected. Calculate a point estimate of the vari-
ance of the difference X � Y between beam strength and
cylinder strength.

5. As an example of a situation in which several different sta-
tistics could reasonably be used to calculate a point esti-
mate, consider a population of N invoices. Associated with
each invoice is its “book value,” the recorded amount of
that invoice. Let T denote the total book value, a known
amount. Some of these book values are erroneous. An
audit will be carried out by randomly selecting n invoices
and determining the audited (correct) value for each one.
Suppose that the sample gives the following results (in
dollars).

Let

Y� � sample mean book value

X� � sample mean audited value

D� � sample mean error

Propose three different statistics for estimating the total
audited (i.e., correct) value—one involving just N and X�,
another involving T, N, and D�, and the last involving T and
X�/Y�. If N � 5000 and T � 1,761,300, calculate the three
corresponding point estimates. (The article “Statistical
Models and Analysis in Auditing,” Statistical Science, 1989:
2–33). discusses properties of these estimators.)

6. Consider the accompanying observations on stream flow
(1000s of acre-feet) recorded at a station in Colorado for
the period April 1–August 31 over a 31-year span (from an
article in the 1974 volume of Water Resources Research).

127.96 210.07 203.24 108.91 178.21

285.37 100.85 89.59 185.36 126.94

200.19 66.24 247.11 299.87 109.64

125.86 114.79 109.11 330.33 85.54

117.64 302.74 280.55 145.11 95.36

204.91 311.13 150.58 262.09 477.08

94.33

An appropriate probability plot supports the use of the log-
normal distribution (see Section 4.5) as a reasonable model
for stream flow.
a. Estimate the parameters of the distribution. [Hint:

Remember that X has a lognormal distribution with
parameters � and �2 if ln(X) is normally distributed with
mean � and variance �2.]

b. Use the estimates of part (a) to calculate an estimate of
the expected value of stream flow. [Hint: What is E(X)?]

7. a. A random sample of 10 houses in a particular area, each
of which is heated with natural gas, is selected and the
amount of gas (therms) used during the month of January
is determined for each house. The resulting observations
are 103, 156, 118, 89, 125, 147, 122, 109, 138, 99. Let 
� denote the average gas usage during January by all
houses in this area. Compute a point estimate of �.

b. Suppose there are 10,000 houses in this area that use nat-
ural gas for heating. Let � denote the total amount of gas
used by all of these houses during January. Estimate �
using the data of part (a). What estimator did you use in
computing your estimate?

c. Use the data in part (a) to estimate p, the proportion of all
houses that used at least 100 therms.

d. Give a point estimate of the population median usage
(the middle value in the population of all houses) based
on the sample of part (a). What estimator did you use?

8. In a random sample of 80 components of a certain type, 12 are
found to be defective.
a. Give a point estimate of the proportion of all such com-

ponents that are not defective.
b. A system is to be constructed by randomly selecting two

of these components and connecting them in series, as
shown here.

The series connection implies that the system will function
if and only if neither component is defective (i.e., both com-
ponents work properly). Estimate the proportion of all such
systems that work properly. [Hint: If p denotes the proba-
bility that a component works properly, how can P(system
works) be expressed in terms of p?]

9. Each of 150 newly manufactured items is examined and the
number of scratches per item is recorded (the items are sup-
posed to be free of scratches), yielding the following data:
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Invoice

1 2 3 4 5

Book value 300 720 526 200 127
Audited value 300 520 526 200 157
Error 0 200 0 0 �30



Let X � the number of scratches on a randomly chosen
item, and assume that X has a Poisson distribution with
parameter �.
a. Find an unbiased estimator of � and compute the esti-

mate for the data. [Hint: E(X) �� for X Poisson, so
E(X�) � ?]

b. What is the standard deviation (standard error) of your
estimator? Compute the estimated standard error. [Hint:
� 2

X �� for X Poisson.]

10. Using a long rod that has length 	, you are going to lay out
a square plot in which the length of each side is 	. Thus the
area of the plot will be 	2. However, you do not know the
value of 	, so you decide to make n independent measure-
ments X1, X2, . . . Xn of the length. Assume that each Xi has
mean 	 (unbiased measurements) and variance � 2.
a. Show that X�2 is not an unbiased estimator for 	2.

[Hint: For any rv Y, E(Y 2) � V(Y) � [E(Y)]2. Apply this
with Y � X�.]

b. For what value of k is the estimator X�2
� kS2 unbiased

for 	2? [Hint: Compute E(X�2
� kS 2).]

11. Of n1 randomly selected male smokers, X1 smoked filter cig-
arettes, whereas of n2 randomly selected female smokers, X2

smoked filter cigarettes. Let p1 and p2 denote the probabili-
ties that a randomly selected male and female, respectively,
smoke filter cigarettes.
a. Show that (X1/n1) � (X2/n2) is an unbiased estimator for

p1 � p2. [Hint: E(Xi) � nipi for i � 1, 2.]
b. What is the standard error of the estimator in part (a)?
c. How would you use the observed values x1 and x2 to esti-

mate the standard error of your estimator?
d. If n1 � n2 � 200, x1 � 127, and x2 � 176, use the esti-

mator of part (a) to obtain an estimate of p1 � p2.
e. Use the result of part (c) and the data of part (d) to esti-

mate the standard error of the estimator.

12. Suppose a certain type of fertilizer has an expected yield per
acre of 	1 with variance � 2, whereas the expected yield for
a second type of fertilizer is 	 2 with the same variance � 2.
Let S2

1 and S2
2 denote the sample variances of yields based on

sample sizes n1 and n2, respectively, of the two fertilizers.
Show that the pooled (combined) estimator

�̂ 2 �

is an unbiased estimator of � 2.

13. Consider a random sample X1, . . . , Xn from the pdf

f(x; �) � .5(1 � �x) �1 � x � 1

where �1 � � � 1 (this distribution arises in particle
physics). Show that �̂ � 3X� is an unbiased estimator of �.
[Hint: First determine 	 � E(X) � E(X�).]

14. A sample of n captured Pandemonium jet fighters results in
serial numbers x1, x2, x3, . . . , xn. The CIA knows that the air-
craft were numbered consecutively at the factory starting
with � and ending with �, so that the total number of planes
manufactured is � � � � 1 (e.g., if � � 17 and � � 29,
then 29 � 17 � 1 � 13 planes having serial numbers 17,
18, 19, . . . , 28, 29 were manufactured). However, the CIA
does not know the values of � or �. A CIA statistician sug-
gests using the estimator max(Xi) � min(Xi) � 1 to estimate
the total number of planes manufactured.
a. If n � 5, x1 � 237, x2 � 375, x3 � 202, x4 � 525, and

x5 � 418, what is the corresponding estimate?
b. Under what conditions on the sample will the value of

the estimate be exactly equal to the true total number of
planes? Will the estimate ever be larger than the true
total? Do you think the estimator is unbiased for esti-
mating � � � � 1? Explain in one or two sentences.

15. Let X1, X2, . . . , Xn represent a random sample from a
Rayleigh distribution with pdf

f(x; �) � �
�

x
� e�x2/(2�) x � 0

a. It can be shown that E(X 2) � 2�. Use this fact to con-
struct an unbiased estimator of � based on �X 2

i (and use
rules of expected value to show that it is unbiased).

b. Estimate � from the following n � 10 observations on
vibratory stress of a turbine blade under specified con-
ditions:

16.88 10.23 4.59 6.66 13.68

14.23 19.87 9.40 6.51 10.95

16. Suppose the true average growth 	 of one type of plant dur-
ing a 1-year period is identical to that of a second type, but
the variance of growth for the first type is �2, whereas for the
second type, the variance is 4�2. Let X1, . . . , Xm be m inde-
pendent growth observations on the first type [so E(Xi) � 	,
V(Xi) � �2], and let Y1, . . . , Yn be n independent growth
observations on the second type [E(Yi) � 	, V(Yi) � 4�2].
a. Show that for any � between 0 and 1, the estimator 	̂ �

�X� � (1 � �)Y� is unbiased for 	.
b. For fixed m and n, compute V(	̂), and then find the value

of � that minimizes V(	̂). [Hint: Differentiate V(	̂) with
respect to �.]

17. In Chapter 3, we defined a negative binomial rv as the num-
ber of failures that occur before the rth success in a sequence
of independent and identical success/failure trials. The prob-
ability mass function (pmf) of X is

nb(x; r, p) �

{� �pr(1 � p)x x � 0, 1, 2, . . .

0 otherwise

x � r � 1
x

(n1 � 1)S2
1 � (n2 � 1)S2

2���
n1 � n2 � 2
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Number of
scratches
per item 0 1 2 3 4 5 6 7

Observed
frequency 18 37 42 30 13 7 2 1



a. Suppose that r � 2. Show that

p̂ � (r � 1)/(X � r � 1)

is an unbiased estimator for p. [Hint: Write out E( p̂) and
cancel x � r � 1 inside the sum.]

b. A reporter wishing to interview five individuals who sup-
port a certain candidate begins asking people whether (S)
or not (F) they support the candidate. If the sequence of
responses is SFFSFFFSSS, estimate p � the true propor-
tion who support the candidate.

18. Let X1, X2, . . . , Xn be a random sample from a pdf f(x) that is
symmetric about 	, so that is an unbiased estimator of 	. If
n is large, it can be shown that V( ) � 1/(4n[ f(	)]2).
a. Compare V( ) to V(XX�) when the underlying distribution

is normal.
b. When the underlying pdf is Cauchy (see Example 6.7),

V(X�) � �, so X� is a terrible estimator. What is V( ) in
this case when n is large?

19. An investigator wishes to estimate the proportion of students
at a certain university who have violated the honor code.
Having obtained a random sample of n students, she realizes
that asking each, “Have you violated the honor code?” will
probably result in some untruthful responses. Consider the

following scheme, called a randomized response tech-
nique. The investigator makes up a deck of 100 cards, of
which 50 are of type I and 50 are of type II.

Type I: Have you violated the honor code (yes or no)?

Type II: Is the last digit of your telephone number a 0, 1,
or 2 (yes or no)?

Each student in the random sample is asked to mix the deck,
draw a card, and answer the resulting question truthfully.
Because of the irrelevant question on type II cards, a yes
response no longer stigmatizes the respondent, so we assume
that responses are truthful. Let p denote the proportion of
honor-code violators (i.e., the probability of a randomly
selected student being a violator), and let � � P(yes
response). Then � and p are related by � � .5p � (.5)(.3).
a. Let Y denote the number of yes responses, so Y 	

Bin (n, �). Thus Y/n is an unbiased estimator of �. Derive
an estimator for p based on Y. If n � 80 and y � 20, what
is your estimate? [Hint: Solve � � .5p � .15 for p and
then substitute Y/n for �.]

b. Use the fact that E(Y/n) �� to show that your estimator
p̂ is unbiased.

c. If there were 70 type I and 30 type II cards, what would
be your estimator for p?

X|

X|
X|

X|
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The definition of unbiasedness does not in general indicate how unbiased estimators can
be derived. We now discuss two “constructive” methods for obtaining point estimators:
the method of moments and the method of maximum likelihood. By constructive we
mean that the general definition of each type of estimator suggests explicitly how to
obtain the estimator in any specific problem. Although maximum likelihood estimators
are generally preferable to moment estimators because of certain efficiency properties,
they often require significantly more computation than do moment estimators. It is
sometimes the case that these methods yield unbiased estimators.

The Method of Moments
The basic idea of this method is to equate certain sample characteristics, such as the
mean, to the corresponding population expected values. Then solving these equa-
tions for unknown parameter values yields the estimators.

6.2 Methods of Point Estimation

Thus the first population moment is E(X) � 	 and the first sample moment is �Xi/n �
X�. The second population and sample moments are E(X2) and �X2

i /n, respectively. The
population moments will be functions of any unknown parameters �1, �2, . . . .

DEFINITION Let X1, . . . , Xn be a random sample from a pmf or pdf f(x). For k � 1, 2, 3, . . . ,
the kth population moment, or kth moment of the distribution f(x), is E(Xk).
The kth sample moment is (1/n)�n

i�1X
k
i .



If, for example, m � 2, E(X) and E(X2) will be functions of �1 and �2. Setting E(X) �
(1/n) �Xi (� X�) and E(X2) � (1/n) �X2

i gives two equations in �1 and �2. The solution
then defines the estimators. For estimating a population mean 	, the method gives 	 �
X�, so the estimator is the sample mean.

Let X1, X2, . . . , Xn represent a random sample of service times of n customers at a
certain facility, where the underlying distribution is assumed exponential with param-
eter �. Since there is only one parameter to be estimated, the estimator is obtained by
equating E(X) to X�. Since E(X) � 1/� for an exponential distribution, this gives 1/� �
X� or � � 1/X�. The moment estimator of � is then �̂ � 1/X�. ■

Let X1, . . . , Xn be a random sample from a gamma distribution with parameters � and
�. From Section 4.4, E(X) ��� and E(X2) � �2�(� � 2)/�(�) � �2(� � 1)�. The
moment estimators of � and � are obtained by solving

X� � �� �
1
n

� �X2
i � �(� � 1)�2

Since �(� � 1)�2 � �2�2 � ��2 and the first equation implies �2�2 � X�2, the sec-
ond equation becomes

�
1
n

� �X2
i � X�2 � ��2

Now dividing each side of this second equation by the corresponding side of the first
equation and substituting back gives the estimators

�̂ � �̂ �

To illustrate, the survival time data mentioned in Example 4.24 is

152 115 109 94 88 137 152 77 160 165

125 40 128 123 136 101 62 153 83 69

with x� � 113.5 and (1/20)�x2
i � 14,087.8. The estimates are

�̂ � � 10.7 �̂ � � 10.6

These estimates of � and � differ from the values suggested by Gross and Clark
because they used a different estimation technique. ■

Let X1, . . . , Xn be a random sample from a generalized negative binomial
distribution with parameters r and p (Section 3.5). Since E(X) � r(1 � p)/p and

14,087.8 � (113.5)2

���
113.5

(113.5)2

���
14,087.8 � (113.5)2

(1/n)�X2
i � X�2

��
X�

X�2

��
(1/n)�X 2

i � X�2
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DEFINITION Let X1, X2, . . . , Xn be a random sample from a distribution with pmf or pdf 
f (x; �1, . . . , �m), where �1, . . . , �m are parameters whose values are
unknown. Then the moment estimators �̂1, . . . , �̂m are obtained by equating
the first m sample moments to the corresponding first m population moments
and solving for �1, . . . , �m.

Example 6.12

Example 6.13

Example 6.14



V(X) � r(1 � p)/p2, E(X2) � V(X) � [E(X)]2 � r(1 � p)(r � rp � 1)/p2. Equating
E(X) to X� and E(X2) to (1/n)�X2

i eventually gives

p̂ ��
(1/n)�X

X�
2
i � X�2� r̂ �

As an illustration, Reep, Pollard, and Benjamin (“Skill and Chance in Ball
Games,” J. Royal Stat. Soc., 1971: 623–629) consider the negative binomial distri-
bution as a model for the number of goals per game scored by National Hockey
League teams. The data for 1966–1967 follows (420 games):

Goals 0 1 2 3 4 5 6 7 8 9 10

Frequency 29 71 82 89 65 45 24 7 4 1 3

Then,

x� � �xi /420 � [(0)(29) � (1)(71) � 
 
 
 � (10)(3)]/420 � 2.98

and

�x2
i /420 � [(0)2(29) � (1)2(71) � 
 
 
 � (10)2(3)]/420 � 12.40

Thus,

p̂ ��
12.40

2
�

.98
(2.98)2
�� .85 r̂ � � 16.5

Although r by definition must be positive, the denominator of r̂ could be negative,
indicating that the negative binomial distribution is not appropriate (or that the mo-
ment estimator is flawed). ■

Maximum Likelihood Estimation
The method of maximum likelihood was first introduced by R. A. Fisher, a geneti-
cist and statistician, in the 1920s. Most statisticians recommend this method, at least
when the sample size is large, since the resulting estimators have certain desirable
efficiency properties (see the proposition on page 249).

A sample of ten new bike helmets manufactured by a certain company is obtained.
Upon testing, it is found that the first, third, and tenth helmets are flawed, whereas
the others are not. Let p � P(flawed helmet) and define X1, . . . , X10 by Xi � 1 if the
ith helmet is flawed and zero otherwise. Then the observed xis are 1, 0, 1, 0, 0, 0, 0,
0, 0, 1, so the joint pmf of the sample is

f (x1, x2, . . . , x10; p) � p(1 � p)p � 
 
 
 � p � p3(1 � p)7 (6.4)

We now ask, “For what value of p is the observed sample most likely to have
occurred?” That is, we wish to find the value of p that maximizes the pmf (6.4) or,
equivalently, maximizes the natural log of (6.4).* Since

ln[ f (x1, . . . , x10; p)] � 3 ln(p) � 7 ln(1 � p) (6.5)

(2.98)2

���
12.40 � (2.98)2 � 2.98

X�2

���
(1/n)�X2

i � X�2
� X�
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* Since ln[g(x)] is a monotonic function of g(x), finding x to maximize ln[g(x)] is equivalent to max-
imizing g(x) itself. In statistics, taking the logarithm frequently changes a product to a sum, which
is easier to work with.



which is a differentiable function of p, equating the derivative of (6.5) to zero gives
the maximizing value†

�
d
d
p
� ln[ f (x1, . . . , x10; p)] � �

3
p

� � �
1 �

7
p

� � 0 d p � �
1
3
0
� � �

n
x

�

where x is the observed number of successes (flawed helmets). The estimate of p is
now p̂ � �

1
3
0
�. It is called the maximum likelihood estimate because for fixed x1, . . . , x10,

it is the parameter value that maximizes the likelihood (joint pmf) of the observed
sample.

Note that if we had been told only that among the ten helmets there were three
that were flawed, Equation (6.4) would be replaced by the binomial pmf (10

3 )p3(1 � p)7,
which is also maximized for p̂ � �

1
3
0
�. ■
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The likelihood function tells us how likely the observed sample is as a function
of the possible parameter values. Maximizing the likelihood gives the parameter val-
ues for which the observed sample is most likely to have been generated—that is, the
parameter values that “agree most closely” with the observed data.

Suppose X1, X2, . . . , Xn is a random sample from an exponential distribution with
parameter �. Because of independence, the likelihood function is a product of the
individual pdf’s:

f (x1, . . . , xn; �) � (�e��x1) � 
 
 
 � (�e��xn) � �ne���xi

The ln(likelihood) is

ln[ f (x1, . . . , xn; �)] � n ln(�) � ��xi

Equating (d/d�)[ln(likelihood)] to zero results in n/� � �xi � 0, or � � n/�xi � 1/x�.
Thus the mle is �̂ � 1/X�; it is identical to the method of moments estimator [but it is
not an unbiased estimator, since E(1/X�) � 1/E(X�)]. ■

DEFINITION Let X1, X2, . . . , Xn have joint pmf or pdf

f (x1, x2, . . . , xn; �1, . . . , �m) (6.6)

where the parameters �1, . . . , �m have unknown values. When x1, . . . , xn are
the observed sample values and (6.6) is regarded as a function of �1, . . . , �m,
it is called the likelihood function. The maximum likelihood estimates (mle’s)
�̂1, . . . ,�̂m are those values of the �is that maximize the likelihood function, so
that

f (x1, . . . , xn; �̂1, . . . , �̂m) � f (x1, . . . , xn; �1, . . . , �m) for all �1, . . . , �m

When the Xi s are substituted in place of the xi s, the maximum likelihood
estimators result.

Example 6.16

† This conclusion requires checking the second derivative, but the details are omitted.



Let X1, . . . , Xn be a random sample from a normal distribution. The likelihood func-
tion is

f (x1, . . . , xn; 	, � 2) � �
�2�

1

����2�
� e�(x1�	)2/(2� 2) � 
 
 
 � �

�2�
1

����2�
� e�(xn�	)2/(2� 2)

� ��2�

1
� 2
��

n/2
e��(xi�	)2/(2� 2)

so

ln[ f (x1, . . . , xn; 	, � 2)] � � �
n
2

� ln(2�� 2) � �
2�

1
2

� �(xi � 	)2

To find the maximizing values of 	 and � 2, we must take the partial derivatives of
ln(f) with respect to 	 and � 2, equate them to zero, and solve the resulting two equa-
tions. Omitting the details, the resulting mle’s are

	̂ � X� �̂ 2 � �
�(Xi

n

� X�)2

�

The mle of �2 is not the unbiased estimator, so two different principles of estimation
(unbiasedness and maximum likelihood) yield two different estimators. ■

In Chapter 3, we discussed the use of the Poisson distribution for modeling the num-
ber of “events” that occur in a two-dimensional region. Assume that when the region
R being sampled has area a(R), the number X of events occurring in R has a Poisson
distribution with parameter �a(R) (where � is the expected number of events per unit
area) and that nonoverlapping regions yield independent X’s.

Suppose an ecologist selects n nonoverlapping regions R1, . . . , Rn and counts
the number of plants of a certain species found in each region. The joint pmf 
(likelihood) is then

p(x1, . . . , xn; �) � � 
 
 
 �

�

The ln(likelihood) is

ln[p(x1, . . . , xn; �)] � �xi � ln[a(Ri)] � ln(�) � �xi � ��a(Ri) � � ln(xi!)

Taking d/d� ln(p) and equating it to zero yields

�
�
�

xi� � �a(Ri) � 0

so

� � �
�

�
a(

x

R
i

i)
�

The mle is then �̂ � �Xi/�a(Ri). This is intuitively reasonable because � is the true
density (plants per unit area), whereas �̂ is the sample density since �a(Ri) is just the
total area sampled. Because E(Xi) � � � a(Ri), the estimator is unbiased.

Sometimes an alternative sampling procedure is used. Instead of fixing regions
to be sampled, the ecologist will select n points in the entire region of interest and

[a(R1)]
x1 � 
 
 
 � [a(Rn)]

xn � ��xi � e���a(Ri)

������
x1! � 
 
 
 � xn!

[� � a(Rn)]
xne���a(Rn)

���
xn!

[� � a(R1)]
x1e���a(R1)

���
x1!
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let yi � the distance from the ith point to the nearest plant. The cumulative distribu-
tion function (cdf) of Y � distance to the nearest plant is

FY(y) � P(Y � y) � 1 � P(Y � y) � 1 � P� �
� 1 � �

e���y2

0
(�
!
�y2)0

� � 1 � e����y2

Taking the derivative of FY(y) with respect to y yields

fY(y; �) � {2��ye���y2 y � 0
0 otherwise

If we now form the likelihood fY(y1; �) � 
 
 
 � fY(yn; �), differentiate ln(likelihood),
and so on, the resulting mle is

�̂ � �
��

n

Y 2
i

� �

which is also a sample density. It can be shown that in a sparse environment (small �),
the distance method is in a certain sense better, whereas in a dense environment, the
first sampling method is better. ■

Let X1, . . . , Xn be a random sample from a Weibull pdf

f (x; �, �) � {�
�

�
�
� � x��1 � e�(x/�)� x � 0

0 otherwise

Writing the likelihood and ln(likelihood), then setting both (∂/∂�)[ln( f )] � 0 and
(∂/∂�)[ln(f)] � 0 yields the equations

� � ���x�
i

�
�

x

ln
�
i

(xi)� � �
� ln

n

(xi)���1
� � ��

�
n

x�
i��1/�

These two equations cannot be solved explicitly to give general formulas for the mle’s
�̂ and �̂. Instead, for each sample x1, . . . , xn, the equations must be solved using an
iterative numerical procedure. Even moment estimators of � and � are somewhat
complicated (see Exercise 21). ■

Estimating Functions of Parameters
In Example 6.17, we obtained the mle of � 2 when the underlying distribution is nor-
mal. The mle of � � ���2�, as well as many other mle’s, can be easily derived using
the following proposition.

number of plants observed
���

total area sampled

no plants in a
circle of radius y
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The Invariance Principle

Let�̂1,�̂2, . . . ,�̂m be the mle’s of the parameters �1, �2, . . . , �m. Then the mle of
any function h(�1, �2, . . . , �m) of these parameters is the function h(�̂1,�̂2, . . . ,�̂m)
of the mle’s.

PROPOSITION



In the normal case, the mle’s of 	 and �2 are 	̂ � X� and �̂2 � �(Xi � X�)2/n. To obtain
the mle of the function h(	, �2) � ���2� � �, substitute the mle’s into the function:

�̂ � ��̂�2� � ��
1
n

� �(Xi � X�)2�1/2

The mle of � is not the sample standard deviation S, though they are close unless n
is quite small. ■

The mean value of an rv X that has a Weibull distribution is

	 � � � �(1 � 1/�)

The mle of 	 is therefore 	̂ � �̂�(1 � 1/�̂), where �̂ and �̂ are the mle’s of � and �.
In particular, X� is not the mle of 	, though it is an unbiased estimator. At least for
large n, 	̂ is a better estimator than X�. ■

Large Sample Behavior of the MLE
Although the principle of maximum likelihood estimation has considerable intuitive
appeal, the following proposition provides additional rationale for the use of mle’s.
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Example 6.20
(Example 6.17
continued)

Example 6.21
(Example 6.19
continued)

Under very general conditions on the joint distribution of the sample, when the
sample size n is large, the maximum likelihood estimator of any parameter � is
approximately unbiased [E(�̂) � �] and has variance that is nearly as small as can
be achieved by any estimator. Stated another way, the mle �̂ is approximately the
MVUE of �.

PROPOSITION

Because of this result and the fact that calculus-based techniques can usually be
used to derive the mle’s (though often numerical methods, such as Newton’s method,
are necessary), maximum likelihood estimation is the most widely used estimation
technique among statisticians. Many of the estimators used in the remainder of the
book are mle’s. Obtaining an mle, however, does require that the underlying dis-
tribution be specified.

Some Complications
Sometimes calculus cannot be used to obtain mle’s.

Suppose my waiting time for a bus is uniformly distributed on [0, �] and the
results x1, . . . , xn of a random sample from this distribution have been observed.
Since f (x; �) � 1/� for 0 � x �� and 0 otherwise,

f (x1, . . . , xn; �) � ��
�

1
n
� 0 � x1 � �, . . . , 0 � xn � �

0 otherwise

As long as max(xi) � �, the likelihood is 1/�n, which is positive, but as soon as 
� � max(xi), the likelihood drops to 0. This is illustrated in Figure 6.5. Calculus will
not work because the maximum of the likelihood occurs at a point of discontinuity,

Example 6.22



but the figure shows that �̂ � max(Xi). Thus if my waiting times are 2.3, 3.7, 1.5, .4,
and 3.2, then the mle is �̂ � 3.7. ■

A method that is often used to estimate the size of a wildlife population involves per-
forming a capture/recapture experiment. In this experiment, an initial sample of M
animals is captured, each of these animals is tagged, and the animals are then
returned to the population. After allowing enough time for the tagged individuals to
mix into the population, another sample of size n is captured. With X � the number
of tagged animals in the second sample, the objective is to use the observed x to esti-
mate the population size N.

The parameter of interest is � � N, which can assume only integer values, so
even after determining the likelihood function (pmf of X here), using calculus to
obtain N would present difficulties. If we think of a success as a previously tagged
animal being recaptured, then sampling is without replacement from a population
containing M successes and N � M failures, so that X is a hypergeometric rv and
the likelihood function is

p(x; N) � h(x; n, M, N) �

The integer-valued nature of N notwithstanding, it would be difficult to take the deriv-
ative of p(x; N). However, if we consider the ratio of p(x; N) to p(x; N � 1), we have

�

This ratio is larger than 1 if and only if (iff) N � Mn/x. The value of N for which 
p(x; N) is maximized is therefore the largest integer less than Mn/x. If we use stan-
dard mathematical notation [r] for the largest integer less than or equal to r, the mle of
N is N̂ � [Mn/x]. As an illustration, if M � 200 fish are taken from a lake and tagged,
subsequently n � 100 fish are recaptured, and among the 100 there are x � 11 tagged
fish, then N̂ � [(200)(100)/11] � [1818.18] � 1818. The estimate is actually rather
intuitive; x/n is the proportion of the recaptured sample that is tagged, whereas M/N
is the proportion of the entire population that is tagged. The estimate is obtained
by equating these two proportions (estimating a population proportion by a sample
proportion). ■

Suppose X1, X2, . . . , Xn is a random sample from a pdf f(x; �) that is symmetric
about � but that the investigator is unsure of the form of the f function. It is then
desirable to use an estimator �̂ that is robust—that is, one that performs well for a

(N � M) � (N � n)
���
N(N � M � n � x)

p(x; N)
��
p(x; N � 1)

�M
x � � �N

n
�

� x
M�

��

�N
n �

250 CHAPTER 6 Point Estimation

max(xi) �

Likelihood

Figure 6.5 The likelihood function for Example 6.22
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wide variety of underlying pdf’s. One such estimator is a trimmed mean. In recent
years, statisticians have proposed another type of estimator, called an M-estimator,
based on a generalization of maximum likelihood estimation. Instead of maximizing
the log likelihood �ln[ f(x; �)] for a specified f, one maximizes ��(xi; �). The
“objective function” � is selected to yield an estimator with good robustness proper-
ties. The book by David Hoaglin et al. (see the bibliography) contains a good expo-
sition on this subject.
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20. A random sample of n bike helmets manufactured by a cer-
tain company is selected. Let X � the number among the n
that are flawed, and let p � P(flawed). Assume that only X
is observed, rather than the sequence of S’s and F’s.
a. Derive the maximum likelihood estimator of p. If n � 20

and x � 3, what is the estimate?
b. Is the estimator of part (a) unbiased?
c. If n � 20 and x � 3, what is the mle of the probability

(1 � p)5 that none of the next five helmets examined is
flawed?

21. Let X have a Weibull distribution with parameters � and
�, so

E(X) � � � �(1 � 1/�)

V(X) � �2{�(1 � 2/�) � [�(1 � 1/�)]2}

a. Based on a random sample X1, . . . , Xn, write equations
for the method of moments estimators of � and �. Show
that, once the estimate of � has been obtained, the esti-
mate of � can be found from a table of the gamma func-
tion and that the estimate of � is the solution to a com-
plicated equation involving the gamma function.

b. If n � 20, x� � 28.0, and �x2
i � 16,500, compute the esti-

mates. [Hint: [�(1.2)]2/�(1.4) � .95.]

22. Let X denote the proportion of allotted time that a randomly
selected student spends working on a certain aptitude test.
Suppose the pdf of X is

f(x; �) � �(� � 1)x� 0 � x � 1
0 otherwise

where �1 � �. A random sample of ten students yields data
x1 � .92, x2 � .79, x3 � .90, x4 � .65, x5 � .86, x6 � .47,
x7 � .73, x8 � .97, x9 � .94, x10 � .77.
a. Use the method of moments to obtain an estimator of �,

and then compute the estimate for this data.
b. Obtain the maximum likelihood estimator of �, and then

compute the estimate for the given data.

23. Two different computer systems are monitored for a total of
n weeks. Let Xi denote the number of breakdowns of the
first system during the ith week, and suppose the Xi s are
independent and drawn from a Poisson distribution with
parameter �1. Similarly, let Yi denote the number of break-
downs of the second system during the ith week, and

assume independence with each Yi Poisson with parameter �2.
Derive the mle’s of �1, �2, and �1 � �2. [Hint: Using inde-
pendence, write the joint pmf (likelihood) of the Xi s and
Yi s together.]

24. Refer to Exercise 20. Instead of selecting n � 20 helmets to
examine, suppose I examine helmets in succession until I
have found r � 3 flawed ones. If the 20th helmet is the third
flawed one (so that the number of helmets examined that
were not flawed is x � 17), what is the mle of p? Is this the
same as the estimate in Exercise 20? Why or why not? Is it
the same as the estimate computed from the unbiased esti-
mator of Exercise 17?

25. The shear strength of each of ten test spot welds is deter-
mined, yielding the following data (psi):

392 376 401 367 389 362 409 415 358 375

a. Assuming that shear strength is normally distributed, esti-
mate the true average shear strength and standard devia-
tion of shear strength using the method of maximum 
likelihood.

b. Again assuming a normal distribution, estimate the strength
value below which 95% of all welds will have their
strengths. [Hint: What is the 95th percentile in terms of 	
and �? Now use the invariance principle.]

26. Refer to Exercise 25. Suppose we decide to examine
another test spot weld. Let X � shear strength of the weld.
Use the given data to obtain the mle of P(X � 400).
[Hint: P(X � 400) � �((400 � 	)/�).]

27. Let X1, . . . , Xn be a random sample from a gamma distri-
bution with parameters � and �.
a. Derive the equations whose solution yields the maximum

likelihood estimators of � and �. Do you think they can
be solved explicitly?

b. Show that the mle of 	 ��� is 	̂ � X�.

28. Let X1, X2, . . . , Xn represent a random sample from the
Rayleigh distribution with density function given in Ex-
ercise 15. Determine
a. The maximum likelihood estimator of � and then calcu-

late the estimate for the vibratory stress data given in that
exercise. Is this estimator the same as the unbiased esti-
mator suggested in Exercise 15?

EXERCISES Section 6.2 (20–30)



b. The mle of the median of the vibratory stress distribu-
tion. [Hint: First express the median in terms of �.]

29. Consider a random sample X1, X2, . . . , Xn from the shifted
exponential pdf

f(x; �, �) � {�e��(x��) x � �
0 otherwise

Taking � � 0 gives the pdf of the exponential distribution
considered previously (with positive density to the right of
zero). An example of the shifted exponential distribution
appeared in Example 4.5, in which the variable of interest
was time headway in traffic flow and � � .5 was the mini-
mum possible time headway.
a. Obtain the maximum likelihood estimators of � and �.

b. If n � 10 time headway observations are made, resulting
in the values 3.11, .64, 2.55, 2.20, 5.44, 3.42, 10.39, 8.93,
17.82, and 1.30, calculate the estimates of � and �.

30. At time t � 0, 20 identical components are put on test. The
lifetime distribution of each is exponential with parameter �.
The experimenter then leaves the test facility unmonitored.
On his return 24 hours later, the experimenter immediately
terminates the test after noticing that y � 15 of the 20 com-
ponents are still in operation (so 5 have failed). Derive the
mle of �. [Hint: Let Y � the number that survive 24 hours.
Then Y 	 Bin(n, p). What is the mle of p? Now notice that
p � P(Xi � 24), where Xi is exponentially distributed. This
relates � to p, so the former can be estimated once the latter
has been.]
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31. An estimator �̂ is said to be consistent if for any ! � 0,
P(⏐�̂ � �⏐ � !) 0 0 as n 0 �. That is, �̂ is consistent if, as
the sample size gets larger, it is less and less likely that �̂ will
be further than ! from the true value of �. Show that X� is a
consistent estimator of 	 when � 2 � � by using Cheb-
yshev’s inequality from Exercise 44 of Chapter 3. [Hint:
The inequality can be rewritten in the form

P(⏐Y � 	Y⏐� !) � � 2
Y /!

Now identify Y with X�.]

32. a. Let X1, . . . , Xn be a random sample from a uniform dis-
tribution on [0, �]. Then the mle of � is �̂ � Y � max(Xi).
Use the fact that Y � y iff each Xi � y to derive the cdf
of Y. Then show that the pdf of Y � max(Xi) is

fY(y) � {�
ny

�

n

n

�1

� 0 � y � �

0 otherwise

b. Use the result of part (a) to show that the mle is biased
but that (n � 1)max(Xi)/n is unbiased.

33. At time t � 0, there is one individual alive in a certain pop-
ulation. A pure birth process then unfolds as follows. The
time until the first birth is exponentially distributed with
parameter �. After the first birth, there are two individuals
alive. The time until the first gives birth again is exponen-
tial with parameter �, and similarly for the second individ-
ual. Therefore, the time until the next birth is the minimum
of two exponential (�) variables, which is exponential with
parameter 2�. Similarly, once the second birth has oc-
curred, there are three individuals alive, so the time until
the next birth is an exponential rv with parameter 3�, and
so on (the memoryless property of the exponential distribu-
tion is being used here). Suppose the process is observed

until the sixth birth has occurred and the successive birth
times are 25.2, 41.7, 51.2, 55.5, 59.5, 61.8 (from which you
should calculate the times between successive births).
Derive the mle of �. [Hint: The likelihood is a product of
exponential terms.]

34. The mean squared error of an estimator �̂ is MSE(�̂) �
E(�̂ � �)2. If �̂ is unbiased, then MSE(�̂) � V(�̂), but in
general MSE(�̂) � V(�̂) � (bias)2. Consider the estimator
�̂ 2 � KS2, where S2 � sample variance. What value of K
minimizes the mean squared error of this estimator when
the population distribution is normal? [Hint: It can be
shown that

E[(S2)2] � (n � 1)� 4/(n � 1)

In general, it is difficult to find �̂ to minimize MSE(�̂), which
is why we look only at unbiased estimators and minimize
V(�̂).]

35. Let X1, . . . , Xn be a random sample from a pdf that is sym-
metric about 	. An estimator for 	 that has been found to
perform well for a variety of underlying distributions is the
Hodges–Lehmann estimator. To define it, first compute for
each i � j and each j � 1, 2, . . . , n the pairwise average
X�i ,j � (Xi � Xj)/2. Then the estimator is 	̂ � the median of
the X�i ,j s. Compute the value of this estimate using the data
of Exercise 44 of Chapter 1. [Hint: Construct a square table
with the xis listed on the left margin and on top. Then com-
pute averages on and above the diagonal.]

36. When the population distribution is normal, the statistic
median{⏐X1 � ⏐, . . . , ⏐Xn � ⏐}/.6745 can be used to
estimate �. This estimator is more resistant to the effects of
outliers (observations far from the bulk of the data) than is
the sample standard deviation. Compute both the correspond-
ing point estimate and s for the data of Example 6.2.

X|X|

SUPPLEMENTARY EXERCISES (31–38)



37. When the sample standard deviation S is based on a random
sample from a normal population distribution, it can be
shown that

E(S) � �2�/(�n� �� 1�)��(n/2)�/�((n � 1)/2)

Use this to obtain an unbiased estimator for � of the form
cS. What is c when n � 20?

38. Each of n specimens is to be weighed twice on the same
scale. Let Xi and Yi denote the two observed weights for the

ith specimen. Suppose Xi and Yi are independent of one
another, each normally distributed with mean value 	i (the
true weight of specimen i) and variance � 2.
a. Show that the maximum likelihood estimator of � 2 is

�̂ 2 � �(Xi � Yi)
2/(4n). [Hint: If z� � (z1 � z2)/2, then

�(zi � z�)2 � (z1 � z2)
2/2.]

b. Is the mle �̂ 2 an unbiased estimator of � 2? Find an un-
biased estimator of � 2. [Hint: For any rv Z, E(Z 2) �
V(Z) � [E(Z)]2. Apply this to Z � Xi � Yi.]
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Statistical Intervals Based
on a Single Sample7

INTRODUCTION

A point estimate, because it is a single number, by itself provides no informa-

tion about the precision and reliability of estimation. Consider, for example,

using the statistic X� to calculate a point estimate for the true average breaking

strength (g) of paper towels of a certain brand, and suppose that x� � 9322.7.

Because of sampling variability, it is virtually never the case that x� � �. The point

estimate says nothing about how close it might be to �. An alternative to

reporting a single sensible value for the parameter being estimated is to calcu-

late and report an entire interval of plausible values—an interval estimate or

confidence interval (CI). A confidence interval is always calculated by first

selecting a confidence level, which is a measure of the degree of reliability of

the interval. A confidence interval with a 95% confidence level for the true

average breaking strength might have a lower limit of 9162.5 and an upper

limit of 9482.9. Then at the 95% confidence level, any value of � between

9162.5 and 9482.9 is plausible. A confidence level of 95% implies that 95% of

all samples would give an interval that includes �, or whatever other parame-

ter is being estimated, and only 5% of all samples would yield an erroneous

interval. The most frequently used confidence levels are 95%, 99%, and 90%.

The higher the confidence level, the more strongly we believe that the value of

the parameter being estimated lies within the interval (an interpretation of any

particular confidence level will be given shortly).

Information about the precision of an interval estimate is conveyed by the

width of the interval. If the confidence level is high and the resulting interval is

quite narrow, our knowledge of the value of the parameter is reasonably pre-

cise. A very wide confidence interval, however, gives the message that there is
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a great deal of uncertainty concerning the value of what we are estimating.

Figure 7.1 shows 95% confidence intervals for true average breaking strengths

of two different brands of paper towels. One of these intervals suggests precise

knowledge about �, whereas the other suggests a very wide range of plausible

values.

Brand 1:

Brand 2:

Strength

Strength

(      )

(                            )

Figure 7.1 Confidence intervals indicating precise (brand 1) and imprecise (brand 2) information
about �

The basic concepts and properties of confidence intervals (CIs) are most easily intro-
duced by first focusing on a simple, albeit somewhat unrealistic, problem situation.
Suppose that the parameter of interest is a population mean � and that

1. The population distribution is normal

2. The value of the population standard deviation � is known

Normality of the population distribution is often a reasonable assumption. However,
if the value of � is unknown, it is implausible that the value of � would be available
(knowledge of a population’s center typically precedes information concerning spread).
In later sections, we will develop methods based on less restrictive assumptions.

Industrial engineers who specialize in ergonomics are concerned with designing
workspace and devices operated by workers so as to achieve high productivity and
comfort. The article “Studies on Ergonomically Designed Alphanumeric Keyboards”
(Human Factors, 1985: 175–187) reports on a study of preferred height for an exper-
imental keyboard with large forearm–wrist support. A sample of n � 31 trained typ-
ists was selected, and the preferred keyboard height was determined for each typist.
The resulting sample average preferred height was x� � 80.0 cm. Assuming that the
preferred height is normally distributed with � � 2.0 cm (a value suggested by data
in the article), obtain a CI for �, the true average preferred height for the population
of all experienced typists. ■

The actual sample observations x1, x2, . . . , xn are assumed to be the result of
a random sample X1, . . . , Xn from a normal distribution with mean value � and
standard deviation �. The results of Chapter 5 then imply that irrespective of the
sample size n, the sample mean X� is normally distributed with expected value � and
standard deviation �/�n�. Standardizing X� by first subtracting its expected value and
then dividing by its standard deviation yields the standard normal variable

Z � (7.1)
X� � �
�
�/�n�

7.1 Basic Properties of Confidence Intervals

Example 7.1
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Because the area under the standard normal curve between �1.96 and 1.96 is .95,

P��1.96 � � 1.96� � .95 (7.2)

Now let’s manipulate the inequalities inside the parentheses in (7.2) so that
they appear in the equivalent form l � � � u, where the endpoints l and u involve
X� and �/�n�. This is achieved through the following sequence of operations, each
yielding inequalities equivalent to the original ones.

1. Multiply through by �/�n�:

�1.96 � � X� � � � 1.96 �

2. Subtract X� from each term:

�X� � 1.96 � � �� � �X� � 1.96 �

3. Multiply through by �1 to eliminate the minus sign in front of � (which
reverses the direction of each inequality):

X� � 1.96 � � � � X� � 1.96 �

that is,

X� � 1.96 � � � � XX� � 1.96 �

The equivalence of each set of inequalities to the original set implies that 

P�X� � 1.96 � � � X� � 1.96 � � .95 (7.3)

The event inside the parentheses in (7.3) has a somewhat unfamiliar appearance; pre-
viously, the random quantity has appeared in the middle with constants on both ends,
as in a � Y � b. In (7.3) the random quantity appears on the two ends, whereas the
unknown constant � appears in the middle. To interpret (7.3), think of a random
interval having left endpoint X� � 1.96 � �/�n� and right endpoint X� � 1.96 � �/�n�.
In interval notation, this becomes

�X� � 1.96 � , X� � 1.96 � � (7.4)

The interval (7.4) is random because the two endpoints of the interval involve a ran-
dom variable. It is centered at the sample mean X� and extends 1.96�/�n� to each
side of X�. Thus the interval’s width is 2 � (1.96) � �/�n�, which is not random; only
the location of the interval (its midpoint X�) is random (Figure 7.2). Now (7.3) can
be paraphrased as “the probability is .95 that the random interval (7.4) includes or
covers the true value of �.” Before any experiment is performed and any data is
gathered, it is quite likely that � will lie inside the interval (7.4).

�
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�n�

�
�
�n�

�
�
�n�

�
�
�n�

�
�
�n�
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�
�n�

�
�
�n�

�
�
�n�

�
�
�n�

�
�
�n�

�
�
�n�

�
�
�n�

X� � �
�
�/�n�

X � 1.96   /� ��n

 1.96   /� ��n  1.96   /� ��n

X � 1.96   /� ��nX

⎧⎨⎩ ⎧⎨⎩

Figure 7.2 The random interval (7.4) centered at X�
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The quantities needed for computation of the 95% CI for true average preferred
height are � � 2.0, n � 31, and x� � 80.0. The resulting interval is

x� � 1.96 � � 80.0 � (1.96) � 80.0 � .7 � (79.3, 80.7)

That is, we can be highly confident, at the 95% confidence level, that 79.3 � � �
80.7. This interval is relatively narrow, indicating that � has been rather precisely
estimated. ■

Interpreting a Confidence Interval
The confidence level 95% for the interval just defined was inherited from the probabil-
ity .95 for the random interval (7.4). Intervals having other levels of confidence will be
introduced shortly. For now, though, consider how 95% confidence can be interpreted.

Because we started with an event whose probability was .95—that the random
interval (7.4) would capture the true value of �—and then used the data in Example 7.1
to compute the CI (79.3, 80.7), it is tempting to conclude that � is within this fixed
interval with probability .95. But by substituting x� � 80.0 for X�, all randomness dis-
appears; the interval (79.3, 80.7) is not a random interval, and � is a constant (unfor-
tunately unknown to us). It is therefore incorrect to write the statement P(� lies in
(79.3, 80.7)) � .95.

A correct interpretation of “95% confidence” relies on the long-run relative fre-
quency interpretation of probability: To say that an event A has probability .95 is to
say that if the experiment on which A is defined is performed over and over again, in
the long run A will occur 95% of the time. Suppose we obtain another sample of typ-
ists’ preferred heights and compute another 95% interval. Then we consider repeating
this for a third sample, a fourth sample, a fifth sample, and so on. Let A be the event
that X� � 1.96 � �/�n� � � � X� � 1.96 � �/�n�. Since P(A) � .95, in the long run
95% of our computed CIs will contain �. This is illustrated in Figure 7.3, where the
vertical line cuts the measurement axis at the true (but unknown) value of �. Notice
that of the 11 intervals pictured, only intervals 3 and 11 fail to contain �. In the long
run, only 5% of the intervals so constructed would fail to contain �.

According to this interpretation, the confidence level 95% is not so much a
statement about any particular interval such as (79.3, 80.7). Instead it pertains to what
would happen if a very large number of like intervals were to be constructed using the

2.0
�
�3�1�

�
�
�n�

DEFINITION If after observing X1 � x1, X2 � x2, . . . , Xn � xn, we compute the observed
sample mean x� and then substitute x� into (7.4) in place of X�, the resulting
fixed interval is called a 95% confidence interval for �. This CI can be
expressed either as

�x� � 1.96 � , x� � 1.96 � � is a 95% CI for �

or as

x� � 1.96 � � � � x� � 1.96 � with 95% confidence

A concise expression for the interval is x� � 1.96 � �/�n�, where � gives the
left endpoint (lower limit) and � gives the right endpoint (upper limit).

�
�
�n�

�
�
�n�

�
�
�n�

�
�
�n�

Example 7.2
(Example 7.1
continued)
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same CI formula. Although this may seem unsatisfactory, the root of the difficulty lies
with our interpretation of probability—it applies to a long sequence of replications of
an experiment rather than just a single replication. There is another approach to the
construction and interpretation of CIs that uses the notion of subjective probability
and Bayes’ theorem, but the technical details are beyond the scope of this text; the
book by DeGroot, et al. (see the Chapter 6 bibliography) is a good source. The inter-
val presented here (as well as each interval presented subsequently) is called a “clas-
sical” CI because its interpretation rests on the classical notion of probability (though
the main ideas were developed as recently as the 1930s).

Other Levels of Confidence
The confidence level of 95% was inherited from the probability .95 for the initial
inequalities in (7.2). If a confidence level of 99% is desired, the initial probability of .95
must be replaced by .99, which necessitates changing the z critical value from 1.96
to 2.58. A 99% CI then results from using 2.58 in place of 1.96 in the formula for
the 95% CI.

This suggests that any desired level of confidence can be achieved by replac-
ing 1.96 or 2.58 with the appropriate standard normal critical value. As Figure 7.4
shows, a probability of 1 � � is achieved by using z�/2 in place of 1.96.

Interval
number

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

True value of 	

Figure 7.3 Repeated construction of 95% CIs

0�z /2� z /2�

z curve

Shaded area �   /2�1 �   �

Figure 7.4 P(�z�/2 � Z � z�/2) � 1 � �

DEFINITION A 100(1 
 �)% confidence interval for the mean � of a normal population
when the value of � is known is given by

�x� � z�/2 � , x� � z�/2 � � (7.5)

or, equivalently, by x� � z�/2 � �/�n�.

�
�
�n�

�
�
�n�
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The production process for engine control housing units of a particular type has
recently been modified. Prior to this modification, historical data had suggested that
the distribution of hole diameters for bushings on the housings was normal with a stan-
dard deviation of .100 mm. It is believed that the modification has not affected the
shape of the distribution or the standard deviation, but that the value of the mean diam-
eter may have changed. A sample of 40 housing units is selected and hole diameter is
determined for each one, resulting in a sample mean diameter of 5.426 mm. Let’s cal-
culate a confidence interval for true average hole diameter using a confidence level of
90%. This requires that 100(1 � �) � 90, from which � � .10 and z�/2 � z.05 � 1.645
(corresponding to a cumulative z-curve area of .9500). The desired interval is then

5.426 � (1.645)�
�
.10

4�
0

0�
� � 5.426 � .026 � (5.400, 5.452)

With a reasonably high degree of confidence, we can say that 5.400 � � � 5.452.
This interval is rather narrow because of the small amount of variability in hole
diameter (� � .100). ■

Confidence Level, Precision, and Sample Size
Why settle for a confidence level of 95% when a level of 99% is achievable?
Because the price paid for the higher confidence level is a wider interval. Since the
95% interval extends 1.96 � �/�n� to each side of x�, the width of the interval is
2(1.96) � �/�n� � 3.92 � �/�n�. Similarly, the width of the 99% interval is 2(2.58) �
�/�n� � 5.16 � �/�n�. That is, we have more confidence in the 99% interval pre-
cisely because it is wider. The higher the desired degree of confidence, the wider the
resulting interval. In fact, the only 100% CI for � is (��, �), which is not terribly
informative because we knew that this interval would cover � even before sampling.

If we think of the width of the interval as specifying its precision or accuracy,
then the confidence level (or reliability) of the interval is inversely related to its pre-
cision. A highly reliable interval estimate may be imprecise in that the endpoints of
the interval may be far apart, whereas a precise interval may entail relatively low
reliability. Thus it cannot be said unequivocally that a 99% interval is to be preferred
to a 95% interval; the gain in reliability entails a loss in precision.

An appealing strategy is to specify both the desired confidence level and inter-
val width and then determine the necessary sample size.

Extensive monitoring of a computer time-sharing system has suggested that response
time to a particular editing command is normally distributed with standard devia-
tion 25 millisec. A new operating system has been installed, and we wish to esti-
mate the true average response time � for the new environment. Assuming that
response times are still normally distributed with � � 25, what sample size is nec-
essary to ensure that the resulting 95% CI has a width of (at most) 10? The sample
size n must satisfy

10 � 2 � (1.96)(25/�n�)

Rearranging this equation gives

�n� � 2 � (1.96)(25)/10 � 9.80

so

n � (9.80)2 � 96.04

Since n must be an integer, a sample size of 97 is required. ■

Example 7.3

Example 7.4
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The general formula for the sample size n necessary to ensure an interval width
w is obtained from w � 2 � z�/2 � �/�n� as

Example 7.5

n � �2z�/2 � �
2�

�
w

The smaller the desired width w, the larger n must be. In addition, n is an increasing
function of � (more population variability necessitates a larger sample size) and of
the confidence level 100(1 � �) (as � decreases, z�/2 increases).

The half-width 1.96�/�n� of the 95% CI is sometimes called the bound on the
error of estimation associated with a 95% confidence level. That is, with 95% con-
fidence, the point estimate x� will be no farther than this from �. Before obtaining
data, an investigator may wish to determine a sample size for which a particular
value of the bound is achieved. For example, with � representing the average fuel
efficiency (mpg) for all cars of a certain type, the objective of an investigation may
be to estimate � to within 1 mpg with 95% confidence. More generally, if we wish
to estimate � to within an amount B (the specified bound on the error of estimation)
with 100(1 � �)% confidence, the necessary sample size results from replacing 2/w
by 1/B in the formula in the preceding box.

Deriving a Confidence Interval
Let X1, X2, . . . , Xn denote the sample on which the CI for a parameter 	 is to be
based. Suppose a random variable satisfying the following two properties can be
found:

1. The variable depends functionally on both X1, . . . , Xn and 	.

2. The probability distribution of the variable does not depend on 	 or on any other
unknown parameters.

Let h(X1, X2, . . . , Xn; 	) denote this random variable. For example, if the pop-
ulation distribution is normal with known � and 	 � �, the variable h(X1, . . . , Xn; �) �
(X� � �)/(�/�n�) satisfies both properties; it clearly depends functionally on �, yet
has the standard normal probability distribution, which does not depend on �. In
general, the form of the h function is usually suggested by examining the distribu-
tion of an appropriate estimator 	̂.

For any � between 0 and 1, constants a and b can be found to satisfy

P(a � h(X1, . . . , Xn; 	) � b) � 1 � � (7.6)

Because of the second property, a and b do not depend on 	. In the normal example,
a � �z�/2 and b � z�/2. Now suppose that the inequalities in (7.6) can be manipulated
to isolate 	, giving the equivalent probability statement

P(l(X1, X2, . . . , Xn) � 	 � u(X1, X2, . . . , Xn)) � 1 � �

Then l(x1, x2, . . . , xn) and u(x1, . . . , xn) are the lower and upper confidence limits,
respectively, for a 100(1 � �)% CI. In the normal example, we saw that l(X1, . . . , Xn) �
X� � z�/2 � �/�n� and u(X1, . . . , Xn) � X� � z�/2 � �/�n�.

A theoretical model suggests that the time to breakdown of an insulating fluid between
electrodes at a particular voltage has an exponential distribution with parameter � (see
Section 4.4). A random sample of n � 10 breakdown times yields the following sample
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data (in min): x1 � 41.53, x2 � 18.73, x3 � 2.99, x4 � 30.34, x5 � 12.33, x6 � 117.52,
x7 � 73.02, x8 � 223.63, x9 � 4.00, x10 � 26.78. A 95% CI for � and for the true aver-
age breakdown time are desired.

Let h(X1, X2, . . . , Xn; �) � 2��Xi. It can be shown that this random variable
has a probability distribution called a chi-squared distribution with 2n degrees of
freedom (df) (� � 2n, where � is the parameter of a chi-squared distribution as men-
tioned in Section 4.4). Appendix Table A.7 pictures a typical chi-squared density
curve and tabulates critical values that capture specified tail areas. The relevant num-
ber of df here is 2(10) � 20. The � � 20 row of the table shows that 34.170 captures
upper-tail area .025 and 9.591 captures lower-tail area .025 (upper-tail area .975). Thus
for n � 10,

P(9.591 � 2��Xi � 34.170) � .95

Division by 2�Xi isolates �, yielding

P(9.591/(2�Xi) � � � (34.170/(2�Xi)) � .95

The lower limit of the 95% CI for � is 9.591/(2�xi), and the upper limit is
34.170/(2�xi). For the given data, �xi � 550.87, giving the interval (.00871, .03101).

The expected value of an exponential rv is � � 1/�. Since

P(2�Xi/34.170 � 1/� � 2�Xi/9.591) � .95

the 95% CI for true average breakdown time is (2�xi/34.170, 2�xi/9.591) �
(32.24, 114.87). This interval is obviously quite wide, reflecting substantial vari-
ability in breakdown times and a small sample size. ■

In general, the upper and lower confidence limits result from replacing each � in
(7.6) by � and solving for 	. In the insulating fluid example just considered,
2��xi � 34.170 gives � � 34.170/(2�xi) as the upper confidence limit, and the lower
limit is obtained from the other equation. Notice that the two interval limits are not
equidistant from the point estimate, since the interval is not of the form 	̂ � c.

Bootstrap Confidence Intervals
The bootstrap technique was introduced in Chapter 6 as a way of estimating �	̂. It
can also be applied to obtain a CI for 	. Consider again estimating the mean � of a
normal distribution when � is known. Let’s replace � by 	 and use 	̂ � X� as the point
estimator. Notice that 1.96�/�n� is the 97.5th percentile of the distribution of 	̂ �	
[that is, P(X� � � � 1.96�/�n�) � P(Z � 1.96) � .9750]. Similarly, �1.96�/�n� is
the 2.5th percentile, so

.95 � P(2.5th percentile � 	̂ � 	 � 97.5th percentile)

� P(	̂ � 2.5th percentile � 	 � 	̂ � 97.5th percentile)

That is, with

l � 	̂ � 97.5th percentile of 	̂ � 	

u � 	̂ � 2.5th percentile of 	̂ � 	
(7.7)

the CI for 	 is (l, u). In many cases, the percentiles in (7.7) cannot be calculated, but
they can be estimated from bootstrap samples. Suppose we obtain B � 1000 boot-
strap samples and calculate 	̂*1, . . . , 	̂*1000, and 	�* followed by the 1000 differences
	̂*1 � 	�*, . . . , 	̂*1000 � 	�*. The 25th largest and 25th smallest of these differences 
are estimates of the unknown percentiles in (7.7). Consult the Devore and Berk 
or Efron books cited in Chapter 6 for more information.
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EXERCISES Section 7.1 (1–11)

1. Consider a normal population distribution with the value of �
known.
a. What is the confidence level for the interval x� �

2.81�/�n�?
b. What is the confidence level for the interval x� �

1.44�/�n�?
c. What value of z�/2 in the CI formula (7.5) results in a con-

fidence level of 99.7%?
d. Answer the question posed in part (c) for a confidence

level of 75%.

2. Each of the following is a confidence interval for � � true
average (i.e., population mean) resonance frequency (Hz) for
all tennis rackets of a certain type:

(114.4, 115.6) (114.1, 115.9)

a. What is the value of the sample mean resonance frequency?
b. Both intervals were calculated from the same sample data.

The confidence level for one of these intervals is 90% and
for the other is 99%. Which of the intervals has the 90%
confidence level, and why?

3. Suppose that a random sample of 50 bottles of a particular
brand of cough syrup is selected and the alcohol content of
each bottle is determined. Let � denote the average alcohol
content for the population of all bottles of the brand under
study. Suppose that the resulting 95% confidence interval is
(7.8, 9.4).
a. Would a 90% confidence interval calculated from this

same sample have been narrower or wider than the given
interval? Explain your reasoning.

b. Consider the following statement: There is a 95% chance
that � is between 7.8 and 9.4. Is this statement correct?
Why or why not?

c. Consider the following statement: We can be highly con-
fident that 95% of all bottles of this type of cough syrup
have an alcohol content that is between 7.8 and 9.4. Is this
statement correct? Why or why not?

d. Consider the following statement: If the process of select-
ing a sample of size 50 and then computing the corre-
sponding 95% interval is repeated 100 times, 95 of the
resulting intervals will include �. Is this statement cor-
rect? Why or why not?

4. A CI is desired for the true average stray-load loss � (watts)
for a certain type of induction motor when the line current is
held at 10 amps for a speed of 1500 rpm. Assume that stray-
load loss is normally distributed with � � 3.0.
a. Compute a 95% CI for � when n � 25 and x� � 58.3.
b. Compute a 95% CI for � when n � 100 and x� � 58.3.
c. Compute a 99% CI for � when n � 100 and x� � 58.3.
d. Compute an 82% CI for � when n � 100 and x� � 58.3.
e. How large must n be if the width of the 99% interval for

� is to be 1.0?

5. Assume that the helium porosity (in percentage) of coal
samples taken from any particular seam is normally distrib-
uted with true standard deviation .75.
a. Compute a 95% CI for the true average porosity of a cer-

tain seam if the average porosity for 20 specimens from
the seam was 4.85.

b. Compute a 98% CI for true average porosity of another
seam based on 16 specimens with a sample average
porosity of 4.56.

c. How large a sample size is necessary if the width of the
95% interval is to be .40?

d. What sample size is necessary to estimate true average
porosity to within .2 with 99% confidence?

6. On the basis of extensive tests, the yield point of a particu-
lar type of mild steel-reinforcing bar is known to be nor-
mally distributed with � � 100. The composition of the bar
has been slightly modified, but the modification is not
believed to have affected either the normality or the value
of �.
a. Assuming this to be the case, if a sample of 25 modified

bars resulted in a sample average yield point of 8439 lb,
compute a 90% CI for the true average yield point of the
modified bar.

b. How would you modify the interval in part (a) to obtain
a confidence level of 92%?

7. By how much must the sample size n be increased if the
width of the CI (7.5) is to be halved? If the sample size is
increased by a factor of 25, what effect will this have on the
width of the interval? Justify your assertions.

8. Let �1 � 0, �2 � 0, with �1 � �2 � �. Then

P��z�1
� � z�2� � 1 � �

a. Use this equation to derive a more general expression for
a 100(1 � �)% CI for � of which the interval (7.5) is a
special case.

b. Let � � .05 and �1 � �/4, �2 � 3�/4. Does this result in
a narrower or wider interval than the interval (7.5)?

9. a. Under the same conditions as those leading to the interval
(7.5), P[(X� � �)/(�/�n�) � 1.645] � .95. Use this to de-
rive a one-sided interval for � that has infinite width and
provides a lower confidence bound on �. What is this inter-
val for the data in Exercise 5(a)?

b. Generalize the result of part (a) to obtain a lower bound
with confidence level 100(1 � �)%.

c. What is an analogous interval to that of part (b) that pro-
vides an upper bound on �? Compute this 99% interval
for the data of Exercise 4(a).

10. A random sample of n � 15 heat pumps of a certain type
yielded the following observations on lifetime (in years):

X� � �
�
�/�n�
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2.0 1.3 6.0 1.9 5.1 .4 1.0 5.3

15.7 .7 4.8 .9 12.2 5.3 .6

a. Assume that the lifetime distribution is exponential and
use an argument parallel to that of Example 7.5 to obtain
a 95% CI for expected (true average) lifetime.

b. How should the interval of part (a) be altered to achieve a
confidence level of 99%?

c. What is a 95% CI for the standard deviation of the lifetime
distribution? [Hint: What is the standard deviation of an
exponential random variable?]

11. Consider the next 1000 95% CIs for � that a statistical con-
sultant will obtain for various clients. Suppose the data sets
on which the intervals are based are selected independently
of one another. How many of these 1000 intervals do you
expect to capture the corresponding value of �? What is the
probability that between 940 and 960 of these intervals con-
tain the corresponding value of �? [Hint: Let Y � the number
among the 1000 intervals that contain �. What kind of ran-
dom variable is Y?]

7.2 Large-Sample Confidence Intervals 
for a Population Mean and Proportion
The CI for � given in the previous section assumed that the population distribution
is normal with the value of � known. We now present a large-sample CI whose valid-
ity does not require these assumptions. After showing how the argument leading to
this interval generalizes to yield other large-sample intervals, we focus on an inter-
val for a population proportion p.

A Large-Sample Interval for �
Let X1, X2, . . . , Xn be a random sample from a population having a mean � and stan-
dard deviation �. Provided that n is large, the Central Limit Theorem (CLT) implies 
that X� has approximately a normal distribution whatever the nature of the population
distribution. It then follows that Z � (X� � �)/(�/�n�) has approximately a standard
normal distribution, so that

P��z�/2 � � z�/2� � 1 � �

An argument parallel to that given in Section 7.1 yields x� � z�/2 � �/�n� as a large-
sample CI for � with a confidence level of approximately 100(1 � �)%. That is,
when n is large, the CI for � given previously remains valid whatever the popula-
tion distribution, provided that the qualifier “approximately” is inserted in front of
the confidence level.

One practical difficulty with this development is that computation of the CI
requires the value of �, which will rarely be known. Consider the standardized vari-
able (X� � �)/(S/�n�), in which the sample standard deviation S has replaced �.
Previously there was randomness only in the numerator of Z by virtue of X�. In the
new standardized variable, both X� and S vary in value from one sample to another.
So it might seem that the distribution of the new variable should be more spread out
than the z curve to reflect the extra variation in the denominator. This is indeed true
when n is small. However, for large n the subsititution of S for � adds little extra
variability, so this variable also has approximately a standard normal distribution.
Manipulation of the variable in a probability statement, as in the case of known �,
gives a general large-sample CI for �.

X� � �
�
�/�n�
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Generally speaking, n � 40 will be sufficient to justify the use of this interval. This
is somewhat more conservative than the rule of thumb for the CLT because of the
additional variability introduced by using S in place of �.

The alternating current (AC) breakdown voltage of an insulating liquid indicates its
dielectric strength. The article “Testing Practices for the AC Breakdown Voltage
Testing of Insulation Liquids” (IEEE Electrical Insulation Magazine, 1995: 21–26)
gave the accompanying sample observations on breakdown voltage (kV) of a partic-
ular circuit under certain conditions.

62 50 53 57 41 53 55 61 59 64 50 53 64 62 50 68

54 55 57 50 55 50 56 55 46 55 53 54 52 47 47 55

57 48 63 57 57 55 53 59 53 52 50 55 60 50 56 58

A boxplot of the data (Figure 7.5) shows a high concentration in the middle half of
the data (narrow box width). There is a single outlier at the upper end, but this value
is actually a bit closer to the median (55) than is the smallest sample observation.

If n is sufficiently large, the standardized variable

Z �

has approximately a standard normal distribution. This implies that

x� � z�/2 � (7.8)

is a large-sample confidence interval for � with confidence level approxi-
mately 100(1 � �)%. This formula is valid regardless of the shape of the pop-
ulation distribution.

s
�
�n�

X� � �
�
S/�n�

PROPOSITION

Example 7.6

5040 60 70

Voltage

Figure 7.5 A boxplot for the breakdown voltage data from Example 7.6

Summary quantities include n � 48, �xi � 2626, and �xi
2 � 144,950, from

which x� � 54.7 and s � 5.23. The 95% confidence interval is then

54.7 � 1.96 � 54.7 � 1.5 � (53.2, 56.2)

That is,

53.2 � � � 56.2

with a confidence level of approximately 95%. The interval is reasonably narrow,
indicating that we have precisely estimated �. ■

5.23
�
�4�8�



Unfortunately, the choice of sample size to yield a desired interval width is not
as straightforward here as it was for the case of known �. This is because the width
of (7.8) is 2z�/2s/�n�. Since the value of s is not available before the data has been
gathered, the width of the interval cannot be determined solely by the choice of n. The
only option for an investigator who wishes to specify a desired width is to make an
educated guess as to what the value of s might be. By being conservative and guess-
ing a larger value of s, an n larger than necessary will be chosen. The investigator may
be able to specify a reasonably accurate value of the population range (the difference
between the largest and smallest values). Then if the population distribution is not too
skewed, dividing the range by 4 gives a ballpark value of what s might be.

Refer to Example 7.6 on breakdown voltage. Suppose the investigator believes that
virtually all values in the population are between 40 and 70. Then (70 � 40)/4 � 7.5
gives a reasonable value for s. The appropriate sample size for estimating true aver-
age breakdown voltage to within 1 kV with confidence level 95%—that is, for the
95% CI to have a width of 2 kV—is

n � [(1.96)(7.5)/1]2 � 217 ■

A General Large-Sample Confidence Interval
The large-sample intervals x� � z�/2 � �/�n� and x� � z�/2 � s/�n� are special cases of a
general large-sample CI for a parameter 	. Suppose that 	̂ is an estimator satisfying
the following properties: (1) It has approximately a normal distribution; (2) it is
(at least approximately) unbiased; and (3) an expression for �	̂, the standard devia-
tion of 	̂, is available. For example, in the case 	 � �, �̂ � X� is an unbiased estima-
tor whose distribution is approximately normal when n is large and ��̂ � �X� � �/�n�.
Standardizing 	̂ yields the rv Z � (	̂ � 	)/�	̂, which has approximately a standard
normal distribution. This justifies the probability statement

P��z�/2 � � z�/2� � 1 � � (7.9)

Suppose, first, that �	̂ does not involve any unknown parameters (e.g., known �
in the case 	 � �). Then replacing each � in (7.9) by � results in 	 � 	̂ � z�/2 � �	̂, so
the lower and upper confidence limits are 	̂ � z�/2 � �	̂ and 	̂ � z�/2 � �	̂, respectively.
Now suppose that �	̂ does not involve 	 but does involve at least one other unknown
parameter. Let s	̂ be the estimate of �	̂ obtained by using estimates in place of the
unknown parameters (e.g., s/�n� estimates �/�n�). Under general conditions (essen-
tially that s	̂ be close to �	̂ for most samples), a valid CI is 	̂ � z�/2 � s	̂. The large-
sample interval x� � z�/2 � s/�n� is an example.

Finally, suppose that �	̂ does involve the unknown 	. This is the case, for
example, when 	 � p, a population proportion. Then (	̂ � 	)/�	̂ � z�/2 can be diffi-
cult to solve. An approximate solution can often be obtained by replacing 	 in �	̂ by
its estimate 	̂. This results in an estimated standard deviation s	̂, and the correspon-
ding interval is again 	̂ � z�/2 � s	̂.

A Confidence Interval for a Population Proportion
Let p denote the proportion of “successes” in a population, where success identifies
an individual or object that has a specified property (e.g., individuals who graduated
from college, computers that do not need warranty service, etc.). A random sample
of n individuals is to be selected, and X is the number of successes in the sample.

	̂ � 	
�

�	̂
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Example 7.7
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Provided that n is small compared to the population size, X can be regarded as a
binomial rv with E(X) � np and �X � �n�p�(1� �� p�)�. Furthermore, if both np � 10
and nq � 10, X has approximately a normal distribution.

The natural estimator of p is p̂ � X/n, the sample fraction of successes. Since
p̂ is just X multiplied by the constant 1/n, p̂ also has approximately a normal distri-
bution. As shown in Section 6.1, E( p̂) � p (unbiasedness) and �p̂ � �p�(1� �� p�)/�n�.
The standard deviation �p̂ involves the unknown parameter p. Standardizing p̂ by
subtracting p and dividing by �p̂ then implies that

P��z�/2 � � z�/2� � 1 � �

Proceeding as suggested in the subsection “Deriving a Confidence Interval”
(Section 7.1), the confidence limits result from replacing each � by � and solving
the resulting quadratic equation for p. This gives the two roots

p �

p̂ � �
z
2

2
�

n
/2� � z�/2��

p̂
n�q̂
���� �

4
z�

2
�

n
/�2

2
��

���
1 � (z2

�/2)/n

p̂ � p
��
�p�(1� �� p�)/�n�

A confidence interval for a population proportion p with confidence level
approximately 100(1 � �)% has

lower confidence limit �

and (7.10)

upper confidence limit �

p̂ � �
z
2

2
�

n
/2� � z�/2��

p̂
n�q̂
���� �

4
z�

2
�

n
/�2

2
��

���
1 � (z2

�/2)/n

p̂ � �
z
2

2
�

n
/2� � z�/2��

p̂
n�q̂
���� �

4
z�

2
�

n
/�2

2
��

���
1 � (z2

�/2)/n

PROPOSITION

If the sample size is quite large, z2/(2n) is negligible compared to p̂, z2/(4n2) under
the square root is negligible compared to p̂q̂/n, and z2/n is negligible compared to 1.
Discarding these negligible terms gives approximate confidence limits

p̂ � z�/2��p̂q̂/�n� (7.11)

This is of the general form 	̂ � z�/2 �̂	̂ of a large-sample interval suggested in the
last subsection. For decades this latter interval has been recommended as long as
the normal approximation for p̂ is justified. However, recent research has shown
that the somewhat more complicated interval given in the proposition has an actual
confidence level that tends to be closer to the nominal level than does the tradi-
tional interval (Agresti, Alan, and Coull, “Approximate Is Better Than ‘Exact’ for
Interval Estimation of a Binomial Proportion,” The American Statistician, 1998:
119–126). That is, if z�/2 � 1.96 is used, the confidence level for the “new” inter-
val tends to be closer to 95% for almost all values of p than is the case for the tra-
ditional interval; this is also true for other confidence levels. In addition, Agresti
and Coull state that the interval “can be recommended for use with nearly all sam-
ple sizes and parameter values,” so the conditions np̂ � 10 and nq̂ � 10 need not
be checked.
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The article “Repeatability and Reproducibility for Pass/Fail Data” (J. of Testing and
Eval., 1997: 151–153) reported that in n � 48 trials in a particular laboratory, 16 resulted
in ignition of a particular type of substrate by a lighted cigarette. Let p denote the
long-run proportion of all such trials that would result in ignition. A point estimate
for p is p̂ � 16/48 � .333. A confidence interval for p with a confidence level of
approximately 95% is

� �
.373

1
�

.08
.139

� � (.217, .474)

The traditional interval is

.333 � 1.96�(.�3�3�3�)(�.6�6�7�)/�4�8� � .333 � .133 � (.200, .466)

These two intervals would be in much closer agreement were the sample size sub-
stantially larger. ■

Equating the width of the CI for p to a prespecified width w gives a quadratic
equation for the sample size n necessary to give an interval with a desired degree of
precision. Suppressing the subscript in z�/2, the solution is

n � (7.12)

Neglecting the terms in the numerator involving w2 gives

n �

This latter expression is what results from equating the width of the traditional inter-
val to w.

These formulas unfortunately involve the unknown p̂. The most conservative
approach is to take advantage of the fact that p̂q̂ [� p̂(1 � p̂)] is a maximum when
p̂ � .5. Thus if p̂ � q̂ � .5 is used in (7.12), the width will be at most w regardless
of what value of p̂ results from the sample. Alternatively, if the investigator believes
strongly, based on prior information, that p � p0 � .5, then p0 can be used in place
of p̂. A similar comment applies when p � p0 � .5.

The width of the 95% CI in Example 7.8 is .257. The value of n necessary to ensure
a width of .10 irrespective of the value of p̂ is

4z2p̂q̂
�

w2

2z2p̂q̂ � z2w2 � �4��z 4��p̂q̂�����( p̂q̂��� w�2)� ���w��2z�4�
�����

w2

.333 � (1.96)2/96 � 1.96�(.�3�3�3�)(�.6�6�7�)/�4�8� �� (�1�.9�6�)2�/9�2�1�6�
������

1 � (1.96)2/48

Example 7.8

Example 7.9

n � � 380.3
2(1.96)2(.25) � (1.96)2(.01) � �4�(1�.9�6�)4�(.�2�5�)(�.2�5� �� .�0�1�)� �� (�.0�1�)(�1�.9�6�)4�
��������

.01

Thus a sample size of 381 should be used. The expression for n based on the tradi-
tional CI gives a slightly larger value of 385. ■

One-Sided Confidence Intervals (Confidence Bounds)
The confidence intervals discussed thus far give both a lower confidence bound and
an upper confidence bound for the parameter being estimated. In some circum-
stances, an investigator will want only one of these two types of bounds. For exam-
ple, a psychologist may wish to calculate a 95% upper confidence bound for true
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average reaction time to a particular stimulus, or a reliability engineer may want only
a lower confidence bound for true average lifetime of components of a certain type.
Because the cumulative area under the standard normal curve to the left of 1.645 is .95,

P� � 1.645� � .95

Manipulating the inequality inside the parentheses to isolate � on one side and replac-
ing rv’s by calculated values gives the inequality � � x� � 1.645s/�n�; the expression
on the right is the desired lower confidence bound. Starting with P(�1.645 � Z) � .95
and manipulating the inequality results in the upper confidence bound. A similar argu-
ment gives a one-sided bound associated with any other confidence level.

X� � �
�
S/�n�

Example 7.10

A large-sample upper confidence bound for � is

� � x� � z� �

and a large-sample lower confidence bound for � is

� � x� � z� �

A one-sided confidence bound for p results from replacing z�/2 by z� and �
by either � or � in the CI formula (7.10) for p. In all cases the confidence
level is approximately 100(1 � �)%.

s
�
�n�

s
�
�n�

PROPOSITION

The slant shear test is the most widely accepted procedure for assessing the quality
of a bond between a repair material and its concrete substrate. The article “Testing
the Bond Between Repair Materials and Concrete Substrate” (ACI Materials J.,
1996: 553–558) reported that in one particular investigation, a sample of 48 shear
strength observations gave a sample mean strength of 17.17 N/mm2 and a sample
standard deviation of 3.28 N/mm2. A lower confidence bound for true average shear
strength � with confidence level 95% is

17.17 � (1.645) � 17.17 � .78 � 16.39

That is, with a confidence level of 95%, the value of � lies in the interval (16.39, �).
■

(3.28)
�
�4�8�

EXERCISES Section 7.2 (12–27)

12. A random sample of 110 lightning flashes in a certain
region resulted in a sample average radar echo duration 
of .81 sec and a sample standard deviation of .34 sec
(“Lightning Strikes to an Airplane in a Thunderstorm,” J. of
Aircraft, 1984: 607–611). Calculate a 99% (two-sided) con-
fidence interval for the true average echo duration �, and
interpret the resulting interval.

13. The article “Gas Cooking, Kitchen Ventilation, and Exposure
to Combustion Products” (Indoor Air, 2006: 65–73) reported
that for a sample of 50 kitchens with gas cooking appliances

monitored during a one-week period, the sample mean CO2

level (ppm) was 654.16, and the sample standard deviation
was 164.43.
a. Calculate and interpret a 95% (two-sided) confidence

interval for true average CO2 level in the population of
all homes from which the sample was selected.

b. Suppose the investigators had made a rough guess of 175
for the value of s before collecting data. What sample size
would be necessary to obtain an interval width of 50 ppm
for a confidence level of 95%?
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14. The article “Evaluating Tunnel Kiln Performance” (Amer.
Ceramic Soc. Bull., Aug. 1997: 59–63) gave the follow-
ing summary information for fracture strengths (MPa) of
n � 169 ceramic bars fired in a particular kiln: x� � 89.10,
s � 3.73.
a. Calculate a (two-sided) confidence interval for true aver-

age fracture strength using a confidence level of 95%.
Does it appear that true average fracture strength has
been precisely estimated?

b. Suppose the investigators had believed a priori that the
population standard deviation was about 4 MPa. Based
on this supposition, how large a sample would have
been required to estimate � to within .5 MPa with 95%
confidence?

15. Determine the confidence level for each of the following
large-sample one-sided confidence bounds:
a. Upper bound: x� � .84s/�n�
b. Lower bound: x� � 2.05s/�n�
c. Upper bound: x� � .67s/�n�

16. The charge-to-tap time (min) for a carbon steel in one type
of open hearth furnace was determined for each heat in a
sample of size 46, resulting in a sample mean time of 382.1
and a sample standard deviation of 31.5. Calculate a 95%
upper confidence bound for true average charge-to-tap time.

17. Exercise 1.13 gave a sample of ultimate tensile strength
observations (ksi). Use the accompanying descriptive sta-
tistics output from MINITAB to calculate a 99% lower con-
fidence bound for true average ultimate tensile strength,
and interpret the result.

N Mean Median TrMean StDev SE Mean
153 135.39 135.40 135.41 4.59 0.37

Minimum Maximum Q1 Q3
122.20 147.70 132.95 138.25

18. The article “Ultimate Load Capacities of Expansion Anchor
Bolts” (J. of Energy Engr., 1993: 139–158) gave the follow-
ing summary data on shear strength (kip) for a sample of
3/8-in. anchor bolts: n � 78, x� � 4.25, s � 1.30. Calculate a
lower confidence bound using a confidence level of 90% for
true average shear strength.

19. The article “Limited Yield Estimation for Visual Defect
Sources” (IEEE Trans. on Semiconductor Manuf., 1997:
17–23) reported that, in a study of a particular wafer inspec-
tion process, 356 dies were examined by an inspection
probe and 201 of these passed the probe. Assuming a stable
process, calculate a 95% (two-sided) confidence interval for
the proportion of all dies that pass the probe.

20. The Associated Press (October 9, 2002) reported that in a
survey of 4722 American youngsters aged 6 to 19, 15% were
seriously overweight (a body mass index of at least 30; this
index is a measure of weight relative to height). Calculate
and interpret a confidence interval using a 99% confidence
level for the proportion of all American youngsters who are
seriously overweight.

21. A random sample of 539 households from a certain mid-
western city was selected, and it was determined that 133 of
these households owned at least one firearm (“The Social
Determinants of Gun Ownership: Self-Protection in an
Urban Environment,” Criminology, 1997: 629–640). Using
a 95% confidence level, calculate a lower confidence bound
for the proportion of all households in this city that own at
least one firearm.

22. A random sample of 487 nonsmoking women of normal
weight (body mass index between 19.8 and 26.0) who had
given birth at a large metropolitan medical center was se-
lected (“The Effects of Cigarette Smoking and Gestational
Weight Change on Birth Outcomes in Obese and Normal-
Weight Women,” Amer. J. of Public Health, 1997: 591–596).
It was determined that 7.2% of these births resulted in chil-
dren of low birth weight (less than 2500 g). Calculate an
upper confidence bound using a confidence level of 99%
for the proportion of all such births that result in children of
low birth weight.

23. The article “An Evaluation of Football Helmets Under Impact
Conditions” (Amer. J. Sports Medicine, 1984: 233–237) re-
ports that when each football helmet in a random sample 
of 37 suspension-type helmets was subjected to a certain
impact test, 24 showed damage. Let p denote the proportion
of all helmets of this type that would show damage when
tested in the prescribed manner.
a. Calculate a 99% CI for p.
b. What sample size would be required for the width of a 99%

CI to be at most .10, irrespective of p̂?

24. A sample of 56 research cotton samples resulted in a sam-
ple average percentage elongation of 8.17 and a sample
standard deviation of 1.42 (“An Apparent Relation Between
the Spiral Angle �, the Percent Elongation E1, and the
Dimensions of the Cotton Fiber,” Textile Research J., 1978:
407–410). Calculate a 95% large-sample CI for the true
average percentage elongation �. What assumptions are you
making about the distribution of percentage elongation?

25. A state legislator wishes to survey residents of her district to
see what proportion of the electorate is aware of her position
on using state funds to pay for abortions.
a. What sample size is necessary if the 95% CI for p is to

have width of at most .10 irrespective of p?
b. If the legislator has strong reason to believe that at least �

2
3

�

of the electorate know of her position, how large a sample
size would you recommend?

26. The superintendent of a large school district, having once
had a course in probability and statistics, believes that the
number of teachers absent on any given day has a Poisson
distribution with parameter �. Use the accompanying data
on absences for 50 days to derive a large-sample CI for �.
[Hint: The mean and variance of a Poisson variable both
equal �, so

Z �
X� � �
�
���/n�



The CI for � presented in Section 7.2 is valid provided that n is large. The resulting
interval can be used whatever the nature of the population distribution. The CLT can-
not be invoked, however, when n is small. In this case, one way to proceed is to make
a specific assumption about the form of the population distribution and then derive
a CI tailored to that assumption. For example, we could develop a CI for � when the
population is described by a gamma distribution, another interval for the case of a
Weibull population, and so on. Statisticians have indeed carried out this program for
a number of different distributional families. Because the normal distribution is more
frequently appropriate as a population model than is any other type of distribution,
we will focus here on a CI for this situation.

has approximately a standard normal distribution. Now pro-
ceed as in the derivation of the interval for p by making a prob-
ability statement (with probability 1 � �) and solving the
resulting inequalities for � (see the argument just after (7.10)).]

Number of
absences 0 1 2 3 4 5 6 7 8 9 10

Frequency 1 4 8 10 8 7 5 3 2 1 1

27. Reconsider the CI (7.10) for p, and focus on a confidence
level of 95%. Show that the confidence limits agree quite
well with those of the traditional interval (7.11) once two
successes and two failures have been appended to the
sample [i.e., (7.11) based on x � 2 S’s in n � 4 trials].
[Hint: 1.96 � 2. Note: Agresti and Coull showed that this
adjustment of the traditional interval also has actual confi-
dence level close to the nominal level.]
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7.3 Intervals Based on a Normal
Population Distribution

ASSUMPTION The population of interest is normal, so that X1, . . . , Xn constitutes a random
sample from a normal distribution with both � and � unknown.

THEOREM When X� is the mean of a random sample of size n from a normal distribution
with mean �, the rv

T � (7.13)

has a probability distribution called a t distribution with n � 1 degrees of free-
dom (df).

X� � �
�
S/�n�

The key result underlying the interval in Section 7.2 was that for large n, the
rv Z � (X� � �)/(S/�n�) has approximately a standard normal distribution. When n is
small, S is no longer likely to be close to �, so the variability in the distribution of
Z arises from randomness in both the numerator and the denominator. This implies
that the probability distribution of (X� � �)/(S/�n�) will be more spread out than the
standard normal distribution. The result on which inferences are based introduces
a new family of probability distributions called the family of t distributions.

Properties of t Distributions
Before applying this theorem, a discussion of properties of t distributions is in order.
Although the variable of interest is still (X� � �)/(S/�n�), we now denote it by T to
emphasize that it does not have a standard normal distribution when n is small.
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Recall that a normal distribution is governed by two parameters, the mean � and
the standard deviation �. A t distribution is governed by only one parameter, called the
number of degrees of freedom of the distribution, abbreviated by df. We denote
this parameter by the Greek letter �. Possible values of � are the positive integers
1, 2, 3, . . . . Each different value of � corresponds to a different t distribution.

For any fixed value of the parameter �, the density function that specifies the
associated t curve has an even more complicated appearance than the normal density
function. Fortunately, we need concern ourselves only with several of the more impor-
tant features of these curves.

Properties of t Distributions

Let t� denote the density function curve for � df.

1. Each t� curve is bell-shaped and centered at 0.

2. Each t� curve is more spread out than the standard normal (z) curve.

3. As � increases, the spread of the corresponding t� curve decreases.

4. As � 0 �, the sequence of t� curves approaches the standard normal curve
(so the z curve is often called the t curve with df � �).

Figure 7.6 illustrates several of these properties for selected values of �.

Notation

Let t�,� � the number on the measurement axis for which the area under the
t curve with � df to the right of t�,� is �; t�,� is called a t critical value.

0

z curve

t25 curve

t5 curve

Figure 7.6 t� and z curves

The number of df for T in (7.13) is n � 1 because, although S is based on the
n deviations X1 � X�, . . . , X�n � X�, �(Xi � X�) � 0 implies that only n � 1 of these
are “freely determined.” The number of df for a t variable is the number of freely
determined deviations on which the estimated standard deviation in the denominator
of T is based.

Since we want to use T to obtain a CI in the same way that Z was previously
used, it is necessary to establish notation analogous to z� for the t distribution.



This notation is illustrated in Figure 7.7. Appendix Table A.5 gives t�,� for selected
values of � and �. This table also appears inside the back cover. The columns of the
table correspond to different values of �. To obtain t.05,15, go to the � � .05 column,
look down to the � � 15 row, and read t.05,15 � 1.753. Similarly, t.05,22 � 1.717
(.05 column, � � 22 row), and t.01,22 � 2.508.
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0

t  curve�

Shaded area � �

t ,� �

Figure 7.7 A pictorial definition of t�,�

The values of t�,� exhibit regular behavior as we move across a row or down a
column. For fixed �, t�,� increases as � decreases, since we must move farther to the
right of zero to capture area � in the tail. For fixed �, as � is increased (i.e., as we look
down any particular column of the t table) the value of t�,� decreases. This is because
a larger value of � implies a t distribution with smaller spread, so it is not necessary
to go so far from zero to capture tail area �. Furthermore, t�,� decreases more slowly
as � increases. Consequently, the table values are shown in increments of 2 between
30 df and 40 df and then jump to � � 50, 60, 120, and finally �. Because t� is the
standard normal curve, the familiar z� values appear in the last row of the table. The
rule of thumb suggested earlier for use of the large-sample CI (if n � 40) comes from
the approximate equality of the standard normal and t distributions for � � 40.

The One-Sample t Confidence Interval
The standardized variable T has a t distribution with n � 1 df, and the area under the
corresponding t density curve between �t�/2,n�1 and t�/2,n�1 is 1 � � (area �/2 lies in
each tail), so

P(�t�/2,n�1 � T � t�/2,n�1) � 1 � � (7.14)

Expression (7.14) differs from expressions in previous sections in that T and t�/2,n�1

are used in place of Z and z�/2, but it can be manipulated in the same manner to obtain
a confidence interval for �.

Let x� and s be the sample mean and sample standard deviation computed from
the results of a random sample from a normal population with mean �. Then
a 100(1 
 �)% confidence interval for � is

�x� � t�/2,n�1 � , x� � t�/2,n�1 � � (7.15)

or, more compactly, x� � t�/2,n�1 � s/�n�.
An upper confidence bound for � is

x� � t�,n�1 �

and replacing � by � in this latter expression gives a lower confidence bound
for �, both with confidence level 100(1 � �)%.

s
�
�n�

s
�
�n�

s
�
�n�

PROPOSITION



As part of a larger project to study the behavior of stressed-skin panels, a structural
component being used extensively in North America, the article “Time-Dependent
Bending Properties of Lumber” (J. of Testing and Eval., 1996: 187–193) reported on
various mechanical properties of Scotch pine lumber specimens. Consider the fol-
lowing observations on modulus of elasticity (MPa) obtained 1 minute after loading
in a certain configuration:

10,490 16,620 17,300 15,480 12,970 17,260 13,400 13,900

13,630 13,260 14,370 11,700 15,470 17,840 14,070 14,760

Figure 7.8 shows a normal probability plot obtained from R. The straightness of the
pattern in the plot provides strong support for assuming that the population distribu-
tion of modulus of elasticity is at least approximately normal.
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Example 7.11

Figure 7.8 A normal probability plot of the modulus of elasticity data

Hand calculation of the sample mean and standard deviation is simplified by
subtracting 10,000 from each observation: yi � xi � 10,000. It is easily verified that
�yi � 72,520 and �yi

2 � 392,083,800, from which y� � 4532.5 and sy � 2055.67.
Thus x� � 14,532.5 and sx � 2055.67 (adding or subtracting the same constant from
each observation does not affect variability). The sample size is 16, so a confidence
interval for population mean modulus of elasticity is based on 15 df. A confidence
level of 95% for a two-sided interval requires the t critical value of 2.131. The result-
ing interval is

x� � t.025,15 � � 14,532.5 � (2.131)

� 14,532.5 � 1095.2 � (13,437.3, 15,627.7)

This interval is quite wide both because of the small sample size and because of the
large amount of variability in the sample. A 95% lower confidence bound is obtained
by using � and 1.753 in place of � and 2.131, respectively. ■

Unfortunately, it is not easy to select n to control the width of the t interval.
This is because the width involves the unknown (before the data is collected) s and
because n enters not only through 1/�n� but also through t�/2,n�1. As a result, an
appropriate n can be obtained only by trial and error.

In Chapter 15, we will discuss a small-sample CI for � that is valid provided
only that the population distribution is symmetric, a weaker assumption than nor-
mality. However, when the population distribution is normal, the t interval tends to
be shorter than would be any other interval with the same confidence level.
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A Prediction Interval for a Single Future Value
In many applications, an investigator wishes to predict a single value of a variable to be
observed at some future time, rather than to estimate the mean value of that variable.

Consider the following sample of fat content (in percentage) of n � 10 randomly se-
lected hot dogs (“Sensory and Mechanical Assessment of the Quality of Frankfurters,”
J. Texture Studies, 1990: 395–409):

25.2 21.3 22.8 17.0 29.8 21.0 25.5 16.0 20.9 19.5

Assuming that these were selected from a normal population distribution, a 95% CI
for (interval estimate of) the population mean fat content is

x� � t.025,9 � � 21.90 � 2.262 � � 21.90 � 2.96

� (18.94, 24.86)

Suppose, however, you are going to eat a single hot dog of this type and want a pre-
diction for the resulting fat content. A point prediction, analogous to a point esti-
mate, is just x� � 21.90. This prediction unfortunately gives no information about
reliability or precision. ■

The general setup is as follows: We will have available a random sample X1,
X2, . . . , Xn from a normal population distribution, and we wish to predict the value
of Xn�1, a single future observation. A point predictor is X�, and the resulting predic-
tion error is X� � Xn�1. The expected value of the prediction error is

E(X� � Xn�1) � E(X�) � E(Xn�1) � � � � � 0

Since Xn�1 is independent of X1, . . . , Xn, it is independent of X�, so the variance of
the prediction error is

V(X� � Xn�1) � V(X�) � V(Xn�1) � � � 2 � � 2�1 � �
The prediction error is a linear combination of independent normally distributed rv’s,
so itself is normally distributed. Thus

Z � �

has a standard normal distribution. It can be shown that replacing � by the sample
standard deviation S (of X1, . . . , Xn) results in

T � 	 t distribution with n � 1 df

Manipulating this T variable as T � (X� � �)/(S/�n�) was manipulated in the devel-
opment of a CI gives the following result.

X� � Xn�1
�

S�1� �� �
1
n���

X� � Xn�1
��

����2��1� �� �
1
n����

(X� � Xn�1) � 0
��

����2��1� �� �
1
n����

1
�
n

� 2

�
n

4.134
�
�1�0�

s
�
�n�
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A prediction interval (PI) for a single observation to be selected from a nor-
mal population distribution is

x� � t�/2,n�1 � s�1� ���� (7.16)

The prediction level is 100(1 � �)%.

1
�
n

PROPOSITION

Example 7.12
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The interpretation of a 95% prediction level is similar to that of a 95% confidence
level; if the interval (7.16) is calculated for sample after sample, in the long run 95%
of these intervals will include the corresponding future values of X.

With n � 10, x� � 21.90, s � 4.134, and t.025,9 � 2.262, a 95% PI for the fat content of
a single hot dog is

21.90 � (2.262)(4.134)�1� ���� � 21.90 � 9.81

� (12.09, 31.71)

This interval is quite wide, indicating substantial uncertainty about fat content. Notice
that the width of the PI is more than three times that of the CI. ■

The error of prediction is X� � Xn�1, a difference between two random variables,
whereas the estimation error is X� � �, the difference between a random variable
and a fixed (but unknown) value. The PI is wider than the CI because there is more
variability in the prediction error (due to Xn�1) than in the estimation error. In fact, as
n gets arbitrarily large, the CI shrinks to the single value �, and the PI approaches
� � z�/2 � �. There is uncertainty about a single X value even when there is no need
to estimate.

Tolerance Intervals
Consider a population of automobiles of a certain type, and suppose that under spec-
ified conditions, fuel efficiency (mpg) has a normal distribution with � � 30 and
� � 2. Then since the interval from �1.645 to 1.645 captures 90% of the area under
the z curve, 90% of all these automobiles will have fuel efficiency values between
� � 1.645� � 26.71 and � � 1.645� � 33.29. But what if the values of � and �
are not known? We can take a sample of size n, determine the fuel efficiencies, x�,
and s, and form the interval whose lower limit is x� � 1.645s and whose upper limit
is x� � 1.645s. However, because of sampling variability in the estimates of � and �,
there is a good chance that the resulting interval will include less than 90% of the
population values. Intuitively, to have an a priori 95% chance of the resulting inter-
val including at least 90% of the population values, when x� and s are used in place
of � and �, we should also replace 1.645 by some larger number. For example, when
n � 20, the value 2.310 is such that we can be 95% confident that the interval x� �
2.310s will include at least 90% of the fuel efficiency values in the population.

1
�
10

Example 7.13
(Example 7.12
continued)

Let k be a number between 0 and 100. A tolerance interval for capturing at
least k% of the values in a normal population distribution with a confidence
level 95% has the form

x� � (tolerance critical value) � s

Tolerance critical values for k � 90, 95, and 99 in combination with various
sample sizes are given in Appendix Table A.6. This table also includes critical
values for a confidence level of 99% (these values are larger than the corre-
sponding 95% values). Replacing � by � gives an upper tolerance bound,
and using � in place of � results in a lower tolerance bound. Critical values
for obtaining these one-sided bounds also appear in Appendix Table A.6.



Let’s return to the modulus of elasticity data discussed in Example 7.11, where n �
16, x� � 14,532.5, s � 2055.67, and a normal probability plot of the data indicated
that population normality was quite plausible. For a confidence level of 95%, a
two-sided tolerance interval for capturing at least 95% of the modulus of elasticity
values for specimens of lumber in the population sampled uses the tolerance critical
value of 2.903. The resulting interval is

14,532.5 � (2.903)(2055.67) � 14,532.5 � 5967.6 � (8,564.9, 20,500.1)

We can be highly confident that at least 95% of all lumber specimens have modulus
of elasticity values between 8,564.9 and 20,500.1.

The 95% CI for � was (13,437.3, 15,627.7), and the 95% prediction interval
for the modulus of elasticity of a single lumber specimen is (10,017.0, 19,048.0).
Both the prediction interval and the tolerance interval are substantially wider than the
confidence interval. ■

Intervals Based on Nonnormal 
Population Distributions
The one-sample t CI for � is robust to small or even moderate departures from nor-
mality unless n is quite small. By this we mean that if a critical value for 95% con-
fidence, for example, is used in calculating the interval, the actual confidence level
will be reasonably close to the nominal 95% level. If, however, n is small and the
population distribution is highly nonnormal, then the actual confidence level may be
considerably different from the one you think you are using when you obtain a par-
ticular critical value from the t table. It would certainly be distressing to believe that
your confidence level is about 95% when in fact it was really more like 88%! The
bootstrap technique, introduced in Section 7.1, has been found to be quite success-
ful at estimating parameters in a wide variety of nonnormal situations.

In contrast to the confidence interval, the validity of the prediction and tolerance
intervals described in this section is closely tied to the normality assumption. These lat-
ter intervals should not be used in the absence of compelling evidence for normality.
The excellent reference Statistical Intervals, cited in the bibliography at the end of this
chapter, discusses alternative procedures of this sort for various other situations.
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EXERCISES Section 7.3 (28–41)

28. Determine the values of the following quantities:
a. t.1,15 b. t.05,15 c. t.05,25 d. t.05,40 e. t.005,40

29. Determine the t critical value that will capture the desired
t curve area in each of the following cases:
a. Central area � .95, df � 10
b. Central area � .95, df � 20
c. Central area � .99, df � 20
d. Central area � .99, df � 50
e. Upper-tail area � .01, df � 25
f. Lower-tail area � .025, df � 5

30. Determine the t critical value for a two-sided confidence
interval in each of the following situations:
a. Confidence level � 95%, df � 10
b. Confidence level � 95%, df � 15
c. Confidence level � 99%, df � 15

d. Confidence level � 99%, n � 5
e. Confidence level � 98%, df � 24
f. Confidence level � 99%, n � 38

31. Determine the t critical value for a lower or an upper
confidence bound for each of the situations described in
Exercise 30.

32. A random sample of n � 8 E-glass fiber test specimens of a
certain type yielded a sample mean interfacial shear yield
stress of 30.2 and a sample standard deviation of 3.1 (“On
Interfacial Failure in Notched Unidirectional Glass/Epoxy
Composites,” J. of Composite Materials, 1985: 276–286).
Assuming that interfacial shear yield stress is normally dis-
tributed, compute a 95% CI for true average stress (as did
the authors of the cited article).

Example 7.14



33. The article “Measuring and Understanding the Aging of
Kraft Insulating Paper in Power Transformers” (IEEE
Electrical Insul. Mag., 1996: 28–34) contained the follow-
ing observations on degree of polymerization for paper
specimens for which viscosity times concentration fell in a
certain middle range:

418 421 421 422 425 427 431

434 437 439 446 447 448 453

454 463 465

a. Construct a boxplot of the data and comment on any
interesting features.

b. Is it plausible that the given sample observations were
selected from a normal distribution?

c. Calculate a two-sided 95% confidence interval for true
average degree of polymerization (as did the authors of
the article). Does the interval suggest that 440 is a plau-
sible value for true average degree of polymerization?
What about 450?

34. A sample of 14 joint specimens of a particular type gave
a sample mean proportional limit stress of 8.48 MPa and
a sample standard deviation of .79 MPa (“Characterization
of Bearing Strength Factors in Pegged Timber Connections,”
J. of Structural Engr., 1997: 326–332).
a. Calculate and interpret a 95% lower confidence bound

for the true average proportional limit stress of all such
joints. What, if any, assumptions did you make about the
distribution of proportional limit stress?

b. Calculate and interpret a 95% lower prediction bound for
the proportional limit stress of a single joint of this type.

35. Silicone implant augmentation rhinoplasty is used to correct
congenital nose deformities. The success of the procedure
depends on various biomechanical properties of the human
nasal periosteum and fascia. The article “Biomechanics in
Augmentation Rhinoplasty” (J. of Med. Engr. and Tech.,
2005: 14–17) reported that for a sample of 15 (newly de-
ceased) adults, the mean failure strain (%) was 25.0, and the
standard deviation was 3.5.
a. Assuming a normal distribution for failure strain, esti-

mate true average strain in a way that conveys informa-
tion about precision and reliability.

b. Predict the strain for a single adult in a way that conveys
information about precision and reliability. How does the
prediction compare to the estimate calculated in part (a)?

36. The n � 26 observations on escape time given in Exercise 36
of Chapter 1 give a sample mean and sample standard
deviation of 370.69 and 24.36, respectively.
a. Calculate an upper confidence bound for population

mean escape time using a confidence level of 95%.
b. Calculate an upper prediction bound for the escape time

of a single additional worker using a prediction level of
95%. How does this bound compare with the confidence
bound of part (a)?

c. Suppose that two additional workers will be chosen to
participate in the simulated escape exercise. Denote their

escape times by X27 and X28, and let X�new denote the aver-
age of these two values. Modify the formula for a PI for
a single x value to obtain a PI for X�new, and calculate a
95% two-sided interval based on the given escape data.

37. A study of the ability of individuals to walk in a straight line
(“Can We Really Walk Straight?” Amer. J. of Physical
Anthro., 1992: 19–27) reported the accompanying data on
cadence (strides per second) for a sample of n � 20 ran-
domly selected healthy men.

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

A normal probability plot gives substantial support to the
assumption that the population distribution of cadence is
approximately normal. A descriptive summary of the data
from MINITAB follows:

Variable N Mean Median TrMean StDev SEMean
cadence 20 0.9255 0.9300 0.9261 0.0809 0.0181

Variable Min Max Q1 Q3
cadence 0.7800 1.0600 0.8525 0.9600

a. Calculate and interpret a 95% confidence interval for
population mean cadence.

b. Calculate and interpret a 95% prediction interval for the
cadence of a single individual randomly selected from
this population.

c. Calculate an interval that includes at least 99% of the
cadences in the population distribution using a confi-
dence level of 95%.

38. A sample of 25 pieces of laminate used in the manufacture
of circuit boards was selected and the amount of warpage
(in.) under particular conditions was determined for each
piece, resulting in a sample mean warpage of .0635 and a
sample standard deviation of .0065.
a. Calculate a prediction for the amount of warpage of a

single piece of laminate in a way that provides informa-
tion about precision and reliability.

b. Calculate an interval for which you can have a high degree
of confidence that at least 95% of all pieces of laminate
result in amounts of warpage that are between the two
limits of the interval.

39. Exercise 72 of Chapter 1 gave the following observations on
a receptor binding measure (adjusted distribution volume)
for a sample of 13 healthy individuals: 23, 39, 40, 41, 43,
47, 51, 58, 63, 66, 67, 69, 72.
a. Is it plausible that the population distribution from which

this sample was selected is normal?
b. Calculate an interval for which you can be 95% confident

that at least 95% of all healthy individuals in the popula-
tion have adjusted distribution volumes lying between the
limits of the interval.

c. Predict the adjusted distribution volume of a single healthy
individual by calculating a 95% prediction interval. How
does this interval’s width compare to the width of the inter-
val calculated in part (b)?
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Although inferences concerning a population variance � 2 or standard deviation � are
usually of less interest than those about a mean or proportion, there are occasions
when such procedures are needed. In the case of a normal population distribution,
inferences are based on the following result concerning the sample variance S 2.
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7.4 Confidence Intervals for the Variance 
and Standard Deviation of a Normal Population

THEOREM Let X1, X2, . . . , Xn be a random sample from a normal distribution with param-
eters � and � 2. Then the rv

�

has a chi-squared (�2) probability distribution with n � 1 df.

�(Xi � X�)2

��
�2

(n � 1)S2

��
�2

As discussed in Sections 4.4 and 7.1, the chi-squared distribution is a contin-
uous probability distribution with a single parameter �, called the number of degrees
of freedom, with possible values 1, 2, 3, . . . . The graphs of several �2 probability
distribution functions (pdf’s) are illustrated in Figure 7.9. Each pdf f(x; �) is positive
only for x � 0, and each has a positive skew (long upper tail), though the distribu-
tion moves rightward and becomes more symmetric as � increases. To specify infer-
ential procedures that use the chi-squared distribution, we need notation analogous
to that for a t critical value t�,�.

f (x;   )� �   � 8
�     � 12

�     � 20

x

Figure 7.9 Graphs of chi-squared density functions

40. Exercise 13 of Chapter 1 presented a sample of n � 153
observations on ultimate tensile strength, and Exercise 17 of
the previous section gave summary quantities and requested
a large-sample confidence interval. Because the sample size
is large, no assumptions about the population distribution
are required for the validity of the CI. 
a. Is any assumption about the tensile strength distribu-

tion required prior to calculating a lower prediction
bound for the tensile strength of the next specimen
selected using the method described in this section?
Explain.

b. Use a statistical software package to investigate the plau-
sibility of a normal population distribution.

c. Calculate a lower prediction bound with a prediction
level of 95% for the ultimate tensile strength of the next
specimen selected.

41. A more extensive tabulation of t critical values than what
appears in this book shows that for the t distribution with 20
df, the areas to the right of the values .687, .860, and 1.064
are .25, .20, and .15, respectively. What is the confidence
level for each of the following three confidence intervals for
the mean � of a normal population distribution? Which of
the three intervals would you recommend be used, and why?
a. (x� � .687s/�2�1�, x� � 1.725s/�2�1�)
b. (x� � .860s/�2�1�, x� � 1.325s/�2�1�)
c. (x� � 1.064s/�2�1�, x� � 1.064s/�2�1�)



The rv (n � 1)S 2/� 2 satisfies the two properties on which the general method
for obtaining a CI is based: It is a function of the parameter of interest � 2, yet its
probability distribution (chi-squared) does not depend on this parameter. The area
under a chi-squared curve with � df to the right of �2

�/2,� is �/2, as is the area to the
left of �2

1��/2,�. Thus the area captured between these two critical values is 1 � �. As
a consequence of this and the theorem just stated,

P��2
1��/2,n�1 � � �2

�/2,n�1� � 1 � � (7.17)

The inequalities in (7.17) are equivalent to

� �2 �

Substituting the computed value s2 into the limits gives a CI for �2, and taking square
roots gives an interval for �.

(n � 1)S2

��
�2

1��/2,n�1

(n � 1)S2

��
�2

�/2,n�1

(n � 1)S2

��
�2
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Notation

Let �2
�,�, called a chi-squared critical value, denote the number on the mea-

surement axis such that � of the area under the chi-squared curve with � df lies
to the right of �2

�,�.

Symmetry of t distributions made it necessary to tabulate only upper-tailed
t critical values (t�,� for small values of �). The chi-squared distribution is not sym-
metric, so Appendix Table A.7 contains values of �2

�,� both for � near 0 and near 1,
as illustrated in Figure 7.10(b). For example, �2

.025,14 � 26.119 and �2
.95,20 (the 5th per-

centile) � 10.851.

  2 pdf"

" " "

�

Shaded area � �
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(a)
.99,  2

� .01,

Each shaded
area � .01

(b)

Figure 7.10 �2
�,� notation illustrated

A 100(1 
 �)% confidence interval for the variance �2 of a normal pop-
ulation has lower limit

(n � 1)s2/�2
�/2,n�1

and upper limit

(n � 1)s2/�2
1��/2,n�1

A confidence interval for � has lower and upper limits that are the square
roots of the corresponding limits in the interval for �2.
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EXERCISES Section 7.4 (42–46)

42. Determine the values of the following quantities:
a. �2

.1,15 b. �2
.1,25

c. �2
.01,25 d. �2

.005,25

e. �2
.99,25 f. �2

.995,25

43. Determine the following:
a. The 95th percentile of the chi-squared distribution with

� � 10
b. The 5th percentile of the chi-squared distribution with

� � 10
c. P(10.98 � �2 � 36.78), where �2 is a chi-squared rv

with � � 22
d. P(�2 � 14.611 or �2 � 37.652), where �2 is a chi-

squared rv with � � 25

44. The amount of lateral expansion (mils) was determined for
a sample of n � 9 pulsed-power gas metal arc welds used in
LNG ship containment tanks. The resulting sample standard
deviation was s � 2.81 mils. Assuming normality, derive a
95% CI for � 2 and for �.

45. The following observations were made on fracture tough-
ness of a base plate of 18% nickel maraging steel [“Fracture

Testing of Weldments,” ASTM Special Publ. No. 381, 1965:
328–356 (in ksi �in�.�, given in increasing order)]:

69.5 71.9 72.6 73.1 73.3 73.5 75.5 75.7

75.8 76.1 76.2 76.2 77.0 77.9 78.1 79.6

79.7 79.9 80.1 82.2 83.7 93.7

Calculate a 99% CI for the standard deviation of the fracture
toughness distribution. Is this interval valid whatever the
nature of the distribution? Explain.

46. The results of a Wagner turbidity test performed on 15 sam-
ples of standard Ottawa testing sand were (in microamperes)

26.7 25.8 24.0 24.9 26.4 25.9 24.4 21.7

24.1 25.9 27.3 26.9 27.3 24.8 23.6

a. Is it plausible that this sample was selected from a nor-
mal population distribution?

b. Calculate an upper confidence bound with confidence level
95% for the population standard deviation of turbidity.

The accompanying data on breakdown voltage of electrically stressed circuits was
read from a normal probability plot that appeared in the article “Damage of Flexible
Printed Wiring Boards Associated with Lightning-Induced Voltage Surges” (IEEE
Transactions on Components, Hybrids, and Manuf. Tech., 1985: 214–220). The
straightness of the plot gave strong support to the assumption that breakdown volt-
age is approximately normally distributed.

1470 1510 1690 1740 1900 2000 2030 2100 2190

2200 2290 2380 2390 2480 2500 2580 2700

Let � 2 denote the variance of the breakdown voltage distribution. The computed value
of the sample variance is s2 � 137,324.3, the point estimate of � 2. With df � n � 1 �
16, a 95% CI requires � 2

.975,16 � 6.908 and � 2
.025,16 � 28.845. The interval is

� , � � (76,172.3, 318,064.4)

Taking the square root of each endpoint yields (276.0, 564.0) as the 95% CI for �.
These intervals are quite wide, reflecting substantial variability in breakdown voltage
in combination with a small sample size. ■

CIs for � 2 and � when the population distribution is not normal can be diffi-
cult to obtain, even when the sample size is large. For such cases, consult a knowl-
edgeable statistician.

16(137,324.3)
��

6.908
16(137,324.3)
��

28.845

Example 7.15
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SUPPLEMENTARY EXERCISES (47–62)

47. Example 1.10 introduced the accompanying observations on
bond strength.

11.5 12.1 9.9 9.3 7.8 6.2 6.6 7.0
13.4 17.1 9.3 5.6 5.7 5.4 5.2 5.1
4.9 10.7 15.2 8.5 4.2 4.0 3.9 3.8
3.6 3.4 20.6 25.5 13.8 12.6 13.1 8.9
8.2 10.7 14.2 7.6 5.2 5.5 5.1 5.0
5.2 4.8 4.1 3.8 3.7 3.6 3.6 3.6

a. Estimate true average bond strength in a way that con-
veys information about precision and reliability. [Hint:
�xi � 387.8 and �x2

i � 4247.08.]
b. Calculate a 95% CI for the proportion of all such bonds

whose strength values would exceed 10.

48. A triathlon consisting of swimming, cycling, and running is
one of the more strenuous amateur sporting events. The ar-
ticle “Cardiovascular and Thermal Response of Triathlon
Performance” (Medicine and Science in Sports and Exercise,
1988: 385–389) reports on a research study involving nine
male triathletes. Maximum heart rate (beats/min) was re-
corded during performance of each of the three events. For
swimming, the sample mean and sample standard deviation
were 188.0 and 7.2, respectively. Assuming that the heart
rate distribution is (approximately) normal, construct a 98%
CI for true mean heart rate of triathletes while swimming.

49. For each of 18 preserved cores from oil-wet carbonate reser-
voirs, the amount of residual gas saturation after a solvent
injection was measured at water flood-out. Observations, in
percentage of pore volume, were

23.5 31.5 34.0 46.7 45.6 32.5

41.4 37.2 42.5 46.9 51.5 36.4

44.5 35.7 33.5 39.3 22.0 51.2

(See “Relative Permeability Studies of Gas-Water Flow
Following Solvent Injection in Carbonate Rocks,” Soc. Pe-
troleum Engineers J., 1976: 23–30.)
a. Construct a boxplot of this data, and comment on any

interesting features.
b. Is it plausible that the sample was selected from a nor-

mal population distribution?
c. Calculate a 98% CI for the true average amount of resid-

ual gas saturation.

50. A journal article reports that a sample of size 5 was used as
a basis for calculating a 95% CI for the true average natural
frequency (Hz) of delaminated beams of a certain type. The
resulting interval was (229.764, 233.504). You decide that a
confidence level of 99% is more appropriate than the 95%
level used. What are the limits of the 99% interval? [Hint:
Use the center of the interval and its width to determine x�
and s.]

51. The financial manager of a large department store chain
selected a random sample of 200 of its credit card customers
and found that 136 had incurred an interest charge during
the previous year because of an unpaid balance.
a. Compute a 90% CI for the true proportion of credit card

customers who incurred an interest charge during the
previous year.

b. If the desired width of the 90% interval is .05, what sam-
ple size is necessary to ensure this?

c. Does the upper limit of the interval in part (a) specify a
90% upper confidence bound for the proportion being
estimated? Explain.

52. High concentration of the toxic element arsenic is all too com-
mon in groundwater. The article “Evaluation of Treatment
Systems for the Removal of Arsenic from Groundwater”
(Practice Periodical of Hazardous, Toxic, and Radioactive
Waste Mgmt., 2005: 152–157) reported that for a sample of
n � 5 water specimens selected for treatment by coagula-
tion, the sample mean arsenic concentration was 24.3 �g/L,
and the sample standard deviation was 4.1. The authors of
the cited article used t-based methods to analyze their data,
so hopefully had reason to believe that the distribution of
arsenic concentration was normal.
a. Calculate and interpret a 95% CI for true average arsenic

concentration in all such water specimens.
b. Calculate a 90% upper confidence bound for the stan-

dard deviation of the arsenic concentration distribution.
c. Predict the arsenic concentration for a single water spec-

imen in a way that conveys information about precision
and reliability.

53. Aphid infestation of fruit trees can be controlled either by
spraying with pesticide or by inundation with ladybugs. In a
particular area, four different groves of fruit trees are selected
for experimentation. The first three groves are sprayed with
pesticides 1, 2, and 3, respectively, and the fourth is treated
with ladybugs, with the following results on yield:

ni �
Number x�i

Treatment of Trees (Bushels/Tree) si

1 100 10.5 1.5
2 90 10.0 1.3
3 100 10.1 1.8
4 120 10.7 1.6

Let �i � the true average yield (bushels/tree) after receiving
the ith treatment. Then

	 � �
1
3

�(�1 � �2 � �3) � �4

measures the difference in true average yields between treat-
ment with pesticides and treatment with ladybugs. When n1,



n2, n3, and n4 are all large, the estimator	̂ obtained by replac-
ing each �i by X�i is approximately normal. Use this to derive
a large-sample 100(1 � �)% CI for 	, and compute the 95%
interval for the given data.

54. It is important that face masks used by firefighters be able to
withstand high temperatures because firefighters commonly
work in temperatures of 200–500°F. In a test of one type of
mask, 11 of 55 masks had lenses pop out at 250°. Construct
a 90% CI for the true proportion of masks of this type whose
lenses would pop out at 250°.

55. A manufacturer of college textbooks is interested in esti-
mating the strength of the bindings produced by a particular
binding machine. Strength can be measured by recording
the force required to pull the pages from the binding. If this
force is measured in pounds, how many books should be
tested to estimate the average force required to break the
binding to within .1 lb with 95% confidence? Assume that
� is known to be .8.

56. Chronic exposure to asbestos fiber is a well-known health
hazard. The article “The Acute Effects of Chrysotile As-
bestos Exposure on Lung Function” (Environ. Research,
1978: 360–372) reports results of a study based on a sample
of construction workers who had been exposed to asbestos
over a prolonged period. Among the data given in the article
were the following (ordered) values of pulmonary compli-
ance (cm3/cm H2O) for each of 16 subjects 8 months after the
exposure period (pulmonary compliance is a measure of lung
elasticity, or how effectively the lungs are able to inhale and
exhale):

167.9 180.8 184.8 189.8 194.8 200.2

201.9 206.9 207.2 208.4 226.3 227.7

228.5 232.4 239.8 258.6

a. Is it plausible that the population distribution is normal?
b. Compute a 95% CI for the true average pulmonary com-

pliance after such exposure.
c. Calculate an interval that, with a confidence level of

95%, includes at least 95% of the pulmonary compliance
values in the population distribution.

57. In Example 6.8, we introduced the concept of a censored
experiment in which n components are put on test and the
experiment terminates as soon as r of the components have
failed. Suppose component lifetimes are independent, each
having an exponential distribution with parameter �. Let Y1

denote the time at which the first failure occurs, Y2 the time
at which the second failure occurs, and so on, so that
Tr � Y1 � 
 
 
 � Yr � (n � r)Yr is the total accumulated
lifetime at termination. Then it can be shown that 2�Tr has
a chi-squared distribution with 2r df. Use this fact to de-
velop a 100(1 � �)% CI formula for true average lifetime
1/�. Compute a 95% CI from the data in Example 6.8.

58. Let X1, X2, . . . , Xn be a random sample from a continuous
probability distribution having median ~� (so that P(Xi � ~�) �
P(Xi � ~�) � .5).

a. Show that

P(min(Xi) � ~� � max(Xi)) � 1 � ��
1
2

��
n�1

so that (min(xi), max(xi)) is a 100(1 � �)% confidence
interval for ~� with � � ��

1
2

��n�1. [Hint: The complement of
the event {min(Xi) � ~� � max(Xi)} is {max(Xi) � ~�} �
{min(Xi) � ~�}. But max(Xi) � ~� iff Xi � ~� for all i.]

b. For each of six normal male infants, the amount of the
amino acid alanine (mg/100 mL) was determined while
the infants were on an isoleucine-free diet, resulting in the
following data:

2.84 3.54 2.80 1.44 2.94 2.70

Compute a 97% CI for the true median amount of ala-
nine for infants on such a diet (“The Essential Amino
Acid Requirements of Infants,” Amer. J. Nutrition, 1964:
322–330).

c. Let x(2) denote the second smallest of the xis and x(n�1)

denote the second largest of the xis. What is the confi-
dence coefficient of the interval (x(2), x(n�1)) for ~�?

59. Let X1, X2, . . . , Xn be a random sample from a uniform dis-
tribution on the interval [0, 	], so that

f(x) � {�
1
	

� 0 � x � 	

0 otherwise

Then if Y � max(Xi), it can be shown that the rv U � Y/	
has density function

fU(u) � {nun�1 0 � u � 1
0 otherwise

a. Use fU (u) to verify that

P�(�/2)1/n � �
Y
	

� � (1 � �/2)1/n� � 1 � �

and use this to derive a 100(1 � �)% CI for 	.
b. Verify that P(�1/n � Y/	 � 1) � 1 � �, and derive a 100

(1 � �)% CI for 	 based on this probability statement.
c. Which of the two intervals derived previously is shorter?

If my waiting time for a morning bus is uniformly dis-
tributed and observed waiting times are x1 � 4.2,
x2 � 3.5, x3 � 1.7, x4 � 1.2, and x5 � 2.4, derive a 95%
CI for 	 by using the shorter of the two intervals.

60. Let 0 �  � �. Then a 100(1 � �)% CI for � when n is
large is

�x� � z � �
�

s

n�
�, x� � z�� � �

�
s

n�
��

The choice  � �/2 yields the usual interval derived in
Section 7.2; if  � �/2, this interval is not symmetric
about x�. The width of this interval is w � s(z � z��)/�n�.
Show that w is minimized for the choice  � �/2, so that
the symmetric interval is the shortest. [Hints: (a) By defi-
nition of z�, �(z�) � 1 � �, so that z� � ��1(1 � �);
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(b) the relationship between the derivative of a function
y � f(x) and the inverse function x � f �1(y) is (d/dy)
f �1(y) � 1/f (x).]

61. Suppose x1, x2, . . . , xn are observed values resulting from a
random sample from a symmetric but possibly heavy-tailed
distribution. Let x~ and fs denote the sample median and fourth
spread, respectively. Chapter 11 of Understanding Robust
and Exploratory Data Analysis (see the bibliography in
Chapter 6) suggests the following robust 95% CI for the pop-
ulation mean (point of symmetry):

x~ � � � � �
�
fs

n�
�

The value of the quantity in parentheses is 2.10 for n � 10,
1.94 for n � 20, and 1.91 for n � 30. Compute this CI for
the data of Exercise 45, and compare to the t CI appropri-
ate for a normal population distribution.

62. a. Use the results of Example 7.5 to obtain a 95% lower
confidence bound for the parameter � of an exponential
distribution, and calculate the bound based on the data
given in the example.

b. If lifetime X has an exponential distribution, the proba-
bility that lifetime exceeds t is P(X � t) � e��t. Use the
result of part (a) to obtain a 95% lower confidence
bound for the probability that breakdown time exceeds
100 min.

conservative t critical value
���

1.075
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Tests of Hypotheses Based
on a Single Sample8

INTRODUCTION

A parameter can be estimated from sample data either by a single number 

(a point estimate) or an entire interval of plausible values (a confidence interval).

Frequently, however, the objective of an investigation is not to estimate a param-

eter but to decide which of two contradictory claims about the parameter is

correct. Methods for accomplishing this comprise the part of statistical infer-

ence called hypothesis testing. In this chapter, we first discuss some of the basic

concepts and terminology in hypothesis testing and then develop decision pro-

cedures for the most frequently encountered testing problems based on a sam-

ple from a single population.



A statistical hypothesis, or just hypothesis, is a claim or assertion either about the
value of a single parameter (population characteristic or characteristic of a probabil-
ity distribution), about the values of several parameters, or about the form of an
entire probability distribution. One example of a hypothesis is the claim � � .75,
where � is the true average inside diameter of a certain type of PVC pipe. Another
example is the statement p � .10, where p is the proportion of defective circuit
boards among all circuit boards produced by a certain manufacturer. If �1 and �2

denote the true average breaking strengths of two different types of twine, one hypoth-
esis is the assertion that �1 � �2 � 0, and another is the statement �1 � �2 � 5. Yet
another example of a hypothesis is the assertion that the stopping distance under par-
ticular conditions has a normal distribution. Hypotheses of this latter sort will be
considered in Chapter 14. In this and the next several chapters, we concentrate on
hypotheses about parameters.

In any hypothesis-testing problem, there are two contradictory hypotheses under
consideration. One hypothesis might be the claim � � .75 and the other � � .75, or
the two contradictory statements might be p � .10 and p � .10. The objective is to
decide, based on sample information, which of the two hypotheses is correct. There is
a familiar analogy to this in a criminal trial. One claim is the assertion that the accused
individual is innocent. In the U.S. judicial system, this is the claim that is initially
believed to be true. Only in the face of strong evidence to the contrary should the jury
reject this claim in favor of the alternative assertion that the accused is guilty. In this
sense, the claim of innocence is the favored or protected hypothesis, and the burden of
proof is placed on those who believe in the alternative claim.

Similarly, in testing statistical hypotheses, the problem will be formulated so
that one of the claims is initially favored. This initially favored claim will not be
rejected in favor of the alternative claim unless sample evidence contradicts it and
provides strong support for the alternative assertion.
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8.1 Hypotheses and Test Procedures

DEFINITION The null hypothesis, denoted by H0, is the claim that is initially assumed to
be true (the “prior belief” claim). The alternative hypothesis, denoted by Ha,
is the assertion that is contradictory to H0.

The null hypothesis will be rejected in favor of the alternative hypothesis
only if sample evidence suggests that H0 is false. If the sample does not strongly
contradict H0, we will continue to believe in the truth of the null hypothesis.
The two possible conclusions from a hypothesis-testing analysis are then reject
H0 or fail to reject H0.

A test of hypotheses is a method for using sample data to decide whether the null
hypothesis should be rejected. Thus we might test H0: � � .75 against the alternative
Ha: � � .75. Only if sample data strongly suggests that � is something other than .75
should the null hypothesis be rejected. In the absence of such evidence, H0 should not
be rejected, since it is still quite plausible.

Sometimes an investigator does not want to accept a particular assertion
unless and until data can provide strong support for the assertion. As an example,
suppose a company is considering putting a new type of coating on bearings that
it produces. The true average wear life with the current coating is known to be



1000 hours. With � denoting the true average life for the new coating, the company
would not want to make a change unless evidence strongly suggested that � exceeds
1000. An appropriate problem formulation would involve testing H0: � � 1000
against Ha: � � 1000. The conclusion that a change is justified is identified with
Ha, and it would take conclusive evidence to justify rejecting H0 and switching to
the new coating.

Scientific research often involves trying to decide whether a current theory
should be replaced by a more plausible and satisfactory explanation of the phe-
nomenon under investigation. A conservative approach is to identify the current the-
ory with H0 and the researcher’s alternative explanation with Ha. Rejection of the
current theory will then occur only when evidence is much more consistent with the
new theory. In many situations, Ha is referred to as the “researcher’s hypothesis,”
since it is the claim that the researcher would really like to validate. The word null
means “of no value, effect, or consequence,” which suggests that H0 should be iden-
tified with the hypothesis of no change (from current opinion), no difference, no
improvement, and so on. Suppose, for example, that 10% of all circuit boards pro-
duced by a certain manufacturer during a recent period were defective. An engineer
has suggested a change in the production process in the belief that it will result in
a reduced defective rate. Let p denote the true proportion of defective boards result-
ing from the changed process. Then the research hypothesis, on which the burden
of proof is placed, is the assertion that p � .10. Thus the alternative hypothesis is
Ha: p � .10.

In our treatment of hypothesis testing, H0 will always be stated as an equality
claim. If 	 denotes the parameter of interest, the null hypothesis will have the form
H0: 	 � 	0, where 	0 is a specified number called the null value of the parameter
(value claimed for 	 by the null hypothesis). As an example, consider the circuit
board situation just discussed. The suggested alternative hypothesis was Ha: p � .10,
the claim that the defective rate is reduced by the process modification. A natural
choice of H0 in this situation is the claim that p � .10, according to which the new
process is either no better or worse than the one currently used. We will instead con-
sider H0: p � .10 versus Ha: p � .10. The rationale for using this simplified null
hypothesis is that any reasonable decision procedure for deciding between H0: p � .10
and Ha: p � .10 will also be reasonable for deciding between the claim that p � .10
and Ha. The use of a simplified H0 is preferred because it has certain technical ben-
efits, which will be apparent shortly.

The alternative to the null hypothesis H0: 	 � 	0 will look like one of the fol-
lowing three assertions: (1) Ha: 	 � 	0 (in which case the implicit null hypothesis is
	 � 	0), (2) Ha: 	 � 	0 (so the implicit null hypothesis states that 	 � 	0), or (3) Ha:
	 � 	0. For example, let � denote the standard deviation of the distribution of inside
diameters (inches) for a certain type of metal sleeve. If the decision was made to use
the sleeve unless sample evidence conclusively demonstrated that � � .001, the ap-
propriate hypotheses would be H0: � � .001 versus Ha: � � .001. The number 	0

that appears in both H0 and Ha (separates the alternative from the null) is called the
null value.

Test Procedures
A test procedure is a rule, based on sample data, for deciding whether to reject H0.
A test of H0: p � .10 versus Ha: p � .10 in the circuit board problem might be based
on examining a random sample of n � 200 boards. Let X denote the number of defec-
tive boards in the sample, a binomial random variable; x represents the observed
value of X. If H0 is true, E(X) � np � 200(.10) � 20, whereas we can expect
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fewer than 20 defective boards if Ha is true. A value x just a bit below 20 does not
strongly contradict H0, so it is reasonable to reject H0 only if x is substantially less
than 20. One such test procedure is to reject H0 if x � 15 and not reject H0 other-
wise. This procedure has two constituents: (1) a test statistic or function of the sam-
ple data used to make a decision and (2) a rejection region consisting of those 
x values for which H0 will be rejected in favor of Ha. For the rule just suggested, the
rejection region consists of x � 0, 1, 2, . . . , and 15. H0 will not be rejected if 
x � 16, 17, . . . , 199, or 200.
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A test procedure is specified by the following:

1. A test statistic, a function of the sample data on which the decision (reject H0

or do not reject H0) is to be based

2. A rejection region, the set of all test statistic values for which H0 will be
rejected

The null hypothesis will then be rejected if and only if the observed or computed
test statistic value falls in the rejection region.

As another example, suppose a cigarette manufacturer claims that the average
nicotine content � of brand B cigarettes is (at most) 1.5 mg. It would be unwise to
reject the manufacturer’s claim without strong contradictory evidence, so an appro-
priate problem formulation is to test H0: � � 1.5 versus Ha: � � 1.5. Consider a deci-
sion rule based on analyzing a random sample of 32 cigarettes. Let X� denote the 
sample average nicotine content. If H0 is true, E(X�) � � � 1.5, whereas if H0 is
false, we expect X� to exceed 1.5. Strong evidence against H0 is provided by a value x�
that considerably exceeds 1.5. Thus we might use X� as a test statistic along with the
rejection region x� � 1.6.

In both the circuit board and nicotine examples, the choice of test statistic and
form of the rejection region make sense intuitively. However, the choice of cutoff
value used to specify the rejection region is somewhat arbitrary. Instead of rejecting
H0: p � .10 in favor of Ha: p � .10 when x � 15, we could use the rejection region
x � 14. For this region, H0 would not be rejected if 15 defective boards are observed,
whereas this occurrence would lead to rejection of H0 if the initially suggested
region is employed. Similarly, the rejection region x� � 1.55 might be used in the
nicotine problem in place of the region x� � 1.60.

Errors in Hypothesis Testing
The basis for choosing a particular rejection region lies in consideration of the
errors that one might be faced with in drawing a conclusion. Consider the rejec-
tion region x � 15 in the circuit board problem. Even when H0: p � .10 is true,
it might happen that an unusual sample results in x � 13, so that H0 is erro-
neously rejected. On the other hand, even when Ha: p � .10 is true, an unusual
sample might yield x � 20, in which case H0 would not be rejected, again an
incorrect conclusion. Thus it is possible that H0 may be rejected when it is true
or that H0 may not be rejected when it is false. These possible errors are not con-
sequences of a foolishly chosen rejection region. Either one of these two errors
might result when the region x � 14 is employed, or indeed when any other region
is used.



In the nicotine problem, a type I error consists of rejecting the manufacturer’s claim that
� � 1.5 when it is actually true. If the rejection region x� � 1.6 is employed, it might
happen that x� � 1.63 even when � � 1.5, resulting in a type I error. Alternatively, it
may be that H0 is false and yet x� � 1.52 is observed, leading to H0 not being rejected
(a type II error).

In the best of all possible worlds, test procedures for which neither type of
error is possible could be developed. However, this ideal can be achieved only by
basing a decision on an examination of the entire population. The difficulty with
using a procedure based on sample data is that because of sampling variability, an
unrepresentative sample may result. Even though E(X�) � �, the observed value x�
may differ substantially from � (at least if n is small). Thus when � � 1.5 in the
nicotine situation, x� may be much larger than 1.5, resulting in erroneous rejection of
H0. Alternatively, it may be that � � 1.6 yet an x� much smaller than this is observed,
leading to a type II error.

Instead of demanding error-free procedures, we must look for procedures for
which either type of error is unlikely to occur. That is, a good procedure is one for
which the probability of making either type of error is small. The choice of a par-
ticular rejection region cutoff value fixes the probabilities of type I and type II
errors. These error probabilities are traditionally denoted by � and �, respectively.
Because H0 specifies a unique value of the parameter, there is a single value of �.
However, there is a different value of � for each value of the parameter consistent
with Ha.

A certain type of automobile is known to sustain no visible damage 25% of the time in 
10-mph crash tests. A modified bumper design has been proposed in an effort to
increase this percentage. Let p denote the proportion of all 10-mph crashes with this new
bumper that result in no visible damage. The hypotheses to be tested are H0: p � .25
(no improvement) versus Ha: p � .25. The test will be based on an experiment involv-
ing n � 20 independent crashes with prototypes of the new design. Intuitively, H0

should be rejected if a substantial number of the crashes show no damage. Consider the
following test procedure:

Test statistic: X � the number of crashes with no visible damage

Rejection region: R8 � {8, 9, 10, . . . , 19, 20}; that is, reject H0 if x � 8,
where x is the observed value of the test statistic.

This rejection region is called upper-tailed because it consists only of large values
of the test statistic.

When H0 is true, X has a binomial probability distribution with n � 20 and 
p � .25. Then

� � P(type I error) � P(H0 is rejected when it is true)

� P(X � 8 when X 	 Bin(20, .25)) � 1 � B(7; 20, .25)

� 1 � .898 � .102

That is, when H0 is actually true, roughly 10% of all experiments consisting of 
20 crashes would result in H0 being incorrectly rejected (a type I error).
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DEFINITION A type I error consists of rejecting the null hypothesis H0 when it is true. 
A type II error involves not rejecting H0 when H0 is false.
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In contrast to �, there is not a single �. Instead, there is a different � for each
different p that exceeds .25. Thus there is a value of � for p � .3 (in which case X 	
Bin(20, .3)), another value of � for p � .5, and so on. For example,

�(.3) � P(type II error when p � .3)

� P(H0 is not rejected when it is false because p � .3)

� P(X � 7 when X 	 Bin(20, .3)) � B(7; 20, .3) � .772

When p is actually .3 rather than .25 (a “small” departure from H0), roughly 77% of
all experiments of this type would result in H0 being incorrectly not rejected!

The accompanying table displays � for selected values of p (each calculated
for the rejection region R8). Clearly, � decreases as the value of p moves farther to
the right of the null value .25. Intuitively, the greater the departure from H0, the less
likely it is that such a departure will not be detected.

p .3 .4 .5 .6 .7 .8

�(p) .772 .416 .132 .021 .001 .000

The proposed test procedure is still reasonable for testing the more realistic null
hypothesis that p � .25. In this case, there is no longer a single �, but instead there is an
� for each p that is at most .25: �(.25), �(.23), �(.20), �(.15), and so on. It is easily ver-
ified, though, that �(p) � �(.25) � .102 if p � .25. That is, the largest value of � occurs
for the boundary value .25 between H0 and Ha. Thus if � is small for the simplified null
hypothesis, it will also be as small as or smaller for the more realistic H0. ■

The drying time of a certain type of paint under specified test conditions is known to be
normally distributed with mean value 75 min and standard deviation 9 min. Chemists
have proposed a new additive designed to decrease average drying time. It is believed
that drying times with this additive will remain normally distributed with � � 9. Be-
cause of the expense associated with the additive, evidence should strongly suggest an
improvement in average drying time before such a conclusion is adopted. Let � denote
the true average drying time when the additive is used. The appropriate hypotheses are
H0: � � 75 versus Ha: � � 75. Only if H0 can be rejected will the additive be declared
successful and used.

Experimental data is to consist of drying times from n � 25 test specimens.
Let X1, . . . , X25 denote the 25 drying times—a random sample of size 25 from a nor-
mal distribution with mean value � and standard deviation � � 9. The sample mean
drying time X� then has a normal distribution with expected value �X� � � and standard
deviation �X� � �/�n� � 9/�2�5� � 1.80. When H0 is true, �X� � 75, so an x� value
somewhat less than 75 would not strongly contradict H0. A reasonable rejection
region has the form X� � c, where the cutoff value c is suitably chosen. Consider the
choice c � 70.8, so that the test procedure consists of test statistic X� and rejection
region x� � 70.8. Because the rejection region consists only of small values of the test
statistic, the test is said to be lower-tailed. Calculation of � and � now involves a
routine standardization of X� followed by reference to the standard normal probabil-
ities of Appendix Table A.3:

� � P(type I error) � P(H0 is rejected when it is true)

� P(X� � 70.8 when X� 	 normal with �X� � 75, �X� � 1.8)

� �� � � �(�2.33) � .01
70.8 � 75
��

1.8
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�(72) � P(type II error when � � 72)

� P(H0 is not rejected when it is false because � � 72)

� P(X� � 70.8 when X� 	 normal with �X� � 72 and �X� � 1.8)

� 1 � �� � � 1 � �(�.67) � 1 � .2514 � .7486

�(70) � 1 � �� � � .3300 �(67) � .0174

For the specified test procedure, only 1% of all experiments carried out as described
will result in H0 being rejected when it is actually true. However, the chance of a type
II error is very large when � � 72 (only a small departure from H0), somewhat less
when � � 70, and quite small when � � 67 (a very substantial departure from H0).
These error probabilities are illustrated in Figure 8.1. Notice that � is computed
using the probability distribution of the test statistic when H0 is true, whereas deter-
mination of � requires knowing the test statistic’s distribution when H0 is false.

70.8 � 70
��

1.8

70.8 � 72
��

1.8
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(a)

Shaded area �   � .01�

72 75

70.8

(b)

70 75

70.8

(c)

Shaded area �   (70)�

Shaded area �   (72)�

Figure 8.1 � and � illustrated for Example 8.2: (a) the distribution of X� when � � 75
(H0 true); (b) the distribution of X� when � � 72 (H0 false); (c) the distribution of X� when
� � 70 (H0 false)

As in Example 8.1, if the more realistic null hypothesis � � 75 is considered,
there is an � for each parameter value for which H0 is true: �(75), �(75.8), �(76.5),
and so on. It is easily verified, though, that �(75) is the largest of all these type I error
probabilities. Focusing on the boundary value amounts to working explicitly with the
“worst case.” ■



The specification of a cutoff value for the rejection region in the examples just
considered was somewhat arbitrary. Use of R8 � {8, 9, . . . , 20} in Example 8.1
resulted in � � .102, �(.3) � .772, and �(.5) � .132. Many would think these error
probabilities intolerably large. Perhaps they can be decreased by changing the cutoff
value.

Let us use the same experiment and test statistic X as previously described in the auto-
mobile bumper problem but now consider the rejection region R9 � {9, 10, . . . , 20}.
Since X still has a binomial distribution with parameters n � 20 and p,

� � P(H0 is rejected when p � .25)

� P(X � 9 when X 	 Bin(20, .25)) � 1 � B(8; 20, .25) � .041

The type I error probability has been decreased by using the new rejection region. How-
ever, a price has been paid for this decrease:

�(.3) � P(H0 is not rejected when p � .3)

� P(X � 8 when X 	 Bin(20, .3)) � B(8; 20, .3) � .887

�(.5) � B(8; 20, .5) � .252

Both these � s are larger than the corresponding error probabilities .772 and .132 for
the region R8. In retrospect, this is not surprising; � is computed by summing over
probabilities of test statistic values in the rejection region, whereas � is the probability
that X falls in the complement of the rejection region. Making the rejection region
smaller must therefore decrease � while increasing � for any fixed alternative value of
the parameter. ■

The use of cutoff value c � 70.8 in the paint-drying example resulted in a very small
value of � (.01) but rather large �s. Consider the same experiment and test statistic
X� with the new rejection region x� � 72. Because X� is still normally distributed with
mean value �X� �� and �X� � 1.8,

� � P(H0 is rejected when it is true)

� P(X� � 72 when X� 	 N(75, 1.82))

� �� � � �(�1.67) � .0475 � .05

�(72) � P(H0 is not rejected when � � 72)

� P(X� � 72 when X� is a normal rv with mean 72 and standard deviation 1.8)

� 1 � �� � � 1 � �(0) � .5

�(70) � 1 � �� � � .1335 �(67) � .0027

The change in cutoff value has made the rejection region larger (it includes more x�
values), resulting in a decrease in � for each fixed � less than 75. However, � for this
new region has increased from the previous value .01 to approximately .05. If a type
I error probability this large can be tolerated, though, the second region (c � 72) is
preferable to the first (c � 70.8) because of the smaller �s. ■

The results of these examples can be generalized in the following manner.

72 � 70
�

1.8

72 � 72
�

1.8

72 � 75
�

1.8
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This proposition says that once the test statistic and n are fixed, there is no rejection
region that will simultaneously make both � and all �s small. A region must be chosen
to effect a compromise between � and �.

Because of the suggested guidelines for specifying H0 and Ha, a type I error is
usually more serious than a type II error (this can always be achieved by proper
choice of the hypotheses). The approach adhered to by most statistical practitioners
is then to specify the largest value of � that can be tolerated and find a rejection
region having that value of � rather than anything smaller. This makes � as small as
possible subject to the bound on �. The resulting value of � is often referred to as the
significance level of the test. Traditional levels of significance are .10, .05, and .01,
though the level in any particular problem will depend on the seriousness of a type I
error—the more serious this error, the smaller should be the significance level. The
corresponding test procedure is called a level � test (e.g., a level .05 test or a level .01
test). A test with significance level � is one for which the type I error probability is
controlled at the specified level.

Consider the situation mentioned previously in which � was the true average nico-
tine content of brand B cigarettes. The objective is to test H0: � � 1.5 versus Ha:
� � 1.5 based on a random sample X1, X2, . . . , X32 of nicotine contents. Suppose
the distribution of nicotine content is known to be normal with � � .20. Then 
X� is normally distributed with mean value �X� �� and standard deviation �X� � .20/
�3�2� � .0354.

Rather than use X� itself as the test statistic, let’s standardize X� assuming that
H0 is true.

Test statistic: Z � �

Z expresses the distance between X� and its expected value when H0 is true as some
number of standard deviations. For example, z � 3 results from an x� that is 3 stan-
dard deviations larger than we would have expected it to be were H0 true.

Rejecting H0 when x� “considerably” exceeds 1.5 is equivalent to rejecting H0

when z “considerably” exceeds 0. That is, the form of the rejection region is z � c.
Let’s now determine c so that � � .05. When H0 is true, Z has a standard normal dis-
tribution. Thus

� � P(type I error) � P(rejecting H0 when H0 is true)

� P(Z � c when Z 	 N(0, 1))

The value c must capture upper-tail area .05 under the z curve. Either from Section
4.3 or directly from Appendix Table A.3, c � z.05 � 1.645.

Notice that z � 1.645 is equivalent to x� � 1.5 � (.0354)(1.645), that is,
x� � 1.56. Then � is the probability that X� � 1.56 and can be calculated for any 
� greater than 1.5. ■

X� � 1.5
�

.0354

X� � 1.5
�
�/�n�
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Suppose an experiment and a sample size are fixed and a test statistic is 
chosen. Then decreasing the size of the rejection region to obtain a smaller
value of � results in a larger value of � for any particular parameter value 
consistent with Ha.

PROPOSITION

Example 8.5



1. For each of the following assertions, state whether it is a
legitimate statistical hypothesis and why:
a. H: � � 100 b. H: x~ � 45
c. H: s � .20 d. H: �1/�2 � 1
e. H: X� � Y� � 5
f. H: � � .01, where � is the parameter of an exponential

distribution used to model component lifetime

2. For the following pairs of assertions, indicate which do not
comply with our rules for setting up hypotheses and why
(the subscripts 1 and 2 differentiate between quantities for
two different populations or samples):
a. H0: � � 100, Ha: � � 100
b. H0: � � 20, Ha: � � 20
c. H0: p � .25, Ha: p � .25
d. H0: �1 � �2 � 25, Ha: �1 � �2 � 100
e. H0: S 2

1 � S 2
2, Ha: S 2

1 � S 2
2

f. H0: � � 120, Ha: � � 150
g. H0: �1/�2 � 1, Ha: �1/�2 � 1
h. H0: p1 � p2 � �.1, Ha: p1 � p2 � �.1

3. To determine whether the pipe welds in a nuclear power plant
meet specifications, a random sample of welds is selected,
and tests are conducted on each weld in the sample. Weld
strength is measured as the force required to break the weld.
Suppose the specifications state that mean strength of welds
should exceed 100 lb/in2; the inspection team decides to test
H0: � � 100 versus Ha: � � 100. Explain why it might be
preferable to use this Ha rather than � � 100.

4. Let � denote the true average radioactivity level (picocuries
per liter). The value 5 pCi/L is considered the dividing line
between safe and unsafe water. Would you recommend test-
ing H0: � � 5 versus Ha: � � 5 or H0: � � 5 versus Ha:
� � 5? Explain your reasoning. [Hint: Think about the con-
sequences of a type I and type II error for each possibility.]

5. Before agreeing to purchase a large order of polyethylene
sheaths for a particular type of high-pressure oil-filled
submarine power cable, a company wants to see conclu-
sive evidence that the true standard deviation of sheath
thickness is less than .05 mm. What hypotheses should be
tested, and why? In this context, what are the type I and
type II errors?

6. Many older homes have electrical systems that use fuses
rather than circuit breakers. A manufacturer of 40-amp fuses
wants to make sure that the mean amperage at which its
fuses burn out is in fact 40. If the mean amperage is lower
than 40, customers will complain because the fuses require
replacement too often. If the mean amperage is higher than
40, the manufacturer might be liable for damage to an elec-
trical system due to fuse malfunction. To verify the amper-
age of the fuses, a sample of fuses is to be selected and
inspected. If a hypothesis test were to be performed on the
resulting data, what null and alternative hypotheses would

be of interest to the manufacturer? Describe type I and type
II errors in the context of this problem situation.

7. Water samples are taken from water used for cooling as it is
being discharged from a power plant into a river. It has been
determined that as long as the mean temperature of the dis-
charged water is at most 150°F, there will be no negative
effects on the river’s ecosystem. To investigate whether the
plant is in compliance with regulations that prohibit a mean
discharge-water temperature above 150°, 50 water samples
will be taken at randomly selected times, and the temperature
of each sample recorded. The resulting data will be used to test
the hypotheses H0: � � 150° versus Ha: � � 150°. In the con-
text of this situation, describe type I and type II errors. Which
type of error would you consider more serious? Explain.

8. A regular type of laminate is currently being used by a man-
ufacturer of circuit boards. A special laminate has been
developed to reduce warpage. The regular laminate will be
used on one sample of specimens and the special laminate
on another sample, and the amount of warpage will then be
determined for each specimen. The manufacturer will then
switch to the special laminate only if it can be demonstrated
that the true average amount of warpage for that laminate 
is less than for the regular laminate. State the relevant
hypotheses, and describe the type I and type II errors in the
context of this situation.

9. Two different companies have applied to provide cable tele-
vision service in a certain region. Let p denote the proportion
of all potential subscribers who favor the first company over
the second. Consider testing H0: p � .5 versus Ha: p � .5
based on a random sample of 25 individuals. Let X denote
the number in the sample who favor the first company and 
x represent the observed value of X.
a. Which of the following rejection regions is most appro-

priate and why?

R1 � {x: x � 7 or x � 18}, R2 � {x: x � 8},
R3 � {x: x � 17}

b. In the context of this problem situation, describe what
type I and type II errors are.

c. What is the probability distribution of the test statistic X
when H0 is true? Use it to compute the probability of a
type I error.

d. Compute the probability of a type II error for the selected
region when p � .3, again when p � .4, and also for both
p � .6 and p � .7.

e. Using the selected region, what would you conclude if 
6 of the 25 queried favored company 1?

10. A mixture of pulverized fuel ash and Portland cement to be
used for grouting should have a compressive strength of more
than 1300 KN/m2. The mixture will not be used unless exper-
imental evidence indicates conclusively that the strength
specification has been met. Suppose compressive strength for
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specimens of this mixture is normally distributed with � � 60.
Let � denote the true average compressive strength.
a. What are the appropriate null and alternative hypotheses?
b. Let X� denote the sample average compressive strength

for n � 20 randomly selected specimens. Consider the
test procedure with test statistic X� and rejection region
x� � 1331.26. What is the probability distribution of the
test statistic when H0 is true? What is the probability of a
type I error for the test procedure?

c. What is the probability distribution of the test statistic
when � � 1350? Using the test procedure of part (b),
what is the probability that the mixture will be judged
unsatisfactory when in fact � � 1350 (a type II error)?

d. How would you change the test procedure of part (b) to
obtain a test with significance level .05? What impact
would this change have on the error probability of part (c)?

e. Consider the standardized test statistic Z �
(X� � 1300)/(�/�n�) � (X� � 1300)/13.42. What are the val-
ues of Z corresponding to the rejection region of part (b)?

11. The calibration of a scale is to be checked by weighing a 
10-kg test specimen 25 times. Suppose that the results of dif-
ferent weighings are independent of one another and that the
weight on each trial is normally distributed with � � .200 kg.
Let � denote the true average weight reading on the scale.
a. What hypotheses should be tested?
b. Suppose the scale is to be recalibrated if either x� �

10.1032 or x� � 9.8968. What is the probability that recal-
ibration is carried out when it is actually unnecessary?

c. What is the probability that recalibration is judged un-
necessary when in fact � � 10.1? When � � 9.8?

d. Let z � (x� � 10)/(�/�n�). For what value c is the rejec-
tion region of part (b) equivalent to the “two-tailed”
region either z � c or z � �c?

e. If the sample size were only 10 rather than 25, how should
the procedure of part (d) be altered so that � � .05?

f. Using the test of part (e), what would you conclude from
the following sample data:

9.981 10.006 9.857 10.107 9.888

9.728 10.439 10.214 10.190 9.793

g. Reexpress the test procedure of part (b) in terms of the
standardized test statistic Z � (X� � 10)/(�/�n�).

12. A new design for the braking system on a certain type of car
has been proposed. For the current system, the true average
braking distance at 40 mph under specified conditions is
known to be 120 ft. It is proposed that the new design be
implemented only if sample data strongly indicates a reduc-
tion in true average braking distance for the new design.
a. Define the parameter of interest and state the relevant

hypotheses.
b. Suppose braking distance for the new system is normally

distributed with � � 10. Let X� denote the sample average
braking distance for a random sample of 36 observations.
Which of the following three rejection regions is appro-
priate: R1 � {x�: x� � 124.80}, R2 � {x�: x� � 115.20},
R3 � {x�: either x� � 125.13 or x� � 114.87}?

c. What is the significance level for the appropriate region
of part (b)? How would you change the region to obtain
a test with � � .001?

d. What is the probability that the new design is not imple-
mented when its true average braking distance is actu-
ally 115 ft and the appropriate region from part (b) is
used?

e. Let Z � (X� � 120)/(�/�n�). What is the significance level
for the rejection region {z: z � �2.33}? For the region
{z: z � �2.88}?

13. Let X1, . . . , Xn denote a random sample from a normal pop-
ulation distribution with a known value of �.
a. For testing the hypotheses H0: � � �0 versus Ha: � �

�0 (where �0 is a fixed number), show that the test with
test statistic X� and rejection region x� � �0 � 2.33�/�n�
has significance level .01.

b. Suppose the procedure of part (a) is used to test H0: � �
�0 versus Ha: � � �0. If �0 � 100, n � 25, and � � 5,
what is the probability of committing a type I error when
� � 99? When � � 98? In general, what can be said
about the probability of a type I error when the actual
value of � is less than �0? Verify your assertion.

14. Reconsider the situation of Exercise 11 and suppose the
rejection region is {x�: x� � 10.1004 or x� � 9.8940} �
{z: z � 2.51 or z � �2.65}.
a. What is � for this procedure?
b. What is � when � � 10.1? When � � 9.9? Is this 

desirable?
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The general discussion in Chapter 7 of confidence intervals for a population mean �
focused on three different cases. We now develop test procedures for these same three
cases.

Case I: A Normal Population with Known �
Although the assumption that the value of � is known is rarely met in practice, this case
provides a good starting point because of the ease with which general procedures and
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their properties can be developed. The null hypothesis in all three cases will state that
� has a particular numerical value, the null value, which we will denote by �0. Let
X1, . . . , Xn represent a random sample of size n from the normal population. Then the
sample mean X� has a normal distribution with expected value �X� � � and standard
deviation �X� � �/�n�. When H0 is true, �X� � �0. Consider now the statistic Z obtained
by standardizing X� under the assumption that H0 is true:

Z �

Substitution of the computed sample mean x� gives z, the distance between x� and �0

expressed in “standard deviation units.” For example, if the null hypothesis is H0:
� � 100, �X� � �/�n� � 10/�2�5� � 2.0 and x� � 103, then the test statistic value is
z � (103 � 100)/2.0 � 1.5. That is, the observed value of x� is 1.5 standard devia-
tions (of X�) larger than what we expect it to be when H0 is true. The statistic Z is a
natural measure of the distance between X�, the estimator of �, and its expected value
when H0 is true. If this distance is too great in a direction consistent with Ha, the null
hypothesis should be rejected.

Suppose first that the alternative hypothesis has the form Ha: � � �0. Then an
x� value less than �0 certainly does not provide support for Ha. Such an x� corresponds
to a negative value of z (since x� � �0 is negative and the divisor �/�n� is positive).
Similarly, an x� value that exceeds �0 by only a small amount (corresponding to z
which is positive but small) does not suggest that H0 should be rejected in favor of
Ha. The rejection of H0 is appropriate only when x� considerably exceeds �0—that is,
when the z value is positive and large. In summary, the appropriate rejection region,
based on the test statistic Z rather than X�, has the form z � c.

As discussed in Section 8.1, the cutoff value c should be chosen to control the
probability of a type I error at the desired level �. This is easily accomplished
because the distribution of the test statistic Z when H0 is true is the standard normal
distribution (that’s why �0 was subtracted in standardizing). The required cutoff c is
the z critical value that captures upper-tail area � under the z curve. As an example, let
c � 1.645, the value that captures tail area .05 (z.05 � 1.645). Then,

� � P(type I error) � P(H0 is rejected when H0 is true)

� P(Z � 1.645 when Z 	 N(0, 1)) � 1 � �(1.645) � .05

More generally, the rejection region z � z� has type I error probability �. The test
procedure is upper-tailed because the rejection region consists only of large values
of the test statistic.

Analogous reasoning for the alternative hypothesis Ha: � � �0 suggests a
rejection region of the form z � c, where c is a suitably chosen negative number 
(x� is far below �0 if and only if z is quite negative). Because Z has a standard nor-
mal distribution when H0 is true, taking c � �z� yields P(type I error) � �. This is a
lower-tailed test. For example, z.10 � 1.28 implies that the rejection region z � �1.28
specifies a test with significance level .10.

Finally, when the alternative hypothesis is Ha: � � �0, H0 should be rejected 
if x� is too far to either side of �0. This is equivalent to rejecting H0 either if z � c
or if z � �c. Suppose we desire � � .05. Then,

.05 � P(Z � c or Z � �c when Z has a standard normal distribution)

� �(�c) � 1 � �(c) � 2[1 � �(c)]

Thus c is such that 1 � �(c), the area under the z curve to the right of c, is .025 (and
not .05!). From Section 4.3 or Appendix Table A.3, c � 1.96, and the rejection

X� � �0�
�/�n�
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region is z � 1.96 or z � �1.96. For any �, the two-tailed rejection region z � z�/2

or z � �z�/2 has type I error probability � (since area �/2 is captured under each of
the two tails of the z curve). Again, the key reason for using the standardized test sta-
tistic Z is that because Z has a known distribution when H0 is true (standard normal),
a rejection region with desired type I error probability is easily obtained by using an
appropriate critical value.

The test procedure for case I is summarized in the accompanying box, and the
corresponding rejection regions are illustrated in Figure 8.2.
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Null hypothesis: H0: � � �0

Test statistic value: z �

Alternative Hypothesis Rejection Region for Level � Test

Ha: � � �0 z � z� (upper-tailed test)
Ha: � � �0 z � �z� (lower-tailed test)
Ha: � � �0 either z � z�/2 or z � �z�/2 (two-tailed test)

x� � �0�
�/�n�

0    �z    �z

zRejection region: z � z�

Rejection region: z � �z�

Shaded area
� � P(type I error)�

Total shaded area
� � P(type I error)�

0� 0�z  /2�    z  /2�

Rejection region: either
z � z /2 or z � � /2� �

Shaded area
�   /2�

Shaded
area �   /2�

z curve (probability distribution of test statistic Z when H0 is true)

(a) (b) (c)

Figure 8.2 Rejection regions for z tests: (a) upper-tailed test; (b) lower-tailed test;
(c) two-tailed test

Use of the following sequence of steps is recommended when testing hypotheses
about a parameter.

1. Identify the parameter of interest and describe it in the context of the problem
situation.

2. Determine the null value and state the null hypothesis.

3. State the appropriate alternative hypothesis.

4. Give the formula for the computed value of the test statistic (substituting the null
value and the known values of any other parameters, but not those of any sample-
based quantities).



5. State the rejection region for the selected significance level �.

6. Compute any necessary sample quantities, substitute into the formula for the test
statistic value, and compute that value.

7. Decide whether H0 should be rejected and state this conclusion in the problem
context.

The formulation of hypotheses (Steps 2 and 3) should be done before examining the
data.

A manufacturer of sprinkler systems used for fire protection in office buildings
claims that the true average system-activation temperature is 130°. A sample of n � 9
systems, when tested, yields a sample average activation temperature of 131.08°F. If
the distribution of activation times is normal with standard deviation 1.5°F, does the
data contradict the manufacturer’s claim at significance level � � .01?

1. Parameter of interest: � � true average activation temperature.

2. Null hypothesis: H0: � � 130 (null value � �0 � 130).

3. Alternative hypothesis: Ha: � � 130 (a departure from the claimed value in
either direction is of concern).

4. Test statistic value:

z � �

5. Rejection region: The form of Ha implies use of a two-tailed test with rejection
region either z � z.005 or z � �z.005. From Section 4.3 or Appendix Table A.3,
z.005 � 2.58, so we reject H0 if either z � 2.58 or z � �2.58.

6. Substituting n � 9 and x� � 131.08,

z � � � 2.16

That is, the observed sample mean is a bit more than 2 standard deviations
above what would have been expected were H0 true.

7. The computed value z � 2.16 does not fall in the rejection region (�2.58 � 2.16 �
2.58), so H0 cannot be rejected at significance level .01. The data does not give strong
support to the claim that the true average differs from the design value of 130. ■

� and Sample Size Determination The z tests for case I are among the few in sta-
tistics for which there are simple formulas available for �, the probability of a type
II error. Consider first the upper-tailed test with rejection region z � z�. This is
equivalent to x� � �0 � z� � �/�n�, so H0 will not be rejected if x� � �0 � z� � �/�n�.
Now let � denote a particular value of � that exceeds the null value �0. Then,

�(�) � P(H0 is not rejected when � � �)

� P(X� � �0 � z� � �/�n� when � � �)

� P��X��
�

/�
�

n�


� � z� � when � � ��
� ��z� � ��0 � �

�
�/�n�

�0 � �
�

�/�n�

1.08
�

.5

131.08 � 130
��

1.5/�9�

x� � 130
�
1.5/�n�

x� � �0�
�/�n�
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As � increases, �0 � � becomes more negative, so �(�) will be small when �
greatly exceeds �0 (because the value at which � is evaluated will then be quite neg-
ative). Error probabilities for the lower-tailed and two-tailed tests are derived in an
analogous manner.

If � is large, the probability of a type II error can be large at an alternative
value � that is of particular concern to an investigator. Suppose we fix � and also
specify � for such an alternative value. In the sprinkler example, company officials
might view � � 132 as a very substantial departure from H0: � � 130 and there-
fore wish �(132) � .10 in addition to � � .01. More generally, consider the two
restrictions P(type I error) � � and �(�) � � for specified �, �, and �. Then for
an upper-tailed test, the sample size n should be chosen to satisfy

��z� � � � �

This implies that

�z� � � z� �

It is easy to solve this equation for the desired n. A parallel argument yields the nec-
essary sample size for lower- and two-tailed tests as summarized in the next box.

�0 � �
�

�/�n�
z critical value that
captures lower-tail area �

�0 � �
�

�/�n�
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Let � denote the true average tread life of a certain type of tire. Consider testing H0:
� � 30,000 versus Ha: � � 30,000 based on a sample of size n � 16 from a normal
population distribution with � � 1500. A test with � � .01 requires z� � z.01 � 2.33.
The probability of making a type II error when � � 31,000 is

�(31,000) � ��2.33 � � � �(�.34) � .3669
30,000 � 31,000
��

1500/�1�6�

Example 8.7

Alternative Type II Error Probability �(�� )
Hypothesis for a Level � Test

Ha: � � �0 ��z� � �
�

�
0

/

�

�
�

n�


��
Ha: � � �0 1 � ���z� � �

�

�
0

/

�

�
�

n�


��
Ha: � � �0 ��z�/2 � �

�

�
0

/

�

�
�

n�


�� � ���z�/2 � �
�

�
0

/

�

�
�

n�


��
where �(z) � the standard normal cdf.

The sample size n for which a level � test also has �(�) � � at the
alternative value � is

n �
� �

2

� �
2 for a two-tailed test

(an approximate solution)

� (z�/2 � z�)
��

�0 � �

for a one-tailed

(upper or lower) test

� (z� � z�)
��

�0 � �



Since z.1 � 1.28, the requirement that the level .01 test also have �(31,000) � .1
necessitates

n � � �
2

� (�5.42)2 � 29.32

The sample size must be an integer, so n � 30 tires should be used. ■

Case II: Large-Sample Tests
When the sample size is large, the z tests for case I are easily modified to yield valid
test procedures without requiring either a normal population distribution or known �.
The key result was used in Chapter 7 to justify large-sample confidence intervals: 
A large n implies that the standardized variable

Z �

has approximately a standard normal distribution. Substitution of the null value �0

in place of � yields the test statistic

Z �

which has approximately a standard normal distribution when H0 is true. The use of
rejection regions given previously for case I (e.g., z � z� when the alternative hypoth-
esis is Ha: � � �0) then results in test procedures for which the significance level is
approximately (rather than exactly) �. The rule of thumb n � 40 will again be used
to characterize a large sample size.

A dynamic cone penetrometer (DCP) is used for measuring material resistance to
penetration (mm/blow) as a cone is driven into pavement or subgrade. Suppose that 
for a particular application, it is required that the true average DCP value for a certain
type of pavement be less than 30. The pavement will not be used unless there is con-
clusive evidence that the specification has been met. Let’s state and test the appropriate
hypotheses using the following data (“Probabilistic Model for the Analysis of Dynamic
Cone Penetrometer Test Values in Pavement Structure Evaluation,” J. of Testing and
Evaluation, 1999: 7–14):

14.1 14.5 15.5 16.0 16.0 16.7 16.9 17.1 17.5 17.8

17.8 18.1 18.2 18.3 18.3 19.0 19.2 19.4 20.0 20.0

20.8 20.8 21.0 21.5 23.5 27.5 27.5 28.0 28.3 30.0

30.0 31.6 31.7 31.7 32.5 33.5 33.9 35.0 35.0 35.0

36.7 40.0 40.0 41.3 41.7 47.5 50.0 51.0 51.8 54.4

55.0 57.0

Figure 8.3 shows a descriptive summary obtained from MINITAB. The sample mean
DCP is less than 30. However, there is a substantial amount of variation in the data
(sample coefficient of variation � s/x� � .4265), so the fact that the mean is less than
the design specification cutoff may be a consequence just of sampling variability.
Notice that the histogram does not resemble at all a normal curve (and a normal
probability plot does not exhibit a linear pattern), but the large-sample z tests do not
require a normal population distribution.

X� � �0�
S/�n�

X� � �
�
S/�n�

1500(2.33 � 1.28)
��
30,000 � 31,000
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1. � � true average DCP value

2. H0: � � 30

3. Ha: � � 30 (so the pavement will not be used unless the null hypothesis is
rejected)

4. z �

5. A test with significance level .05 rejects H0 when z � �1.645 (a lower-tailed test).

6. With n � 52, x� � 28.76, and s � 12.2647,

z � � � �.73

7. Since �.73 � �1.645, H0 cannot be rejected. We do not have compelling evidence 
for concluding that � � 30; use of the pavement is not justified. ■

Determination of � and the necessary sample size for these large-sample tests
can be based either on specifying a plausible value of � and using the case I formu-
las (even though s is used in the test) or on using the curves to be introduced shortly
in connection with case III.

Case III: A Normal Population Distribution
When n is small, the Central Limit Theorem (CLT) can no longer be invoked to justify
the use of a large-sample test. We faced this same difficulty in obtaining a small-
sample confidence interval (CI) for � in Chapter 7. Our approach here will be the same
one used there: We will assume that the population distribution is at least approxi-
mately normal and describe test procedures whose validity rests on this assumption. 

�1.24
�
1.701

28.76 � 30
��
12.2647/�5�2�

x� � 30
�
s/�n�
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Figure 8.3 MINITAB descriptive summary for the DCP data of Example 8.8



If an investigator has good reason to believe that the population distribution is quite
nonnormal, a distribution-free test from Chapter 15 can be used. Alternatively, a stat-
istician can be consulted regarding procedures valid for specific families of population
distributions other than the normal family. Or a bootstrap procedure can be developed.

The key result on which tests for a normal population mean are based was used
in Chapter 7 to derive the one-sample t CI: If X1, X2, . . . , Xn is a random sample
from a normal distribution, the standardized variable

T �

has a t distribution with n � 1 degrees of freedom (df). Consider testing H0: � � �0

against Ha: � � �0 by using the test statistic T � (X� � �0)/(S/�n�). That is, the test sta-
tistic results from standardizing X� under the assumption that H0 is true (using S/�n�, the
estimated standard deviation of X�, rather than �/�n�). When H0 is true, the test statistic
has a t distribution with n � 1 df. Knowledge of the test statistic’s distribution when H0

is true (the “null distribution”) allows us to construct a rejection region for which the
type I error probability is controlled at the desired level. In particular, use of the upper-
tail t critical value t�,n�1 to specify the rejection region t � t�,n�1 implies that

P(type I error) � P(H0 is rejected when it is true)

� P(T � t�,n�1 when T has a t distribution with n � 1 df)

� �

The test statistic is really the same here as in the large-sample case but is la-
beled T to emphasize that its null distribution is a t distribution with n � 1 df rather than
the standard normal (z) distribution. The rejection region for the t test differs from that
for the z test only in that a t critical value t�,n�1 replaces the z critical value z�. Similar
comments apply to alternatives for which a lower-tailed or two-tailed test is appropriate.

X� � �
�
S/�n�
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The One-Sample t Test

Null hypothesis: H0: � � �0

Test statistic value: t � �
x�
s/

�

�
�

n�
0�

Alternative Hypothesis Rejection Region for a Level � Test

Ha: � � �0 t � t�,n�1 (upper-tailed)

Ha: � � �0 t � �t�,n�1 (lower-tailed)

Ha: � � �0 either t � t�/2,n�1 or t � �t�/2,n�1 (two-tailed)

A well-designed and safe workplace can contribute greatly to increased productivity. It
is especially important that workers not be asked to perform tasks, such as lifting, that
exceed their capabilities. The accompanying data on maximum weight of lift (MAWL,
in kg) for a frequency of four lifts/min was reported in the article “The Effects of Speed,
Frequency, and Load on Measured Hand Forces for a Floor-to-Knuckle Lifting Task”
(Ergonomics, 1992: 833–843); subjects were randomly selected from the population of
healthy males age 18–30. Assuming that MAWL is normally distributed, does the fol-
lowing data suggest that the population mean MAWL exceeds 25?

25.8 36.6 26.3 21.8 27.2

Let’s carry out a test using a significance level of .05.

Example 8.9



1. � � population mean MAWL

2. H0: � � 25

3. Ha: � � 25

4. t �

5. Reject H0 if t � t�, n�1 � t.05,4 � 2.132.

6. �xi � 137.7 and �x2
i � 3911.97, from which x� � 27.54, s � 5.47, and

t � � � 1.04

The accompanying MINITAB output from a request for a one-sample t test has
the same calculated values (the P-value is discussed in Section 8.4).

Test of mu � 25.00 vs mu � 25.00

Variable N Mean StDev SE Mean T P-Value
mawl 5 27.54 5.47 2.45 1.04 0.18

7. Since 1.04 does not fall in the rejection region (1.04 � 2.132), H0 cannot be rejected
at significance level .05. It is still plausible that � is (at most) 25. ■

� and Sample Size Determination The calculation of � at the alternative value �
in case I was carried out by expressing the rejection region in terms of x� (e.g., x� �
�0 � z� � �/�n�) and then subtracting � to standardize correctly. An equivalent
approach involves noting that when � � �, the test statistic Z � (X� � �0)/(�/�n�)
still has a normal distribution with variance 1, but now the mean value of Z is given
by (� � �0)/(�/�n�). That is, when � � �, the test statistic still has a normal dis-
tribution though not the standard normal distribution. Because of this, �(�) is an
area under the normal curve corresponding to mean value (� � �0)/(�/�n�) and
variance 1. Both � and � involve working with normally distributed variables.

The calculation of �(�) for the t test is much less straightforward. This is
because the distribution of the test statistic T � (X� � �0)/(S/�n�) is quite compli-
cated when H0 is false and Ha is true. Thus, for an upper-tailed test, determining

�(�) � P(T � t�,n�1 when � � � rather than �0)

involves integrating a very unpleasant density function. This must be done numeri-
cally, but fortunately it has been done by research statisticians for both one- and two-
tailed t tests. The results are summarized in graphs of � that appear in Appendix Table
A.17. There are four sets of graphs, corresponding to one-tailed tests at level .05 and
level .01 and two-tailed tests at the same levels.

To understand how these graphs are used, note first that both � and the neces-
sary sample size n in case I are functions not just of the absolute difference ⏐�0 � �⏐
but of d � ⏐�0 � �⏐/�. Suppose, for example, that ⏐�0 � �⏐ � 10. This depar-
ture from H0 will be much easier to detect (smaller �) when � � 2, in which case �0

and � are 5 population standard deviations apart, than when � � 10. The fact that
� for the t test depends on d rather than just ⏐�0 � �⏐ is unfortunate, since to use
the graphs one must have some idea of the true value of �. A conservative (large)
guess for � will yield a conservative (large) value of �(�) and a conservative esti-
mate of the sample size necessary for prescribed � and �(�).

Once the alternative � and value of � are selected, d is calculated and its value
located on the horizontal axis of the relevant set of curves. The value of � is the height

2.54
�
2.45

27.54 � 25
��

5.47/�5�

x� � 25
�
s/�n�
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of the n � 1 df curve above the value of d (visual interpolation is necessary if n � 1
is not a value for which the corresponding curve appears), as illustrated in Figure 8.4.

Rather than fixing n (i.e., n � 1, and thus the particular curve from which
� is read), one might prescribe both � (.05 or .01 here) and a value of � for the
chosen � and �. After computing d, the point (d, �) is located on the relevant set
of graphs. The curve below and closest to this point gives n � 1 and thus n (again,
interpolation is often necessary).

The true average voltage drop from collector to emitter of insulated gate bipolar tran-
sistors of a certain type is supposed to be at most 2.5 volts. An investigator selects a
sample of n � 10 such transistors and uses the resulting voltages as a basis for test-
ing H0: � � 2.5 versus Ha: � � 2.5 using a t test with significance level � � .05. If
the standard deviation of the voltage distribution is � � .100, how likely is it that H0

will not be rejected when in fact � � 2.6? With d � ⏐2.5 � 2.6⏐/.100 � 1.0, the
point on the � curve at 9 df for a one-tailed test with � � .05 above 1.0 has height
approximately .1, so � � .1. The investigator might think that this is too large a
value of � for such a substantial departure from H0 and may wish to have � � .05
for this alternative value of �. Since d � 1.0, the point (d, �) � (1.0, .05) must be
located. This point is very close to the 14 df curve, so using n � 15 will give both
� � .05 and � � .05 when the value of � is 2.6 and � � .10. A larger value of �
would give a larger � for this alternative, and an alternative value of � closer to 2.5
would also result in an increased value of �. ■

Most of the widely used statistical computer packages will also calculate type II
error probabilities and determine necessary sample sizes. As an example, we asked
MINITAB to do the calculations from Example 8.10. Its computations are based on
power, which is simply 1 � �. We want � to be small, which is equivalent to asking
that the power of the test be large. For example, � � .05 corresponds to a value of .95
for power. Here is the resulting MINITAB output.

Power and Sample Size

Testing mean � null (versus � null)
Calculating power for mean � null � 0.1
Alpha � 0.05 Sigma � 0.1

Sample
Size Power
10 0.8975
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Figure 8.4 A typical � curve for the t test
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EXERCISES Section 8.2 (15–34)

15. Let the test statistic Z have a standard normal distribution
when H0 is true. Give the significance level for each of the
following situations:
a. Ha: � � �0, rejection region z � 1.88
b. Ha: � � �0, rejection region z � �2.75
c. Ha: � � �0, rejection region z � 2.88 or z � �2.88

16. Let the test statistic T have a t distribution when H0 is true.
Give the significance level for each of the following situations:
a. Ha: � � �0, df � 15, rejection region t � 3.733
b. Ha: � � �0, n � 24, rejection region t � �2.500
c. Ha: � � �0, n � 31, rejection region t � 1.697 or t �

�1.697

17. Answer the following questions for the tire problem in
Example 8.7.
a. If x� � 30,960 and a level � � .01 test is used, what is the

decision?
b. If a level .01 test is used, what is �(30,500)?
c. If a level .01 test is used and it is also required that

�(30,500) � .05, what sample size n is necessary?
d. If x� � 30,960, what is the smallest � at which H0 can be

rejected (based on n � 16)?

18. Reconsider the paint-drying situation of Example 8.2, in
which drying time for a test specimen is normally distributed
with � � 9. The hypotheses H0: � � 75 versus Ha: � � 75 are
to be tested using a random sample of n � 25 observations.
a. How many standard deviations (of X�) below the null

value is x� � 72.3?
b. If x� � 72.3, what is the conclusion using � � .01?
c. What is � for the test procedure that rejects H0 when

z � �2.88?
d. For the test procedure of part (c), what is �(70)?
e. If the test procedure of part (c) is used, what n is neces-

sary to ensure that �(70) � .01?
f. If a level .01 test is used with n � 100, what is the prob-

ability of a type I error when � � 76?

19. The melting point of each of 16 samples of a certain brand
of hydrogenated vegetable oil was determined, resulting in

x� � 94.32. Assume that the distribution of melting point is
normal with � � 1.20.
a. Test H0: � � 95 versus Ha: � � 95 using a two-tailed

level .01 test.
b. If a level .01 test is used, what is �(94), the probability

of a type II error when � � 94?
c. What value of n is necessary to ensure that �(94) � .1

when � � .01?

20. Lightbulbs of a certain type are advertised as having an
average lifetime of 750 hours. The price of these bulbs is
very favorable, so a potential customer has decided to go
ahead with a purchase arrangement unless it can be conclu-
sively demonstrated that the true average lifetime is smaller
than what is advertised. A random sample of 50 bulbs was
selected, the lifetime of each bulb determined, and the
appropriate hypotheses were tested using MINITAB, result-
ing in the accompanying output.

Variable N  Mean StDev SEMean ZP-Value
lifetime 50 738.44 38.20  5.40 �2.14 0.016

What conclusion would be appropriate for a significance
level of .05? A significance level of .01? What significance
level and conclusion would you recommend?

21. The true average diameter of ball bearings of a certain type
is supposed to be .5 in. A one-sample t test will be carried
out to see whether this is the case. What conclusion is
appropriate in each of the following situations?
a. n � 13, t � 1.6, � � .05
b. n � 13, t � �1.6, � � .05
c. n � 25, t � �2.6, � � .01
d. n � 25, t � �3.9

22. The article “The Foreman’s View of Quality Control”
(Quality Engr., 1990: 257–280) described an investigation
into the coating weights for large pipes resulting from a gal-
vanized coating process. Production standards call for a true
average weight of 200 lb per pipe. The accompanying descrip-
tive summary and boxplot are from MINITAB.

Power and Sample Size

1-Sample t Test

Testing mean � null (versus � null)
Calculating power for mean � null � 0.1
Alpha � 0.05 Sigma � 0.1

Sample Target Actual
Size Power Power
13 0.9500 0.9597

Notice from the second part of the output that the sample size necessary to obtain a
power of .95 (� � .05) for an upper-tailed test with � � .05 when � � .1 and � is .1
larger than �0 is only n � 13, whereas eyeballing our � curves gave 15. When avail-
able, this type of software is more trustworthy than the curves.



Variable N Mean Median TrMean StDev SEMean
ctg wt 30 206.73 206.00 206.81 6.35 1.16

Variable Min Max Q1 Q3
ctg wt 193.00 218.00 202.75 212.00

a. What does the boxplot suggest about the status of the
specification for true average coating weight?

b. A normal probability plot of the data was quite straight. Use
the descriptive output to test the appropriate hypotheses.

23. Exercise 36 in Chapter 1 gave n � 26 observations on
escape time (sec) for oil workers in a simulated exercise,
from which the sample mean and sample standard deviation
are 370.69 and 24.36, respectively. Suppose the investiga-
tors had believed a priori that true average escape time
would be at most 6 min. Does the data contradict this prior
belief? Assuming normality, test the appropriate hypotheses
using a significance level of .05.

24. Reconsider the sample observations on stabilized viscosity
of asphalt specimens introduced in Exercise 46 in Chapter 1
(2781, 2900, 3013, 2856, and 2888). Suppose that for a par-
ticular application, it is required that true average viscosity
be 3000. Does this requirement appear to have been satis-
fied? State and test the appropriate hypotheses.

25. The desired percentage of SiO2 in a certain type of alumi-
nous cement is 5.5. To test whether the true average per-
centage is 5.5 for a particular production facility, 16 inde-
pendently obtained samples are analyzed. Suppose that the
percentage of SiO2 in a sample is normally distributed with
� � .3 and that x� � 5.25.
a. Does this indicate conclusively that the true average per-

centage differs from 5.5? Carry out the analysis using the
sequence of steps suggested in the text.

b. If the true average percentage is � � 5.6 and a level � �
.01 test based on n � 16 is used, what is the probability
of detecting this departure from H0?

c. What value of n is required to satisfy � � .01 and
�(5.6) � .01?

26. To obtain information on the corrosion-resistance properties
of a certain type of steel conduit, 45 specimens are buried in
soil for a 2-year period. The maximum penetration (in mils)
for each specimen is then measured, yielding a sample aver-
age penetration of x� � 52.7 and a sample standard deviation
of s � 4.8. The conduits were manufactured with the speci-
fication that true average penetration be at most 50 mils.
They will be used unless it can be demonstrated conclu-
sively that the specification has not been met. What would
you conclude?

27. Automatic identification of the boundaries of significant
structures within a medical image is an area of ongoing
research. The paper “Automatic Segmentation of Medical
Images Using Image Registration: Diagnostic and Sim-
ulation Applications” (J. of Medical Engr. and Tech.,
2005: 53–63) discussed a new technique for such identifi-
cation. A measure of the accuracy of the automatic region
is the average linear displacement (ALD). The paper gave
the following ALD observations for a sample of 49 kid-
neys (units of pixel dimensions).

1.38 0.44 1.09 0.75 0.66 1.28 0.51
0.39 0.70 0.46 0.54 0.83 0.58 0.64
1.30 0.57 0.43 0.62 1.00 1.05 0.82
1.10 0.65 0.99 0.56 0.56 0.64 0.45
0.82 1.06 0.41 0.58 0.66 0.54 0.83
0.59 0.51 1.04 0.85 0.45 0.52 0.58
1.11 0.34 1.25 0.38 1.44 1.28 0.51

a. Summarize/describe the data.
b. Is it plausible that ALD is at least approximately nor-

mally distributed? Must normality be assumed prior to
calculating a CI for true average ALD or testing hypothe-
ses about true average ALD? Explain.

c. The authors commented that in most cases the ALD is
better than or of the order of 1.0. Does the data in fact
provide strong evidence for concluding that true average
ALD under these circumstances is less than 1.0? Carry
out an appropriate test of hypotheses.

d. Calculate an upper confidence bound for true average ALD
using a confidence level of 95%, and interpret this bound.

28. Minor surgery on horses under field conditions requires a
reliable short-term anesthetic producing good muscle relax-
ation, minimal cardiovascular and respiratory changes, and
a quick, smooth recovery with minimal aftereffects so that
horses can be left unattended. The article “A Field Trial of 
Ketamine Anesthesia in the Horse” (Equine Vet. J., 1984:
176–179) reports that for a sample of n � 73 horses to
which ketamine was administered under certain conditions,
the sample average lateral recumbency (lying-down) time
was 18.86 min and the standard deviation was 8.6 min. Does
this data suggest that true average lateral recumbency time
under these conditions is less than 20 min? Test the appro-
priate hypotheses at level of significance .10.

29. The amount of shaft wear (.0001 in.) after a fixed mileage
was determined for each of n � 8 internal combustion en-
gines having copper lead as a bearing material, resulting in
x� � 3.72 and s � 1.25.
a. Assuming that the distribution of shaft wear is normal

with mean �, use the t test at level .05 to test H0: � �
3.50 versus Ha: � � 3.50.

b. Using � � 1.25, what is the type II error probability
�(�) of the test for the alternative � � 4.00?

30. The recommended daily dietary allowance for zinc among
males older than age 50 years is 15 mg/day. The article
“Nutrient Intakes and Dietary Patterns of Older Americans:
A National Study” (J. Gerontology, 1992: M145–150)

200 210190 220

Coating weight

8.2 Tests About a Population Mean 305



306 CHAPTER 8 Tests of Hypotheses Based on a Single Sample

Let p denote the proportion of individuals or objects in a population who possess a spec-
ified property (e.g., cars with manual transmissions or smokers who smoke a filter cig-
arette). If an individual or object with the property is labeled a success (S), then p is the
population proportion of successes. Tests concerning p will be based on a random sam-
ple of size n from the population. Provided that n is small relative to the population size,
X (the number of S’s in the sample) has (approximately) a binomial distribution.
Furthermore, if n itself is large, both X and the estimator p̂ � X/n are approximately nor-
mally distributed. We first consider large-sample tests based on this latter fact and then
turn to the small-sample case that directly uses the binomial distribution.

Large-Sample Tests
Large-sample tests concerning p are a special case of the more general large-sample
procedures for a parameter 	. Let 	̂ be an estimator of 	 that is (at least approximately)
unbiased and has approximately a normal distribution. The null hypothesis has the form
H0: 	 � 	0, where 	0 denotes a number (the null value) appropriate to the problem con-
text. Suppose that when H0 is true, the standard deviation of 	̂, �	̂, involves no unknown
parameters. For example, if 	 � � and 	̂ � X�, �	̂ � �X� � �/�n�, which involves no
unknown parameters only if the value of � is known. A large-sample test statistic results
from standardizing 	̂ under the assumption that H0 is true (so that E(	̂) � 	0):

Test statistic: Z � �
	̂ �

�	̂

	0�

If the alternative hypothesis is Ha: 	 � 	0, an upper-tailed test whose significance
level is approximately � is specified by the rejection region z � z�. The other two
alternatives, Ha: 	 � 	0 and Ha: 	 � 	0, are tested using a lower-tailed z test and a
two-tailed z test, respectively.

In the case 	 � p, �	̂ will not involve any unknown parameters when H0 is true,
but this is atypical. When �	̂ does involve unknown parameters, it is often possible to
use an estimated standard deviation S	̂ in place of �	̂ and still have Z approximately nor-
mally distributed when H0 is true (because when n is large, s	̂ � �	̂ for most samples).
The large-sample test of the previous section furnishes an example of this: Because �
is usually unknown, we use s	̂ � sX� � s/�n� in place of �/�n� in the denominator of z.
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reports the following summary data on intake for a sample
of males age 65–74 years: n � 115, x� � 11.3, and s � 6.43.
Does this data indicate that average daily zinc intake in the
population of all males age 65–74 falls below the recom-
mended allowance?

31. In an experiment designed to measure the time necessary for
an inspector’s eyes to become used to the reduced amount of
light necessary for penetrant inspection, the sample average
time for n � 9 inspectors was 6.32 sec and the sample stan-
dard deviation was 1.65 sec. It has previously been assumed
that the average adaptation time was at least 7 sec. As-
suming adaptation time to be normally distributed, does the
data contradict prior belief? Use the t test with � � .1.

32. A sample of 12 radon detectors of a certain type was selected,
and each was exposed to 100 pCi/L of radon. The resulting
readings were as follows:

105.6 90.9 91.2 96.9 96.5 91.3

100.1 105.0 99.6 107.7 103.3 92.4

a. Does this data suggest that the population mean reading
under these conditions differs from 100? State and test
the appropriate hypotheses using � � .05.

b. Suppose that prior to the experiment, a value of � � 7.5
had been assumed. How many determinations would
then have been appropriate to obtain � � .10 for the
alternative � � 95?

33. Show that for any � � 0, when the population distribution is
normal and � is known, the two-tailed test satisfies
�(�0 � �) � �(�0 � �), so that �(�) is symmetric about �0.

34. For a fixed alternative value �, show that �(�) 0 0 as
n 0 � for either a one-tailed or a two-tailed z test in the
case of a normal population distribution with known �.



The estimator p̂ � X/n is unbiased (E( p̂) � p), has approximately a normal
distribution, and its standard deviation is �p̂ � �p�(1� �� p�)/�n�. These facts were used
in Section 7.2 to obtain a confidence interval for p. When H0 is true, E( p̂) � p0 and
�p̂ � �p�0(�1� �� p�0)�/n�, so �p̂ does not involve any unknown parameters. It then follows
that when n is large and H0 is true, the test statistic

Z ��
�p�0

p̂

(�1�
�

��
p0

p�0)�/n�
�

has approximately a standard normal distribution. If the alternative hypothesis is Ha:
p � p0 and the upper-tailed rejection region z � z� is used, then

P(type I error) � P(H0 is rejected when it is true)

� P(Z � z� when Z has approximately a standard normal
distribution) � �

Thus the desired level of significance � is attained by using the critical value that
captures area � in the upper tail of the z curve. Rejection regions for the other two
alternative hypotheses, lower-tailed for Ha: p � p0 and two-tailed for Ha: p � p0, are
justified in an analogous manner.

8.3 Tests Concerning a Population Proportion 307

Null hypothesis: H0: p � p0

Test statistic value: z �

Alternative Hypothesis Rejection Region

Ha: p � p0 z � z� (upper-tailed)

Ha: p � p0 z � �z� (lower-tailed)

Ha: p � p0 either z � z�/2 or z � �z�/2 (two-tailed)

These test procedures are valid provided that np0 � 10 and n(1 � p0) � 10.

p̂ � p0��
�p�0(�1� �� p�0)�/n�

Recent information suggests that obesity is an increasing problem in America among
all age groups. The Associated Press (October 9, 2002) reported that 1276 individu-
als in a sample of 4115 adults were found to be obese (a body mass index exceed-
ing 30; this index is a measure of weight relative to height). A 1998 survey based on
people’s own assessment revealed that 20% of adult Americans considered them-
selves obese. Does the most recent data suggest that the true proportion of adults who
are obese is more than 1.5 times the percentage from the self-assessment survey?
Let’s carry out a test of hypotheses using a significance level of .10.

1. p � the proportion of all American adults who are obese.

2. Saying that the current percentage is 1.5 times the self-assessment percentage is
equivalent to the assertion that the current percentage is 30%, from which we
have the null hypothesis as H0: p � .30.

3. The phrase “more than” in the problem description implies that the alternative
hypothesis is Ha: p � .30

4. Since np0 � 4115(.3) � 10 and nq0 � 4115(.7) � 10, the large-sample z test can
certainly be used. The test statistic value is

z � ( p̂ � .3)/�(.�3�)(�.7�)/�n�
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5. The form of Ha implies that an upper-tailed test is appropriate: reject H0 if
z � z.10 � 1.28.

6. p̂ � 1276/4115 � .310, from which we have z � (.310 � .3)/�(.�3�)(�.7�)/�4�1�1�5� �
.010/.0071 � 1.40.

7. Since 1.40 exceeds the critical value 1.28, z lies in the rejection region. This jus-
tifies rejecting the null hypothesis. Using a significance level of .10, it does
appear that more than 30% of American adults are obese. ■

� and Sample Size Determination When H0 is true, the test statistic Z has
approximately a standard normal distribution. Now suppose that H0 is not true and
that p � p. Then Z still has approximately a normal distribution (because it is a
linear function of p̂), but its mean value and variance are no longer 0 and 1, respec-
tively. Instead,

E(Z) � V(Z) �

The probability of a type II error for an upper-tailed test is �( p) � P(Z � z� when
p � p). This can be computed by using the given mean and variance to standardize
and then referring to the standard normal cdf. In addition, if it is desired that the level �
test also have �(p) �� for a specified value of �, this equation can be solved for the
necessary n as in Section 8.2. General expressions for �( p) and n are given in the
accompanying box.

p(1 � p)/n
��
p0(1 � p0)/n

p � p0��
�p�0(�1� �� p�0)�/n�
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Alternative Hypothesis �(p)

Ha: p � p0 �� �
Ha: p � p0 1 � �� �
Ha: p � p0 �� �

� �� �
The sample size n for which the level � test also satisfies �(p) � � is

n �

� �
2

one-tailed test

� �
2 two-tailed test (an

approximate solution)

z�/2�p�0(�1� �� p�0)� � z� �p�(�1� �� p�)�
����

p � p0

z��p�0(�1� �� p�0)� � z� �p�(�1� �� p�)�
����

p � p0

p0 � p � z�/2�p�0(�1� �� p�0)�/n�
���

�p�(�1� �� p�)�/n�

p0 � p � z�/2�p�0(�1� �� p�0)�/n�
���

�p�(�1� �� p�)�/n�

p0 � p � z��p�0(�1� �� p�0)�/n�
���

�p�(�1� �� p�)�/n�

p0 � p � z��p�0(�1� �� p�0)�/n�
���

�p�(�1� �� p�)�/n�

⎧
⎪
⎪
⎨
⎪
⎪
⎩

A package-delivery service advertises that at least 90% of all packages brought to its
office by 9 A.M. for delivery in the same city are delivered by noon that day. Let p
denote the true proportion of such packages that are delivered as advertised and con-
sider the hypotheses H0: p � .9 versus Ha: p � .9. If only 80% of the packages are
delivered as advertised, how likely is it that a level .01 test based on n � 225 packages
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will detect such a departure from H0? What should the sample size be to ensure that
�(.8) � .01? With � � .01, p0 � .9, p � .8, and n � 225,

�(.8) � 1 � �� �
� 1 � �(2.00) � .0228

Thus the probability that H0 will be rejected using the test when p � .8 is .9772—
roughly 98% of all samples will result in correct rejection of H0.

Using z� � z� � 2.33 in the sample size formula yields

n � � �
2

� 266 ■

Small-Sample Tests
Test procedures when the sample size n is small are based directly on the binomial
distribution rather than the normal approximation. Consider the alternative hypothe-
sis Ha: p � p0 and again let X be the number of successes in the sample. Then X is
the test statistic, and the upper-tailed rejection region has the form x � c. When H0

is true, X has a binomial distribution with parameters n and p0, so

P(type I error) � P(H0 is rejected when it is true)

� P(X � c when X 	 Bin(n, p0))

� 1 � P(X � c � 1 when X 	 Bin(n, p0))

� 1 � B(c � 1; n, p0)

As the critical value c decreases, more x values are included in the rejection region
and P(type I error) increases. Because X has a discrete probability distribution, it is
usually not possible to find a value of c for which P(type I error) is exactly the
desired significance level � (e.g., .05 or .01). Instead, the largest rejection region of
the form {c, c � 1, . . . , n} satisfying 1 � B(c � 1; n, p0) � � is used.

Let p denote an alternative value of p ( p � p0). When p � p, X 	 Bin(n, p),
so

�( p) � P(type II error when p � p)

� P(X � c when X 	 Bin(n, p)) � B(c � 1; n, p)

That is, �( p) is the result of a straightforward binomial probability calculation. The
sample size n necessary to ensure that a level � test also has specified � at a partic-
ular alternative value p must be determined by trial and error using the binomial cdf.

Test procedures for Ha: p � p0 and for Ha: p � p0 are constructed in a similar
manner. In the former case, the appropriate rejection region has the form x � c (a
lower-tailed test). The critical value c is the largest number satisfying B(c; n, p0) � �.
The rejection region when the alternative hypothesis is Ha: p � p0 consists of both
large and small x values.

A plastics manufacturer has developed a new type of plastic trash can and proposes to
sell them with an unconditional 6-year warranty. To see whether this is economically
feasible, 20 prototype cans are subjected to an accelerated life test to simulate 6 years
of use. The proposed warranty will be modified only if the sample data strongly sug-
gests that fewer than 90% of such cans would survive the 6-year period. Let p denote
the proportion of all cans that survive the accelerated test. The relevant hypotheses are
H0: p � .9 versus Ha: p � .9. A decision will be based on the test statistic X, the number

2.33�(.�9�)(�.1�)� � 2.33�(.�8�)(�.2�)�
����

.8 � .9

.9 � .8 � 2.33�(.�9�)(�.1�)/�2�2�5�
���

�(.�8�)(�.2�)/�2�2�5�
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35. State DMV records indicate that of all vehicles undergoing
emissions testing during the previous year, 70% passed on
the first try. A random sample of 200 cars tested in a par-
ticular county during the current year yields 124 that passed
on the initial test. Does this suggest that the true proportion
for this county during the current year differs from the pre-
vious statewide proportion? Test the relevant hypotheses
using a � .05.

36. A manufacturer of nickel–hydrogen batteries randomly selects
100 nickel plates for test cells, cycles them a specified number
of times, and determines that 14 of the plates have blistered.
a. Does this provide compelling evidence for concluding

that more than 10% of all plates blister under such cir-
cumstances? State and test the appropriate hypotheses
using a significance level of .05. In reaching your con-
clusion, what type of error might you have committed?

b. If it is really the case that 15% of all plates blister under
these circumstances and a sample size of 100 is used,
how likely is it that the null hypothesis of part (a) will not
be rejected by the level .05 test? Answer this question for
a sample size of 200.

c. How many plates would have to be tested to have �(.15) �
.10 for the test of part (a)?

37. A random sample of 150 recent donations at a certain blood
bank reveals that 82 were type A blood. Does this suggest
that the actual percentage of type A donations differs from
40%, the percentage of the population having type A blood?
Carry out a test of the appropriate hypotheses using a sig-
nificance level of .01. Would your conclusion have been dif-
ferent if a significance level of .05 had been used?

38. It is known that roughly 2/3 of all human beings have a
dominant right foot or eye. Is there also right-sided domi-
nance in kissing behavior? The article “Human Behavior:
Adult Persistence of Head-Turning Asymmetry” (Nature,
2003: 771) reported  that in a random sample of 124 kiss-
ing couples, both people in 80 of the couples tended to lean
more to the right than to the left.

a. If 2/3 of all kissing couples exhibit this right-leaning
behavior, what is the probability that the number in a
sample of 124 who do so differs from the expected value
by at least as much as what was actually observed?

b. Does the result of the experiment suggest that the 2/3 fig-
ure is implausible for kissing behavior? State and test the
appropriate hypotheses.

39. A university library ordinarily has a complete shelf inven-
tory done once every year. Because of new shelving rules
instituted the previous year, the head librarian believes it
may be possible to save money by postponing the inven-
tory. The librarian decides to select at random 1000 books
from the library’s collection and have them searched in a
preliminary manner. If evidence indicates strongly that the
true proportion of misshelved or unlocatable books is less
than .02, then the inventory will be postponed.
a. Among the 1000 books searched, 15 were misshelved or

unlocatable. Test the relevant hypotheses and advise the
librarian what to do (use � � .05).

b. If the true proportion of misshelved and lost books is
actually .01, what is the probability that the inventory
will be (unnecessarily) taken?

c. If the true proportion is .05, what is the probability that
the inventory will be postponed?

40. The article “Statistical Evidence of Discrimination” (J.
Amer. Stat. Assoc., 1982: 773–783) discusses the court case
Swain v. Alabama (1965), in which it was alleged that there
was discrimination against blacks in grand jury selection.
Census data suggested that 25% of those eligible for grand
jury service were black, yet a random sample of 1050 called
to appear for possible duty yielded only 177 blacks. Using a
level .01 test, does this data argue strongly for a conclusion
of discrimination?

41. A plan for an executive traveler’s club has been developed
by an airline on the premise that 5% of its current customers
would qualify for membership. A random sample of 500
customers yielded 40 who would qualify.
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EXERCISES Section 8.3 (35–44)

among the 20 that survive. If the desired significance level is � � .05, c must satisfy
B(c; 20, .9) � .05. From Appendix Table A.1, B(15; 20, .9) � .043, whereas B(16;
20, .9) � .133. The appropriate rejection region is therefore x � 15. If the accelerated test
results in x � 14, H0 would be rejected in favor of Ha, necessitating a modification of the
proposed warranty. The probability of a type II error for the alternative value p � .8 is

�(.8) � P(H0 is not rejected when X 	 Bin(20, .8))

� P(X � 16 when X 	 Bin(20, .8))

� 1 � B(15; 20, .8) � 1 � .370 � .630

That is, when p � .8, 63% of all samples consisting of n � 20 cans would result in
H0 being incorrectly not rejected. This error probability is high because 20 is a small
sample size and p � .8 is close to the null value p0 � .9. ■



a. Using this data, test at level .01 the null hypothesis that
the company’s premise is correct against the alternative
that it is not correct.

b. What is the probability that when the test of part (a) is
used, the company’s premise will be judged correct when
in fact 10% of all current customers qualify?

42. Each of a group of 20 intermediate tennis players is given
two rackets, one having nylon strings and the other syn-
thetic gut strings. After several weeks of playing with the
two rackets, each player will be asked to state a preference
for one of the two types of strings. Let p denote the pro-
portion of all such players who would prefer gut to nylon,
and let X be the number of players in the sample who prefer
gut. Because gut strings are more expensive, consider the
null hypothesis that at most 50% of all such players prefer
gut. We simplify this to H0: p � .5, planning to reject H0

only if sample evidence strongly favors gut strings.
a. Which of the rejection regions {15, 16, 17, 18, 19, 20},

{0, 1, 2, 3, 4, 5}, or {0, 1, 2, 3, 17, 18, 19, 20} is most
appropriate, and why are the other two not appropriate?

b. What is the probability of a type I error for the chosen
region of part (a)? Does the region specify a level .05
test? Is it the best level .05 test?

c. If 60% of all enthusiasts prefer gut, calculate the proba-
bility of a type II error using the appropriate region from
part (a). Repeat if 80% of all enthusiasts prefer gut.

d. If 13 out of the 20 players prefer gut, should H0 be
rejected using a significance level of .10?

43. A manufacturer of plumbing fixtures has developed a new
type of washerless faucet. Let p � P(a randomly selected
faucet of this type will develop a leak within 2 years under
normal use). The manufacturer has decided to proceed with
production unless it can be determined that p is too large; the
borderline acceptable value of p is specified as .10. The man-
ufacturer decides to subject n of these faucets to accelerated
testing (approximating 2 years of normal use). With X � the
number among the n faucets that leak before the test con-
cludes, production will commence unless the observed X is
too large. It is decided that if p � .10, the probability of not
proceeding should be at most .10, whereas if p � .30 the
probability of proceeding should be at most .10. Can n � 10
be used? n � 20? n � 25? What is the appropriate rejection
region for the chosen n, and what are the actual error proba-
bilities when this region is used?

44. Scientists think that robots will play a crucial role in factories
in the next several decades. Suppose that in an experiment 
to determine whether the use of robots to weave computer
cables is feasible, a robot was used to assemble 500 cables.
The cables were examined and there were 15 defectives. If
human assemblers have a defect rate of .035 (3.5%), does this
data support the hypothesis that the proportion of defectives
is lower for robots than humans? Use a .01 significance level.
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8.4 P-Values

One way to report the result of a hypothesis-testing analysis is to simply say whether
the null hypothesis was rejected at a specified level of significance. Thus an investiga-
tor might state that H0 was rejected at level of significance .05 or that use of a level .01
test resulted in not rejecting H0. This type of statement is somewhat inadequate
because it says nothing about whether the conclusion was a very close call or quite
clearcut. A related difficulty is that such a report imposes the specified significance
level on other decision makers. In many decision situations, individuals may have dif-
ferent views concerning the consequences of a type I or type II error. Each individual
would then want to select his or her own significance level—some selecting � � .05,
others .01, and so on—and reach a conclusion accordingly. This could result in some
individuals rejecting H0 while others conclude that the data does not show a strong
enough contradiction of H0 to justify its rejection.

The true average time to initial relief of pain for a best-selling pain reliever is known
to be 10 min. Let � denote the true average time to relief for a company’s newly devel-
oped reliever. The company wishes to produce and market this reliever only if it pro-
vides quicker relief than the best-seller, so wishes to test H0: � � 10 versus Ha: � � 10.
Only if experimental evidence leads to rejection of H0 will the new reliever be intro-
duced. After weighing the relative seriousness of each type of error, a single level of
significance must be agreed on and a decision—to reject H0 and introduce the reliever
or not to do so—made at that level.

Suppose the new reliever has been introduced. The company supports its claim
of quicker relief by stating that, based on an analysis of experimental data, H0: � � 10
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was rejected in favor of Ha: � � 10 using level of significance � � .10. Any indi-
viduals contemplating a switch to this new reliever would naturally want to reach
their own conclusions concerning the validity of the claim. Individuals who are sat-
isfied with the best-seller would view a type I error (concluding that the new prod-
uct provides quicker relief when it actually does not) as serious so might wish to use
� � .05, .01, or even smaller levels. Unfortunately, the nature of the company’s state-
ment prevents an individual decision maker from reaching a conclusion at such a
level. The company has imposed its own choice of significance level on others. The
report could have been done in a manner that allowed each individual flexibility in
drawing a conclusion at a personally selected �. ■

A P-value conveys much information about the strength of evidence against H0

and allows an individual decision maker to draw a conclusion at any specified level �.
Before we give a general definition, consider how the conclusion in a hypothesis-
testing problem depends on the selected level �.

The nicotine content problem discussed in Example 8.5 involved testing H0: � � 1.5
versus Ha: � � 1.5. Because of the inequality in Ha, the rejection region is upper-tailed,
with H0 rejected if z � z�. Suppose z � 2.10. The accompanying table displays the rejec-
tion region for each of four different �s along with the resulting conclusion.
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Level of
Significance 	 Rejection Region Conclusion

.05 z � 1.645 Reject H0

.025 z � 1.96 Reject H0

.01 z � 2.33 Do not reject H0

.005 z � 2.58 Do not reject H0

Example 8.15
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(a)

2.10 � computed z
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area � .0179

Standard normal (z) curve

0

(b)
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area �   �

z curve

2.10

z  �z  � z  �z  �
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area �   �
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2.10

Figure 8.5 Relationship between � and tail area captured by computed z: (a) tail area 
captured by computed z; (b) when � � .0179, z� � 2.10 and H0 is rejected; (c) when
� � .0179, z� � 2.10 and H0 is not rejected
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For � relatively large, the z critical value z� is not very far out in the upper tail; 2.10
exceeds the critical value, and so H0 is rejected. However, as � decreases, the crit-
ical value increases. For small �, the z critical value is large, 2.10 is less than z�,
and H0 is not rejected.

Recall that for an upper-tailed z test, � is just the area under the z curve to the
right of the critical value z�. That is, once � is specified, the critical value is chosen
to capture upper-tail area �. Appendix Table A.3 shows that the area to the right of
2.10 is .0179. Using an � larger than .0179 corresponds to z� � 2.10. An � less than
.0179 necessitates using a z critical value that exceeds 2.10. The decision at a par-
ticular level � thus depends on how the selected � compares to the tail area captured
by the computed z. This is illustrated in Figure 8.5. Notice in particular that .0179,
the captured tail area, is the smallest level � at which H0 would be rejected, because
using any smaller � results in a z critical value that exceeds 2.10, so that 2.10 is not
in the rejection region. ■

In general, suppose the probability distribution of a test statistic when H0 is
true has been determined. Then, for specified �, the rejection region is determined
by finding a critical value or values that capture tail area � (upper-, lower-, or two-
tailed, whichever is appropriate) under the probability distribution curve. The small-
est � for which H0 would be rejected is the tail area captured by the computed value
of the test statistic. This smallest � is the P-value.

DEFINITION The P-value (or observed significance level) is the smallest level of signifi-
cance at which H0 would be rejected when a specified test procedure is used
on a given data set. Once the P-value has been determined, the conclusion at
any particular level � results from comparing the P-value to �:

1. P-value � � d reject H0 at level �.

2. P-value � � d do not reject H0 at level �.

It is customary to call the data significant when H0 is rejected and not signifi-
cant otherwise. The P-value is then the smallest level at which the data is significant.
An easy way to visualize the comparison of the P-value with the chosen � is to draw
a picture like that of Figure 8.6. The calculation of the P-value depends on whether
the test is upper-, lower-, or two-tailed. However, once it has been calculated, the
comparison with � does not depend on which type of test was used.

(b) (a) 10

P-value � smallest level at which 
        H0 can be rejected

Figure 8.6 Comparing a and the P-value: (a) reject H0 when a lies here; (b) do not reject H0

when a lies here

Suppose that when data from an experiment involving the new pain reliever was ana-
lyzed, the P-value for testing H0: � � 10 versus Ha: � � 10 was calculated as
.0384. Since � � .05 is larger than the P-value (.05 lies in the interval (a) of Figure 8.6),
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Thus if z � 2.10 for an upper-tailed z test, P-value � P(Z � 2.10 when H0 is true) �
1 � �(2.10) � .0179, as before. Beware: The P-value is not the probability that H0

is true, nor is it an error probability!

P-Values for z Tests
The P-value for a z test (one based on a test statistic whose distribution when H0 is
true is at least approximately standard normal) is easily determined from the infor-
mation in Appendix Table A.3. Consider an upper-tailed test and let z denote the com-
puted value of the test statistic Z. The null hypothesis is rejected if z � z�, and the 
P-value is the smallest � for which this is the case. Since z� increases as � decreases,
the P-value is the value of � for which z � z�. That is, the P-value is just the area cap-
tured by the computed value z in the upper tail of the standard normal curve. The cor-
responding cumulative area is �(z), so in this case P-value � 1 � �(z).

An analogous argument for a lower-tailed test shows that the P-value is the area
captured by the computed value z in the lower tail of the standard normal curve. More
care must be exercised in the case of a two-tailed test. Suppose first that z is positive.
Then the P-value is the value of � satisfying z � z�/2 (i.e., computed z � upper-tail
critical value). This says that the area captured in the upper tail is half the P-value, so
that P-value � 2[1 � �(z)]. If z is negative, the P-value is the � for which z � �z�/2,
or, equivalently, �z � z�/2, so P-value � 2[1 � �(�z)]. Since �z � ⏐z⏐ when z is
negative, P-value � 2[1 � �(⏐z⏐)] for either positive or negative z.
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1 � �(z) for an upper-tailed test
P-value: P � �(z) for a lower-tailed test

2[1 � �(⏐z⏐)] for a two-tailed test

⎧⎪⎨⎪⎩

Each of these is the probability of getting a value at least as extreme as what was
obtained (assuming H0 true). The three cases are illustrated in Figure 8.7.

The next example illustrates the use of the P-value approach to hypothesis
testing by means of a sequence of steps modified from our previously recom-
mended sequence.

DEFINITION The P-value is the probability, calculated assuming H0 is true, of obtaining a test
statistic value at least as contradictory to H0 as the value that actually resulted.
The smaller the P-value, the more contradictory is the data to H0.

H0 would be rejected by anyone carrying out the test at level .05. However, at level
.01, H0 would not be rejected because .01 is smaller than the smallest level (.0384)
at which H0 can be rejected. ■

The most widely used statistical computer packages automatically include a 
P-value when a hypothesis-testing analysis is performed. A conclusion can then be
drawn directly from the output, without reference to a table of critical values.

A useful alternative definition equivalent to the one just given is as follows:



The target thickness for silicon wafers used in a certain type of integrated circuit is 
245 �m. A sample of 50 wafers is obtained and the thickness of each one is determined,
resulting in a sample mean thickness of 246.18 �m and a sample standard deviation of
3.60 �m. Does this data suggest that true average wafer thickness is something other
than the target value?

1. Parameter of interest: � � true average wafer thickness

2. Null hypothesis: H0: � � 245

3. Alternative hypothesis: Ha: � � 245

4. Formula for test statistic value: z �

5. Calculation of test statistic value: z � � 2.32

6. Determination of P-value: Because the test is two-tailed, 

P-value � 2(1 � �(2.32)) � .0204

7. Conclusion: Using a significance level of .01, H0 would not be rejected since
.0204 � .01. At this significance level, there is insufficient evidence to conclude
that true average thickness differs from the target value. ■

P-Values for t Tests
Just as the P-value for a z test is a z curve area, the P-value for a t test will be a t curve
area. Figure 8.8 on the next page illustrates the three different cases. The number of df
for the one-sample t test is n � 1.

246.18 � 245
��

3.60/�5�0�

x� � 245
�

s/�n�
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P-value = area in upper tail

z curve

Calculated z

0

0

0

P-value = sum of area in two tails

z curve

Calculated z, −z

P-value = area in lower tail
z curve

Calculated z

1. Upper-tailed test
Ha contains the inequality >

2. Lower-tailed test
Ha contains the inequality <

3. Two-tailed test
Ha contains the inequality ≠

= 1 – Φ(z)

= Φ(z)

= 2[1 – Φ(|z|)]

Figure 8.7 Determination of the P-value for a z test
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The table of t critical values used previously for confidence and prediction
intervals doesn’t contain enough information about any particular t distribution to
allow for accurate determination of desired areas. So we have included another t table
in Appendix Table A.8, one that contains a tabulation of upper-tail t curve areas. Each
different column of the table is for a different number of df, and the rows are for cal-
culated values of the test statistic t ranging from 0.0 to 4.0 in increments of .1. For
example, the number .074 appears at the intersection of the 1.6 row and the 8 df col-
umn, so the area under the 8 df curve to the right of 1.6 (an upper-tail area) is .074.
Because t curves are symmetric, .074 is also the area under the 8 df curve to the left
of �1.6 (a lower-tail area).

Suppose, for example, that a test of H0: � � 100 versus Ha: � � 100 is based
on the 8 df t distribution. If the calculated value of the test statistic is t � 1.6, then
the P-value for this upper-tailed test is .074. Because .074 exceeds .05, we would not
be able to reject H0 at a significance level of .05. If the alternative hypothesis is Ha:
� � 100 and a test based on 20 df yields t � �3.2, then Appendix Table A.8 shows
that the P-value is the captured lower-tail area .002. The null hypothesis can be
rejected at either level .05 or .01. Consider testing H0: �1 � �2 � 0 versus Ha: �1 �
�2 � 0; the null hypothesis states that the means of the two populations are identi-
cal, whereas the alternative hypothesis states that they are different without specify-
ing a direction of departure from H0. If a t test is based on 20 df and t � 3.2, then
the P-value for this two-tailed test is 2(.002) � .004. This would also be the P-value
for t � �3.2. The tail area is doubled because values both larger than 3.2 and smaller
than �3.2 are more contradictory to H0 than what was calculated (values farther out
in either tail of the t curve). 
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1. Upper-tailed test
Ha contains the inequality >

2. Lower-tailed test
Ha contains the inequality <

3. Two-tailed test
Ha contains the inequality ≠

P-value = area in upper tail

t curve for relevant df

t curve for relevant df

t curve for relevant df

Calculated t

P-value = sum of area in two tails

Calculated t, −t

P-value = area in lower tail

Calculated t

0

0

0

Figure 8.8 P-values for t tests
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EXERCISES Section 8.4 (45–60)

45. For which of the given P-values would the null hypothesis
be rejected when performing a level .05 test?
a. .001 b. .021 c. .078
d. .047 e. .148

46. Pairs of P-values and significance levels, �, are given. For
each pair, state whether the observed P-value would lead to
rejection of H0 at the given significance level.
a. P-value � .084, � � .05
b. P-value � .003, � � .001
c. P-value � .498, � � .05
d. P-value � .084, � � .10
e. P-value � .039, � � .01
f. P-value � .218, � � .10

47. Let � denote the mean reaction time to a certain stimulus.
For a large-sample z test of H0: � � 5 versus Ha: � � 5, find
the P-value associated with each of the given values of the z
test statistic.
a. 1.42 b. .90 c. 1.96 d. 2.48 e. �.11

48. Newly purchased tires of a certain type are supposed to be
filled to a pressure of 30 lb/in2. Let � denote the true aver-
age pressure. Find the P-value associated with each given z
statistic value for testing H0: � � 30 versus Ha: � � 30.
a. 2.10 b. �1.75 c. �.55 d. 1.41 e. �5.3

49. Give as much information as you can about the P-value of a
t test in each of the following situations:
a. Upper-tailed test, df � 8, t � 2.0
b. Lower-tailed test, df � 11, t � �2.4
c. Two-tailed test, df � 15, t � �1.6
d. Upper-tailed test, df � 19, t � �.4
e. Upper-tailed test, df � 5, t � 5.0
f. Two-tailed test, df � 40, t � �4.8

50. The paint used to make lines on roads must reflect enough
light to be clearly visible at night. Let � denote the true
average reflectometer reading for a new type of paint under
consideration. A test of H0: � � 20 versus Ha: � � 20 will
be based on a random sample of size n from a normal pop-
ulation distribution. What conclusion is appropriate in each
of the following situations?
a. n � 15, t � 3.2, � � .05
b. n � 9, t � 1.8, � � .01
c. n � 24, t � �.2

51. Let � denote true average serum receptor concentration for
all pregnant women. The average for all women is known to
be 5.63. The article “Serum Transferrin Receptor for the
Detection of Iron Deficiency in Pregnancy” (Amer. J.
Clinical Nutr., 1991: 1077–1081) reports that P-value � .10
for a test of H0: � � 5.63 versus Ha: � � 5.63 based on n �
176 pregnant women. Using a significance level of .01, what
would you conclude?

52. The article “Analysis of Reserve and Regular Bottlings: Why
Pay for a Difference Only the Critics Claim to Notice?”
(Chance, Summer 2005, pp. 9–15) reported on an experiment
to investigate whether wine tasters could distinguish between
more expensive reserve wines and their regular counterparts.
Wine was presented to tasters in four containers labeled A, B,
C, and D, with two of these containing the reserve wine and
the other two the regular wine. Each taster randomly selected
three of the containers, tasted the selected wines, and indi-
cated which of the three he/she believed was different from
the other two. Of the n � 855 tasting trials, 346 resulted in
correct distinctions (either the one reserve that differed from
the two regular wines or the one regular wine that differed
from the two reserves). Does this provide compelling evi-
dence for concluding that tasters of this type have some abil-
ity to distinguish between reserve and regular wines? State
and test the relevant hypotheses using the P-value approach.
Are you particularly impressed with the ability of tasters to
distinguish between the two types of wine?

53. An aspirin manufacturer fills bottles by weight rather than by
count. Since each bottle should contain 100 tablets, the aver-
age weight per tablet should be 5 grains. Each of 100 tablets
taken from a very large lot is weighed, resulting in a sample
average weight per tablet of 4.87 grains and a sample standard
deviation of .35 grain. Does this information provide strong
evidence for concluding that the company is not filling its
bottles as advertised? Test the appropriate hypotheses using
� � .01 by first computing the P-value and then comparing
it to the specified significance level.

54. Because of variability in the manufacturing process, the
actual yielding point of a sample of mild steel subjected to
increasing stress will usually differ from the theoretical
yielding point. Let p denote the true proportion of samples
that yield before their theoretical yielding point. If on the

In Example 8.9, we carried out a test of H0: � � 25 versus Ha: � � 25 based on 4 df.
The calculated value of t was 1.04. Looking to the 4 df column of Appendix Table A.8
and down to the 1.0 row, we see that the entry is .187, so P-value � .187. This P-value
is clearly larger than any reasonable significance level � (.01, .05, and even .10), so
there is no reason to reject the null hypothesis. The MINITAB output included in
Example 8.9 has P-value � .18. P-values from software packages will be more accu-
rate than what results from Appendix Table A.8 since values of t in our table are accu-
rate only to the tenths digit. ■
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basis of a sample it can be concluded that more than 20% of
all specimens yield before the theoretical point, the produc-
tion process will have to be modified.
a. If 15 of 60 specimens yield before the theoretical point,

what is the P-value when the appropriate test is used, and
what would you advise the company to do?

b. If the true percentage of “early yields” is actually 50%
(so that the theoretical point is the median of the yield
distribution) and a level .01 test is used, what is the prob-
ability that the company concludes a modification of the
process is necessary?

55. Many consumers are turning to generics as a way of re-
ducing the cost of prescription medications. The article
“Commercial Information on Drugs: Confusing to the
Physician?” (J. of Drug Issues, 1988: 245–257) gives the
results of a survey of 102 doctors. Only 47 of those surveyed
knew the generic name for the drug methadone. Does this
provide strong evidence for concluding that fewer than half
of all physicians know the generic name for methadone?
Carry out a test of hypotheses using a significance level of .01
using the P-value method.

56. A random sample of soil specimens was obtained, and the
amount of organic matter (%) in the soil was determined for
each specimen, resulting in the accompanying data (from
“Engineering Properties of Soil,” Soil Science, 1998: 93–102).

1.10 5.09 0.97 1.59 4.60 0.32 0.55 1.45

0.14 4.47 1.20 3.50 5.02 4.67 5.22 2.69

3.98 3.17 3.03 2.21 0.69 4.47 3.31 1.17

0.76 1.17 1.57 2.62 1.66 2.05

The values of the sample mean, sample standard deviation,
and (estimated) standard error of the mean are 2.481, 1.616,
and .295, respectively. Does this data suggest that the true
average percentage of organic matter in such soil is some-
thing other than 3%? Carry out a test of the appropriate
hypotheses at significance level .10 by first determining the 
P-value. Would your conclusion be different if � � .05 had
been used? [Note: A normal probability plot of the data
shows an acceptable pattern in light of the reasonably large
sample size.]

57. The times of first sprinkler activation for a series of tests
with fire prevention sprinkler systems using an aqueous
film-forming foam were (in sec)

27 41 22 27 23 35 30 33 24 27 28 22 24

(see “Use of AFFF in Sprinkler Systems,” Fire Technology,
1976: 5). The system has been designed so that true average

activation time is at most 25 sec under such conditions.
Does the data strongly contradict the validity of this design
specification? Test the relevant hypotheses at significance
level .05 using the P-value approach.

58. A certain pen has been designed so that true average writing
lifetime under controlled conditions (involving the use of a
writing machine) is at least 10 hours. A random sample of
18 pens is selected, the writing lifetime of each is deter-
mined, and a normal probability plot of the resulting data
supports the use of a one-sample t test.
a. What hypotheses should be tested if the investigators

believe a priori that the design specification has been
satisfied?

b. What conclusion is appropriate if the hypotheses of part
(a) are tested, t � �2.3, and � � .05?

c. What conclusion is appropriate if the hypotheses of part
(a) are tested, t � �1.8, and � � .01?

d. What should be concluded if the hypotheses of part (a)
are tested and t � �3.6?

59. A spectrophotometer used for measuring CO concentration
[ppm (parts per million) by volume] is checked for accuracy
by taking readings on a manufactured gas (called span gas)
in which the CO concentration is very precisely controlled
at 70 ppm. If the readings suggest that the spectrophotome-
ter is not working properly, it will have to be recalibrated.
Assume that if it is properly calibrated, measured concen-
tration for span gas samples is normally distributed. On the
basis of the six readings—85, 77, 82, 68, 72, and 69—is
recalibration necessary? Carry out a test of the relevant
hypotheses using the P-value approach with � � .05.

60. The relative conductivity of a semiconductor device is deter-
mined by the amount of impurity “doped” into the device
during its manufacture. A silicon diode to be used for a spe-
cific purpose requires an average cut-on voltage of .60 V, and
if this is not achieved, the amount of impurity must be
adjusted. A sample of diodes was selected and the cut-on
voltage was determined. The accompanying SAS output
resulted from a request to test the appropriate hypotheses.

N Mean Std Dev T Prob�⏐T⏐
15 0.0453333 0.0899100 1.9527887 0.0711

[Note: SAS explicitly tests H0: � � 0, so to test H0: � � .60,
the null value .60 must be subtracted from each xi; the
reported mean is then the average of the (xi � .60) values.
Also, SAS’s P-value is always for a two-tailed test.] What
would be concluded for a significance level of .01? .05? .10?
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8.5 Some Comments on Selecting a Test

Once the experimenter has decided on the question of interest and the method for 
gathering data (the design of the experiment), construction of an appropriate test con-
sists of three distinct steps:



1. Specify a test statistic (the function of the observed values that will serve as the 
decision maker).

2. Decide on the general form of the rejection region (typically reject H0 for suitably
large values of the test statistic, reject for suitably small values, or reject for either
small or large values).

3. Select the specific numerical critical value or values that will separate the rejec-
tion region from the acceptance region (by obtaining the distribution of the test
statistic when H0 is true, and then selecting a level of significance).

In the examples thus far, both Steps 1 and 2 were carried out in an ad hoc manner
through intuition. For example, when the underlying population was assumed nor-
mal with mean � and known �, we were led from X� to the standardized test statistic

Z �

For testing H0: � � �0 versus Ha: � � �0, intuition then suggested rejecting H0

when z was large. Finally, the critical value was determined by specifying the level
of significance � and using the fact that Z has a standard normal distribution when
H0 is true. The reliability of the test in reaching a correct decision can be assessed
by studying type II error probabilities.

Issues to be considered in carrying out Steps 1–3 encompass the following
questions:

1. What are the practical implications and consequences of choosing a particular
level of significance once the other aspects of a test have been determined?

2. Does there exist a general principle, not dependent just on intuition, that can be
used to obtain best or good test procedures?

3. When two or more tests are appropriate in a given situation, how can the tests be
compared to decide which should be used?

4. If a test is derived under specific assumptions about the distribution or popu-
lation being sampled, how will the test perform when the assumptions are
violated?

Statistical Versus Practical Significance
Although the process of reaching a decision by using the methodology of classi-
cal hypothesis testing involves selecting a level of significance and then rejecting
or not rejecting H0 at that level �, simply reporting the � used and the decision
reached conveys little of the information contained in the sample data. Especially
when the results of an experiment are to be communicated to a large audience,
rejection of H0 at level .05 will be much more convincing if the observed value of
the test statistic greatly exceeds the 5% critical value than if it barely exceeds that
value. This is precisely what led to the notion of P-value as a way of reporting sig-
nificance without imposing a particular � on others who might wish to draw their
own conclusions.

Even if a P-value is included in a summary of results, however, there may be
difficulty in interpreting this value and in making a decision. This is because a
small P-value, which would ordinarily indicate statistical significance in that it
would strongly suggest rejection of H0 in favor of Ha, may be the result of a large
sample size in combination with a departure from H0 that has little practical sig-
nificance. In many experimental situations, only departures from H0 of large mag-
nitude would be worthy of detection, whereas a small departure from H0 would
have little practical significance.

X� � �0�
�/�n�
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Consider as an example testing H0: � � 100 versus Ha: � � 100 where � is the
mean of a normal population with � � 10. Suppose a true value of � � 101 would not
represent a serious departure from H0 in the sense that not rejecting H0 when � � 101
would be a relatively inexpensive error. For a reasonably large sample size n, this �
would lead to an x� value near 101, so we would not want this sample evidence to
argue strongly for rejection of H0 when x� � 101 is observed. For various sample sizes,
Table 8.1 records both the P-value when x� � 101 and also the probability of not reject-
ing H0 at level .01 when � � 101.

The second column in Table 8.1 shows that even for moderately large sample
sizes, the P-value of x� � 101 argues very strongly for rejection of H0, whereas the
observed x� itself suggests that in practical terms the true value of � differs little
from the null value �0 � 100. The third column points out that even when there is
little practical difference between the true � and the null value, for a fixed level of
significance a large sample size will almost always lead to rejection of the null
hypothesis at that level. To summarize, one must be especially careful in interpret-
ing evidence when the sample size is large, since any small departure from H0 will
almost surely be detected by a test, yet such a departure may have little practical
significance.

Table 8.1 An Illustration of the Effect of Sample Size on P-values and �

�(101) for Level
n P-Value When x� � 101 .01 Test

25 .3085 .9664
100 .1587 .9082
400 .0228 .6293
900 .0013 .2514

1600 .0000335 .0475
2500 .000000297 .0038

10,000 7.69 � 10�24 .0000

The Likelihood Ratio Principle
Let x1, x2, . . . , xn be the observations in a random sample of size n from a probabil-
ity distribution f(x; 	). The joint distribution evaluated at these sample values is the
product f(x1; 	) � f(x2; 	) � . . . � f(xn; 	). As in the discussion of maximum likelihood
estimation, the likelihood function is this joint distribution regarded as a function of
	. Consider testing H0: 	 is in #0 versus Ha: 	 is in #a, where #0 and #a are disjoint
(for example, H0: 	 � 100 versus Ha: 	 � 100). The likelihood ratio principle for
test construction proceeds as follows:

1. Find the largest value of the likelihood for any 	 in #0 (by finding the maxi-
mum likelihood estimate within #0 and substituting back into the likelihood
function).

2. Find the largest value of the likelihood for any 	 in #a.

3. Form the ratio

�(x1, . . . , xn) �

The ratio �(x1, . . . , xn) is called the likelihood ratio statistic value. The test proce-
dure consists of rejecting H0 when this ratio is small. That is, a constant k is chosen,

maximum likelihood for 	 in #0����
maximum likelihood for 	 in #a
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and H0 is rejected if �(x1, . . . , xn) � k. Thus H0 is rejected when the denominator of
� greatly exceeds the numerator, indicating that the data is much more consistent with
Ha than with H0.

The constant k is selected to yield the desired type I error probability. Often the
inequality � � k can be manipulated to yield a simpler equivalent condition. For exam-
ple, for testing H0: � � �0 versus Ha: � � �0 in the case of normality, � � k is equiv-
alent to t � c. Thus, with c � t�,n�1, the likelihood ratio test is the one-sample t test.

The likelihood ratio principle can also be applied when the Xis have different
distributions and even when they are dependent, though the likelihood function can
be complicated in such cases. Many of the test procedures to be presented in subse-
quent chapters are obtained from the likelihood ratio principle. These tests often turn
out to minimize � among all tests that have the desired �, so are truly best tests. For
more details and some worked examples, refer to one of the references listed in the
Chapter 6 bibliography.

A practical limitation on the use of the likelihood ratio principle is that, to con-
struct the likelihood ratio test statistic, the form of the probability distribution from
which the sample comes must be specified. To derive the t test from the likelihood
ratio principle, the investigator must assume a normal pdf. If an investigator is will-
ing to assume that the distribution is symmetric but does not want to be specific
about its exact form (such as normal, uniform, or Cauchy), then the principle fails
because there is no way to write a joint pdf simultaneously valid for all symmetric
distributions. In Chapter 15, we will present several distribution-free test proce-
dures, so called because the probability of a type I error is controlled simultaneously
for many different underlying distributions. These procedures are useful when the
investigator has limited knowledge of the underlying distribution. We shall also say
more about issues 3 and 4 listed at the outset of this section.
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EXERCISES Section 8.5 (61–62)

61. Reconsider the paint-drying problem discussed in Ex-
ample 8.2. The hypotheses were H0: � � 75 versus Ha:
� � 75, with � assumed to have value 9.0. Consider the
alternative value � � 74, which in the context of the prob-
lem would presumably not be a practically significant de-
parture from H0.
a. For a level .01 test, compute � at this alternative for sam-

ple sizes n � 100, 900, and 2500.
b. If the observed value of X� is x� � 74, what can you say

about the resulting P-value when n � 2500? Is the data
statistically significant at any of the standard values 
of �?

c. Would you really want to use a sample size of 2500 along
with a level .01 test (disregarding the cost of such an
experiment)? Explain.

62. Consider the large-sample level .01 test in Section 8.3 for
testing H0: p � .2 against Ha: p � .2.
a. For the alternative value p � .21, compute �(.21) for

sample sizes n � 100, 2500, 10,000, 40,000, and 90,000.
b. For p̂ � x/n � .21, compute the P-value when n � 100,

2500, 10,000, and 40,000.
c. In most situations, would it be reasonable to use a level 

.01 test in conjunction with a sample size of 40,000?
Why or why not?

SUPPLEMENTARY EXERCISES (63–85)

63. A sample of 50 lenses used in eyeglasses yields a sample
mean thickness of 3.05 mm and a sample standard deviation
of .34 mm. The desired true average thickness of such lenses
is 3.20 mm. Does the data strongly suggest that the true
average thickness of such lenses is something other than
what is desired? Test using a � .05.

64. In Exercise 63, suppose the experimenter had believed
before collecting the data that the value of � was approxi-
mately .30. If the experimenter wished the probability of a
type II error to be .05 when � � 3.00, was a sample size
50 unnecessarily large?



65. It is specified that a certain type of iron should contain .85 gm
of silicon per 100 gm of iron (.85%). The silicon content of
each of 25 randomly selected iron specimens was deter-
mined, and the accompanying MINITAB output resulted
from a test of the appropriate hypotheses.

Variable N Mean StDev SE Mean T P
sil cont 25 0.8880 0.1807 0.0361 1.05 0.30

a. What hypotheses were tested?
b. What conclusion would be reached for a significance

level of .05, and why? Answer the same question for a
significance level of .10.

66. One method for straightening wire before coiling it to
make a spring is called “roller straightening.” The article
“The Effect of Roller and Spinner Wire Straightening on
Coiling Performance and Wire Properties” (Springs,
1987: 27–28) reports on the tensile properties of wire.
Suppose a sample of 16 wires is selected and each is
tested to determine tensile strength (N/mm2). The result-
ing sample mean and standard deviation are 2160 and 30,
respectively.
a. The mean tensile strength for springs made using spinner

straightening is 2150 N/mm2. What hypotheses should
be tested to determine whether the mean tensile strength
for the roller method exceeds 2150?

b. Assuming that the tensile strength distribution is approx-
imately normal, what test statistic would you use to test
the hypotheses in part (a)?

c. What is the value of the test statistic for this data?
d. What is the P-value for the value of the test statistic com-

puted in part (c)?
e. For a level .05 test, what conclusion would you reach?

67. A new method for measuring phosphorus levels in soil is
described in the article “A Rapid Method to Determine Total
Phosphorus in Soils” (Soil Sci. Amer. J., 1988: 1301–1304).
Suppose a sample of 11 soil specimens, each with a true
phosphorus content of 548 mg/kg, is analyzed using the new
method. The resulting sample mean and standard deviation
for phosphorus level are 587 and 10, respectively.
a. Is there evidence that the mean phosphorus level reported

by the new method differs significantly from the true value
of 548 mg/kg? Use � � .05.

b. What assumptions must you make for the test in part (a)
to be appropriate?

68. The article “Orchard Floor Management Utilizing Soil-
Applied Coal Dust for Frost Protection” (Agri. and Forest
Meteorology, 1988: 71–82) reports the following values for
soil heat flux of eight plots covered with coal dust.

34.7 35.4 34.7 37.7 32.5 28.0 18.4 24.9

The mean soil heat flux for plots covered only with grass is
29.0. Assuming that the heat-flux distribution is approxi-
mately normal, does the data suggest that the coal dust is
effective in increasing the mean heat flux over that for
grass? Test the appropriate hypotheses using � � .05.

69. The article “Caffeine Knowledge, Attitudes, and Consumption
in Adult Women” (J. of Nutrition Educ., 1992: 179–184)
reports the following summary data on daily caffeine con-
sumption for a sample of adult women: n � 47, x� � 215 mg,
s � 235 mg, and range � 5–1176.
a. Does it appear plausible that the population distribution

of daily caffeine consumption is normal? Is it necessary
to assume a normal population distribution to test hy-
potheses about the value of the population mean con-
sumption? Explain your reasoning.

b. Suppose it had previously been believed that mean con-
sumption was at most 200 mg. Does the given data con-
tradict this prior belief? Test the appropriate hypotheses
at significance level .10 and include a P-value in your
analysis.

70. The accompanying output resulted when MINITAB was
used to test the appropriate hypotheses about true average
activation time based on the data in Exercise 57. Use this
information to reach a conclusion at significance level .05
and also at level .01.

TEST OF MU � 25.000 VS MU G.T. 25.000
N   MEAN STDEV SE MEAN T P VALUE

time 13 27.923 5.619 1.559 1.88   0.043

71. The true average breaking strength of ceramic insulators of a
certain type is supposed to be at least 10 psi. They will be
used for a particular application unless sample data indicates
conclusively that this specification has not been met. A test
of hypotheses using � � .01 is to be based on a random
sample of ten insulators. Assume that the breaking-strength
distribution is normal with unknown standard deviation.
a. If the true standard deviation is .80, how likely is it that

insulators will be judged satisfactory when true average
breaking strength is actually only 9.5? Only 9.0?

b. What sample size would be necessary to have a 75%
chance of detecting that true average breaking strength is
9.5 when the true standard deviation is .80?

72. The accompanying observations on residual flame time
(sec) for strips of treated children’s nightwear were given
in the article “An Introduction to Some Precision and
Accuracy of Measurement Problems” (J. of Testing and
Eval., 1982: 132–140). Suppose a true average flame time
of at most 9.75 had been mandated. Does the data suggest
that this condition has not been met? Carry out an appropri-
ate test after first investigating the plausibility of assump-
tions that underlie your method of inference.

9.85 9.93 9.75 9.77 9.67 9.87 9.67

9.94 9.85 9.75 9.83 9.92 9.74 9.99

9.88 9.95 9.95 9.93 9.92 9.89

73. The incidence of a certain type of chromosome defect in
the U.S. adult male population is believed to be 1 in 75. 
A random sample of 800 individuals in U.S. penal institu-
tions reveals 16 who have such defects. Can it be concluded
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that the incidence rate of this defect among prisoners
differs from the presumed rate for the entire adult male
population?
a. State and test the relevant hypotheses using � � .05.

What type of error might you have made in reaching a
conclusion?

b. What P-value is associated with this test? Based on this
P-value, could H0 be rejected at significance level .20?

74. In an investigation of the toxin produced by a certain poi-
sonous snake, a researcher prepared 26 different vials, each
containing 1 g of the toxin, and then determined the amount
of antitoxin needed to neutralize the toxin. The sample aver-
age amount of antitoxin necessary was found to be 1.89 mg,
and the sample standard deviation was .42. Previous
research had indicated that the true average neutralizing
amount was 1.75 mg/g of toxin. Does the new data contra-
dict the value suggested by prior research? Test the relevant
hypotheses using the P-value approach. Does the validity of
your analysis depend on any assumptions about the popula-
tion distribution of neutralizing amount? Explain.

75. The sample average unrestrained compressive strength for
45 specimens of a particular type of brick was computed to
be 3107 psi, and the sample standard deviation was 188. The
distribution of unrestrained compressive strength may be
somewhat skewed. Does the data strongly indicate that the
true average unrestrained compressive strength is less than
the design value of 3200? Test using � � .001.

76. To test the ability of auto mechanics to identify simple en-
gine problems, an automobile with a single such problem
was taken in turn to 72 different car repair facilities. Only 42
of the 72 mechanics who worked on the car correctly iden-
tified the problem. Does this strongly indicate that the true
proportion of mechanics who could identify this problem is
less than .75? Compute the P-value and reach a conclusion
accordingly.

77. When X1, X2, . . . , Xn are independent Poisson variables,
each with parameter �, and n is large, the sample mean X�
has approximately a normal distribution with � � E(X�) ��
and � 2 � V(X�) � �/n. This implies that

Z �

has approximately a standard normal distribution. For test-
ing H0: � � �0, we can replace � by �0 in the equation for Z
to obtain a test statistic. This statistic is actually preferred to
the large-sample statistic with denominator S/�n� (when the
Xis are Poisson) because it is tailored explicitly to the
Poisson assumption. If the number of requests for consult-
ing received by a certain statistician during a 5-day work
week has a Poisson distribution and the total number of con-
sulting requests during a 36-week period is 160, does this
suggest that the true average number of weekly requests
exceeds 4.0? Test using � � .02.

78. An article in the Nov. 11, 2005, issue of the San Luis Obispo
Tribune reported that researchers making random purchases

at California Wal-Mart stores found scanners coming up with
the wrong price 8.3% of the time. Suppose this was based on
200 purchases. The National Institute for Standards and
Technology says that in the long run at most two out of every
100 items should have incorrectly scanned prices.
a. Develop a test procedure with a significance level of

(approximately) .05, and then carry out the test to decide
whether the NIST benchmark is not satisfied.

b. For the test procedure you employed in (a), what is the
probability of deciding that the NIST benchmark has
been satisfied when in fact the mistake rate is 5%?

79. A hot-tub manufacturer advertises that with its heating
equipment, a temperature of 100°F can be achieved in at
most 15 min. A random sample of 32 tubs is selected, and
the time necessary to achieve a 100°F temperature is deter-
mined for each tub. The sample average time and sample
standard deviation are 17.5 min and 2.2 min, respectively.
Does this data cast doubt on the company’s claim? Compute
the P-value and use it to reach a conclusion at level .05
(assume that the heating-time distribution is approximately
normal).

80. Chapter 7 presented a CI for the variance � 2 of a normal
population distribution. The key result there was that the 
rv �2 � (n � 1)S 2/� 2 has a chi-squared distribution with
n � 1 df. Consider the null hypothesis H0: � 2 � � 2

0 (equiv-
alently, � � �0). Then when H0 is true, the test statistic
�2 � (n � 1) S2/� 2

0 has a chi-squared distribution with 
n � 1 df. If the relevant alternative is Ha: � 2 � � 2

0, rejecting
H0 if (n � 1)s2/� 2

0 � � 2
�,n�1

gives a test with significance
level �. To ensure reasonably uniform characteristics for a
particular application, it is desired that the true standard
deviation of the softening point of a certain type of petro-
leum pitch be at most .50°C. The softening points of ten dif-
ferent specimens were determined, yielding a sample stan-
dard deviation of .58°C. Does this strongly contradict the
uniformity specification? Test the appropriate hypotheses
using � � .01.

81. Referring to Exercise 80, suppose an investigator wishes to
test H0: � 2 � .04 versus Ha: � 2 � .04 based on a sample of
21 observations. The computed value of 20s2/.04 is 8.58.
Place bounds on the P-value and then reach a conclusion at
level .01.

82. When the population distribution is normal and n is large,
the sample standard deviation S has approximately a nor-
mal distribution with E(S) � � and V(S) � � 2/(2n). We
already know that in this case, for any n, X� is normal with
E(X�) �� and V(X�) � � 2/n.
a. Assuming that the underlying distribution is normal,

what is an approximately unbiased estimator of the 99th
percentile 	 � � � 2.33�?

b. When the Xi s are normal, it can be shown that X� and S
are independent rv’s (one measures location whereas
the other measures spread). Use this to compute V(	̂)
and �	̂ for the estimator 	̂ of part (a). What is the esti-
mated standard error �̂	̂?

X� � �
�
���/n�
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c. Write a test statistic for testing H0: 	 � 	0 that has
approximately a standard normal distribution when H0 is
true. If soil pH is normally distributed in a certain region
and 64 soil samples yield x� � 6.33, s � .16, does this
provide strong evidence for concluding that at most 99%
of all possible samples would have a pH of less than
6.75? Test using � � .01.

83. Let X1, X2, . . . , Xn be a random sample from an exponential
distribution with parameter �. Then it can be shown that
2��Xi has a chi-squared distribution with � � 2n (by first
showing that 2�Xi has a chi-squared distribution with � � 2).
a. Use this fact to obtain a test statistic and rejection region

that together specify a level � test for H0: � � �0 versus
each of the three commonly encountered alternatives.
[Hint: E(Xi) � � � 1/�, so � � �0 is equivalent to 
� � 1/�0.]

b. Suppose that ten identical components, each having
exponentially distributed time until failure, are tested.
The resulting failure times are

95 16 11 3 42 71 225 64 87 123

Use the test procedure of part (a) to decide whether the data
strongly suggests that the true average lifetime is less than
the previously claimed value of 75.

84. Suppose the population distribution is normal with known �.
Let  be such that 0 �  � �. For testing H0: � � �0 versus
Ha: � � �0, consider the test that rejects H0 if either z � z

or z � �z��, where the test statistic is Z � (X� � �0)/
(�/�n�).
a. Show that P(type I error) � �.
b. Derive an expression for �(�). [Hint: Express the test in

the form “reject H0 if either x� � c1 or � c2.”]
c. Let � � 0. For what values of  (relative to �) will

�(�0 � �) � �(�0 � �)?

85. After a period of apprenticeship, an organization gives an
exam that must be passed to be eligible for membership. Let
p � P(randomly chosen apprentice passes). The organiza-
tion wishes an exam that most but not all should be able to
pass, so it decides that p � .90 is desirable. For a particular
exam, the relevant hypotheses are H0: p � .90 versus the
alternative Ha: p � .90. Suppose ten people take the exam,
and let X � the number who pass.
a. Does the lower-tailed region {0, 1, . . . , 5} specify a level

.01 test?
b. Show that even though Ha is two-sided, no two-tailed test

is a level .01 test.
c. Sketch a graph of �(p) as a function of p for this test.

Is this desirable?

324 CHAPTER 8 Tests of Hypotheses Based on a Single Sample

Bibliography
See the bibliographies at the end of Chapter 6 and Chapter 7.



325

9 Inferences Based 
on Two Samples

INTRODUCTION

Chapters 7 and 8 presented confidence intervals (CIs) and hypothesis testing

procedures for a single mean �, single proportion p, and a single variance �2.

Here we extend these methods to situations involving the means, proportions,

and variances of two different population distributions. For example, let �1

denote true average Rockwell hardness for heat-treated steel specimens and �2

denote true average hardness for cold-rolled specimens. Then an investigator

might wish to use samples of hardness observations from each type of steel as

a basis for calculating an interval estimate of �1 � �2, the difference between

the two true average hardnesses. As another example, let p1 denote the true

proportion of nickel-cadmium cells produced under current operating condi-

tions that are defective because of internal shorts, and let p2 represent the true

proportion of cells with internal shorts produced under modified operating con-

ditions. If the rationale for the modified conditions is to reduce the proportion

of defective cells, a quality engineer would want to use sample information to

test the null hypothesis H0: p1 � p2 � 0 (i.e., p1 � p2) versus that alternative

hypothesis Ha: p1 � p2 � 0 (i.e., p1 � p2).



The inferences discussed in this section concern a difference �1 � �2 between the
means of two different population distributions. An investigator might, for example,
wish to test hypotheses about the difference between true average breaking strengths
of two different types of corrugated fiberboard. One such hypothesis would state that
�1 � �2 � 0, that is, that �1 � �2. Alternatively, it may be appropriate to estimate
�1 � �2 by computing a 95% CI. Such inferences are based on a sample of strength
observations for each type of fiberboard.
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9.1 z Tests and Confidence Intervals for a Difference
Between Two Population Means

Basic Assumptions

1. X1, X2, . . . , Xm is a random sample from a population with mean �1 and
variance � 2

1.

2. Y1, Y2, . . . , Yn is a random sample from a population with mean �2 and vari-
ance � 2

2.

3. The X and Y samples are independent of one another.

The natural estimator of �1 � �2 is X� � Y�, the difference between the corresponding
sample means. The test statistic results from standardizing this estimator, so we need
expressions for the expected value and standard deviation of X� � Y�.

The expected value of X� � Y� is �1 � �2, so X� � Y� is an unbiased estimator
of �1 � �2. The standard deviation of X� � Y� is

� X��Y� � �� �����
2
2

�
n

� 2
1

�
m

PROPOSITION

Proof Both these results depend on the rules of expected value and variance pre-
sented in Chapter 5. Since the expected value of a difference is the difference of
expected values,

E(X� � Y�) � E(X�) � E(Y�) � �1 � �2

Because the X and Y samples are independent, X� and Y� are independent quantities,
so the variance of the difference is the sum of V(X�) and V(Y�):

V(X� � Y�) � V(X�) � V(Y�) � �

The standard deviation of X� � Y� is the square root of this expression. ■

If we think of �1 � �2 as a parameter 	, then its estimator is 	̂ � X� � Y� with
standard deviation �	̂ given by the proposition. When � 2

1 and � 2
2 both have known 

values, the test statistic will have the form (	̂ � null value)/�	̂; this form of a test sta-
tistic was used in several one-sample problems in the previous chapter. The sample
variances must be used to estimate �	̂ when � 2

1 and � 2
2 are unknown.

� 2
2

�
n

� 2
1

�
m



Test Procedures for Normal Populations
with Known Variances
In Chapters 7 and 8, the first CI and test procedure for a population mean � were
based on the assumption that the population distribution was normal with the value
of the population variance � 2 known to the investigator. Similarly, we first assume
here that both population distributions are normal and that the values of both � 2

1 and
� 2

2 are known. Situations in which one or both of these assumptions can be dispensed
with will be presented shortly.

Because the population distributions are normal, both X� and Y� have normal dis-
tributions. This implies that X� � Y� is normally distributed, with expected value �1 � �2

and standard deviation �X��Y� given in the foregoing proposition. Standardizing X� � Y�
gives the standard normal variable

Z � (9.1)

In a hypothesis-testing problem, the null hypothesis will state that �1 � �2 has
a specified value. Denoting this null value by �0, we have H0: �1 � �2 � �0. Often
�0 � 0, in which case H0 says that �1 � �2. A test statistic results from replacing
�1 � �2 in Expression (9.1) by the null value �0. The test statistic Z is obtained by
standardizing X� � Y� under the assumption that H0 is true, so it has a standard nor-
mal distribution in this case. Consider the alternative hypothesis Ha: �1 � �2 � �0.
A value x� � y� that considerably exceeds �0 (the expected value of X� � Y� when H0

is true) provides evidence against H0 and for Ha. Such a value of x� � y� corresponds
to a positive and large value of z. Thus H0 should be rejected in favor of Ha if z is
greater than or equal to an appropriately chosen critical value. Because the test sta-
tistic Z has a standard normal distribution when H0 is true, the upper-tailed rejection
region z � z� gives a test with significance level (type I error probability) �. Re-
jection regions for Ha: �1 � �2 � �0 and Ha: �1 � �2 � �0 that yield tests with
desired significance level � are lower-tailed and two-tailed, respectively.

X� � Y� � (�1 � �2)
���

��
�

m�
2
1

���� �
��n

2
2

��
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Null hypothesis: H0: �1 � �2 � �0

Test statistic value: z �

Alternative Hypothesis Rejection Region for Level � Test

Ha: �1 � �2 � �0 z � z� (upper-tailed)

Ha: �1 � �2 � �0 z � �z� (lower-tailed)

Ha: �1 � �2 � �0 either z � z�/2 or z � �z�/2 (two-tailed)

Because these are z tests, a P-value is computed as it was for the z tests in
Chapter 8 (e.g., P-value � 1 � �(z) for an upper-tailed test).

x� � y� � �0
��

��
�

m�
2
1

���� �
��n

2
2

��

Analysis of a random sample consisting of m � 20 specimens of cold-rolled steel to
determine yield strengths resulted in a sample average strength of x� � 29.8 ksi. A sec-
ond random sample of n � 25 two-sided galvanized steel specimens gave a sample
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average strength of y� � 34.7 ksi. Assuming that the two yield-strength distributions
are normal with �1 � 4.0 and � 2 � 5.0 (suggested by a graph in the article “Zinc-
Coated Sheet Steel: An Overview,” Automotive Engr., Dec. 1984: 39–43), does the
data indicate that the corresponding true average yield strengths �1 and �2 are dif-
ferent? Let’s carry out a test at significance level � � .01.

1. The parameter of interest is �1 � �2, the difference between the true average
strengths for the two types of steel.

2. The null hypothesis is H0: �1 � �2 � 0.

3. The alternative hypothesis is Ha: �1 � �2 � 0; if Ha is true, then �1 and �2 are
different.

4. With �0 � 0, the test statistic value is

z �

5. The inequality in Ha implies that the test is two-tailed. For � � .01, �/2 � .005
and z�/2 � z.005 � 2.58. H0 will be rejected if z � 2.58 or if z � �2.58.

6. Substituting m � 20, x� � 29.8, � 2
1 � 16.0, n � 25, y� � 34.7, and � 2

2 � 25.0 into
the formula for z yields

z � � � �3.66

That is, the observed value of x� � y� is more than 3 standard deviations below
what would be expected were H0 true.

7. Since �3.66 � �2.58, z does fall in the lower tail of the rejection region. H0 is
therefore rejected at level .01 in favor of the conclusion that �1 � �2. The
sample data strongly suggests that the true average yield strength for cold-rolled
steel differs from that for galvanized steel. The P-value for this two-tailed test is
2(1 � �(3.66)) � 2(1 � 1) � 0, so H0 should be rejected at any reasonable sig-
nificance level. ■

Using a Comparison to Identify Causality
Investigators are often interested in comparing either the effects of two different
treatments on a response or the response after treatment with the response after no
treatment (treatment vs. control). If the individuals or objects to be used in the
comparison are not assigned by the investigators to the two different conditions,
the study is said to be observational. The difficulty with drawing conclusions
based on an observational study is that although statistical analysis may indicate
a significant difference in response between the two groups, the difference may
be due to some underlying factors that had not been controlled rather than to any
difference in treatments.

A letter in the Journal of the American Medical Association (May 19, 1978) reports
that of 215 male physicians who were Harvard graduates and died between
November 1974 and October 1977, the 125 in full-time practice lived an average of
48.9 years beyond graduation, whereas the 90 with academic affiliations lived an

�4.90
�
1.34

29.8 � 34.7
��

��
1�2

6�0

.0
�� �� �

2�2

5�5

.0
��

x� � y���

��
�

m�
2
1

���� �
��n

2
2
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328 CHAPTER 9 Inferences Based on Two Samples

Example 9.2



average of 43.2 years beyond graduation. Does the data suggest that the mean lifetime
after graduation for doctors in full-time practice exceeds the mean lifetime for those
who have an academic affiliation (if so, those medical students who say that they are
“dying to obtain an academic affiliation” may be closer to the truth than they real-
ize; in other words, is “publish or perish” really “publish and perish”)?

Let �1 denote the true average number of years lived beyond graduation for
physicians in full-time practice, and let �2 denote the same quantity for physicians
with academic affiliations. Assume the 125 and 90 physicians to be random samples
from populations 1 and 2, respectively (which may not be reasonable if there is rea-
son to believe that Harvard graduates have special characteristics that differentiate
them from all other physicians—in this case inferences would be restricted just to
the “Harvard populations”). The letter from which the data was taken gave no infor-
mation about variances, so for illustration assume that �1 � 14.6 and � 2 � 14.4. The
hypotheses are H0: �1 � �2 � 0 versus Ha: �1 � �2 � 0, so �0 is zero. The comput-
ed value of the test statistic is

z � � � 2.85

The P-value for an upper-tailed test is 1 � �(2.85) � .0022. At significance level .01,
H0 is rejected (because � � P-value) in favor of the conclusion that �1 � �2 � 0
(�1 � �2). This is consistent with the information reported in the letter.

This data resulted from a retrospective observational study; the investigator did
not start out by selecting a sample of doctors and assigning some to the “academic
affiliation” treatment and the others to the “full-time practice” treatment, but instead
identified members of the two groups by looking backward in time (through obituaries!)
to past records. Can the statistically significant result here really be attributed to a dif-
ference in the type of medical practice after graduation, or is there some other under-
lying factor (e.g., age at graduation, exercise regimens, etc.) that might also furnish a
plausible explanation for the difference? Observational studies have been used to
argue for a causal link between smoking and lung cancer. There are many studies that
show that the incidence of lung cancer is significantly higher among smokers than
among nonsmokers. However, individuals had decided whether to become smokers
long before investigators arrived on the scene, and factors in making this decision
may have played a causal role in the contraction of lung cancer. ■

A randomized controlled experiment results when investigators assign sub-
jects to the two treatments in a random fashion. When statistical significance is
observed in such an experiment, the investigator and other interested parties will
have more confidence in the conclusion that the difference in response has been
caused by a difference in treatments. A very famous example of this type of experi-
ment and conclusion is the Salk polio vaccine experiment described in Section 9.4.
These issues are discussed at greater length in the (nonmathematical) books by
Moore and by Freedman et al., listed in the Chapter 1 references.

� and the Choice of Sample Size
The probability of a type II error is easily calculated when both population distri-
butions are normal with known values of �1 and � 2. Consider the case in which the
alternative hypothesis is Ha: �1 � �2 � �0. Let � denote a value of �1 � �2 that
exceeds �0 (a value for which H0 is false). The upper-tailed rejection region z � z�

5.70
��
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can be reexpressed in the form x� � y� � �0 � z�� X��Y�. Thus the probability of a
type II error when �1 � �2 � � is

�(�) � P(not rejecting H0 when �1 � �2 � �)

� P(X� � Y� � �0 � z�� X��Y� when �1 � �2 � �)

When �1 � �2 � �, X� � Y� is normally distributed with mean value � and stan-
dard deviation �X��Y� (the same standard deviation as when H0 is true); using these
values to standardize the inequality in parentheses gives �.
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Alternative Hypothesis �(�) � P(type II error when �1 � �2 � �)

Ha: �1 � �2 � �0 ��z� � �
Ha: �1 � �2 � �0 1 � ���z� � �
Ha: �1 � �2 � �0 ��z�/2 � � � ���z�/2 � �
where � � � X��Y� � �(��2

1/�m�)��� (���2
2/�n�)�

� � �0
�

�

� � �0
�

�

� � �0
�

�

� � �0
�

�

Suppose that when �1 and �2 (the true average yield strengths for the two types of steel)
differ by as much as 5, the probability of detecting such a departure from H0 should
be .90. Does a level .01 test with sample sizes m � 20 and n � 25 satisfy this con-
dition? The value of � for these sample sizes (the denominator of z) was previously
calculated as 1.34. The probability of a type II error for the two-tailed level .01 test
when �1 � �2 � � � 5 is

�(5) � ��2.58 � � � ���2.58 � �
� �(�1.15) � �(�6.31) � .1251

It is easy to verify that �(�5) � .1251 also (because the rejection region is symmet-
ric). Thus the probability of detecting such a departure is 1 � �(5) � .8749. Because
this is somewhat less than .9, slightly larger sample sizes should be used. ■

As in Chapter 8, sample sizes m and n can be determined that will satisfy both
P(type I error) � a specified � and P(type II error when �1 � �2 � �) � a speci-
fied �. For an upper-tailed test, equating the previous expression for �(�) to the
specified value of � gives

� �

When the two sample sizes are equal, this equation yields

m � n �

These expressions are also correct for a lower-tailed test, whereas � is replaced by
�/2 for a two-tailed test.

(� 2
1 � � 2

2)(z� � z�)2

��
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Example 9.3
(Example 9.1
continued)



Large-Sample Tests
The assumptions of normal population distributions and known values of �1 and � 2

are unnecessary when both sample sizes are large. In this case, the Central Limit
Theorem guarantees that X� � Y� has approximately a normal distribution regardless
of the underlying population distributions. Furthermore, using S 2

1 and S 2
2 in place of

� 2
1 and � 2

2 in Expression (9.1) gives a variable whose distribution is approximately
standard normal:

Z �

A large-sample test statistic results from replacing �1 � �2 by �0, the expected
value of X� � Y� when H0 is true. This statistic Z then has approximately a standard
normal distribution when H0 is true. Level � tests are obtained by using z critical val-
ues exactly as before.

X� � Y� � (�1 � �2)
���

��
S
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2
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���� �
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2
2
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Use of the test statistic value

z �

along with the previously stated upper-, lower-, and two-tailed rejection re-
gions based on z critical values gives large-sample tests whose significance
levels are approximately �. These tests are usually appropriate if both m � 40
and n � 40. A P-value is computed exactly as it was for our earlier z tests.

x� � y� � �0
��

��
m

s�
2
1
���� �

s

n�
2
2
��

In selecting a sulphur concrete for roadway construction in regions that experience
heavy frost, it is important that the chosen concrete have a low value of thermal
conductivity to minimize subsequent damage due to changing temperatures. Suppose
two types of concrete, a graded aggregate and a no-fines aggregate, are being con-
sidered for a certain road. Table 9.1 summarizes data from an experiment carried
out to compare the two types of concrete. Does this information suggest that true
average conductivity for the graded concrete exceeds that for the no-fines concrete?
Let’s use a test with � � .01.

Example 9.4

Table 9.1 Data for Example 9.4

Type Sample Size Sample Average Conductivity Sample SD

Graded 42 .486 .187
No-fines 42 .359 .158

Let �1 and �2 denote the true average thermal conductivity for the graded aggre-
gate and no-fines aggregate concrete, respectively. The two hypotheses are H0: �1 �
�2 � 0 versus Ha: �1 � �2 � 0. H0 will be rejected if z � z.01 � 2.33. We calculate

z � � � 3.36
.127
�
.0378

.486 � .359
���

��
(.�1

4�8
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�� �� �
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Since 3.36 � 2.33, H0 is rejected at significance level .01. Alternatively, the P-value
for an upper-tailed z test is

P-value � 1 � �(z) � 1 � �(3.36) � .0004

H0 should be rejected not only for a test with � � .01 but also for � � .001 or any
other � exceeding .0004. The data argues strongly for the conclusion that true aver-
age thermal conductivity for the graded concrete does exceed that for the no-fines
concrete. ■

Confidence Intervals for �1 � �2

When both population distributions are normal, standardizing X� � Y� gives a random
variable Z with a standard normal distribution. Since the area under the z curve between
�z�/2 and z�/2 is 1 � �, it follows that

P��z�/2 � � z�/2�� 1 � �

Manipulation of the inequalities inside the parentheses to isolate �1 � �2 yields the
equivalent probability statement

P�X� � Y� � z�/2�� ���� � �1 � �2 � X� � Y� � z�/2�� ����� � 1 � �

This implies that a 100(1 � �)% CI for �1 � �2 has lower limit x� � y� � z�/2 � �X��Y�

and upper limit x� � y� � z�/2 � �X��Y�, where �X��Y� is the square-root expression. This
interval is a special case of the general formula 	̂ � z�/2 � �	̂.

If both m and n are large, the CLT implies that this interval is valid even with-
out the assumption of normal populations; in this case, the confidence level is approx-
imately 100(1 � �)%. Furthermore, use of the sample variances S 2

1 and S 2
2 in the 

standardized variable Z yields a valid interval in which s 2
1 and s 2

2 replace � 2
1 and � 2

2.
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Provided that m and n are both large, a CI for �1 � �2 with a confidence level
of approximately 100(1 � �)% is

x� � y� � z�/2�� ����
where � gives the lower limit and � the upper limit of the interval. An upper
or lower confidence bound can also be calculated by retaining the appropriate
sign (� or �) and replacing z�/2 by z�.

s2
2

�
n

s2
1

�
m

Our standard rule of thumb for characterizing sample sizes as large is m � 40 and
n � 40.

An experiment carried out to study various characteristics of anchor bolts resulted in
78 observations on shear strength (kip) of 3/8-in. diameter bolts and 88 observations on
strength of 1/2-in. diameter bolts. Summary quantities from MINITAB follow, and a com-
parative boxplot is presented in Figure 9.1. The sample sizes, sample means, and sam-
ple standard deviations agree with values given in the article “Ultimate Load Capacities
of Expansion Anchor Bolts” (J. Energy Engr., 1993: 139–158). The summaries suggest
that the main difference between the two samples is in where they are centered.

Example 9.5



Variable N Mean Median TrMean StDev SEMean
diam 3/8 78 4.250 4.230 4.238 1.300 0.147

Variable Min Max Q1 Q3
diam 3/8 1.634 7.327 3.389 5.075

Variable N Mean Median TrMean StDev SEMean
diam 1/2 88 7.140 7.113 7.150 1.680 0.179

Variable Min Max Q1 Q3
diam 1/2 2.450 11.343 5.965 8.447
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Figure 9.1 A comparative boxplot of the shear strength data

Let’s now calculate a confidence interval for the difference between true average
shear strength for 3/8-in. bolts (�1) and true average shear strength for 1/2-in. bolts
(�2) using a confidence level of 95%:

4.25 � 7.14 � (1.96)�� ����� �2.89 � (1.96)(.2318)

� �2.89 � .45 � (�3.34, �2.44)

That is, with 95% confidence, �3.34 � �1 � �2 � �2.44. We can therefore be 
highly confident that the true average shear strength for the 1/2-in. bolts exceeds that
for the 3/8-in. bolts by between 2.44 kip and 3.34 kip. Notice that if we relabel so that
�1 refers to 1/2-in. bolts and �2 to 3/8-in. bolts, the confidence interval is now cen-
tered at �2.89 and the value .45 is still subtracted and added to obtain the confidence
limits. The resulting interval is (2.44, 3.34), and the interpretation is identical to that
for the interval previously calculated. ■

If the variances � 2
1 and � 2

2 are at least approximately known and the investigator
uses equal sample sizes, then the common sample size n that yields a 100(1 � �)%
interval of width w is

n �

which will generally have to be rounded up to an integer.
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EXERCISES Section 9.1 (1–16)

1. An article in the November 1983 Consumer Reports com-
pared various types of batteries. The average lifetimes of
Duracell Alkaline AA batteries and Eveready Energizer
Alkaline AA batteries were given as 4.1 hours and 4.5
hours, respectively. Suppose these are the population aver-
age lifetimes.
a. Let X� be the sample average lifetime of 100 Duracell bat-

teries and Y� be the sample average lifetime of 100 Eveready
batteries. What is the mean value of X� � Y� (i.e., where is
the distribution of X� � Y� centered)? How does your answer
depend on the specified sample sizes?

b. Suppose the population standard deviations of lifetime are
1.8 hours for Duracell batteries and 2.0 hours for Ev-
eready batteries. With the sample sizes given in part (a),
what is the variance of the statistic X� � Y�, and what is its
standard deviation?

c. For the sample sizes given in part (a), draw a picture of the
approximate distribution curve of X� � Y� (include a mea-
surement scale on the horizontal axis). Would the shape of
the curve necessarily be the same for sample sizes of 10
batteries of each type? Explain.

2. Let �1 and �2 denote true average tread lives for two competing
brands of size P205/65R15 radial tires. Test H0: �1 � �2 � 0
versus Ha: �1 � �2 � 0 at level .05 using the following data:
m � 45, x� � 42,500, s1 � 2200, n � 45, y� � 40,400, and
s2 � 1900.

3. Let �1 denote true average tread life for a premium brand of
P205/65R15 radial tire and let �2 denote the true average
tread life for an economy brand of the same size. Test H0:
�1 � �2 � 5000 versus Ha: �1 � �2 � 5000 at level .01
using the following data: m � 45, x� � 42,500, s1 � 2200,
n � 45, y� � 36,800, and s2 � 1500.

4. a. Use the data of Exercise 2 to compute a 95% CI for 
�1 � �2. Does the resulting interval suggest that �1 � �2

has been precisely estimated?
b. Use the data of Exercise 3 to compute a 95% upper confi-

dence bound for �1 � �2.

5. Persons having Reynaud’s syndrome are apt to suffer a sudden
impairment of blood circulation in fingers and toes. In an
experiment to study the extent of this impairment, each subject
immersed a forefinger in water and the resulting heat output
(cal/cm2/min) was measured. For m � 10 subjects with the
syndrome, the average heat output was x� � .64, and for n � 10
nonsufferers, the average output was 2.05. Let �1 and �2

denote the true average heat outputs for the two types of sub-
jects. Assume that the two distributions of heat output are nor-
mal with �1 � .2 and �2 � .4.
a. Consider testing H0: �1 � �2 � �1.0 versus Ha: �1 �

�2 � �1.0 at level .01. Describe in words what Ha says, and
then carry out the test.

b. Compute the P-value for the value of Z obtained in part (a).

c. What is the probability of a type II error when the actual
difference between �1 and �2 is �1 � �2 � �1.2?

d. Assuming that m � n, what sample sizes are required to
ensure that � � .1 when �1 � �2 � �1.2?

6. An experiment to compare the tension bond strength of poly-
mer latex modified mortar (Portland cement mortar to which
polymer latex emulsions have been added during mixing) to
that of unmodified mortar resulted in x� � 18.12 kgf/cm2 for
the modified mortar (m � 40) and y� � 16.87 kgf/cm2 for the
unmodified mortar (n � 32). Let �1 and �2 be the true aver-
age tension bond strengths for the modified and unmodified
mortars, respectively. Assume that the bond strength distribu-
tions are both normal.
a. Assuming that �1 � 1.6 and �2 � 1.4, test H0: �1 �

�2 � 0 versus Ha: �1 � �2 � 0 at level .01.
b. Compute the probability of a type II error for the test of

part (a) when �1 � �2 � 1.
c. Suppose the investigator decided to use a level .05 test and

wished � � .10 when �1 � �2 � 1. If m � 40, what value
of n is necessary?

d. How would the analysis and conclusion of part (a) change
if �1 and �2 were unknown but s1 � 1.6 and s2 � 1.4?

7. Are male college students more easily bored than their
female counterparts? This question was examined in the arti-
cle “Boredom in Young Adults—Gender and Cultural
Comparisons” (J. of Cross-Cultural Psych., 1991: 209–223).
The authors administered a scale called the Boredom
Proneness Scale to 97 male and 148 female U.S. college stu-
dents. Does the accompanying data support the research hy-
pothesis that the mean Boredom Proneness Rating is higher
for men than for women? Test the appropriate hypotheses
using a .05 significance level.

Sample Sample 
Gender Size Mean Sample SD

Males 97 10.40 4.83
Females 148 9.26 4.68

8. Tensile strength tests were carried out on two different grades
of wire rod (“Fluidized Bed Patenting of Wire Rods,” Wire J.,
June 1977: 56–61), resulting in the accompanying data.

Sample
Sample Mean Sample 

Grader Size (kg/mm2) SD

AISI 1064 m � 129 x� � 107.6 s1 � 1.3
AISI 1078 n � 129 y� � 123.6 s2 � 2.0

a. Does the data provide compelling evidence for concluding
that true average strength for the 1078 grade exceeds that



for the 1064 grade by more than 10 kg/mm2? Test the
appropriate hypotheses using the P-value approach.

b. Estimate the difference between true average strengths for
the two grades in a way that provides information about
precision and reliability.

9. The article “Evaluation of a Ventilation Strategy to Prevent
Barotrauma in Patients at High Risk for Acute Respiratory
Distress Syndrome” (New Engl. J. of Med., 1998: 355–358)
reported on an experiment in which 120 patients with simi-
lar clinical features were randomly divided into a control
group and a treatment group, each consisting of 60 patients.
The sample mean ICU stay (days) and sample standard
deviation for the treatment group were 19.9 and 39.1,
respectively, whereas these values for the control group
were 13.7 and 15.8.
a. Calculate a point estimate for the difference between

true average ICU stay for the treatment and control
groups. Does this estimate suggest that there is a signif-
icant difference between true average stays under the
two conditions?

b. Answer the question posed in part (a) by carrying out
a formal test of hypotheses. Is the result different from
what you conjectured in part (a)?

c. Does it appear that ICU stay for patients given the venti-
lation treatment is normally distributed? Explain your
reasoning.

d. Estimate true average length of stay for patients given
the ventilation treatment in a way that conveys infor-
mation about precision and reliability.

10. An experiment was performed to compare the fracture
toughness of high-purity 18 Ni maraging steel with com-
mercial-purity steel of the same type (Corrosion Science,
1971: 723–736). For m � 32 specimens, the sample aver-
age toughness was x� � 65.6 for the high-purity steel,
whereas for n � 38 specimens of commercial steel y� � 59.8.
Because the high-purity steel is more expensive, its use
for a certain application can be justified only if its frac-
ture toughness exceeds that of commercial-purity steel by
more than 5. Suppose that both toughness distributions are
normal.
a. Assuming that �1 � 1.2 and �2 � 1.1, test the relevant

hypotheses using � � .001.
b. Compute � for the test conducted in part (a) when 

�1 � �2 � 6.

11. The level of lead in the blood was determined for a sam-
ple of 152 male hazardous-waste workers age 20–30 and
also for a sample of 86 female workers, resulting in a
mean � standard error of 5.5 � 0.3 for the men and 3.8 �
0.2 for the women (“Temporal Changes in Blood Lead
Levels of Hazardous Waste Workers in New Jersey,
1984–1987,” Environ. Monitoring and Assessment, 1993:
99–107). Calculate an estimate of the difference between
true average blood lead levels for male and female work-
ers in a way that provides information about reliability
and precision.

12. The accompanying table gives summary data on cube
compressive strength (N/mm2) for concrete specimens
made with a pulverized fuel-ash mix (“A Study of
Twenty-Five-Year-Old Pulverized Fuel Ash Concrete
Used in Foundation Structures,” Proc. Inst. Civ. Engrs.,
Mar. 1985: 149–165):

Age Sample Sample Sample 
(days) Size Mean SD

7 68 26.99 4.89
28 74 35.76 6.43

Calculate and interpret a 99% CI for the difference between
true average 7-day strength and true average 28-day
strength.

13. A mechanical engineer wishes to compare strength proper-
ties of steel beams with similar beams made with a particu-
lar alloy. The same number of beams, n, of each type will be
tested. Each beam will be set in a horizontal position with a
support on each end, a force of 2500 lb will be applied at the
center, and the deflection will be measured. From past expe-
rience with such beams, the engineer is willing to assume
that the true standard deviation of deflection for both types
of beam is .05 in. Because the alloy is more expensive, the
engineer wishes to test at level .01 whether it has smaller
average deflection than the steel beam. What value of n is
appropriate if the desired type II error probability is .05
when the difference in true average deflection favors the
alloy by .04 in.?

14. The level of monoamine oxidase (MAO) activity in blood
platelets (nm/mg protein/h) was determined for each indi-
vidual in a sample of 43 chronic schizophrenics, resulting
in x� � 2.69 and s1 � 2.30, as well as for 45 normal sub-
jects, resulting in y� � 6.35 and s2 � 4.03. Does this data
strongly suggest that true average MAO activity for normal
subjects is more than twice the activity level for schizo-
phrenics? Derive a test procedure and carry out the test
using � � .01. [Hint: H0 and Ha here have a different form
from the three standard cases. Let �1 and �2 refer to true
average MAO activity for schizophrenics and normal sub-
jects, respectively, and consider the parameter 	 � 2�1 � �2.
Write H0 and Ha in terms of 	, estimate 	, and derive �̂	̂

(“Reduced Monoamine Oxidase Activity in Blood Plate-
lets from Schizophrenic Patients,” Nature, July 28, 1972:
225–226).]

15. a. Show for the upper-tailed test with �1 and �2 known that as
either m or n increases, � decreases when �1 � �2 � �0.

b. For the case of equal sample sizes (m � n) and fixed �,
what happens to the necessary sample size n as � is
decreased, where � is the desired type II error probabil-
ity at a fixed alternative?

16. To decide whether two different types of steel have the same
true average fracture toughness values, n specimens of each
type are tested, yielding the following results:
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Manipulating T in a probability statement to isolate �1 � �2 gives a CI, whereas
a test statistic results from replacing �1 � �2 by the null value �0.
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Values of the population variances will usually not be known to an investigator. In
the previous section, we illustrated for large sample sizes the use of a test procedure
and CI in which the sample variances were used in place of the population variances.
In fact, for large samples, the CLT allows us to use these methods even when the two
populations of interest are not normal.

There are many problems, though, in which at least one sample size is small
and the population variances have unknown values. In the absence of the CLT, we
proceed by making specific assumptions about the underlying population distribu-
tions. The use of inferential procedures that follow from these assumptions is then
restricted to situations in which the assumptions are at least approximately satisfied.

9.2 The Two-Sample t Test and Confidence Interval

Both populations are normal, so that X1, X2, . . . , Xm is a random sample from
a normal distribution and so is Y1, . . . , Yn (with the X’s and Y’s independent
of one another). The plausibility of these assumptions can be judged by con-
structing a normal probability plot of the xi s and another of the yi s.

ASSUMPTIONS

The test statistic and confidence interval formula are based on the same standardized
variable developed in Section 9.1, but the relevant distribution is now t rather than z.

When the population distributions are both normal, the standardized variable

T � (9.2)

has approximately a t distribution with df � estimated from the data by
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THEOREM

Type Sample Average Sample SD

1 60.1 1.0
2 59.9 1.0

Calculate the P-value for the appropriate two-sample z test,
assuming that the data was based on n � 100. Then repeat

the calculation for n � 400. Is the small P-value for n � 400
indicative of a difference that has practical significance?
Would you have been satisfied with just a report of the P-
value? Comment briefly.
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Two-Sample t Procedures

The two-sample t confidence interval for �1 
 �2 with confidence level
100(1 
 �)% is then

x� � y� � t�/2,���
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2
2
��

A one-sided confidence bound can be calculated as described earlier.
The two-sample t test for testing H0: �1 � �2 � �0 is as follows:

Test statistic value: t �

Alternative Hypothesis Rejection Region for Approximate Level � Test

Ha: �1 � �2 � �0 t � t�,� (upper-tailed)

Ha: �1 � �2 � �0 t � �t�,� (lower-tailed)

Ha: �1 � �2 � �0 either t � t�2,� or t � �t�/2,� (two-tailed)

A P-value can be computed as described in Section 8.4 for the one-sample t test.
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The void volume within a textile fabric affects comfort, flammability, and insulation
properties. Permeability of a fabric refers to the accessibility of void space to the flow
of a gas or liquid. The article “The Relationship Between Porosity and Air Permeability
of Woven Textile Fabrics” (J. of Testing and Eval., 1997: 108–114) gave summary
information on air permeability (cm3/cm2/sec) for a number of different fabric types.
Consider the following data on two different types of plain-weave fabric:

Fabric Type Sample Size Sample Mean Sample Standard Deviation

Cotton 10 51.71 .79
Triacetate 10 136.14 3.59

Assuming that the porosity distributions for both types of fabric are normal, let’s
calculate a confidence interval for the difference between true average porosity for
the cotton fabric and that for the acetate fabric, using a 95% confidence level.
Before the appropriate t critical value can be selected, df must be determined:

df � � � 9.87

Thus we use � � 9; Appendix Table A.5 gives t.025,9 � 2.262. The resulting interval is

51.71 � 136.14 � (2.262)�� ����� �84.43 � 2.63

� (�87.06, �81.80)

With a high degree of confidence, we can say that true average porosity for triacetate
fabric specimens exceeds that for cotton specimens by between 81.80 and 87.06
cm3/cm2/sec. ■
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The deterioration of many municipal pipeline networks across the country is a grow-
ing concern. One technology proposed for pipeline rehabilitation uses a flexible liner
threaded through existing pipe. The article “Effect of Welding on a High-Density
Polyethylene Liner” (J. of Materials in Civil Engr., 1996: 94–100) reported the fol-
lowing data on tensile strength (psi) of liner specimens both when a certain fusion
process was used and when this process was not used.

No fusion 2748 2700 2655 2822 2511
3149 3257 3213 3220 2753
m � 10 x� � 2902.8 s1 � 277.3

Fused 3027 3356 3359 3297 3125 2910 2889 2902
n � 8 y� � 3108.1 s2 � 205.9

Figure 9.2 shows normal probability plots from MINITAB. The linear pattern in
each plot supports the assumption that the tensile strength distributions under the
two conditions are both normal.
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Example 9.7

Figure 9.2 Normal probability plots from MINITAB for the tensile strength data

The authors of the article stated that the fusion process increased the average ten-
sile strength. The message from the comparative boxplot of Figure 9.3 is not all that clear.
Let’s carry out a test of hypotheses to see whether the data supports this conclusion.

270026002500

Type 1

Type 2

32003100300029002800 3300 3400

Strength

Figure 9.3 A comparative boxplot of the tensile strength data



1. Let �1 be the true average tensile strength of specimens when the no-fusion treat-
ment is used and �2 denote the true average tensile strength when the fusion treat-
ment is used.

2. H0: �1 � �2 � 0 (no difference in the true average tensile strengths for the two
treatments)

3. Ha: �1 � �2 � 0 (true average tensile strength for the no-fusion treatment is less
than that for the fusion treatment, so that the investigators’ con-
clusion is correct)

4. The null value is �0 � 0, so the test statistic is

t �

5. We now compute both the test statistic value and the df for the test:

t � � � �1.8

Using s 2
1/m � 7689.529 and s2

2/n � 5299.351,

� � � � 15.94

so the test will be based on 15 df.

6. Appendix Table A.8 shows that the area under the 15 df t curve to the right of 1.8
is .046, so the P-value for a lower-tailed test is also .046. The following MINITAB
output summarizes all the computations:

Twosample T for nofusion vs fused

N Mean StDev SE Mean
no fusion 10 2903 277 88
fused 8 3108 206 73

95% C.I. for mu nofusion-mu fused: (�488, 38)
T-Test mu nofusion � mu fused (vs �): T � �1.80 P � 0.046 DF � 15

7. Using a significance level of .05, we can barely reject the null hypothesis in favor
of the alternative hypothesis, confirming the conclusion stated in the article.
However, someone demanding more compelling evidence might select � � .01,
a level for which H0 cannot be rejected.

If the question posed had been whether fusing increased true average strength by
more than 100 psi, then the relevant hypotheses would have been H0: �1 � �2 � �100
versus Ha: �1 � �2 � �100; that is, the null value would have been �0 � �100. ■

Pooled t Procedures
Alternatives to the two-sample t procedures just described result from assuming not
only that the two population distributions are normal but also that they have equal
variances (� 2

1 � � 2
2). That is, the two population distribution curves are assumed nor-

mal with equal spreads, the only possible difference between them being where they
are centered.
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Let �2 denote the common population variance. Then standardizing X� � Y� gives

Z � �

which has a standard normal distribution. Before this variable can be used as a
basis for making inferences about �1 � �2, the common variance must be esti-
mated from sample data. One estimator of � 2 is S2

1, the variance of the m obser-
vations in the first sample, and another is S2

2, the variance of the second sample.
Intuitively, a better estimator than either individual sample variance results from
combining the two sample variances. A first thought might be to use (S2

1 � S2
2)/2,

the ordinary average of the two sample variances. However, if m � n, then the first
sample contains more information about � 2 than does the second sample, and an
analogous comment applies if m � n. The following weighted average of the two
sample variances, called the pooled (i.e., combined) estimator of � 2, adjusts for
any difference between the two sample sizes:

Sp
2 � � S1

2 � � S2
2

The first sample contributes m � 1 degrees of freedom to the estimate of  � 2, and the
second sample contributes n � 1 df, for a total of m � n � 2 df. Statistical theory
says that if S2

P replaces � 2 in the expression for Z, the resulting standardized variable
has a t distribution based on m � n � 2 df. In the same way that earlier standardized
variables were used as a basis for deriving confidence intervals and test procedures,
this t variable immediately leads to the pooled t CI for estimating �1 � �2 and the
pooled t test for testing hypotheses about a difference between means.

In the past, many statisticians recommended these pooled t procedures over the
two-sample t procedures. The pooled t test, for example, can be derived from the like-
lihood ratio principle, whereas the two-sample t test is not a likelihood ratio test.
Furthermore, the significance level for the pooled t test is exact, whereas it is only
approximate for the two-sample t test. However, recent research has shown that
although the pooled t test does outperform the two-sample t test by a bit (smaller �s
for the same �) when � 2

1 � � 2
2, the former test can easily lead to erroneous conclu-

sions if applied when the variances are different. Analogous comments apply to the
behavior of the two confidence intervals. That is, the pooled t procedures are not
robust to violations of the equal variance assumption.

It has been suggested that one could carry out a preliminary test of H0: � 2
1 � � 2

2

and use a pooled t procedure if this null hypothesis is not rejected. Unfortunately,
the usual “F test” of equal variances (Section 9.5) is quite sensitive to the assump-
tion of normal population distributions, much more so than t procedures. We there-
fore recommend the conservative approach of using two-sample t procedures
unless there is really compelling evidence for doing otherwise, particularly when
the two sample sizes are different.

Type II Error Probabilities
Determining type II error probabilities (or equivalently, power � 1 � �) for the two-
sample t test is complicated. There does not appear to be any simple way to use the 
� curves of Appendix Table A.17. The most recent version of MINITAB (Version 14)
will calculate power for the pooled t test but not for the two-sample t test. However,
the UCLA Statistics Department homepage (http://www.stat.ucla.edu) permits access
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to a power calculator that will do this. For example, we specified m � 10, n � 8,
�1 � 300, �2 � 225 (these are the sample sizes for Example 9.7, whose sample stan-
dard deviations are somewhat smaller than these values of �1 and �2) and asked for
the power of a two-tailed level .05 test of H0: �1 � �2 � 0 when �1 � �2 � 100, 250,
and 500. The resulting values of the power were .1089, .4609, and .9635 (correspond-
ing to � � .89, .54, and .04), respectively. In general, � will decrease as the sample
sizes increase, as � increases, and as �1 � �2 moves farther from 0. The software will
also calculate sample sizes necessary to obtain a specified value of power for a par-
ticular value of �1 � �2.
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EXERCISES Section 9.2 (17–35)

17. Determine the number of degrees of freedom for the two-
sample t test or CI in each of the following situations:
a. m � 10, n � 10, s1 � 5.0, s2 � 6.0
b. m � 10, n � 15, s1 � 5.0, s2 � 6.0
c. m � 10, n � 15, s1 � 2.0, s2 � 6.0
d. m � 12, n � 24, s1 � 5.0, s2 � 6.0

18. Let �1 and �2 denote true average densities for two differ-
ent types of brick. Assuming normality of the two density
distributions, test H0: �1 � �2 � 0 versus Ha: �1 � �2 � 0
using the following data: m � 6, x� � 22.73, s1 � .164,
n � 5, y� � 21.95, and s2 � .240.

19. Suppose �1 and �2 are true mean stopping distances at 50
mph for cars of a certain type equipped with two different
types of braking systems. Use the two-sample t test at sig-
nificance level .01 to test H0: �1 � �2 � �10 versus Ha:
�1 � �2 � �10 for the following data: m � 6, x� � 115.7,
s1 � 5.03, n � 6, y� � 129.3, and s2 � 5.38.

20. Use the data of Exercise 19 to calculate a 95% CI for the dif-
ference between true average stopping distance for cars
equipped with system 1 and cars equipped with system 2.
Does the interval suggest that precise information about the
value of this difference is available?

21. Quantitative noninvasive techniques are needed for rou-
tinely assessing symptoms of peripheral neuropathies, such
as carpal tunnel syndrome (CTS). The article “A Gap
Detection Tactility Test for Sensory Deficits Associated with
Carpal Tunnel Syndrome” (Ergonomics, 1995: 2588–2601)
reported on a test that involved sensing a tiny gap in an oth-
erwise smooth surface by probing with a finger; this func-
tionally resembles many work-related tactile activities, such
as detecting scratches or surface defects. When finger prob-
ing was not allowed, the sample average gap detection
threshold for m � 8 normal subjects was 1.71 mm, and the
sample standard deviation was .53; for n � 10 CTS sub-
jects, the sample mean and sample standard deviation were
2.53 and .87, respectively. Does this data suggest that the
true average gap detection threshold for CTS subjects ex-
ceeds that for normal subjects? State and test the relevant
hypotheses using a significance level of .01.

22. The slant shear test is widely accepted for evaluating the
bond of resinous repair materials to concrete; it utilizes
cylinder specimens made of two identical halves bonded at
30°. The article “Testing the Bond Between Repair
Materials and Concrete Substrate” (ACI Materials J., 1996:
553–558) reported that for 12 specimens prepared using
wire-brushing, the sample mean shear strength (N/mm2) and
sample standard deviation were 19.20 and 1.58, respec-
tively, whereas for 12 hand-chiseled specimens, the corre-
sponding values were 23.13 and 4.01. Does the true average
strength appear to be different for the two methods of sur-
face preparation? State and test the relevant hypotheses
using a significance level of .05. What are you assuming
about the shear strength distributions?

23. Fusible interlinings are being used with increasing fre-
quency to support outer fabrics and improve the shape and
drape of various pieces of clothing. The article “Compatibility
of Outer and Fusible Interlining Fabrics in Tailored Garments”
(Textile Res. J., 1997: 137–142) gave the accompanying data
on extensibility (%) at 100 gm/cm for both high-quality fabric
(H) and poor-quality fabric (P) specimens.

H 1.2 .9 .7 1.0 1.7 1.7 1.1 .9 1.7
1.9 1.3 2.1 1.6 1.8 1.4 1.3 1.9 1.6

.8 2.0 1.7 1.6 2.3 2.0
P 1.6 1.5 1.1 2.1 1.5 1.3 1.0 2.6

a. Construct normal probability plots to verify the plausi-
bility of both samples having been selected from normal
population distributions.

b. Construct a comparative boxplot. Does it suggest that
there is a difference between true average extensibility for
high-quality fabric specimens and that for poor-quality
specimens?

c. The sample mean and standard deviation for the high-
quality sample are 1.508 and .444, respectively, and
those for the poor-quality sample are 1.588 and .530. Use
the two-sample t test to decide whether true average
extensibility differs for the two types of fabric.

24. Damage to grapes from bird predation is a serious problem
for grape growers. The article “Experimental Method to



Investigate and Monitor Bird Behavior and Damage to
Vineyards” (Amer. J. of Enology and Viticulture, 2004:
288–291) reported on an experiment involving a bird-feeder
table, time-lapse video, and artificial foods. Information was
collected for two different bird species at both the experi-
mental location and at a natural vineyard setting. Consider
the following data on time (sec) spent on a single visit to the
location.

Species Location n x� SE mean

Blackbirds Exptl 65 13.4 2.05
Blackbirds Natural 50 9.7 1.76
Silvereyes Exptl 34 49.4 4.78
Silvereyes Natural 46 38.4 5.06

a. Calculate an upper confidence bound for the true aver-
age time that blackbirds spend on a single visit at the
experimental location.

b. Does it appear that true average time spent by black-
birds at the experimental location exceeds the true
average time birds of this type spend at the natural
location? Carry out a test of appropriate hypotheses.

c. Estimate the difference between the true average time
blackbirds spend at the natural location and true aver-
age time that silvereyes spend at the natural location,
and do so in a way that conveys information about reli-
ability and precision.

[Note: The sample medians reported in the article all
seemed significantly smaller than the means, suggesting
substantial population distribution skewness. The authors ac-
tually used the distribution-free test procedure presented
in Section 2 of Chapter 15.]

25. Low-back pain (LBP) is a serious health problem in many
industrial settings. The article “Isodynamic Evaluation of
Trunk Muscles and Low-Back Pain Among Workers in a
Steel Factory” (Ergonomics, 1995: 2107–2117) reported the
accompanying summary data on lateral range of motion
(degrees) for a sample of workers without a history of LBP
and another sample with a history of this malady.

Sample Sample Sample 
Condition Size Mean SD

No LBP 28 91.5 5.5
LBP 31 88.3 7.8

Calculate a 90% confidence interval for the difference
between population mean extent of lateral motion for the
two conditions. Does the interval suggest that population
mean lateral motion differs for the two conditions? Is the
message different if a confidence level of 95% is used?

26. The article “The Influence of Corrosion Inhibitor and Surface
Abrasion on the Failure of Aluminum-Wired Twist-on
Connections” (IEEE Trans. on Components, Hybrids, and
Manuf. Tech., 1984: 20–25) reported data on potential drop
measurements for one sample of connectors wired with 

alloy aluminum and another sample wired with EC aluminum.
Does the accompanying SAS output suggest that the true
average potential drop for alloy connections (type 1) is higher
than that for EC connections (as stated in the article)? Carry
out the appropriate test using a significance level of .01. In
reaching your conclusion, what type of error might you
have committed? [Note: SAS reports the P-value for a two-
tailed test.]

Type N Mean Std Dev Std Error

1 20 17.49900000 0.55012821 0.12301241

2 20 16.90000000 0.48998389 0.10956373

Variances T DF Prob � ⏐T⏐
Unequal 3.6362 37.5 0.0008

Equal 3.6362 38.0 0.0008

27. Tennis elbow is thought to be aggravated by the impact expe-
rienced when hitting the ball. The article “Forces on the
Hand in the Tennis One-Handed Backhand” (Intl. J. of Sport
Biomechanics, 1991: 282–292) reported the force (N) on the
hand just after impact on a one-handed backhand drive for
six advanced players and for eight intermediate players.

Type of Sample Sample Sample
Player Size Mean SD

1. Advanced 6 40.3 11.3
2. Intermediate 8 21.4 8.3

In their analysis of the data, the authors assumed that both
force distributions were normal. Calculate a 95% CI for the
difference between true average force for advanced players
(�1) and true average force for intermediate players (�2).
Does your interval provide compelling evidence for con-
cluding that the two �s are different? Would you have
reached the same conclusion by calculating a CI for �2 � �1

(i.e., by reversing the 1 and 2 labels on the two types of
players)? Explain.

28. As the population ages, there is increasing concern about
accident-related injuries to the elderly. The article “Age and
Gender Differences in Single-Step Recovery from a For-
ward Fall” (J. of Gerontology, 1999: M44–M50) reported on
an experiment in which the maximum lean angle—the fur-
thest a subject is able to lean and still recover in one step—
was determined for both a sample of younger females
(21–29 years) and a sample of older females (67–81 years).
The following observations are consistent with summary
data given in the article:

YF: 29, 34, 33, 27, 28, 32, 31, 34, 32, 27

OF: 18, 15, 23, 13, 12

Does the data suggest that true average maximum lean angle
for older females is more than 10 degrees smaller than it is
for younger females? State and test the relevant hypotheses
at significance level .10 by obtaining a P-value.
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29. The article “Effect of Internal Gas Pressure on the Com-
pression Strength of Beverage Cans and Plastic Bottles”
(J. Testing and Evaluation, 1993: 129–131) includes the
accompanying data on compression strength (lb) for a sam-
ple of 12-oz aluminum cans filled with strawberry drink and
another sample filled with cola. Does the data suggest that
the extra carbonation of cola results in a higher average
compression strength? Base your answer on a P-value.
What assumptions are necessary for your analysis?

Sample Sample Sample 
Beverage Size Mean SD

Strawberry drink 15 540 21
Cola 15 554 15

30. The article “Flexure of Concrete Beams Reinforced with
Advanced Composite Orthogrids” (J. of Aerospace Engr.,
1997: 7–15) gave the accompanying data on ultimate load
(kN) for two different types of beams.

Sample Sample Sample
Type Size Mean SD

Fiberglass grid 26 33.4 2.2
Commercial 26 42.8 4.3

carbon grid

a. Assuming that the underlying distributions are normal,
calculate and interpret a 99% CI for the difference
between true average load for the fiberglass beams and
that for the carbon beams.

b. Does the upper limit of the interval you calculated in part
(a) give a 99% upper confidence bound for the difference
between the two �s? If not, calculate such a bound.
Does it strongly suggest that true average load for the
carbon beams is more than that for the fiberglass beams?
Explain.

31. Refer to Exercise 33 in Section 7.3. The cited article also
gave the following observations on degree of polymeriza-
tion for specimens having viscosity times concentration in a
higher range:

429 430 430 431 436 437

440 441 445 446 447

a. Construct a comparative boxplot for the two samples, and
comment on any interesting features.

b. Calculate a 95% confidence interval for the difference
between true average degree of polymerization for the
middle range and that for the high range. Does the interval
suggest that �1 and �2 may in fact be different? Explain
your reasoning.

32. The article cited in Exercise 34 in Section 7.3 gave the fol-
lowing summary data on proportional stress limits for spec-
imens constructed using two different types of wood:

Type Sample Sample Sample
of Wood Size Mean SD

Red oak 14 8.48 .79
Douglas fir 10 6.65 1.28

Assuming that both samples were selected from normal dis-
tributions, carry out a test of hypotheses to decide whether
the true average proportional stress limit for red oak joints
exceeds that for Douglas fir joints by more than 1 MPa.

33. The article “The Effects of a Low-Fat, Plant-Based Dietary
Intervention on Body Weight, Metabolism, and Insulin
Sensitivity in Postmenopausal Women” (Amer. J. of Med.,
2005: 991–997) reported on the results of an experiment 
in which half of the individuals in a group of 64 post-
menopausal overweight women were randomly assigned to
a particular vegan diet, and the other half received a diet
based on National Cholesterol Education Program guide-
lines. The sample mean decrease in body weight for those
on the vegan diet was 5.8 kg, and the sample SD was 3.2,
whereas for those on the control diet, the sample mean
weight loss and standard deviation were 3.8 and 2.8, respec-
tively. Does it appear the true average weight loss for the
vegan diet exceeds that for the control diet by more than 1 kg?
Carry out an appropriate test of hypotheses at significance
level .05 based on calculating a P-value.

34. Consider the pooled t variable

T �

which has a t distribution with m � n � 2 df when both pop-
ulation distributions are normal with �1 � �2 (see the Pooled
t Procedures subsection for a description of Sp).
a. Use this t variable to obtain a pooled t confidence inter-

val formula for �1 � �2.
b. A sample of ultrasonic humidifiers of one particular

brand was selected for which the observations on maxi-
mum output of moisture (oz) in a controlled chamber
were 14.0, 14.3, 12.2, and 15.1. A sample of the second
brand gave output values 12.1, 13.6, 11.9, and 11.2
(“Multiple Comparisons of Means Using Simultaneous
Confidence Intervals,” J. of Quality Technology, 1989:
232–241). Use the pooled t formula from part (a) to esti-
mate the difference between true average outputs for the
two brands with a 95% confidence interval.

c. Estimate the difference between the two �s using the
two-sample t interval discussed in this section, and
compare it to the interval of part (b).

35. Refer to Exercise 34. Describe the pooled t test for testing
H0: �1 � �2 � �0 when both population distributions are
normal with �1 � �2. Then use this test procedure to test the
hypotheses suggested in Exercise 33.

(X� � Y�) � (�1 � �2)
���

Sp��
m

1
�� �� �

1

n���
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9.3 Analysis of Paired Data

In Sections 9.1 and 9.2, we considered testing for a difference between two means 
�1 and �2. This was done by utilizing the results of a random sample X1, X2, . . . , Xm

from the distribution with mean �1 and a completely independent (of the X’s) sample
Y1, . . . , Yn from the distribution with mean �2. That is, either m individuals were
selected from population 1 and n different individuals from population 2, or m individ-
uals (or experimental objects) were given one treatment and another set of n individuals
were given the other treatment. In contrast, there are a number of experimental situations
in which there is only one set of n individuals or experimental objects, and two observa-
tions are made on each individual or object, resulting in a natural pairing of values.

Trace metals in drinking water affect the flavor, and unusually high concentrations
can pose a health hazard. The article “Trace Metals of South Indian River” (Envir.
Studies, 1982: 62–66) reports on a study in which six river locations were selected
(six experimental objects) and the zinc concentration (mg/L) determined for both
surface water and bottom water at each location. The six pairs of observations are
displayed in the accompanying table. Does the data suggest that true average con-
centration in bottom water exceeds that of surface water?

Location

1 2 3 4 5 6

Zinc concentration in 
bottom water (x) .430 .266 .567 .531 .707 .716

Zinc concentration in 
surface water (y) .415 .238 .390 .410 .605 .609

Difference .015 .028 .177 .121 .102 .107

Figure 9.4(a) displays a plot of this data. At first glance, there appears to be little dif-
ference between the x and y samples. From location to location, there is a great deal
of variability in each sample, and it looks as though any differences between the
samples can be attributed to this variability. However, when the observations are
identified by location, as in Figure 9.4(b), a different view emerges. At each location,
bottom concentration exceeds surface concentration. This is confirmed by the fact
that all x � y differences displayed in the bottom row of the data table are positive. A
correct analysis of this data focuses on these differences.

Example 9.8

.2 .3 .4 .5 .6 .7 .8

x
y

Location x
Location y

(a)

2 341 56

562 1 4 3

(b)

Figure 9.4 Plot of paired data from Example 9.8: (a) observations not identified by location;
(b) observations identified by location ■



We are again interested in testing hypotheses about the difference �1 � �2.
The denominator of the two-sample t test was obtained by assuming independent
samples and applying the rule V(X� � Y�) � V(X�) � V(Y�). However, with paired
data, the X and Y observations within each pair are often not independent, so X� and
Y� are not independent of one another. We must therefore abandon the two-sample t
test and look for an alternative method of analysis.

The Paired t Test
Because different pairs are independent, the Di s are independent of one another. 
Let D � X � Y, where X and Y are the first and second observations, respectively,
within an arbitrary pair. Then the expected difference is

�D � E(X � Y) � E(X) � E(Y) � �1 � �2

(the rule of expected values used here is valid even when X and Y are dependent). Thus
any hypothesis about �1 � �2 can be phrased as a hypothesis about the mean differ-
ence �D. But since the Di s constitute a normal random sample (of differences) with
mean �D, hypotheses about �D can be tested using a one-sample t test. That is, to test
hypotheses about �1 � �2 when data is paired, form the differences D1, D2, . . . , Dn

and carry out a one-sample t test (based on n � 1 df ) on the differences.
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The data consists of n independently selected pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn),
with E(Xi) � �1 and E(Yi) � �2. Let D1 � X1 � Y1, D2 � X2 � Y2, . . . ,
Dn � Xn � Yn, so the Di s are the differences within pairs. Then the Di s are
assumed to be normally distributed with mean value �D and variance �2

D (this is
usually a consequence of the Xi s and Yi s themselves being normally distributed).

ASSUMPTIONS

The Paired t Test

Null hypothesis: H0: �D � �0 (where D � X � Y is the difference be-
tween the first and second observations
within a pair, and �D � �1 � �2)

Test statistic value: t � (where d� and sD are the sample mean and
standard deviation, respectively, of the di s)

Alternative Hypothesis Rejection Region for Level � Test

Ha: �D � �0 t � t�,n�1

Ha: �D � �0 t � �t�,n�1

Ha: �D � �0 either t � t�/2,n�1 or t � �t�/2,n�1

A P-value can be calculated as was done for earlier t tests.

d� � �0
�
sD/�n�

Musculoskeletal neck-and-shoulder disorders are all too common among office staff
who perform repetitive tasks using visual display units. The article “Upper-Arm
Elevation During Office Work” (Ergonomics, 1996: 1221–1230) reported on a study
to determine whether more varied work conditions would have any impact on arm

Example 9.9



movement. The accompanying data was obtained from a sample of n � 16 subjects.
Each observation is the amount of time, expressed as a proportion of total time
observed, during which arm elevation was below 30°. The two measurements from
each subject were obtained 18 months apart. During this period, work conditions
were changed, and subjects were allowed to engage in a wider variety of work tasks.
Does the data suggest that true average time during which elevation is below 30° dif-
fers after the change from what it was before the change?

Subject 1 2 3 4 5 6 7 8
Before 81 87 86 82 90 86 96 73
After 78 91 78 78 84 67 92 70
Difference 3 �4 8 4 6 19 4 3

Subject 9 10 11 12 13 14 15 16
Before 74 75 72 80 66 72 56 82
After 58 62 70 58 66 60 65 73
Difference 16 13 2 22 0 12 �9 9
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Difference

Figure 9.6 A boxplot of the differences in Example 9.9

Figure 9.5 shows a normal probability plot of the 16 differences; the pattern in the
plot is quite straight, supporting the normality assumption. A boxplot of these differ-
ences appears in Figure 9.6; the boxplot is located considerably to the right of zero,
suggesting that perhaps �D � 0 (note also that 13 of the 16 differences are positive
and only two are negative).

Figure 9.5 A normal probability plot from MINITAB of the differences in Example 9.9



Let’s now use the recommended sequence of steps to test the appropriate
hypotheses.

1. Let �D denote the true average difference between elevation time before the
change in work conditions and time after the change.

2. H0: �D � 0 (there is no difference between true average time before the change
and true average time after the change)

3. Ha: �D � 0

4. t � �

5. n � 16, �di � 108, �d 2
i � 1746, from which d� � 6.75, sD � 8.234, and

t � � 3.28 � 3.3

6. Appendix Table A.8 shows that the area to the right of 3.3 under the t curve with
15 df is .002. The inequality in Ha implies that a two-tailed test is appropriate, so
the P-value is approximately 2(.002) � .004 (MINITAB gives .0051).

7. Since .004 � .01, the null hypothesis can be rejected at either significance level
.05 or .01. It does appear that the true average difference between times is some-
thing other than zero; that is, true average time after the change is different from
that before the change. ■

When the number of pairs is large, the assumption of a normal difference dis-
tribution is not necessary. The CLT validates the resulting z test.

A Confidence Interval for �D

In the same way that the t CI for a single population mean � is based on the t vari-
able T � (X� � �)/(S/�n�), a t confidence interval for �D (� �1 � �2) is based on the
fact that

T �

has a t distribution with n � 1 df. Manipulation of this t variable, as in previous der-
ivations of CIs, yields the following 100(1 � �)% CI:

D� � �D
�
SD /�n�

6.75
��
8.234/�1�6�

d�
�
sD/�n�

d� � 0
�
sD/�n�
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The paired t CI for �D is

d� � t�/2,n�1 � sD/�n�

A one-sided confidence bound results from retaining the relevant sign and
replacing t�/2 by t�.

When n is small, the validity of this interval requires that the distribution of differ-
ences be at least approximately normal. For large n, the CLT ensures that the result-
ing z interval is valid without any restrictions on the distribution of differences.



Adding computerized medical images to a database promises to provide great re-
sources for physicians. However, there are other methods of obtaining such infor-
mation, so the issue of efficiency of access needs to be investigated. The article “The
Comparative Effectiveness of Conventional and Digital Image Libraries” (J. of Au-
diovisual Media in Medicine, 2001: 8–15) reported on an experiment in which 13
computer-proficient medical professionals were timed both while retrieving an image
from a library of slides and while retrieving the same image from a computer data-
base with a Web front end.

Subject: 1 2 3 4 5 6 7 8 9 10 11 12 13
Slide: 30 35 40 25 20 30 35 62 40 51 25 42 33
Digital: 25 16 15 15 10 20 7 16 15 13 11 19 19
Difference: 5 19 25 10 10 10 28 46 25 38 14 23 14

Let �D denote the true mean difference between slide retrieval time (sec) and 
digital retrieval time. Using the paired t confidence interval to estimate �D requires
that the difference distribution be at least approximately normal. The linear pattern
of points in the normal probability plot from MINITAB (Figure 9.7) validates the
normality assumption. (Only 9 points appear because of ties in the differences.
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Figure 9.7 Normal probability plot of the differences in Example 9.10

Relevant summary quantities are �di � 267, �d 2
i � 7201, from which d� � 20.5, sD �

11.96. The t critical value required for a 95% confidence level is t.025,12 � 2.179, and
the 95% CI is

d� � t�/2,n�1 � � 20.5 � (2.179) � � 20.5 � 7.2 � (13.3, 27.7)

We can be highly confident (at the 95% confidence level) that 13.3 ��D � 27.7.
This interval is rather wide, a consequence of the sample standard deviation being
large relative to the sample mean. A sample size much larger than 13 would be
required to estimate with substantially more precision. Notice, however, that 0 lies
well outside the interval, suggesting that �D � 0; this is confirmed by a formal test
of hypotheses. ■

11.96
�
�1�3�

sD
�
�n�



Paired Data and Two-Sample t Procedures
Consider using the two-sample t test on paired data. The numerators of the two test
statistics are identical, since d� � �di/n � [�(xi � yi)]/n � (�xi)/n � (�yi)/n � x� � y�.
The difference between the statistics is due entirely to the denominators. Each test sta-
tistic is obtained by standardizing X� � Y� (� D�). But in the presence of dependence
the two-sample t standardization is incorrect. To see this, recall from Section 5.5 that

V(X � Y) � V(X) � V(Y) � 2 Cov(X, Y)

The correlation between X and Y is

� � Corr(X, Y) � Cov(X, Y)/[�V�(X�)� � �V�(Y�)�]

It follows that

V(X � Y) � � 2
1 � � 2

2 � 2��1�2

Applying this to X� � Y� yields
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V(X� � Y�) � V(D�) � V��
1

n
��Di� � �

� 2
1 � � 2

2 � 2��1�2
��

n

V(Di)
�

n

The two-sample t test is based on the assumption of independence, in which
case � � 0. But in many paired experiments, there will be a strong positive depen-
dence between X and Y (large X associated with large Y), so that � will be positive
and the variance of X� � Y� will be smaller than � 2

1/n � � 2
2/n. Thus whenever there is

positive dependence within pairs, the denominator for the paired t statistic should be
smaller than for t of the independent-samples test. Often two-sample t will be much
closer to zero than paired t, considerably understating the significance of the data.

Similarly, when data is paired, the paired t CI will usually be narrower than the
(incorrect) two-sample t CI. This is because there is typically much less variability
in the differences than in the x and y values.

Paired Versus Unpaired Experiments
In our examples, paired data resulted from two observations on the same subject
(Example 9.9) or experimental object (location in Example 9.8). Even when this can-
not be done, paired data with dependence within pairs can be obtained by matching
individuals or objects on one or more characteristics thought to influence responses.
For example, in a medical experiment to compare the efficacy of two drugs for low-
ering blood pressure, the experimenter’s budget might allow for the treatment of
20 patients. If 10 patients are randomly selected for treatment with the first drug and
another 10 independently selected for treatment with the second drug, an independent-
samples experiment results.

However, the experimenter, knowing that blood pressure is influenced by age
and weight, might decide to create pairs of patients so that within each of the result-
ing 10 pairs, age and weight were approximately equal (though there might be siz-
able differences between pairs). Then each drug would be given to a different patient
within each pair for a total of 10 observations on each drug.

Without this matching (or “blocking”), one drug might appear to outperform
the other just because patients in one sample were lighter and younger and thus more 
susceptible to a decrease in blood pressure than the heavier and older patients in the 



second sample. However, there is a price to be paid for pairing—a smaller number
of degrees of freedom for the paired analysis—so we must ask when one type of
experiment should be preferred to the other.

There is no straightforward and precise answer to this question, but there are
some useful guidelines. If we have a choice between two t tests that are both valid
(and carried out at the same level of significance �), we should prefer the test that
has the larger number of degrees of freedom. The reason for this is that a larger num-
ber of degrees of freedom means smaller � for any fixed alternative value of the
parameter or parameters. That is, for a fixed type I error probability, the probability
of a type II error is decreased by increasing degrees of freedom.

However, if the experimental units are quite heterogeneous in their responses,
it will be difficult to detect small but significant differences between two treatments.
This is essentially what happened in the data set in Example 9.8; for both “treat-
ments” (bottom water and surface water), there is great between-location variability,
which tends to mask differences in treatments within locations. If there is a high pos-
itive correlation within experimental units or subjects, the variance of D� � X� � Y� will
be much smaller than the unpaired variance. Because of this reduced variance, it will
be easier to detect a difference with paired samples than with independent samples.
The pros and cons of pairing can now be summarized as follows.
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1. If there is great heterogeneity between experimental units and a large corre-
lation within experimental units (large positive �), then the loss in degrees of
freedom will be compensated for by the increased precision associated with
pairing, so a paired experiment is preferable to an independent-samples ex-
periment.

2. If the experimental units are relatively homogeneous and the correlation
within pairs is not large, the gain in precision due to pairing will be out-
weighed by the decrease in degrees of freedom, so an independent-samples
experiment should be used.

Of course, values of �2
1, �2

2, and � will not usually be known very precisely, so
an investigator will be required to make an educated guess as to whether Situation 1 or
2 obtains. In general, if the number of observations that can be obtained is large, then
a loss in degrees of freedom (e.g., from 40 to 20) will not be serious; but if the num-
ber is small, then the loss (say, from 16 to 8) because of pairing may be serious if not
compensated for by increased precision. Similar considerations apply when choosing
between the two types of experiments to estimate �1 � �2 with a confidence interval.

EXERCISES Section 9.3 (36–46)

36. Consider the accompanying data on breaking load (kg/25
mm width) for various fabrics in both an unabraded condition
and an abraded condition (“The Effect of Wet Abrasive Wear
on the Tensile Properties of Cotton and Polyester-Cotton
Fabrics,” J. Testing and Evaluation, 1993: 84–93). Use the
paired t test, as did the authors of the cited article, to test H0:
�D � 0 versus Ha: �D � 0 at significance level .01.

Fabric

1 2 3 4 5 6 7 8

U 36.4 55.0 51.5 38.7 43.2 48.8 25.6 49.8
A 28.5 20.0 46.0 34.5 36.5 52.5 26.5 46.5



37. Hexavalent chromium has been identified as an inhalation
carcinogen and an air toxin of concern in a number of differ-
ent locales. The article “Airborne Hexavalent Chromium in
Southwestern Ontario” (J. of Air and Waste Mgmnt. Assoc.,
1997: 905–910) gave the accompanying data on both indoor
and outdoor concentration (nanograms/m3) for a sample of
houses selected from a certain region.

House

1 2 3 4 5 6 7 8 9

Indoor .07 .08 .09 .12 .12 .12 .13 .14 .15
Outdoor .29 .68 .47 .54 .97 .35 .49 .84 .86

House

10 11 12 13 14 15 16 17

Indoor .15 .17 .17 .18 .18 .18 .18 .19
Outdoor .28 .32 .32 1.55 .66 .29 .21 1.02

House

18 19 20 21 22 23 24 25

Indoor .20 .22 .22 .23 .23 .25 .26 .28
Outdoor 1.59 .90 .52 .12 .54 .88 .49 1.24

House

26 27 28 29 30 31 32 33

Indoor .28 .29 .34 .39 .40 .45 .54 .62
Outdoor .48 .27 .37 1.26 .70 .76 .99 .36

a. Calculate a confidence interval for the population mean
difference between indoor and outdoor concentrations
using a confidence level of 95%, and interpret the result-
ing interval.

b. If a 34th house were to be randomly selected from the
population, between what values would you predict the
difference in concentrations to lie?

38. Concrete specimens with varying height-to-diameter ratios
cut from various positions on the original cylinder were
obtained both from a normal-strength concrete mix and
from a high-strength mix. The peak stress (MPa) was deter-
mined for each mix, resulting in the following data (“Effect
of Length on Compressive Strain Softening of Concrete,” J.
of Engr. Mechanics, 1997: 25–35):

Test condition

1 2 3 4 5

Normal 42.8 55.6 49.0 48.7 44.1
High 90.9 93.1 86.3 90.3 88.5

Test condition

6 7 8 9 10

Normal 55.4 50.1 45.7 51.4 43.1
High 88.1 93.2 90.8 90.1 92.6

Test condition

11 12 13 14 15

Normal 46.8 46.7 47.7 45.8 45.4
High 88.2 88.6 91.0 90.0 90.1

a. Construct a comparative boxplot of peak stresses for the
two types of concrete, and comment on any interesting
features.

b. Estimate the difference between true average peak stresses
for the two types of concrete in a way that conveys infor-
mation about precision and reliability. Be sure to check the
plausibility of any assumptions needed in your analysis.
Does it appear plausible that the true average peak stresses
for the two types of concrete are identical? Why or why not?

39. Scientists and engineers frequently wish to compare two dif-
ferent techniques for measuring or determining the value of
a variable. In such situations, interest centers on testing
whether the mean difference in measurements is zero. The
article “Evaluation of the Deuterium Dilution Technique
Against the Test Weighing Procedure for the Determination
of Breast Milk Intake” (Amer. J. Clinical Nutr., 1983:
996–1003) reports the accompanying data on amount of milk
ingested by each of 14 randomly selected infants.

a. Is it plausible that the population distribution of differ-
ences is normal?

b. Does it appear that the true average difference between
intake values measured by the two methods is something
other than zero? Determine the P-value of the test, and
use it to reach a conclusion at significance level .05.

40. Lactation promotes a temporary loss of bone mass to provide
adequate amounts of calcium for milk production. The paper
“Bone Mass Is Recovered from Lactation to Postweaning in
Adolescent Mothers with Low Calcium Intakes” (Amer. J.
Clinical Nutr., 2004: 1322–1326) gave the following data on
total body bone mineral content (TBBMC) (g) for a sample
both during lactation (L) and in the postweaning period (P).
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Infant

1 2 3 4

Isotopic method 1509 1418 1561 1556
Test-weighing method 1498 1254 1336 1565
Difference 11 164 225 �9

Infant

5 6 7 8

Isotopic method 2169 1760 1098 1198
Test-weighing method 2000 1318 1410 1129
Difference 169 442 �312 69

Infant

9 10 11

Isotopic method 1479 1281 1414
Test-weighing method 1342 1124 1468
Difference 137 157 �54

Infant

12 13 14

Isotopic method 1954 2174 2058
Test-weighing method 1604 1722 1518
Difference 350 452 540



Subject

1 2 3 4 5 6 7 8 9 10

L 1928 2549 2825 1924 1628 2175 2114 2621 1843 2541
P 2126 2885 2895 1942 1750 2184 2164 2626 2006 2627

a. Does the data suggest that true average total body bone
mineral content during postweaning exceeds that during
lactation by more than 25 g? State and test the appropri-
ate hypotheses using a significance level of .05. [Note:
The appropriate normal probability plot shows some cur-
vature but not enough to cast substantial doubt on a nor-
mality assumption.]

b. Calculate an upper confidence bound using a 95% con-
fidence level for the true average difference between
TBBMC during postweaning and during lactation.

c. Does the (incorrect) use of the two-sample t test to test the
hypotheses suggested in (a) lead to the same conclusion
that you obtained there? Explain.

41. In an experiment designed to study the effects of illumination
level on task performance (“Performance of Complex Tasks
Under Different Levels of Illumination,” J. Illuminating Eng.,
1976: 235–242), subjects were required to insert a fine-tipped
probe into the eyeholes of ten needles in rapid succession
both for a low light level with a black background and a high-
er level with a white background. Each data value is the time
(sec) required to complete the task.

Does the data indicate that the higher level of illumination
yields a decrease of more than 5 sec in true average task
completion time? Test the appropriate hypotheses using the
P-value approach.

42. It has been estimated that between 1945 and 1971, as many
as 2 million children were born to mothers treated with di-
ethylstilbestrol (DES), a nonsteroidal estrogen recommended
for pregnancy maintenance. The FDA banned this drug in
1971 because research indicated a link with the incidence of
cervical cancer. The article “Effects of Prenatal Exposure
to Diethylstilbestrol (DES) on Hemispheric Laterality and
Spatial Ability in Human Males” (Hormones and Behavior,
1992: 62–75) discussed a study in which 10 males exposed to
DES and their unexposed brothers underwent various tests.
This is the summary data on the results of a spatial ability test:
x� � 12.6 (exposed), y� � 13.7, and standard error of mean dif-
ference � .5. Test at level .05 to see whether exposure is asso-
ciated with reduced spatial ability by obtaining the P-value.

43. Cushing’s disease is characterized by muscular weakness
due to adrenal or pituitary dysfunction. To provide effective

treatment, it is important to detect childhood Cushing’s disease
as early as possible. Age at onset of symptoms and age at diag-
nosis for 15 children suffering from the disease were given in
the article “Treatment of Cushing’s Disease in Childhood and
Adolescence by Transphenoidal Microadenomectomy” (New
Engl. J. of Med., 1984: 889). Here are the values of the differ-
ences between age at onset of symptoms and age at diagnosis:

�24 �12 �55 �15 �30 �60 �14 �21
�48 �12 �25 �53 �61 �69 �80

a. Does the accompanying normal probability plot cast
strong doubt on the approximate normality of the popu-
lation distribution of differences?

b. Calculate a lower 95% confidence bound for the popula-
tion mean difference, and interpret the resulting bound.

c. Suppose the (age at diagnosis) � (age at onset) differ-
ences had been calculated. What would be a 95% upper
confidence bound for the corresponding population mean
difference?

44. Example 7.11 gave data on the modulus of elasticity obtained
1 minute after loading in a certain configuration. The cited
article also gave the values of modulus of elasticity obtained
4 weeks after loading for the same lumber specimens. The
data is presented here.

Observation 1 min 4 weeks Difference

1 10,490 9,110 1380
2 16,620 13,250 3370
3 17,300 14,720 2580
4 15,480 12,740 2740
5 12,970 10,120 2850
6 17,260 14,570 2690
7 13,400 11,220 2180
8 13,900 11,100 2800
9 13,630 11,420 2210

10 13,260 10,910 2350
11 14,370 12,110 2260
12 11,700 8,620 3080
13 15,470 12,590 2880
14 17,840 15,090 2750
15 14,070 10,550 3520
16 14,760 12,230 2530

Calculate and interpret an upper confidence bound for the
true average difference between 1-minute modulus and 4-
week modulus; first check the plausibility of any necessary
assumptions.
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Subject

1 2 3 4 5

Black 25.85 28.84 32.05 25.74 20.89
White 18.23 20.84 22.96 19.68 19.50

Subject

6 7 8 9

Black 41.05 25.01 24.96 27.47
White 24.98 16.61 16.07 24.59



45. The paper “Slender High-Strength RC Columns Under Ec-
centric Compression” (Magazine of Concrete Res., 2005:
361–370) gave the accompanying data on cylinder strength
(MPa) for various types of columns cured under both moist
conditions and laboratory drying conditions.

a. Estimate the difference in true average strength under the
two drying conditions in a way that conveys information
about reliability and precision, and interpret the estimate.
What does the estimate suggest about how true average
strength under moist drying conditions compares to that
under laboratory drying conditions?

b. Check the plausibility of any assumptions that underlie
your analysis of (a).

46. Construct a paired data set for which t � �, so that the data
is highly significant when the correct analysis is used, yet t
for the two-sample t test is quite near zero, so the incorrect
analysis yields an insignificant result.
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9.4 Inferences Concerning a Difference 
Between Population Proportions

Having presented methods for comparing the means of two different populations, we
now turn attention to the comparison of two population proportions. Regard an indi-
vidual or object as a success S if he/she/it processes some characteristic of interest
(someone who graduated from college, a refrigerator with an icemaker, etc.). Let

p1 � the proportion of S’s in population #1
p2 � the proportion of S’s in population #2

Alternatively, p1(p2) can be regarded as the probability that a randomly selected indi-
vidual or object from the first (second) population is a success.

Suppose that a sample of size m is selected from the first population, and inde-
pendently, a sample of size n is selected from the second one. Let X denote the num-
ber of S’s in the first sample and Y be the number of S’s in the second. Independence
of the two samples implies that X and Y are independent. Provided that the two sam-
ple sizes are much smaller than the corresponding population sizes, X and Y can be
regarded as having binomial distributions.

The obvious estimator for p1 � p2, the difference in population proportions, is
the corresponding difference in sample proportions X/m � Y/n. With p̂1 � X/m and
p̂2 � Y/n, the estimator of p1 � p2 can be expressed as p̂1 � p̂2.

PROPOSITION Let X 	 Bin(m, p1) and Y 	 Bin(n, p2) with X and Y independent variables. Then

E( p̂1 � p̂2) � p1 � p2

so p̂1 � p̂2 is an unbiased estimator of p1 � p2, and

V(p̂1 � p̂2) � � (where qi � 1 � pi) (9.3)
p2q2
�

n

p1q1
�

m

Proof Since E(X) � mp1 and E(Y) � np2,

E� � � � E(X) � E(Y) � mp1 � np2 � p1 � p2

Since V(X) � mp1q1, V(Y) � np2q2, and X and Y are independent,

V� � � � V� � � V� � � V(X) � V(Y) � �
■
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Type

1 2 3 4 5 6

M: 82.6 87.1 89.5 88.8 94.3 80.0
LD: 86.9 87.3 92.0 89.3 91.4 85.9

7 8 9 10 11 12

M: 86.7 92.5 97.8 90.4 94.6 91.6
LD: 89.4 91.8 94.3 92.0 93.1 91.3



We will focus first on situations in which both m and n are large. Then because
p̂1 and p̂2 individually have approximately normal distributions, the estimator p̂1 � p̂2

also has approximately a normal distribution. Standardizing p̂1 � p̂2 yields a variable
Z whose distribution is approximately standard normal:

Z �

A Large-Sample Test Procedure
Analogously to the hypotheses for �1 � �2, the most general null hypothesis an
investigator might consider would be of the form H0: p1 � p2 � �0, where �0 is again
a specified number. Although for population means the case �0 � 0 presented no dif-
ficulties, for population proportions the cases �0 � 0 and �0 � 0 must be considered
separately. Since the vast majority of actual problems of this sort involve �0 � 0
(i.e., the null hypothesis p1 � p2), we will concentrate on this case. When H0:
p1 � p2 � 0 is true, let p denote the common value of p1 and p2 (and similarly for q).
Then the standardized variable

Z � (9.4)

has approximately a standard normal distribution when H0 is true. However, this Z
cannot serve as a test statistic because the value of p is unknown—H0 asserts only
that there is a common value of p, but does not say what that value is. A test statis-
tic results from replacing p and q in (9.4) by appropriate estimators.

Assuming that p1 � p2 � p, instead of separate samples of size m and n from
two different populations (two different binomial distributions), we really have a sin-
gle sample of size m � n from one population with proportion p. The total number
of individuals in this combined sample having the characteristic of interest is X � Y.
The estimator of p is then

p̂ � � p̂1 � p̂2 (9.5)

The second expression for p̂ shows that it is actually a weighted average of estima-
tors p̂1 and p̂2 obtained from the two samples. Using p̂ and p̂ � 1 � p̂ in place of p
and q in (9.4) gives a test statistic having approximately a standard normal distribu-
tion when H0 is true.

n
�
m � n

m
�
m � n

X � Y
�
m � n

p̂1 � p̂2 � 0
��

�p�q����m

1
�� �� �

1

n����

p̂1 � p̂2 � (p1 � p2)
���

��
p�m

1q�1
���� �

p�2

n

q�2
��
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Null hypothesis: H0: p1 � p2 � 0

Test statistic value (large samples): z �

Alternative Hypothesis Rejection Region for Approximate Level � Test

Ha: p1 � p2 � 0 z � z�

Ha: p1 � p2 � 0 z � �z�

Ha: p1 � p2 � 0 either z � z�/2 or z � �z�/2

A P-value is calculated in the same way as for previous z tests.

p̂1 � p̂2
��

�p�q����m

1
�� �� �

1

n����ˆ ˆ



Some defendants in criminal proceedings plead guilty and are sentenced without a trial,
whereas others who plead innocent are subsequently found guilty and then are sen-
tenced. In recent years, legal scholars have speculated as to whether sentences of those
who plead guilty differ in severity from sentences for those who plead innocent and are
subsequently judged guilty. Consider the accompanying data on defendants from San
Francisco County accused of robbery, all of whom had previous prison records (“Does
It Pay to Plead Guilty? Differential Sentencing and the Functioning of Criminal Courts,”
Law and Society Rev., 1981–1982: 45–69). Does this data suggest that the proportion of
all defendants in these circumstances who plead guilty and are sent to prison differs from
the proportion who are sent to prison after pleading innocent and being found guilty?
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Example 9.11

Plea

Guilty Not Guilty

Number judged guilty m � 191 n � 64
Number sentenced to prison x � 101 y � 56
Sample proportion p̂1 � .529 p̂2 � .875

Let p1 and p2 denote the two population proportions. The hypotheses of interest
are H0: p1 � p2 � 0 versus Ha: p1 � p2 � 0. At level .01, H0 should be rejected if
either z � z.005 � 2.58 or if z � �2.58. The combined estimate of the common success
proportion is p̂ � (101 � 56)/(191 � 64) � .616. The test statistic value is

z � � � �4.94

Since �4.94 � �2.58, H0 must be rejected.
The P-value for a two-tailed z test is

P-value � 2[1 � �(�z �)] � 2[1 � �(4.94)] � 2[1 � �(3.49)] � .0004

A more extensive standard normal table yields P-value � .0000006. This P-value is
so minuscule that at any reasonable level �, H0 should be rejected. The data very
strongly suggests that p1 � p2 and, in particular, that initially pleading guilty may be
a good strategy as far as avoiding prison is concerned.

The cited article also reported data on defendants in several other counties.
The authors broke down the data by type of crime (burglary or robbery) and by
nature of prior record (none, some but no prison, and prison). In every case, the con-
clusion was the same: Among defendants judged guilty, those who pleaded that way
were less likely to receive prison sentences. ■

Type II Error Probabilities and Sample Sizes
Here the determination of � is a bit more cumbersome than it was for other large-
sample tests. The reason is that the denominator of Z is an estimate of the standard
deviation of p̂ � p̂2, assuming that p1 � p2 � p. When H0 is false, p̂1 � p̂2 must be
restandardized using

�p̂1�p̂2
� �� ���� (9.6)

p2q2
�

n

p1q1
�

m

�.346
�
.070

.529 � .875
���

�(.616)(�.384)���
1

1

91
� �� �

6

1

4
���



The form of � implies that � is not a function of just p1 � p2, so we denote it by
�(p1, p2).

356 CHAPTER 9 Inferences Based on Two Samples

Alternative Hypothesis �( p1, p2)

Ha: p1 � p2 � 0 �� �
Ha: p1 � p2 � 0 1 � �� �
Ha: p1 � p2 � 0 �� �

��� �
where p� � (mp1 � np2)/(m � n), q� � (mq1 � nq2)/(m � n), and � is given
by (9.6).

�z�/2�p�q���
m

1
��� �

1

n
��� � (p1 � p2)

����
�

z�/2�p�q���
m

1
��� �

1

n
��� � (p1 � p2)

����
�

�z��p�q���
m

1
��� �

1

n
��� � (p1 � p2)

����
�

z��p�q���
m

1
��� �

1

n
��� � (p1 � p2)

���
�

For the case m � n, the level � test has type II error probability � at the alter-
native values p1, p2 with p1 � p2 � d when

n � (9.7)

for an upper- or lower-tailed test, with �/2 replacing � for a two-tailed test.

�z��(p�1��� p�2)�(q�1��� q�2)�/2� � z��p�1q�1��� p�2q�2��
2

�����
d 2

Proof For the upper-tailed test (Ha: p1 � p2 � 0),

�(p1, p2) � P� p̂1 � p̂2 � z��p̂p̂��
m

1
��� �

1

n
����

� P � � �
When m and n are both large,

p̂ � (mp̂1 � np̂2)/(m � n) � (mp1 � np2)/(m � n) � p�
and q̂ � q�, which yields the previous (approximate) expression for �(p1, p2). ■

Alternatively, for specified p1, p2 with p1 � p2 � d, the sample sizes necessary
to achieve �(p1, p2) � � can be determined. For example, for the upper-tailed test,
we equate �z� to the argument of �(�) (i.e., what’s inside the parentheses) in the fore-
going box. If m � n, there is a simple expression for the common value.

z��p̂q̂��
m

1
��� �

1

n
��� � (p1 � p2)

���
�

(p̂1 � p̂2 � (p1 � p2))
���

�



One of the truly impressive applications of statistics occurred in connection with the
design of the 1954 Salk polio vaccine experiment and analysis of the resulting data.
Part of the experiment focused on the efficacy of the vaccine in combating paralytic
polio. Because it was thought that without a control group of children, there would be
no sound basis for assessment of the vaccine, it was decided to administer the vaccine
to one group and a placebo injection (visually indistinguishable from the vaccine but
known to have no effect) to a control group. For ethical reasons and also because it
was thought that the knowledge of vaccine administration might have an effect on
treatment and diagnosis, the experiment was conducted in a double-blind manner.
That is, neither the individuals receiving injections nor those administering them
actually knew who was receiving vaccine and who was receiving the placebo (sam-
ples were numerically coded)—remember, at that point it was not at all clear whether
the vaccine was beneficial.

Let p1 and p2 be the probabilities of a child getting paralytic polio for the control
and treatment conditions, respectively. The objective was to test H0: p1 � p2 � 0 versus
Ha: p1 � p2 � 0 (the alternative states that a vaccinated child is less likely to contract
polio than an unvaccinated child). Supposing the true value of p1 is .0003 (an incidence
rate of 30 per 100,000), the vaccine would be a significant improvement if the incidence
rate was halved—that is, p2 � .00015. Using a level � � .05 test, it would then be rea-
sonable to ask for sample sizes for which � � .1 when p1 � .0003 and p2 � .00015.
Assuming equal sample sizes, the required n is obtained from (9.7) as

n �

� [(.0349 � .0271)/.00015]2 � 171,000

The actual data for this experiment follows. Sample sizes of approximately
200,000 were used. The reader can easily verify that z � 6.43, a highly significant
value. The vaccine was judged a resounding success!

Placebo: m � 201,229, x � number of cases of paralytic polio � 110

Vaccine: n � 200,745, y � 33 ■

A Large-Sample Confidence Interval for p1 � p2

As with means, many two-sample problems involve the objective of comparison
through hypothesis testing, but sometimes an interval estimate for p1 � p2 is appro-
priate. Both p̂1 � X/m and p̂2 � Y/n have approximate normal distributions when m
and n are both large. If we identify 	 with p1 � p2, then 	̂ � p̂1 � p̂2 satisfies the con-
ditions necessary for obtaining a large-sample CI. In particular, the estimated stan-
dard deviation of 	̂ is �(p̂�1 q̂�1/�m�)��� (�p̂2�q̂2�/n�)�. The 100(1 � �)% interval 	̂ � z�/2 ��̂	̂

then becomes

[1.645�(.�5�)(�.0�0�0�4�5�)(�1�.9�9�9�5�5�)� � 1.28�(.�0�0�0�1�5�)(�.9�9�9�8�5�)��� (�.0�0�0�3�)(�.9�9�9�7�)�]2

��������
(.0003 � .00015)2
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Example 9.12

p̂1 � p̂2 � z�/2�� ����p̂2q̂2
�

n

p̂1q̂1
�

m

Notice that the estimated standard deviation of p̂1 � p̂2 (the square-root expression)
is different here from what it was for hypothesis testing when �0 � 0.

Recent research has shown that the actual confidence level for the traditional CI
just given can sometimes deviate substantially from the nominal level (the level you
think you are getting when you use a particular z critical value—e.g., 95% when
z�/2 � 1.96). The suggested improvement is to add one success and one failure to each



of the two samples and then replace the p̂s and q̂s in the foregoing formula by p~s and
q~s where p~1 � (x � 1)/(m � 2), etc. This interval can also be used when sample sizes
are quite small.

The authors of the article “Adjuvant Radiotherapy and Chemotherapy in Node-
Positive Premenopausal Women with Breast Cancer” (New Engl. J. of Med., 1997:
956–962) reported on the results of an experiment designed to compare treating can-
cer patients with chemotherapy only to treatment with a combination of chemother-
apy and radiation. Of the 154 individuals who received the chemotherapy-only 
treatment, 76 survived at least 15 years, whereas 98 of the 164 patients who received
the hybrid treatment survived at least that long. With p1 denoting the proportion of all
such women who, when treated with just chemotherapy, survive at least 15 years and
p2 denoting the analogous proportion for the hybrid treatment, p̂1 � 76/154 � .494
and 98/164 � .598. A confidence interval for the difference between proportions
based on the traditional formula with a confidence level of approximately 99% is

.494 � .598 � (2.58)��
(.494

1

)

5�(

4

.506)
��� �

(.5�98

1

)

6

(

4

.40�2)
�� � �.104 � .143 � ( � .247, .039)

At the 99% confidence level, it is plausible that �.247 � p1 � p2 � .039. This inter-
val is reasonably wide, a reflection of the fact that the sample sizes are not terribly
large for this type of interval. Notice that 0 is one of the plausible values of p1 � p2

suggesting that neither treatment can be judged superior to the other. Using p~1 �
77/156 � .494, q~1 � 79/156 � .506, p~2 � .596, q~2 � .404 based on sample sizes of
156 and 166, respectively, the “improved” interval here is identical to the earlier
interval. ■

Small-Sample Inferences
On occasion an inference concerning p1 � p2 may have to be based on samples for
which at least one sample size is small. Appropriate methods for such situations are
not as straightforward as those for large samples, and there is more controversy
among statisticians as to recommended procedures. One frequently used test, called
the Fisher–Irwin test, is based on the hypergeometric distribution. Your friendly
neighborhood statistician can be consulted for more information.
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Example 9.13

EXERCISES Section 9.4 (47–56)

47. Is someone who switches brands because of a financial
inducement less likely to remain loyal than someone who
switches without inducement? Let p1 and p2 denote the true
proportions of switchers to a certain brand with and without
inducement, respectively, who subsequently make a repeat
purchase. Test H0: p1 � p2 � 0 versus Ha: p1 � p2 � 0 using
� � .01 and the following data:

m � 200 number of successes � 30

n � 600 number of successes � 180

(Similar data is given in “Impact of Deals and Deal Retraction
on Brand Switching,” J. Marketing, 1980: 62–70.)

48. A sample of 300 urban adult residents of a particular state
revealed 63 who favored increasing the highway speed limit

from 55 to 65 mph, whereas a sample of 180 rural residents
yielded 75 who favored the increase. Does this data indicate
that the sentiment for increasing the speed limit is different
for the two groups of residents?
a. Test H0: p1 � p2 versus Ha: p1 � p2 using � � .05, where p1

refers to the urban population.
b. If the true proportions favoring the increase are actually

p1 � .20 (urban) and p2 � .40 (rural), what is the proba-
bility that H0 will be rejected using a level .05 test with
m � 300, n � 180?

49. It is thought that the front cover and the nature of the first
question on mail surveys influence the response rate. The
article “The Impact of Cover Design and First Questions on
Response Rates for a Mail Survey of Skydivers” (Leisure



Sciences, 1991: 67–76) tested this theory by experimenting
with different cover designs. One cover was plain; the other
used a picture of a skydiver. The researchers speculated that
the return rate would be lower for the plain cover.

Cover Number Sent Number Returned

Plain 207 104
Skydiver 213 109

Does this data support the researchers’ hypothesis? Test
the relevant hypotheses using � � .10 by first calculating a
P-value.

50. Do teachers find their work rewarding and satisfying? The
article “Work-Related Attitudes” (Psychological Reports,
1991: 443–450) reports the results of a survey of 395 ele-
mentary school teachers and 266 high school teachers. Of the
elementary school teachers, 224 said they were very satisfied
with their jobs, whereas 126 of the high school teachers were
very satisfied with their work. Estimate the difference between
the proportion of all elementary school teachers who are sat-
isfied and all high school teachers who are satisfied by cal-
culating and interpreting a CI.

51. Olestra is a fat substitute approved by the FDA for use in snack
foods. Because there have been anecdotal reports of gastroin-
testinal problems associated with olestra consumption, a ran-
domized, double-blind, placebo-controlled experiment was
carried out to compare olestra potato chips to regular potato
chips with respect to GI symptoms (“Gastrointestinal Sym-
ptoms Following Consumption of Olestra or Regular Tri-
glyceride Potato Chips,” J. of the Amer. Med. Assoc., 1998:
150–152). Among 529 individuals in the TG control group,
17.6% experienced an adverse GI event, whereas among the
563 individuals in the olestra treatment group, 15.8% experi-
enced such an event.
a. Carry out a test of hypotheses at the 5% significance

level to decide whether the incidence rate of GI problems
for those who consume olestra chips according to the
experimental regimen differs from the incidence rate for
the TG control treatment.

b. If the true percentages for the two treatments were
15% and 20%, respectively, what sample sizes (m � n)
would be necessary to detect such a difference with
probability .90?

52. Ionizing radiation is being given increasing attention as a
method for preserving horticultural products. The article “The
Influence of Gamma-Irradiation on the Storage Life of Red
Variety Garlic” (J. of Food Processing and Preservation,
1983: 179–183) reports that 153 of 180 irradiated garlic bulbs
were marketable (no external sprouting, rotting, or softening)
240 days after treatment, whereas only 119 of 180 untreated
bulbs were marketable after this length of time. Does this data
suggest that ionizing radiation is beneficial as far as mar-
ketability is concerned?

53. In medical investigations, the ratio 	 � p1/p2 is often of
more interest than the difference p1 � p2 (e.g., individuals

given treatment 1 are how many times as likely to recover as
those given treatment 2?). Let 	̂ � p̂1/p̂2. When m and n are
both large, the statistic ln(	̂) has approximately a normal
distribution with approximate mean value ln(	) and approx-
imate standard deviation [(m � x)/(mx) � (n � y)/(ny)]1/2.
a. Use these facts to obtain a large-sample 95% CI formula

for estimating ln(	), and then a CI for 	 itself.
b. Return to the heart attack data of Example 1.3, and cal-

culate an interval of plausible values for 	 at the 95%
confidence level. What does this interval suggest about
the efficacy of the aspirin treatment?

54. Sometimes experiments involving success or failure
responses are run in a paired or before/after manner.
Suppose that before a major policy speech by a political
candidate, n individuals are selected and asked whether (S)
or not (F) they favor the candidate. Then after the speech the
same n people are asked the same question. The responses
can be entered in a table as follows:

where X1 � X2 � X3 � X4 � n. Let p1, p2, p3, and p4 denote
the four cell probabilities, so that p1 � P(S before and S
after), and so on. We wish to test the hypothesis that the true
proportion of supporters (S) after the speech has not increased
against the alternative that it has increased.
a. State the two hypotheses of interest in terms of p1, p2, p3,

and p4.
b. Construct an estimator for the after/before difference in

success probabilities.
c. When n is large, it can be shown that the rv (Xi � Xj)/n has

approximately a normal distribution with variance given
by [pi � pj � (pi � pj)2]/n. Use this to construct a test sta-
tistic with approximately a standard normal distribution
when H0 is true (the result is called McNemar’s test).

d. If x1 � 350, x2 � 150, x3 � 200, and x4 � 300, what do
you conclude?

55. Two different types of alloy, A and B, have been used to
manufacture experimental specimens of a small tension link
to be used in a certain engineering application. The ultimate
strength (ksi) of each specimen was determined, and the
results are summarized in the accompanying frequency
distribution.

A B

26 – � 30 6 4
30 – � 34 12 9
34 – � 38 15 19
38 – � 42 7 10

m � 40 n � 42

S F
After

X2X1

X4X3

S

F

Before
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Compute a 95% CI for the difference between the true pro-
portions of all specimens of alloys A and B that have an ulti-
mate strength of at least 34 ksi.

56. Using the traditional formula, a 95% CI for p1 � p2 is to
be constructed based on equal sample sizes from the two

populations. For what value of n (� m) will the resulting
interval have width at most .1 irrespective of the results of
the sampling?
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Methods for comparing two population variances (or standard deviations) are occa-
sionally needed, though such problems arise much less frequently than those involv-
ing means or proportions. For the case in which the populations under investigation
are normal, the procedures are based on a new family of probability distributions.

The F Distribution
The F probability distribution has two parameters, denoted by �1 and �2. The param-
eter �1 is called the number of numerator degrees of freedom, and �2 is the number
of denominator degrees of freedom; here �1 and �2 are positive integers. A random
variable that has an F distribution cannot assume a negative value. Since the density
function is complicated and will not be used explicitly, we omit the formula. There
is an important connection between an F variable and chi-squared variables. If X1

and X2 are independent chi-squared rv’s with �1 and �2 df, respectively, then the rv

F � (9.8)

the ratio of the two chi-squared variables divided by their respective degrees of free-
dom, can be shown to have an F distribution.

Figure 9.8 illustrates the graph of a typical F density function. Analogous to
the notation t�,� and �2

�,�, we use F�,�1,�2
for the point on the axis that captures � of

the area under the F density curve with �1 and �2 df in the upper tail. The density
curve is not symmetric, so it would seem that both upper- and lower-tail critical
values must be tabulated. This is not necessary, though, because of the following
property.

X1/�1
�
X2/�2
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F density curve with
  1 and   2 df��

F  , 1,  2� � �

Shaded area �  �

f

Figure 9.8 An F density curve and critical value

F1��,�1,�2
� 1/F�,�2,�1

(9.9)



Appendix Table A.9 gives F�,�1,�2
for � � .10, .05, .01, and .001, and various

values of �1 (in different columns of the table) and �2 (in different groups of rows of
the table). For example, F.05,6,10 � 3.22 and F.05,10,6 � 4.06. To obtain F.95,6,10, the
number which captures .95 of the area to its right (and thus .05 to the left) under the
F curve with �1 � 6 and �2 � 10, we use (9.9): F.95,6,10 � 1/F.05,10,6 � 1/4.06 � .246.

Inferential Methods
A test procedure for hypotheses concerning the ratio � 2

1/� 2
2 as well as a CI for this 

ratio are based on the following result.
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THEOREM Let X1, . . . , Xm be a random sample from a normal distribution with variance
� 2

1, let Y1, . . . , Yn be another random sample (independent of the Xis) from a
normal distribution with variance � 2

2, and let S 2
1 and S 2

2 denote the two sample
variances. Then the rv

F � (9.10)

has an F distribution with �1 � m � 1 and �2 � n � 1.

S 2
1/� 2

1
�
S 2

2/� 2
2

This theorem results from combining (9.8) with the fact that the variables
(m � 1)S 2

1/� 2
1 and (n � 1)S 2

2/� 2
2 each have a chi-squared distribution with m � 1

and n � 1 df, respectively (see Section 7.4). Because F involves a ratio rather
than a difference, the test statistic is the ratio of sample variances. The claim that
� 2

1 � � 2
2 is then rejected if the ratio differs by too much from 1.

The F Test for Equality of Variances

Null hypothesis: H0: � 2
1 � � 2

2

Test statistic value: f � s 2
1/s 2

2

Alternative Hypothesis Rejection Region for a Level � Test

Ha: � 2
1 � � 2

2 f � F�,m�1,n�1

Ha: � 2
1 � � 2

2 f � F1��,m�1,n�1

Ha: � 2
1 � � 2

2 either f � F�/2,m�1,n�1 or f � F1��/2,m�1,n�1

Since critical values are tabled only for � � .10, .05, .01, and .001, the two-
tailed test can be performed only at levels .20, .10, .02, and .002. Other F crit-
ical values can be obtained from statistical software.

On the basis of data reported in a 1979 article in the Journal of Gerontology (“Serum
Ferritin in an Elderly Population,” pp. 521–524), the authors concluded that the ferritin
distribution in the elderly had a smaller variance than in the younger adults. (Serum
ferritin is used in diagnosing iron deficiency.) For a sample of 28 elderly men, the
sample standard deviation of serum ferritin (mg/L) was s1 � 52.6; for 26 young men,
the sample standard deviation was s2 � 84.2. Does this data support the conclusion
as applied to men?

Example 9.14



Let � 2
1 and � 2

2 denote the variance of the serum ferritin distributions for el-
derly men and young men, respectively. We wish to test H0: � 2

1 � � 2
2 versus Ha: � 2

1 �
� 2

2. At level .01, H0 will be rejected if f � F.99,27,25. To obtain the critical value, we
need F.01,25,27. From Appendix Table A.9, F.01,25,27 � 2.54, so F.99,27,25 � 1/2.54 � .394.
The computed value of F is (52.6)2/(84.2)2 � .390. Since .390 � .394, H0 is reject-
ed at level .01 in favor of Ha, so variability does appear to be greater in young men
than in elderly men. ■

P-Values for F Tests
Recall that the P-value for an upper-tailed t test is the area under the relevant t curve
(the one with appropriate df) to the right of the calculated t. In the same way, the P-
value for an upper-tailed F test is the area under the F curve with appropriate numer-
ator and denominator df to the right of the calculated f. Figure 9.9 illustrates this for
a test based on �1 � 4 and �2 � 6.
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f = 6.23

Shaded area = P-value
                     = .025

F curve for
v1 = 4, v2 = 6

Figure 9.9 A P-value for an upper-tailed F test

Tabulation of F curve upper-tail areas is much more cumbersome than for t
curves because two df’s are involved. For each combination of �1 and �2, our F table
gives only the four critical values that capture areas .10, .05, .01, and .001. Figure 9.10
shows what can be said about the P-value depending on where f falls relative to the
four critical values.

v2

v1

� 1  .  .  . 4          .  .  .

6 .10
.05
.01

.001

3.18
4.53
9.15

21.92

P-value > .10 P-value < .001

.05 < P-value < .10

.01 < P-value < .05 .001 < P-value < .01

Figure 9.10 Obtaining P-value information from the F table for an upper-tailed F test



For example, for a test with �1 � 4 and �2 � 6,

f � 5.70 d .01 � P-value � .05

f � 2.16 d P-value � .10

f � 25.03 d P-value � .001

Only if f equals a tabulated value do we obtain an exact P-value (e.g., if f � 4.53,
then P-value � .05). Once we know that .01 � P-value � .05, H0 would be rejected
at a significance level of .05 but not at a level of .01. When P-value � .001, H0

should be rejected at any reasonable significance level.
The F tests discussed in succeeding chapters will all be upper-tailed. If, however,

a lower-tailed F test is appropriate, then (9.9) should be used to obtain lower-tailed crit-
ical values so that a bound or bounds on the P-value can be established. In the case of
a two-tailed test, the bound or bounds from a one-tailed test should be multiplied by 2.
For example, if f � 5.82 when �1 � 4 and �2 � 6, then since 5.82 falls between the .05
and .01 critical values, 2(.01) � P-value � 2(.05), giving .02 � P-value � .10. H0

would then be rejected if � � .10 but not if � � .01. In this case, we cannot say from
our table what conclusion is appropriate when � � .05 (since we don’t know whether
the P-value is smaller or larger than this). However, statistical software shows that the
area to the right of 5.82 under this F curve is .029, so the P-value is .058 and the null
hypothesis should therefore not be rejected at level .05 (.058 is the smallest � for which
H0 can be rejected and our chosen � is smaller than this). Various statistical software
packages will, of course, provide an exact P-value for any F test.

A Confidence Interval for �1/�2

The CI for � 2
1/� 2

2 is based on replacing F in the probability statement

P(F1��/2,�1,�2
� F � F�/2,�1,�2

) � 1 � �

by the F variable (9.10) and manipulating the inequalities to isolate � 2
1/� 2

2. An inter-
val for �1/�2 results from taking the square root of each limit. The details are left for
an exercise.
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EXERCISES Section 9.5 (57–64)

57. Obtain or compute the following quantities:
a. F.05,5,8 b. F.05,8,5 c. F.95,5,8 d. F.95,8,5

e. The 99th percentile of the F distribution with �1 � 10,
�2 � 12

f. The 1st percentile of the F distribution with �1 � 10,
�2 � 12

g. P(F � 6.16) for �1 � 6, �2 � 4
h. P(.177 � F � 4.74) for �1 � 10, �2 � 5

58. Give as much information as you can about the P-value
of the F test in each of the following situations:
a. �1 � 5, �2 � 10, upper-tailed test, f � 4.75
b. �1 � 5, �2 � 10, upper-tailed test, f � 2.00
c. �1 � 5, �2 � 10, two-tailed test, f � 5.64
d. �1 � 5, �2 � 10, lower-tailed test, f � .200
e. �1 � 35, �2 � 20, upper-tailed test, f � 3.24

59. Return to the data on maximum lean angle given in Ex-
ercise 28 of this chapter. Carry out a test at significance
level .10 to see whether the population standard deviations
for the two age groups are different (normal probability
plots support the necessary normality assumption).

60. Refer to Example 9.7. Does the data suggest that the stan-
dard deviation of the strength distribution for fused speci-
mens is smaller than that for not-fused specimens? Carry
out a test at significance level .01 by obtaining as much
information as you can about the P-value.

61. Toxaphene is an insecticide that has been identified as a pol-
lutant in the Great Lakes ecosystem. To investigate the effect
of toxaphene exposure on animals, groups of rats were given
toxaphene in their diet. The article “Reproduction Study of



Toxaphene in the Rat” (J. of Environ. Sci. Health, 1988:
101–126) reports weight gains (in grams) for rats given a
low dose (4 ppm) and for control rats whose diet did not
include the insecticide. The sample standard deviation for
23 female control rats was 32 g and for 20 female low-dose
rats was 54 g. Does this data suggest that there is more vari-
ability in low-dose weight gains than in control weight
gains? Assuming normality, carry out a test of hypotheses at
significance level .05.

62. In a study of copper deficiency in cattle, the copper values
(�g Cu/100 mL blood) were determined both for cattle
grazing in an area known to have well-defined molybdenum
anomalies (metal values in excess of the normal range of
regional variation) and for cattle grazing in a nonanomalous
area (“An Investigation into Copper Deficiency in Cattle in the
Southern Pennines,” J. Agricultural Soc. Cambridge, 1972:
157–163), resulting in s1 � 21.5 (m � 48) for the anomalous
condition and s2 � 19.45 (n � 45) for the nonanomalous con-
dition. Test for the equality versus inequality of population

variances at significance level .10 by using the P-value
approach.

63. The article “Enhancement of Compressive Properties of
Failed Concrete Cylinders with Polymer Impregnation”
(J. Testing and Evaluation, 1977: 333–337) reports the fol-
lowing data on impregnated compressive modulus (psi �
106) when two different polymers were used to repair
cracks in failed concrete.

Epoxy 1.75 2.12 2.05 1.97
MMA prepolymer 1.77 1.59 1.70 1.69

Obtain a 90% CI for the ratio of variances by first using the
method suggested in the text to obtain a general confidence
interval formula.

64. Reconsider the data of Example 9.6, and calculate a 95%
upper confidence bound for the ratio of the standard devia-
tion of the triacetate porosity distribution to that of the cot-
ton porosity distribution.
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SUPPLEMENTARY EXERCISES (65–93)

65. The accompanying summary data on compression strength
(lb) for 12 � 10 � 8 in. boxes appeared in the article
“Compression of Single-Wall Corrugated Shipping Con-
tainers Using Fixed and Floating Test Platens” (J. Testing and
Evaluation, 1992: 318–320). The authors stated that “the
difference between the compression strength using fixed
and floating platen method was found to be small compared
to normal variation in compression strength between identi-
cal boxes.” Do you agree? Is your analysis predicated on
any assumptions?

Sample Sample Sample 
Method Size Mean SD

Fixed 10 807 27
Floating 10 757 41

66. The authors of the article “Dynamics of Canopy Structure
and Light Interception in Pinus elliotti, North Florida”
(Ecological Monographs, 1991: 33–51) planned an experi-
ment to determine the effect of fertilizer on a measure of
leaf area. A number of plots were available for the study,
and half were selected at random to be fertilized. To ensure
that the plots to receive the fertilizer and the control plots
were similar, before beginning the experiment tree density
(the number of trees per hectare) was recorded for eight
plots to be fertilized and eight control plots, resulting in the
given data. MINITAB output follows.

Fertilizer plots 1024 1216 1312 1280
1216 1312 992 1120

Control plots 1104 1072 1088 1328
1376 1280 1120 1200

Two sample T for fertilizer vs control

N Mean StDev SE Mean
fertilize 8 1184 126 44
control 8 1196 118 42

95% CI for mu fertilize � mu control: (�144,
120)

a. Construct a comparative boxplot and comment on any
interesting features.

b. Would you conclude that there is a significant difference
in the mean tree density for fertilizer and control plots?
Use � � .05.

c. Interpret the given confidence interval.

67. Is the response rate for questionnaires affected by including
some sort of incentive to respond along with the question-
naire? In one experiment, 110 questionnaires with no incentive
resulted in 75 being returned, whereas 98 questionnaires that
included a chance to win a lottery yielded 66 responses
(“Charities, No; Lotteries, No; Cash, Yes,” Public Opinion
Quarterly, 1996: 542–562). Does this data suggest that includ-
ing an incentive increases the likelihood of a response? State
and test the relevant hypotheses at significance level .10 by
using the P-value method.

68. The accompanying data was obtained in a study to evaluate
the liquefaction potential at a proposed nuclear power sta-
tion (“Cyclic Strengths Compared for Two Sampling
Techniques,” J. Geotechnical Division, Am. Soc. Civil Engrs.
Proceedings, 1981: 563–576). Before cyclic strength test-
ing, soil samples were gathered using both a pitcher tube
method and a block method, resulting in the following
observed values of dry density (lb/ft3):



Pitcher sampling 101.1 111.1 107.6 98.1
99.5 98.7 103.3 108.9

109.1 104.1 110.0 98.4
105.1 104.5 105.7 103.3
100.3 102.6 101.7 105.4

99.6 103.3 102.1 104.3

Block sampling 107.1 105.0 98.0 97.9
103.3 104.6 100.1 98.2

97.9 103.2 96.9

Calculate and interpret a 95% CI for the difference between
true average dry densities for the two sampling methods.

69. The article “Quantitative MRI and Electrophysiology of
Preoperative Carpal Tunnel Syndrome in a Female
Population” (Ergonomics, 1997: 642–649) reported that
(�473.3, 1691.9) was a large-sample 95% confidence inter-
val for the difference between true average thenar muscle
volume (mm3) for sufferers of carpal tunnel syndrome and
true average volume for nonsufferers. Calculate a 90% con-
fidence interval for this difference.

70. The following summary data on bending strength (lb-in/in)
of joints is taken from the article “Bending Strength of
Corner Joints Constructed with Injection Molded Splines”
(Forest Products J., April, 1997: 89–92).

Sample Sample Sample 
Type Size Mean SD 

Without side coating 10 80.95 9.59
With side coating 10 63.23 5.96

a. Calculate a 95% lower confidence bound for true average
strength of joints with a side coating.

b. Calculate a 95% lower prediction bound for the strength
of a single joint with a side coating.

c. Calculate an interval that, with 95% confidence, includes
the strength values for at least 95% of the population of
all joints with side coatings.

d. Calculate a 95% confidence interval for the difference
between true average strengths for the two types of
joints.

71. An experiment was carried out to compare various proper-
ties of cotton/polyester spun yarn finished with softener
only and yarn finished with softener plus 5% DP-resin
(“Properties of a Fabric Made with Tandem Spun Yarns,”
Textile Res. J., 1996: 607–611). One particularly important
characteristic of fabric is its durability, that is, its ability to 
resist wear. For a sample of 40 softener-only specimens, the
sample mean stoll-flex abrasion resistance (cycles) in the
filling direction of the yarn was 3975.0, with a sample stan-
dard deviation of 245.1. Another sample of 40 softener-plus
specimens gave a sample mean and sample standard devia-
tion of 2795.0 and 293.7, respectively. Calculate a confi-
dence interval with confidence level 99% for the difference
between true average abrasion resistances for the two types

of fabrics. Does your interval provide convincing evidence
that true average resistances differ for the two types of fab-
rics? Why or why not?

72. The derailment of a freight train due to the catastrophic
failure of a traction motor armature bearing provided the
impetus for a study reported in the article “Locomotive
Traction Motor Armature Bearing Life Study” (Lubrication
Engr., Aug. 1997: 12–19). A sample of 17 high-mileage
traction motors was selected, and the amount of cone pen-
etration (mm/10) was determined both for the pinion bear-
ing and for the commutator armature bearing, resulting in
the following data:

Motor

1 2 3 4 5 6
Commutator 211 273 305 258 270 209
Pinion 226 278 259 244 273 236

Motor

7 8 9 10 11 12
Commutator 223 288 296 233 262 291
Pinion 290 287 315 242 288 242

Motor

13 14 15 16 17
Commutator 278 275 210 272 264
Pinion 278 208 281 274 268

Calculate an estimate of the population mean difference
between penetration for the commutator armature bearing
and penetration for the pinion bearing, and do so in a way
that conveys information about the reliability and precision
of the estimate. [Note: A normal probability plot validates
the necessary normality assumption.] Would you say that
the population mean difference has been precisely estimat-
ed? Does it look as though population mean penetration dif-
fers for the two types of bearings? Explain.

73. Headability is the ability of a cylindrical piece of material to
be shaped into the head of a bolt, screw, or other cold-formed
part without cracking. The article “New Methods for As-
sessing Cold Heading Quality” (Wire J. Intl., Oct. 1996:
66–72) described the result of a headability impact test
applied to 30 specimens of aluminum killed steel and 30
specimens of silicon killed steel. The sample mean headabil-
ity rating number for the steel specimens was 6.43, and the
sample mean for aluminum specimens was 7.09. Suppose
that the sample standard deviations were 1.08 and 1.19,
respectively. Do you agree with the article’s authors that the
difference in headability ratings is significant at the 5% level
(assuming that the two headability distributions are normal)?

74. The article “Two Parameters Limiting the Sensitivity of
Laboratory Tests of Condoms as Viral Barriers” (J. of
Testing and Eval., 1996: 279–286) reported that, in brand A
condoms, among 16 tears produced by a puncturing needle,
the sample mean tear length was 74.0 �m, whereas for the
14 brand B tears, the sample mean length was 61.0 �m
(determined using light microscopy and scanning electron
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micrographs). Suppose the sample standard deviations are
14.8 and 12.5, respectively (consistent with the sample
ranges given in the article). The authors commented that the
thicker brand B condom displayed a smaller mean tear
length than the thinner brand A condom. Is this difference in
fact statistically significant? State the appropriate hypothe-
ses and test at � � .05.

75. Information about hand posture and forces generated by 
the fingers during manipulation of various daily objects is
needed for designing high-tech hand prosthetic devices. The
article “Grip Posture and Forces During Holding Cylindrical
Objects with Circular Grips” (Ergonomics, 1996: 1163–
1176) reported that for a sample of 11 females, the sample
mean four-finger pinch strength (N) was 98.1 and the sam-
ple standard deviation was 14.2. For a sample of 15 males,
the sample mean and sample standard deviation were 129.2
and 39.1, respectively.
a. A test carried out to see whether true average strengths for

the two genders were different resulted in t � 2.51 and 
P-value � .019. Does the appropriate test procedure
described in this chapter yield this value of t and the stated
P-value?

b. Is there substantial evidence for concluding that true
average strength for males exceeds that for females by
more than 25 N? State and test the relevant hypotheses.

76. The article “Pine Needles as Sensors of Atmospheric
Pollution” (Environ. Monitoring, 1982: 273–286) reported on
the use of neutron-activity analysis to determine pollutant con-
centration in pine needles. According to the article’s authors,
“These observations strongly indicated that for those elements
which are determined well by the analytical procedures, the
distribution of concentration is lognormal. Accordingly, in
tests of significance the logarithms of concentrations will be
used.” The given data refers to bromine concentration in 
needles taken from a site near an oil-fired steam plant and
from a relatively clean site. The summary values are means
and standard deviations of the log-transformed observations.

SD
Sample Mean Log of Log 

Site Size Concentration Concentration

Steam plant 8 18.0 4.9
Clean 9 11.0 4.6

Let �*1 be the true average log concentration at the first site,
and define �*2 analogously for the second site.
a. Use the pooled t test (based on assuming normality and

equal standard deviations) to decide at significance level
.05 whether the two concentration distribution means are
equal.

b. If �*1 and �*2, the standard deviations of the two log con-
centration distributions, are not equal, would �1 and �2,
the means of the concentration distributions, be the same
if �*1 � �*2 ? Explain your reasoning.

77. Long-term exposure of textile workers to cotton dust released
during processing can result in substantial health problems,
so textile researchers have been investigating methods that

will result in reduced risks while preserving important fabric
properties. The accompanying data on roving cohesion
strength (kN � m/kg) for specimens produced at five different
twist multiples is from the article “Heat Treatment of Cotton:
Effect on Endotoxin Content, Fiber and Yarn Properties, and
Processability” (Textile Research J., 1996: 727–738).

Twist multiple

1.054 1.141 1.245 1.370 1.481

Control strength .45 .60 .61 .73 .69
Heated strength .51 .59 .63 .73 .74

The authors of the cited article stated that strength for heated
specimens appeared to be slightly higher on average than for
the control specimens. Is the difference statistically signifi-
cant? State and test the relevant hypotheses using � � .05
by calculating the P-value.

78. The accompanying summary data on the ratio of strength to
cross-sectional area for knee extensors is taken from the
article “Knee Extensor and Knee Flexor Strength: Cross-
Sectional Area Ratios in Young and Elderly Men” (J. of
Gerontology, 1992: M204–M210).

Sample Sample Standard 
Group Size Mean Error

Young 13 7.47 .22
Elderly men 12 6.71 .28

Does this data suggest that the true average ratio for young
men exceeds that for elderly men? Carry out a test of appro-
priate hypotheses using � � .05. Be sure to state any assump-
tions necessary for your analysis.

79. The accompanying data on response time appeared in the
article “The Extinguishment of Fires Using Low-Flow Water
Hose Streams—Part II” (Fire Technology, 1991: 291–320).

Good visibility
.43 1.17 .37 .47 .68 .58 .50 2.75

Poor visibility
1.47 .80 1.58 1.53 4.33 4.23 3.25 3.22

The authors analyzed the data with the pooled t test. Does
the use of this test appear justified? [Hint: Check for nor-
mality. The normal scores for n � 8 are �1.53, �.89, �.49,
�.15, .15, .49, .89, and 1.53.]

80. Acrylic bone cement is commonly used in total joint arthro-
plasty as a grout that allows for the smooth transfer of loads
from a metal prosthesis to bone structure. The paper
“Validation of the Small-Punch Test as a Technique for
Characterizing the Mechanical Properties of Acrylic Bone
Cement” (J. of Engr. in Med., 2006: 11–21) gave the fol-
lowing data on breaking force (N):

Temp Medium n x� s

22$ Dry 6 170.60 39.08

37$ Dry 6 325.73 34.97

22$ Wet 6 366.36 34.82

37$ Wet 6 306.09 41.97
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Assume that all population distributions are normal.
a. Estimate true average breaking force in a dry medium at

37$ in a way that conveys information about reliability
and precision, and interpret your estimate.

b. Estimate the difference between true average breaking
force in a dry medium at 37$ and true average force at
the same temperature in a wet medium, and do so in a
way that conveys information about precision and relia-
bility. Then interpret your estimate.

c. Is there strong evidence for concluding that true average
force in a dry medium at the higher temperature exceeds
that at the lower temperature by more than 100 N?

81. In an experiment to compare bearing strengths of pegs
inserted in two different types of mounts, a sample of 14
observations on stress limit for red oak mounts resulted in a
sample mean and sample standard deviation of 8.48 MPa
and .79 MPa, respectively, whereas a sample of 12 observa-
tions when Douglas fir mounts were used gave a mean of
9.36 and a standard deviation of 1.52 (“Bearing Strength of
White Oak Pegs in Red Oak and Douglas Fir Timbers,” J. of
Testing and Evaluation, 1998, 109–114). Consider testing
whether or not true average stress limits are identical for the
two types of mounts. Compare df’s and P-values for the
unpooled and pooled t tests.

82. How does energy intake compare to energy expenditure?
One aspect of this issue was considered in the article
“Measurement of Total Energy Expenditure by the Doubly
Labelled Water Method in Professional Soccer Players” (J.
of Sports Sciences, 2002: 391–397), which contained the
accompanying data (MJ/day).

Player

1 2 3 4 5 6 7

Expenditure 14.4 12.1 14.3 14.2 15.2 15.5 17.8

Intake 14.6 9.2 11.8 11.6 12.7 15.0 16.3

Test to see whether there is a significant difference between
intake and expenditure. Does the conclusion depend on
whether a significance level of .05, .01, or .001 is used?

83. An experimenter wishes to obtain a CI for the difference
between true average breaking strength for cables manufac-
tured by company I and by company II. Suppose breaking
strength is normally distributed for both types of cable with
�1 � 30 psi and �2 � 20 psi.
a. If costs dictate that the sample size for the type I cable

should be three times the sample size for the type II cable,
how many observations are required if the 99% CI is to be
no wider than 20 psi?

b. Suppose a total of 400 observations is to be made. How
many of the observations should be made on type I cable
samples if the width of the resulting interval is to be a
minimum?

84. An experiment to determine the effects of temperature on
the survival of insect eggs was described in the article
“Development Rates and a Temperature-Dependent Model
of Pales Weevil” (Environ. Entomology, 1987: 956–962).

At 11°C, 73 of 91 eggs survived to the next stage of devel-
opment. At 30°C, 102 of 110 eggs survived. Do the results
of this experiment suggest that the survival rate (proportion
surviving) differs for the two temperatures? Calculate the
P-value and use it to test the appropriate hypotheses.

85. Wait staff at restaurants have employed various strategies to
increase tips. An article in the Sept. 5, 2005 The New Yorker
reported that “In one study a waitress received 50% more in
tips when she introduced herself by name than when she
didn’t.” Consider the following (fictitious) data on tip amount
as a percentage of the bill:

Introduction: m � 50 x� � 22.63 s1 � 7.82

No introduction: n � 50 y� � 14.15 s2 � 6.10

Does this data suggest that an introduction increases tips on
average by more than 50%. State and test the relevant
hypotheses. [Hint: Consider the parameter 	 = �1 � 1.5�2.]

86. The paper “Quantitative Assessment of Glenohumeral
Translation in Baseball Players” (The Amer. J. of Sports Med.,
2004: 1711–1715) considered various aspects of shoulder
motion for a sample of pitchers and another sample of position
players (“glenohumeral” refers to the articulation between the
humerus (ball) and the glenoid (socket)). The authors kindly
supplied the following data on anteroposterior translation
(mm), a measure of the extent of anterior and posterior
motion, both for the dominant arm and the nondominant arm.

Pos Dom Tr Pos ND Tr Pit Dom Tr Pit ND Tr

1 30.31 32.54 27.63 24.33
2 44.86 40.95 30.57 26.36
3 22.09 23.48 32.62 30.62
4 31.26 31.11 39.79 33.74
5 28.07 28.75 28.50 29.84
6 31.93 29.32 26.70 26.71
7 34.68 34.79 30.34 26.45
8 29.10 28.87 28.69 21.49
9 25.51 27.59 31.19 20.82
10 22.49 21.01 36.00 21.75
11 28.74 30.31 31.58 28.32
12 27.89 27.92 32.55 27.22
13 28.48 27.85 29.56 28.86
14 25.60 24.95 28.64 28.58
15 20.21 21.59 28.58 27.15
16 33.77 32.48 31.99 29.46
17 32.59 32.48 27.16 21.26
18 32.60 31.61
19 29.30 27.46
mean 29.4463 29.2137 30.7112 26.6447
sd 5.4655 4.7013 3.3310 3.6679

a. Estimate the true average difference in translation between
dominant and nondominant arms for pitchers in a way that
conveys information about reliability and precision, and
interpret the resulting estimate.

b. Repeat (a) for position players.
c. The authors asserted that “pitchers have greater difference

in side-to-side anteroposterior translation of their shoulders
compared with position players.” Do you agree? Explain.

87. Suppose a level .05 test of H0: �1 � �2 � 0 versus Ha:
�1 � �2 � 0 is to be performed, assuming �1 � �2 � 10
and normality of both distributions, using equal sample sizes
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(m � n). Evaluate the probability of a type II error when
�1 � �2 � 1 and n � 25, 100, 2500, and 10,000. Can you
think of real problems in which the difference �1 � �2 � 1 has
little practical significance? Would sample sizes of n � 10,000
be desirable in such problems?

88. The following data refers to airborne bacteria count (num-
ber of colonies/ft3) both for m � 8 carpeted hospital rooms
and for n � 8 uncarpeted rooms (“Microbial Air Sampling
in a Carpeted Hospital,” J. Environmental Health, 1968:
405). Does there appear to be a difference in true average
bacteria count between carpeted and uncarpeted rooms?

Carpeted 11.8 8.2 7.1 13.0 10.8 10.1 14.6 14.0

Uncarpeted 12.1 8.3 3.8 7.2 12.0 11.1 10.1 13.7

Suppose you later learned that all carpeted rooms were in a
veterans’ hospital, whereas all uncarpeted rooms were in a
children’s hospital. Would you be able to assess the effect of
carpeting? Comment.

89. Researchers sent 5000 resumes in response to job ads that
appeared in the Boston Globe and Chicago Tribune. The
resumes were identical except that 2500 of them had “white
sounding” first names, such as Brett and Emily, whereas the
other 2500 had “black sounding” names such as Tamika and
Rasheed. The resumes of the first type elicited 250 responses
and the resumes of the second type only 167 responses
(these numbers are very consistent with information that
appeared in a Jan. 15, 2003, report by the Associated Press).
Does this data strongly suggest that a resume with a “black”
name is less likely to result in a response than is a resume
with a “white” name?

90. McNemar’s test, developed in Exercise 54, can also be used
when individuals are paired (matched) to yield n pairs and
then one member of each pair is given treatment 1 and the
other is given treatment 2. Then X1 is the number of pairs in
which both treatments were successful, and similarly for X2,
X3, and X4. The test statistic for testing equal efficacy of the
two treatments is given by (X2 � X3)/�(X�2��� X�3)�, which
has approximately a standard normal distribution when H0 is
true. Use this to test whether the drug ergotamine is effec-
tive in the treatment of migraine headaches.

Ergotamine

S F

Placebo
S 44 34
F 46 30

The data is fictitious, but the conclusion agrees with that in
the article “Controlled Clinical Trial of Ergotamine Tar-
trate” (British Med. J., 1970: 325–327).

91. The article “Evaluating Variability in Filling Operations”
(Food Tech., 1984: 51–55) describes two different filling
operations used in a ground-beef packing plant. Both filling
operations were set to fill packages with 1400 g of ground
beef. In a random sample of size 30 taken from each filling
operation, the resulting means and standard deviations were
1402.24 g and 10.97 g for operation 1 and 1419.63 g and
9.96 g for operation 2.
a. Using a .05 significance level, is there sufficient evidence

to indicate that the true mean weight of the packages dif-
fers for the two operations?

b. Does the data from operation 1 suggest that the true
mean weight of packages produced by operation 1 is
higher than 1400 g? Use a .05 significance level.

92. Let X1, . . . , Xm be a random sample from a Poisson distri-
bution with parameter �1, and let Y1, . . . , Yn be a random
sample from another Poisson distribution with parameter �2.
We wish to test H0: �1 � �2 � 0 against one of the three
standard alternatives. Since � �� for a Poisson distribution,
when m and n are large the large-sample z test of Section 9.1
can be used. However, the fact that V(X�) � �/n suggests that
a different denominator should be used in standardizing
X� � Y�. Develop a large-sample test procedure appropriate
to this problem, and then apply it to the following data to
test whether the plant densities for a particular species are
equal in two different regions (where each observation is the
number of plants found in a randomly located square sam-
pling quadrate having area 1 m2, so for region 1, there were
40 quadrates in which one plant was observed, etc.):

Frequency

0 1 2 3 4 5 6 7

Region 1 28 40 28 17 8 2 1 1 m � 125
Region 2 14 25 30 18 49 2 1 1 n � 140

93. Referring to Exercise 92, develop a large-sample confidence
interval formula for �1 � �2. Calculate the interval for the
data given there using a confidence level of 95%.
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INTRODUCTION

In studying methods for the analysis of quantitative data, we first focused on

problems involving a single sample of numbers and then turned to a compara-

tive analysis of two different such samples. In one-sample problems, the data

consisted of observations on or responses from individuals or experimental

objects randomly selected from a single population. In two-sample problems,

either the two samples were drawn from two different populations and the

parameters of interest were the population means, or else two different treat-

ments were applied to experimental units (individuals or objects) selected from

a single population; in this latter case, the parameters of interest are referred to

as true treatment means.

The analysis of variance, or more briefly ANOVA, refers broadly to a

collection of experimental situations and statistical procedures for the analysis

of quantitative responses from experimental units. The simplest ANOVA prob-

lem is referred to variously as a single-factor, single-classification, or one-

way ANOVA and involves the analysis either of data sampled from more than

two numerical populations (distributions) or of data from experiments in which

more than two treatments have been used. The characteristic that differentiates

the treatments or populations from one another is called the factor under

study, and the different treatments or populations are referred to as the levels

of the factor. Examples of such situations include the following:

1. An experiment to study the effects of five different brands of gasoline on
automobile engine operating efficiency (mpg)

2. An experiment to study the effects of the presence of four different sugar
solutions (glucose, sucrose, fructose, and a mixture of the three) on bacterial
growth

The Analysis of Variance
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3. An experiment to investigate whether hardwood concentration in pulp (%)
has an effect on tensile strength of bags made from the pulp

4. An experiment to decide whether the color density of fabric specimens
depends on the amount of dye used

In (1) the factor of interest is gasoline brand, and there are five different

levels of the factor. In (2) the factor is sugar, with four levels (or five, if a con-

trol solution containing no sugar is used). In both (1) and (2), the factor is qual-

itative in nature, and the levels correspond to possible categories of the factor.

In (3) and (4), the factors are concentration of hardwood and amount of dye,

respectively; both these factors are quantitative in nature, so the levels identify

different settings of the factor. When the factor of interest is quantitative, sta-

tistical techniques from regression analysis (discussed in Chapters 12 and 13)

can also be used to analyze the data.

This chapter focuses on single-factor ANOVA. Section 10.1 presents the F

test for testing the null hypothesis that the population or treatment means are

identical. Section 10.2 considers further analysis of the data when H0 has been

rejected. Section 10.3 covers some other aspects of single-factor ANOVA.

Chapter 11 introduces ANOVA experiments involving more than a single factor.

Single-factor ANOVA focuses on a comparison of more than two population or treat-
ment means. Let

I � the number of populations or treatments being compared

�1 � the mean of population 1 or the true average response when treatment 1 is
applied





�I � the mean of population I or the true average response when treatment I is

applied

The relevant hypotheses are

H0: �1 � �2 � 
 
 
 � �I

versus

Ha: at least two of the �is are different

If I � 4, H0 is true only if all four �i s are identical. Ha would be true, for example, if
�1 � �2 � �3 � �4, if �1 � �3 � �4 � �2, or if all four �i s differ from one another.

A test of these hypotheses requires that we have available a random sample
from each population or treatment.

The article “Compression of Single-Wall Corrugated Shipping Containers Using
Fixed and Floating Test Platens” (J. Testing and Evaluation, 1992: 318–320)
describes an experiment in which several different types of boxes were compared
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with respect to compression strength (lb). Table 10.1 presents the results of a single-
factor ANOVA experiment involving I � 4 types of boxes (the sample means and
standard deviations are in good agreement with values given in the article).

Table 10.1 The Data and Summary Quantities for Example 10.1

Type of Box Compression Strength (lb) Sample Mean Sample SD

1 655.5 788.3 734.3 721.4 679.1 699.4 713.00 46.55
2 789.2 772.5 786.9 686.1 732.1 774.8 756.93 40.34
3 737.1 639.0 696.3 671.7 717.2 727.1 698.07 37.20
4 535.1 628.7 542.4 559.0 586.9 520.0 562.02 39.87

Grand mean � 682.50

With �i denoting the true average compression strength for boxes of type i (i � 1, 2,
3, 4), the null hypothesis is H0: �1 � �2 � �3 � �4. Figure 10.1(a) shows a compara-
tive boxplot for the four samples. There is a substantial amount of overlap among
observations on the first three types of boxes, but compression strengths for the fourth
type appear considerably smaller than for the other types. This suggests that H0 is not
true. The comparative boxplot in Figure 10.1(b) is based on adding 120 to each obser-
vation in the fourth sample (giving mean 682.02 and the same standard deviation) and
leaving the other observations unaltered. It is no longer obvious whether H0 is true or
false. In situations such as this, we need a formal test procedure.
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Figure 10.1 Boxplots for Example 10.1: (a) original data; (b) altered data ■



Notation and Assumptions
The letters X and Y were used in two-sample problems to differentiate the obser-
vations in one sample from those in the other. Because this is cumbersome for
three or more samples, it is customary to use a single letter with two subscripts.
The first subscript identifies the sample number, corresponding to the population
or treatment being sampled, and the second subscript denotes the position of the
observation within that sample. Let

Xi,j � the random variable (rv) that denotes the jth measurement taken from
the ith population, or the measurement taken on the jth experimental
unit that receives the ith treatment

xi,j � the observed value of Xi, j when the experiment is performed

The observed data is usually displayed in a rectangular table, such as Table 10.1.
There samples from the different populations appear in different rows of the table, and
xi,j is the jth number in the ith row. For example, x2,3 � 786.9 (the third observation
from the second population), and x4,1 � 535.1. When there is no ambiguity, we will
write xij rather than xi, j (e.g., if there were 15 observations on each of 12 treatments, x112

could mean x1,12 or x11,2). It is assumed that the Xij s within any particular sample are
independent—a random sample from the ith population or treatment distribution—and
that different samples are independent of one another.

In some experiments, different samples contain different numbers of observa-
tions. Here we’ll focus on the case of equal sample sizes; the generalization to
unequal sample sizes appears in Section 10.3. Let J denote the number of observa-
tions in each sample (J � 6 in Example 10.1). The data set consists of IJ observa-
tions. The individual sample means will be denoted by X�1�, X�2�, . . . , X�I�. That is,

X�i� � i � 1, 2, . . . , I

The dot in place of the second subscript signifies that we have added over all values
of that subscript while holding the other subscript value fixed, and the horizontal bar
indicates division by J to obtain an average. Similarly, the average of all IJ observa-
tions, called the grand mean, is

X��� �

For the strength data in Table 10.1, x�1� � 713.00, x�2� � 756.93, x�3� � 698.07,
x�4� � 562.02, and x��� � 682.50. Additionally, let S2

1, S2
2, . . . , S2

I represent the sample 
variances:

S2
i � i � 1, 2, . . . , I

From Example 10.1, s1 � 46.55, s2
1 � 2166.90, and so on.

�
J

j�1
(Xij � X�i�)2

��
J � 1

�
I

i�1
�
J

j�1
Xij

�
IJ

�
J

j�1
Xij

�
J
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ASSUMPTIONS The I population or treatment distributions are all normal with the same variance
� 2. That is, each Xij is normally distributed with

E(Xij) � �i V(Xij) � � 2



The I sample standard deviations will generally differ somewhat even when
the corresponding � s are identical. In Example 10.1, the largest among s1, s2, s3, and
s4 is about 1.25 times the smallest. A rough rule of thumb is that if the largest s is not
much more than two times the smallest, it is reasonable to assume equal � 2 s.

In previous chapters, a normal probability plot was suggested for checking
normality. The individual sample sizes in ANOVA are typically too small for I sep-
arate plots to be informative. A single plot can be constructed by subtracting x�1� from
each observation in the first sample, x�2� from each observation in the second, and so
on, and then plotting these IJ deviations against the z percentiles. Figure 10.2 gives
such a plot for the data of Example 10.1. The straightness of the pattern gives strong
support to the normality assumption.
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DEFINITION Mean square for treatments is given by

MSTr � [(X�1� � X���)2 � (X�2� � X���)2 � 
 
 
 � (X�I� � X���)2]

� �
i

(X�i� � X���)2

and mean square for error is

MSE �

The test statistic for single-factor ANOVA is F � MSTr/MSE.

S2
1 � S2

2 � 
 
 
 � S2
I���

I

J
�
I � 1

J
�
I � 1

If either the normality assumption or the assumption of equal variances is judged
implausible, a method of analysis other than the usual F test must be employed. Please
seek expert advice in such situations (one possibility, a data transformation, is sug-
gested in Section 10.3).

The Test Statistic
If H0 is true, the J observations in each sample come from a normal population dis-
tribution with the same mean value �, in which case the sample means x�1�, . . . , x�I�

should be reasonably close. The test procedure is based on comparing a measure of
differences among the x�i�s (“between-samples” variation) to a measure of variation
calculated from within each of the samples.
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–50
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Figure 10.2 A normal probability plot based on the data of Example 10.1



The terminology “mean square” will be explained shortly. Notice that uppercase X�s
and S2’s are used, so MSTr and MSE are defined as statistics. We will follow tradi-
tion and also use MSTr and MSE (rather than mstr and mse) to denote the calculated
values of these statistics. Each S2

i assesses variation within a particular sample, so
MSE is a measure of within-samples variation.

What kind of value of F provides evidence for or against H0? If H0 is true 
(all �i s are equal), the values of the individual sample means should be close to one
another and therefore close to the grand mean, resulting in a relatively small value of
MSTr. However, if the �i s are quite different, some x�i� s should differ quite a bit
from x���. So the value of MSTr is affected by the status of H0 (true or false). This
is not the case with MSE, because the s2

i s depend only on the underlying value of
� 2 and not on where the various distributions are centered. The following box
presents an important property of E(MSTr) and E(MSE), the expected values of
these two statistics.
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The unbiasedness of MSE is a consequence of E(S2
i ) � � 2 whether H0 is true or

false. When H0 is true, each X�i� has the same mean value � and variance � 2/J, so
�(X�i� � X���)2/(I � 1), the “sample variance” of the XX�i� s, estimates � 2/J unbias-
edly; multiplying this by J gives MSTr as an unbiased estimator of � 2 itself. The
X�i� s tend to spread out more when H0 is false than when it is true, tending to
inflate the value of MSTr in this case. Thus a value of F that greatly exceeds 1,
corresponding to MSTr much larger than MSE, casts considerable doubt on H0.
The form of the rejection region is f � c. The cutoff c should be chosen to give
P(F � c when H0 is true) � �, the desired significance level. We therefore need
the distribution of F when H0 is true.

F Distributions and the F Test
In Chapter 9, we introduced a family of probability distributions called F distribu-
tions. An F distribution arises in connection with a ratio in which there is one num-
ber of degrees of freedom (df) associated with the numerator and another number of
degrees of freedom associated with the denominator. Let �1 and �2 denote the num-
ber of numerator and denominator degrees of freedom, respectively, for a variable
with an F distribution. Both �1 and �2 are positive integers. Figure 10.3 pictures an
F density curve and the corresponding upper-tail critical value F�,�1,�2

. Appendix
Table A.9 gives these critical values for � � .10, .05, .01, and .001. Values of �1 are
identified with different columns of the table, and the rows are labeled with various
values of �2. For example, the F critical value that captures upper-tail area .05 under
the F curve with �1 � 4 and �2 � 6 is F.05,4,6 � 4.53, whereas F.05,6,4 � 6.16. The key
theoretical result is that the test statistic F has an F distribution when H0 is true.

When H0 is true,

E(MSTr) � E(MSE) � � 2

whereas when H0 is false,

E(MSTr) � E(MSE) � � 2

That is, both statistics are unbiased for estimating the common population
variance �2 when H0 is true, but MSTr tends to overestimate �2 when H0 is false.

PROPOSITION



The rationale for �1 � I � 1 is that although MSTr is based on the I deviations
X�1� � X���, . . . , X�I� � X���, �(X�i� � X���) � 0, so only I � 1 of these are freely deter-
mined. Because each sample contributes J � 1 df to MSE and these samples are inde-
pendent, �2 � (J � 1) � 
 
 
 � (J � 1) � I(J � 1).

The values of I and J for the strength data are 4 and 6, respectively, so numerator 
df � I � 1 � 3 and denominator df � I(J � 1) � 20. At significance level .05, H0:
�1 � �2 � �3 � �4 will be rejected in favor of the conclusion that at least two �i s are
different if f � F.05,3,20 � 3.10. The grand mean is x��� � ��xij /(IJ) � 682.50

MSTr � [(713.00 � 682.50)2 � (756.93 � 682.50)2

� (698.07 � 682.50)2 � (562.02 � 682.50)2] � 42,455.86

MSE � [(46.55)2 � (40.34)2 � (37.20)2 � (39.87)2] � 1691.92

f � MSTr/MSE � 42,455.86/1691.92 � 25.09

Since 25.09 � 3.10, H0 is resoundingly rejected at significance level .05. True aver-
age compression strength does appear to depend on box type. In fact, P-value � area
under F curve to the right of 25.09 � .000. H0 would be rejected at any reasonable
significance level. ■

Sums of Squares
The introduction of sums of squares facilitates developing an intuitive appreciation
for the rationale underlying single-factor and multifactor ANOVAs. Let xi� repre-
sent the sum (not the average, since there is no bar) of the xij s for i fixed (sum of
the numbers in the ith row of the table) and x�� denote the sum of all the xij s
(the grand total).

1
�
4

6
�
4 � 1
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F curve for   1 and   2 df� �

Shaded area � �

F ,  1,  2� � �

Figure 10.3 An F curve and critical value F�,�1,�2

Let F � MSTr/MSE be the test statistic in a single-factor ANOVA problem
involving I populations or treatments with a random sample of J observations
from each one. When H0 is true and the basic assumptions of this section are sat-
isfied, F has an F distribution with �1 � I � 1 and �2 � I(J � 1). With f denoting
the computed value of F, the rejection region f � F�,I�1,I(J�1) then specifies a test
with significance level �. Refer to Section 9.5 to see how P-value information for
F tests is obtained.

THEOREM

Example 10.2
(Example 10.1
continued)



The sum of squares SSTr appears in the numerator of F, and SSE appears in the
denominator of F; the reason for defining SST will be apparent shortly.

The expressions on the far right-hand side of SST and SSTr are convenient if
ANOVA calculations will be done by hand, although the wide availability of statisti-
cal software makes this unnecessary. Both SST and SSTr involve x2

�� /(IJ) (the square
of the grand total divided by IJ), which is usually called the correction factor for
the mean (CF). After the correction factor is computed, SST is obtained by squar-
ing each number in the data table, adding these squares together, and subtracting the
correction factor. SSTr results from squaring each row total, summing them, divid-
ing by J, and subtracting the correction factor.

A computing formula for SSE is a consequence of a simple relationship
among the three sums of squares.
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DEFINITION The total sum of squares (SST), treatment sum of squares (SSTr), and
error sum of squares (SSE) are given by

SST � �
I

i�1
�

J

j�1
(xij � x���)2 � �

I

i�1
�

J

j�1
x2

ij � x2
��

SSTr � �
I

i�1
�

J

j�1
(x�i� � x���)2 � �

I

i�1
x2

i� � x2
��

SSE � �
I

i�1
�

J

j�1
(xij � x�i�)2 where xi� � �

J

j�1
xij x�� � �

I

i�1
�

J

j�1
xij

1
�
IJ

1
�
J

1
�
IJ

Fundamental Identity

SST � SSTr � SSE (10.1)

Thus if any two of the sums of squares are computed, the third can be obtained
through (10.1); SST and SSTr are easiest to compute, and then SSE � SST � SSTr.
The proof follows from squaring both sides of the relationship

xij � x��� � (xij � x�i�) � (x�i� � x���) (10.2)

and summing over all i and j. This gives SST on the left and SSTr and SSE as the
two extreme terms on the right. The cross-product term is easily seen to be zero.

The interpretation of the fundamental identity is an important aid to an
understanding of ANOVA. SST is a measure of the total variation in the data—the
sum of all squared deviations about the grand mean. The identity says that this
total variation can be partitioned into two pieces. SSE measures variation that
would be present (within rows) even if H0 were true and is thus the part of total
variation that is unexplained by the truth or falsity of H0. SSTr is the amount of
variation (between rows) that can be explained by possible differences in the �i s.
If explained variation is large relative to unexplained variation, then H0 is rejected
in favor of Ha.



The computations are often summarized in a tabular format, called an ANOVA
table, as displayed in Table 10.2. Tables produced by statistical software customar-
ily include a P-value column to the right of f.

Table 10.2 An ANOVA Table

Source of Sum of
Variation df Squares Mean Square f

Treatments I � 1 SSTr MSTr � SSTr/(I � 1) MSTr/MSE
Error I(J � 1) SSE MSE � SSE/[I(J � 1)]
Total IJ � 1 SST

The accompanying data resulted from an experiment comparing the degree of soiling for
fabric copolymerized with three different mixtures of methacrylic acid (similar data
appeared in the article “Chemical Factors Affecting Soiling and Soil Release from Cotton
DP Fabric,” American Dyestuff Reporter, 1983: 25–30).

xi� x�i�

Mixture 1 .56 1.12 .90 1.07 .94 4.59 .918

Mixture 2 .72 .69 .87 .78 .91 3.97 .794

Mixture 3 .62 1.08 1.07 .99 .93 4.69 .938

x�� � 13.25

Let �i denote the true average degree of soiling when mixture i is used (i � 1, 2, 3). The
null hypothesis H0: �1 � �2 � �3 states that the true average degree of soiling is iden-
tical for the three mixtures. We will carry out a test at significance level .01 to see
whether H0 should be rejected in favor of the assertion that true average degree of soil-
ing is not the same for all mixtures. Since I � 1 � 2 and I(J � 1) � 12, the F critical
value for the rejection region is F.01,2,12 � 6.93. Squaring each of the 15 observations and
summing gives ��x2

ij � (.56)2 � (1.12)2 � 
 
 
 � (.93)2 � 12.1351. The values of the
three sums of squares are

SST � 12.1351 � (13.25)2/15 � 12.1351 � 11.7042 � .4309

SSTr � [(4.59)2 � (3.97)2 � (4.69)2] � 11.7042

� 11.7650 � 11.7042 � .0608

SSE � .4309 � .0608 � .3701

The remaining computations are summarized in the accompanying ANOVA table.
Because f � .99 is not at least F.01,2,12 � 6.93, H0 is not rejected at significance 

1
�
5
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Example 10.3

Once SSTr and SSE are computed, each is divided by its associated df to
obtain a mean square (mean in the sense of average). Then F is the ratio of the two
mean squares.

MSTr � MSE � F � (10.3)
MSTr
�
MSE

SSE
�
I(J � 1)

SSTr
�
I � 1



level .01. The mixtures appear to be indistinguishable with respect to degree of soil-
ing (F.10,2,12 � 2.81 d P-value � .10).
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EXERCISES Section 10.1 (1–10)

1. In an experiment to compare the tensile strengths of I � 5 dif-
ferent types of copper wire, J � 4 samples of each type were
used. The between-samples and within-samples estimates of
�2 were computed as MSTr � 2673.3 and MSE � 1094.2,
respectively
a. Use the F test at level .05 to test H0: �1 � �2 � �3 �

�4 � �5 versus Ha: at least two �is are unequal.
b. What can be said about the P-value for the test?

2. Suppose that the compression strength observations on the
fourth type of box in Example 10.1 had been 655.1, 748.7,
662.4, 679.0, 706.9, and 640.0 (obtained by adding 120 to
each previous x4j). Assuming no change in the remaining
observations, carry out an F test with � � .05.

3. The lumen output was determined for each of I � 3 different
brands of 60-watt soft-white lightbulbs, with J � 8 bulbs of
each brand tested. The sums of squares were computed as
SSE � 4773.3 and SSTr � 591.2. State the hypotheses of
interest (including word definitions of parameters), and 
use the F test of ANOVA (� � .05) to decide whether there
are any differences in true average lumen outputs among the
three brands for this type of bulb by obtaining as much infor-
mation as possible about the P-value.

4. In a study to assess the effects of malaria infection on
mosquito hosts (“Plasmodium Cynomolgi: Effects of Malaria
Infection on Laboratory Flight Performance of Anopheles
Stephensi Mosquitos,” Experimental Parasitology, 1977:
397–404), mosquitos were fed on either infective or nonin-
fective rhesus monkeys. Subsequently the distance they flew
during a 24-hour period was measured using a flight mill.
The mosquitos were divided into four groups of eight mos-
quitos each: infective rhesus and sporozites present (IRS),
infective rhesus and oocysts present (IRD), infective rhesus
and no infection developed (IRN), and noninfective (C). The
summary data values are x�1� � 4.39 (IRS), x�2� � 4.52 (IRD),

x�3� � 5.49 (IRN), x�4� � 6.36 (C), x��� � 5.19, and ��x2
ij �

911.91. Use the ANOVA F test at level .05 to decide
whether there are any differences between true average
flight times for the four treatments.

5. Consider the following summary data on the modulus of
elasticity (� 106 psi) for lumber of three different grades 
(in close agreement with values in the article “Bending
Strength and Stiffness of Second-Growth Douglas-Fir
Dimension Lumber” (Forest Products J., 1991: 35–43),
except that the sample sizes there were larger):

Use this data and a significance level of .01 to test the null
hypothesis of no difference in mean modulus of elasticity
for the three grades.

6. The article “Origin of Precambrian Iron Formations” (Econ.
Geology, 1964: 1025–1057) reports the following data 
on total Fe for four types of iron formation (1 � carbonate,
2 � silicate, 3 � magnetite, 4 � hematite).

1: 20.5 28.1 27.8 27.0 28.0
25.2 25.3 27.1 20.5 31.3

2: 26.3 24.0 26.2 20.2 23.7
34.0 17.1 26.8 23.7 24.9

3: 29.5 34.0 27.5 29.4 27.9
26.2 29.9 29.5 30.0 35.6

4: 36.5 44.2 34.1 30.3 31.4
33.1 34.1 32.9 36.3 25.5

Carry out an analysis of variance F test at significance
level .01, and summarize the results in an ANOVA table.

Sum of
Source of Variation df Squares Mean Square f

Treatments 2 .0608 .0304 .99
Error 12 .3701 .0308
Total 14 .4309

■

When the F test causes H0 to be rejected, the experimenter will often be inter-
ested in further analysis to decide which �i s differ from which others. Procedures for
doing this are called multiple comparison procedures, and several are described in the
next two sections.

Grade J x�i� si

1 10 1.63 .27
2 10 1.56 .24
3 10 1.42 .26
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7. In an experiment to investigate the performance of four
different brands of spark plugs intended for use on a 125-cc
two-stroke motorcycle, five plugs of each brand were
tested and the number of miles (at a constant speed) until
failure was observed. The partial ANOVA table for the
data is given here. Fill in the missing entries, state the rel-
evant hypotheses, and carry out a test by obtaining as
much information as you can about the P-value.

8. A study of the properties of metal plate-connected trusses used
for roof support (“Modeling Joints Made with Light-Gauge
Metal Connector Plates,” Forest Products J., 1979: 39–44)
yielded the following observations on axial stiffness index
(kips/in.) for plate lengths 4, 6, 8, 10, and 12 in:

4: 309.2 409.5 311.0 326.5 316.8
349.8 309.7

6: 402.1 347.2 361.0 404.5 331.0
348.9 381.7

8: 392.4 366.2 351.0 357.1 409.9
367.3 382.0

10: 346.7 452.9 461.4 433.1 410.6
384.2 362.6

12: 407.4 441.8 419.9 410.7 473.4
441.2 465.8

Does variation in plate length have any effect on true aver-
age axial stiffness? State and test the relevant hypotheses
using analysis of variance with � � .01. Display your re-
sults in an ANOVA table. [Hint: ��x 2

ij � 5,241, 420.79.]

9. Six samples of each of four types of cereal grain grown in a
certain region were analyzed to determine thiamin content,
resulting in the following data (�g/g):

Wheat 5.2 4.5 6.0 6.1 6.7 5.8
Barley 6.5 8.0 6.1 7.5 5.9 5.6
Maize 5.8 4.7 6.4 4.9 6.0 5.2
Oats 8.3 6.1 7.8 7.0 5.5 7.2

Does this data suggest that at least two of the grains differ
with respect to true average thiamin content? Use a level
� � .05 test based on the P-value method.

10. In single-factor ANOVA with I treatments and J observa-
tions per treatment, let � � (1/I)��i.
a. Express E(X���) in terms of �. [Hint: X��� � (1/I)�X�i�]
b. Compute E(X� 2

i�). [Hint: For any rv Y, E(Y 2) � V(Y) �
[E(Y)]2.]

c. Compute E(X� 2
��).

d. Compute E(SSTr) and then show that

E(MSTr) � � 2 � �
I �

J
1

��(�i � �)2

e. Using the result of part (d), what is E(MSTr) when H0

is true? When H0 is false, how does E(MSTr) compare 
to �2?

Sum of Mean
Source df Squares Square f

Brand
Error 14,713.69
Total 310,500.76

10.2 Multiple Comparisons in ANOVA

When the computed value of the F statistic in single-factor ANOVA is not signifi-
cant, the analysis is terminated because no differences among the �is have been
identified. But when H0 is rejected, the investigator will usually want to know which
of the �is are different from one another. A method for carrying out this further
analysis is called a multiple comparisons procedure.

Several of the most frequently used such procedures are based on the follow-
ing central idea. First calculate a confidence interval for each pairwise difference
�i � �j with i � j. Thus if I � 4, the six required CIs would be for �1 � �2 (but not
also for �2 � �1), �1 � �3, �1 � �4, �2 � �3, �2 � �4, and �3 � �4. Then if the
interval for �1 � �2 does not include 0, conclude that �1 and �2 differ significantly
from one another; if the interval does include 0, the two �s are judged not signifi-
cantly different. Following the same line of reasoning for each of the other intervals,
we end up being able to judge for each pair of �s whether or not they differ signif-
icantly from one another.

The procedures based on this idea differ in the method used to calculate the 
various CIs. Here we present a popular method that controls the simultaneous con-
fidence level for all I(I � 1)/2 intervals calculated.



Tukey’s Procedure (the T Method)
Tukey’s procedure involves the use of another probability distribution called the 
Studentized range distribution. The distribution depends on two parameters: a 
numerator df m and a denominator df �. Let Q�,m,� denote the upper-tail � critical
value of the Studentized range distribution with m numerator df and � denominator
df (analogous to F� ,�1,�2

). Values of Q�,m,� are given in Appendix Table A.10.
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With probability 1 � �,

X�i� � X�j� � Q�,I,I(J�1) �M�S�E�/J� � �i � �j

� X�i� � X�j� � Q�,I,I(J�1) �M�S�E�/J� (10.4)

for every i and j (i � 1, . . . , I and j � 1, . . . , I) with i � j.

PROPOSITION

The T Method for Identifying Significantly Different �i’s

Select �, extract Q�,I,I(J�1) from Appendix Table A.10, and calculate w �
Q�,I,I(J�1) � �M�S�E�/J�.� Then list the sample means in increasing order and
underline those pairs that differ by less than w. Any pair of sample means not 
underscored by the same line corresponds to a pair of population or treatment
means that are judged significantly different.

Notice that numerator df for the appropriate Q� critical value is I, the number of 
population or treatment means being compared, and not I � 1 as in the F test. When
the computed x�i�, x�j�, and MSE are substituted into (10.4), the result is a collection of
confidence intervals with simultaneous confidence level 100(1 � �)%, for all pair-
wise differences of the form �i � �j with i � j. Each interval that does not include 0
yields the conclusion that the corresponding values of �i and �j differ significantly
from one another.

Since we are not really interested in the lower and upper limits of the various
intervals but only in which include 0 and which do not, much of the arithmetic asso-
ciated with (10.4) can be avoided. The following box gives details and describes how
differences can be identified visually using an “underscoring pattern.”

Suppose, for example, that I � 5 and that

x�2� � x�5� � x�4� � x�1� � x�3�

Then

1. Consider first the smallest mean x�2�. If x�5� � x�2� � w, proceed to Step 2. However,
if x�5� � x�2� � w, connect these first two means with a line segment. Then if possi-
ble extend this line segment even further to the right to the largest x�i� that differs
from x�2� by less than w (so the line may connect two, three, or even more means).

2. Now move to x�5� and again extend a line segment to the largest x�i� to its right that
differs from x�5� by less than w (it may not be possible to draw this line, or alter-
natively it may underscore just two means, or three, or even all four remaining
means).

3. Continue by moving to x�4� and repeating, and then finally move to x�1�
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To summarize, starting from each mean in the ordered list, a line segment is ex-
tended as far to the right as possible as long as the difference between the means is
smaller than w. It is easily verified that a particular interval of the form (10.4) will
contain 0 if and only if the corresponding pair of sample means is underscored by
the same line segment.

An experiment was carried out to compare five different brands of automobile oil fil-
ters with respect to their ability to capture foreign material. Let �i denote the true aver-
age amount of material captured by brand i filters (i � 1, . . . , 5) under controlled con-
ditions. A sample of nine filters of each brand was used, resulting in the following
sample mean amounts: x�1� � 14.5, x�2� � 13.8, x�3� � 13.3, x�4� � 14.3, and x�5� � 13.1.
Table 10.3 is the ANOVA table summarizing the first part of the analysis.

Table 10.3 ANOVA Table for Example 10.4

Source of Variation df Sum of Squares Mean Square f

Treatments (brands) 4 13.32 3.33 37.84
Error 40 3.53 .088
Total 44 16.85

Since F.05,4,40 � 2.61, H0 is rejected (decisively) at level .05. We now use Tukey’s
procedure to look for significant differences among the �i’s. From Appendix Table
A.10, Q.05,5,40 � 4.04 (the second subscript on Q is I and not I � 1 as in F), so w �
4.04�.0�8�8�/9� � .4. After arranging the five sample means in increasing order, the
two smallest can be connected by a line segment because they differ by less than .4.
However, this segment cannot be extended further to the right since 13.8 � 13.1 �
.7 � .4. Moving one mean to the right, the pair x�3� and x�2� cannot be underscored
because these means differ by more than .4. Again moving to the right, the next
mean, 13.8, cannot be connected to any further to the right. The last two means can
be underscored with the same line segment.

x�5� x�3� x�2� x�4� x�1�

13.1 13.3 13.8 14.3 14.5

Thus brands 1 and 4 are not significantly different from one another, but are signif-
icantly higher than the other three brands in their true average contents. Brand 2 is
significantly better than 3 and 5 but worse than 1 and 4, and brands 3 and 5 do not
differ significantly.

If x�2� � 14.15 rather than 13.8 with the same computed w, then the configura-
tion of underscored means would be

x�5� x�3� x�2� x�4� x�1�

13.1 13.3 14.15 14.3 14.5 ■

A biologist wished to study the effects of ethanol on sleep time. A sample of 20 rats,
matched for age and other characteristics, was selected, and each rat was given an
oral injection having a particular concentration of ethanol per body weight. The
rapid eye movement (REM) sleep time for each rat was then recorded for a 24-hour
period, with the following results:

Example 10.4

Example 10.5
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Treatment (concentration of ethanol) xi� x�i�

0 (control) 88.6 73.2 91.4 68.0 75.2 396.4 79.28
1 g/kg 63.0 53.9 69.2 50.1 71.5 307.7 61.54
2 g/kg 44.9 59.5 40.2 56.3 38.7 239.6 47.92
4 g/kg 31.0 39.6 45.3 25.2 22.7 163.8 32.76

x�� � 1107.5 x��� � 55.375

Does the data indicate that the true average REM sleep time depends on the concen-
tration of ethanol? (This example is based on an experiment reported in “Relationship
of Ethanol Blood Level to REM and Non-REM Sleep Time and Distribution in the
Rat,” Life Sciences, 1978: 839–846.)

The x�i�s differ rather substantially from one another, but there is also a great deal
of variability within each sample, so to answer the question precisely we must carry out
the ANOVA. With �� x2

ij � 68,697.6 and correction factor x2
��/(IJ) � (1107.5)2/20 �

61,327.8, the computing formulas yield

SST � 68,697.6 � 61,327.8 � 7369.8

SSTr � [(396.40)2 � (307.70)2 � (239.60)2 � (163.80)2] � 61,327.8

� 67,210.2 � 61,327.8 � 5882.4

and

SSE � 7369.8 � 5882.4 � 1487.4

Table 10.4 is a SAS ANOVA table. The last column gives the P-value as .0001.
Using a significance level of .05, we reject the null hypothesis H0: �1 � �2 � �3 � �4,
since P-value � .0001 � .05 � �. True average REM sleep time does appear to de-
pend on concentration level.

Table 10.4 SAS ANOVA Table

Analysis of Variance Procedure
Dependent Variable: TIME

Sum of Mean
Source DF Squares Square F Value Pr � F
Model 3 5882.35750 1960.78583 21.09 0.0001
Error 16 1487.40000 92.96250
Corrected
Total 19 7369.75750

There are I � 4 treatments and 16 df for error, so Q.05,4,16 � 4.05 and w �
4.05�9�3�.0�/5� � 17.47. Ordering the means and underscoring yields

x�4� x�3� x�2� x�1�

32.76 47.92 61.54 79.28

The interpretation of this underscoring must be done with care, since we seem to
have concluded that treatments 2 and 3 do not differ, 3 and 4 do not differ, yet 2 and
4 do differ. The suggested way of expressing this is to say that although evidence
allows us to conclude that treatments 2 and 4 differ from one another, neither has

1
�
5
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The Interpretation of � in Tukey’s Method
We stated previously that the simultaneous confidence level is controlled by Tukey’s
method. So what does “simultaneous” mean here? Consider calculating a 95% CI for
a population mean � based on a sample from that population and then a 95% CI for a
population proportion p based on another sample selected independently of the first
one. Prior to obtaining data, the probability that the first interval will include � is .95,
and this is also the probability that the second interval will include p. Because the two
samples are selected independently of one another, the probability that both intervals
will include the values of the respective parameters is (.95)(.95) � (.95)2 � .90. Thus
the simultaneous or joint confidence level for the two intervals is roughly 90%—if
pairs of intervals are calculated over and over again from independent samples, in the
long run roughly 90% of the time the first interval will capture � and the second will
include p. Similarly, if three CIs are calculated based on independent samples, the si-
multaneous confidence level will be 100(.95)3% � 86%. Clearly, as the number of in-
tervals increases, the simultaneous confidence level that all intervals capture their 
respective parameters will decrease.

Now suppose that we want to maintain the simultaneous confidence level at 95%.
Then for two independent samples, the individual confidence level for each would have
to be 100�.95�% � 97.5%. The larger the number of intervals, the higher the individual
confidence level would have to be to maintain the 95% simultaneous level.

The tricky thing about the Tukey intervals is that they are not based on inde-
pendent samples—MSE appears in every one, and various intervals share the same
x�i�s (e.g., in the case I � 4, three different intervals all use x�1�). This implies that there
is no straightforward probability argument for ascertaining the simultaneous confi-
dence level from the individual confidence levels. Nevertheless, it can be shown that
if Q.05 is used, the simultaneous confidence level is controlled at 95%, whereas using
Q.01 gives a simultaneous 99% level. To obtain a 95% simultaneous level, the individ-
ual level for each interval must be considerably larger than 95%. Said in a slightly dif-
ferent way, to obtain a 5% experimentwise or family error rate, the individual or 
per-comparison error rate for each interval must be considerably smaller than .05.
MINITAB asks the user to specify the family error rate (e.g., 5%) and then includes
on output the individual error rate (see Exercise 16).

Figure 10.4 Tukey’s method using SAS ■

Alpha � 0.05 df � 16 MSE � 92.9625
Critical Value of Studentized Range � 4.046

Minimum Significant Difference � 17.446

Means with the same letter are not significantly different.

Tukey Grouping Mean N TREATMENT
A 79.280 5 0(control)

B 61.540 5 1 gm/kg
B

C B 47.920 5 2 gm/kg
C
C 32.760 5 4 gm/kg

been shown to be significantly different from 3. Treatment 1 has a significantly
higher true average REM sleep time than any of the other treatments.

Figure 10.4 shows SAS output from the application of Tukey’s procedure.
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Confidence Intervals for Other Parametric Functions
In some situations, a CI is desired for a function of the �is more complicated than a
difference �i � �j. Let 	 � �ci�i, where the cis are constants. One such function is
�
1
2

�(�1 � �2) � �
1
3

�(�3 � �4 � �5), which in the context of Example 10.4 measures the
difference between the group consisting of the first two brands and that of the last
three brands. Because the Xij s are normally distributed with E(Xij) � �i and V(Xij) �
� 2, 	̂ � �iciX�i� is normally distributed, unbiased for 	, and

V(	̂) � V(�
i

ciX�i�) � �
i

c2
iV(X�i�

) � �
�

J

2

��
i

c2
i

Estimating � 2 by MSE and forming �̂	̂ results in a t variable (	̂ � 	)/�̂	̂, which can be
manipulated to obtain the following 100(1 � �)% confidence interval for �ci�i:

�cix�i� � t�/2,I(J�1)��
M�S�E

J� ��c2
i�� (10.5)

The parametric function for comparing the first two (store) brands of oil filter with
the last three (national) brands is 	 � �

1
2

�(�1 � �2) � �
1
3

�(�3 � �4 � �5), from which

�c2
i � � �2

� � �2

� �� �2

� �� �2

� �� �2

�

With 	̂ � �
1
2

�(x�1� � x�2�) � �
1
3

�(x�3� � x�4� � x�5�) � .583 and MSE � .088, a 95% interval is

.583 � 2.021�5�(.�0�8�8�)/�[(�6�)(�9�)]� � .583 � .182 � (.401, .765) ■

Sometimes an experiment is carried out to compare each of several “new”
treatments to a control treatment. In such situations, a multiple comparisons tech-
nique called Dunnett’s method is appropriate.

5
�
6

1
�
3

1
�
3

1
�
3

1
�
2

1
�
2

EXERCISES Section 10.2 (11–21)

11. An experiment to compare the spreading rates of five dif-
ferent brands of yellow interior latex paint available in a
particular area used 4 gallons (J � 4) of each paint. The
sample average spreading rates (ft2/gal) for the five brands
were x�1� � 462.0, x�2� � 512.8, x�3� � 437.5, x�4� � 469.3,
and x�5� � 532.1. The computed value of F was found to 
be significant at level � � .05. With MSE � 272.8, use
Tukey’s procedure to investigate significant differences in
the true average spreading rates between brands.

12. In Exercise 11, suppose x�3� � 427.5. Now which true aver-
age spreading rates differ significantly from one another?
Be sure to use the method of underscoring to illustrate
your conclusions, and write a paragraph summarizing your
results.

13. Repeat Exercise 12 supposing that x�2� � 502.8 in addition to
x�3� � 427.5.

14. Use Tukey’s procedure on the data in Exercise 4 to identify
differences in true average flight times among the four types
of mosquitos.

15. Use Tukey’s procedure on the data of Exercise 6 to identify
differences in true average total Fe among the four types of
formations (use MSE � 15.64).

16. Reconsider the axial stiffness data given in Exercise 8.
ANOVA output from MINITAB follows:

Analysis of Variance for stiffness
Source DF SS MS F P
length 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

Level N Mean StDev
4 7 333.21 36.59
6 7 368.06 28.57
8 7 375.13 20.83
10 7 407.36 44.51
12 7 437.17 26.00

Pooled StDev � 32.39

Tukey’s pairwise comparisons

Family error rate � 0.0500
Individual error rate � 0.00693

Example 10.6
(Example 10.4
continued)
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Critical value � 4.10

Intervals  for  (column  level  mean) � (row
level mean)

4 6 8 10

6 �85.0
15.4

8 �92.1 �57.3
8.3 43.1

10 �124.3 �89.5 �82.4
�23.9 10.9 18.0

12 �154.2 �119.3 �112.2 �80.0
�53.8 �18.9 �11.8 20.4

a. Is it plausible that the variances of the five axial stiffness
index distributions are identical? Explain.

b. Use the output (without reference to our F table) to test
the relevant hypotheses.

c. Use the Tukey intervals given in the output to determine
which means differ, and construct the corresponding un-
derscoring pattern.

17. Refer to Exercise 5. Compute a 95% t CI for 	 �
�
1
2

�(�1 � �2) � �3.

18. Consider the accompanying data on plant growth after the
application of different types of growth hormone.

1 13 17 7 14
2 21 13 20 17

Hormone 3 18 15 20 17
4 7 11 18 10
5 6 11 15 8

a. Perform an F test at level � � .05.
b. What happens when Tukey’s procedure is applied?

19. Consider a single-factor ANOVA experiment in which I � 3,
J � 5, x�1� � 10, x�2� � 12, and x�3� � 20. Find a value of SSE
for which f � F.05,2,12, so that H0: �1 � �2 � �3 is rejected,

yet when Tukey’s procedure is applied none of the �i s can
be said to differ significantly from one another.

20. Refer to Exercise 19 and suppose x�1� � 10, x�2� � 15, and
x�3� � 20. Can you now find a value of SSE that produces
such a contradiction between the F test and Tukey’s proce-
dure?

21. The article “The Effect of Enzyme Inducing Agents on the
Survival Times of Rats Exposed to Lethal Levels of Ni-
trogen Dioxide” (Toxicology and Applied Pharmacology,
1978: 169–174) reports the following data on survival times
for rats exposed to nitrogen dioxide (70 ppm) via different
injection regimens. There were J � 14 rats in each group.

a. Test the null hypothesis that true average survival time
does not depend on injection regimen against the alter-
native that there is some dependence on injection regi-
men using � � .01.

b. Suppose that 100(1 � �)% CIs for k different parametric
functions are computed from the same ANOVA data set.
Then it is easily verified that the simultaneous confi-
dence level is at least 100(1 � k�)%. Compute CIs with
simultaneous confidence level at least 98% for
�1 � �

1
5

�(�2 � �3 � �4 � �5 � �6) and �
1
4

�(�2 � �3 �
�4 � �5) � �6.

We now briefly consider some additional issues relating to single-factor ANOVA.
These include an alternative description of the model parameters, � for the F test, the
relationship of the test to procedures previously considered, data transformation, a
random effects model, and formulas for the case of unequal sample sizes.

The ANOVA Model
The assumptions of single-factor ANOVA can be described succinctly by means of
the “model equation”

Xij � �i � �ij

where �ij represents a random deviation from the population or true treatment mean �i.
The �ij s are assumed to be independent, normally distributed rv’s (implying that the
Xijs are also) with E(�ij) � 0 [so that E(Xij) � �i] and V(�ij) � � 2 [from which

Regimen x�i�(min) si

1. Control 166 32
2. 3-Methylcholanthrene 303 53
3. Allylisopropylacetamide 266 54
4. Phenobarbital 212 35
5. Chlorpromazine 202 34
6. p-Aminobenzoic Acid 184 31

10.3 More on Single-Factor ANOVA
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V(Xij) � � 2 for every i and j]. An alternative description of single-factor ANOVA
will give added insight and suggest appropriate generalizations to models involving
more than one factor. Define a parameter � by

� � �
I

i�1
�i

and the parameters �1, . . . , �I by

�i � �i � � (i � 1, . . . , I)

Then the treatment mean �i can be written as � � �i, where � represents the true
average overall response in the experiment, and �i is the effect, measured as a depar-
ture from �, due to the ith treatment. Whereas we initially had I parameters, we now
have I � 1 (�, �1, . . . , �I). However, because ��i � 0 (the average departure from
the overall mean response is zero), only I of these new parameters are independently
determined, so there are as many independent parameters as there were before. In
terms of � and the �i s, the model becomes

Xij � � � �i � �ij (i � 1, . . . , I, j � 1, . . . , J)

In Chapter 11, we will develop analogous models for multifactor ANOVA. The claim
that the �is are identical is equivalent to the equality of the �i s, and because
��i � 0, the null hypothesis becomes

H0: �1 � �2 � 
 
 
 � �I � 0

In Section 10.1, it was stated that MSTr is an unbiased estimator of � 2 when
H0 is true but otherwise tends to overestimate � 2. More precisely,

1
�
I

E(MSTr) � � 2 � ��2
i

J
�
I � 1

When H0 is true, ��2
i � 0 so E(MSTr) � � 2 (MSE is unbiased whether or not H0 is

true). If ��2
i is used as a measure of the extent to which H0 is false, then a larger

value of ��2
i will result in a greater tendency for MSTr to overestimate � 2. In the

next chapter, formulas for expected mean squares for multifactor models will be
used to suggest how to form F ratios to test various hypotheses.

Proof of the Formula for E(MSTr) For any rv Y, E(Y 2) � V(Y) � [E(Y)]2, so

E(SSTr) � E��
1
J

� �
i

X 2
i� � �

I
1
J
� X 2

��� � �
1
J

� �
i

E(X2
i�) � �

I
1
J
� E(X2

��)

� �
1
J

� �
i
{V(Xi�) � [E(Xi�)]2} � �

I
1
J
�{V(X��) � [E(X��)]2}

� �
1
J

� �
i
{J� 2 � [J(� � �i)]2} � �

I
1
J
�[IJ� 2 � (IJ�)2]

� I� 2 � IJ�2 � 2�J �
i

�i � J �
i

�2
i � � 2 � IJ�2

� (I � 1)� 2 � J �
i

�2
i (since ��i � 0)

The result then follows from the relationship MSTr � SSTr/(I � 1). ■
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� for the F Test
Consider a set of parameter values �1, �2, . . . , �I for which H0 is not true. The prob-
ability of a type II error, �, is the probability that H0 is not rejected when that set is
the set of true values. One might think that � would have to be determined separately
for each different configuration of �is. Fortunately, since � for the F test depends on
the �is and � 2 only through ��2

i /� 2, it can be simultaneously evaluated for many
different alternatives. For example, ��2

i � 4 for each of the following sets of �i s for
which H0 is false, so � is identical for all three alternatives:

1. �1 � �1, �2 � �1, �3 � 1, �4 � 1

2. �1 � ��2�, �2 � �2�, �3 � 0, �4 � 0

3. �1 � ��3�, �2 � �1�/3�, �3 � �1�/3�, �4 � �1�/3�

The quantity J ��2
i /� 2 is called the noncentrality parameter for one-way

ANOVA (because when H0 is false the test statistic has a noncentral F distribution
with this as one of its parameters), and � is a decreasing function of the value of this
parameter. Thus, for fixed values of � 2 and J, the null hypothesis is more likely to
be rejected for alternatives far from H0 (large ��2

i ) than for alternatives close to H0.
For a fixed value of ��2

i, � decreases as the sample size J on each treatment in-
creases, and it increases as the variance � 2 increases (since greater underlying vari-
ability makes it more difficult to detect any given departure from H0).

Because hand computation of � and sample size determination for the F test are
quite difficult (as in the case of t tests), statisticians have constructed sets of curves
from which � can be obtained. Sets of curves for numerator df �1 � 3 and �1 � 4 are
displayed in Figure 10.5* and Figure 10.6*, respectively. After the values of � 2 and
the �is for which � is desired are specified, these are used to compute the value of �,
where �2 � (J/I)��2

i /�2. We then enter the appropriate set of curves at the value of �
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Figure 10.5 Power curves for the ANOVA F test (�1 � 3)

* From E. S. Pearson and H. O. Hartley, “Charts of the Power Function for Analysis of Variance Tests, 
Derived from the Non-central F Distribution,” Biometrika, vol. 38, 1951: 112, by permission of
Biometrika Trustees.
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on the horizontal axis, move up to the curve associated with error df �2, and move over
to the value of power on the vertical axis. Finally, � � 1 � power.

The effects of four different heat treatments on yield point (tons/in2) of steel ingots are
to be investigated. A total of eight ingots will be cast using each treatment. Suppose
the true standard deviation of yield point for any of the four treatments is � � 1. How
likely is it that H0 will not be rejected at level .05 if three of the treatments have the
same expected yield point and the other treatment has an expected yield point that is 
1 ton/in2 greater than the common value of the other three (i.e., the fourth yield is on
average 1 standard deviation above those for the first three treatments)?

Suppose that �1 � �2 � �3 and �4 � �1 � 1, � � (��i)/4 � �1 � �
1
4

�. Then
�1 � �1 � � � � �

1
4

�, �2 � � �
1
4

�, �3 � � �
1
4

�, �4 � �
3
4

� so

�2 � �� �2

� �� �2

� �� �2

� � �2� �

and � � 1.22. The degrees of freedom are �1 � I � 1 � 3 and �2 � I(J � 1) � 28, so
interpolating visually between �2 � 20 and �2 � 30 gives power � .47 and � � .53.
This � is rather large, so we might decide to increase the value of J. How many
ingots of each type would be required to yield � � .05 for the alternative under con-
sideration? By trying different values of J, we can verify that J � 24 will meet the
requirement, but any smaller J will not. ■

As an alternative to the use of power curves, the SAS statistical software
package has a function that calculates the cumulative area under a noncentral F
curve (inputs F�, numerator df, denominator df, and �2), and this area is �. Version 14
of MINITAB does this and also something rather different. The user is asked to
specify the maximum difference between �i s rather than the individual means.
For example, we might wish to calculate the power of the test when I � 4, �1 �
100, �2 � 101, �3 � 102, and �4 � 106. Then the maximum difference is 106 �
100 � 6. However, the power depends not only on this maximum difference but on
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Figure 10.6 Power curves for the ANOVA F test (�1 � 4)

Example 10.7
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the values of all the �i s. In this situation MINITAB calculates the smallest possi-
ble value of power subject to �1 � 100 and �4 � 106, which occurs when the two
other �s are both halfway between 100 and 106. If this power is .85, then we can
say that the power is at least .85 and � is at most .15 when the two most extreme
�s are separated by 6 (the common sample size, �, and � must also be specified).
The software will also determine the necessary common sample size if maximum
difference and minimum power are specified.

Relationship of the F Test to the t Test
When the number of treatments or populations is I � 2, all formulas and results 
connected with the F test still make sense, so ANOVA can be used to test H0: �1 � �2

versus Ha: �1 � �2. In this case, a two-tailed, two-sample t test can also be used.
In Section 9.3, we mentioned the pooled t test, which requires equal variances, as
an alternative to the two-sample t procedure. It can be shown that the single-factor
ANOVA F test and the two-tailed pooled t test are equivalent; for any given data
set, the P-values for the two tests will be identical, so the same conclusion will be
reached by either test.

The two-sample t test is more flexible than the F test when I � 2 for two rea-
sons. First, it is valid without the assumption that �1 � �2; second, it can be used to
test Ha: �1 � �2 (an upper-tailed t test) or Ha: �1 � �2 as well as Ha: �1 � �2. In
the case of I � 3, there is unfortunately no general test procedure known to have
good properties without assuming equal variances.

Unequal Sample Sizes
When the sample sizes from each population or treatment are not equal, let J1, J2, . . . ,
JI denote the I sample sizes and let n � � i Ji denote the total number of observations.
The accompanying box gives ANOVA formulas and the test procedure.

SST � �
I

i�1
�
Ji

j�1
(Xij � X���)2 � �

I

i�1
�
Ji

j�1
X2

ij � �
1
n

� X2
�� df � n � 1

SSTr � �
I

i�1
�
Ji

j�1
(X�i� � X���)2 � �

I

i�1
�
J
1

i

� X2
i� � �

1
n

�X2
�� df � I � 1

SSE � �
I

i�1
�
Ji

j�1
(Xij � X�i�)2 � SST � SSTr df � �(Ji � 1) � n � I

Test statistic value:

f � where MSTr � MSE �

Rejection region: f � F�,I�1,n�I

SSE
�
n � I

SSTr
�
I � 1

MSTr
�
MSE

The article “On the Development of a New Approach for the Determination of
Yield Strength in Mg-based Alloys” (Light Metal Age, Oct., 1998: 51–53) pre-
sented the following data on elastic modulus (GPa) obtained by a new ultrasonic
method for specimens of a certain alloy produced using three different casting
processes.

Example 10.8
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Ji xi� x�i�

Permanent molding 45.5 45.3 45.4 44.4 44.6 43.9 44.6 44.0 8 357.7 44.71
Die casting 44.2 43.9 44.7 44.2 44.0 43.8 44.6 43.1 8 352.5 44.06
Plaster molding 46.0 45.9 44.8 46.2 45.1 45.5 6 273.5 45.58

22 983.7

Let �1, �2, and �3 denote the true average elastic moduli for the three different
processes under the given circumstances. The relevant hypotheses are H0: �1 � �2 � �3

versus Ha: at least two of the �is are different. The test statistic is, of course, F �
MSTr/MSE, based on I � 1 � 2 numerator df and n � I � 22 � 3 � 19 denomina-
tor df. Relevant quantities include

��x2
ij � 43,998.73 CF � �

98
2
3
2
.72

� � 43,984.80

SST � 43,998.73 � 43,984.80 � 13.93

SSTr � � � � 43,984.80 � 7.93

SSE � 13.93 � 7.93 � 6.00

The remaining computations are displayed in the accompanying ANOVA table.
Since F.001,2,19 � 10.16 � 12.56 � f, the P-value is smaller than .001. Thus the null
hypothesis should be rejected at any reasonable significance level; there is com-
pelling evidence for concluding that true average elastic modulus somehow depends
on which casting process is used.

273.52

�
6

352.52

�
8

357.72

�
8

Sum of Mean
Source of Variation df Squares Square f

Treatments 2 7.93 3.965 12.56
Error 19 6.00 .3158
Total 21 13.93

There is more controversy among statisticians regarding which multiple comparisons
procedure to use when sample sizes are unequal than there is in the case of equal sam-
ple sizes. The procedure that we present here is recommended in the excellent book
Beyond ANOVA: Basics of Applied Statistics (see the chapter bibliography) for use
when the I sample sizes J1, J2, . . . , JI are reasonably close to one another (“mild imbal-
ance”). It modifies Tukey’s method by using averages of pairs of 1/Jis in place of 1/J.

Let

wij � Q�,I,n�I � ����� ������
Then the probability is approximately 1 � � that

X�i� � X�j� � wij � �i � �j � X�i� � X�j� � wij

for every i and j (i � 1, . . . , I and j � 1, . . . , I) with i � j.

1
�
Jj

1
�
Ji

MSE
�

2

■
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The simultaneous confidence level 100(1 � �)% is only approximate rather than
exact as it is with equal sample sizes. The underscoring method can still be used, but
now the wij factor used to decide whether x�i� and x�j� can be connected will depend on
Ji and Jj.

The sample sizes for the elastic modulus data were J1 � 8, J2 � 8, J3 � 6, and I � 3,
n � I � 19, MSE � .316. A simultaneous confidence level of approximately 95%
requires Q.05,3,19 � 3.59, from which

w12 � 3.59 ����� ������ � .713, w13 � .771 w23 � .771

Since x�1� � x�2� � 44.71 � 44.06 � .65 � w12, �1 and �2 are judged not significantly
different. The accompanying underscoring scheme shows that �1 and �3 appear to
differ significantly, as do �2 and �3.

2. Die 1. Permanent 3. Plaster

44.06 44.71 45.58 ■

Data Transformation
The use of ANOVA methods can be invalidated by substantial differences in the
variances � 2

1, . . . , � 2
I (which until now have been assumed equal with common

value � 2). It sometimes happens that V(Xij) � � 2
i � g(�i), a known function of �i

(so that when H0 is false, the variances are not equal). For example, if Xij has a
Poisson distribution with parameter �i (approximately normal if �i � 10), then
�i � �i and � 2

i � � i, so g(�i) � �i is the known function. In such cases, one can
often transform the Xij s to h(Xij) s so that they will have approximately equal vari-
ances (while leaving the transformed variables approximately normal), and then
the F test can be used on the transformed observations. The key idea in choosing
a transformation h(�) is that often V[h(Xij)] � V(Xij) � [h(�i)]2 � g(�i) � [h(�i)]2.
We wish to find the function h(�) for which g(�i) � [h(�i)]2 � c (a constant) for
every i.

1
�
8

1
�
8

.316
�

2

Example 10.9
(Example 10.8
continued)

If V(Xij) � g(�i), a known function of �i, then a transformation h(Xij) that “stabi-
lizes the variance” so that V[h(Xij)] is approximately the same for each i is given
by h(x) & 
 [g(x)]�1/2 dx.

PROPOSITION

In the Poisson case, g(x) � x, so h(x) should be proportional to 
 x �1/2 dx �
2x1/2. Thus Poisson data should be transformed to h(xij) � �xi�j� before the analysis.

A Random Effects Model
The single-factor problems considered so far have all been assumed to be examples
of a fixed effects ANOVA model. By this we mean that the chosen levels of the fac-
tor under study are the only ones considered relevant by the experimenter. The single-
factor fixed effects model is

Xij � � � �i � �ij ��i � 0 (10.6)
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where the �ij s are random and both � and the �i s are fixed parameters whose values
are unknown.

In some single-factor problems, the particular levels studied by the experi-
menter are chosen, either by design or through sampling, from a large population of
levels. For example, to study the effects on task performance time of using different
operators on a particular machine, a sample of five operators might be chosen from
a large pool of operators. Similarly, the effect of soil pH on the yield of maize plants
might be studied by using soils with four specific pH values chosen from among the
many possible pH levels. When the levels used are selected at random from a larger
population of possible levels, the factor is said to be random rather than fixed, and
the fixed effects model (10.6) is no longer appropriate. An analogous random
effects model is obtained by replacing the fixed �i s in (10.6) by random variables.
The resulting model description is

Xij � � � Ai � �ij with E(Ai) � E(�ij) � 0

V(�ij) � � 2 V(Ai) � � 2
A (10.7)

all Ai s and �ij s normally distributed and independent of one another.

The condition E(Ai) � 0 in (10.7) is similar to the condition ��i � 0 in (10.6); it
states that the expected or average effect of the ith level measured as a departure
from � is zero.

For the random effects model (10.7), the hypothesis of no effects due to dif-
ferent levels is H0: � 2

A � 0, which says that different levels of the factor contribute
nothing to variability of the response. Although the hypotheses in the single-factor
fixed and random effects models are different, they are tested in exactly the same
way, by forming F � MSTr/MSE and rejecting H0 if f � F�,I�1,n�I. This can be justi-
fied intuitively by noting that E(MSE) � � 2 (as for fixed effects), whereas

E(MSTr) � � 2 � �n � �� 2
A (10.8)

where J1, J2, . . . , JI are the sample sizes and n � �Ji. The factor in parentheses on
the right side of (10.8) is nonnegative, so again E(MSTr) � � 2 if H0 is true and
E(MSTr) � � 2 if H0 is false.

The study of nondestructive forces and stresses in materials furnishes important
information for efficient engineering design. The article “Zero-Force Travel-Time
Parameters for Ultrasonic Head-Waves in Railroad Rail” (Materials Evaluation,
1985: 854–858) reports on a study of travel time for a certain type of wave that
results from longitudinal stress of rails used for railroad track. Three measure-
ments were made on each of six rails randomly selected from a population of
rails. The investigators used random effects ANOVA to decide whether some vari-
ation in travel time could be attributed to “between-rail variability.” The data is
given in the accompanying table (each value, in nanoseconds, resulted from sub-
tracting 36.1 �s from the original observation) along with the derived ANOVA
table. The value of the F ratio is highly significant, so H0: � 2

A � 0 is rejected in
favor of the conclusion that differences between rails is a source of travel-time
variability.

�J2
i�

n
1

�
I � 1

Example 10.10
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xi�

1: 55 53 54 162

2: 26 37 32 95

3: 78 91 85 254

4: 92 100 96 288

5: 49 51 50 150

6: 80 85 83 248

x�� � 1197

Source of Sum of Mean
Variation df Squares Square f

Treatments 5 9310.5 1862.1 115.2
Error 12 194.0 16.17
Total 17 9504.5 ■

EXERCISES Section 10.3 (22–34)

22. The following data refers to yield of tomatoes (kg/plot) for
four different levels of salinity; salinity level here refers to
electrical conductivity (EC), where the chosen levels were
EC � 1.6, 3.8, 6.0, and 10.2 nmhos/cm:

1.6 59.5 53.3 56.8 63.1 58.7

3.8 55.2 59.1 52.8 54.5

6.0 51.7 48.8 53.9 49.0

10.2 44.6 48.5 41.0 47.3 46.1

Use the F test at level � � .05 to test for any differences in
true average yield due to the different salinity levels.

23. Apply the modified Tukey’s method to the data in Exercise 22
to identify significant differences among the �is.

24. The following partial ANOVA table is taken from the article
“Perception of Spatial Incongruity” (J. Nervous and Mental
Disease, 1961: 222) in which the abilities of three different
groups to identify a perceptual incongruity were assessed
and compared. All individuals in the experiment had been
hospitalized to undergo psychiatric treatment. There were 21
individuals in the depressive group, 32 individuals in the
functional “other” group, and 21 individuals in the brain-
damaged group. Complete the ANOVA table and carry out
the F test at level � � .01.

25. Lipids provide much of the dietary energy in the bodies of
infants and young children. There is a growing interest in
the quality of the dietary lipid supply during infancy as a
major determinant of growth, visual and neural develop-
ment, and long-term health. The article “Essential Fat
Requirements of Preterm Infants” (Amer. J. of Clinical
Nutrition, 2000: 245S–250S) reported the following data on
total polyunsaturated fats (%) for infants who were
randomized to four different feeding regimens: breast milk,
corn-oil-based formula, soy-oil-based formula, or soy-and-
marine-oil-based formula:

a. What assumptions must be made about the four total
polyunsaturated fat distributions before carrying out a
single-factor ANOVA to decide whether there are any
differences in true average fat content?

b. Carry out the test suggested in part (a). What can be said
about the P-value?

26. Samples of six different brands of diet/imitation margarine
were analyzed to determine the level of physiologically active
polyunsaturated fatty acids (PAPFUA, in percentages), result-
ing in the following data:

Sum of Mean
Source df Squares Square f

Groups 76.09
Error
Total 1123.14

Sample Sample Sample
Regimen Size Mean SD

Breast milk 8 43.0 1.5
CO 13 42.4 1.3
SO 17 43.1 1.2
SMO 14 43.5 1.2
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Imperial 14.1 13.6 14.4 14.3
Parkay 12.8 12.5 13.4 13.0 12.3
Blue Bonnet 13.5 13.4 14.1 14.3
Chiffon 13.2 12.7 12.6 13.9
Mazola 16.8 17.2 16.4 17.3 18.0
Fleischmann’s 18.1 17.2 18.7 18.4

(The preceding numbers are fictitious, but the sample
means agree with data reported in the January 1975 issue of
Consumer Reports.)
a. Use ANOVA to test for differences among the true aver-

age PAPFUA percentages for the different brands.
b. Compute CIs for all (�i � �j)s.
c. Mazola and Fleischmann’s are corn-based, whereas the

others are soybean-based. Compute a CI for

�

[Hint: Modify the expression for V(	̂) that led to (10.5) in
the previous section.]

27. Although tea is the world’s most widely consumed beverage
after water, little is known about its nutritional value. Folacin
is the only B vitamin present in any significant amount in tea,
and recent advances in assay methods have made accurate
determination of folacin content feasible. Consider the
accompanying data on folacin content for randomly selected
specimens of the four leading brands of green tea.

(Data is based on “Folacin Content of Tea,” J. Amer. Dietetic
Assoc., 1983: 627–632.) Does this data suggest that true
average folacin content is the same for all brands?
a. Carry out a test using � � .05 via the P-value method.
b. Assess the plausibility of any assumptions required for

your analysis in part (a).
c. Perform a multiple comparisons analysis to identify sig-

nificant differences among brands.

28. For a single-factor ANOVA with sample sizes Ji (i � 1,
2, . . . , I), show that SSTr � �Ji(X�i � X���)2 � �iJiX�

2
i� � nX� 2

��,
where n � �Ji.

29. When sample sizes are equal (Ji � J), the parameters 
�1, �2, . . . , �I of the alternative parameterization are restricted

by ��i � 0. For unequal sample sizes, the most natural restric-
tion is �Ji�i � 0. Use this to show that

E(MSTr) � � 2 � �Ji�2
i

What is E(MSTr) when H0 is true? [This expectation is
correct if �Ji�i � 0 is replaced by the restriction ��i � 0
(or any other single linear restriction on the �i s used to
reduce the model to I independent parameters), but
�Ji�i � 0 simplifies the algebra and yields natural estimates
for the model parameters (in particular, �̂i � x�i� � x���).]

30. Reconsider Example 10.7 involving an investigation of the
effects of different heat treatments on the yield point of steel
ingots.
a. If J � 8 and � � 1, what is � for a level .05 F test when

�1 � �2, �3 � �1 � 1, and �4 � �1 � 1?
b. For the alternative of part (a), what value of J is neces-

sary to obtain � � .05?
c. If there are I � 5 heat treatments, J � 10, and � � 1,

what is � for the level .05 F test when four of the �i s are
equal and the fifth differs by 1 from the other four?

31. When sample sizes are not equal, the noncentrality param-
eter is �Ji�2

i /� 2 and �2 � (1/I )�Ji�2
i /� 2. Referring to

Exercise 22, what is the power of the test when �2 � �3,
�1 � �2 � �, and �4 � �2 � �?

32. In an experiment to compare the quality of four different
brands of reel-to-reel recording tape, five 2400-ft reels of
each brand (A–D) were selected and the number of flaws in
each reel was determined.

A: 10 5 12 14 8

B: 14 12 17 9 8

C: 13 18 10 15 18

D: 17 16 12 22 14

It is believed that the number of flaws has approximately a
Poisson distribution for each brand. Analyze the data at
level .01 to see whether the expected number of flaws per
reel is the same for each brand.

33. Suppose that Xij is a binomial variable with parameters n
and pi (so approximately normal when npi � 5 and nqi � 5).
Then since �i � npi, V(Xij) � � 2

i � npi(1 � pi) � �i

(1 � �i /n). How should the Xij s be transformed so as to 
stabilize the variance? [Hint: g(�i) � �i(1 � �i /n).]

34. Simplify E(MSTr) for the random effects model when
J1 � J2 � 
 
 
 � JI � J.

1
�
I � 1

(�5 � �6)��
2

(�1 � �2 � �3 � �4)���
4

Brand Observations

1 7.9 6.2 6.6 8.6 8.9 10.1 9.6
2 5.7 7.5 9.8 6.1 8.4
3 6.8 7.5 5.0 7.4 5.3 6.1
4 6.4 7.1 7.9 4.5 5.0 4.0
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35. An experiment was carried out to compare flow rates for
four different types of nozzle.
a. Sample sizes were 5, 6, 7, and 6, respectively, and calcu-

lations gave f � 3.68. State and test the relevant hypothe-
ses using � � .01

b. Analysis of the data using a statistical computer package
yielded P-value � .029. At level .01, what would you
conclude, and why?

36. The article “Computer-Assisted Instruction Augmented
with Planned Teacher/Student Contacts” (J. Exp. Educ.,
Winter, 1980–1981: 120–126) compared five different
methods for teaching descriptive statistics. The five methods
were traditional lecture and discussion (L/D), programmed
textbook instruction (R), programmed text with lectures
(R/L), computer instruction (C), and computer instruction
with lectures (C/L). Forty-five students were randomly
assigned, 9 to each method. After completing the course, the
students took a 1-hour exam. In addition, a 10-minute reten-
tion test was administered 6 weeks later. Summary quanti-
ties are given.

The grand mean for the exam was 30.82, and the grand
mean for the retention test was 29.30.
a. Does the data suggest that there is a difference among the

five teaching methods with respect to true mean exam
score? Use � � .05.

b. Using a .05 significance level, test the null hypothesis of
no difference among the true mean retention test scores
for the five different teaching methods.

37. Numerous factors contribute to the smooth running of an
electric motor (“Increasing Market Share Through Improved
Product and Process Design: An Experimental Approach,”
Quality Engineering, 1991: 361–369). In particular, it is
desirable to keep motor noise and vibration to a minimum.
To study the effect that the brand of bearing has on motor
vibration, five different motor bearing brands were examined
by installing each type of bearing on different random sam-
ples of six motors. The amount of motor vibration (measured
in microns) was recorded when each of the 30 motors was
running. The data for this study follows. State and test the
relevant hypotheses at significance level .05, and then carry
out a multiple comparisons analysis if appropriate.

Mean
Brand 1 13.1 15.0 14.0 14.4 14.0 11.6 13.68
Brand 2 16.3 15.7 17.2 14.9 14.4 17.2 15.95
Brand 3 13.7 13.9 12.4 13.8 14.9 13.3 13.67
Brand 4 15.7 13.7 14.4 16.0 13.9 14.7 14.73
Brand 5 13.5 13.4 13.2 12.7 13.4 12.3 13.08

38. An article in the British scientific journal Nature (“Sucrose
Induction of Hepatic Hyperplasia in the Rat,” August 25,
1972: 461) reports on an experiment in which each of five
groups consisting of six rats was put on a diet with a differ-
ent carbohydrate. At the conclusion of the experiment, the
DNA content of the liver of each rat was determined (mg/g
liver), with the following results:

Assuming also that � �x2
ij � 183.4, does the data indicate

that true average DNA content is affected by the type of
carbohydrate in the diet? Construct an ANOVA table and
use a .05 level of significance.

39. Referring to Exercise 38, construct a t CI for

	 � �1 � (�2 � �3 � �4 � �5)/4

which measures the difference between the average DNA
content for the starch diet and the combined average for the
four other diets. Does the resulting interval include zero?

40. Refer to Exercise 38. What is � for the test when true aver-
age DNA content is identical for three of the diets and falls
below this common value by 1 standard deviation (�) for the
other two diets?

41. Four laboratories (1–4) are randomly selected from a large
population, and each is asked to make three determinations
of the percentage of methyl alcohol in specimens of a com-
pound taken from a single batch. Based on the accompany-
ing data, are differences among laboratories a source of
variation in the percentage of methyl alcohol? State 
and test the relevant hypotheses using significance level .05.

1: 85.06 85.25 84.87

2: 84.99 84.28 84.88

3: 84.48 84.72 85.10

4: 84.10 84.55 84.05

42. The critical flicker frequency (cff) is the highest frequency
(in cycles/sec) at which a person can detect the flicker in a

SUPPLEMENTARY EXERCISES (35–46)

Exam Retention Test

Method x�i� si x�i� si

L/D 29.3 4.99 30.20 3.82
R 28.0 5.33 28.80 5.26
R/L 30.2 3.33 26.20 4.66
C 32.4 2.94 31.10 4.91
C/L 34.2 2.74 30.20 3.53

Carbohydrate x�i�

Starch 2.58
Sucrose 2.63
Fructose 2.13
Glucose 2.41
Maltose 2.49
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flickering light source. At frequencies above the cff, the light
source appears to be continuous even though it is actually
flickering. An investigation carried out to see whether true
average cff depends on iris color yielded the following data
(based on the article “The Effects of Iris Color on Critical
Flicker Frequency,” J. General Psych., 1973: 91–95):

a. State and test the relevant hypotheses at significance
level .05 by using the F table to obtain an upper and/or
lower bound on the P-value. [Hint: � �x2

ij � 13,659.67
and CF � 13,598.36.]

b. Investigate differences between iris colors with respect
to mean cff.

43. Let c1, c2, . . . , cI be numbers satisfying �ci � 0. Then
�ci�i � c1�1 � 
 
 
 � cI�I is called a contrast in the �is.
Notice that with c1 � 1, c2 � �1, c3 � 
 
 
 � cI � 0,
�ci�i � �1 � �2, which implies that every pairwise difference
between �is is a contrast (so is, e.g., �1 � .5�2 � .5�3). A
method attributed to Scheffé gives simultaneous CIs with

simultaneous confidence level 100(1 � �)% for all possible
contrasts (an infinite number of them!). The interval for
�ci�i is

�cix�i� � (�c2
i /Ji)1/2 � [(I � 1) � MSE � F�,I�1,n�I]1/2

Using the critical flicker frequency data of Exercise 42, cal-
culate the Scheffé intervals for the contrasts �1 � �2, �1 �
�3, �2 � �3, and .5�1 � .5�2 � �3 (this last contrast com-
pares blue to the average of brown and green). Which con-
trasts appear to differ significantly from 0, and why?

44. Four types of mortars—ordinary cement mortar (OCM),
polymer impregnated mortar (PIM), resin mortar (RM), and
polymer cement mortar (PCM)—were subjected to a com-
pression test to measure strength (MPa). Three strength
observations for each mortar type are given in the article.
“Polymer Mortar Composite Matrices for Maintenance-
Free Highly Durable Ferrocement” (J. Ferrocement, 1984:
337–345) and are reproduced here. Construct an ANOVA
table. Using a .05 significance level, determine whether the
data suggests that the true mean strength is not the same for
all four mortar types. If you determine that the true mean
strengths are not all equal, use Tukey’s method to identify
the significant differences.

OCM 32.15 35.53 34.20
PIM 126.32 126.80 134.79
RM 117.91 115.02 114.58
PCM 29.09 30.87 29.80

45. Suppose the xij s are “coded” by yij � cxij � d. How does the
value of the F statistic computed from the yij s compare to
the value computed from the xij s? Justify your assertion.

46. In Example 10.10, subtract x�i from each observation in the
ith sample (i � 1, . . . , 6) to obtain a set of 18 residuals.
Then construct a normal probability plot and comment on
the plausibility of the normality assumption.

Iris Color

1. Brown 2. Green 3. Blue

26.8 26.4 25.7
27.9 24.2 27.2
23.7 28.0 29.9
25.0 26.9 28.5
26.3 29.1 29.4
24.8 28.3
25.7
24.5

Ji 8 5 6
xi� 204.7 134.6 169.0
x�i� 25.59 26.92 28.17

n � 19 x�� � 508.3

Bibliography
Miller, Rupert, Beyond ANOVA: The Basics of Applied Statistics,

Wiley, New York, 1986. An excellent source of information
about assumption checking and alternative methods of analysis.

Montgomery, Douglas, Design and Analysis of Experiments
(5th ed.), Wiley, New York, 2001. A very up-to-date presen-
tation of ANOVA models and methodology.

Neter, John, William Wasserman, and Michael Kutner, Applied
Linear Statistical Models (4th ed.), Irwin, Homewood, IL,
1996. The second half of this book contains a very well-

presented survey of ANOVA; the level is comparable to that
of the present text, but the discussion is more comprehensive,
making the book an excellent reference.

Ott, R. Lyman and Michael Longnecker. An Introduction to
Statistical Methods and Data Analysis (5th ed.), Duxbury
Press, Belmont, CA, 2001. Includes several chapters on
ANOVA methodology that can profitably be read by students
desiring a very nonmathematical exposition; there is a good
chapter on various multiple comparison methods.



397

11 Multifactor Analysis 
of Variance

INTRODUCTION

In the previous chapter, we used the analysis of variance (ANOVA) to test for

equality of either I different population means or the true average responses

associated with I different levels of a single factor (alternatively referred to as I

different treatments). In many experimental situations, there are two or more

factors that are of simultaneous interest. This chapter extends the methods of

Chapter 10 to investigate such multifactor situations.

In the first two sections, we concentrate on the case of two factors of

interest. We will use I to denote the number of levels of the first factor (A) and

J to denote the number of levels of the second factor (B). Then there are IJ pos-

sible combinations consisting of one level of factor A and one of factor B; each

such combination is called a treatment, so there are IJ different treatments. The

number of observations made on treatment (i, j ) will be denoted by Kij. In

Section 11.1, we consider Kij � 1. An important special case of this type is a

randomized block design, in which a single factor A is of primary interest but

another factor, “blocks,” is created to control for extraneous variability in exper-

imental units or subjects. In Section 11.2, we focus on the case Kij � K � 1, and

mention briefly the difficulties associated with unequal Kij’s.

Section 11.3 considers experiments involving more than two factors,

including a Latin square design, which controls for the effects of two extrane-

ous factors thought to influence the response variable. When the number of

factors is large, an experiment consisting of at least one observation for each

treatment would be expensive and time-consuming. One important special

case, which we discuss in Section 11.4, is that in which there are p factors, each



of which has two levels. There are then 2p different treatments. We consider both

the case in which observations are made on all these treatments (a complete

design) and the case in which observations are made for only a selected subset

of treatments (an incomplete design).

11.1 Two-Factor ANOVA with Kij � 1

When factor A consists of I levels and factor B consists of J levels, there are IJ dif-
ferent combinations (pairs) of levels of the two factors, each called a treatment.
With Kij � the number of observations on the treatment consisting of factor A at
level i and factor B at level j, we focus in this section on the case Kij � 1, so that
the data consists of IJ observations. We will first discuss the fixed effects model,
in which the only levels of interest for the two factors are those actually repre-
sented in the experiment. The case in which at least one factor is random is dis-
cussed briefly at the end of the section.

Is it really as easy to remove marks on fabrics from erasable pens as the word eras-
able might imply? Consider the following data from an experiment to compare three
different brands of pens and four different wash treatments with respect to their abil-
ity to remove marks on a particular type of fabric (based on “An Assessment of the
Effects of Treatment, Time, and Heat on the Removal of Erasable Pen Marks from
Cotton and Cotton/Polyester Blend Fabrics,” J. of Testing and Evaluation, 1991:
394–397). The response variable is a quantitative indicator of overall specimen color
change; the lower this value, the more marks were removed.

Washing Treatment
1 2 3 4 Total Average

1 .97 .48 .48 .46 2.39 .598
Brand of Pen 2 .77 .14 .22 .25 1.38 .345

3 .67 .39 .57 .19 1.82 .455

Total 2.41 1.01 1.27 .90 5.59

Average .803 .337 .423 .300 .466

Is there any difference in the true average amount of color change due either to the 
different brands of pen or to the different washing treatments? ■

As in single-factor ANOVA, double subscripts are used to identify random
variables and observed values. Let

Xij � the random variable (rv) denoting the measurement when factor A is
held at level i and factor B is held at level j

xij � the observed value of Xij

The xijs are usually presented in a two-way table in which the ith row contains the
observed values when factor A is held at level i and the j th column contains the
observed values when factor B is held at level j. In the erasable-pen experiment of
Example 11.1, the number of levels of factor A is I � 3, the number of levels of fac-
tor B is J � 4, x13 � .48, x22 � .14, and so on.

Example 11.1
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Whereas in single-factor ANOVA we were interested only in row means and
the grand mean, here we are interested also in column means. Let

X�i� � �

X��j � �

X��� � the grand mean �

with observed values x�i�, x��j, and x���. Totals rather than averages are denoted by
omitting the horizontal bar (so x�j � �ixij, etc.). Intuitively, to see whether there is
any effect due to the levels of factor A, we should compare the observed x�i� s with
one another, and information about the different levels of factor B should come
from the x��j s.

The Fixed Effects Model
Proceeding by analogy to single-factor ANOVA, one’s first inclination in specifying
a model is to let �ij � the true average response when factor A is at level i and fac-
tor B at level j, giving IJ mean parameters. Then let

Xij � �ij � �ij

where �ij is the random amount by which the observed value differs from its expec-
tation and the �ijs are assumed normal and independent with common variance � 2.
Unfortunately, there is no valid test procedure for this choice of parameters. The rea-
son is that under the alternative hypothesis of interest, the �ij s are free to take on any
values whatsoever, whereas � 2 can be any value greater than zero, so that there are
IJ � 1 freely varying parameters. But there are only IJ observations, so after using
each xij as an estimate of �ij, there is no way to estimate � 2.

To rectify this problem of a model having more parameters than observed val-
ues, we must specify a model that is realistic yet involves relatively few parameters.

�
I

i�1
�
J

j�1
Xij

�IJ

�
I

i�1
Xij

�I

the average of measurements obtained
when factor B is held at level j

�
J

j�1
Xij

�J

the average of measurements obtained
when factor A is held at level i
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Assume the existence of I parameters �1, �2, . . . , �I and J parameters �1,
�2, . . . , �J such that

Xij � �i � �j � �ij (i � 1, . . . , I, j � 1, . . . , J) (11.1)

so that
�ij � �i � �j (11.2)

Including � 2, there are now I � J � 1 model parameters, so if I � 3 and J � 3, then
there will be fewer parameters than observations (in fact, we will shortly modify
(11.2) so that even I � 2 and/or J � 2 will be accommodated).

The model specified in (11.1) and (11.2) is called an additive model because
each mean response �ij is the sum of an effect due to factor A at level i (�i) and an 
effect due to factor B at level j (�j). The difference between mean responses for



factor A at level i and level i when B is held at level j is �ij � �ij. When the model
is additive,

�ij � �ij � (�i � �j) � (�i � �j) � �i � �i

which is independent of the level j of the second factor. A similar result holds for
�ij � �ij. Thus additivity means that the difference in mean responses for two levels
of one of the factors is the same for all levels of the other factor. Figure 11.1(a) shows
a set of mean responses that satisfy the condition of additivity, and Figure 11.1(b)
shows a nonadditive configuration of mean responses.
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1 2 3 4

Levels of A

(a)

Levels of B

Mean response

1 2 3 4

Levels of A

(b)

Levels of B

Mean response

Figure 11.1 Mean responses for two types of model: (a) additive; (b) nonadditive

When we plot the observed xij s in a manner analogous to that of Figure 11.1, we get 
the result shown in Figure 11.2. Although there is some “crossing over” in the
observed xij s, the configuration is reasonably representative of what would be ex-
pected under additivity with just one observation per treatment.

Example 11.2
(Example 11.1
continued)

Color change

.4

.3

.1

.2

1 2

Washing treatment

Brand 1

3 4

.5

.6

.7

.8

.9

1.0

Brand 2

Brand 3

Figure 11.2 Plot of data from Example 11.1 ■



Expression (11.2) is not quite the final model description because the �is and
�js are not uniquely determined. Following are two different configurations of the
�i s and �j s that yield the same additive �ij s.

�1 � 1 �2 � 4 �1 � 2 �2 � 5

�1 � 1 �11 � 2 �12 � 5 �1 � 0 �11 � 2 �12 � 5

�2 � 2 �21 � 3 �22 � 6 �2 � 1 �21 � 3 �22 � 6

By subtracting any constant c from all �is and adding c to all �j s, other configura-
tions corresponding to the same additive model are obtained. This nonuniqueness is
eliminated by use of the following model.
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H0A: �1 � �2 � 
 
 
 � �I � 0
versus HaA: at least one �i � 0

H0B: �1 � �2 � 
 
 
 � �J � 0
(11.4)

versus HaB: at least one �j � 0

Xij � � � �i � �j � �ij (11.3)

where �
I

i�1
�i � 0, �

J

j�1
�j � 0, and the �ij s are assumed independent, normally

distributed, with mean 0 and common variance � 2.

This is analogous to the alternative choice of parameters for single-factor ANOVA
discussed in Section 10.3. It is not difficult to verify that (11.3) is an additive model
in which the parameters are uniquely determined (for example, for the �ij s men-
tioned previously, � � 4, �1 � �.5, �2 � .5, �1 � �1.5, and �2 � 1.5). Notice that
there are only I � 1 independently determined �i s and J � 1 independently deter-
mined �j s, so (including �) (11.3) specifies I � J � 1 mean parameters.

The interpretation of the parameters of (11.3) is straightforward: � is the true
grand mean (mean response averaged over all levels of both factors), �i is the effect
of factor A at level i (measured as a deviation from �), and �j is the effect of factor
B at level j. Unbiased (and maximum likelihood) estimators for these parameters are

�̂ � X��� �̂ i � X�i� � X��� �̂j � X��j � X���

There are two different hypotheses of interest in a two-factor experiment with
Kij � 1. The first, denoted by H0A, states that the different levels of factor A have
no effect on true average response. The second, denoted by H0B, asserts that there
is no factor B effect.

(No factor A effect implies that all �i s are equal, so they must all be 0 since they
sum to 0, and similarly for the �j s.)

Test Procedures
The description and analysis now follow closely that for single-factor ANOVA. The
relevant sums of squares and associated df’s are as follows:



There are computing formulas for SST, SSA, and SSB analogous to those given in
Chapter 10 for single-factor ANOVA. But the wide availability of statistical software
has rendered these formulas almost obsolete.

The expression for SSE results from replacing �, �i, and �j by their estimators
in �[Xij � (� � �i � �j)]2. Error df is IJ � number of mean parameters estimated �
IJ � [1 � (I � 1) � (J � 1)] � (I � 1)(J � 1). As in single-factor ANOVA, total
variation is split into a part (SSE) that is not explained by either the truth or the fal-
sity of H0A or H0B and two parts that can be explained by possible falsity of the two
null hypotheses.

Statistical theory now says that if we form F ratios as in single-factor ANOVA,
when H0A (H0B) is true, the corresponding F ratio has an F distribution with numer-
ator df � I � 1 (J � 1) and denominator df � (I � 1)(J � 1).
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DEFINITION SST � �
I

i�1
�
J

j�1
(Xij � X���)2 df � IJ� 1

SSA � �
I

i�1
�
J

j�1
(X�i� � X���)2 � J �

I

i�1
(X�i�� X���)2 df � I � 1

SSB � �
I

i�1
�
J

j�1
(X��j � X���)2 � I �

J

j�1
(X��j� X���)2 df � J � 1 (11.5)

SSE � �
I

i�1
�
J

j�1
(Xij � X�i� � X��j � X���)2 df � (I � 1)(J � 1)

The fundamental identity is 

SST � SSA � SSB � SSE (11.6)

Hypotheses Test Statistic Value Rejection Region

H0A versus HaA fA � �
M
M

S
S

A
E

� fA � F�,I�1,(I�1)(J�1)

H0B versus HaB fB � �
M
M

S
S

B
E

� fB � F�,J�1,(I�1)(J�1)

The x�i�s and x��j s for the color change data are displayed along the right and bottom
margins of the data table given previously. The accompanying ANOVA table (Table
11.1) summarizes further calculations.

Table 11.1 ANOVA Table for Example 11.3

Source of Variation df Sum of Squares Mean Square f

Factor A (brand) I � 1 � 2 SSA � .1282 MSA � .0641 fA � 4.43
Factor B

(wash treatment) J � 1 � 3 SSB � .4797 MSB � .1599 fB � 11.05
Error (I � 1)(J � 1) � 6 SSE � .0868 MSE � .01447
Total IJ � 1 � 11 SST � .6947

Example 11.3
(Example 11.2
continued)



The critical value for testing H0A at level of significance .05 is F.05,2,6 � 5.14. Since
4.43 � 5.14, H0A cannot be rejected at significance level .05. True average color
change does not appear to depend on brand of pen. Because F.05,3,6 � 4.76 and
11.05 � 4.76, H0B is rejected at significance level .05 in favor of the assertion that
color change varies with washing treatment. A statistical computer package gives 
P-values of .066 and .007 for these two tests. ■

Plausibility of the normality and constant variance assumptions can be investi-
gated graphically. Define predicted values (also called fitted values) x̂ij � �̂ � �̂i � �̂j �

� , and the residuals (the differences
between the observations and predicted values) xij � x̂ij � . We
can check the normality assumption with a normal probability plot of the residuals,
and the constant variance assumption with a plot of the residuals against the fitted
values. Figure 11.3 shows these plots for the data of Example 11.3.

xij � xi # � x #j � x # #
xi # � x #j � x # #x # # � 1xi # � x # # 2 � 1x #j � x # # 2
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Figure 11.3 Diagnostic plots from MINITAB for Example 11.3

The normal probability plot is reasonably straight, so there is no reason to
question normality for this data set. On the plot of the residuals against the fitted val-
ues, we are looking for differences in vertical spread as we move horizontally across
the graph. For example, if there were a narrow range for small fitted values and a
wide range for high fitted values, this would suggest that the variance is higher for
larger responses (this happens often, and it can sometimes be cured by replacing
each observation by its logarithm). No such problem occurs here, so there is no evi-
dence against the constant variance assumption.

Expected Mean Squares
The plausibility of using the F tests just described is demonstrated by computing the
expected mean squares. After some tedious algebra,

E(MSE) � � 2 (when the model is additive)

E(MSA) � � 2 � �
I

i�1
�2

i

E(MSB) � � 2 � �
J

j�1
�2

j

I
�
J � 1

J
�
I � 1



When H0A is true, MSA is an unbiased estimator of � 2, so F is a ratio of two 
unbiased estimators of � 2. When H0A is false, MSA tends to overestimate � 2, so H0A

should be rejected when the ratio FA is too large. Similar comments apply to MSB
and H0B.

Multiple Comparisons
When either H0A or H0B has been rejected, Tukey’s procedure can be used to ident-
ify significant differences between the levels of the factor under investigation. The
steps in the analysis are identical to those for a single-factor ANOVA:

1. For comparing levels of factor A, obtain Q�,I,(I�1)(J�1).
For comparing levels of factor B, obtain Q�,J,(I�1)(J�1).

2. Compute

w � Q � (estimated standard deviation of the sample 
means being compared)

�
Q�,I,(I�1)(J�1) � �M�S�E�/J� for factor A comparisons

Q�,J,(I�1)(J�1)� �M�S�E�/I� for factor B comparisons

(because, e.g., the standard deviation of X�i� is �/�J� ).

3. Arrange the sample means in increasing order, underscore those pairs differing
by less than w, and identify pairs not underscored by the same line as correspond-
ing to significantly different levels of the given factor.

Identification of significant differences among the four washing treatments requires 
Q.05,4,6 � 4.90 and w � 4.90 �(.�0�1�4�4�7�)/�3� � .340. The four factor B sample means
(column averages) are now listed in increasing order, and any pair differing by less
than .340 is underscored by a line segment:

x�4� x�2� x�3� x�1�

.300 .337 .423 .803

Washing treatment 1 appears to differ significantly from the other three treatments,
but no other significant differences are identified. In particular, it is not apparent
which among treatments 2, 3, and 4 is best at removing marks. ■

Randomized Block Experiments
In using single-factor ANOVA to test for the presence of effects due to the I different
treatments under study, once the IJ subjects or experimental units have been chosen,
treatments should be allocated in a completely random fashion. That is, J subjects
should be chosen at random for the first treatment, then another sample of J chosen
at random from the remaining IJ � J subjects for the second treatment, and so on.

It frequently happens, though, that subjects or experimental units exhibit het-
erogeneity with respect to other variables that may affect the observed responses.
When this is the case, the presence or absence of a significant F value may be due to
this extraneous variation rather than to the presence or absence of factor effects. This
was the reason for introducing a paired experiment in Chapter 9. The analogy to a
paired experiment when I � 2 is called a randomized block experiment. An extrane-
ous factor, “blocks,” is constructed by dividing the IJ units into J groups with I units
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Example 11.4
(Example 11.3
continued)



in each group. This grouping or blocking is done in such a way that within each block,
the I units are homogeneous with respect to other factors thought to affect the responses.
Then within each homogeneous block, the I treatments are randomly assigned to the
I units or subjects in the block.

A consumer product-testing organization wished to compare the annual power con-
sumption for five different brands of dehumidifier. Because power consumption
depends on the prevailing humidity level, it was decided to monitor each brand at
four different levels ranging from moderate to heavy humidity (thus blocking on
humidity level). Within each level, brands were randomly assigned to the five selected
locations. The resulting amount of power consumption (annual kWh) appears in
Table 11.2.

Table 11.2 Power Consumption Data for Example 11.5

Treatments Blocks (humidity level)
(brands) 1 2 3 4 xi� x�i�

1 685 792 838 875 3190 797.50
2 722 806 893 953 3374 843.50
3 733 802 880 941 3356 839.00
4 811 888 952 1005 3656 914.00
5 828 920 978 1023 3749 937.25

x�j 3779 4208 4541 4797 17,325
x��j 755.80 841.60 908.20 959.40 866.25

The ANOVA calculations are summarized in Table 11.3.

Table 11.3 ANOVA Table for Example 11.5

Source of Variation df Sum of Squares Mean Square f

Treatments (brands) 4 53,231.00 13,307.75 fA � 95.57
Blocks 3 116,217.75 38,739.25 fB � 278.20
Error 12 1671.00 139.25
Total 19 171,119.75

Since F.05,4,12 � 3.26 and fA � 95.57 � 3.26, H0 is rejected in favor of Ha, and we
conclude that power consumption does depend on the brand of humidifier. To iden-
tify significantly different brands, we use Tukey’s procedure. Q.05,5,12 � 4.51 and
w � 4.51�1�3�9�.2�5�/4� � 26.6.

x�1� x�3� x�2� x�4� x�5�

797.50 839.00 843.50 914.00 937.25

The underscoring indicates that the brands can be divided into three groups with
respect to power consumption.

Because the block factor is of secondary interest, F.05,3,12 is not needed, though
the computed value of FB is clearly highly significant. Figure 11.4 shows SAS output
for this data. Notice that in the first part of the ANOVA table, the sums of squares
(SS’s) for treatments (brands) and blocks (humidity levels) are combined into a single
“model” SS.
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Figure 11.4 SAS output for power consumption data ■
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Analysis of Variance Procedure

Dependent Variable: POWERUSE
Sum of Mean

Source DF Squares Square F Value Pr � F

Model 7 169448.750 24206.964 173.84 0.0001
Error 12 1671.000 139.250
Corrected Total 19 171119.750

R-Square C.V. Root MSE POWERUSE Mean

0.990235 1.362242 11.8004 866.25000

Source DF Anova SS Mean Square F Value PR � F

BRAND 4 53231.000 13307.750 95.57 0.0001
HUMIDITY 3 116217.750 38739.250 278.20 0.0001

Alpha � 0.05 df � 12 MSE � 139.25
Critical Value of Studentized Range � 4.508

Minimum Significant Difference � 26.597

Means with the same letter are not significantly different.

Tukey Grouping Mean N BRAND

A 937.250 4 5
A
A 914.000 4 4

B 843.500 4 2
B
B 839.000 4 3

C 797.500 4 1

In many experimental situations in which treatments are to be applied to sub-
jects, a single subject can receive all I of the treatments. Blocking is then often done
on the subjects themselves to control for variability between subjects; each subject
is then said to act as its own control. Social scientists sometimes refer to such exper-
iments as repeated-measures designs. The “units” within a block are then the different
“instances” of treatment application. Similarly, blocks are often taken as different
time periods, locations, or observers.

The data in Table 11.4 is from the article “Compounding of Discriminative Stimuli from
the Same and Different Sensory Modalities” (J. Experimental Analysis Behavior, 1971:
337–342). Rat response was maintained by fixed interval schedules of reinforcement in
the presence of a tone or two separate lights. The lights were either of moderate (L1) or
low intensity (L2). Observations are given as the mean number of responses emitted by
each subject during single and compound stimuli presentations over a 4-day period.

Table 11.4 Response Data for Example 11.6

Subject
Stimulus 1 2 3 4 xi� x�i�

L1 8.0 17.3 52.0 22.0 99.3 24.83
L2 6.9 19.3 63.7 21.6 111.5 27.88
Tone (T) 9.3 18.8 60.0 28.3 116.4 29.10
L1 � L2 9.2 24.9 82.4 44.9 161.4 40.35
L1 � T 12.0 31.7 83.8 37.4 164.9 41.23
L2 � T 9.4 33.6 96.6 40.6 180.2 45.05

x�j 54.8 145.6 438.5 194.8 833.7
x��j 9.13 24.27 73.08 32.47 34.74

Example 11.6



ANOVA calculations are summarized in Table 11.5.

Table 11.5 ANOVA Table for Example 11.6

Source of Variation df Sum of Squares Mean Square f

Stimuli (A) 5 1428.28 285.66 fA � 5.49
Subjects (B) 3 13,444.63 4481.54 fB � 86.12
Error 15 780.65 52.04
Total 23 15,653.56

Since F.05,5,15 � 2.90 and 5.49 � 2.90, we conclude that there are differences in the
true average responses associated with the different stimuli. For Tukey’s procedure,
w � 4.59�5�2�.0�4�/4� � 16.56.

x�1� x�2� x�3� x�4� x�5� x�6�

24.83 27.88 29.10 40.35 41.23 45.05

Thus both L1 and L2 are significantly different from L2 � T, and there are no other 
significant differences among the stimuli. ■

In most randomized block experiments in which subjects serve as blocks, the
subjects actually participating in the experiment are selected from a large population.
The subjects then contribute random rather than fixed effects. This does not affect
the procedure for comparing treatments when Kij � 1 (one observation per “cell,” as in
this section), but the procedure is altered if Kij � K � 1. We will shortly consider two-
factor models in which effects are random.

More on Blocking When I � 2, either the F test or the paired differences t test can
be used to analyze the data. The resulting conclusion will not depend on which pro-
cedure is used, since T 2 � F and t2

�/2,� � F�,1,�.
Just as with pairing, blocking entails both a potential gain and a potential

loss in precision. If there is a great deal of heterogeneity in experimental units, the
value of the variance parameter � 2 in the one-way model will be large. The effect
of blocking is to filter out the variation represented by � 2 in the two-way model
appropriate for a randomized block experiment. Other things being equal, a smaller
value of � 2 results in a test that is more likely to detect departures from H0 (i.e., a
test with greater power).

However, other things are not equal here, since the single-factor F test is
based on I(J � 1) degrees of freedom (df) for error, whereas the two-factor F test
is based on (I � 1)(J � 1) df for error. Fewer degrees of freedom for error results
in a decrease in power, essentially because the denominator estimator of � 2 is not
as precise. This loss in degrees of freedom can be especially serious if the experi-
menter can afford only a small number of observations. Nevertheless, if it appears
that blocking will significantly reduce variability, it is probably worth the loss in
degrees of freedom.

Models for Random Effects
In many experiments, the actual levels of a factor used in the experiment, rather than
being the only ones of interest to the experimenter, have been selected from a much
larger population of possible levels of the factor. In a two-factor situation, when this
is the case for both factors, a random effects model is appropriate. The case in
which the levels of one factor are the only ones of interest and the levels of the other
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factor are selected from a population of levels leads to a mixed effects model. The
two-factor random effects model when Kij � 1 is

Xij � � � Ai � Bj � �ij (i � 1, . . . , I, j � 1, . . . , J )

where the Ais, Bj s, and �ij s are all independent, normally distributed rv’s with mean
0 and variances � 2

A, � 2
B, and � 2, respectively. The hypotheses of interest are then H0A:

� 2
A � 0 (level of factor A does not contribute to variation in the response) versus HaA:

� 2
A � 0 and H0B: � 2

B � 0 versus HaB: � 2
B � 0. Whereas E(MSE) � � 2 as before, the

expected mean squares for factors A and B are now

E(MSA) � � 2 � J� 2
A E(MSB) � � 2 � I� 2

B

Thus when H0A (H0B) is true, FA (FB) is still a ratio of two unbiased estimators of �2. It
can be shown that a level � test for H0A versus Ha A still rejects H0A if fA � F�,I�1,(I�1)(J�1),
and, similarly, the same procedure as before is used to decide between H0B and HaB.

For the case in which factor A is fixed and factor B is random, the mixed model is

Xij � � � �i � Bj � �ij (i � 1, . . . , I, j � 1, . . . , J)

where ��i � 0 and the Bjs and �ij s are normally distributed with mean 0 and vari-
ances � 2

B and � 2, respectively. Now the two null hypotheses are

H0A: �1 � 
 
 
 � �I � 0 and H0B: � 2
B � 0

with expected mean squares

E(MSE) � � 2 E(MSA) � � 2 � ��2
i E(MSB) � � 2 � I� 2

B

The test procedures for H0A versus HaA and H0B versus HaB are exactly as before. For
example, in the analysis of the color change data in Example 11.1, if the four wash
treatments were randomly selected, then because fB � 11.05 and F.05,3,6 � 4.76, H0B:
� 2

B � 0 is rejected in favor of HaB: � 2
B � 0. An estimate of the “variance compo-

nent” � 2
B is then given by (MSB � MSE)/I � .0485.

Summarizing, when Kij � 1, although the hypotheses and expected mean
squares differ from the case of both effects fixed, the test procedures are identical.

J
�
I � 1
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EXERCISES Section 11.1 (1–15)

1. The number of miles of useful tread wear (in 1000s) was
determined for tires of each of five different makes of sub-
compact car (factor A, with I � 5) in combination with each
of four different brands of radial tires (factor B, with J � 4),
resulting in IJ � 20 observations. The values SSA � 30.6,
SSB � 44.1, and SSE � 59.2 were then computed. Assume
that an additive model is appropriate.
a. Test H0: �1 � �2 � �3 � �4 � �5 � 0 (no differences in

true average tire lifetime due to makes of cars) versus Ha:
at least one �i � 0 using a level .05 test.

b. H0: �1 � �2 � �3 � �4 � 0 (no differences in true aver-
age tire lifetime due to brands of tires) versus Ha: at
least one �j � 0 using a level .05 test.

2. Four different coatings are being considered for corrosion pro-
tection of metal pipe. The pipe will be buried in three differ-
ent types of soil. To investigate whether the amount of corro-
sion depends either on the coating or on the type of soil, 12
pieces of pipe are selected. Each piece is coated with one of

the four coatings and buried in one of the three types of soil
for a fixed time, after which the amount of corrosion (depth of
maximum pits, in .0001 in.) is determined. The data appears
in the table.

Soil Type (B)
1 2 3

1 64 49 50
2 53 51 48

Coating (A)
3 47 45 50
4 51 43 52

a. Assuming the validity of the additive model, carry out the
ANOVA analysis using an ANOVA table to see whether
the amount of corrosion depends on either the type of
coating used or the type of soil. Use � � .05.

b. Compute �̂, �̂1, �̂2, �̂3, �̂4, �̂1, �̂2, and �̂3.
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3. The article “Adiabatic Humidification of Air with Water in a
Packed Tower” (Chem. Eng. Prog., 1952: 362–370) reports
data on gas film heat transfer coefficient (Btu/hr ft2 on °F) as
a function of gas rate (factor A) and liquid rate (factor B).

B
1(190) 2(250) 3(300) 4(400)

1(200) 200 226 240 261
2(400) 278 312 330 381

A
3(700) 369 416 462 517
4(1100) 500 575 645 733

a. After constructing an ANOVA table, test at level .01 both
the hypothesis of no gas-rate effect against the appropriate
alternative and the hypothesis of no liquid-rate effect
against the appropriate alternative.

b. Use Tukey’s procedure to investigate differences in expect-
ed heat transfer coefficient due to different gas rates.

c. Repeat part (b) for liquid rates.

4. In an experiment to see whether the amount of coverage of
light-blue interior latex paint depends either on the brand of
paint or on the brand of roller used, 1 gallon of each of four
brands of paint was applied using each of three brands of roller,
resulting in the following data (number of square feet covered).

Roller Brand
1 2 3

1 454 446 451
Paint 2 446 444 447
Brand 3 439 442 444

4 444 437 443

a. Construct the ANOVA table. [Hint: The computations can
be expedited by subtracting 400 (or any other convenient
number) from each observation. This does not affect the
final results.]

b. State and test hypotheses appropriate for deciding whether
paint brand has any effect on coverage. Use � � .05.

c. Repeat part (b) for brand of roller.
d. Use Tukey’s method to identify significant differences

among brands. Is there one brand that seems clearly prefer-
able to the others?

5. In an experiment to assess the effect of the angle of pull on the
force required to cause separation in electrical connectors, four
different angles (factor A) were used and each of a sample of
five connectors (factor B) was pulled once at each angle (“A
Mixed Model Factorial Experiment in Testing Electrical
Connectors,” Industrial Quality Control, 1960: 12–16). The
data appears in the accompanying table.

B
1 2 3 4 5

0° 45.3 42.2 39.6 36.8 45.8
2° 44.1 44.1 38.4 38.0 47.2

A
4° 42.7 42.7 42.6 42.2 48.9
6° 43.5 45.8 47.9 37.9 56.4

Does the data suggest that true average separation force is
affected by the angle of pull? State and test the appropriate
hypotheses at level .01 by first constructing an ANOVA table
(SST � 396.13, SSA � 58.16, and SSB � 246.97).

6. A particular county employs three assessors who are respon-
sible for determining the value of residential property in the
county. To see whether these assessors differ systematically
in their assessments, 5 houses are selected, and each assessor
is asked to determine the market value of each house. With
factor A denoting assessors (I � 3) and factor B denoting
houses (J � 5), suppose SSA � 11.7, SSB � 113.5, and
SSE � 25.6.
a. Test H0: �1 � �2 � �3 � 0 at level .05. (H0 states that

there are no systematic differences among assessors.)
b. Explain why a randomized block experiment with only 

5 houses was used rather than a one-way ANOVA experi-
ment involving a total of 15 different houses with each
assessor asked to assess 5 different houses (a different
group of 5 for each assessor).

7. The article “Rate of Stuttering Adaptation Under Two Electro-
Shock Conditions” (Behavior Research Therapy, 1967: 49–54)
gives adaptation scores for three different treatments: (1) no
shock, (2) shock following each stuttered word, and (3) shock
during each moment of stuttering. These treatments were used
on each of 18 stutterers, resulting in SST � 3476.00,
SSTr � 28.78, and SSBl � 2977.67.
a. Construct the ANOVA table and test at level .05 to see

whether true average adaptation score depends on the treat-
ment given.

b. Judging from the F ratio for subjects (factor B), do you
think that blocking on subjects was effective in this exper-
iment? Explain.

8. The paper “Exercise Thermoregulation and Hyperprolac-
tinaemia” (Ergonomics, 2005: 1547–1557) discussed how
various aspects of exercise capacity might depend on the
temperature of the environment. The accompanying data on
body mass loss (kg) after exercising on a semi-recumbent
cycle ergometer in three different ambient temperatures (6°C,
18°C, and 30°C) was provided by the paper’s authors.

Cold Neutral Hot

1 .4 1.2 1.6
2 .4 1.5 1.9
3 1.4 .8 1.0
4 .2 .4 .7

Subject 5 1.1 1.8 2.4
6 1.2 1.0 1.6
7 .7 1.0 1.4
8 .7 1.5 1.3
9 .8 .8 1.1

a. Does temperature affect true average body mass loss?
Carry out a test using a significance level of .01 (as did the
authors of the cited paper).

b. Investigate significant differences among the temperatures.



c. The residuals are .20, .30, �.40, �.07, .30, .00, .03,
�.20, �.14, .13, .23, �.27, �.04, .03, �.27, �.04, .33,
�.10, �.33, �.53, .67, .11, �.33, .27, .01, �.13, .24.
Use these as a basis for investigating the plausibility of
the assumptions that underlie your analysis in (a).

9. The article “The Effects of a Pneumatic Stool and a One-
Legged Stool on Lower Limb Joint Load and Muscular Activ-
ity During Sitting and Rising” (Ergonomics, 1993: 519–535)
gives the accompanying data on the effort required of a subject
to arise from four different types of stools (Borg scale). Per-
form an analysis of variance using � � .05, and follow this
with a multiple comparisons analysis if appropriate.

Subject
1 2 3 4 5 6 7 8 9 x�i�

1 12 10 7 7 8 9 8 7 9 8.56
Type 2 15 14 14 11 11 11 12 11 13 12.44
of 3 12 13 13 10 8 11 12 8 10 10.78
Stool 4 10 12 9 9 7 10 11 7 8 9.22

10. The strength of concrete used in commercial construction
tends to vary from one batch to another. Consequently, small
test cylinders of concrete sampled from a batch are “cured”
for periods up to about 28 days in temperature- and moisture-
controlled environments before strength measurements are
made. Concrete is then “bought and sold on the basis of
strength test cylinders” (ASTM C 31 Standard Test Method
for Making and Curing Concrete Test Specimens in the
Field). The accompanying data resulted from an experiment
carried out to compare three different curing methods with re-
spect to compressive strength (MPa). Analyze this data.

Batch Method A Method B Method C

1 30.7 33.7 30.5
2 29.1 30.6 32.6
3 30.0 32.2 30.5
4 31.9 34.6 33.5
5 30.5 33.0 32.4
6 26.9 29.3 27.8
7 28.2 28.4 30.7
8 32.4 32.4 33.6
9 26.6 29.5 29.2

10 28.6 29.4 33.2

11. The “residuals” from a two-factor ANOVA with Kij � 1 are
the quantities xij � (�̂ � �̂i � �̂j). A normal probability plot
of these residuals can be used as a plausibility check of the
normality assumption. Construct such a plot for the data of
Example 11.1 and comment.

12. Suppose that in the experiment described in Exercise 6 the
five houses had actually been selected at random from among
those of a certain age and size, so that factor B is random
rather than fixed. Test H0: � 2

B � 0 versus Ha: � 2
B � 0 using a

level .01 test.

13. a. Show that a constant d can be added to (or subtracted
from) each xij without affecting any of the ANOVA sums
of squares.

b. Suppose that each xij is multiplied by a nonzero constant c.
How does this affect the ANOVA sums of squares? How
does this affect the values of the F statistics FA and FB?
What effect does “coding” the data by yij � cxij � d have
on the conclusions resulting from the ANOVA procedures?

14. Use the fact that E(Xij) � � � �i � �j with ��i � ��j � 0
to show that E(X�i� � X���) � �i, so that �̂i � X�i� � X��� is an 
unbiased estimator for �i.

15. The power curves of Figures 10.5 and 10.6 can be used to
obtain � � P(type II error) for the F test in two-factor
ANOVA. For fixed values of �1, �2, . . . , �I, the quantity
�2 � (J/I)��2

i /� 2 is computed. Then the figure correspond-
ing to 	1 � I � 1 is entered on the horizontal axis at the value
�, the power is read on the vertical axis from the curve la-
beled 	2 � (I � 1)(J � 1), and � � 1 � power.
a. For the corrosion experiment described in Exercise 2,

find � when �1 � 4, �2 � 0, �3 � �4 � �2, and � � 4.
Repeat for �1 � 6, �2 � 0, �3 � �4 � �3, and � � 4.

b. By symmetry, what is � for the test of H0B versus HaB in
Example 11.1 when �1 � .3, �2 � �3 � �4 � �.1, and
� � .3?
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11.2 Two-Factor ANOVA with Kij � 1

In Section 11.1, we analyzed data from a two-factor experiment in which there was one
observation for each of the IJ combinations of levels of the two factors. To obtain valid
test procedures, the �ij s were assumed to have an additive structure with �ij � � �
�i � �j, ��i � ��j � 0. Additivity means that the difference in true average respon-
ses for any two levels of the factors is the same for each level of the other factor. For
example, �ij � �ij � (� � �i � �j) � (� � �i � �j) � �i � �i, independent of the



level j of the second factor. This is shown in Figure 11.1(a), in which the lines con-
necting true average responses are parallel.

Figure 11.1(b) depicts a set of true average responses that does not have addi-
tive structure. The lines connecting these �ij s are not parallel, which means that the
difference in true average responses for different levels of one factor does depend on
the level of the other factor. When additivity does not hold, we say that there is inter-
action between the different levels of the factors. The assumption of additivity
allowed us in Section 11.1 to obtain an estimator of the random error variance � 2

(MSE) that was unbiased whether or not either null hypothesis of interest was true.
When Kij � 1 for at least one (i, j ) pair, a valid estimator of � 2 can be obtained with-
out assuming additivity. In specifying the appropriate model and deriving test pro-
cedures, we will focus on the case Kij � K � 1, so the number of observations per
“cell” (for each combination of levels) is constant.

Parameters and Hypotheses 
for the Fixed Effects Model
Rather than use the �ij s themselves as model parameters, it is usual to use an equiv-
alent set that reveals more clearly the role of interaction. Let
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� � �
i

�
j

�ij �i� � �
j

�ij� ��j � �
i

�ij (11.7)
1
�
I

1
�
J

1
�
IJ

H0AB: ij � 0 for all i, j versus Ha AB: at least one ij � 0

H0A: �1 � 
 
 
 � �I � 0 versus Ha A: at least one �i � 0

H0B: �1 � 
 
 
 � �J � 0 versus HaB: at least one �j � 0

Thus � is the expected response averaged over all levels of both factors (the true
grand mean), �i� is the expected response averaged over levels of the second factor
when the first factor A is held at level i, and similarly for ��j.

DEFINITION �i � �i� � � � the effect of factor A at level i
�j � ��j � � � the effect of factor B at level j

(11.8)

ij � �ij � (� � �i � �j) �
interaction between factor A at
level i and factor B at level j

from which
�ij � � � �i � �j � ij (11.9)

The model is additive if and only if all ij s � 0. The ij s are referred to as the interac-
tion parameters. The �is are called the main effects for factor A, and the �j s are the
main effects for factor B. Although there are I �i s, J �j s, and IJ ij s in addition to �,
the conditions ��i � 0, ��j � 0, �jij � 0 for any i, and �iij � 0 for any j [all by
virtue of (11.7) and (11.8)], imply that only IJ of these new parameters are indepen-
dently determined: �, I � 1 of the �i s, J � 1 of the �j s, and (I � 1)(J � 1) of the ij s.

There are now three sets of hypotheses that will be considered:



The no-interaction hypothesis H0AB is usually tested first. If H0AB is not rejected, then
the other two hypotheses can be tested to see whether the main effects are signifi-
cant. If H0AB is rejected and H0A is then tested and not rejected, the resulting model
�ij � � � �j � ij does not lend itself to straightforward interpretation. In such a
case, it is best to construct a picture similar to that of Figure 11.1(b) to try to visu-
alize the way in which the factors interact.

The Model and Test Procedures
We now use triple subscripts for both random variables and observed values, with
Xijk and xijk referring to the kth observation (replication) when factor A is at level i
and factor B is at level j. The model is then
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Xijk � � � �i � �j � ij � �ijk (11.10)

i � 1, . . . , I, j � 1, . . . , J, k � 1, . . . , K

where the �ijs are independent and normally distributed, each with mean 0 and
variance � 2.

Again a dot in place of a subscript denotes summation over all values of that
subscript and a horizontal bar indicates averaging. Thus Xij� is the total of all K obser-
vations made for factor A at level i and factor B at level j [all observations in the
(i, j)th cell], and X�ij�, is the average of these K observations.

To test the hypotheses of interest, we again employ sums of squares:

DEFINITION SST � �
i

�
j

�
k

(Xijk � X����)2 df � IJK � 1

SSE � �
i

�
j

�
k

(Xijk � X�ij�)2 df � IJ(K � 1)

SSA � �
i

�
j

�
k

(X�i�� � X����)2 df � I � 1

SSB � �
i

�
j

�
k

(X��j� � X����)2 df � J � 1

SSAB � �
i

�
j

�
k

(X�ij� � X�i�� � X��j� � X����)2 df � (I � 1)(J � 1)

The fundamental identity is

SST � SSA � SSB � SSAB � SSE

SSAB is referred to as interaction sum of squares.

Total variation is thus partitioned into four pieces: unexplained (SSE—which would be
present whether or not any of the three null hypotheses was true) and three pieces that
may be explained by the truth or falsity of the three H0s. Each of four mean squares



Table 11.6 Yield Data for Example 11.7

Planting Density
Variety 10,000 20,000 30,000 40,000 xi�� x�i��

H 10.5 9.2 7.9 12.8 11.2 13.3 12.1 12.6 14.0 10.8 9.1 12.5 136.0 11.33
Ife 8.1 8.6 10.1 12.7 13.7 11.5 14.4 15.4 13.7 11.3 12.5 14.5 146.5 12.21
P 16.1 15.3 17.5 16.6 19.2 18.5 20.8 18.0 21.0 18.4 18.9 17.2 217.5 18.13

x�j� 103.3 129.5 142.0 125.2 500.00
x��j� 11.48 14.39 15.78 13.91 13.89
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is defined by MS � SS/df. The expected mean squares suggest that each set of hypoth-
eses should be tested using the appropriate ratio of mean squares with MSE in the
denominator:

E(MSE) � � 2

E(MSA) � � 2 � �
I

i�1
�2

i

E(MSB) � � 2 � �
J

j�1
�2

j

E(MSAB) � � 2 � �
I

i�1
�
J

j�1
2

ij

Each of the three mean square ratios can be shown to have an F distribution when
the associated H0 is true, which yields the following level � test procedures.

K
��
(I � 1)(J � 1)

IK
�
J � 1

JK
�
I � 1

Hypotheses Test Statistic Value Rejection Region

H0A versus HaA fA � �
M
M

S
S

A
E

� fA � F�,I�1,IJ(K�1)

H0B versus HaB fB � �
M
M

S
S

B
E

� fB � F�,J�1,IJ(K�1)

H0AB versus HaAB fAB � �
M
M

S
S
A
E
B

� fAB � F�,(I�1)(J�1),IJ(K�1)

Three different varieties of tomato (Harvester, Pusa Early Dwarf, and Ife No. 1) and
four different plant densities (10, 20, 30, and 40 thousand plants per hectare) are being
considered for planting in a particular region. To see whether either variety or plant
density affects yield, each combination of variety and plant density is used in
three different plots, resulting in the data on yields in Table 11.6 (based on the arti-
cle “Effects of Plant Density on Tomato Yields in Western Nigeria,” Experimental
Agriculture, 1976: 43–47).

Here, I � 3, J � 4, and K � 3, for a total of IJK � 36 observations. As before, the
results of the analysis are summarized in an ANOVA table (Table 11.7).



Table 11.7 ANOVA Table for Example 11.7

Source of
Variation df Sum of Squares Mean Square f

Varieties 2 327.60 163.8 fA � 103.02
Density 3 86.69 28.9 fB � 18.18
Interaction 6 8.03 1.34 fAB � .84
Error 24 38.04 1.59
Total 35 460.36

Since F.01,6,24 � 3.67 and fAB � .84 is not � 3.67, H0AB cannot be rejected at level .01,
so we conclude that the interaction effects are not significant. Now the presence or
absence of main effects can be investigated. Since F.01,2,24 � 5.61 and fA � 103.02 �
5.61, H0A is rejected at level .01 in favor of the conclusion that different varieties do
affect the true average yields. Similarly, fB � 18.18 � 4.72 � F.01,3,24, so we con-
clude that true average yield also depends on plant density.

Figure 11.5 shows the interaction plot. Notice the nearly parallel lines for the
three tomato varieties, in agreement with the F test showing no significant interac-
tion. The yield for Pusa Early Dwarf appears to be significantly above the yields for
the other two varieties, and this is in accord with the highly significant F for varieties.
Furthermore, all three varieties show the same pattern in which yield increases as the
density goes up, but decreases beyond 30,000 per hectare. This suggests that plant-
ing more seed will increase the yield, but eventually overcrowding causes the yield
to drop.

In this example one of the two factors is quantitative, and this is naturally the
factor used for the horizontal axis in the interaction plot. In case both of the factors
are quantitative, the choice for the horizontal axis would be arbitrary, but a case can
be made for two plots to try it both ways. Indeed, MINITAB has an option to allow
both plots to be included in the same graph.
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Figure 11.5 Interaction plot from MINITAB for the tomato yield data

To verify plausibility of the normality and constant variance assumptions we
can construct plots similar to those of Section 11.1. Define the predicted values
(fitted values) to be the cell means, x̂ijk � ij, so the residuals, the differences between
the observations and predicted values, are . The normal plot of the residuals is
Figure 11.6(a), and the plot of the residuals against the fitted values is Figure 11.6(b).
The normal plot is sufficiently straight that there should be no concern about the
normality assumption. The plot of residuals against predicted values has a fairly

xijk � xij.

x



uniform vertical spread, so there is no cause for concern about the constant variance
assumption.
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Figure 11.6 Plots from MINITAB to verify assumptions for Example 11.7 ■

Multiple Comparisons
When the no-interaction hypothesis H0AB is not rejected and at least one of the two
main effect null hypotheses is rejected, Tukey’s method can be used to identify sig-
nificant differences in levels. For identifying differences among the �i’s when H0A is
rejected,

1. Obtain Q�,I,IJ(K�1), where the second subscript I identifies the number of levels being
compared and the third subscript refers to the number of degrees of freedom for
error.

2. Compute w � Q�M�S�E�/(�JK�)�, where JK is the number of observations averaged
to obtain each of the x�i��’s compared in Step 3.

3. Order the x�i��’s from smallest to largest and, as before, underscore all pairs that
differ by less than w. Pairs not underscored correspond to significantly different
levels of factor A.

To identify different levels of factor B when H0B is rejected, replace the second sub-
script in Q by J, replace JK by IK in w, and replace x�i�� by x��j�.

For factor A (varieties), I � 3, so with � � .01 and IJ(K � 1) � 24, Q.01,3,24 � 4.55.
Then w � 4.55�1�.5�9�/1�2� � 1.66, so ordering and underscoring gives

x�1�� x�2�� x�3��

11.33 12.21 18.13

The Harvester and Ife varieties do not appear to differ significantly from one another
in effect on true average yield, but both differ from the Pusa variety.

For factor B (density), J � 4 so Q.01,4,24 � 4.91 and w � 4.91�1�.5�9�/9� � 2.06.

x��1� x��4� x��2� x��3�

11.48 13.91 14.39 15.78

Example 11.8
(Example 11.7
continued)



Thus with experimentwise error rate .01, which is quite conservative, only the low-
est density appears to differ significantly from all others. Even with � � .05 (so that
w � 1.64), densities 2 and 3 cannot be judged significantly different from one another
in their effect on yield. ■

Models with Mixed and Random Effects
In some problems, the levels of either factor may have been chosen from a large pop-
ulation of possible levels, so that the effects contributed by the factor are random rather
than fixed. As in Section 11.1, if both factors contribute random effects, the model is
referred to as a random effects model, whereas if one factor is fixed and the other is
random, a mixed effects model results. We will now consider the analysis for a mixed
effects model in which factor A (rows) is the fixed factor and factor B (columns) is the
random factor. The case in which both factors are random is dealt with in Exercise 26.
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DEFINITION The mixed effects model when factor A is fixed and factor B is random is

Xijk � � � �i � Bj � Gij � �ijk

i � 1, . . . , I, j � 1, . . . , J, k � 1, . . . , K

Here � and �i’s are constants with ��i � 0, and the Bj’s, Gij’s, and �ijk’s are inde-
pendent, normally distributed random variables with expected value 0 and variances
� 2

B, � 2
G, and � 2, respectively.*

H0A: �1 � �2 � 
 
 
 � �I � 0 versus HaA: at least one �i � 0

H0B: � 2
B � 0 versus HaB: � 2

B � 0

H0G: � 2
G � 0 versus HaG: � 2

G � 0

It is customary to test H0A and H0B only if the no-interaction hypothesis H0G cannot
be rejected.

The relevant sums of squares and mean squares needed for the test procedures
are defined and computed exactly as in the fixed effects case. The expected mean
squares for the mixed model are

E(MSE) � � 2

E(MSA) � � 2 � K� 2
G � ��2

i

E(MSB) � � 2 � K� 2
G � IK� 2

B

and

E(MSAB) � � 2 � K� 2
G

Thus, to test the no-interaction hypothesis, the ratio fAB � MSAB/MSE is again
appropriate, with H0G rejected if fAB � F�,(I�1)(J�1),IJ(K�1). However, for testing H0A ver-
sus HaA, the expected mean squares suggest that although the numerator of the F
ratio should still be MSA, the denominator should be MSAB rather than MSE.
MSAB is also the denominator of the F ratio for testing H0B.

JK
�
I � 1

* This is referred to as an “unrestricted” model. An alternative “restricted” model requires that �iGij � 0
for each j (so the Gij’s are no longer independent). Expected mean squares and F ratios appropriate for
testing certain hypotheses depend on the choice of model. MINITAB’s default option gives output for
the unrestricted model.



A process engineer has identified two potential causes of electric motor vibration, the
material used for the motor casing (factor A) and the supply source of bearings used in
the motor (factor B). The accompanying data on the amount of vibration (microns)
resulted from an experiment in which motors with casings made of steel, aluminum, and
plastic were constructed using bearings supplied by five randomly selected sources.

Supply Source

1 2 3 4 5

Steel 13.1 13.2 16.3 15.8 13.7 14.3 15.7 15.8 13.5 12.5
Material Aluminum 15.0 14.8 15.7 16.4 13.9 14.3 13.7 14.2 13.4 13.8

Plastic 14.0 14.3 17.2 16.7 12.4 12.3 14.4 13.9 13.2 13.1

Only the three casing materials used in the experiment are under consideration for
use in production, so factor A is fixed. However, the five supply sources were ran-
domly selected from a much larger population, so factor B is random. The relevant
null hypotheses are

H0A: �1 � �2 � �3 � 0 H0B: � 2
B � 0 H0AB: � 2

G � 0

MINITAB output appears in Figure 11.7. The P-value column in the ANOVA table
indicates that the latter two null hypotheses should be rejected at significance level .05.
Different casing materials by themselves do not appear to affect vibration, but interac-
tion between material and supplier is a significant source of variation in vibration.

Factor Type Levels Values
casmater fixed 3 1 2 3
source random 5 1 2 3 4 5

Source DF SS MS F P
casmater 2 0.7047 0.3523 0.24 0.790
source 4 36.6747 9.1687 6.32 0.013
casmater*source 8 11.6053 1.4507 13.03 0.000
Error 15 1.6700 0.1113
Total 29 50.6547

Source Variance Error Expected Mean Square for Each Term 
component term (using unrestricted model)

1 casmater 3 (4) � 2(3) � Q[1]
2 source 1.2863 3 (4) � 2(3) � 6(2)
3 casmater*source 0.6697 4 (4) � 2(3)
4 Error 0.1113 (4)

Figure 11.7 Output from MINITAB’s balanced ANOVA option for the data of
Example 11.9 ■

When at least two of the Kij’s are unequal, the ANOVA computations are
much more complex than for the case Kij � K, and there is controversy as to which
test procedures should be used. One of the chapter references can be consulted for
more information.
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For testing H0A versus HaA (factors A fixed, B random), the test statistic value is
fA � MSA/MSAB, and the rejection region is fA � F�,I�1,(I�1)(J�1). The test of
H0B versus HaB utilizes fB � MSB/MSAB, and the rejection region is fB �
F�,J�1,(I�1)(J�1).

Example 11.9



16. In an experiment to assess the effects of curing time (factor
A) and type of mix (factor B) on the compressive strength of
hardened cement cubes, three different curing times were
used in combination with four different mixes, with three
observations obtained for each of the 12 curing time–mix
combinations. The resulting sums of squares were computed
to be SSA � 30,763.0, SSB � 34,185.6, SSE � 97,436.8,
and SST � 205,966.6.

a. Construct an ANOVA table.

b. Test at level .05 the null hypothesis H0AB: all ij’s � 0 (no
interaction of factors) against HaAB: at least one ij � 0.

c. Test at level .05 the null hypothesis H0A: �1 � �2 � �3 � 0
(factor A main effects are absent) against HaA: at least one
�i � 0.

d. Test H0B: �1 � �2 � �3 � �4 � 0 versus HaB: at least one
�j � 0 using a level .05 test.

e. The values of the x�i��’s were x�1�� � 4010.88, x�2�� � 4029.10,
and x�3�� � 3960.02. Use Tukey’s procedure to investigate
significant differences among the three curing times.

17. The article “Towards Improving the Properties of Plaster
Moulds and Castings” (J. Engr. Manuf., 1991: 265–269)
describes several ANOVAs carried out to study how the
amount of carbon fiber and sand additions affect various
characteristics of the molding process. Here we give data on
casting hardness and on wet-mold strength.

Carbon
Sand Fiber 

Addition Addition Casting Wet-Mold 
(%) (%) Hardness Strength

0 0 61.0 34.0
0 0 63.0 16.0

15 0 67.0 36.0
15 0 69.0 19.0
30 0 65.0 28.0
30 0 74.0 17.0

0 .25 69.0 49.0
0 .25 69.0 48.0

15 .25 69.0 43.0
15 .25 74.0 29.0
30 .25 74.0 31.0
30 .25 72.0 24.0

0 .50 67.0 55.0
0 .50 69.0 60.0

15 .50 69.0 45.0
15 .50 74.0 43.0
30 .50 74.0 22.0
30 .50 74.0 48.0

a. An ANOVA for wet-mold strength gives SS-Sand � 705,
SSFiber � 1278, SSE � 843, and SST � 3105. Test for
the presence of any effects using � � .05.

b. Carry out an ANOVA on the casting hardness observa-
tions using � � .05.

c. Plot sample mean hardness against sand percentage for
different levels of carbon fiber. Is the plot consistent with
your analysis in part (b)?

18. The accompanying data resulted from an experiment to
investigate whether yield from a certain chemical process
depended either on the formulation of a particular input or
on mixer speed.

Speed

60 70 80

189.7 185.1 189.0
1 188.6 179.4 193.0

190.1 177.3 191.1
Formulation

165.1 161.7 163.3
2 165.9 159.8 166.6

167.6 161.6 170.3

A statistical computer package gave SS(Form) � 2253.44,
SS(Speed) � 230.81, SS(Form*Speed) � 18.58, and
SSE � 71.87.
a. Does there appear to be interaction between the factors?
b. Does yield appear to depend on either formulation or

speed?
c. Calculate estimates of the main effects.
d. The fitted values are x̂ijk � �̂ � �̂i � �̂j � ̂ij, and the

residuals are xijk � x̂ijk. Verify that the residuals are .23,
�.87, .63, 4.50, �1.20, �3.30, �2.03, 1.97, .07, �1.10,
�.30, 1.40, .67, �1.23, .57, �3.43, �.13, and 3.57.

e. Construct a normal probability plot from the residuals given
in part (d). Do the �ijk’s appear to be normally distributed?

19. The accompanying data table gives observations on total
acidity of coal samples of three different types, with deter-
minations made using three different concentrations of
ethanolic NaOH (“Chemistry of Brown Coals,” Australian
J. Applied Science, 1958: 375–379).

Type of Coal

Morwell Yallourn Maddingley

.404N 8.27, 8.17 8.66, 8.61 8.14, 7.96
NaOH

.626N 8.03, 8.21 8.42, 8.58 8.02, 7.89
Conc.

.786N 8.60, 8.20 8.61, 8.76 8.13, 8.07

a. Assuming both effects to be fixed, construct an ANOVA
table, test for the presence of interaction, and then test for
the presence of main effects for each factor (all using
level .01).

b. Use Tukey’s procedure to identify significant differences
among the types of coal.
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20. The current (in �A) necessary to produce a certain level of
brightness of a television tube was measured for two different
types of glass and three different types of phosphor, resulting
in the accompanying data (“Fundamentals of Analysis of
Variance,” Industrial Quality Control, 1956: 5–8).

Phosphor Type

1 2 3

Glass 1 280, 290, 285 300, 310, 295 270, 285, 290
Type 2 230,  235, 240 260, 240, 235 220, 225, 230

Assuming that both factors are fixed, test H0AB versus HaAB at
level .01. Then if H0AB cannot be rejected, test the two sets
of main effect hypotheses.

21. In an experiment to investigate the effect of “cement factor”
(number of sacks of cement per cubic yard) on flexural
strength of the resulting concrete (“Studies of Flexural
Strength of Concrete. Part 3: Effects of Variation in Testing
Procedure,” Proceedings ASTM, 1957: 1127–1139), I � 3
different factor values were used, J � 5 different batches of
cement were selected, and K � 2 beams were cast from each
cement factor/batch combination. Sums of squares include
SSA � 22,941.80, SSB � 22,765.53, SSE � 15,253.50,
and SST � 64,954.70. Construct the ANOVA table. Then
assuming a mixed model with cement factor (A) fixed and
batches (B) random, test the three pairs of hypotheses of
interest at level .05.

22. A study was carried out to compare the writing lifetimes of
four premium brands of pens. It was thought that the writing
surface might affect lifetime, so three different surfaces were
randomly selected. A writing machine was used to ensure
that conditions were otherwise homogeneous (e.g., constant
pressure and a fixed angle). The accompanying table shows
the two lifetimes (min) obtained for each brand–surface
combination.

Writing Surface

1 2 3 xi��

1 709, 659 713, 726 660, 645 4112
Brand 2 668, 685 722, 740 692, 720 4227
of Pen 3 659, 685 666, 684 678, 750 4122

4 698, 650 704, 666 686, 733 4137

x�j� 5413 5621 5564 16,598

Carry out an appropriate ANOVA, and state your conclu-
sions.

23. The accompanying data was obtained in an experiment to
investigate whether compressive strength of concrete cylin-
ders depends on the type of capping material used or vari-
ability in different batches (“The Effect of Type of Capping
Material on the Compressive Strength of Concrete Cyl-
inders,” Proceedings ASTM, 1958: 1166–1186). Each num-
ber is a cell total (xij�) based on K � 3 observations.

Batch

1 2 3 4 5

1 1847 1942 1935 1891 1795
Capping Material 2 1779 1850 1795 1785 1626

3 1806 1892 1889 1891 1756

In addition, ���x2
ijk � 16,815,853 and ��x2

ij� � 50,443,409.
Obtain the ANOVA table and then test at level .01 the
hypotheses H0G versus HaG, H0A versus HaA, and H0B versus
HaB, assuming that capping is a fixed effect and batches is a
random effect.

24. a. Show that E(X�i�� � X����) � �i, so that X�i�� � X���� is an
unbiased estimator for �i (in the fixed effects model).

b. With ̂ij � XX�ij� � X�i�� � X��j� � X����, show that ̂ij is an
unbiased estimator for ij (in the fixed effects model).

25. Show how a 100(1 � �)% t CI for �i � �i′ can be obtained.
Then compute a 95% interval for �2 � �3 using the data
from Exercise 19. [Hint: With 	 � �2 � �3, the result of
Exercise 24a indicates how to obtain 	̂. Then compute
V(	̂) and �	̂, and obtain an estimate of �	̂ by using
�M�S�E� to estimate � (which identifies the appropriate
number of df).]

26. When both factors are random in a two-way ANOVA exper-
iment with K replications per combination of factor levels,
the expected mean squares are E(MSE) � � 2, E(MSA) �
� 2 � K� 2

G � JK� 2
A, E(MSB) � � 2 � K� 2

G � IK� 2
B, and

E(MSAB) � � 2 � K� 2
G.

a. What F ratio is appropriate for testing H0G: � 2
G � 0 ver-

sus HaG: � 2
G � 0?

b. Answer part (a) for testing H0A: � 2
A � 0 versus HaA: � 2

A �
0 and H0B: � 2

B � 0 versus HaB: � 2
B � 0.
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11.3 Three-Factor ANOVA

To indicate the nature of models and analyses when ANOVA experiments involve
more than two factors, we will focus here on the case of three fixed factors—A, B,
and C. The numbers of levels of the three factors will be denoted by I, J, and K,
respectively, and Lijk � the number of observations made with factor A at level i, factor



B at level j, and factor C at level k. As with two-factor ANOVA, the analysis is quite
complicated when the Lijks are not all equal, so we further specialize to Lijk � L.
Then Xijkl and xijkl denote the observed value, before and after the experiment is per-
formed, of the lth replication (l � 1, 2, . . . , L) when the three factors are fixed at
levels i, j, and k.

To understand the parameters that will appear in the three-factor ANOVA
model, first recall that in two-factor ANOVA with replications, E(Xijk) � �ij � � �
�i � �j � ij, where the restrictions �i�i � �j�j � 0, �iij � 0 for every j, and
�jij � 0 for every i were necessary to obtain a unique set of parameters. If we use
dot subscripts on the �ij s to denote averaging (rather than summation), then

�i� � ��� � �
j

�ij � �
i
�
j

�ij � �i

is the effect of factor A at level i averaged over levels of factor B, whereas

�ij � ��j � �ij � �
i

�ij � �i � ij

is the effect of factor A at level i specific to factor B at level j. If the effect of A at
level i depends on the level of B, then there is interaction between the factors, and
the ij s are not all zero. In particular,

�ij � ��j � �i� � ��� � ij (11.11)

The Three-Factor Fixed Effects Model

1
�
I

1
�
IJ

1
�
J
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DEFINITION The model for three-factor ANOVA with Lijk � L is

Xijkl � �ijk � �ijkl i � 1, . . . , I, j � 1, . . . , J (11.12)

k � 1, . . . , K, l � 1, . . . , L

where the �ijkl s are normally distributed with mean 0 and variance � 2, and

�ijk � � � �i � �j � �k � AB
ij � AC

ik � BC
jk � ijk (11.13)

The restrictions necessary to obtain uniquely defined parameters are that the sum
over any subscript of any parameter on the right-hand side of (11.13) equal 0.

The parameters AB
ij, AC

ik, and BC
jk are called two-factor interactions, and ijk is

called a three-factor interaction; the �is, �j s, and �ks are the main effects parame-
ters. For any fixed level k of the third factor, analogous to (11.11),

�ijk � �i�k � ��jk � ���k � AB
ij � ijk

is the interaction of the ith level of A with the jth level of B specific to the kth level
of C, whereas

�ij� � �i�� � ��j� � ���� � AB
ij

is the interaction between A at level i and B at level j averaged over levels of C. If
the interaction of A at level i and B at level j does not depend on k, then all ijks equal 0.
Thus nonzero ijk s represent nonadditivity of the two-factor  AB

ij s over the various
levels of the third factor C. If the experiment included more than three factors,



there would be corresponding higher-order interaction terms with analogous interpre-
tations. Note that in the previous argument, if we had considered fixing the level of
either A or B (rather than C, as was done) and examining the ijks, their interpretation
would be the same—if any of the interactions of two factors depend on the level of
the third factor, then there are nonzero ijks.

Analysis of a Three-Factor Experiment
When L � 1, there is a sum of squares for each main effect, each two-factor inter-
action, and the three-factor interaction. To write these in a way that indicates how
sums of squares are defined when there are more than three factors, note that any of
the model parameters in (11.13) can be estimated unbiasedly by averaging Xijkl over
appropriate subscripts and taking differences. Thus

�̂ � X����� �̂ i � X�i��� � X����� ̂AB
i j � X�ij�� � X�i��� � X��j�� � X�����

̂ijk � XX�ijk� � X�ij�� � X�i�k� � X��jk� � X�i��� � X��j�� � X���k � X�����

with other main effects and interaction estimators obtained by symmetry.
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DEFINITION Relevant sums of squares are.

SST � �
i

�
j

�
k

�
l

(Xijkl � X�����)2 df � IJKL� 1

SSA � �
i

�
j

�
k

�
l

�̂2
i � JKL�

i
(X�i��� � X�����)2 df � I � 1

SSAB � �
i

�
j

�
k

�
l

(̂ AB
ij )2 df � (I � 1) (J � 1)

� KL�
i

�
j

(X�ij�� � X�i��� � X��j�� � X�����)2

SSABC � �
i

�
j

�
k

�
l

̂2
ijk � L�

i
�
j

�
k

̂2
ijk df � (I � 1) (J � 1)(K � 1)

SSE � �
i

�
j

�
k

�
l

(Xijkl � X�ijk�)2 df � IJK(L � 1)

with the other main effect and two-factor interaction sums of squares obtained
by symmetry. SST is the sum of the other eight SS’s.

Each sum of squares (excepting SST) when divided by its df gives a mean
square. Expected mean squares are

E(MSE) � � 2

E(MSA) � � 2 � �
i

�2
i

E(MSAB) � � 2 � �
i

�
j

( AB
i j )2

E(MSABC) � � 2 � �
i

�
j

�
k

('ijk)2

with similar expressions for the other expected mean squares. Main effect and inter-
action hypotheses are tested by forming F ratios with MSE in each denominator.

L
���
(I � 1)(J � 1)(K � 1)

KL
��
(I � 1)(J � 1)

JKL
�
I � 1



Usually the main effect hypotheses are tested only if all interactions are judged not
significant.

This analysis assumes that Lijk � L � 1. If L � 1, then as in the two-factor
case, the highest-order interactions must be assumed to equal 0 to obtain an MSE
that estimates � 2. Setting L � 1 and disregarding the fourth subscript summation
over l, the foregoing formulas for sums of squares are still valid, and error sum of
squares is SSE � � i� j�k̂2

ijk with X�ijk� � Xijk in the expression for ̂ijk.

The following observations (body temperature � 100°F) were reported in an experi-
ment to study heat tolerance of cattle (“The Significance of the Coat in Heat Tolerance
of Cattle,” Australian J. Agriculture Research, 1959: 744–748). Measurements were
made at four different periods (factor A, with I � 4) on two different strains of cattle
(factor B, with J � 2) having four different types of coat (factor C, with K � 4); L � 3
observations were made for each of the 4 � 2 � 4 � 32 combinations of levels of the
three factors.

B1 B2

C1 C2 C3 C4 C1 C2 C3 C4

3.6 3.4 2.9 2.5 4.2 4.4 3.6 3.0
A1 3.8 3.7 2.8 2.4 4.0 3.9 3.7 2.8

3.9 3.9 2.7 2.2 3.9 4.2 3.4 2.9

3.8 3.8 2.9 2.4 4.4 4.2 3.8 2.0
A2 3.6 3.9 2.9 2.2 4.4 4.3 3.7 2.9

4.0 3.9 2.8 2.2 4.6 4.7 3.4 2.8

3.7 3.8 2.9 2.1 4.2 4.0 4.0 2.0
A3 3.9 4.0 2.7 2.0 4.4 4.6 3.8 2.4

4.2 3.9 2.8 1.8 4.5 4.5 3.3 2.0

3.6 3.6 2.6 2.0 4.0 4.0 3.8 2.0
A4 3.5 3.7 2.9 2.0 4.1 4.4 3.7 2.2

3.8 3.9 2.9 1.9 4.2 4.2 3.5 2.3

The table of cell totals (xijk�s) for all combinations of the three factors is

B1 B2

xijk� C1 C2 C3 C4 C1 C2 C3 C4

A1 11.3 11.0 8.4 7.1 12.1 12.5 10.7 8.7
A2 11.4 11.6 8.6 6.8 13.4 13.2 10.9 7.7
A3 11.8 11.7 8.4 5.9 13.1 13.1 11.1 6.4
A4 10.9 11.2 8.4 5.9 12.3 12.6 11.0 6.5
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Example 11.10

Null Hypothesis Test Statistic Value Rejection Region

H0A: all �is � 0 fA � fA � F�,I�1,IJK(L�1)

H0AB: all AB
ij s � 0 fAB � fAB � F�,(I�1)(J�1),IJK(L�1)

H0ABC: all ijks � 0 fABC � fABC � F�,(I�1)(J�1)(K�1),IJK(L�1)

MSABC
�

MSE

MSAB
�
MSE

MSA
�
MSE



Figure 11.8 displays plots of the corresponding cell means x�ijk� � xijk�/3. We will
return to these plots after considering tests of various hypotheses. The basis for these
tests is the ANOVA table given in Table 11.8.
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Figure 11.8 Plots of xijk for Example 11.10

Table 11.8 ANOVA Table for Example 11.10

Source df Sum of Squares Mean Square f

A I � 1 � 3 .49 .163 4.13
B J � 1 � 1 6.45 6.45 163.29
C K � 1 � 3 48.93 16.31 412.91
AB (I � 1)(J � 1) � 3 .02 .0067 .170
AC (I � 1)(K � 1) � 9 1.61 .179 4.53
BC (J � 1)(K � 1) � 3 .88 .293 7.42
ABC (I � 1)(J � 1)(K � 1) � 9 .25 .0278 .704
Error IJK(L � 1) � 64 2.53 .0395
Total IJKL � 1 � 95 61.16

Since F.01,9,64 � 2.70 and fABC � MSABC/MSE � .704 does not exceed 2.70, we
conclude that three-factor interactions are not significant. However, although the AB
interactions are also not significant, both AC and BC interactions as well as all main
effects seem to be necessary in the model. When there are no ABC or AB interactions,
a plot of the x�ijk� s (� �̂ijk) separately for each level of C should reveal no substantial
interactions (if only the ABC interactions are zero, plots are more difficult to interpret;
see the article “Two-Dimensional Plots for Interpreting Interactions in the Three-
Factor Analysis of Variance Model,” Amer. Statistician, May 1979: 63–69). ■

Diagnostic plots for checking the normality and constant variance assumptions
can be constructed as described in previous sections. Tukey’s procedure can be used
in three-factor (or more) ANOVA. The second subscript on Q is the number of sam-
ple means being compared, and the third is degrees of freedom for error.

Models with random and mixed effects can also be analyzed. Sums of squares
and degrees of freedom are identical to the fixed effects case, but expected mean
squares are, of course, different for the random main effects or interactions. A good
reference is the book by Douglas Montgomery listed in the chapter bibliography.



Latin Square Designs
When several factors are to be studied simultaneously, an experiment in which there
is at least one observation for every possible combination of levels is referred to as
a complete layout. If the factors are A, B, and C with I, J, and K levels, respectively,
a complete layout requires at least IJK observations. Frequently an experiment of
this size is either impracticable because of cost, time, or space constraints or liter-
ally impossible. For example, if the response variable is sales of a certain product
and the factors are different display configurations, different stores, and different
time periods, then only one display configuration can realistically be used in a given
store during a given time period.

A three-factor experiment in which fewer than IJK observations are made is
called an incomplete layout. There are some incomplete layouts in which the pat-
tern of combinations of factors is such that the analysis is straightforward. One such
three-factor design is called a Latin square. It is appropriate when I � J � K (e.g.,
four display configurations, four stores, and four time periods) and all two- and
three-factor interaction effects are assumed absent. If the levels of factor A are iden-
tified with the rows of a two-way table and the levels of B with the columns of the
table, then the defining characteristic of a Latin square design is that every level of
factor C appears exactly once in each row and exactly once in each column. Pictured
in Figure 11.9 are examples of 3 � 3, 4 � 4, and 5 � 5 Latin squares. There are 12
different 3 � 3 Latin squares, and the number of different N � N Latin squares
increases rapidly with N (e.g., every permutation of rows of a given Latin square
yields a Latin square, and similarly for column permutations). It is recommended
that the square actually used in a particular experiment be chosen at random from the
set of all possible squares of the desired dimension; for further details, consult one
of the chapter references.
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Figure 11.9 Examples of Latin squares

The letter N will be used to denote the common value of I, J, and K. Then a
complete layout with one observation per combination would require N 3 observa-
tions, whereas a Latin square requires only N 2 observations. Once a particular square
has been chosen, the value of k (the level of factor C) is completely determined by
the values of i and j. To emphasize this, we use xij(k) to denote the observed value
when the three factors are at levels i, j, and k, respectively, with k taking on only
one value for each i, j pair. The model is then

Xij(k) � � � �i � �j � �k � �ij(k) i, j, k � 1, . . . , N

where ��i � ��j � ��k � 0 and the �ij(k) s are independent and normally dis-
tributed with mean 0 and variance � 2.



We employ the following notation for totals and averages:

Xi�� � �
j

Xij(k) X�j� � �
i

Xij(k) X��k � �
ij

Xij(k) X��� � �
i
�
j

Xij(k)

X�i�� � X��j� � X���k � X���� �

Note that although Xi�� previously suggested a double summation, now it corresponds
to a single sum over all j (and the associated values of k).

X����
N 2

X��k�
N

X�j��
N

Xi���
N
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DEFINITION Sums of squares for a Latin square experiment are

SST � �
i

�
j

(Xij(k) � X����)2 df � N 2 � 1

SSA � �
i

�
j

(X�i�� � X����)2 df � N � 1

SSB � �
i

�
j

(X��j� � X����)2 df � N � 1

SSC � �
i

�
j

(X���k � X����)2 df � N � 1

SSE � �
i

�
j

[Xij(k) � (�̂� �̂i � �̂j � �̂k)]2

� �
i

�
j

(Xij(k) � X�i�� � X��j� � X���k � 2X����)2 df � (N � 1)(N � 2)

SST � SSA � SSB � SSC � SSE

Each mean square is, of course, the ratio SS/df. For testing H0C: �1 � �2 � 
 
 
 �
�N � 0, the test statistic value is fC � MSC/MSE, with H0C rejected if fC �
F�,N�1,(N�1)(N�2). The other two main effect null hypotheses are also rejected if the cor-
responding F ratio exceeds F�,N�1,(N�1)(N�2).

If any of the null hypotheses is rejected, significant differences can be identi-
fied by using Tukey’s procedure. After computing w � Q� ,N,(N�1)(N�2) � �M�S�E�/N�,
pairs of sample means (the x�i�� s, x��j� s, or x���k s) differing by more than w correspond
to significant differences between associated factor effects (the �is, �js, or �ks).

The hypothesis H0C is frequently the one of central interest. A Latin square
design is used to control for extraneous variation in the A and B factors, as was done
by a randomized block design for the case of a single extraneous factor. Thus in the
product sales example mentioned previously, variation due to both stores and time
periods is controlled by a Latin square design, enabling an investigator to test for the
presence of effects due to different product display configurations.

In an experiment to investigate the effect of relative humidity on abrasion resistance
of leather cut from a rectangular pattern (“The Abrasion of Leather,” J. Inter. Soc.
Leather Trades’ Chemists, 1946: 287), a 6 � 6 Latin square was used to control for
possible variability due to row and column position in the pattern. The six levels of
relative humidity studied were 1 � 25%, 2 � 37%, 3 � 50%, 4 � 62%, 5 � 75%,
and 6 � 87%, with the following results:

Example 11.11



B (columns)

1 2 3 4 5 6 xi��

1 37.38 45.39 65.03 25.50 55.01 16.79 35.10

2 27.15 18.16 54.96 45.78 36.24 65.06 37.35

3 46.75 65.64 36.34 55.31 17.81 28.05 39.90

A (rows) 4 18.05 36.45 26.31 65.46 46.05 55.51 37.83

5 65.65 55.44 17.27 36.54 27.03 45.96 37.89

6 56.00 26.55 45.93 18.02 65.80 36.61 38.91

x�j� 40.98 37.63 35.84 36.61 37.94 37.98

Also, x��1 � 46.10, x��2 � 40.59, x��3 � 39.56, x��4 � 35.86, x��5 � 32.23, x��6 � 32.64,
x��� � 226.98. Further computations are summarized in Table 11.9.

Table 11.9 ANOVA Table for Example 11.11

Source of Variation df Sum of Squares Mean Square f

A (rows) 5 2.19 .438 2.50
B (columns) 5 2.57 .514 2.94
C (treatments) 5 23.53 4.706 26.89
Error 20 3.49 .175
Total 35 31.78

Since F.05,5,20 � 2.71 and 26.89 � 2.71, H0C is rejected in favor of the hypothesis that
relative humidity does on average affect abrasion resistance.

To apply Tukey’s procedure, w � Q.05,6,20��M�S�E�/6� � 4.45�.1�7�5�/6� � .76. Or-
dering the x���k s and underscoring yields

75% 87% 62% 50% 37% 25%

5.37 5.44 5.98 6.59 6.77 7.68

In particular, the lowest relative humidity appears to result in a true average abrasion
resistance significantly higher than for any other relative humidity studied. ■
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EXERCISES Section 11.3 (27–37)

27. The output of a continuous extruding machine that coats
steel pipe with plastic was studied as a function of the ther-
mostat temperature profile (A, at three levels), type of plas-
tic (B, at three levels), and the speed of the rotating screw
that forces the plastic through a tube-forming die (C, at
three levels). There were two replications (L � 2) at each
combination of levels of the factors, yielding a total of 
54 observations on output. The sums of squares were
SSA � 14,144.44, SSB � 5511.27, SSC � 244,696.39,
SSAB � 1069.62, SSAC � 62.67, SSBC � 331.67,
SSE � 3127.50, and SST � 270,024.33.
a. Construct the ANOVA table.

b. Use appropriate F tests to show that none of the F ratios for
two- or three-factor interactions is significant at level .05.

c. Which main effects appear significant?
d. With x��1� � 8242, x��2� � 9732, and x��3� � 11,210, use

Tukey’s procedure to identify significant differences
among the levels of factor C.

28. To see whether thrust force in drilling is affected by drilling
speed (A), feed rate (B), or material used (C), an experiment
using four speeds, three rates, and two materials was per-
formed, with two samples (L � 2) drilled at each combina-
tion of levels of the three factors. Sums of squares were cal-
culated as follows: SSA � 19,149.73, SSB � 2,589,047.62,



SSC � 157,437.52, SSAB � 53,238.21, SSAC � 9033.73,
SSBC � 91,880.04, SSE � 56,819.50, and SST �
2,983,164.81. Construct the ANOVA table and identify sig-
nificant interactions using � � .01. Is there any single factor
that appears to have no effect on thrust force? (In other words,
does any factor appear nonsignificant in every effect in which
it appears?)

29. The article “An Analysis of Variance Applied to Screw Ma-
chines” (Industrial Quality Control, 1956: 8–9) describes an
experiment to investigate how the length of steel bars was
affected by time of day (A), heat treatment applied (B), and
screw machine used (C). The three times were 8:00 A.M.,
11:00 A.M., and 3:00 P.M., and there were two treatments and
four machines (a 3 � 2 � 4 factorial experiment), resulting
in the accompanying data [coded as 1000(length � 4.380),
which does not affect the analysis].

B1

C1 C2 C3 C4

A1 6, 9, 7, 9, 1, 2, 6, 6, 
1, 3 5, 5 0, 4 7, 3

A2 6, 3, 8, 7, 3, 2, 7, 9, 
1, �1 4, 8 1, 0 11, 6

A3 5, 4, 10, 11, �1, 2, 10, 5,
9, 6 6, 4 6, 1 4, 8

B2

C1 C2 C3 C4

A1 4, 6, 6, 5, �1, 0, 4, 5, 
0, 1 3, 4 0, 1 5, 4

A2 3, 1, 6, 4, 2, 0, 9, 4, 
1, �2 1, 3 �1, 1 6, 3

A3 6, 0, 8, 7, 0, �2, 4, 3, 
3, 7 10, 0 4, �4 7, 0

Sums of squares include SSAB � 1.646, SSAC � 71.021,
SSBC � 1.542, SSE � 447.500, and SST � 1037.833.
a. Construct the ANOVA table for this data.
b. Test to see whether any of the interaction effects are sig-

nificant at level .05.
c. Test to see whether any of the main effects are significant

at level .05 (i.e., H0A versus Ha A, etc.).
d. Use Tukey’s procedure to investigate significant differ-

ences among the four machines.

30. The following summary quantities were computed from an
experiment involving four levels of nitrogen (A), two times
of planting (B), and two levels of potassium (C) (“Use and
Misuse of Multiple Comparison Procedures,” Agronomy J.,
1977: 205–208). Only one observation (N content, in per-
centage, of corn grain) was made for each of the 16 combi-
nations of levels.

SSA � .22625 SSB � .000025 SSC � .0036
SSAB � .004325 SSAC � .00065
SSBC � .000625 SST � .2384.

a. Construct the ANOVA table.
b. Assume that there are no three-way interaction effects,

so that MSABC is a valid estimate of � 2, and test at
level .05 for interaction and main effects.

c. The nitrogen averages are x�1�� � 1.1200, x�2�� � 1.3025,
x�3�� � 1.3875, and x�4�� � 1.4300. Use Tukey’s method to
examine differences in percentage N among the nitrogen
levels (Q.05,4,3 � 6.82).

31. The article “Kolbe–Schmitt Carbonation of 2-Naphthol” (In-
dustrial and Eng. Chemistry: Process and Design Devel-
opment, 1969: 165–173) presented the accompanying data on
percentage yield of BON acid as a function of reaction time (1,
2, and 3 hours), temperature (30, 70, and 100°C), and pressure
(30, 70, and 100 psi). Assuming that there is no three-factor
interaction, so that SSE � SSABC provides an estimate of �2,
MINITAB gave the accompanying ANOVA table. Carry out
all appropriate tests.

B1

C1 C2 C3

A1 68.5 73.0 68.7

A2 74.5 75.0 74.6

A3 70.5 72.5 74.7

B2

C1 C2 C3

A1 72.8 80.1 72.0

A2 72.0 81.5 76.0

A3 69.5 84.5 76.0

B3

C1 C2 C3

A1 72.5 72.5 73.1

A2 75.5 70.0 76.0

A3 65.0 66.5 70.5

Analysis of Variance for Yield
Source DF SS MS F P
time 2 42.112 21.056 8.76 0.010
temp 2 110.732 55.366 23.04 0.000
press 2 68.136 34.068 14.18 0.002
time*temp 4 67.761 16.940 7.05 0.010
time*press 4 35.184 8.796 3.66 0.056
temp*press 4 136.437 34.109 14.20 0.001
Error 8 19.223 2.403
Total 26 479.585
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32. When factors A and B are fixed but factor C is random and the
restricted model is used (see the footnote on page 416; there
is a technical complication with the unrestricted model here),

E(MSE) � � 2

E(MSA) � � 2 � JL� 2
AC � ��2

i

E(MSB) � � 2 � IL� 2
BC � ��2

j

E(MSC) � � 2 � IJL� 2
C

E(MSAB) � � 2 � L� 2
ABC

� �
i

�
j

(A
i

B
j )2

E(MSAC) � � 2 � JL� 2
AC

E(MSBC) � � 2 � IL� 2
BC

E(MSABC) � � 2 � L� 2
ABC

a. Based on these expected mean squares, what F ratios
would you use to test H0: �2

ABC � 0; H0: �2
C � 0; H0: AB

ij � 0
for all i, j; and H0: �1 � 
 
 
 � �I � 0?

b. In an experiment to assess the effects of age, type of soil,
and day of production on compressive strength of
cement/soil mixtures, two ages (A), four types of soil (B),
and 3 days (C, assumed random) were used, with L � 2
observations made for each combination of factor levels.
The resulting sums of squares were SSA � 14,318.24,
SSB � 9656.40, SSC � 2270.22, SSAB � 3408.93,
SSAC � 1442.58, SSBC � 3096.21, SSABC �
2832.72, and SSE � 8655.60. Obtain the ANOVA table
and carry out all tests using level .01.

33. Because of potential variability in aging due to different cast-
ings and segments on the castings, a Latin square design with
N � 7 was used to investigate the effect of heat treatment on
aging. With A � castings, B � segments, C � heat treatments,
summary statistics include x��� � 3815.8, �x2

i�� � 297,216.90,
�x 2

�j� � 297,200.64, �x 2
��k � 297,155.01, and ��x 2

ij(k) �
297,317.65. Obtain the ANOVA table and test at level .05
the hypothesis that heat treatment has no effect on aging.

34. The article “The Responsiveness of Food Sales to Shelf
Space Requirements” (J. Marketing Research, 1964:
63–67) reports the use of a Latin square design to investi-
gate the effect of shelf space on food sales. The experiment
was carried out over a 6-week period using six different
stores, resulting in the following data on sales of powdered
coffee cream (with shelf space index in parentheses):

Week
1 2 3

1 27 (5) 14 (4) 18 (3)
2 34 (6) 31 (5) 34 (4)
3 39 (2) 67 (6) 31 (5)

Store
4 40 (3) 57 (1) 39 (2)
5 15 (4) 15 (3) 11 (1)
6 16 (1) 15 (2) 14 (6)

Week
4 5 6

1 35 (1) 28 (6) 22 (2)
2 46 (3) 37 (2) 23 (1)
3 49 (4) 38 (1) 48 (3)

Store
4 70 (6) 37 (4) 50 (5)
5 9 (2) 18 (5) 17 (6)
6 12 (5) 19 (3) 22 (4)

Construct the ANOVA table, and state and test at level .01
the hypothesis that shelf space does not affect sales against
the appropriate alternative.

35. The article “Variation in Moisture and Ascorbic Acid Content
from Leaf to Leaf and Plant to Plant in Turnip Greens”
(Southern Cooperative Services Bull., 1951: 13–17) uses a
Latin square design in which factor A is plant, factor B is leaf
size (smallest to largest), factor C (in parentheses) is time of
weighing, and the response variable is moisture content.

Leaf Size (B)
1 2 3

1 6.67 (5) 7.15 (4) 8.29 (1)
2 5.40 (2) 4.77 (5) 5.40 (4)

Plant (A) 3 7.32 (3) 8.53 (2) 8.50 (5)
4 4.92 (1) 5.00 (3) 7.29 (2)
5 4.88 (4) 6.16 (1) 7.83 (3)

Leaf Size (B)
4 5

1 8.95 (3) 9.62 (2)
2 7.54 (1) 6.93 (3)

Plant (A) 3 9.99 (4) 9.68 (1)
4 7.85 (5) 7.08 (4)
5 5.83 (2) 8.51 (5)

When all three factors are random, the expected mean squares
are E(MSA) � �2 � N�2

A, E(MSB) � �2 � N� 2
B, E(MSC) �

�2 � N� 2
C, and E(MSE) � �2. This implies that the F ratios

for testing H0A: �2
A � 0, H0B: �2

B � 0, and H0C: �2
C � 0 are

identical to those for fixed effects. Obtain the ANOVA table
and test at level .05 to see whether there is any variation in
moisture content due to the factors.

36. The article “An Assessment of the Effects of Treatment,
Time, and Heat on the Removal of Erasable Pen Marks from
Cotton and Cotton/Polyester Blend Fabrics (J. Testing and
Eval., 1991: 394–397) reports the following sums of squares
for the response variable degree of removal of marks:
SSA � 39.171, SSB � .665, SSC � 21.508, SSAB �
1.432, SSAC � 15.953, SSBC � 1.382, SSABC � 9.016,
and SSE � 115.820. Four different laundry treatments, three
different types of pen, and six different fabrics were used in
the experiment, and there were three observations for each
treatment–pen–fabric combination. Perform an analysis of
variance using � � .01 for each test, and state your conclu-
sions (assume fixed effects for all three factors).

KL
��
(I � 1)(J � 1)

IKL
�
J � 1

JKL
�
I � 1
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37. A four-factor ANOVA experiment was carried out to inves-
tigate the effects of fabric (A), type of exposure (B), level of
exposure (C), and fabric direction (D) on extent of color
change in exposed fabric as measured by a spectrocolorim-
eter. Two observations were made for each of the three fab-
rics, two types, three levels, and two directions, resulting in
MSA � 2207.329, MSB � 47.255, MSC � 491.783,
MSD � .044, MSAB � 15.303, MSAC � 275.446,

MSAD � .470, MSBC � 2.141, MSBD � .273, MSCD �
.247, MSABC � 3.714, MSABD � 4.072, MSACD �
.767, MSBCD � .280, MSE � .977, and MST � 93.621
(“Accelerated Weathering of Marine Fabrics,” J. Testing and
Eval., 1992: 139–143). Assuming fixed effects for all fac-
tors, carry out an analysis of variance using � � .01 for all
tests and summarize your conclusions.
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11.4 2p Factorial Experiments

If an experimenter wishes to study simultaneously the effect of p different factors on a
response variable and the factors have I1, I2, . . . , Ip levels, respectively, then a com-
plete experiment requires at least I1 � I2 � � � � � Ip observations. In such situations, the
experimenter can often perform a “screening experiment” with each factor at only two
levels to obtain preliminary information about factor effects. An experiment in which
there are p factors, each at two levels, is referred to as a 2p factorial experiment. The
analysis of data from such an experiment is computationally simpler than for more
general factorial experiments. In addition, a 2p experiment provides a simple setting for
introducing the important concepts of confounding and fractional replications.

23 Experiments
As in Section 11.3, we let Xijkl and xijkl refer to the observation from the lth repli-
cation with factors A, B, and C at levels i, j, and k, respectively. The model for
this situation is

Xijkl � � � �i � �j � �k � AB
ij � AC

ik � BC
jk � 'ijk � �ijkl (11.14)

for i � 1, 2; j � 1, 2; k � 1, 2; l � 1, . . . , n. The �ijkl s are assumed independent,
normally distributed, with mean 0 and variance � 2. Because there are only two lev-
els of each factor, the side conditions on the parameters of (11.14) that uniquely
specify the model are simply stated: �1 � �2 � 0, . . . , AB

11 � AB
21 � 0, AB

12 � AB
22 �

0, AB
11 � AB

12 � 0, AB
21 � AB

22 � 0, and the like. These conditions imply that there is
only one functionally independent parameter of each type (for each main effect and
interaction). For example, �2 � ��1, whereas AB

21 � �AB
11,  AB

12 � �AB
11, and AB

22 �
AB

11. Because of this, each sum of squares in the analysis will have 1 df.
The parameters of the model can be estimated by taking averages over various

subscripts of the Xijkl s and then forming appropriate linear combinations of the aver-
ages. For example,

�̂1 � X�1��� � X�����

�

and

̂ A
1
B
1 � X�11�� � X�1��� � X��1�� � X�����

�
(X111� � X121� � X211� � X221� � X112� � X122� � X212� � X222�)�������

8n

(X111� � X121� � X112� � X122� � X211� � X212� � X221� � X222�)�������
8n



Each estimator is, except for the factor 1/(8n), a linear function of the cell totals
(Xijk�s) in which each coefficient is � 1 or �1, with an equal number of each; such
functions are called contrasts in the Xijk�s. Furthermore, the estimators satisfy the
same side conditions satisfied by the parameters themselves. For example,

�̂1 � �̂2 � X�1��� � X����� � X�2��� � X����� � X�1��� � X�2��� � 2X�����

� X1��� � X2��� � X���� � X���� � X���� � 0

In an experiment to investigate the compressive strength properties of cement–soil
mixtures, two different aging periods were used in combination with two different
aging temperatures and two different soils. Two replications were made for each
combination of levels of the three factors, resulting in the following data:

Soil

Age Temperature 1 2

1 1 471, 413 385, 434
2 485, 552 530, 593

2 1 712, 637 770, 705
2 712, 789 741, 806

The computed cell totals are x111� � 884, x211� � 1349, x121� � 1037, x221� � 1501,
x112� � 819, x212� � 1475, x122� � 1123, and x222� � 1547, so x���� � 9735. Then

�̂1 � (884 � 1349 � 1037 � 1501 � 819 � 1475 � 1123 � 1547)/16

� �125.5625 � ��̂2

̂A
1

B
1 � (884 � 1349 � 1037 � 1501 � 819 � 1475 � 1123 � 1547)/16

� �14.5625 � �̂A
1

B
2 � �̂A

2
B
1 � ̂A

2
B
2

The other parameter estimates can be computed in the same manner. ■

Analysis of a 23 Experiment The reason for computing parameter estimates is that
sums of squares for the various effects are easily obtained from the estimates. For
example,

SSA � �
i

�
j

�
k

�
l

�̂2
i � 4n�

2

i�1
�̂2

i � 4n[�̂2
1 � (� �̂1)2] � 8n�̂2

1

and

SSAB � �
i

�
j

�
k
�
l

(̂ A
i

B
j )2

� 2n�
2

i�1
�
2

j�1
(̂ A

i
B
j )2 � 2n[(̂ A

1
B
1)2 � (�̂A

1
B
1)2 � (�̂ A

1
B
1)2 � (̂ A

1
B
1)2]

� 8n(̂ A
1

B
1)2

Since each estimate is a contrast in the cell totals multiplied by 1/(8n), each sum
of squares has the form (contrast)2/(8n). Thus to compute the various sums of squares,
we need to know the coefficients (�1 or �1) of the appropriate contrasts. The signs
(� or �) on each xijk. in each effect contrast are most conveniently displayed in a table.
We will use the notation (1) for the experimental condition i � 1, j � 1, k � 1, a for
i � 2, j � 1, k � 1, ab for i � 2, j � 2, k � 1, and so on. If level 1 is thought of as
“low” and level 2 as “high,” any letter that appears denotes a high level of the asso-
ciated factor. In Table 11.10, each column gives the signs for a particular effect con-
trast in the xijk�s associated with the different experimental conditions.

1
�
4n

1
�
4n

2
�
8n

1
�
4n

1
�
4n
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Table 11.10 Signs for Computing Effect Contrasts

Experimental Cell Factorial Effect
Condition Total A B C AB AC BC ABC

(1) x111� � � � � � � �
a x211� � � � � � � �
b x121� � � � � � � �
ab x221� � � � � � � �
c x112� � � � � � � �
ac x212� � � � � � � �
bc x122� � � � � � � �
abc x222� � � � � � � �

In each of the first three columns, the sign is � if the corresponding factor is
at the high level and � if it is at the low level. Every sign in the AB column is then
the “product” of the signs in the A and B columns, with (�)(�) � (�)(�) �� and
(�)(�) � (�)(�) � �, and similarly for the AC and BC columns. Finally, the signs in
the ABC column are the products of AB with C (or B with AC or A with BC). Thus,
for example,

AC contrast � � x111� � x211� � x121� � x221� � x112� � x212� � x122� � x222�

Once the seven effect contrasts are computed,

SS(effect) �

Even with a table of signs, calculation of the contrasts is tedious. An efficient
computational technique, due to Yates, is as follows. Write in a column the eight cell
totals in the standard order as given in the table of signs, and establish three addi-
tional columns. In each of these three columns, the first four entries are the sums of
entries 1 and 2, 3 and 4, 5 and 6, 7 and 8 of the previous columns. The last four
entries are the differences between entries 2 and 1, 4 and 3, 6 and 5, and 8 and 7 of
the previous column. The last column then contains x���� and the seven effect con-
trasts in standard order. Squaring each contrast and dividing by 8n then gives the
seven sums of squares.

Since n � 2, 8n � 16. Yates’s method is illustrated in Table 11.11.

Table 11.11 Yates’s Method of Computation

Treatment 
Condition xijk� 1 2 Effect Contrast SS � (contrast)2/16

(1) � x111� 884 2233 4771 9735
a � x211� 1349 2538 4964 2009 252,255.06
b � x121� 1037 2294 929 681 28,985.06

ab � x221� 1501 2670 1080 �233 3,393.06
c � x112� 819 465 305 193 2,328.06

ac � x212� 1475 464 376 151 1,425.06
bc � x122� 1123 656 �1 71 315.06

abc � x222� 1547 424 �232 �231 3,335.06

292,036.42

(effect contrast)2

��
8n
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From the original data, �i �j�k�l x 2
ijkl � 6,232,289, and

� 5,923,139.06

so
SST � 6,232,289 � 5,923,139.06 � 309,149.94

SSE � SST � [SSA � . . . � SSABC] � 309,149.94 � 292,036.42

� 17,113.52

The ANOVA calculations are summarized in Table 11.12.

Table 11.12 ANOVA Table for Example 11.13

Source of
Variation df Sum of Squares Mean Square f

A 1 252,255.06 252,255.06 117.92
B 1 28,985.06 28,985.06 13.55
C 1 2,328.06 2,328.06 1.09
AB 1 3,393.06 3,393.06 1.59
AC 1 1,425.06 1,425.06 .67
BC 1 315.06 315.06 .15
ABC 1 3,335.06 3,335.06 1.56
Error 8 17,113.52 2,139.19
Total 15 309,149.94

Figure 11.10 shows SAS output for this example. Only the P-values for age (A)
and temperature (B) are less than .01, so only these effects are judged significant.

Analysis of Variance Procedure
Dependent Variable: STRENGTH

Sum of Mean 
Source DF Squares Square F Value Pr � F
Model 7 292036.4375 41719.4911 19.50 0.0002
Error 8 17113.5000 2139.1875
Corrected Total 15 309149.9375

R-Square C.V. Root MSE POWERUSE Mean

0.944643 7.601660 46.25135 608.437500

Source DF Anova SS Mean Square F Value Pr � F

AGE 1 252255.0625 252255.0625 117.92 0.0001
TEMP 1 28985.0625 28985.0625 13.55 0.0062
AGE*TEMP 1 3393.0625 3393.0625 1.59 0.2434
SOIL 1 2328.0625 2328.0625 1.09 0.3273
AGE*SOIL 1 1425.0625 1425.0625 0.67 0.4380
TEMP*SOIL 1 315.0625 315.0625 0.15 0.7111
AGE*TEMP*SOIL 1 3335.0625 3335.0625 1.56 0.2471

Figure 11.10 SAS output for strength data of Example 11.13 ■

2p Experiments for p � 3
Although the computations when p � 3 are quite tedious, the analysis parallels that
of the three-factor case. For example, if there are four factors A, B, C, and D, there
are 16 different experimental conditions. The first 8 in standard order are exactly
those already listed for a three-factor experiment. The second 8 are obtained by placing

x2
�����

16
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the letter d beside each condition in the first group. Yates’s method is then initiated
by computing totals across replications, listing these totals in standard order, and
proceeding as before; with p factors, the pth column to the right of the treatment
totals will give the effect contrasts.

For p � 3, there will often be no replications of the experiment (so only one
complete replicate is available). One possible way to test hypotheses is to assume
that certain higher-order effects are absent and then add the corresponding sums of
squares to obtain an SSE. Such an assumption can, however, be misleading in the
absence of prior knowledge (see the book by Montgomery listed in the chapter bibli-
ography). An alternative approach involves working directly with the effect contrasts.
Each contrast has a normal distribution with the same variance. When a particular
effect is absent, the expected value of the corresponding contrast is 0, but this is not
so when the effect is present. The suggested method of analysis is to construct a nor-
mal probability plot of the effect contrasts (or, equivalently, the effect parameter esti-
mates, since estimate � contrast/2p when n � 1). Points corresponding to absent
effects will tend to fall close to a straight line, whereas points associated with sub-
stantial effects will typically be far from this line.

The accompanying data is from the article “Quick and Easy Analysis of Unreplicated
Factorials” (Technometrics, 1989: 469–473). The four factors are A � acid strength,
B � time, C � amount of acid, and D � temperature, and the response variable is
the yield of isatin. The observations, in standard order, are .08, .04, .53, .43, .31, .09,
.12, .36, .79, .68, .73, .08, .77, .38, .49, and .23. Table 11.13 displays the effect esti-
mates as given in the article (which used contrast/8 rather than contrast/16).

Table 11.13 Effect Estimates for Example 11.14

Effect A B AB C AC BC ABC D
estimate �.191 �.021 �.001 �.076 .034 �.066 .149 .274

Effect AD BD ABD CD ACD BCD ABCD
estimate �.161 �.251 �.101 �.026 �.066 .124 .019

Figure 11.11 is a normal probability plot of the effect estimates. All points in the plot
fall close to the same straight line, suggesting the complete absence of any effects
(we will shortly give an example in which this is not the case).
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Figure 11.11 A normal probability plot of effect estimates from Example 11.14 ■



Visual judgments of deviation from straightness in a normal probability plot
are rather subjective. The article cited in Example 11.14 describes a more objective
technique for identifying significant effects in an unreplicated experiment.

Confounding
It is often not possible to carry out all 2p experimental conditions of a 2p factorial
experiment in a homogeneous experimental environment. In such situations, it may
be possible to separate the experimental conditions into 2r homogeneous blocks (r � p),
so that there are 2p�r experimental conditions in each block. The blocks may, for
example, correspond to different laboratories, different time periods, or different
operators or work crews. In the simplest case, p � 3 and r � 1, so that there are two
blocks with each block consisting of four of the eight experimental conditions.

As always, blocking is effective in reducing variation associated with extra-
neous sources. However, when the 2p experimental conditions are placed in 2r

blocks, the price paid for this blocking is that 2r � 1 of the factor effects cannot
be estimated. This is because 2r � 1 factor effects (main effects and/or interactions)
are mixed up or confounded with the block effects. The allocation of experimental
conditions to blocks is then usually done so that only higher-level interactions are
confounded, whereas main effects and low-order interactions remain estimable
and hypotheses can be tested.

To see how allocation to blocks is accomplished, consider first a 23 experiment
with two blocks (r � 1) and four treatments per block. Suppose we select ABC as
the effect to be confounded with blocks. Then any experimental condition having an
odd number of letters in common with ABC, such as b (one letter) or abc (three let-
ters), is placed in one block, whereas any condition having an even number of letters
in common with ABC (where 0 is even) goes in the other block. Figure 11.12 shows
this allocation of treatments to the two blocks.
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Figure 11.12 Confounding ABC in a 23 experiment

In the absence of replications, the data from such an experiment would usually
be analyzed by assuming that there were no two-factor interactions (additivity) and
using SSE � SSAB � SSAC � SSBC with 3 df to test for the presence of main
effects. Alternatively, a normal probability plot of effect contrasts or effect parame-
ter estimates could be examined. Most frequently, though, there are replications
when just three factors are being studied. Suppose there are u replicates, resulting in
a total of 2r � u blocks in the experiment. Then after subtracting from SST all sums
of squares associated with effects not confounded with blocks (computed using
Yates’s method), the block sum of squares is computed using the 2r � u block totals
and then subtracted to yield SSE (so there are 2r � u � 1 df for blocks).

The article “Factorial Experiments in Pilot Plant Studies” (Industrial and Eng.
Chemistry, 1951: 1300–1306) reports the results of an experiment to assess the effects
of reactor temperature (A), gas throughput (B), and concentration of active constituent
(C) on strength of the product solution (measured in arbitrary units) in a recirculation
unit. Two blocks were used, with the ABC effect confounded with blocks, and there

Example 11.15

(1), ab, ac, bc

Block 1

a, b, c, abc

Block 2



were two replications, resulting in the data in Figure 11.13. The four block � repli-
cation totals are 288, 212, 88, and 220, with a grand total of 808, so

SSBl � � � 5204.00
(808)2

�
16

(288)2 � (212)2 � (88)2 � (220)2

����
4
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The other sums of squares are computed by Yates’s method using the eight
experimental condition totals, resulting in the ANOVA table given as Table 11.14.
By comparison with F.05,1,6 � 5.99, we conclude that only the main effects for A and
C differ significantly from zero.

Table 11.14 ANOVA Table for Example 11.15

Source of 
Variation df Sum of Squares Mean Square f

A 1 12,996 12,996 39.82
B 1 702.25 702.25 2.15
C 1 2,756.25 2,756.25 8.45
AB 1 210.25 210.25 .64
AC 1 30.25 30.25 .093
BC 1 25 25 .077
Blocks 3 5,204 1,734.67 5.32
Error 6 1,958 326.33
Total 15 23,882

■

Confounding Using More Than Two Blocks
In the case r � 2 (four blocks), three effects are confounded with blocks. The
experimenter first chooses two defining effects to be confounded. For example, in
a five-factor experiment (A, B, C, D, and E), the two three-factor interactions BCD
and CDE might be chosen for confounding. The third effect confounded is then
the generalized interaction of the two, obtained by writing the two chosen effects
side by side and then cancelling any letters common to both: (BCD)(CDE) � BE.
Notice that if ABC and CDE are chosen for confounding, their generalized inter-
action is (ABC)(CDE) � ABDE, so that no main effects or two-factor interactions
are confounded.

Once the two defining effects have been selected for confounding, one block
consists of all treatment conditions having an even number of letters in common with
both defining effects. The second block consists of all conditions having an even
number of letters in common with the first defining contrast and an odd number of
letters in common with the second contrast, and the third and fourth blocks consist

Figure 11.13 Data for Example 11.15
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51
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46
�47
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67
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a
b
c
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18
62

104
36
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of the “odd/even” and “odd/odd” contrasts. In a five-factor experiment with defining
effects ABC and CDE, this results in the allocation to blocks as shown in Figure 11.14
(with the number of letters in common with each defining contrast appearing beside
each experimental condition).
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Figure 11.14 Four blocks in a 25 factorial experiment with defining effects ABC and CDE

The block containing (1) is called the principal block. Once it has been con-
structed, a second block can be obtained by selecting any experimental condition not
in the principal block and obtaining its generalized interaction with every condition
in the principal block. The other blocks are then constructed in the same way by first
selecting a condition not in a block already constructed and finding generalized
interactions with the principal block.

For experimental situations with p � 3, there is often no replication, so sums of
squares associated with nonconfounded higher-order interactions are usually pooled
to obtain an error sum of squares that can be used in the denominators of the various
F statistics. All computations can again be carried out using Yates’s technique, with
SSBl being the sum of sums of squares associated with confounded effects.

When r � 2, one first selects r defining effects to be confounded with blocks,
making sure that no one of the effects chosen is the generalized interaction of any
other two selected. The additional 2r � r � 1 effects confounded with the blocks are
then the generalized interactions of all effects in the defining set (including not only
generalized interactions of pairs of effects but also of sets of three, four, and so on).
Consult the book by Montgomery for details.

Fractional Replication
When the number p of factors is large, even a single replicate of a 2p experiment can
be expensive and time-consuming. For example, one replicate of a 26 factorial exper-
iment involves an observation for each of the 64 different experimental conditions.
An appealing strategy in such situations is to make observations for only a fraction
of the 2p conditions. Provided that care is exercised in the choice of conditions to be
observed, much information about factor effects can still be obtained.

Suppose we decide to include only 2p�1 (half) of the 2p possible conditions in
our experiment; this is usually called a half-replicate. The price paid for this econ-
omy is twofold. First, information about a single effect (determined by the 2p�1 con-
ditions selected for observation) is completely lost to the experimenter in the sense
that no reasonable estimate of the effect is possible. Second, the remaining 2p � 2
main effects and interactions are paired up so that any one effect in a particular pair
is confounded with the other effect in the same pair. For example, one such pair may
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be {A, BCD}, so that separate estimates of the A main effect and BCD interaction
are not possible. It is desirable, then, to select a half-replicate for which main effects
and low-order interactions are paired off (confounded) only with higher-order inter-
actions rather than with one another.

The first step in selecting a half-replicate is to select a defining effect as the
nonestimable effect. Suppose that in a five-factor experiment, ABCDE is chosen as
the defining effect. Now the 25 � 32 possible treatment conditions are divided into
two groups with 16 conditions each, one group consisting of all conditions having
an odd number of letters in common with ABCDE and the other containing an even
number of letters in common with the defining contrast. Then either group of 16 con-
ditions is used as the half-replicate. The “odd” group is

a, b, c, d, e, abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde, abcde

Each main effect and interaction other than ABCDE is then confounded with
(aliased with) its generalized interaction with ABCDE. Thus (AB)(ABCDE) � CDE,
so the AB interaction and CDE interaction are confounded with each other. The
resulting alias pairs are

{A, BCDE} {B, ACDE} {C, ABDE} {D, ABCE} {E, ABCD}

{AB, CDE} {AC, BDE} {AD, BCE} {AE, BCD} {BC, ADE}

{BD, ACE} {BE, ACD} {CD, ABE} {CE, ABD} {DE, ABC}

Note in particular that every main effect is aliased with a four-factor interaction. 
Assuming these interactions to be negligible allows us to test for the presence of
main effects.

To select a quarter-replicate of a 2p factorial experiment (2p�2 of the 2p possi-
ble treatment conditions), two defining effects must be selected. These two and their
generalized interaction become the nonestimable effects. Instead of alias pairs as in
the half-replicate, each remaining effect is now confounded with three other effects,
each being its generalized interaction with one of the three nonestimable effects.

The article “More on Planning Experiments to Increase Research Efficiency”
(Industrial and Eng. Chemistry, 1970: 60–65) reports on the results of a quarter-
replicate of a 25 experiment in which the five factors were A � condensation tem-
perature, B � amount of material B, C � solvent volume, D � condensation time,
and E � amount of material E. The response variable was the yield of the chemical
process. The chosen defining contrasts were ACE and BDE, with generalized inter-
action (ACE)(BDE) � ABCD. The remaining 28 main effects and interactions can
now be partitioned into seven groups of four effects each such that the effects within
a group cannot be assessed separately. For example, the generalized interactions of
A with the nonestimable effects are (A)(ACE) � CE, (A)(BDE) � ABDE, and
(A)(ABCD) � BCD, so one alias group is {A, CE, ABDE, BCD}. The complete set
of alias groups is

{A, CE, ABDE, BCD} {B, ABCE, DE, ACD} {C, AE, BCDE, ABD}

{D, ACDE, BE, ABC} {E, AC, BD, ABCDE} {AB, BCE, ADE, CD}

{AD, CDE, ABE, BC} ■

Analysis of a Fractional Replicate Once the defining contrasts have been chosen
for a quarter-replicate, they are used as in the discussion of confounding to divide the
2p treatment conditions into four groups of 2p�2 conditions each. Then any one of the
four groups is selected as the set of conditions for which data will be collected.
Similar comments apply to a 1/2r replicate of a 2p factorial experiment.
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Having made observations for the selected treatment combinations, a table of
signs similar to Table 11.10 is constructed. The table contains a row only for each 
of the treatment combinations actually observed rather than the full 2p rows, and
there is a single column for each alias group (since each effect in the group would
have the same set of signs for the treatment conditions selected for observation). The
signs in each column indicate as usual how contrasts for the various sums of squares
are computed. Yates’s method can also be used, but the rule for arranging observed
conditions in standard order must be modified.

The difficult part of a fractional replication analysis typically involves decid-
ing what to use for error sum of squares. Since there will usually be no replication
(though one could observe, e.g., two replicates of a quarter-replicate), some effect
sums of squares must be pooled to obtain an error sum of squares. In a half-replicate
of a 28 experiment, for example, an alias structure can be chosen so that the eight
main effects and 28 two-factor interactions are each confounded only with higher-
order interactions and that there are an additional 27 alias groups involving only
higher-order interactions. Assuming the absence of higher-order interaction effects,
the resulting 27 sums of squares can then be added to yield an error sum of squares,
allowing 1-df tests for all main effects and two-factor interactions. However, in many
cases tests for main effects can be obtained only by pooling some or all of the sums
of squares associated with alias groups involving two-factor interactions, and the
corresponding two-factor interactions cannot be investigated.

The set of treatment conditions chosen and resulting yields for the quarter-replicate
of the 25 experiment were

e ab ad bc cd ace bde abcde

23.2 15.5 16.9 16.2 23.8 23.4 16.8 18.1

The abbreviated table of signs is displayed in Table 11.15.
With SSA denoting the sum of squares for effects in the alias group {A, CE,

ABDE, BCD},

SSA � � 4.65

Table 11.15 Table of Signs for Example 11.17

A B C D E AB AD

e � � � � � � �
ab � � � � � � �
ad � � � � � � �
bc � � � � � � �
cd � � � � � � �
ace � � � � � � �
bde � � � � � � �
abcde � � � � � � �

Similarly, SSB � 53.56, SSC � 10.35, SSD � .91, SSE � 10.35 (the  differenti-
ates this quantity from error sum of squares SSE), SSAB � 6.66, and SSAD � 3.25,
giving SST � 4.65 � 53.56 � 
 
 
 � 3.25 � 89.73. To test for main effects, we use
SSE � SSAB � SSAD � 9.91 with 2 df. The ANOVA table is in Table 11.16.

(�23.2 � 15.5 � 16.9 � 16.2 � 23.8 � 23.4 � 16.8 � 18.1)2

�������
8
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Example 11.17
(Example 11.16
continued)



Table 11.16 ANOVA Table for Example 11.17

Source df Sum of Squares Mean Square f

A 1 4.65 4.65 .94
B 1 53.56 53.56 10.80
C 1 10.35 10.35 2.09
D 1 .91 .91 .18
E 1 10.35 10.35 2.09
Error 2 9.91 4.96
Total 7 89.73

Since F.05,1,2 � 18.51, none of the five main effects can be judged significant. Of
course, with only 2 df for error, the test is not very powerful (i.e., it is quite likely to
fail to detect the presence of effects). The article from Industrial and Engineering
Chemistry from which the data came actually had an independent estimate of the
standard error of the treatment effects based on prior experience, so it used a some-
what different analysis. Our analysis was done here only for illustrative purposes,
since one would ordinarily want many more than 2 df for error. ■

As an alternative to F tests based on pooling sums of squares to obtain SSE, a
normal probability plot of effect contrasts can be examined.

An experiment was carried out to investigate shrinkage in the plastic casing material
used for speedometer cables (“An Explanation and Critique of Taguchi’s Contribution
to Quality Engineering,” Quality and Reliability Engr. Intl., 1988: 123–131). The
engineers started with 15 factors: liner outside diameter, liner die, liner material,
liner line speed, wire braid type, braiding tension, wire diameter, liner tension, liner
temperature, coating material, coating die type, melt temperature, screen pack, cool-
ing method, and line speed. It was suspected that only a few of these factors were
important, so a screening experiment in the form of a 215–11 factorial (a 1/211 fraction
of a 215 factorial experiment) was carried out. The resulting alias structure is quite
complicated; in particular, every main effect is confounded with two-factor interac-
tions. The response variable was the percentage shrinkage for a cable specimen pro-
duced at designated levels of the factors.

Figure 11.15 displays a normal probability plot of the effect contrasts. All but
two of the points fall quite close to a straight line. The discrepant points correspond
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Example 11.18

Contrast

z percentile

1.6 
.8 0 .8 1.6

0


.8


1.6

G � Wire diameter

E � Wire-braid type

Figure 11.15 Normal probability plot of contrasts from Example 11.18



to effects E � wire braid type and G � wire diameter, suggesting that these two fac-
tors are the only ones that affect the amount of shrinkage. ■

The subjects of factorial experimentation, confounding, and fractional replica-
tion encompass many models and techniques we have not discussed. For more infor-
mation, the chapter references should be consulted.
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EXERCISES Section 11.4 (38–49)

38. The accompanying data resulted from an experiment to study
the nature of dependence of welding current on the three fac-
tors: welding voltage, wire feed speed, and tip-to-workpiece
distance. There were two levels of each factor (a 23 experi-
ment) with two replications per combination of levels (the
averages across replications agree with values given in the
article “A Study on Prediction of Welding Current in Gas
Metal Arc Welding,” J. Engr. Manuf., 1991: 64–69). The first
two given numbers are for the treatment (1), the next two for
a, and so on in standard order: 200.0, 204.2, 215.5, 219.5,
272.7, 276.9, 299.5, 302.7, 166.6, 172.6, 186.4, 192.0, 232.6,
240.8, 253.4, 261.6.
a. Verify that the sums of squares are as given in the accom-

panying ANOVA table from MINITAB.
b. Which effects appear to be important, and why?

Analysis of Variance for current
Source DF SS MS F P
Volt 1 1685.1 1685.1 102.38 0.000
Speed 1 21272.2 21272.2 1292.37 0.000
Dist 1 5076.6 5076.6 308.42 0.000
Volt*speed 1 36.6 36.6 2.22 0.174
Volt*dist 1 0.4 0.4 0.03 0.877
Speed*dist 1 109.2 109.2 6.63 0.033
Volt*speed*dist 1 23.5 23.5 1.43 0.266
Error 8 131.7 16.5
Total 15 28335.3

39. The accompanying data resulted from a 23 experiment with
three replications per combination of treatments designed to
study the effects of concentration of detergent (A), concen-
tration of sodium carbonate (B), and concentration of so-
dium carboxymethyl cellulose (C) on cleaning ability of a
solution in washing tests (a larger number indicates better
cleaning ability than a smaller number).

Factor Levels

A B C Condition Observations

1 1 1 (1) 106, 93, 116
2 1 1 a 198, 200, 214
1 2 1 b 197, 202, 185
2 2 1 ab 329, 331, 307
1 1 2 c 149, 169, 135
2 1 2 ac 243, 247, 220
1 2 2 bc 255, 230, 252
2 2 2 abc 383, 360, 364

a. After obtaining cell totals xijk., compute estimates of �1,
AC

11, and AC
21.

b. Use the cell totals along with Yates’s method to compute
the effect contrasts and sums of squares. Then construct
an ANOVA table and test all appropriate hypotheses
using � � .05.

40. In a study of processes used to remove impurities from cel-
lulose goods (“Optimization of Rope-Range Bleaching of
Cellulosic Fabrics,” Textile Research J., 1976: 493–496),
the following data resulted from a 24 experiment involving
the desizing process. The four factors were enzyme con-
centration (A), pH (B), temperature (C), and time (D).

Starch % 
by WeightEn-

Treat- zyme Temp. Time 1st 2nd 
ment (g/L) pH (°C) (hr) Repl. Repl.

(1) .50 6.0 60.0 6 9.72 13.50
a .75 6.0 60.0 6 9.80 14.04
b .50 7.0 60.0 6 10.13 11.27
ab .75 7.0 60.0 6 11.80 11.30
c .50 6.0 70.0 6 12.70 11.37
ac .75 6.0 70.0 6 11.96 12.05
bc .50 7.0 70.0 6 11.38 9.92
abc .75 7.0 70.0 6 11.80 11.10
d .50 6.0 60.0 8 13.15 13.00
ad .75 6.0 60.0 8 10.60 12.37
bd .50 7.0 60.0 8 10.37 12.00
abd .75 7.0 60.0 8 11.30 11.64
cd .50 6.0 70.0 8 13.05 14.55
acd .75 6.0 70.0 8 11.15 15.00
bcd .50 7.0 70.0 8 12.70 14.10
abcd .75 7.0 70.0 8 13.20 16.12

a. Use Yates’s algorithm to obtain sums of squares and the
ANOVA table.

b. Do there appear to be any second-, third-, or fourth-order
interaction effects present? Explain your reasoning.
Which main effects appear to be significant?

41. In Exercise 39, suppose a low water temperature has been
used to obtain the data. The entire experiment is then repeated
with a higher water temperature to obtain the following



data. Use Yates’s algorithm on the entire set of 48 observa-
tions to obtain the sums of squares and ANOVA table, and
then test appropriate hypotheses at level .05.

Condition Observations

d 144, 154, 158
ad 239, 227, 244
bd 232, 242, 246
abd 364, 362, 346
cd 194, 162, 203
acd 284, 295, 291
bcd 291, 287, 297
abcd 411, 406, 395

42. The following data on power consumption in electric fur-
nace heats (kW consumed per ton of melted product) re-
sulted from a 24 factorial experiment with three replicates
(“Studies on a 10-cwt Arc Furnace,” J. Iron and Steel
Institute, 1956: 22). The factors were nature of roof A (low,
high), power setting B (low, high), scrap used C (tube,
plate), and charge D (700 lb, 1000 lb).

Treat- Treat-
ment xijklm ment xijklm

(1) 866, 862, 800 d 988, 808, 650
a 946, 800, 840 ad 966, 976, 876
b 774, 834, 746 bd 702, 658, 650
ab 709, 789, 646 abd 784, 700, 596
c 1017, 990, 954 cd 922, 808, 868
ac 1028, 906, 977 acd 1056, 870, 908
bc 817, 783, 771 bcd 798, 726, 700
abc 829, 806, 691 abcd 752, 714, 714

Construct the ANOVA table, and test all hypotheses of interest
using � � .01.

43. The article “Statistical Design and Analysis of Qualification
Test Program for a Small Rocket Engine” (Industrial
Quality Control, 1964: 14–18) presents data from an exper-
iment to assess the effects of vibration (A), temperature
cycling (B), altitude cycling (C), and temperature for alti-
tude cycling and firing (D) on thrust duration. A subset of
the data is given here. (In the article, there were four levels
of D rather than just two.) Use the Yates method to obtain
sums of squares and the ANOVA table. Then assume that
three- and four-factor interactions are absent, pool the cor-
responding sums of squares to obtain an estimate of � 2, and
test all appropriate hypotheses at level .05.

D1 D2

| C1 C2 C1 C2

A1
B1 | 21.60 21.60 11.54 11.50
B2 | 21.09 22.17 11.14 11.32

A2
B1 | 21.60 21.86 11.75 9.82
B2 | 19.57 21.85 11.69 11.18

44. a. In a 24 experiment, suppose two blocks are to be used,
and it is decided to confound the ABCD interaction with
the block effect. Which treatments should be carried out

in the first block [the one containing the treatment (1)],
and which treatments are allocated to the second block?

b. In an experiment to investigate niacin retention in veg-
etables as a function of cooking temperature (A), sieve
size (B), type of processing (C), and cooking time (D),
each factor was held at two levels. Two blocks were used,
with the allocation of blocks as given in part (a) to con-
found only the ABCD interaction with blocks. Use
Yates’s procedure to obtain the ANOVA table for the
accompanying data.

Treatment xijkl Treatment xijkl

(1) 91 d 72
a 85 ad 78
b 92 bd 68
ab 94 abd 79
c 86 cd 69
ac 83 acd 75
bc 85 bcd 72
abc 90 abcd 71

c. Assume that all three-way interaction effects are absent,
so that the associated sums of squares can be combined
to yield an estimate of � 2, and carry out all appropriate
tests at level .05.

45. a. An experiment was carried out to investigate the effects
on audio sensitivity of varying resistance (A), two capac-
itances (B, C), and inductance of a coil (D) in part of a
television circuit. If four blocks were used with four
treatments per block, and the defining effects for con-
founding were AB and CD, which treatments appeared in
each block?

b. Suppose two replications of the experiment described in
part (a) were performed, resulting in the accompanying
data. Obtain the ANOVA table, and test all relevant
hypotheses at level .01.

Treat- Treat-
ment xijkl1 xijkl2 ment xijkl1 xijkl2

(1) 618 598 d 598 585
a 583 560 ad 587 541
b 477 525 bd 480 508
ab 421 462 abd 462 449
c 601 595 cd 603 577
ac 550 589 acd 571 552
bc 505 484 bcd 502 508
abc 452 451 abcd 449 455

46. In an experiment involving four factors (A, B, C, and D) and
four blocks, show that at least one main effect or two-factor
interaction effect must be confounded with the block effect.

47. a. In a seven-factor experiment (A, . . . , G), suppose a quarter-
replicate is actually carried out. If the defining effects are
ABCDE and CDEFG, what is the third nonestimable
effect and what treatments are in the group containing
(1)? What are the alias groups of the seven main effects?
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b. If the quarter-replicate is to be carried out using four blocks
(with eight treatments per block), what are the blocks if the
chosen confounding effects are ACF and BDG?

48. Suppose that in the rocket thrust problem of Exercise 43,
enough resources had been available for only a half-repli-
cate of the 24 experiment.
a. If the effect ABCD is chosen as the defining effect for the

replicate and the group of eight treatments for which data
is obtained includes treatment (1), what other treatments
are in the observed group and what are the alias pairs?

b. Suppose the results of carrying out the experiment as
described in part (a) are as recorded here (given in stan-
dard order after deleting the half not observed). Assum-
ing that two- and three-factor interactions are negligible,
test at level .05 for the presence of main effects. Also
construct a normal probability plot.

19.09 20.11 21.66 20.44
13.72 11.26 11.72 12.29

49. A half-replicate of a 25 experiment to investigate the effects
of heating time (A), quenching time (B), drawing time (C),
position of heating coils (D), and measurement position (E)
on hardness of steel castings resulted in the accompanying
data. Construct the ANOVA table, and (assuming second-
and higher-order interactions to be negligible) test at level
.01 for the presence of main effects. Also construct a normal
probability plot.

Treat- Treat-
ment Observation ment Observation

a 70.4 acd 66.6
b 72.1 ace 67.5
c 70.4 ade 64.0
d 67.4 bcd 66.8
e 68.0 bce 70.3
abc 73.8 bde 67.9
abd 67.0 cde 65.9
abe 67.8 abcde 68.0
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SUPPLEMENTARY EXERCISES (50–61)

50. The results of a study on the effectiveness of line drying on the
smoothness of fabric were summarized in the article “Line-
Dried vs. Machine-Dried Fabrics: Comparison of Appearance,
Hand, and Consumer Acceptance” (Home Econ. Research J.,
1984: 27–35). Smoothness scores were given for nine dif-
ferent types of fabric and five different drying methods:
(1) machine dry, (2) line dry, (3) line dry followed by 15-min
tumble, (4) line dry with softener, and (5) line dry with air
movement. Regarding the different types of fabric as blocks,
construct an ANOVA table. Using a .05 significance level, test
to see whether there is a difference in the true mean smooth-
ness score for the drying methods.

Drying Method

1 2 3 4 5

Crepe 3.3 2.5 2.8 2.5 1.9
Double knit 3.6 2.0 3.6 2.4 2.3
Twill 4.2 3.4 3.8 3.1 3.1
Twill mix 3.4 2.4 2.9 1.6 1.7

Fabric Terry 3.8 1.3 2.8 2.0 1.6
Broadcloth 2.2 1.5 2.7 1.5 1.9
Sheeting 3.5 2.1 2.8 2.1 2.2
Corduroy 3.6 1.3 2.8 1.7 1.8
Denim 2.6 1.4 2.4 1.3 1.6

51. The water absorption of two types of mortar used to repair
damaged cement was discussed in the article “Polymer
Mortar Composite Matrices for Maintenance-Free, Highly
Durable Ferrocement” (J. Ferrocement, 1984: 337–345).
Specimens of ordinary cement mortar (OCM) and polymer
cement mortar (PCM) were submerged for varying lengths

of time (5, 9, 24, or 48 hours) and water absorption (% by
weight) was recorded. With mortar type as factor A (with
two levels) and submersion period as factor B (with four
levels), three observations were made for each factor level
combination. Data included in the article was used to com-
pute the sums of squares, which were SSA � 322.667,
SSB � 35.623, SSAB � 8.557, and SST � 372.113. Use
this information to construct an ANOVA table. Test the
appropriate hypotheses at a .05 significance level.

52. Four plots were available for an experiment to compare clover
accumulation for four different sowing rates (“Performance
of Overdrilled Red Clover with Different Sowing Rates and
Initial Grazing Managements,” N. Zeal. J. Exp. Ag., 1984:
71–81). Since the four plots had been grazed differently prior
to the experiment and it was thought that this might affect
clover accumulation, a randomized block experiment was
used with all four sowing rates tried on a section of each plot.
Use the given data to test the null hypothesis of no difference
in true mean clover accumulation (kg DM/ha) for the differ-
ent sowing rates.

Sowing Rate (kg/ha)

3.6 6.6 10.2 13.5

1 1155 2255 3505 4632
2 123 406 564 416

Plot 3 68 416 662 379
4 62 75 362 564

53. In an automated chemical coating process, the speed with
which objects on a conveyor belt are passed through a chem-
ical spray (belt speed), the amount of chemical sprayed (spray



volume), and the brand of chemical used (brand) are factors
that may affect the uniformity of the coating applied. A
replicated 23 experiment was conducted in an effort to
increase the coating uniformity. In the following table, higher
values of the response variable are associated with higher
surface uniformity:

Surface
Uniformity

Repli- Repli-
Spray Belt cation cation 

Run Volume Speed Brand 1 2

1 � � � 40 36
2 � � � 25 28
3 � � � 30 32
4 � � � 50 48
5 � � � 45 43
6 � � � 25 30
7 � � � 30 29
8 � � � 52 49

Analyze this data and state your conclusions.

54. Coal-fired power plants used in the electrical industry have
gained increased public attention because of the environ-
mental problems associated with solid wastes generated by
large-scale combustion (“Fly Ash Binders in Stabilization of
FGD Wastes,” J. of Environmental Engineering, 1998:
43–49). A study was conducted to analyze the influence
of three factors—binder type (A), amount of water (B), and
land disposal scenario (C)—that affect certain leaching
characteristics of solid wastes from combustion. Each factor
was studied at two levels. An unreplicated 23 experiment
was run, and a response value EC50 (the Effective Con-
centration, in mg/L, that decreases 50% of the light in a
luminescence bioassay) was measured for each combination
of factor levels. The experimental data is given in the fol-
lowing table:

Factor Response
Run A B C EC50

1 �1 �1 �1 23,100
2 1 �1 �1 43,000
3 �1 1 �1 71,400
4 1 1 �1 76,000
5 �1 �1 1 37,000
6 1 �1 1 33,200
7 �1 1 1 17,000
8 1 1 1 16,500

Carry out an appropriate ANOVA, and state your conclusions.

55. Impurities in the form of iron oxides lower the economic
value and usefulness of industrial minerals, such as kaolins,
to ceramic and paper-processing industries. A 24 experiment
was conducted to assess the effects of four factors on the

percentage of iron removed from kaolin samples (“Factorial
Experiments in the Development of a Kaolin Bleaching
Process Using Thiourea in Sulphuric Acid Solutions,” Hy-
drometallurgy, 1997: 181–197). The factors and their levels
are listed in the following table:

Low High 
Factor Description Units Level Level

A H2SO4 M .10 .25
B Thiourea g/L 0.0 5.0
C Temperature °C 70 90
D Time min. 30 150

The data from an unreplicated 24 experiment is listed in the
next table.

Iron Iron 
Test Extraction Test Extraction 
Run (%) Run (%)

(1) 7 d 28
a 11 ad 51
b 7 bd 33
ab 12 abd 57
c 21 cd 70
ac 41 acd 95
bc 27 bcd 77
abc 48 abcd 99

a. Calculate estimates of all main effects and two-factor
interaction effects for this experiment.

b. Create a probability plot of the effects. Which effects
appear to be important?

56. Factorial designs have been used in forestry to assess the
effects of various factors on the growth behavior of trees. In
one such experiment, researchers thought that healthy spruce
seedlings should bud sooner than diseased spruce seedlings
(“Practical Analysis of Factorial Experiments in Forestry,”
Canadian J. of Forestry, 1995: 446–461). In addition, before
planting, seedlings were also exposed to three levels of pH to
see whether this factor has an effect on virus uptake into the
root system. The following table shows data from a 2 � 3
experiment to study both factors:

pH

3 5.5 7

Diseased 1.2, 1.4, .8, .6, 1.0, 1.0,
1.0, 1.2, .8, 1.0, 1.2, 1.4,
1.4 .8 1.2

Health
Healthy 1.4, 1.6, 1.0, 1.2, 1.2, 1.4,

1.6, 1.6, 1.2, 1.4, 1.2, 1.2,
1.4 1.4 1.4

The response variable is an average rating of five buds from a
seedling. The ratings are 0 (bud not broken), 1 (bud partially
expanded), and 2 (bud fully expanded). Analyze this data.
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57. One property of automobile air bags that contributes to their
ability to absorb energy is the permeability (ft3/ft2/min) of the
woven material used to construct the air bags. Understanding
how permeability is influenced by various factors is impor-
tant for increasing the effectiveness of air bags. In one study,
the effects of three factors, each at three levels, were studied
(“Analysis of Fabrics used in Passive Restraint Systems—
Airbags,” J. of the Textile Institute, 1996: 554–571):

A (Temperature): 8°C, 50°C, 75°C
B (Fabric denier): 420-D, 630-D, 840-D
C (Air pressure): 17.2 kPa, 34.4 kPa, 103.4 kPa

Analyze this data and state your conclusions (assume that
all factors are fixed).

58. A chemical engineer has carried out an experiment to study
the effects of the fixed factors vat pressure (A), cooking time
of pulp (B), and hardwood concentration (C) on the strength
of paper. The experiment involved two pressures, four cook-
ing times, three concentrations, and two observations at
each combination of these levels. Calculated sums of

squares are SSA � 6.94, SSB � 5.61, SSC � 12.33,
SSAB � 4.05, SSAC � 7.32, SSBC � 15.80, SSE �
14.40, and SST � 70.82. Construct the ANOVA table, and
carry out appropriate tests at significance level .05.

59. The bond strength when mounting an integrated circuit on a
metalized glass substrate was studied as a function of factor
A � adhesive type, factor B � cure time, and factor C �
conductor material (copper and nickel). The data follows,
along with an ANOVA table from MINITAB. What conclu-
sions can you draw from the data?

Copper Cure Time
1 2 3

72.7 74.6 80.0
1 80.0 77.5 82.7

77.8 78.5 84.6
Adhesive 2 75.3 81.1 78.3

77.3 80.9 83.9
3 76.5 82.6 85.0

Nickel 1 2 3

74.7 75.7 77.2
1 77.4 78.2 74.6

79.3 78.8 83.0
Adhesive 2 77.8 75.4 83.9

77.2 84.5 89.4
3 78.4 77.5 81.2

Analysis of Variance for strength
Source DF SS MS F P
Adhesive 2 101.317 50.659 6.54 0.007
Curetime 2 151.317 75.659 9.76 0.001
Conmater 1 0.722 0.722 0.09 0.764
Adhes*curet 4 30.526 7.632 0.98 0.441
Adhes*conm 2 8.015 4.008 0.52 0.605
Curet*conm 2 5.952 2.976 0.38 0.687
Adh*curet*conm 4 33.298 8.325 1.07 0.398
Error 18 139.515 7.751
Total 35 470.663

60. The article “Food Consumption and Energy Requirements
of Captive Bald Eagles” (J. Wildlife Mgmt., 1982: 646–654)
investigated mean gross daily energy intake (the response
variable) for different diet types (factor A, with three levels)
and temperature (factor B, with three levels). Summary
quantities given in the article were used to generate data,
resulting in SSA � 18,138, SSB � 5182, SSAB � 1737,
SST � 36,348, and error df � 36. Construct an ANOVA
table, and test the relevant hypotheses.

61. Analogous to a Latin square, a Greco–Latin square design
can be used when it is suspected that three extraneous fac-
tors may affect the response variable and all four factors
(the three extraneous ones and the one of interest) have the
same number of levels. In a Latin square, each level of the
factor of interest (C) appears once in each row (with each
level of A) and once in each column (with each level of B).
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Temperature 8°

Pressure
Denier 17.2 34.4 103.4

420-D 73 157 332
80 155 322

630-D 35 91 288
433 98 271

840-D 125 234 477
111 233 464

Temperature 50°

Pressure
Denier 17.2 34.4 103.4

420-D 52 125 281
51 118 264

630-D 16 72 169
12 78 173

840-D 96 149 338
100 155 350

Temperature 75°

Pressure
Denier 17.2 34.4 103.4

420-D 37 95 276
31 106 281

630-D 30 91 213
41 100 211

840-D 102 170 307
98 160 311



In a Greco–Latin square, each level of factor D appears
once in each row, in each column, and also with each level
of the third extraneous factor C. Alternatively, the design
can be used when the four factors are all of equal interest,
the number of levels of each is N, and resources are avail-
able for only N2 observations. A 5 � 5 square is pictured in
(a), with (k, l) in each cell denoting the kth level of C and
lth level of D. In (b) we present data on weight loss in sil-
icon bars used for semiconductor material as a function 
of volume of etch (A), color of nitric acid in the etch solu-
tion (B), size of bars (C), and time in the etch solution 
(D) (from “Applications of Analytic Techniques to the
Semiconductor Industry,” Fourteenth Midwest Quality
Control Conference, 1959).

Let Xij(kl) denote the observed weight loss when factor A is
at level i, B is at level j, C is at level k, and D is at level l.
Assuming no interaction between factors, total sum of
squares SST (with N 2 � 1 df) can be partitioned into SSA,
SSB, SSC, SSD, and SSE. Give expressions for these sums
of squares, including computing formulas, obtain the
ANOVA table for the given data, and test each of the four
main effect hypotheses using � � .05.

B
(C, D) 1 2 3 4 5

1 (1, 1) (2, 3) (3, 5) (4, 2) (5, 4)

2 (2, 2) (3, 4) (4, 1) (5, 3) (1, 5)

A 3 (3, 3) (4, 5) (5, 2) (1, 4) (2, 1)

4 (4, 4) (5, 1) (1, 3) (2, 5) (3, 2)

5 (5, 5) (1, 2) (2, 4) (3, 1) (4, 3)

(a)

65 82 108 101 126

84 109 73 97 83

105 129 89 89 52

119 72 76 117 84

97 59 94 78 106

(b)
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12 Simple Linear Regression
and Correlation

INTRODUCTION

In the two-sample problems discussed in Chapter 9, we were interested in com-

paring values of parameters for the x distribution and the y distribution. Even

when observations were paired, we did not try to use information about one of

the variables in studying the other variable. This is precisely the objective of

regression analysis: to exploit the relationship between two (or more) variables

so that we can gain information about one of them through knowing values of

the other(s).

Much of mathematics is devoted to studying variables that are determinis-

tically related. Saying that x and y are related in this manner means that once

we are told the value of x, the value of y is completely specified. For example,

suppose we decide to rent a van for a day and that the rental cost is $25.00

plus $.30 per mile driven. If we let x � the number of miles driven and y � the

rental charge, then y � 25 � .3x. If we drive the van 100 miles (x � 100), then

y � 25 � .3(100) � 55. As another example, if the initial velocity of a particle is

v0 and it undergoes constant acceleration a, then distance traveled � y � v0x �

�
1
2

�ax2, where x � time.

There are many variables x and y that would appear to be related to one

another, but not in a deterministic fashion. A familiar example to many students

is given by variables x � high school grade point average (GPA) and y � college

GPA. The value of y cannot be determined just from knowledge of x, and two

different students could have the same x value but have very different y values.

Yet there is a tendency for those students who have high (low) high school

GPAs also to have high (low) college GPAs. Knowledge of a student’s high

school GPA should be quite helpful in enabling us to predict how that person

will do in college.
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12.1 The Simple Linear Regression Model

Other examples of variables related in a nondeterministic fashion include

x � age of a child and y � size of that child’s vocabulary, x � size of an engine

in cubic centimeters and y � fuel efficiency for an automobile equipped with

that engine, and x � applied tensile force and y � amount of elongation in a

metal strip.

Regression analysis is the part of statistics that deals with investigation

of the relationship between two or more variables related in a nondeterministic

fashion. In this chapter, we generalize the deterministic linear relation y � �0 �

�1x to a linear probabilistic relationship, develop procedures for making infer-

ences about the parameters of the model, and obtain a quantitative measure

(the correlation coefficient) of the extent to which the two variables are related.

In the next chapter, we will consider techniques for validating a particular model

and investigate nonlinear relationships and relationships involving more than

two variables.

The simplest deterministic mathematical relationship between two variables x and y
is a linear relationship y � �0 � �1x. The set of pairs (x, y) for which y � �0 � �1x
determines a straight line with slope �1 and y-intercept �0.* The objective of this
section is to develop a linear probabilistic model.

If the two variables are not deterministically related, then for a fixed value of x,
the value of the second variable is random. For example, if we are investigating the
relationship between age of child and size of vocabulary and decide to select a child
of age x � 5.0 years, then before the selection is made, vocabulary size is a random
variable Y. After a particular 5-year-old child has been selected and tested, a vocab-
ulary of 2000 words may result. We would then say that the observed value of Y
associated with fixing x � 5.0 was y � 2000.

More generally, the variable whose value is fixed by the experimenter will be
denoted by x and will be called the independent, predictor, or explanatory vari-
able. For fixed x, the second variable will be random; we denote this random vari-
able and its observed value by Y and y, respectively, and refer to it as the depen-
dent or response variable.

Usually observations will be made for a number of settings of the independent
variable. Let x1, x2, . . . , xn denote values of the independent variable for which obser-
vations are made, and let Yi and yi respectively denote the random variable and
observed value associated with xi. The available bivariate data then consists of the n
pairs (x1, y1), (x2, y2), . . . , (xn, yn). A first step in regression analysis involving two vari-
ables is to construct a scatter plot of the observed data. In such a plot, each (xi, yi) is
represented as a point plotted on a two-dimensional coordinate system.
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* The slope of a line is the change in y for a 1-unit increase in x. For example, if y � �3x � 10, then
y decreases by 3 when x increases by 1, so the slope is �3. The y-intercept is the height at which the
line crosses the vertical axis and is obtained by setting x � 0 in the equation.



Visual and musculoskeletal problems associated with the use of visual display ter-
minals (VDTs) have become rather common in recent years. Some researchers have
focused on vertical gaze direction as a source of eye strain and irritation. This direc-
tion is known to be closely related to ocular surface area (OSA), so a method of
measuring OSA is needed. The accompanying representative data on y � OSA (cm2)
and x � width of the palprebal fissure (i.e., the horizontal width of the eye opening,
in cm) is from the article “Analysis of Ocular Surface Area for Comfortable VDT
Workstation Layout” (Ergonomics, 1996: 877–884). The order in which observa-
tions were obtained was not given, so for convenience they are listed in increasing
order of x values.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi .40 .42 .48 .51 .57 .60 .70 .75 .75 .78 .84 .95 .99 1.03 1.12

yi 1.02 1.21 .88 .98 1.52 1.83 1.50 1.80 1.74 1.63 2.00 2.80 2.48 2.47 3.05

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xi 1.15 1.20 1.25 1.25 1.28 1.30 1.34 1.37 1.40 1.43 1.46 1.49 1.55 1.58 1.60

yi 3.18 3.76 3.68 3.82 3.21 4.27 3.12 3.99 3.75 4.10 4.18 3.77 4.34 4.21 4.92

Thus (x1, y1) � (.40, 1.02), (x5, y5) � (.57, 1.52), and so on. A MINITAB scatter 
plot is shown in Figure 12.1; we used an option that produced a dotplot of both the
x values and y values individually along the right and top margins of the plot,
which makes it easier to visualize the distributions of the individual variables (his-
tograms or boxplots are alternative options). Here are some things to notice about
the data and plot:

• Several observations have identical x values yet different y values (e.g., x8 � x9 � .75,
but y8 � 1.80 and y9 � 1.74). Thus the value of y is not determined solely by x but
also by various other factors.

• There is a strong tendency for y to increase as x increases. That is, larger values of
OSA tend to be associated with larger values of fissure width—a positive relation-
ship between the variables.
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Example 12.1

Figure 12.1 Scatter plot from MINITAB for the data from Example 12.1, along with dotplots
of x and y values



12.1 The Simple Linear Regression Model 449

Figure 12.2 MINITAB scatter plots of data in Example 12.2

• It appears that the value of y could be predicted from x by finding a line that is rea-
sonably close to the points in the plot (the authors of the cited article superimposed
such a line on their plot). In other words, there is evidence of a substantial (though
not perfect) linear relationship between the two variables. ■

The horizontal and vertical axes in the scatter plot of Figure 12.1 intersect at
the point (0, 0). In many data sets, the values of x or y or the values of both variables
differ considerably from zero relative to the range(s) of the values. For example, a
study of how air conditioner efficiency is related to maximum daily outdoor tem-
perature might involve observations for temperatures ranging from 80°F to 100°F.
When this is the case, a more informative plot would show the appropriately labeled
axes intersecting at some point other than (0, 0).

Forest growth and decline phenomena throughout the world have attracted consid-
erable public and scientific interest. The article “Relationships Among Crown
Condition, Growth, and Stand Nutrition in Seven Northern Vermont Sugarbushes”
(Canad. J. of Forest Res., 1995: 386–397) included a scatter plot of y � mean crown
dieback (%), one indicator of growth retardation, and x � soil pH (higher pH corre-
sponds to more acidic soil), from which the following observations were taken:

x 3.3 3.4 3.4 3.5 3.6 3.6 3.7 3.7 3.8 3.8

y 7.3 10.8 13.1 10.4 5.8 9.3 12.4 14.9 11.2 8.0

x 3.9 4.0 4.1 4.2 4.3 4.4 4.5 5.0 5.1

y 6.6 10.0 9.2 12.4 2.3 4.3 3.0 1.6 1.0

Figure 12.2 shows two MINITAB scatter plots of this data. In Figure 12.2(a),
MINITAB selected the scale for both axes. We obtained Figure 12.2(b) by speci-
fying minimum and maximum values for x and y so that the axes would intersect
roughly at the point (0, 0). The second plot is more crowded than the first one;
such crowding can make it more difficult to ascertain the general nature of any
relationship. For example, it can be more difficult to spot curvature in a crowded
plot.

Example 12.2
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Large values of percentage dieback tend to be associated with low soil pH, a
negative or inverse relationship. Furthermore, the two variables appear to be at least
approximately linearly related, although the points would be spread out about any
straight line drawn through the plot. ■

A Linear Probabilistic Model
For the deterministic model y � �0 � �1x, the actual observed value of y is a linear
function of x. The appropriate generalization of this to a probabilistic model assumes
that the expected value of Y is a linear function of x, but that for fixed x, the variable
Y differs from its expected value by a random amount.

DEFINITION The Simple Linear Regression Model

There are parameters �0, �1, and �2 such that for any fixed value of the indepen-
dent variable x, the dependent variable is related to x through the model equation

Y � �0 � �1x � � (12.1)

The quantity � in the model equation is a random variable, assumed to be nor-
mally distributed with E(�) � 0 and V(�) � � 2.

The variable � is usually referred to as the random deviation or random
error term in the model. Without �, any observed pair (x, y) would correspond to a
point falling exactly on the line y � �0 � �1x, called the true (or population)
regression line. The inclusion of the random error term allows (x, y) to fall either
above the true regression line (when � � 0) or below the line (when � � 0). The
points (x1, y1), . . . , (xn, yn) resulting from n independent observations will then be
scattered about the true regression line, as illustrated in Figure 12.3. On occasion,
the appropriateness of the simple linear regression model may be suggested by the-
oretical considerations (e.g., there is an exact linear relationship between the two
variables, with � representing measurement error). Much more frequently, though,
the reasonableness of the model is indicated by a scatter plot exhibiting a substantial
linear pattern (as in Figure 12.1).

y

x

x1 x2

⎧
⎨
⎩ ⎧

⎨
⎩

(x1, y1)

(x2, y2)

True regression line
y �   0 �   1x��

ε1
ε2

Figure 12.3 Points corresponding to observations from the simple linear regression model
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Implications of the model equation (12.1) can best be understood with the aid of
the following notation. Let x* denote a particular value of the independent variable x and

�Y�x* � the expected (or mean) value of Y when x � x*

� 2
Y�x* � the variance of Y when x � x*

Alternative notation is E(Y⏐x*) and V(Y⏐x*). For example, if x � applied stress
(kg/mm2) and y � time-to-fracture (hr), then �Y�20 would denote the expected value
of time-to-fracture when applied stress is 20 kg/mm2. If we think of an entire pop-
ulation of (x, y) pairs, then �Y�x* is the mean of all y values for which x � x*, and
� 2

Y�x* is a measure of how much these values of y spread out about the mean value.
If, for example, x � age of a child and y � vocabulary size, then �Y�5 is the average
vocabulary size for all 5-year-old children in the population, and � 2

Y�5 describes the
amount of variability in vocabulary size for this part of the population. Once x is
fixed, the only randomness on the right-hand side of the model equation (12.1) is in
the random error �, and its mean value and variance are 0 and � 2, respectively,
whatever the value of x. This implies that

�Y�x* � E(�0 � �1x* � �) � �0 � �1x* � E(�) � �0 � �1x*

� 2
Y�x* � V(�0 � �1x* � �) � V(�0 � �1x*) � V(�) � 0 � � 2 � � 2

Replacing x* in �Y�x* by x gives the relation �Y�x � �0 � �1x, which says that
the mean value of Y, rather than Y itself, is a linear function of x. The true regression
line y � �0 � �1x is thus the line of mean values; its height above any particular
x value is the expected value of Y for that value of x. The slope �1 of the true regres-
sion line is interpreted as the expected change in Y associated with a 1-unit increase
in the value of x. The second relation states that the amount of variability in the dis-
tribution of Y values is the same at each different value of x (homogeneity of vari-
ance). In the example involving age of a child and vocabulary size, the model implies
that average vocabulary size changes linearly with age (hopefully �1 is positive) and
that the amount of variability in vocabulary size at any particular age is the same as
at any other age. Finally, for fixed x, Y is the sum of a constant �0 � �1x and a nor-
mally distributed rv � so itself has a normal distribution. These properties are illus-
trated in Figure 12.4. The variance parameter � 2 determines the extent to which each

y

x
x1 x2 x3

  0 �   1x3��

  0 �   1x2��

  0 �   1x1��
Line y �   0 �   1x��

(b)

0�� �

�

(a)

Normal, mean 0,
 standard deviation 

Figure 12.4 (a) Distribution of !; (b) distribution of Y for different values of x
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normal curve spreads out about its mean value (the height of the line). When � 2 is
small, an observed point (x, y) will almost always fall quite close to the true regres-
sion line, whereas observations may deviate considerably from their expected values
(corresponding to points far from the line) when � 2 is large.

Suppose the relationship between applied stress x and time-to-failure y is described
by the simple linear regression model with true regression line y � 65 � 1.2x and
� � 8. Then for any fixed value x* of stress, time-to-failure has a normal distribu-
tion with mean value 65 � 1.2x* and standard deviation 8. Roughly speaking, in 
the population consisting of all (x, y) points, the magnitude of a typical deviation
from the true regression line is about 8. For x � 20, Y has mean value �Y�20 �
65 � 1.2(20) � 41, so

P(Y � 50 when x � 20) � P�Z � � � 1 � �(1.13) � .1292

The probability that time-to-failure exceeds 50 when applied stress is 25 is, because
�Y�25 � 35,

P(Y � 50 when x � 25) � P�Z � � � 1 � �(1.88) � .0301

These probabilities are illustrated as the shaded areas in Figure 12.5.

50 � 35
�

8

50 � 41
�

8

20 25
x

y

50

41
35

P(Y � 50 when x � 20) � .1292

P(Y � 50 when x � 25) � .0301

True regression line
y � 65 �1.2x

Figure 12.5 Probabilities based on the simple linear regression model

Suppose that Y1 denotes an observation on time-to-failure made with x � 25 and
Y2 denotes an independent observation made with x � 24. Then Y1 � Y2 is normally dis-
tributed with mean value E(Y1 � Y2) � �1 � �1.2, variance V(Y1 � Y2) � �2 � �2 �
128, and standard deviation �1�2�8� � 11.314. The probability that Y1 exceeds Y2 is

P(Y1 � Y2 � 0) � P�Z � � � P(Z � .11) � .4562

That is, even though we expected Y to decrease when x increases by 1 unit, it is not
unlikely that the observed Y at x � 1 will be larger than the observed Y at x. ■

0 � (�1.2)
��

11.314

Example 12.3
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EXERCISES Section 12.1 (1–11)

1. The efficiency ratio for a steel specimen immersed in a
phosphating tank is the weight of the phosphate coating
divided by the metal loss (both in mg/ft2). The article
“Statistical Process Control of a Phosphate Coating Line”
(Wire J. Intl., May, 1997: 78–81) gave the accompanying
data on tank temperature (x) and efficiency ratio (y).

a. Construct stem-and-leaf displays of both temperature and
efficiency ratio, and comment on interesting features.

b. Is the value of efficiency ratio completely and uniquely
determined by tank temperature? Explain your reasoning.

c. Construct a scatter plot of the data. Does it appear that
efficiency ratio could be very well predicted by the value
of temperature? Explain your reasoning.

2. The article “Exhaust Emissions from Four-Stroke Lawn
Mower Engines” (J. of the Air and Water Mgmnt. Assoc.,
1997: 945–952) reported data from a study in which both a
baseline gasoline mixture and a reformulated gasoline were
used. Consider the following observations on age (yr) and
NOX emissions (g/kWh):

Construct scatter plots of NOx emissions versus age. What
appears to be the nature of the relationship between these two
variables? [Note: The authors of the cited article commented
on the relationship.]

3. Bivariate data often arises from the use of two different
techniques to measure the same quantity. As an example, the
accompanying observations on x � hydrogen concentration
(ppm) using a gas chromatography method and y � concen-
tration using a new sensor method were read from a graph
in the article “A New Method to Measure the Diffusible
Hydrogen Content in Steel Weldments Using a Polymer
Electrolyte-Based Hydrogen Sensor” (Welding Res., July
1997: 251s–256s).

Construct a scatter plot. Does there appear to be a very
strong relationship between the two types of concentration
measurements? Do the two methods appear to be measuring
roughly the same quantity? Explain your reasoning.

4. A study to assess the capability of subsurface flow wetland
systems to remove biochemical oxygen demand (BOD) and
various other chemical constituents resulted in the accompa-
nying data on x � BOD mass loading (kg/ha/d) and y �
BOD mass removal (kg/ha/d) (“Subsurface Flow Wetlands—
A Performance Evaluation,” Water Envir. Res., 1995:
244–247).

a. Construct boxplots of both mass loading and mass
removal, and comment on any interesting features.

b. Construct a scatter plot of the data, and comment on any
interesting features.

5. The article “Objective Measurement of the Stretchability of
Mozzarella Cheese” (J. of Texture Studies, 1992: 185–194)
reported on an experiment to investigate how the behavior of
mozzarella cheese varied with temperature. Consider the
accompanying data on x � temperature and y � elongation
(%) at failure of the cheese. [Note: The researchers were
Italian and used real mozzarella cheese, not the poor cousin
widely available in the United States.]

a. Construct a scatter plot in which the axes intersect at (0, 0).
Mark 0, 20, 40, 60, 80, and 100 on the horizontal axis
and 0, 50, 100, 150, 200, and 250 on the vertical axis.

b. Construct a scatter plot in which the axes intersect at (55,
100), as was done in the cited article. Does this plot seem
preferable to the one in part (a)? Explain your reasoning.

c. What do the plots of parts (a) and (b) suggest about the
nature of the relationship between the two variables?

6. One factor in the development of tennis elbow, a malady that
strikes fear in the hearts of all serious tennis players, is the
impact-induced vibration of the racket-and-arm system at ball
contact. It is well known that the likelihood of getting tennis
elbow depends on various properties of the racket used.

Temp. 170 172 173 174 174 175 176
Ratio .84 1.31 1.42 1.03 1.07 1.08 1.04

Temp. 177 180 180 180 180 180 181
Ratio 1.80 1.45 1.60 1.61 2.13 2.15 .84

Temp. 181 182 182 182 182 184 184
Ratio 1.43 .90 1.81 1.94 2.68 1.49 2.52

Temp. 185 186 188
Ratio 3.00 1.87 3.08

Engine 1 2 3 4 5
Age 0 0 2 11 7
Baseline 1.72 4.38 4.06 1.26 5.31
Reformulated 1.88 5.93 5.54 2.67 6.53

Engine 6 7 8 9 10
Age 16 9 0 12 4
Baseline .57 3.37 3.44 .74 1.24
Reformulated .74 4.94 4.89 .69 1.42

x 47 62 65 70 70 78 95 100 114 118

y 38 62 53 67 84 79 93 106 117 116

x 124 127 140 140 140 150 152 164 198 221

y 127 114 134 139 142 170 149 154 200 215

x 3 8 10 11 13 16 27 30 35 37 38 44 103 142

y 4 7 8 8 10 11 16 26 21 9 31 30 75 90

x 59 63 68 72 74 78 83

y 118 182 247 208 197 135 132
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Consider the scatter plot of x � racket resonance frequency
(Hz) and y � sum of peak-to-peak acceleration (a charac-
teristic of arm vibration, in m/sec/sec) for n � 23 different
rackets (“Transfer of Tennis Racket Vibrations into the
Human Forearm,” Medicine and Science in Sports and
Exercise, 1992: 1134–1140). Discuss interesting features of
the data and scatter plot.

7. The article “Some Field Experience in the Use of an
Accelerated Method in Estimating 28-Day Strength of
Concrete” (J. Amer. Concrete Institute, 1969: 895) consid-
ered regressing y � 28-day standard-cured strength (psi)
against x � accelerated strength (psi). Suppose the equation
of the true regression line is y � 1800 � 1.3x.
a. What is the expected value of 28-day strength when

accelerated strength � 2500?
b. By how much can we expect 28-day strength to change

when accelerated strength increases by 1 psi?
c. Answer part (b) for an increase of 100 psi.
d. Answer part (b) for a decrease of 100 psi.

8. Referring to Exercise 7, suppose that the standard deviation
of the random deviation � is 350 psi.
a. What is the probability that the observed value of 28-day

strength will exceed 5000 psi when the value of acceler-
ated strength is 2000?

b. Repeat part (a) with 2500 in place of 2000.
c. Consider making two independent observations on 

28-day strength, the first for an accelerated strength of
2000 and the second for x � 2500. What is the proba-
bility that the second observation will exceed the first
by more than 1000 psi?

d. Let Y1 and Y2 denote observations on 28-day strength
when x � x1 and x � x2, respectively. By how much would
x2 have to exceed x1 in order that P(Y2 � Y1) � .95?

9. The flow rate y (m3/min) in a device used for air-quality
measurement depends on the pressure drop x (in. of water)
across the device’s filter. Suppose that for x values between
5 and 20, the two variables are related according to the
simple linear regression model with true regression line 
y � �.12 � .095x.
a. What is the expected change in flow rate associated with

a 1-in. increase in pressure drop? Explain.
b. What change in flow rate can be expected when pressure

drop decreases by 5 in.?
c. What is the expected flow rate for a pressure drop of 

10 in.? A drop of 15 in.?
d. Suppose � � .025 and consider a pressure drop of 10 in.

What is the probability that the observed value of flow
rate will exceed .835? That observed flow rate will
exceed .840?

e. What is the probability that an observation on flow rate
when pressure drop is 10 in. will exceed an observation
on flow rate made when pressure drop is 11 in.?

10. Suppose the expected cost of a production run is related to the
size of the run by the equation y � 4000 � 10x. Let Y denote
an observation on the cost of a run. If the variables size and
cost are related according to the simple linear regression
model, could it be the case that P(Y � 5500 when x �
100) � .05 and P(Y � 6500 when x � 200) � .10? Explain.

11. Suppose that in a certain chemical process the reaction time y
(hr) is related to the temperature (°F) in the chamber in which
the reaction takes place according to the simple linear regres-
sion model with equation y � 5.00 � .01x and � � .075.
a. What is the expected change in reaction time for a 

1°F increase in temperature? For a 10°F increase in 
temperature?

b. What is the expected reaction time when temperature is
200°F? When temperature is 250°F?

c. Suppose five observations are made independently on reac-
tion time, each one for a temperature of 250°F. What is the
probability that all five times are between 2.4 and 2.6 hr?

d. What is the probability that two independently observed
reaction times for temperatures 1° apart are such that the
time at the higher temperature exceeds the time at the
lower temperature?

x
100

y

38

36

34

32

30

28

26

22

24

120110 130 140 160150 170 190180

12.2 Estimating Model Parameters
We will assume in this and the next several sections that the variables x and y are
related according to the simple linear regression model. The values of �0, �1, and � 2

will almost never be known to an investigator. Instead, sample data consisting of n
observed pairs (x1, y1), . . . , (xn, yn) will be available, from which the model parameters
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and the true regression line itself can be estimated. These observations are assumed
to have been obtained independently of one another. That is, yi is the observed value
of an rv Yi, where Yi � �0 � �1xi � �i and the n deviations �1, �2, . . . , �n are
independent rv’s. Independence of Y1, Y2, . . . , Yn follows from the independence of
the �i s.

According to the model, the observed points will be distributed about the true
regression line in a random manner. Figure 12.6 shows a typical plot of observed
pairs along with two candidates for the estimated regression line, y � a0 � a1x and
y � b0 � b1x. Intuitively, the line y � a0 � a1x is not a reasonable estimate of the
true line y � �0 � �1x because, if y � a0 � a1x were the true line, the observed
points would almost surely have been closer to this line. The line y � b0 � b1x is a
more plausible estimate because the observed points are scattered rather closely about
this line.

y � a0 � a1x

y � b0 � b1x

x

y

Figure 12.6 Two different estimates of the true regression line

Figure 12.6 and the foregoing discussion suggest that our estimate of y � �0 �
�1x should be a line that provides in some sense a best fit to the observed data points.
This is what motivates the principle of least squares, which can be traced back to the
German mathematician Gauss (1777–1855). According to this principle, a line pro-
vides a good fit to the data if the vertical distances (deviations) from the observed
points to the line are small (see Figure 12.7). The measure of the goodness of fit is
the sum of the squares of these deviations. The best-fit line is then the one having the
smallest possible sum of squared deviations.

Principle of Least Squares

The vertical deviation of the point (xi, yi) from the line y � b0 � b1x is

height of point � height of line � yi � (b0 � b1xi)

The sum of squared vertical deviations from the points (x1, y1), . . . , (xn, yn) to
the line is then

f (b0, b1) � �
n

i=1
[yi � (b0 � b1xi)]2

The point estimates of �0 and �1, denoted by �̂0 and �̂1 and called the least
squares estimates, are those values that minimize f(b0, b1). That is, �̂0 and�̂1 are
such that f(�̂0, �̂1) � f(b0, b1) for any b0 and b1. The estimated regression line
or least squares line is then the line whose equation is y � �̂0 � �̂1x.
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The minimizing values of b0 and b1 are found by taking partial derivatives of
f(b0, b1) with respect to both b0 and b1, equating them both to zero [analogously to
f(b) � 0 in univariate calculus], and solving the equations

� �2(yi � b0 � b1xi)(�1) � 0

� �2(yi � b0 � b1xi)(�xi) � 0

Cancellation of the �2 factor and rearrangement gives the following system of equa-
tions, called the normal equations:

nb0 � (�xi )b1 � �yi

(�xi )b0 � (�x2
i )b1 � �xiyi

The normal equations are linear in the two unknowns b0 and b1. Provided that at least
two of the xi s are different, the least squares estimates are the unique solution to this
system.

∂f(b0, b1)
�

∂b1

∂f(b0, b1)
�

∂b0

The least squares estimate of the slope coefficient �1 of the true regression line is

b1 � �̂1 � � (12.2)

Computing formulas for the numerator and denominator of �̂1 are

Sxy � �xiyi � (�xi)(�yi)/n Sxx � �x2
i � (�xi)2/n

The least squares estimate of the intercept �0 of the true regression line is

b0 � �̂0 � � y� � �̂1x� (12.3)
�yi � �̂1 �xi��

n

Sxy
�
Sxx

�(xi � x�)(yi � y�)
���(xi � x�)2
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Figure 12.7 Deviations of observed data from line y � b0 � b1x

The computational formulas for Sxy and Sxx require only the summary statistics �xi,
�yi, �x2

i, �xiyi (�y2
i will be needed shortly) and minimize the effects of rounding.

In computing �̂0, use extra digits in �̂1 because, if x� is large in magnitude, round-
ing will affect the final answer. We emphasize that before �̂1 and �̂0 are computed,
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a scatter plot should be examined to see whether a linear probabilistic model is
plausible. If the points do not tend to cluster about a straight line with roughly the
same degree of spread for all x, other models should be investigated. In practice,
plots and regression calculations are usually done by using a statistical computer
package.

No-fines concrete, made from a uniformly graded coarse aggregate and a cement–
water paste, is beneficial in areas prone to excessive rainfall because of its excel-
lent drainage properties. The article “Pavement Thickness Design for No-Fines Con-
crete Parking Lots” (J. of Transportation Engr., 1995: 476–484) employed a least
squares analysis in studying how y � porosity (%) is related to x � unit weight
(pcf) in concrete specimens. Consider the following representative data, dis-
played in a tabular format convenient for calculating the values of the summary
statistics:

Obs x y x2 xy y2

1 99.0 28.8 9801.00 2851.20 829.44
2 101.1 27.9 10221.21 2820.69 778.41
3 102.7 27.0 10547.29 2772.90 729.00
4 103.0 25.2 10609.00 2595.60 635.04
5 105.4 22.8 11109.16 2403.12 519.84
6 107.0 21.5 11449.00 2300.50 462.25
7 108.7 20.9 11815.69 2271.83 436.81
8 110.8 19.6 12276.64 2171.68 384.16
9 112.1 17.1 12566.41 1916.91 292.41

10 112.4 18.9 12633.76 2124.36 357.21
11 113.6 16.0 12904.96 1817.60 256.00
12 113.8 16.7 12950.44 1900.46 278.89
13 115.1 13.0 13248.01 1496.30 169.00
14 115.4 13.6 13317.16 1569.44 184.96
15 120.0 10.8 14400.00 1296.00 116.64

Sum 1640.1 299.8 179,849.73 32,308.59 6430.06

Thus x� � 109.34, y� � 19.986667, and

�̂1 � �

� � �.90473066 � �.905

�̂0 � 19.986667 � (�.90473066)(109.34) � 118.909917 � 118.91

We estimate that the expected change in porosity associated with a 1-pcf increase in
unit weight is �.905% (a decrease of .905%). The equation of the estimated regres-
sion line (least squares line) is then y � 118.91 � .905x. Figure 12.8, generated by
the statistical computer package S-Plus, shows that the least squares line provides an
excellent summary of the relationship between the two variables.

�471.542
�
521.196

32,308.59 � (1640.1)(299.8)/15
����

179849.73 � (1640.1)2/15

Sxy
�
Sxx

Example 12.4
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The estimated regression line can immediately be used for two different pur-
poses. For a fixed x value x*, �̂0 � �̂1x* (the height of the line above x*) gives either
(1) a point estimate of the expected value of Y when x � x* or (2) a point prediction
of the Y value that will result from a single new observation made at x � x*.

Refer to the unit weight–porosity data in the previous example. A point estimate for
true average porosity for all specimens whose unit weight is 110 is

�̂Y�110 � �̂0 � �̂1(110) � 118.91 � .905(110) � 19.4%

If a single specimen whose unit weight is 110 pcf is to be selected, 19.4% is also a
point prediction for the porosity of this specimen. ■

The least squares line should not be used to make a prediction for an x value
much beyond the range of the data, such as x � 90 or x � 135 in Example 12.4. The
danger of extrapolation is that the fitted relationship (a line here) may not be valid
for such x values. (In the foregoing example, x � 135 gives ŷ � �3.3, a patently ridicu-
lous value of porosity, but extrapolation will not always result in such inconsistencies.)

Estimating �2 and �

The parameter � 2 determines the amount of variability inherent in the regression
model. A large value of � 2 will lead to observed (xi, yi)s that are quite spread out
about the true regression line, whereas when � 2 is small the observed points will tend
to fall very close to the true line (see Figure 12.9). An estimate of � 2 will be used in
confidence interval (CI) formulas and hypothesis-testing procedures presented in the
next two sections. Because the equation of the true line is unknown, the estimate is
based on the extent to which the sample observations deviate from the estimated line.
Many large deviations (residuals) suggest a large value of � 2, whereas deviations all
of which are small in magnitude suggest that � 2 is small.

Figure 12.8 A scatter plot of the data in Example 12.4 with the least squares line 
superimposed, from S-Plus ■

Example 12.5



12.2 Estimating Model Parameters 459

In words, the predicted value ŷi is the value of y that we would predict or expect when
using the estimated regression line with x � xi; ŷi is the height of the estimated
regression line above the value xi for which the ith observation was made. The resid-
ual yi � ŷi is the difference between the observed yi and the predicted ŷi. If the resid-
uals are all small in magnitude, then much of the variability in observed y values
appears to be due to the linear relationship between x and y, whereas many large
residuals suggest quite a bit of inherent variability in y relative to the amount due to
the linear relation. Assuming that the line in Figure 12.7 is the least squares line, the
residuals are identified by the vertical line segments from the observed points to the
line. When the estimated regression line is obtained via the principle of least squares,
the sum of the residuals should in theory be zero. In practice, the sum may deviate
a bit from zero due to rounding.

Japan’s high population density has resulted in a multitude of resource usage problems.
One especially serious difficulty concerns waste removal. The article “Innovative
Sludge Handling Through Pelletization Thickening” (Water Research, 1999: 3245–
3252) reported the development of a new compression machine for processing sewage
sludge. An important part of the investigation involved relating the moisture content of
compressed pellets (y, in %) to the machine’s filtration rate (x, in kg-DS/m/hr). The
following data was read from a graph in the paper:

x 125.3 98.2 201.4 147.3 145.9 124.7 112.2 120.2 161.2 178.9

y 77.9 76.8 81.5 79.8 78.2 78.3 77.5 77.0 80.1 80.2

x 159.5 145.8 75.1 151.4 144.2 125.0 198.8 132.5 159.6 110.7

y 79.9 79.0 76.7 78.2 79.5 78.1 81.5 77.0 79.0 78.6

Relevant summary quantities (summary statistics) are �xi � 2817.9, �yi � 1574.8,
�x2

i � 415,949.85, �xiyi � 222,657.88, and �y2
i � 124,039.58, from which x� �

y � Elongation

x � Tensile force

y � Product sales

x � Advertising expenditure

(a)

0 � 1x

0 � 1x

(b)

� �

� �

Figure 12.9 Typical sample for �2: (a) small; (b) large

DEFINITION The fitted (or predicted) values ŷ1, ŷ2, . . . , ŷn are obtained by successively sub-
stituting x1, . . . , xn into the equation of the estimated regression line: ŷ1 � �̂0 �
�̂1x1, ŷ2 � �̂0 � �̂1x2, . . . , ŷn � �̂0 � �̂1xn. The residuals are the vertical devia-
tions y1 � ŷ1, y2 � ŷ2, . . . , yn � ŷn from the estimated line.

Example 12.6
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140.895, y� � 78.74, Sxx � 18,921.8295, and Sxy � 776.434. Thus

�̂1 � � .04103377 � .041

�̂0 � 78.74 � (.04103377)(140.895) � 72.958547 � 72.96

from which the equation of least squares line is ŷ � 72.96 � .041x. For numerical 
accuracy, the fitted values are calculated from ŷi � 72.958547 � .04103377xi:

ŷ1 � 72.958547 � .04103377(125.3) � 78.100, y1 � ŷ1 � �.200, etc.

A positive residual corresponds to a point in the scatter plot that lies above the graph of
the least squares line, whereas a negative residual results from a point lying below the
line. All predicted values (fits) and residuals appear in the accompanying table.

776.434
��
18,921.8295

Obs Filtrate Moistcon Fit Residual

1 125.3 77.9 78.100 �0.200
2 98.2 76.8 76.988 �0.188
3 201.4 81.5 81.223 0.277
4 147.3 79.8 79.003 0.797
5 145.9 78.2 78.945 �0.745
6 124.7 78.3 78.075 0.225
7 112.2 77.5 77.563 �0.063
8 120.2 77.0 77.891 �0.891
9 161.2 80.1 79.573 0.527

10 178.9 80.2 80.299 �0.099
11 159.5 79.9 79.503 0.397
12 145.8 79.0 78.941 0.059
13 75.1 76.7 76.040 0.660
14 151.4 78.2 79.171 �0.971
15 144.2 79.5 78.876 0.624
16 125.0 78.1 78.088 0.012
17 198.8 81.5 81.116 0.384
18 132.5 77.0 78.396 �1.396
19 159.6 79.0 79.508 �0.508
20 110.7 78.6 77.501 1.099

■

In much the same way that the deviations from the mean in a one-sample situa-
tion were combined to obtain the estimate s2 � �(xi � x�)2/(n � 1), the estimate of �2 in
regression analysis is based on squaring and summing the residuals. We will continue
to use the symbol s2 for this estimated variance, so don’t confuse it with our previous s2.

DEFINITION The error sum of squares, (equivalently, residual sum of squares) denoted by
SSE, is

SSE � �(yi � ŷi)2 � � [yi � (�̂0 � �̂1xi)]2

and the estimate of � 2 is

�̂2 � s2 � �
�(yi � ŷi)2

��
n � 2

SSE
�
n � 2
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The divisor n � 2 in s2 is the number of degrees of freedom (df) associated with the
estimate (or, equivalently, with error sum of squares). This is because to obtain s2, the
two parameters �0 and �1 must first be estimated, which results in a loss of 2 df (just
as � had to be estimated in one-sample problems, resulting in an estimated variance
based on n � 1 df). Replacing each yi in the formula for s2 by the rv Yi gives the esti-
mator S 2. It can be shown that S 2 is an unbiased estimator for � 2 (though the estima-
tor S is not unbiased for �).

The residuals for the filtration rate–moisture content data were calculated previously.
The corresponding error sum of squares is

SSE � (�.200)2 � (�.188)2 � . . . � (1.099)2 � 7.968

The estimate of � 2 is then �̂2 � s2 � 7.968/(20 � 2) � .4427, and the estimated
standard deviation is �̂ � s � �.4427� � .665. Roughly speaking, .665 is the mag-
nitude of a typical deviation from the estimated regression line. ■

Computation of SSE from the defining formula involves much tedious arith-
metic because both the predicted values and residuals must first be calculated. Use
of the following computational formula does not require these quantities.

Example 12.7
(Example 12.6
continued)

SSE � �y2
i � �̂0�yi � �̂1�xi yi

This expression results from substituting ŷi � �̂0 � �̂1xi into �(yi � ŷi)2, squaring the
summand, carrying through the sum to the resulting three terms, and simplifying.
This computational formula is especially sensitive to the effects of rounding in �̂0

and �̂1, so carrying as many digits as possible in intermediate computations will pro-
tect against round-off error.

The article “Promising Quantitative Nondestructive Evaluation Techniques for
Composite Materials” (Materials Evaluation, 1985: 561–565) reports on a study to
investigate how the propagation of an ultrasonic stress wave through a substance
depends on the properties of the substance. The accompanying data on fracture strength
(x, as a percentage of ultimate tensile strength) and attenuation (y, in neper/cm, the
decrease in amplitude of the stress wave) in fiberglass-reinforced polyester composites
was read from a graph that appeared in the article. The simple linear regression model
is suggested by the substantial linear pattern in the scatter plot.

x 12 30 36 40 45 57 62 67 71 78 93 94 100 105

y 3.3 3.2 3.4 3.0 2.8 2.9 2.7 2.6 2.5 2.6 2.2 2.0 2.3 2.1

The necessary summary quantities are n � 14, �xi � 890, �x2
i � 67,182, �yi �

37.6, �y2
i � 103.54, and �xiyi � 2234.30, from which Sxx � 10,603.4285714,

Sxy � �155.98571429, �̂1 � �.0147109, and �̂0 � 3.6209072. The computational
formula for SSE gives

SSE � 103.54 � (3.6209072)(37.6) � (�.0147109)(2234.30)

� .2624532

Example 12.8
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so s2 � .2624532/12 � .0218711 and s � .1479. When �̂0 and �̂1 are rounded to
three decimal places in the computational formula for SSE, the result is

SSE � 103.54 � (3.621)(37.6) � (�.015)(2234.30) � .905

which is more than three times the correct value. ■

The Coefficient of Determination
Figure 12.10 shows three different scatter plots of bivariate data. In all three plots,
the heights of the different points vary substantially, indicating that there is much
variability in observed y values. The points in the first plot all fall exactly on a
straight line. In this case, all (100%) of the sample variation in y can be attributed to
the fact that x and y are linearly related in combination with variation in x. The points
in Figure 12.10(b) do not fall exactly on a line, but compared to overall y variability,
the deviations from the least squares line are small. It is reasonable to conclude in
this case that much of the observed y variation can be attributed to the approximate
linear relationship between the variables postulated by the simple linear regression
model. When the scatter plot looks like that of Figure 12.10(c), there is substantial
variation about the least squares line relative to overall y variation, so the simple
linear regression model fails to explain variation in y by relating y to x.

x

y

(a)
x

y

(b)
x

y

(c)

Figure 12.10 Using the model to explain y variation: (a) data for which all variation is
explained; (b) data for which most variation is explained; (c) data for which little variation 
is explained

The error sum of squares SSE can be interpreted as a measure of how much vari-
ation in y is left unexplained by the model—that is, how much cannot be attributed to
a linear relationship. In Figure 12.10(a), SSE � 0, and there is no unexplained varia-
tion, whereas unexplained variation is small for the data of Figure 12.10(b) and much
larger in Figure 12.10(c). A quantitative measure of the total amount of variation in
observed y values is given by the total sum of squares

SST � Syy � �(yi � y�)2 � �y2
i � (�yi)2/n

Total sum of squares is the sum of squared deviations about the sample mean
of the observed y values. Thus the same number y� is subtracted from each yi in SST,
whereas SSE involves subtracting each different predicted value ŷi from the corre-
sponding observed yi. Just as SSE is the sum of squared deviations about the least
squares line y � �̂0 � �̂1x, SST is the sum of squared deviations about the horizontal
line at height y� (since then vertical deviations are yi � y�), as pictured in Figure 12.11.
Furthermore, because the sum of squared deviations about the least squares line is
smaller than the sum of squared deviations about any other line, SSE � SST unless
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the horizontal line itself is the least squares line. The ratio SSE/SST is the proportion
of total variation that cannot be explained by the simple linear regression model, and
1 � SSE/SST (a number between 0 and 1) is the proportion of observed y variation
explained by the model.

(a)

Least squares line

y

x
(b)

y

x

y

Horizontal line at height y

Figure 12.11 Sums of squares illustrated: (a) SSE � sum of squared deviations about the
least squares line; (b) SST � sum of squared deviations about the horizontal line

DEFINITION The coefficient of determination, denoted by r 2, is given by

r 2 � 1 �

It is interpreted as the proportion of observed y variation that can be explained by
the simple linear regression model (attributed to an approximate linear relation-
ship between y and x).

SSE
�
SST

The higher the value of r 2, the more successful is the simple linear regression
model in explaining y variation. When regression analysis is done by a statistical
computer package, either r 2 or 100r 2 (the percentage of variation explained by the
model) is a prominent part of the output. If r 2 is small, an analyst will usually want
to search for an alternative model (either a nonlinear model or a multiple regression
model that involves more than a single independent variable) that can more effec-
tively explain y variation.

The scatter plot of the no-fines concrete data in Figure 12.8 certainly portends a very
high r 2 value. With

�̂0 � 118.909917 �̂1 � �.90473066 �yi � 299.8

�xiyi � 32,308.59 �y2
i � 6430.06

we have

SST � 6430.06 � � 438.057333 � 438.06

SSE � 6430.06 � (118.909917)(299.8) � (�.90473066)(32,308.59)

� 11.4388 � 11.44

The coefficient of determination is then

r 2 � 1 � � 1 � .026 � .974
11.44
�
438.06

299.82

�
15

Example 12.9
(Example 12.4
continued)
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That is, 97.4% of the observed variation in porosity is attributable to (can be explained
by) the approximate linear relationship between porosity and unit weight, a very
impressive result. (Many social scientists would die for an r2 value much above .5!)

Figure 12.12 shows partial MINITAB output for the porosity–unit weight data of
Examples 12.4 and 12.9; the package will also provide the predicted values and residu-
als upon request, as well as other information. The formats used by other packages 
differ slightly from that of MINITAB, but the information content is very similar.
Quantities such as the standard deviations, t-ratios, and the ANOVA table are discussed
in Section 12.3.

The regression equation is
porosity � 119 � 0.905 unitwt

�̂0 �̂1

Predictor Coef Stdev t-ratio p
Constant 118.910 4.499 26.43 0.000
unitwt �0.90473 0.04109 �22.02 0.000

100r2

s � 0.9380 R-sq � 97.4% R-sq(adj) � 97.2%

Analysis of Variance SSE

SOURCE DF SS MS F p
Regression 1 426.62 426.62 484.84 0.000
Error 13 11.44 0.88
Total 14 438.06 SST

←
⎯

←⎯
←⎯⎯⎯

←⎯⎯⎯⎯

←⎯⎯⎯⎯⎯⎯⎯

Figure 12.12 MINITAB output for the regression of Examples 12.4 and 12.9 ■

The coefficient of determination can be written in a slightly different way by
introducing a third sum of squares—regression sum of squares, SSR—given by
SSR � SST � SSE. Regression sum of squares is interpreted as the amount of total
variation that is explained by the model. Then we have

r 2 � 1 � SSE/SST � (SST � SSE)/SST � SSR/SST

the ratio of explained variation to total variation. The ANOVA table in Figure 12.12
shows that SSR � 426.62, from which r 2 � 426.62/438.06 � .974.

Terminology and Scope of Regression Analysis
The term regression analysis was first used by Francis Galton in the late nineteenth cen-
tury in connection with his work on the relationship between father’s height x and son’s
height y. After collecting a number of pairs (xi, yi), Galton used the principle of least
squares to obtain the equation of the estimated regression line with the objective of
using it to predict son’s height from father’s height. In using the derived line, Galton
found that if a father was above average in height, the son would also be expected to be
above average in height, but not by as much as the father was. Similarly, the son of a
shorter-than-average father would also be expected to be shorter than average, but not
by as much as the father. Thus the predicted height of a son was “pulled back in” toward
the mean; because regression means a coming or going back, Galton adopted the ter-
minology regression line. This phenomenon of being pulled back in toward the mean
has been observed in many other situations (e.g., batting averages from year to year in
baseball) and is called the regression effect.

Our discussion thus far has presumed that the independent variable is under
the control of the investigator, so that only the dependent variable Y is random.
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This was not, however, the case with Galton’s experiment; fathers’ heights were not
preselected, but instead both X and Y were random. Methods and conclusions of
regression analysis can be applied both when the values of the independent variable
are fixed in advance and when they are random, but because the derivations and
interpretations are more straightforward in the former case, we will continue to
work explicitly with it. For more commentary, see the excellent book by John Neter
et al. listed in the chapter bibliography.

EXERCISES Section 12.2 (12–29)

12. Exercise 4 gave data on x � BOD mass loading and y � BOD
mass removal. Values of relevant summary quantities are

n � 14 �xi � 517

�yi � 346 �x2
i � 39,095

�y2
i � 17,454 �xiyi � 25,825

a. Obtain the equation of the least squares line.
b. Predict the value of BOD mass removal for a single

observation made when BOD mass loading is 35, and
calculate the value of the corresponding residual.

c. Calculate SSE and then a point estimate of �.
d. What proportion of observed variation in removal can be

explained by the approximate linear relationship between
the two variables?

e. The last two x values, 103 and 142, are much larger than
the others. How are the equation of the least squares line
and the value of r 2 affected by deletion of the two corre-
sponding observations from the sample? Adjust the given
values of the summary quantities, and use the fact that
the new value of SSE is 311.79.

13. The accompanying data on x � current density (mA/cm2)
and y � rate of deposition (�m/min) appeared in the article
“Plating of 60/40 Tin/Lead Solder for Head Termination
Metallurgy” (Plating and Surface Finishing, Jan. 1997:
38–40). Do you agree with the claim by the article’s author
that “a linear relationship was obtained from the tin-lead
rate of deposition as a function of current density”? Explain
your reasoning.

14. Refer to the tank temperature–efficiency ratio data given in
Exercise 1.
a. Determine the equation of the estimated regression line.
b. Calculate a point estimate for true average efficiency

ratio when tank temperature is 182.
c. Calculate the values of the residuals from the least

squares line for the four observations for which tempera-
ture is 182. Why do they not all have the same sign?

d. What proportion of the observed variation in efficiency
ratio can be attributed to the simple linear regression
relationship between the two variables?

15. Values of modulus of elasticity (MOE, the ratio of stress,
i.e., force per unit area, to strain, i.e., deformation per unit
length, in GPa) and flexural strength (a measure of the abil-
ity to resist failure in bending, in MPa) were determined for
a sample of concrete beams of a certain type, resulting in the
following data (read from a graph in the article “Effects of
Aggregates and Microfillers on the Flexural Properties of
Concrete,” Magazine of Concrete Research, 1997: 81–98):

a. Construct a stem-and-leaf display of the MOE values, and
comment on any interesting features.

b. Is the value of strength completely and uniquely deter-
mined by the value of MOE? Explain.

c. Use the accompanying MINITAB output to obtain the
equation of the least squares line for predicting strength
from modulus of elasticity, and then predict strength for
a beam whose modulus of elasticity is 40. Would you feel
comfortable using the least squares line to predict strength
when modulus of elasticity is 100? Explain.

Predictor Coef Stdev t-ratio p
Constant 3.2925 0.6008 5.48 0.000
mod elas 0.10748 0.01280 8.40 0.000

s � 0.8657 R�sq � 73.8%  R�sq  (adj) � 72.8%

Analysis of Variance

SOURCE DF SS MS F p
Regression 1 52.870 52.870 70.55 0.000
Error 25 18.736 0.749
Total 26 71.605

d. What are the values of SSE, SST, and the coefficient of
determination? Do these values suggest that the simple
linear regression model effectively describes the rela-
tionship between the two variables? Explain.

x 20 40 60 80

y .24 1.20 1.71 2.22

MOE 29.8 33.2 33.7 35.3 35.5 36.1 36.2
Strength 5.9 7.2 7.3 6.3 8.1 6.8 7.0

MOE 36.3 37.5 37.7 38.7 38.8 39.6 41.0
Strength 7.6 6.8 6.5 7.0 6.3 7.9 9.0

MOE 42.8 42.8 43.5 45.6 46.0 46.9 48.0
Strength 8.2 8.7 7.8 9.7 7.4 7.7 9.7

MOE 49.3 51.7 62.6 69.8 79.5 80.0
Strength 7.8 7.7 11.6 11.3 11.8 10.7
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16. The article “Characterization of Highway Runoff in Austin,
Texas, Area” (J. of Envir. Engr., 1998: 131–137) gave a scat-
ter plot, along with the least squares line, of x � rainfall vol-
ume (m3) and y � runoff volume (m3) for a particular loca-
tion. The accompanying values were read from the plot.

a. Does a scatter plot of the data support the use of the sim-
ple linear regression model?

b. Calculate point estimates of the slope and intercept of the
population regression line.

c. Calculate a point estimate of the true average runoff vol-
ume when rainfall volume is 50.

d. Calculate a point estimate of the standard deviation �.
e. What proportion of the observed variation in runoff vol-

ume can be attributed to the simple linear regression rela-
tionship between runoff and rainfall?

17. A regression of y � calcium content (g/L) on x � dissolved
material (mg/cm2) was reported in the article “Use of Fly Ash
or Silica Fume to Increase the Resistance of Concrete to Feed
Acids” (Magazine of Concrete Research, 1997: 337–344).
The equation of the estimated regression line was y �
3.678 � .144x, with r2 � .860, based on n � 23.
a. Interpret the estimated slope .144 and the coefficient of

determination .860.
b. Calculate a point estimate of the true average calcium con-

tent when the amount of dissolved material is 50 mg/cm2.
c. The value of total sum of squares was SST � 320.398.

Calculate an estimate of the error standard deviation � in
the simple linear regression model.

18. The following summary statistics were obtained from a
study that used regression analysis to investigate the rela-
tionship between pavement deflection and surface tempera-
ture of the pavement at various locations on a state highway.
Here x � temperature (°F) and y � deflection adjustment
factor (y � 0):

n � 15 �xi � 1425 �yi � 10.68

�x2
i � 139,037.25 � xiyi � 987.645

�y2
i � 7.8518

(Many more than 15 observations were made in the study;
the reference is “Flexible Pavement Evaluation and Reha-
bilitation,” Transportation Eng. J., 1977: 75–85.)
a. Compute �̂1, �̂0, and the equation of the estimated regres-

sion line. Graph the estimated line.
b. What is the estimate of expected change in the deflection

adjustment factor when temperature is increased by 1°F?
c. Suppose temperature were measured in °C rather than in

°F. What would be the estimated regression line? Answer

part (b) for an increase of 1°C. [Hint: °F � (9/5)°C � 32;
now substitute for the “old x” in terms of the “new x.”]

d. If a 200°F surface temperature were within the realm of
possibility, would you use the estimated line of part (a)
to predict deflection factor for this temperature? Why or
why not?

19. The following data is representative of that reported in 
the article “An Experimental Correlation of Oxides of
Nitrogen Emissions from Power Boilers Based on Field
Data” (J. Eng. for Power, July 1973: 165–170), with x �
burner area liberation rate (MBtu/hr-ft2) and y � NOX

emission rate (ppm):

a. Assuming that the simple linear regression model is
valid, obtain the least squares estimate of the true regres-
sion line.

b. What is the estimate of expected NOX emission rate
when burner area liberation rate equals 225?

c. Estimate the amount by which you expect NOX emission
rate to change when burner area liberation rate is de-
creased by 50.

d. Would you use the estimated regression line to predict
emission rate for a liberation rate of 500? Why or why not?

20. A number of studies have shown lichens (certain plants
composed of an alga and a fungus) to be excellent bioindi-
cators of air pollution. The article “The Epiphytic Lichen
Hypogymnia Physodes as a Biomonitor of Atmospheric
Nitrogen and Sulphur Deposition in Norway” (Envir.
Monitoring and Assessment, 1993: 27–47) gives the follow-
ing data (read from a graph) on x � NO�

3 wet deposition 
(g N/m2) and y � lichen N (% dry weight):

The author used simple linear regression to analyze the data.
Use the accompanying MINITAB output to answer the fol-
lowing questions:
a. What are the least squares estimates of �0 and �1?
b. Predict lichen N for an NO�

3 deposition value of .5.
c. What is the estimate of �?
d. What is the value of total variation, and how much of

it can be explained by the model relationship?

x 5 12 14 17 23 30 40 47

y 4 10 13 15 15 25 27 46

x 55 67 72 81 96 112 127

y 38 46 53 70 82 99 100

x 100 125 125 150 150 200 200

y 150 140 180 210 190 320 280

x 250 250 300 300 350 400 400

y 400 430 440 390 600 610 670

x .05 .10 .11 .12 .31 .37 .42

y .48 .55 .48 .50 .58 .52 1.02

x .58 .68 .68 .73 .85 .92

y .86 .86 1.00 .88 1.04 1.70
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The regression equation is lichen 
N � 0.365 � 0.967 no3 depo

Predictor Coef Stdev t–ratio p
Constant 0.36510 0.09904 3.69 0.004
no3 depo 0.9668 0.1829 5.29 0.000

s � 0.1932 R-sq � 71.7% R-sq (adj) � 69.2%

Analysis of Variance

SOURCE DF SS MS F P
Regression 1 1.0427 1.0427 27.94 0.000
Error 11 0.4106 0.0373
Total 12 1.4533

21. Wrinkle recovery angle and tensile strength are the two
most important characteristics for evaluating the perfor-
mance of crosslinked cotton fabric. An increase in the degree
of crosslinking, as determined by ester carboxyl band
absorbence, improves the wrinkle resistance of the fabric (at
the expense of reducing mechanical strength). The accompa-
nying data on x � absorbance and y � wrinkle resistance
angle was read from a graph in the paper “Predicting the
Performance of Durable Press Finished Cotton Fabric with
Infrared Spectroscopy” (Textile Res. J., 1999: 145–151)

Here is regression output from MINITAB:

Predictor Coef SE Coef T P
Constant 321.878 2.483 129.64 0.000
absorb 156.711 6.464 24.24 0.000

S = 3.60498 R-Sq = 98.5% R-Sq(adj) = 98.3%

Source DF SS MS F P
Regression 1 7639.0 7639.0 587.81 0.000
Residual Error 9 117.0 13.0
Total 10 7756.0

a. Does the simple linear regression model appear to be
appropriate? Explain.

b. What wrinkle resistance angle would you predict for a
fabric specimen having an absorbance of .300?

c. What would be the estimate of expected wrinkle re-
sistence angle when absorbance is .300?

22. a. Use the summary quantities from Exercise 18 to estimate
the standard deviation of the random deviation � in the
simple linear regression model.

b. Based on the summary quantities from Exercise 18, what
proportion of variation in deflection adjustment factor
can be explained by the simple linear regression rela-
tionship between adjustment factor and temperature?

23. a. Obtain SSE for the data in Exercise 19 from the defining
formula [SSE � �(yi � ŷi)2], and compare to the value
calculated from the computational formula.

b. Calculate the value of total sum of squares. Does the simple
linear regression model appear to do an effective job of
explaining variation in emission rate? Justify your assertion.

24. The accompanying data was read from a graph that appeared
in the article “Reactions on Painted Steel Under the Influence
of Sodium Chloride, and Combinations Thereof” (Ind. Engr.
Chem. Prod. Res. Dev., 1985: 375–378). The independent
variable is SO2 deposition rate (mg/m2/d) and the dependent
variable is steel weight loss (g/m2).

a. Construct a scatter plot. Does the simple linear regres-
sion model appear to be reasonable in this situation?

b. Calculate the equation of the estimated regression line.
c. What percentage of observed variation in steel weight

loss can be attributed to the model relationship in combi-
nation with variation in deposition rate?

d. Because the largest x value in the sample greatly exceeds
the others, this observation may have been very influen-
tial in determining the equation of the estimated line.
Delete this observation and recalculate the equation.
Does the new equation appear to differ substantially from
the original one (you might consider predicted values)?

25. Show that b1 and b0 of expressions (12.2) and (12.3) satisfy
the normal equations.

26. Show that the “point of averages” (x�, y�) lies on the estimated
regression line.

27. Suppose an investigator has data on the amount of shelf space
x devoted to display of a particular product and sales revenue
y for that product. The investigator may wish to fit a model for
which the true regression line passes through (0, 0). The
appropriate model is Y � �1x � �. Assume that (x1, y1), . . . ,
(xn, yn) are observed pairs generated from this model, and
derive the least squares estimator of �1. [Hint: Write the sum
of squared deviations as a function of b1, a trial value, and use
calculus to find the minimizing value of b1.]

28. a. Consider the data in Exercise 20. Suppose that instead of
the least squares line passing through the points (x1, y1),
. . . , (xn, yn), we wish the least squares line passing
through (x1 � x�, y1), . . . , (xn � x�, yn). Construct a scatter
plot of the (xi, yi) points and then of the (xi � x�, yi) points.
Use the plots to explain intuitively how the two least
squares lines are related to one another.

b. Suppose that instead of the model Yi � �0 � �1xi �
�i (i � 1, . . . , n), we wish to fit a model of the form 
Yi � �*0 � �*1(xi � x�) � �i (i � 1, . . . , n). What are the
least squares estimators of �*0 and �*1, and how do they
relate to �̂0 and �̂1?

29. Consider the following three data sets, in which the variables
of interest are x � commuting distance and y � commuting
time. Based on a scatter plot and the values of s and r2, in
which situation would simple linear regression be most (least)
effective, and why?

x 14 18 40 43 45 112

y 280 350 470 500 560 1200

x .115 .126 .183 .246 .282 .344 .355 .452 .491 .554 .651

y 334 342 355 363 365 372 381 392 400 412 420
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In virtually all of our inferential work thus far, the notion of sampling variability has
been pervasive. In particular, properties of sampling distributions of various statis-
tics have been the basis for developing confidence interval formulas and hypothesis-
testing methods. The key idea here is that the value of virtually any quantity calcu-
lated from sample data—the value of virtually any statistic—is going to vary from
one sample to another.

Reconsider the data on x � burner area liberation rate and y � NOX emission rate from
Exercise 12.19 in the previous section. There are 14 observations, made at the x values
100, 125, 125, 150, 150, 200, 200, 250, 250, 300, 300, 350, 400, and 400, respectively.
Suppose that the slope and intercept of the true regression line are �1 � 1.70 and �0 �
�50, with � � 35 (consistent with the values �̂1 � 1.7114, �̂0 � �45.55, s � 36.75).
We proceeded to generate a sample of random deviations ~�1, . . . , ~�14 from a normal
distribution with mean 0 and standard deviation 35, and then added ~�i to �0 � �1xi to
obtain 14 corresponding y values. Regression calculations were then carried out to
obtain the estimated slope, intercept, and standard deviation. This process was re-
peated a total of 20 times, resulting in the values given in Table 12.1.

There is clearly variation in values of the estimated slope and estimated inter-
cept, as well as the estimated standard deviation. The equation of the least squares
line thus varies from one sample to the next. Figure 12.13 shows a dotplot of the esti-
mated slopes as well as graphs of the true regression line and the 20 sample regres-
sion lines.

12.3 Inferences About the Slope Parameter �1

Data Set 1 2 3

x y x y x y

15 42 5 16 5 8
16 35 10 32 10 16
17 45 15 44 15 22
18 42 20 45 20 23
19 49 25 63 25 31
20 46 50 115 50 60

Sxx 17.50 1270.8333 1270.8333
Sxy 29.50 2722.5 1431.6667
�̂1 1.685714 2.142295 1.126557
�̂0 13.666672 7.868852 3.196729
SST 114.83 5897.5 1627.33
SSE 65.10 65.10 14.48

Example 12.10

Table 12.1 Simulation Results for Example 12.10

�̂1 �̂0 s �̂1 �̂0 s

1. 1.7559 �60.62 43.23 11. 1.7843 �67.36 41.80
2. 1.6400 �49.40 30.69 12. 1.5822 �28.64 32.46
3. 1.4699 �4.80 36.26 13. 1.8194 �83.99 40.80
4. 1.6944 �41.95 22.89 14. 1.6469 �32.03 28.11
5. 1.4497 5.80 36.84 15. 1.7712 �52.66 33.04
6. 1.7309 �70.01 39.56 16. 1.7004 �58.06 43.44
7. 1.8890 �95.01 42.37 17. 1.6103 �27.89 25.60
8. 1.6471 �40.30 43.71 18. 1.6396 �24.89 40.78
9. 1.7216 �42.68 23.68 19. 1.7857 �77.31 32.38

10. 1.7058 �63.31 31.58 20. 1.6342 �17.00 30.93
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The slope �1 of the population regression line is the true average change in the
dependent variable y associated with a 1-unit increase in the independent variable x.
The slope of the least squares line, �̂1, gives a point estimate of �1. In the same way
that a confidence interval for � and procedures for testing hypotheses about � were
based on properties of the sampling distribution of X�, further inferences about �1 are
based on thinking of �̂1 as a statistic and investigating its sampling distribution.

The values of the xi s are assumed to be chosen before the experiment is per-
formed, so only the Yi s are random. The estimators (statistics, and thus random vari-
ables) for �0 and �1 are obtained by replacing yi by Yi in (12.2) and (12.3):

�̂1 �

�̂0 �
�Yi � �̂i�xi��

n

�(xi � x�)(Yi � Y�)
���(xi � x�)2

100

200

300

Y

400

500

600

100 150 200 250

X

300

True regression line

350 400

Simulated least squares lines

(b)

1.5 1.7

�1

(a)

Slope

1.6 1.8 1.9

Figure 12.13 Simulation results from Example 12.10: (a) dotplot of estimated slopes;
(b) graphs of the true regression line and 20 least squares lines (from S-Plus) ■
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Similarly, the estimator for � 2 results from replacing each yi in the formula for s2

by the rv Yi:

�̂ 2 � S 2 �

The denominator of �̂1, Sxx � �(xi � x�)2, depends only on the xis and not on the Yi s,
so it is a constant. Then because �(xi � x�)Y� � Y� � (xi � x�) � Y� � 0 � 0, the slope
estimator can be written as

�̂1 � � �ciYi where ci � (xi � x�)/Sxx

That is, �̂1 is a linear function of the independent rv’s Y1, Y2, . . . , Yn, each of which
is normally distributed. Invoking properties of a linear function of random variables
discussed in Section 5.5 leads to the following results.

�(xi � x�)Yi��
Sxx

�Y 2
i ��̂0�Yi��̂1�xiYi���

n � 2

1. The mean value of �̂1 is E(�̂1) � ��̂1
� �1, so �̂1 is an unbiased estimator

of �1 (the distribution of �̂1 is always centered at the value of �1).

2. The variance and standard deviation of �̂1 are

V(�̂1) � � 2
�̂1

� ��̂1
� (12.4)

where Sxx � �(xi � x�)2 � �x 2
i � (�xi)2/n. Replacing � by its estimate s

gives an estimate for ��̂1
(the estimated standard deviation, i.e., estimated

standard error, of �̂1):

s�̂1
�

(This estimate can also be denoted by �̂�̂1
.)

3. The estimator �̂1 has a normal distribution (because it is a linear function
of independent normal rv’s).

s
�
�S�xx�

�
�
�S�xx�

� 2

�
Sxx

According to (12.4), the variance of �̂1 equals the variance � 2 of the random error
term—or, equivalently, of any Yi—divided by �(xi � x�)2. Because �(xi � x�)2 is a
measure of how spread out the xi s are about x�, we conclude that making observa-
tions at xi values that are quite spread out results in a more precise estimator of the
slope parameter (smaller variance of �̂1), whereas values of xi all close to one another
imply a highly variable estimator. Of course, if the xi s are spread out too far, a lin-
ear model may not be appropriate throughout the range of observation.

Many inferential procedures discussed previously were based on standardizing
an estimator by first subtracting its mean value and then dividing by its estimated
standard deviation. In particular, test procedures and a CI for the mean � of a nor-
mal population utilized the fact that the standardized variable (X� � �)/(S/�n�)—that
is, (X� � �)/S�̂—had a t distribution with n � 1 df. A similar result here provides the
key to further inferences concerning �1.
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A Confidence Interval for �1

As in the derivation of previous CIs, we begin with a probability statement:

P��t�/2,n�2 � � t�/2,n�2� � 1 � �

Manipulation of the inequalities inside the parentheses to isolate �1 and substitution
of estimates in place of the estimators gives the CI formula.

�̂1 � �1
�

S�̂1

The assumptions of the simple linear regression model imply that the stan-
dardized variable

T � �

has a t distribution with n � 2 df.

�̂1 � �1
�

S�̂1

�̂1 � �1
�
S /�S�xx�

THEOREM

A 100(1 � �)% CI for the slope �1 of the true regression line is

�̂1 � t�/2,n�2 � s�̂1

This interval has the same general form as did many of our previous intervals. It is
centered at the point estimate of the parameter, and the amount it extends out to
each side of the estimate depends on the desired confidence level (through the t crit-
ical value) and on the amount of variability in the estimator �̂1 (through s�̂1

, which
will tend to be small when there is little variability in the distribution of �̂1 and large
otherwise).

Variations in clay brick masonry weight have implications not only for structural and
acoustical design but also for design of heating, ventilating, and air conditioning sys-
tems. The article “Clay Brick Masonry Weight Variation” (J. of Architectural Engr.,
1996: 135–137) gave a scatter plot of y � mortar dry density (lb/ft3) versus x � mor-
tar air content (%) for a sample of mortar specimens, from which the following rep-
resentative data was read:

x 5.7 6.8 9.6 10.0 10.7 12.6 14.4 15.0 15.3

y 119.0 121.3 118.2 124.0 112.3 114.1 112.2 115.1 111.3

x 16.2 17.8 18.7 19.7 20.6 25.0

y 107.2 108.9 107.8 111.0 106.2 105.0

The scatter plot of this data in Figure 12.14 certainly suggests the appropriateness of
the simple linear regression model; there appears to be a substantial negative linear
relationship between air content and density, one in which density tends to decrease
as air content increases.

Example 12.11
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The values of the summary statistics required for calculation of the least
squares estimates are

�xi � 218.1 �yi � 1693.6 �x 2
i � 3577.01

�xiyi � 24,252.54 �y2
i � 191,672.90

from which Sxy � �372.404, Sxx � 405.836, �̂1 � �.917622, �̂0 � 126.248889,
SST � 454.1693, SSE � 112.4432, and r 2 � 1 � 112.4432/454.1693 � .752.
Roughly 75% of the observed variation in density can be attributed to the simple
linear regression model relationship between density and air content. Error df is
15 � 2 � 13, giving s2 � 112.4432/13 � 8.6495 and s � 2.941.

The estimated standard deviation of �̂1 is

s�̂1
� � � .1460

The t critical value for a confidence level of 95% is t.025,13 � 2.160. The confidence
interval is

�.918 � (2.160)(.1460) � �.918 � .315 � (�1.233, �.603)

With a high degree of confidence, we estimate that an average decrease in density of
between .603 lb/ft3 and 1.233 lb/ft3 is associated with a 1% increase in air content 
(at least for air content values between roughly 5% and 25%, corresponding to the x
values in our sample). The interval is reasonably narrow, indicating that the slope of
the population line has been precisely estimated. Notice that the interval includes only
negative values, so we can be quite confident of the tendency for density to decrease
as air content increases.

Looking at the SAS output of Figure 12.15, we find the value of s�̂1
under

Parameter Estimates as the second number in the Standard Error column. All of
the widely used statistical packages include this estimated standard error in out-
put. There is also an estimated standard error for the statistic �̂0 from which a
confidence interval for the intercept �0 of the population regression line can be
calculated.

2.941
��
�4�0�5�.8�3�6�

s
�
�S�xx�

Figure 12.14 Scatter plot of the data from Example 12.11
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Dependent Variable: DENSITY

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Prob � F

Model 1 341.72606 341.72606 39.508 0.0001
Error 13 112.44327 8.64948
C Total 14 454.16933

Root MSE 2.94100 R-square 0.7524
Dep Mean 112.90667 Adj R-sq 0.7334
C.V. 2.60481

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter � 0 Prob � ⏐T⏐
INTERCEP 1 126.248889 2.25441683 56.001 0.0001
AIRCONT 1 �0.917622 0.14598888 �6.286 0.0001

Dep Var Predict
Obs DENSITY Value Residual
1 119.0 121.0 �2.0184
2 121.3 120.0 1.2909
3 118.2 117.4 0.7603
4 124.0 117.1 6.9273
5 112.3 116.4 �4.1303
6 114.1 114.7 �0.5869
7 112.2 113.0 �0.8351
8 115.1 112.5 2.6154
9 111.3 112.2 �0.9093
10 107.2 111.4 �4.1834
11 108.9 109.9 �1.0152
12 107.8 109.1 �1.2894
13 111.0 108.2 2.8283
14 106.2 107.3 �1.1459
15 105.0 103.3 1.6917

Sum of Residuals 0
Sum of Squared Residuals 112.4433
Predicted Resid SS (Press) 146.4144

Figure 12.15 SAS output for the data of Example 12.11 ■

Hypothesis-Testing Procedures
As before, the null hypothesis in a test about �1 will be an equality statement. The
null value (value of �1 claimed true by the null hypothesis) will be denoted by �10

(read “beta one nought,” not “beta ten”). The test statistic results from replacing �1

in the standardized variable T by the null value �10—that is, from standardizing the
estimator of �1 under the assumption that H0 is true. The test statistic thus has a t dis-
tribution with n � 2 df when H0 is true, so the type I error probability is controlled
at the desired level � by using an appropriate t critical value.

The most commonly encountered pair of hypotheses about �1 is H0: �1 � 0
versus Ha: �1 � 0. When this null hypothesis is true, �Y�x � �0 independent of x,
so knowledge of x gives no information about the value of the dependent variable.
A test of these two hypotheses is often referred to as the model utility test in sim-
ple linear regression. Unless n is quite small, H0 will be rejected and the utility of
the model confirmed precisely when r 2 is reasonably large. The simple linear
regression model should not be used for further inferences (estimates of mean
value or predictions of future values) unless the model utility test results in rejec-
tion of H0 for a suitably small �.
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The cleanliness of molten aluminum metal or alloy prior to casting is determined
mainly by the hydrogen and inclusion content of the melt. The article “Effect of
Melt Cleanliness on the Properties of an A1-10 Wt Pct Si-10 Vol Pct SiC(p)
Composite” (Metallurgical Trans., 1993: 1631–1645) reports on a study in which
various tensile properties were related to x � volume fraction of oxides/inclusions
(%). Here we present data (read from a graph) on y � elongation (%) of test bars.
The authors state that the scatter plot shows a linear relationship and give the equa-
tion of the least squares line. Let’s use the MINITAB output of Figure 12.16 to
carry out the model utility test at significance level � � .01.

x .10 .16 .31 .37 .37 .46 .50 .50 .60 .70

y .96 1.10 .80 .84 .77 .87 .60 .87 .60 .61

x .75 .80 .90 1.00 1.07 1.08 1.11 1.30 1.37 1.54

y .70 .41 .40 .41 .45 .59 .25 .25 .08 .10

Null hypothesis: H0: �1 � �10

Test statistic value: t �

Alternative Hypothesis Rejection Region for Level � Test

Ha: �1 � �10 t � t�,n�2

Ha: �1 � �10 t � � t�,n�2

Ha: �1 � �10 either t � t�/2,n�2 or t � � t�/2,n�2

A P-value based on n � 2 df can be calculated just as was done previously for 
t tests in Chapters 8 and 9.

The model utility test is the test of H0: �1 � 0 versus Ha: �1 � 0, in which
case the test statistic value is the t ratio t � �̂1/s�̂1

.

�̂1 � �10

�
s�̂1

Example 12.12

The regression equation is 

elon � 1.07 � 0.649 volfrac s�̂1
t �

Predictor Coef Stdev t-ratio P P-value
Constant 1.06930 0.04966 21.53 0.000 for model
volfrac �0.64884 0.05840 �11.11 0.000 utility test

s � 0.1049 R-sq � 87.3% R-sq(adj) � 86.6%

Analysis of Variance

SOURCE DF SS MS F P
Regression 1 1.3583 1.3583 123.42 0.000
Error 18 0.1981 0.0110
Total 19 1.5564

�̂1

�
s�̂1

←
⎯

⎯
⎯

←
⎯

⎯
⎯

←⎯

Figure 12.16 MINITAB output for Example 12.12

The parameter of interest is �1, the expected change in percentage elongation
associated with a 1% increase in the volume fraction of oxides/inclusions. H0: �1 � 0
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will be rejected in favor of Ha: �1 � 0 if the t ratio t � �̂1/s�̂1
satisfies either t �

t�/2,n�2 � t.005,18 � 2.878 or t � �2.878. From Figure 12.16, �̂1 � �.64884, s�̂1
�

.05840, and

t � � �11.11 (also on output)

Clearly, �11.11 � �2.878, so H0 is resoundingly rejected. Alternatively, the P-value is
twice the area captured under the 18 df t curve to the left of �11.11. MINITAB gives 
P-value � .000, so H0 should be rejected at any reasonable �. This confirmation of
the utility of the simple linear regression model gives us license to calculate various
estimates and predictions as described in Section 12.4. ■

Regression and ANOVA
The decomposition of the total sum of squares �(yi � y�)2 into a part SSE, which
measures unexplained variation, and a part SSR, which measures variation ex-
plained by the linear relationship, is strongly reminiscent of one-way ANOVA. In
fact, the null hypothesis H0: �1 � 0 can be tested against Ha: �1 � 0 by construct-
ing an ANOVA table (Table 12.2) and rejecting H0 if f � F�,1,n�2.

�.64884
�
.05840

EXERCISES Section 12.3 (30–43)

30. Reconsider the situation described in Exercise 7, in which
x � accelerated strength of concrete and y � 28-day cured
strength. Suppose the simple linear regression model is
valid for x between 1000 and 4000 and that �1 � 1.25 and
� � 350. Consider an experiment in which n � 7, and the
x values at which observations are made are x1 � 1000,
x2 � 1500, x3 � 2000, x4 � 2500, x5 � 3000, x6 � 3500,
and x7 � 4000.
a. Calculate ��̂1

, the standard deviation of  �̂1.
b. What is the probability that the estimated slope based 

on such observations will be between 1.00 and 1.50?

c. Suppose it is also possible to make a single observation at
each of the n � 11 values x1 � 2000, x2 � 2100, . . . ,
x11 � 3000. If a major objective is to estimate �1 as accu-
rately as possible, would the experiment with n � 11 be
preferable to the one with n � 7?

31. Reconsider the summary quantities given in Exercise 18 for
the regression of y � deflection factor on x � temperature.
a. Compute the estimated standard deviation s�̂1

.
b. Calculate a 95% CI for �1, the expected change in deflec-

tion factor associated with a 1°F increase in temperature.

Table 12.2 ANOVA Table for Simple Linear Regression

Source of Variation df Sum of Squares Mean Square f

Regression 1 SSR SSR

Error n � 2 SSE s2 �

Total n � 1 SST

SSE
�
n � 2

SSR
��
SSE/(n � 2)

The F test gives exactly the same result as the model utility t test because t2 � f
and t2

�/2,n�2 � F�,1,n�2. Virtually all computer packages that have regression options
include such an ANOVA table in the output. For example, Figure 12.15 shows SAS
output for the mortar data of Example 12.11. The ANOVA table at the top of the out-
put has f � 39.508 with a P-value of .0001 for the model utility test. The table of
parameter estimates gives t � �6.286, again with P � .0001 and (�6.286)2 � 39.51.
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32. Exercise 16 of Section 12.2 gave data on x � rainfall volume
and y � runoff volume (both in m3). Use the accompanying
MINITAB output to decide whether there is a useful linear
relationship between rainfall and runoff, and then calculate 
a confidence interval for the true average change in runoff
volume associated with a 1-m3 increase in rainfall volume.

The regression equation is
runoff � �1.13 � 0.827 rainfall

Predictor Coef Stdev t-ratio p
Constant �1.128 2.368 �0.48 0.642
rainfall 0.82697 0.03652 22.64 0.000

s � 5.240 R-sq � 97.5% R-sq(adj) � 97.3%

33. Exercise 15 of Section 12.2 included MINITAB output for
a regression of flexural strength of concrete beams on mod-
ulus of elasticity.
a. Use the output to calculate a confidence interval with a

confidence level of 95% for the slope �1 of the popula-
tion regression line, and interpret the resulting interval.

b. Suppose it had previously been believed that when mod-
ulus of elasticity increased by 1 GPa, the associated true
average change in flexural strength would be at most 
.1 MPa. Does the sample data contradict this belief?
State and test the relevant hypotheses.

34. Refer to the MINITAB output of Exercise 20, in which
x � NO�

3 wet deposition and y � lichen N (%).
a. Carry out the model utility test at level .01, using the

rejection region approach.
b. Repeat part (a) using the P-value approach.
c. Suppose it had previously been believed that when NO�

3

wet deposition increases by .1 g N/m2, the associated
change in expected lichen N is at least .15%. Carry out
a test of hypotheses at level .01 to decide whether the data
contradicts this prior belief.

35. How does lateral acceleration—side forces experienced in
turns that are largely under driver control—affect nausea as
perceived by bus passengers? The article “Motion Sickness
in Public Road Transport: The Effect of Driver, Route, and
Vehicle” (Ergonomics, 1999: 1646–1664) reported data on
x � motion sickness dose (calculated in accordance with
a British standard for evaluating similar motion at sea) and
y � reported nausea (%). Relevant summary quantities are 

n � 17, �xi � 222.1, �yi � 193, �x2
i � 3056.69,

� xiyi � 2759.6, �y2
i � 2975

Values of dose in the sample ranged from 6.0 to 17.6.
a. Assuming that the simple linear regression model is valid

for relating these two variables (this is supported by the
raw data), calculate and interpret an estimate of the slope
parameter that conveys information about the precision
and reliability of estimation.

b. Does it appear that there is a useful linear relationship
between these two variables? Answer the question by
employing the P-value approach.

c. Would it be sensible to use the simple linear regression
model as a basis for predicting % nausea when dose �
5.0? Explain your reasoning.

d. When MINITAB was used to fit the simple linear
regression model to the raw data, the observation 
(6.0, 2.50) was flagged as possibly having a substantial
impact on the fit. Eliminate this observation from the
sample and recalculate the estimate of part (a). Based
on this, does the observation appear to be exerting an
undue influence?

36. Mist (airborne droplets or aerosols) is generated when
metal-removing fluids are used in machining operations to
cool and lubricate the tool and workpiece. Mist generation
is a concern to OSHA, which has recently lowered sub-
stantially the workplace standard. The article “Variables
Affecting Mist Generaton from Metal Removal Fluids”
(Lubrication Engr., 2002: 10–17) gave the accompanying
data on x � fluid flow velocity for a 5% soluble oil
(cm/sec) and y � the extent of mist droplets having diame-
ters smaller than 10 �m (mg/m3):

a. The investigators performed a simple linear regression
analysis to relate the two variables. Does a scatter plot of
the data support this strategy?

b. What proportion of observed variation in mist can be
attributed to the simple linear regression relationship
between velocity and mist?

c. The investigators were particularly interested in the
impact on mist of increasing velocity from 100 to 1000
(a factor of 10 corresponding to the difference between
the smallest and largest x values in the sample). When x
increases in this way, is there substantial evidence that
the true average increase in y is less than .6?

d. Estimate the true average change in mist associated with
a 1 cm/sec increase in velocity, and do so in a way that
conveys information about precision and reliability.

37. Magnetic resonance imaging (MRI) is well established as a
tool for measuring blood velocities and volume flows. The
article “Correlation Analysis of Stenotic Aortic Valve Flow
Patterns Using Phase Contrast MRI,” referenced in Exercise
1.67, proposed using this methodology for determination of
valve area in patients with aortic stenosis. The accompany-
ing data on peak velocity (m/s) from scans of 23 patients in
two different planes was read from a graph in the cited paper.

a. Does there appear to be a difference between true aver-
age velocity in the two different planes? Carry out an
appropriate test of hypotheses (as did the authors of the
article).

x 89 177 189 354 362 442 965

y .40 .60 .48 .66 .61 .69 .99

Level--: .60 .82 .85 .89 .95 1.01 1.01 1.05
Level--: .50 .68 .76 .64 .68 .86 .79 1.03

Level--: 1.08 1.11 1.18 1.17 1.22 1.29 1.28 1.32
Level--: .75 .90 .79 .86 .99 .80 1.10 1.15

Level--: 1.37 1.53 1.55 1.85 1.93 1.93 2.14
Level--: 1.04 1.16 1.28 1.39 1.57 1.39 1.32
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b. The authors of the article also regressed Level--velocity
against Level– velocity. The resulting estimated intercept
and slope are .14701 and .65393, with corresponding
estimated standard errors .07877 and .05947, coefficient
of determination .852, and s � .110673. The article
included a comment that this regression showed evi-
dence of a strong linear relationship but a regression
slope well below 1. Do you agree?

38. Refer to the data on x � liberation rate and y � NOX emis-
sion rate given in Exercise 19.
a. Does the simple linear regression model specify a useful

relationship between the two rates? Use the appropriate
test procedure to obtain information about the P-value
and then reach a conclusion at significance level .01.

b. Compute a 95% CI for the expected change in emission
rate associated with a 10 MBtu/hr-ft2 increase in libera-
tion rate.

39. Carry out the model utility test using the ANOVA approach
for the filtration rate–moisture content data of Example 12.6.
Verify that it gives a result equivalent to that of the t test.

40. Use the rules of expected value to show that  �̂0 is an unbi-
ased estimator for �0 (assuming that �̂1 is unbiased for �1).

41. a. Verify that E( �̂1) � �1 by using the rules of expected
value from Chapter 5.

b. Use the rules of variance from Chapter 5 to verify the
expression for V(�̂1) given in this section.

42. Verify that if each xi is multiplied by a positive constant c and
each yi is multiplied by another positive constant d, the t sta-
tistic for testing H0: �1 � 0 versus Ha: �1 � 0 is unchanged
in value (the value of  �̂1 will change, which shows that the
magnitude of �̂1 is not by itself indicative of model utility).

43. The probability of a type II error for the t test for H0: �1 �
�10 can be computed in the same manner as it was com-
puted for the t tests of Chapter 8. If the alternative value of
�1 is denoted by �1, the value of

d �

is first calculated, then the appropriate set of curves in
Appendix Table A.17 is entered on the horizontal axis at
the value of d, and � is read from the curve for n � 2 df.
An article in the Journal of Public Health Engineering
reports the results of a regression analysis based on n � 15
observations in which x � filter application temperature
(°C) and y � % efficiency of BOD removal. Calculated
quantities include �xi � 402, �x2

i � 11,098, s � 3.725,
and �̂1 � 1.7035. Consider testing at level .01 H0: �1 � 1,
which states that the expected increase in % BOD removal
is 1 when filter application temperature increases by 1°C,
against the alternative Ha: �1 � 1. Determine P(type II
error) when �1 � 2, � � 4.

⏐�10 � �1⏐
���

� ����x�2
i
�n

���

(��
1�xi

�)2�/n
��

12.4 Inferences Concerning �Y�x* and
the Prediction of Future Y Values

Let x* denote a specified value of the independent variable x. Once the estimates 
�̂0 and �̂1 have been calculated,  �̂0 � �̂1x* can be regarded either as a point estimate
of �Y�x* (the expected or true average value of Y when x � x*) or as a prediction of
the Y value that will result from a single observation made when x � x*. The point
estimate or prediction by itself gives no information concerning how precisely �Y�x*

has been estimated or Y has been predicted. This can be remedied by developing a
CI for �Y�x* and a prediction interval (PI) for a single Y value.

Before we obtain sample data, both �̂0 and �̂1 are subject to sampling 
variability—that is, they are both statistics whose values will vary from sample to
sample. Suppose, for example, that �0 � 50 and �1 � 2. Then a first sample of (x, y)
pairs might give �̂0 � 52.35, �̂1 � 1.895, a second sample might result in �̂0 �
46.52, �̂1 � 2.056, and so on. It follows that  Ŷ � �̂0 � �̂1x* itself varies in value
from sample to sample, so it is a statistic. If the intercept and slope of the population
line are the aforementioned values 50 and 2, respectively, and x* � 10, then this sta-
tistic is trying to estimate the value 50 � 2(10) � 70. The estimate from a first sam-
ple might be 52.35 � 1.895(10) � 71.30, from a second sample might be 46.52 �
2.056(10) � 67.08, and so on. In the same way that a confidence interval for �1 was
based on properties of the sampling distribution of �̂1, a confidence interval for a
mean y value in regression is based on properties of the sampling distribution of the
statistic �̂0 � �̂1x*.
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Substitution of the expressions for  �̂0 and �̂1 into �̂0 � �̂1x* followed by some
algebraic manipulation leads to the representation of �̂0 � �̂1x* as a linear function
of the Yi s:

�̂0 � �̂1x* � �
n

i�1
� � �Yi � �

n

i�1
diYi

The coefficients d1, d2, . . . , dn in this linear function involve the xis and x*, all of which
are fixed. Application of the rules of Section 5.5 to this linear function gives the fol-
lowing properties.

(x* � x�)(xi � x�)
���(xi � x�)2

1
�
n

Let Ŷ � �̂0 � �̂1x*, where x* is some fixed value of x. Then

1. The mean value of Ŷ is

E(Ŷ ) � E(�̂0 � �̂1x*) � ��̂0��̂1x* � �0 � �1x*

Thus �̂0 � �̂1x* is an unbiased estimator for �0 � �1x* (i.e., for �Y�x*).

2. The variance of Ŷ is

V(Ŷ ) � �
2
Ŷ � � 2� � � � � 2� � �

and the standard deviation �Ŷ is the square root of this expression. The esti-
mated standard deviation of  �̂0 � �̂1x*, denoted by sŶ or s�̂0��̂1x*, results
from replacing � by its estimate s:

sŶ � s�̂0��̂1x* � s ��� ����
3. Ŷ has a normal distribution.

(x* � x�)2

��
Sxx

1
�
n

(x* � x�)2

�
Sxx

1
�
n

(x* � x�)2

���x2
i � (�xi)2/n

1
�
n

The variance of  �̂0 � �̂1x* is smallest when x* � x� and increases as x* moves away
from x� in either direction. Thus the estimator of �Y�x* is more precise when x* is near
the center of the xis than when it is far from the x values at which observations have
been made. This will imply that both the CI and PI are narrower for an x* near x� than
for an x* far from x�. Most statistical computer packages will provide both  �̂0 � �̂1x*
and s�̂0��̂1x* for any specified x* upon request.

Inferences Concerning �Y�x*

Just as inferential procedures for �1 were based on the t variable obtained by stan-
dardizing �1, a t variable obtained by standardizing  �̂0 � �̂1x* leads to a CI and test
procedures here.

The variable

T � � (12.5)

has a t distribution with n � 2 df.

Ŷ � (�0 � �1x*)
��

SŶ

�̂0 � �̂1x* � (�0 � �1x*)
���

S�̂0��̂1x*

THEOREM
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As for �1 in the previous section, a probability statement involving this stan-
dardized variable can be manipulated to yield a confidence interval for �Y�x*.

A 100(1 � �)% CI for �Y�x*, the expected value of Y when x � x*, is

�̂0 � �̂1x* � t�/2,n�2 � s�̂0��̂1x* � ŷ � t�/2,n�2 � sŶ (12.6)

This CI is centered at the point estimate for �Y�x* and extends out to each side by an
amount that depends on the confidence level and on the extent of variability in the
estimator on which the point estimate is based.

Corrosion of steel reinforcing bars is the most important durability problem for rein-
forced concrete structures. Carbonation of concrete results from a chemical reaction
that lowers the pH value by enough to initiate corrosion of the rebar. Representative
data on x � carbonation depth (mm) and y � strength (MPa) for a sample of core
specimens taken from a particular building follow (read from a plot in the article
“The Carbonation of Concrete Structures in the Tropical Environment of Singapore,”
Magazine of Concrete Res., 1996: 293–300).

x 8.0 15.0 16.5 20.0 20.0 27.5 30.0 30.0 35.0

y 22.8 27.2 23.7 17.1 21.5 18.6 16.1 23.4 13.4

x 38.0 40.0 45.0 50.0 50.0 55.0 55.0 59.0 65.0

y 19.5 12.4 13.2 11.4 10.3 14.1 9.7 12.0 6.8

Example 12.13

Figure 12.17 MINITAB scatter plot with confidence intervals and prediction intervals for the
data of Example 12.13
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A scatter plot of the data (see Figure 12.17) gives strong support to use of the sim-
ple linear regression model. Relevant quantities are as follows:

�xi � 659.0 �x 2
i � 28,967.50 x� � 36.6111 Sxx � 4840.7778

�yi � 293.2 �xiyi � 9293.95 �y2
i � 5335.76

�̂1 � �.297561 �̂0 � 27.182936 SSE � 131.2402

r 2 � .766 s � 2.8640

Let’s now calculate a confidence interval, using a 95% confidence level, for the mean
strength for all core specimens having a carbonation depth of 45 mm—that is, a con-
fidence interval for �0 � �1(45). The interval is centered at

ŷ � �̂0 � �̂1(45) � 27.18 � .2976(45) � 13.79

The estimated standard deviation of the statistic Ŷ is

sŶ � 2.8640�� ����� � .7582

The 16 df t critical value for a 95% confidence level is 2.120, from which we deter-
mine the desired interval to be

13.79 � (2.120)(.7582) � 13.79 � 1.61 � (12.18, 15.40)

The narrowness of this interval suggests that we have reasonably precise information
about the mean value being estimated. Remember that if we recalculated this interval
for sample after sample, in the long run about 95% of the calculated intervals would
include �0 � �1(45). We can only hope that this mean value lies in the single interval
that we have calculated.

Figure 12.18 shows MINITAB output resulting from a request to fit the simple
linear regression model and calculate confidence intervals for the mean value of
strength at depths of 45 mm and 35 mm. The intervals are at the bottom of the output;
note that the second interval is narrower than the first, because 35 is much closer to x�
than is 45. Figure 12.17 shows (1) curves corresponding to the confidence limits for
each different x value and (2) prediction limits, to be discussed shortly. Notice how the
curves get farther and farther apart as x moves away from x�.

(45 � 36.6111)2

��
4840.7778

1
�
18

The regression equation is strength � 27.2 � 0.298 depth

Predictor Coef Stdev t-ratio p

Constant 27.183 1.651 16.46 0.000
depth �0.29756 0.04116 �7.23 0.000

s � 2.864 R-sq � 76.6% R-sq(adj) � 75.1%

Analysis of Variance

SOURCE DF SS MS F p

Regression 1 428.62 428.62 52.25 0.000
Error 16 131.24 8.20
Total 17 559.86

Fit Stdev.Fit 95.0% C.I. 95.0% P.I.
13.793 0.758 (12.185, 15.401) (7.510, 20.075)

Fit Stdev.Fit 95.0% C.I. 95.0% P.I.
16.768 0.678 (15.330, 18.207) (10.527, 23.009)

Figure 12.18 MINITAB regression output for the data of Example 12.13 ■

In some situations, a CI is desired not just for a single x value but for two or more
x values. Suppose an investigator wishes a CI both for �Y�v and for �Y�w, where v and w
are two different values of the independent variable. It is tempting to compute the
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interval (12.6) first for x � v and then for x � w. Suppose we use � � .05 in each com-
putation to get two 95% intervals. Then if the variables involved in computing the two
intervals were independent of one another, the joint confidence coefficient would be
(.95) � (.95) � .90.

However, the intervals are not independent because the same  �̂0, �̂1, and S are
used in each. We therefore cannot assert that the joint confidence level for the two
intervals is exactly 90%. It can be shown, though, that if the 100(1 � �)% CI (12.6)
is computed both for x � v and for x � w to obtain joint CIs for �Y�v and �Y�w, then
the joint confidence level on the resulting pair of intervals is at least 100(1 � 2�)%.
In particular, using � � .05 results in a joint confidence level of at least 90%,
whereas using � � .01 results in at least 98% confidence. For example, in Example
12.13 a 95% CI for �Y�45 was (12.185, 15.401) and a 95% CI for �Y�35 was (15.330,
18.207). The simultaneous or joint confidence level for the two statements 12.185 �
�Y�45 � 15.401 and 15.330 � �Y�35 � 18.207 is at least 90%.

The validity of these joint or simultaneous CIs rests on a probability result
called the Bonferroni inequality, so the joint CIs are referred to as Bonferroni
intervals. The method is easily generalized to yield joint intervals for k different
�Y�xs. Using the interval (12.6) separately first for x � x*1 , then for x � x*2 , . . . , 
and finally for x � x*k yields a set of k CIs for which the joint or simultaneous confi-
dence level is guaranteed to be at least 100(1 � k�)%.

Tests of hypotheses about �0 � �1x* are based on the test statistic T obtained
by replacing �0 � �1x* in the numerator of (12.5) by the null value �0. For ex-
ample, H0: �0 � �1(45) � 15 in Example 12.13 says that when carbonation depth
is 45, expected (i.e., true average) strength is 15. The test statistic value is then 
t � [�̂0 � �̂1(45) � 15]/s�̂0��̂1(45), and the test is upper-, lower-, or two-tailed ac-
cording to the inequality in Ha.

A Prediction Interval for a Future Value of Y
Analogous to the CI (12.6) for �Y�x*, one frequently wishes to obtain an interval of plau-
sible values for the value of Y associated with some future observation when the inde-
pendent variable has value x*. For instance, in the example in which vocabulary size y
is related to the age x of a child, for x � 6 years (12.6) would provide a CI for the true
average vocabulary size of all 6-year-old children. Alternatively, we might wish an
interval of plausible values for the vocabulary size of a particular 6-year-old child.

A CI refers to a parameter, or population characteristic, whose value is fixed
but unknown to us. In contrast, a future value of Y is not a parameter but instead a
random variable; for this reason we refer to an interval of plausible values for a future
Y as a prediction interval rather than a confidence interval. The error of estimation
is �0 � �1x* � ( �̂0 � �̂1x*), a difference between a fixed (but unknown) quantity
and a random variable. The error of prediction is Y � ( �̂0 � �̂1x*), a difference
between two random variables. There is thus more uncertainty in prediction than in
estimation, so a PI will be wider than a CI. Because the future value Y is indepen-
dent of the observed Yi s,

V[Y � (�̂0 � �̂1x*)] � variance of prediction error

� V(Y ) � V(�̂0 � �̂1x*)

� � 2 � � 2� � �
� � 2�1 � � �(x* � x�)2

�
Sxx

1
�
n

(x* � x�)2

�
Sxx

1
�
n
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Furthermore, because E(Y ) � �0 � �1x* and E( �̂0 � �̂1x*) � �0 � �1x*, the
expected value of the prediction error is E(Y � (�̂0 � �̂1x*)) � 0. It can then be
shown that the standardized variable

T �

has a t distribution with n � 2 df. Substituting this T into the probability statement
P(�t�/2,n�2 � T � t�/2,n�2) � 1 � � and manipulating to isolate Y between the two
inequalities yields the following interval.

Y � (�̂0 � �̂1x*)
���

S�1� �� �
1

n����� �
(�x*�S

��
xx
� x��)2

��

A 100(1 � �)% PI for a future Y observation to be made when x � x* is

�̂0 � �̂1x* � t�/2,n�2 � s�1� ���� ���� (12.7)

� �̂0 � �̂1x* � t�/2,n�2 � �s2� �� s�2
�̂0���̂1x�*�

� ŷ � t�/2,n�2 � �s2� �� s�2
Ŷ�

(x* � x�)2

�
Sxx

1
�
n

The interpretation of the prediction level 100(1 � �)% is identical to that of previous
confidence levels—if (12.7) is used repeatedly, in the long run the resulting intervals
will actually contain the observed y values 100(1 � �)% of the time. Notice that the
1 underneath the initial square root symbol makes the PI (12.7) wider than the CI
(12.6), though the intervals are both centered at  �̂0 � �̂1x*. Also, as n 0 �, the width
of the CI approaches 0, whereas the width of the PI does not (because even with per-
fect knowledge of �0 and �1, there will still be uncertainty in prediction).

Let’s return to the carbonation depth-strength data of Example 12.13 and calculate a
95% prediction interval for a strength value that would result from selecting a single
core specimen whose carbonation depth is 45 mm. Relevant quantities from that
example are

ŷ � 13.79 sŶ � .7582 s � 2.8640

For a prediction level of 95% based on n � 2 � 16 df, the t critical value is 2.120, 
exactly what we previously used for a 95% confidence level. The prediction interval 
is then

13.79 � (2.120)�(2�.8�6�4�0�)2� �� (�.7�5�8�2�)2� � 13.79 � (2.120)(2.963)

� 13.79 � 6.28 � (7.51, 20.07)

Plausible values for a single observation on strength when depth is 45 mm are (at the
95% prediction level) between 7.51 MPa and 20.07 MPa. The 95% confidence inter-
val for mean strength when depth is 45 was (12.18, 15.40). The prediction interval is
much wider than this because of the extra (2.8640)2 under the square root. Figure
12.18, the MINITAB output in Example 12.13, shows this interval as well as the con-
fidence interval. ■

The Bonferroni technique can be employed as in the case of confidence inter-
vals. If a 100(1 � �)% PI is calculated for each of k different values of x, the simul-
taneous or joint prediction level for all k intervals is at least 100(1 � k�)%.

Example 12.14
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44. Fitting the simple linear regression model to the n � 27
observations on x � modulus of elasticity and y � flexural
strength given in Exercise 15 of Section 12.2 resulted in ŷ �
7.592, sŶ � .179 when x � 40 and ŷ � 9.741, sŶ � .253 for
x � 60.
a. Explain why sŶ is larger when x � 60 than when x � 40.
b. Calculate a confidence interval with a confidence level of

95% for the true average strength of all beams whose
modulus of elasticity is 40.

c. Calculate a prediction interval with a prediction level of
95% for the strength of a single beam whose modulus of
elasticity is 40.

d. If a 95% CI is calculated for true average strength when
modulus of elasticity is 60, what will be the simultaneous
confidence level for both this interval and the interval cal-
culated in part (b)?

45. Reconsider the filtration rate–moisture content data introduced
in Example 12.6 (see also Example 12.7).
a. Compute a 90% CI for �0 � 125�1, true average mois-

ture content when the filtration rate is 125.
b. Predict the value of moisture content for a single experi-

mental run in which the filtration rate is 125 using a 90%
prediction level. How does this interval compare to the
interval of part (a)? Why is this the case?

c. How would the intervals of parts (a) and (b) compare to a
CI and PI when filtration rate is 115? Answer without
actually calculating these new intervals.

d. Interpret the hypotheses H0: �0 � 125�1 � 80 and H0:
�0 � 125�1 � 80, and then carry out a test at significance
level .01.

46. The article “The Incorporation of Uranium and Silver 
by Hydrothermally Synthesized Galena” (Econ. Geology,
1964: 1003–1024) reports on the determination of silver
content of galena crystals grown in a closed hydrothermal
system over a range of temperature. With x � crystallization
temperature in °C and y � Ag2S in mol%, the data follows:

from which �xi � 6130, �x 2
i � 3,022,050, �yi � 4.73,

�y2
i � 2.1785, �xiyi � 2418.74, �̂1 � .00143, �̂0 � �.311,

and s � .131.
a. Estimate true average silver content when temperature

is 500°C using a 95% confidence interval.
b. How would the width of a 95% CI for true average silver

content when temperature is 400°C compare to the width
of the interval in part (a)? Answer without computing
this new interval.

c. Calculate a 95% CI for the true average change in silver
content associated with a 1°C increase in temperature.

d. Suppose it had previously been believed that when crystal-
lization temperature was 400°C, true average silver content

would be .25. Carry out a test at significance level .05 to
decide whether the sample data contradicts this prior belief.

47. The simple linear regression model provides a very good fit
to the data on rainfall and runoff volume given in Exercise 16
of Section 12.2. The equation of the least squares line is ŷ �
�1.128 � .82697x, r 2 � .975, and s � 5.24.
a. Use the fact that sŶ � 1.44 when rainfall volume is 40 m3

to predict runoff in a way that conveys information about
reliability and precision. Does the resulting interval suggest
that precise information about the value of runoff for this
future observation is available? Explain your reasoning.

b. Calculate a PI for runoff when rainfall is 50 using the
same prediction level as in part (a). What can be said
about the simultaneous prediction level for the two in-
tervals you have calculated?

48. The catch basin in a storm sewer system is the interface
between surface runoff and the sewer. The catch basin insert
is a device for retrofitting catch basins to improve pollutant
removal properties. The article “An Evaluation of the Urban
Stormwater Pollutant Removal Efficiency of Catch Basin
Inserts” (Water Envir. Res., 2005: 500–510) reported on
tests of various inserts under controlled conditions for
which inflow is close to what can be expected in the field.
Consider the following data, read from a graph in the arti-
cle, for one particular type of insert on x � amount filtered
(1000s of liters) and y � % total suspended solids removed.

Summary quantities are
�xi � 1251, �x2

i � 199,365, �yi � 250.6, �y2
i � 9249.36,

�xiyi � 21,904.4
a. Does a scatter plot support the choice of the simple lin-

ear regression model? Explain.
b. Obtain the equation of the least squares line.
c. What proportion of observed variation in % removed can

be attributed to the model relationship?
d. Does the simple linear regression model specify a useful

relationship? Carry out an appropriate test of hypotheses
using a significance level of .05.

e. Is there strong evidence for concluding that there is at least
a 2% decrease in true average suspended solid removal
associated with a 10,000 liter increase in the amount fil-
tered? Test appropriate hypotheses using � � .05.

f. Calculate an interpret a 95% CI for true average %
removed when amount filtered is 100,000 liters. How
does this interval compare in width to a CI when amount
filtered is 200,000 liters?

g. Calculate and interpret a 95% PI for % removed when
amount filtered is 100,000 liters. How does this interval
compare in width to the CI calculated in (f) and to a PI
when amount filtered is 200,000 liters?

EXERCISES Section 12.4 (44–56)

x 398 292 352 575 568 450 550 408 484 350 503 600 600

y .15 .05 .23 .43 .23 .40 .44 .44 .45 .09 .59 .63 .60

x 23 45 68 91 114 136 159 182 205 228

y 53.3 26.9 54.8 33.8 29.9 8.2 17.2 12.2 3.2 11.1
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49. You are told that a 95% CI for expected lead content when
traffic flow is 15, based on a sample of n � 10 observations,
is (462.1, 597.7). Calculate a CI with confidence level 99%
for expected lead content when traffic flow is 15.

50. Silicon-germanium alloys have been used in certain types of
solar cells. The paper “Silicon-Germanium Films Deposited
by Low-Frequency Plasma-Enhanced Chemical Vapor
Deposition” (J. of Material Res., 2006: 88–104) reported on
a study of various structural and electrical properties.
Consider the accompanying data on x � Ge concentration in
solid phase (ranging from 0 to 1) and y � Fermi level posi-
tion (eV):

A scatter plot shows a substantial linear relationship. Here is
MINITAB output from a least squares fit. [Note: There are
several inconsistencies between the data given in the paper,
the plot that appears there, and the summary information
about a regression analysis.]

The regression equation is
Fermi pos = 0.7217 – 0.4327 Ge conc

S = 0.0737573 R-Sq = 80.2% R-Sq(adj) = 78.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.241728 0.241728 44.43 0.000
Error 11 0.059842 0.005440
Total 12 0.301569

a. Obtain an interval estimate of the expected change in
Fermi level position associated with an increase of .1 in
Ge concentration, and interpret your estimate.

b. Obtain an interval estimate for mean Fermi level position
when concentration is .50, and interpret your estimate.

c. Obtain an interval of plausible values for position result-
ing from a single observation to be made when concen-
tration is .50, interpret your interval, and compare to the
interval of (b).

d. Obtain simultaneous CIs for expected position when
concentration is .3, .5, and .7; the joint confidence level
should be at least 97%.

51. Refer to Example 12.12 in which x � volume fraction of
oxides/inclusions and y � % elongation.
a. MINITAB gave s�̂0��̂1(.40) � .0311 and s�̂0��̂1(1.20) � .0352.

Why is the former estimated standard deviation smaller
than the latter one?

b. Use the MINITAB output from the example to calculate
a 95% CI for expected % elongation when volume frac-
tion � .40.

c. Use the MINITAB output to calculate a 95% PI for a sin-
gle value of % elongation to be observed when volume
fraction � 1.20.

52. Plasma etching is essential to the fine-line pattern transfer 
in current semiconductor processes. The article “Ion
Beam-Assisted Etching of Aluminum with Chlorine”
(J. Electrochem. Soc., 1985: 2010– 2012) gives the accom-
panying data (read from a graph) on chlorine flow (x, in
SCCM) through a nozzle used in the etching mechanism and
etch rate (y, in 100 A/min).

The summary statistics are �xi � 24.0, �yi � 312.5, �x2
i �

70.50, �xiyi � 902.25, �y2
i � 11,626.75, �̂0 � 6.448718,

�̂1 � 10.602564.
a. Does the simple linear regression model specify a useful

relationship between chlorine flow and etch rate?
b. Estimate the true average change in etch rate associated

with a 1-SCCM increase in flow rate using a 95% confi-
dence interval, and interpret the interval.

c. Calculate a 95% CI for �Y�3.0, the true average etch rate
when flow � 3.0. Has this average been precisely esti-
mated?

d. Calculate a 95% PI for a single future observation on
etch rate to be made when flow � 3.0. Is the prediction
likely to be accurate?

e. Would the 95% CI and PI when flow � 2.5 be wider or
narrower than the corresponding intervals of parts (c) and
(d)? Answer without actually computing the intervals.

f. Would you recommend calculating a 95% PI for a flow of
6.0? Explain.

53. Consider the following four intervals based on the data of
Example 12.4 (Section 12.2):
a. A 95% CI for mean porosity when unit weight is 110
b. A 95% PI for porosity when unit weight is 110
c. A 95% CI for mean porosity when unit weight is 115
d. A 95% PI for porosity when unit weight is 115

Without computing any of these intervals, what can be said
about their widths relative to one another?

54. The decline of water supplies in certain areas of the United
States has created the need for increased understanding of
relationships between economic factors such as crop yield
and hydrologic and soil factors. The article “Variability of
Soil Water Properties and Crop Yield in a Sloped
Watershed” (Water Resources Bull., 1988: 281–288) gives
data on grain sorghum yield (y, in g/m-row) and distance
upslope (x, in m) on a sloping watershed. Selected obser-
vations are given in the accompanying table.

a. Construct a scatter plot. Does the simple linear regres-
sion model appear to be plausible?

x 0 .42 .23 .33 .62 .60 .45 .87 .90 .79 1 1 1

y .62 .53 .61 .59 .50 .55 .59 .31 .43 .46 .23 .22 .19

x 1.5 1.5 2.0 2.5 2.5 3.0 3.5 3.5 4.0

y 23.0 24.5 25.0 30.0 33.5 40.0 40.5 47.0 49.0

x 0 10 20 30 45 50 70

y 500 590 410 470 450 480 510

x 80 100 120 140 160 170 190

y 450 360 400 300 410 280 350
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b. Carry out a test of model utility.
c. Estimate true average yield when distance upslope is

75 by giving an interval of plausible values.

55. Verify that V(�̂0 � �̂1x) is indeed given by the expression in
the text. [Hint: V(�diYi) � �d2

i � V(Yi).]

56. The article “Bone Density and Insertion Torque as
Predictors of Anterior Cruciate Ligament Graft Fixation
Strength” (The Amer. J. of Sports Med., 2004: 1421–1429)
gave the accompanying data on maximum insertion torque
(N�m) and yield load (N), the latter being one measure of
graft strength, for 15 different specimens.

a. Is it plausible that yield load is normally distributed?
b. Estimate true average yield load by calculating a confi-

dence interval with a confidence level of 95%, and inter-
pret the interval.

c. Here is output from MINITAB for the regression of yield
load on torque. Does the simple linear regression model
specify a useful relationship between the variables?

d. The authors of the cited paper state, “Consequently, we
cannot but conclude that simple regression analysis-
based methods are not clinically sufficient to predict
individual fixation strength.” Do you agree? [Hint:
Consider predicting yield load when torque is 2.0.]

Predictor Coef SE Coef T P
Constant 152.44 91.17 1.67 0.118
Torque 178.23 45.97 3.88 0.002

S = 73.2141  R–Sq = 53.6% R–Sq(adj) = 50.0%

Source DF SS MS F P
Regression 1 80554 80554 15.03 0.002
Residual Error 13 69684 5360
Total 14 150238

12.5 Correlation

There are many situations in which the objective in studying the joint behavior of
two variables is to see whether they are related, rather than to use one to predict the
value of the other. In this section, we first develop the sample correlation coefficient
r as a measure of how strongly related two variables x and y are in a sample and then
relate r to the correlation coefficient � defined in Chapter 5.

The Sample Correlation Coefficient r
Given n pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn), it is natural to speak of x and
y having a positive relationship if large x’s are paired with large y’s and small x’s with
small y’s. Similarly, if large x’s are paired with small y’s and small x’s with large y’s,
then a negative relationship between the variables is implied. Consider the quantity

Sxy � �
n

i�1
(xi � x�)(yi � y�) � �

n

i�1
xiyi � � �

n

i�1
xi�� �

n

i�1
yi��n

Then if the relationship is strongly positive, an xi above the mean x� will tend to be
paired with a yi above the mean y�, so that (xi � x�)(yi � y�) � 0, and this product will
also be positive whenever both xi and yi are below their respective means. Thus a pos-
itive relationship implies that Sxy will be positive. An analogous argument shows that
when the relationship is negative, Sxy will be negative, since most of the products
(xi � x�)(yi � y�) will be negative. This is illustrated in Figure 12.19.

Although Sxy seems a plausible measure of the strength of a relationship, we
do not yet have any idea of how positive or negative it can be. Unfortunately, Sxy has
a serious defect: By changing the units of measurement of either x or y, Sxy can be
made either arbitrarily large in magnitude or arbitrarily close to zero. For example,
if Sxy � 25 when x is measured in meters, then Sxy � 25,000 when x is measured in
millimeters and .025 when x is expressed in kilometers. A reasonable condition to

Torque 1.8 2.2 1.9 1.3 2.1 2.2 1.6 2.1
Load 491 477 598 361 605 671 466 431

Torque 1.2 1.8 2.6 2.5 2.5 1.7 1.6
Load 384 422 554 577 642 348 446
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An accurate assessment of soil productivity is critical to rational land-use plan-
ning. Unfortunately, as the author of the article “Productivity Ratings Based on
Soil Series” (Prof. Geographer, 1980: 158–163) argues, an acceptable soil produc-
tivity index is not so easy to come by. One difficulty is that productivity is deter-
mined partly by which crop is planted, and the relationship between yield of two
different crops planted in the same soil may not be very strong. To illustrate, the
article presents the accompanying data on corn yield x and peanut yield y (mT/Ha)
for eight different types of soil.

x

(a)

y

�


 �




x

(b)

y

�




�




Figure 12.19 (a) Scatter plot with Sxy positive; (b) scatter plot with Sxy negative
[� means (xi � x�)(yi � y�) � 0, and � means (xi � x�)(yi � y�) � 0]

Example 12.15

With �xi � 25.7, �yi � 14.40, �x 2
i � 88.31, �xiyi � 46.856, and �y2

i � 26.4324,

Sxx � 88.31 � � 88.31 � 82.56 � 5.75

Syy � 26.4324 � � .5124

Sxy � 46.856 � � .5960

from which r � � .347 ■
.5960

��
�5�.7�5��.5�1�2�4�

(25.7)(14.40)
��

8

(14.40)2

�
8

(25.7)2

�
8

x 2.4 3.4 4.6 3.7 2.2 3.3 4.0 2.1

y 1.33 2.12 1.80 1.65 2.00 1.76 2.11 1.63

impose on any measure of how strongly x and y are related is that the calculated
measure should not depend on the particular units used to measure them. This con-
dition is achieved by modifying Sxy to obtain the sample correlation coefficient.

DEFINITION The sample correlation coefficient for the n pairs (x1, y1), . . . , (xn, yn) is

r � � (12.8)
Sxy

��
�S�xx��S�yy�

Sxy
���
����(x�i �� x��)2�������(y�i �� y��)2�
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Properties of r
The most important properties of r are as follows:

1. The value of r does not depend on which of the two variables under study is
labeled x and which is labeled y.

2. The value of r is independent of the units in which x and y are measured.

3. �1 � r � 1

4. r � 1 if and only if (iff) all (xi, yi) pairs lie on a straight line with positive slope,
and r � �1 iff all (xi, yi) pairs lie on a straight line with negative slope.

5. The square of the sample correlation coefficient gives the value of the coefficient
of determination that would result from fitting the simple linear regression
model—in symbols, (r)2 � r 2.

Property 1 stands in marked contrast to what happens in regression analysis,
where virtually all quantities of interest (the estimated slope, estimated y-intercept,
s2, etc.) depend on which of the two variables is treated as the dependent variable.
However, Property 5 shows that the proportion of variation in the dependent variable
explained by fitting the simple linear regression model does not depend on which
variable plays this role.

Property 2 is equivalent to saying that r is unchanged if each xi is replaced by
cxi and if each yi is replaced by dyi (a change in the scale of measurement), as well
as if each xi is replaced by xi � a and yi by yi � b (which changes the location of zero
on the measurement axis). This implies, for example, that r is the same whether tem-
perature is measured in °F or °C.

Property 3 tells us that the maximum value of r, corresponding to the largest
possible degree of positive relationship, is r � 1, whereas the most negative relation-
ship is identified with r � �1. According to Property 4, the largest positive and
largest negative correlations are achieved only when all points lie along a straight line.
Any other configuration of points, even if the configuration suggests a deterministic
relationship between variables, will yield an r value less than 1 in absolute magnitude.
Thus r measures the degree of linear relationship among variables. A value of r near
0 is not evidence of the lack of a strong relationship, but only the absence of a linear
relation, so that such a value of r must be interpreted with caution. Figure 12.20 illus-
trates several configurations of points associated with different values of r.

(a) r near �1 (b) r near �1

(c) r near 0, no
apparent relationship

(d) r near 0, nonlinear
relationship

Figure 12.20 Data plots for different values of r
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A frequently asked question is, “When can it be said that there is a strong cor-
relation between the variables, and when is the correlation weak?” A reasonable rule
of thumb is to say that the correlation is weak if 0 � ⏐r⏐� .5, strong if .8 � ⏐r⏐�
1, and moderate otherwise. It may surprise you that r � .5 is considered weak, but
r 2 � .25 implies that in a regression of y on x, only 25% of observed y variation
would be explained by the model. In Example 12.15, the correlation between corn
yield and peanut yield would be described as weak.

The Population Correlation Coefficient �
and Inferences About Correlation
The correlation coefficient r is a measure of how strongly related x and y are in the
observed sample. We can think of the pairs (xi, yi) as having been drawn from a
bivariate population of pairs, with (Xi, Yi) having joint probability distribution f(x, y).
In Chapter 5, we defined the correlation coefficient �(X, Y) by

� � �(X, Y ) �

where

�
x

�
y

(x � �X)(y � �Y)p(x, y) (X, Y ) discrete
Cov(X, Y ) � {
�

��

�

��
(x � �X)(y � �Y) f (x, y) dx dy (X, Y ) continuous

If we think of f(x, y) as describing the distribution of pairs of values within the entire
population, � becomes a measure of how strongly related x and y are in that popula-
tion. Properties of � analogous to those for r were given in Chapter 5.

The population correlation coefficient � is a parameter or population charac-
teristic, just as �X, �Y, �X, and �Y are, so we can use the sample correlation coeffi-
cient to make various inferences about �. In particular, r is a point estimate for �, and
the corresponding estimator is

Cov(X, Y )
��

�X � �Y

Example 12.16

�̂ � R �
�(Xi � X�)(Yi � Y�)

���
���(X�i �� X��)2����(Y�i �� Y��)2�

In some locations, there is a strong association between concentrations of two dif-
ferent pollutants. The article “The Carbon Component of the Los Angeles Aerosol:
Source Apportionment and Contributions to the Visibility Budget” (J. Air Pollution
Control Fed., 1984: 643–650) reports the accompanying data on ozone concentra-
tion x (ppm) and secondary carbon concentration y (�g/m3).

x .066 .088 .120 .050 .162 .186 .057 .100

y 4.6 11.6 9.5 6.3 13.8 15.4 2.5 11.8

x .112 .055 .154 .074 .111 .140 .071 .110

y 8.0 7.0 20.6 16.6 9.2 17.9 2.8 13.0

The summary quantities are n � 16, �xi � 1.656, �yi � 170.6, �x 2
i � .196912,

�xiyi � 20.0397, and �y2
i � 2253.56, from which

r �

� � .716
2.3826

��
(.1597)(20.8456)

20.0397 � (1.656)(170.6)/16
������
�.1�9�6�9�1�2� �� (�1�.6�5�6�)2�/1�6��2�2�5�3�.5�6� �� (�1�7�0�.6�)2�/1�6�
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The point estimate of the population correlation coefficient � between ozone con-
centration and secondary carbon concentration is �̂ � r � .716. ■

The small-sample intervals and test procedures presented in Chapters 7–9
were based on an assumption of population normality. To test hypotheses about �,
we must make an analogous assumption about the distribution of pairs of (x, y) val-
ues in the population. We are now assuming that both X and Y are random, whereas
much of our regression work focused on x fixed by the experimenter.

ASSUMPTION The joint probability distribution of (X, Y ) is specified by

f (x, y) � e�[((x��1)/�1)2�2�(x��1)(y��2)/�1�2�((y��2)/�2)2]/[2(1��2)]

�∞ � x � ∞
�∞ � y � ∞ (12.9)

where �1 and �1 are the mean and standard deviation of X, and �2 and �2 are
the mean and standard deviation of Y; f(x, y) is called the bivariate normal
probability distribution.

1
��
2� � �1�2�1� �� ��2�

The bivariate normal distribution is obviously rather complicated, but for our
purposes we need only a passing acquaintance with several of its properties. The sur-
face determined by f(x, y) lies entirely above the x, y plane [ f(x, y) � 0] and has a
three-dimensional bell- or mound-shaped appearance, as illustrated in Figure 12.21.
If we slice through the surface with any plane perpendicular to the x, y plane and
look at the shape of the curve sketched out on the “slicing plane,” the result is a nor-
mal curve. More precisely, if X � x, it can be shown that the (conditional) distri-
bution of Y is normal with mean �Y�x � �2 � ��1�2/�1 � ��2x/�1 and variance 
(1 � �2)� 2

2. This is exactly the model used in simple linear regression with �0 �
�2 � ��1�2/�1, �1 � ��2/�1, and � 2 � (1 � �2)� 2

2 independent of x. The implica-
tion is that if the observed pairs (xi, yi) are actually drawn from a bivariate normal
distribution, then the simple linear regression model is an appropriate way of study-
ing the behavior of Y for fixed x. If � � 0, then �Y�x � �2 independent of x; in fact,
when � � 0 the joint probability density function f (x, y) of (12.9) can be factored
into a part involving x only and a part involving y only, which implies that X and Y
are independent variables.

f (x, y)

x

y

Figure 12.21 A graph of the bivariate normal pdf

Assuming that the pairs are drawn from a bivariate normal distribution allows us
to test hypotheses about � and to construct a CI. There is no completely satisfactory
way to check the plausibility of the bivariate normality assumption. A partial check
involves constructing two separate normal probability plots, one for the sample xi’s and
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another for the sample yis, since bivariate normality implies that the marginal distri-
butions of both X and Y are normal. If either plot deviates substantially from a straight-
line pattern, the following inferential procedures should not be used when the sample
size n is small.

Testing for the Absence of Correlation

When H0: � � 0 is true, the test statistic

T �

has a t distribution with n � 2 df.

Alternative Hypothesis Rejection Region for Level � Test

Ha: � � 0 t � t�,n�2

Ha: � � 0 t � � t�,n�2

Ha: � � 0 either t � t�/2,n�2 or t � � t�/2,n�2

A P-value based on n � 2 df can be calculated as described previously.

R�n� �� 2�
��
�1� �� R�2�

Neurotoxic effects of manganese are well known and are usually caused by high
occupational exposure over long periods of time. In the fields of occupational
hygiene and environmental hygiene, the relationship between lipid peroxidation,
which is responsible for deterioration of foods and damage to live tissue, and occu-
pational exposure has not been previously reported. The article “Lipid Peroxidation
in Workers Exposed to Manganese” (Scand. J. Work and Environ. Health, 1996:
381–386) gave data on x � manganese concentration in blood (ppb) and y � con-
centration (�mol/L) of malondialdehyde, which is a stable product of lipid peroxi-
dation, both for a sample of 22 workers exposed to manganese and for a control sam-
ple of 45 individuals. The value of r for the control sample was .29, from which

t � � 2.0

The corresponding P-value for a two-tailed t test based on 43 df is roughly .052 (the
cited article reported only that P-value � .05). We would not want to reject the asser-
tion that � � 0 at either significance level .01 or .05. For the sample of exposed
workers, r � .83 and t � 6.7, clear evidence that there is a linear relationship in the
entire population of exposed workers from which the sample was selected. ■

Because � measures the extent to which there is a linear relationship between
the two variables in the population, the null hypothesis H0: � � 0 states that there
is no such population relationship. In Section 12.3, we used the t-ratio �̂1/s�̂1

to test
for a linear relationship between the two variables in the context of regression
analysis. It turns out that the two test procedures are completely equivalent because
r�n� �� 2�/ �1� �� r�2� � �̂1/s�̂1

. When interest lies only in assessing the strength of
any linear relationship rather than in fitting a model and using it to estimate or pre-
dict, the test statistic formula just presented requires fewer computations than does
the t-ratio.

(.29)�4�5� �� 2�
��
�1� �� (�.2�9�)2�

Example 12.17
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Other Inferences Concerning �
The procedure for testing H0: � � �0 when �0 � 0 is not equivalent to any procedure
from regression analysis. The test statistic is based on a transformation of R called
the Fisher transformation.

PROPOSITION When (X1, Y1), . . . , (Xn, Yn) is a sample from a bivariate normal distribution, the rv

V � �
1

2
� ln� � (12.10)

has approximately a normal distribution with mean and variance

�V � �
1

2
� ln� � � 2

V �
1

�
n � 3

1 � �
�
1 � �

1 � R
�
1 � R

The test statistics for testing H0: � � �0 is

Z �

Alternative Hypothesis Rejection Region for Level � Test

Ha: � � �0 z � z�

Ha: � � �0 z � � z�

Ha: � � �0 either z � z�/2 or z � � z�/2

A P-value can be calculated in the same manner as for previous z tests.

V � �
1

2
� ln[(1 � �0)/(1 � �0)]

���
1/�n� �� 3�

The article “Size Effect in Shear Strength of Large Beams—Behavior and Finite
Element Modelling” (Mag. of Concrete Res., 2005: 497–509) reported on a study of
various characteristics of large reinforced concrete deep and shallow beams tested
until failure. Consider the following data on x � cube strength and y � cylinder
strength (both in MPa):

x 55.10 44.83 46.32 51.10 49.89 45.20 48.18 46.70 54.31 41.50

y 49.10 31.20 32.80 42.60 42.50 32.70 36.21 40.40 37.42 30.80

x 47.50 52.00 52.25 50.86 51.66 54.77 57.06 57.84 55.22

y 35.34 44.80 41.75 39.35 44.07 43.40 45.30 39.08 41.89

Then Sxx � 367.74, Syy � 488.54, Sxy � 322.37, from which r � .761. Does this pro-
vide strong evidence for concluding that the two measures of strength are at least
moderately positively correlated?

Example 12.18

The rationale for the transformation is to obtain a function of R that has a variance
independent of �; this would not be the case with R itself. Also, the transformation
should not be used if n is quite small, since the approximation will not be valid.
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Our previous interpretation of moderate positive correlation was .5 � � � .8,
so we wish to test H0: � � .5 versus Ha: � � .5. The computed value of V is then

v � .5 ln� � � .999, and .5ln��11
�

�

.

.

5

5
�� � .549

Thus z � (.999 �.549) �19 � 3� � 1.80. The P-value for an upper-tailed test is
.0359. The null hypothesis can therefore be rejected at significance level .05 but not
at level .01. This latter result is somewhat surprising in light of the magnitude of r, but
when n is small, a reasonably large r may result even when � is not all that substan-
tial. At significance level .01, the evidence for a moderately positive correlation is not
compelling. ■

To obtain a CI for �, we first derive an interval for �V � �
1
2

� ln[(1 � �)/(1 � �)].
Standardizing V, writing a probability statement, and manipulating the resulting
inequalities yields

�v � , v � � (12.11)

as a 100(1 � �)% interval for �V, where v � �
1
2

� ln[(1 � r)/(1 � r)]. This interval can
then be manipulated to yield a CI for �.

z�/2�
�n� �� 3�

z�/2�
�n� �� 3�

1 � .761
�
1 � .761

The article “A Study of a Partial Nutrient Removal System for Wastewater Treatment
Plants” (Water Research, 1972: 1389–1397) reports on a method of nitrogen removal
that involves the treatment of the supernatant from an aerobic digester. Both the
influent total nitrogen x (mg/L) and the percentage y of nitrogen removed were
recorded for 20 days, with resulting summary statistics �xi � 285.90, �x 2

i �
4409.55, �yi � 690.30, �y 2

i � 29,040.29, and �xiyi � 10,818.56. The sample cor-
relation coefficient between influent nitrogen and percentage nitrogen removed is r �
.733, giving v � .935. With n � 20, a 95% confidence interval for �V is (.935 �
1.96/�1�7�, .935 � 1.96/�1�7�) � (.460, 1.410) � (c1, c2). The 95% interval for � is

� , � � (.43, .89) ■

In Chapter 5, we cautioned that a large value of the correlation coefficient (near
1 or �1) implies only association and not causation. This applies to both � and r.

e2(1.41) � 1
��
e2(1.41) � 1

e2(.46) � 1
�
e2(.46) � 1

Example 12.19

EXERCISES Section 12.5 (57–67)

57. The article “Behavioural Effects of Mobile Telephone Use
During Simulated Driving” (Ergonomics, 1995: 2536–2562)
reported that for a sample of 20 experimental subjects, the
sample correlation coefficient for x � age and y � time
since the subject had acquired a driving license (yr) was .97.

Why do you think the value of r is so close to 1? (The arti-
cle’s authors gave an explanation.)

58. The Turbine Oil Oxidation Test (TOST) and the Rotating
Bomb Oxidation Test (RBOT) are two different procedures
for evaluating the oxidation stability of steam turbine oils.

A 100(1 � �)% confidence interval for � is

� , �
where c1 and c2 are the left and right endpoints, respectively, of the interval (12.11).

e2c2 � 1
�
e2c2 � 1

e2c1 � 1
�
e2c1 � 1
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The article “Dependence of Oxidation Stability of Steam
Turbine Oil on Base Oil Composition” (J. of the Society 
of Tribologists and Lubrication Engrs., Oct. 1997: 19–24)
reported the accompanying observations on x � TOST time
(hr) and y � RBOT time (min) for 12 oil specimens.

a. Calculate and interpret the value of the sample corre-
lation coefficient (as did the article’s authors).

b. How would the value of r be affected if we had let x �
RBOT time and y � TOST time?

c. How would the value of r be affected if RBOT time were
expressed in hours?

d. Construct normal probability plots and comment.
e. Carry out a test of hypotheses to decide whether RBOT

time and TOST time are linearly related.

59. Toughness and fibrousness of asparagus are major determi-
nants of quality. This was the focus of a study reported in
“Post-Harvest Glyphosphate Application Reduces Tough-
ening, Fiber Content, and Lignification of Stored Asparagus
Spears” (J. of the Amer. Soc. of Horticultural Science, 1988:
569–572). The article reported the accompanying data (read
from a graph) on x � shear force (kg) and y � percent fiber
dry weight.

n � 18, �xi � 1950, �x 2
i � 251,970,

�yi � 47.92, �y2
i � 130.6074, �xiyi � 5530.92

a. Calculate the value of the sample correlation coefficient.
Based on this value, how would you describe the nature
of the relationship between the two variables?

b. If a first specimen has a larger value of shear force than
does a second specimen, what tends to be true of percent
dry fiber weight for the two specimens?

c. If shear force is expressed in pounds, what happens to the
value of r? Why?

d. If the simple linear regression model were fit to this data,
what proportion of observed variation in percent fiber dry
weight could be explained by the model relationship?

e. Carry out a test at significance level .01 to decide
whether there is a positive linear association between the
two variables.

60. The article “A Dual-Buffer Titration Method for Lime Re-
quirement of Acid Mine-soils” (J. of Environ. Qual., 1988:
452–456) reports on the results of a study relating to reveg-
etation of soil at mine reclamation sites. With x � KCl

extractable aluminum and y � amount of lime required to
bring soil pH to 7.0, data in the article resulted in the follow-
ing summary statistics: n � 24, �x � 48.15, �x2 �
155.4685, �y � 263.5, �y2 � 3750.53, and �xy � 658.455.
Carry out a test at significance level .01 to see whether the
population correlation coefficient is something other than 0.

61. The authors of the paper “Objective Effects of a Six Months’
Endurance and Strength Training Program in Outpatients with
Congestive Heart Failure” (Medicine and Science in Sports
and Exercise, 1999: 1102–1107) presented a correlation
analysis to investigate the relationship between maximal lac-
tate level x and muscular endurance y. The accompanying data
was read from a plot in the paper.

Sxx � 36.9839, Syy � 2,628,930.357, Sxy � 7377.704. A scat-
ter plot shows a linear pattern.
a. Test to see whether there is a positive correlation be-

tween maximal lactate level and muscular endurance in
the population from which this data was selected.

b. If a regression analysis were to be carried out to predict
endurance from lactate level, what proportion of ob-
served variation in endurance could be attributed to the
approximate linear relationship? Answer the analogous
question if regression is used to predict lactate level from
endurance—and answer both questions without doing
any regression calculations.

62. Hydrogen content is conjectured to be an important factor 
in porosity of aluminum alloy castings. The article “The
Reduced Pressure Test as a Measuring Tool in the Evaluation
of Porosity/Hydrogen Content in A1–7 Wt Pct Si-10 Vol Pct
SiC(p) Metal Matrix Composite” (Metallurgical Trans., 1993:
1857–1868) gives the accompanying data on x � content and
y � gas porosity for one particular measurement technique.

MINITAB gives the following output in response to a 
CORRELATION command:

Correlation of Hydrcon and 
Porosity � 0.449

a. Test at level .05 to see whether the population correlation
coefficient differs from 0.

b. If a simple linear regression analysis had been carried
out, what percentage of observed variation in porosity
could be attributed to the model relationship?

x 46 48 55 57 60 72 81 85 94

y 2.18 2.10 2.13 2.28 2.34 2.53 2.28 2.62 2.63

x 109 121 132 137 148 149 184 185 187

y 2.50 2.66 2.79 2.80 3.01 2.98 3.34 3.49 3.26

x 400 750 770 800 850 1025 1200

y 3.80 4.00 4.90 5.20 4.00 3.50 6.30

x 1250 1300 1400 1475 1480 1505 2200

y 6.88 7.55 4.95 7.80 4.45 6.60 8.90

x .18 .20 .21 .21 .21 .22 .23

y .46 .70 .41 .45 .55 .44 .24

x .23 .24 .24 .25 .28 .30 .37

y .47 .22 .80 .88 .70 .72 .75

TOST 4200 3600 3750 3675 4050 2770
RBOT 370 340 375 310 350 200

TOST 4870 4500 3450 2700 3750 3300
RBOT 400 375 285 225 345 285
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63. Physical properties of six flame-retardant fabric samples were
investigated in the article “Sensory and Physical Properties of
Inherently Flame-Retardant Fabrics” (Textile Research, 1984:
61–68). Use the accompanying data and a .05 significance
level to determine whether a linear relationship exists be-
tween stiffness x (mg-cm) and thickness y (mm). Is the result
of the test surprising in light of the value of r?

64. The article “Increases in Steroid Binding Globulins Induced
by Tamoxifen in Patients with Carcinoma of the Breast”
(J. Endocrinology, 1978: 219–226) reports data on the effects
of the drug tamoxifen on change in the level of cortisol-
binding globulin (CBG) of patients during treatment. With
age � x and �CBG � y, summary values are n � 26, �xi �
1613, �(xi � x�)2 � 3756.96, �yi � 281.9, �(yi � y�)2 �
465.34, and �xiyi � 16,731.
a. Compute a 90% CI for the true correlation coefficient �.
b. Test H0: � � �.5 versus Ha: � � �.5 at level .05.
c. In a regression analysis of y on x, what proportion of

variation in change of cortisol-binding globulin level
could be explained by variation in patient age within the
sample?

d. If you decide to perform a regression analysis with age
as the dependent variable, what proportion of variation in
age is explainable by variation in �CBG?

65. The article “Chronological Trend in Blood Lead Levels”
(N. Engl. J. Med., 1983: 1373–1377) gives the following
data on y � average blood lead level of white children age
6 months to 5 years and x � amount of lead used in gaso-
line production (in 1000 tons) for ten 6-month periods:

a. Construct separate normal probability plots for x and y.
Do you think it is reasonable to assume that the (x, y)
pairs are from a bivariate normal population?

b. Does the data provide sufficient evidence to conclude
that there is a linear relationship between blood lead
level and the amount of lead used in gasoline produc-
tion? Use � � .01.

66. Consider a time series—that is, a sequence of observations
X1, X2, . . . obtained over time—with observed values x1,
x2, . . . , xn. Suppose that the series shows no upward or
downward trend over time. An investigator will frequently
want to know just how strongly values in the series sepa-
rated by a specified number of time units are related. The
lag-one sample autocorrelation coefficient r1 is just the
value of the sample correlation coefficient r for the pairs
(x1, x2), (x2, x3), . . . , (xn�1, xn), that is, pairs of values sep-
arated by one time unit. Similarly, the lag-two sample auto-
correlation coefficient r2 is r for the n � 2 pairs (x1, x3),
(x2, x4), . . . , (xn�2, xn).
a. Calculate the values of r1, r2, and r3 for the temperature

data from Exercise 82 of Chapter 1, and comment.
b. Analogous to the population correlation coefficient �, let

�1, �2, . . . denote the theoretical or long-run autocorre-
lation coefficients at the various lags. If all these �s are
0, there is no (linear) relationship at any lag. In this case,
if n is large, each Ri has approximately a normal distri-
bution with mean 0 and standard deviation 1/�n� and
different Ri s are almost independent. Thus H0: �i � 0
can be rejected at a significance level of approximately
.05 if either ri � 2/�n� or ri � �2/�n�. If n � 100 and
r1 � .16, r2 � �.09, and r3 � �.15, is there any evidence
of theoretical autocorrelation at the first three lags?

c. If you are simultaneously testing the null hypothesis in
part (b) for more than one lag, why might you want to
increase the cutoff constant 2 in the rejection region?

67. A sample of n � 500 (x, y) pairs was collected and a test of
H0: � � 0 versus Ha: � � 0 was carried out. The resulting 
P-value was computed to be .00032.
a. What conclusion would be appropriate at level of signif-

icance .001?
b. Does this small P-value indicate that there is a very

strong linear relationship between x and y (a value of �
that differs considerably from 0)? Explain.

c. Now suppose a sample of n � 10,000 (x, y) pairs resulted
in r � .022. Test H0: � � 0 versus Ha: � � 0 at level .05.
Is the result statistically significant? Comment on the
practical significance of your analysis.

x 7.98 24.52 12.47 6.92 24.11 35.71

y .28 .65 .32 .27 .81 .57

x 48 59 79 80 95

y 9.3 11.0 12.8 14.1 13.6

x 95 97 102 102 107

y 13.8 14.6 14.6 16.0 18.2

68. The appraisal of a warehouse can appear straightforward com-
pared to other appraisal assignments. A warehouse appraisal
involves comparing a building that is primarily an open shell
to other such buildings. However, there are still a number of
warehouse attributes that are plausibly related to appraised

value. The article “Challenges In Appraising ‘Simple’
Warehouse Properties” (Donald Sonneman, The Appraisal
Journal, April 2001, 174–178) gave the accompanying data on
truss height (ft), which determines how high stored goods can
be stacked, and sale price ($) per square foot.

SUPPLEMENTARY EXERCISES (68–87)
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a. Is it the case that truss height and sale price are “deter-
ministically” related—i.e., that sale price is determined
completely and uniquely by truss height? [Hint: Look at
the data.]

b. Construct a scatterplot of the data. What does it suggest?
c. Determine the equation of the least squares line.
d. Give a point prediction of price when truss height is 27 ft,

and calculate the corresponding residual.
e. What percentage of observed variation in sale price can be

attributed to the approximate linear relationship between
truss height and price?

69. Refer to the previous exercise, which gave data on truss
heights for a sample of warehouses and the corresponding
sale prices.
a. Estimate the true average change in sale price associated

with a one-foot increase in truss height, and do so in a way
that conveys information about the precision of estimation.

b. Estimate the true average sale price for all warehouses
having a truss height of 25 ft, and do so in a way that
conveys information about the precision of estimation.

c. Predict the sale price for a single warehouse whose truss
height is 25 ft, and do so in a way that conveys informa-
tion about the precision of prediction. How does this pre-
diction compare to the estimate of (b)?

d. Without calculating any intervals, how would the width
of a 95% prediction interval for sale price when truss
height is 25 ft compare to the width of a 95% interval
when height is 30 ft? Explain your reasoning.

e. Calculate and interpret the sample correlation coefficient.

70. Forensic scientists are often interested in making a measure-
ment of some sort on a body (alive or dead) and then using
that as a basis for inferring something about the age of the
body. Consider the accompanying data on age (yr) and % 
D-aspertic acid (hereafter %DAA) from a particular tooth
(“An Improved Method for Age at Death Determination from
the Measurements of D-Aspertic Acid in Dental Collagen,”
Archaeometry, 1990: 61–70.)

Suppose a tooth from another individual has 2.01%DAA.
Might it be the case that the individual is younger than 22?
This question was relevant to whether or not the individual
could receive a life sentence for murder.

A seemingly sensible strategy is to regress age on %DAA
and then compute a PI for age when %DAA � 2.01.
However, it is more natural here to regard age as the inde-
pendent variable x and %DAA as the dependent variable y, so
the regression model is %DAA � �0 � �1x � �. After esti-
mating the regression coefficients, we can substitute y* � 2.01
into the estimated equation and then solve for a prediction of

age x̂. This “inverse” use of the regression line is called “cal-
ibration.” A PI for age with prediction level approximately
100(1 � �)% is x̂ � t�(2,n�2 � SE where

SE � �1 � � �
Calculate this PI for y* � 2.01 and then address the question
posed earlier.

71. The accompanying data on x � diesel oil consumption rate
measured by the drain–weigh method and y � rate measured
by the CI-trace method, both in g/hr, was read from a graph
in the article “A New Measurement Method of Diesel Engine
Oil Consumption Rate” (J. Society Auto Engr., 1985: 28–33).

a. Assuming that x and y are related by the simple linear
regression model, carry out a test to decide whether it is
plausible that on average the change in the rate measured
by the CI-trace method is identical to the change in the
rate measured by the drain–weigh method.

b. Calculate and interpret the value of the sample correla-
tion coefficient.

72. The SAS output on the next page is based on data from the
article “Evidence for and the Rate of Denitrification in the
Arabian Sea” (Deep Sea Research, 1978: 431–435). The
variables under study are x � salinity level (%) and y �
nitrate level (�M/L).
a. What is the sample size n? [Hint: Look for degrees of

freedom for SSE.]
b. Calculate a point estimate of expected nitrate level when

salinity level is 35.5.
c. Does there appear to be a useful linear relationship

between the two variables?
d. What is the value of the sample correlation coefficient?
e. Would you use the simple linear regression model to

draw conclusions when the salinity level is 40?

73. The presence of hard alloy carbides in high chromium white
iron alloys results in excellent abrasion resistance, making
them suitable for materials handling in the mining and mate-
rials processing industries. The accompanying data on x �
retained austentite content (%) and y � abrasive wear loss
(mm3) in pin wear tests with garnet as the abrasive was read
from a plot in the article “Microstructure-Property Relation-
ships in High Chromium White Iron Alloys” (Intl. Materials
Reviews, 1996: 59–82).

(x̂ � x�)2

��
Sxx

1
�
n

s
�
�̂1

Age: 9 10 11 12 13 14 33 39 52 65 69
%DAA: 1.13 1.10 1.11 1.10 1.24 1.31 2.25 2.54 2.93 3.40 4.55

x 4 5 8 11 12 16 17 20 22 28 30 31 39

y 5 7 10 10 14 15 13 25 20 24 31 28 39

x 4.6 17.0 17.4 18.0 18.5 22.4 26.5 30.0 34.0

y .66 .92 1.45 1.03 .70 .73 1.20 .80 .91

x 38.8 48.2 63.5 65.8 73.9 77.2 79.8 84.0

y 1.19 1.15 1.12 1.37 1.45 1.50 1.36 1.29

Height: 12 14 14 15 15 16 18 22 22 24
Price: 35.53 37.82 36.90 40.00 38.00 37.50 41.00 48.50 47.00 47.50

Truss height: 24 26 26 27 28 30 30 33 36
Sale price: 46.20 50.35 49.13 48.07 50.90 54.78 54.32 57.17 57.45

1/2
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SAS output for Exercise 73

Dependent Variable: ABRLOSS
Analysis of Variance

Source DF Sum of Squares Mean Square F Value Prob � F

Model 1 0.63690 0.63690 15.444 0.0013
Error 15 0.61860 0.04124

C Total 16 1.25551

Root MSE 0.20308 R-square 0.5073
Dep Mean 1.10765 Adj R-sq 0.4744
C.V. 18.33410

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter � 0 Prob � ⏐T⏐

INTERCEP 1 0.787218 0.09525879 8.264 0.0001
AUSTCONT 1 0.007570 0.00192626 3.930 0.0013

Use the data and the SAS output below to answer the fol-
lowing questions.

a. What proportion of observed variation in wear loss can
be attributed to the simple linear regression model rela-
tionship?

b. What is the value of the sample correlation coefficient?
c. Test the utility of the simple linear regression model using

� � .01.
d. Estimate the true average wear loss when content is 50%

and do so in a way that conveys information about relia-
bility and precision.

e. What value of wear loss would you predict when con-
tent is 30%, and what is the value of the corresponding
residual?

74. The accompanying data was read from a scatter plot in the
article “Urban Emissions Measured with Aircraft” (J. of the
Air and Waste Mgmt. Assoc., 1998: 16–25). The response
variable is �NOy and the explanatory variable is �CO.

a. Fit an appropriate model to the data and judge the utility
of the model.

b. Predict the value of �NOy that would result from making
one more observation when �CO is 400, and do so in a
way that conveys information about precision and relia-
bility. Does it appear that �NOy can be accurately pre-
dicted? Explain.

SAS output for Exercise 72

Dependent Variable: NITRLVL

Analysis of Variance

Source DF Sum of Squares Mean Square SS Resid
F Value Prob � F

Model 1 64.49622 64.49622 63.309 0.0002
Error 6 6.11253 1.01875
C Total 7 70.60875

Root MSE 1.00933 R-square 0.9134
Dep Mean 26.91250 Adj R-sq 0.8990
C.V. 3.75043

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter � 0 Prob � :T:

INTERCEP 1 326.976038 37.71380243 8.670 0.0001
SALINITY 1 � 8.403964 1.05621381 � 7.957 0.0002

�CO 50 60 95 108 135
�NOy 2.3 4.5 4.0 3.7 8.2

�CO 210 214 315 720
�NOy 5.4 7.2 13.8 32.1
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c. The largest value of �CO is much greater than the other
values. Does this observation appear to have had a substan-
tial impact on the fitted equation?

75. An investigation was carried out to study the relationship
between speed (ft/sec) and stride rate (number of steps
taken/sec) among female marathon runners. Resulting sum-
mary quantities included n � 11, �(speed) � 205.4,
�(speed)2 � 3880.08, �(rate) � 35.16, �(rate)2 � 112.681,
and �(speed)(rate) � 660.130.
a. Calculate the equation of the least squares line that you

would use to predict stride rate from speed.
b. Calculate the equation of the least squares line that you

would use to predict speed from stride rate.
c. Calculate the coefficient of determination for the regression

of stride rate on speed of part (a) and for the regression of
speed on stride rate of part (b). How are these related?

76. “Mode-mixity” refers to how much of crack propagation is
attributable to the three conventional fracture modes of open-
ing, sliding, and tearing. For plane problems, only the first two
modes are present, and the mode-mixity angle is a measure of
the extent to which propagation is due to sliding as opposed to
opening. The article “Increasing Allowable Flight Loads by
Improved Structural Modeling” (AIAA J., 2006: 376–381)
gave the following data on x � mode-mixity angle (degrees)
and y � fracture toughness (N/m) for sandwich panels use in
aircraft construction.

a. Obtain the equation of the estimated regression line, and
discuss the extent to which the simple linear regression
model is a reasonable way to relate fracture toughness to
mode-mixity angle.

b. Does the data suggest that the average change in fracture
toughness associated with a one-degree increase in
mode-mixity angle exceeds 50 N/m? Carry out an appro-
priate test of hypotheses.

c. For purposes of precisely estimating the slope of the pop-
ulation regression line, would it have been preferable to
make observations at the angles 16, 16, 18, 18, 20, 20,
20, 20, 22, 22, 22, 22, 24, 24, 26, and 26 (again a sample
size of 16)? Explain your reasoning.

d. Calculate an estimate of true average fracture toughness
and also a prediction of fracture toughness both for an
angle of 18 degrees and for an angle of 22 degrees, and
do so in a manner that conveys information about relia-
bility and precision, and then interpret and compare the
estimates and predictions.

77. The article “Photocharge Effects in Dye Sensitized Ag[Br,I]
Emulsions at Millisecond Range Exposures” (Photographic
Sci. and Engr., 1981: 138–144) gives the accompanying

data on x � % light absorption at 5800 A and y � peak pho-
tovoltage.

a. Construct a scatter plot of this data. What does it suggest?
b. Assuming that the simple linear regression model is

appropriate, obtain the equation of the estimated regres-
sion line.

c. What proportion of the observed variation in peak photo-
voltage can be explained by the model relationship?

d. Predict peak photovoltage when % absorption is 19.1,
and compute the value of the corresponding residual.

e. The article’s authors claim that there is a useful linear
relationship between % absorption and peak photovolt-
age. Do you agree? Carry out a formal test.

f. Give an estimate of the change in expected peak photo-
voltage associated with a 1% increase in light absorp-
tion. Your estimate should convey information about the
precision of estimation.

g. Repeat part (f) for the expected value of peak photo-
voltage when % light absorption is 20.

78. In Section 12.4, we presented a formula for V( �̂0 � �̂1x*)
and a CI for �0 � �1x*. Taking x* � 0 gives � 2

�̂0
and a CI for

�0. Use the data of Example 12.11 to calculate the estimated
standard deviation of  �̂0 and a 95% CI for the y-intercept of
the true regression line.

79. Show that SSE � Syy � �̂1Sxy, which gives an alternative
computational formula for SSE.

80. Suppose that x and y are positive variables and that a sam-
ple of n pairs results in r � 1. If the sample correlation coef-
ficient is computed for the (x, y2) pairs, will the resulting
value also be approximately 1? Explain.

81. Let sx and sy denote the sample standard deviations of the
observed x’s and y’s, respectively [so s 2

x � �(xi � x�)2/(n � 1)
and similarly for s 2

y ].
a. Show that an alternative expression for the estimated

regression line y � �̂0 � �̂1x is

y � y� � r � (x � x�)

b. This expression for the regression line can be interpreted
as follows. Suppose r � .5. What then is the predicted y
for an x that lies 1 SD (sx units) above the mean of the xi s?
If r were 1, the prediction would be for y to lie 1 SD above
its mean y�, but since r � .5, we predict a y that is only .5
SD (.5sy unit) above y�. Using the data in Exercise 64 for a
patient whose age is 1 SD below the average age in the
sample, by how many standard deviations is the patient’s
predicted �CBG above or below the average �CBG for
the sample?

sy
�
sx

x 16.52 17.53 18.05 18.50 22.39 23.89 25.50 24.89

y 609.4 443.1 577.9 628.7 565.7 711.0 863.4 956.2

x 23.48 24.98 25.55 25.90 22.65 23.69 24.15 24.54

y 679.5 707.5 767.1 817.8 702.3 903.7 964.9 1047.3

x 4.0 8.7 12.7 19.1 21.4

y .12 .28 .55 .68 .85

x 24.6 28.9 29.8 30.5

y 1.02 1.15 1.34 1.29
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82. Verify that the t statistic for testing H0: �1 � 0 in Section 12.3
is identical to the t statistic in Section 12.5 for testing 
H0: � � 0.

83. Use the formula for computing SSE to verify that r 2 �
1 � SSE/SST.

84. In biofiltration of wastewater, air discharged from a treat-
ment facility is passed through a damp porous membrane
that causes contaminants to dissolve in water and be trans-
formed into harmless products. The accompanying data on
x � inlet temperature (°C) and y � removal efficiency (%)
was the basis for a scatter plot that appeared in the article
“Treatment of Mixed Hydrogen Sulfide and Organic 
Vapors in a Rock Medium Biofilter” (Water Environment
Research, 2001: 426–435).

Calculated summary quantities are �xi � 384.26, �yi �
3149.04, �x 2

i � 5099.2412, �xiyi � 37,850.7762, and
�y 2

i � 309,892.6548.
a. Does a scatter plot of the data suggest appropriateness

of the simple linear regression model?
b. Fit the simple linear regression model, obtain a point pre-

diction of removal efficiency when temperature � 10.50,
and calculate the value of the corresponding residual.

c. Roughly what is the size of a typical deviation of points
in the scatter plot from the least squares line?

d. What proportion of observed variation in removal effi-
ciency can be attributed to the model relationship?

e. Estimate the slope coefficient in a way that conveys
information about reliability and precision, and inter-
pret your estimate.

f. Personal communication with the authors of the article
revealed that there was one additional observation that
was not included in their scatter plot: (6.53, 96.55). What
impact does this additional observation have on the equa-
tion of the least squares line and the values of s and r2?

85. Normal hatchery processes in aquaculture inevitably pro-
duce stress in fish, which may negatively impact growth,
reproduction, flesh quality, and susceptibility to disease.
Such stress manifests itself in elevated and sustained cor-
ticosteroid levels. The article “Evaluation of Simple In-
struments for the Measurement of Blood Glucose and
Lactate, and Plasma Protein as Stress Indicators in Fish”
(J. of the World Aquaculture Society, 1999: 276–284)
described an experiment in which fish were subjected to a
stress protocol and then removed and tested at various
times after the protocol had been applied. The accompany-
ing data on x � time (min) and y � blood glucose level
(mmol/L) was read from a plot.

Use the methods developed in this chapter to analyze the
data, and write a brief report summarizing your conclu-
sions (assume that the investigators are particularly inter-
ested in glucose level 30 min after stress).

86. The article “Evaluating the BOD POD for Assessing Body
Fat in Collegiate Football Players” (Medicine and Science
in Sports and Exericse, 1999: 1350–1356) reports on a
new air displacement device for measuring body fat. The
customary procedure utilizes the hydrostatic weighing
device, which measures the percentage of body fat by
means of water displacement. Here is representative data
read from a graph in the paper.

a. Use various methods to decide whether it is plausible
that the two techniques measure on average the same
amount of fat.

b. Use the data to develop a way of predicting an HW mea-
surement from a BOD POD measurement, and investi-
gate the effectiveness of such predictions.

87. Reconsider the situation of Exercise 73, in which x �
retained austenite content using a garnet abrasive and y �
abrasive wear loss were related via the simple linear
regression model Y � �0 � �1x � �. Suppose that for a
second type of abrasive, these variables are also related
via the simple linear regression model Y � 0 � 1x ��
and that V(!) � � 2 for both types of abrasive. If the data
set consists of n1 observations on the first abrasive and n2

on the second and if SSE1 and SSE2 denote the two error
sums of squares, then a pooled estimate of � 2 is �̂ 2 �

Removal Removal
Obs Temp % Obs Temp %

1 7.68 98.09 17 8.55 98.27
2 6.51 98.25 18 7.57 98.00
3 6.43 97.82 19 6.94 98.09
4 5.48 97.82 20 8.32 98.25
5 6.57 97.82 21 10.50 98.41
6 10.22 97.93 22 16.02 98.51
7 15.69 98.38 23 17.83 98.71
8 16.77 98.89 24 17.03 98.79
9 17.13 98.96 25 16.18 98.87

10 17.63 98.90 26 16.26 98.76
11 16.72 98.68 27 14.44 98.58
12 15.45 98.69 28 12.78 98.73
13 12.06 98.51 29 12.25 98.45
14 11.44 98.09 30 11.69 98.37
15 10.17 98.25 31 11.34 98.36
16 9.64 98.36 32 10.97 98.45

x 2 2 5 7 12 13 17 18 23 24 26 28

y 4.0 3.6 3.7 4.0 3.8 4.0 5.1 3.9 4.4 4.3 4.3 4.4

x 29 30 34 36 40 41 44 56 56 57 60 60

y 5.8 4.3 5.5 5.6 5.1 5.7 6.1 5.1 5.9 6.8 4.9 5.7

BOD 2.5 4.0 4.1 6.2 7.1 7.0 8.3 9.2 9.3 12.0 12.2

HW 8.0 6.2 9.2 6.4 8.6 12.2 7.2 12.0 14.9 12.1 15.3

BOD 12.6 14.2 14.4 15.1 15.2 16.3 17.1 17.9 17.9

HW 14.8 14.3 16.3 17.9 19.5 17.5 14.3 18.3 16.2



(SSE1 � SSE2)/(n1 � n2 � 4). Let SSx1 and SSx2 denote
�(xi � x�)2 for the data on the first and second abrasives,
respectively. A test of H0: �1 � 1 � 0 (equal slopes) is
based on the statistic

T �

When H0 is true, T has a t distribution with n1 � n2 � 4 df.
Suppose the 15 observations using the alternative abrasive
give SSx2 � 7152.5578,̂1 � .006845, and SSE2 � .51350.
Using this along with the data of Exercise 73, carry out a
test at level .05 to see whether expected change in wear
loss associated with a 1% increase in austenite content is
identical for the two types of abrasive.

�̂1 � ̂1
��

�̂��
S�S

1�x1

�� �� �
S�S

1�x2

��
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Nonlinear and
Multiple Regression13

INTRODUCTION

The probabilistic model studied in Chapter 12 specified that the observed value

of the dependent variable Y deviated from the linear regression function 	Y�x �

�0 � �1x by a random amount. Here we consider two ways of generalizing the

simple linear regression model. The first way is to replace �0 � �1x by a nonlin-

ear function of x, and the second is to use a regression function involving more

than a single independent variable. After fitting a regression function of the

chosen form to the given data, it is of course important to have methods avail-

able for making inferences about the parameters of the chosen model. Before

these methods are used, though, the data analyst should first assess the valid-

ity of the chosen model. In Section 13.1, we discuss methods, based primarily

on a graphical analysis of the residuals (observed minus predicted y ’s), for

checking the aptness of a fitted model.

In Section 13.2, we consider nonlinear regression functions of a single

independent variable x that are “intrinsically linear.” By this we mean that it is

possible to transform one or both of the variables so that the relationship

between the new variables is linear. An alternative class of nonlinear relations

is obtained by using polynomial regression functions of the form 	Y�x � �0 �

�1x � �2x2 � 
 
 
 � �kxk; these polynomial models are the subject of Section 13.3.

Multiple regression analysis involves building models for relating y to two or

more independent variables. The focus in Section 13.4 is on interpretation of

various multiple regression models and on understanding and using the regres-

sion output from various statistical computer packages. The last section of the

chapter surveys some extensions and pitfalls of multiple regression modeling.
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A plot of the observed pairs (xi, yi) is a necessary first step in deciding on the form
of a mathematical relationship between x and y. It is possible to fit many functions
other than a linear one (y � b0 � b1x) to the data, using either the principle of least
squares or another fitting method. Once a function of the chosen form has been fit-
ted, it is important to check the fit of the model to see whether it is in fact appropri-
ate. One way to study the fit is to superimpose a graph of the best-fit function on the
scatter plot of the data. However, any tilt or curvature of the best-fit function may
obscure some aspects of the fit that should be investigated. Furthermore, the scale on
the vertical axis may make it difficult to assess the extent to which observed values
deviate from the best-fit functions.

Residuals and Standardized Residuals
A more effective approach to assessment of model adequacy is to compute the fitted
or predicted values ŷi and the residuals ei � yi � ŷi and then plot various functions of
these computed quantities. We then examine the plots either to confirm our choice
of model or for indications that the model is not appropriate. Suppose the simple lin-
ear regression model is correct, and let y � �̂0 � �̂1x be the equation of the estimated
regression line. Then the ith residual is ei � yi � (�̂0 � �̂1xi). To derive properties of
the residuals, let ei � Yi �Ŷi represent the ith residual as a random variable (rv)
(before observations are actually made). Then

E(Yi � Ŷi) � E(Yi) � E(�̂0 � �̂1xi) � �0 � �1xi � (�0 � �1xi) � 0 (13.1)

Because Ŷi (� �̂0 � �̂1xi) is a linear function of the Yj s, so is Yi � Ŷi (the coeffi-
cients depend on the xj s). Thus the normality of the Yj s implies that each residual
is normally distributed. It can also be shown that

V(Yi �Ŷi) � � 2 � �1 � � � (13.2)

Replacing � 2 by s2 and taking the square root of Equation (13.2) gives the estimated
standard deviation of a residual.

Let’s now standardize each residual by subtracting the mean value (zero) and
then dividing by the estimated standard deviation.

(xi � x�)2

��
Sxx

1
�
n

13.1 Aptness of the Model and Model Checking

The standardized residuals are given by

yi � ŷie*i � ��� i � 1, . . . , n

s�1��� �
1

n������� (13.3)(xi � x�)2

��
Sxx

If, for example, a particular standardized residual is 1.5, then the residual itself is 1.5
(estimated) standard deviations larger than what would be expected from fitting the
correct model. Notice that the variances of the residuals differ from one another. If
n is reasonably large, though, the bracketed term in (13.2) will be approximately 1,
so some sources use ei /s as the standardized residual. Computation of the e*i s can be



tedious, but the most widely used statistical computer packages automatically pro-
vide these values and (upon request) can construct various plots involving them.

Exercise 19 in Chapter 12 presented data on x � burner area liberation rate and y �
NOX emissions. Here we reproduce the data and give the fitted values, residuals, and
standardized residuals. The estimated regression line is y � �45.55 � 1.71x, and
r 2 � .961. Notice that the standardized residuals are not a constant multiple of the
residuals (i.e., e*i � ei /s).

■

Diagnostic Plots
The basic plots that many statisticians recommend for an assessment of model valid-
ity and usefulness are the following:

1. e*i (or ei) on the vertical axis versus xi on the horizontal axis

2. e*i (or ei) on the vertical axis versus ŷi on the horizontal axis

3. ŷi on the vertical axis versus yi on the horizontal axis

4. A normal probability plot of the standardized residuals

Plots 1 and 2 are called residual plots (against the independent variable and fitted
values, respectively), whereas Plot 3 is fitted against observed values.

If Plot 3 yields points close to the 45° line [slope �1 through (0, 0)], then the esti-
mated regression function gives accurate predictions of the values actually observed.
Thus Plot 3 provides a visual assessment of model effectiveness in making predictions.
Provided that the model is correct, neither residual plot should exhibit distinct patterns.
The residuals should be randomly distributed about 0 according to a normal distribu-
tion, so all but a very few standardized residuals should lie between �2 and �2 (i.e., all
but a few residuals within 2 standard deviations of their expected value 0). The plot of
standardized residuals versus ŷ is really a combination of the two other plots, showing
implicitly both how residuals vary with x and how fitted values compare with observed
values. This latter plot is the single one most often recommended for multiple regres-
sion analysis. Plot 4 allows the analyst to assess the plausibility of the assumption that
! has a normal distribution.

xi yi ŷi ei e*i

100 150 125.6 24.4 .75
125 140 168.4 �28.4 �.84
125 180 168.4 11.6 .35
150 210 211.1 �1.1 �.03
150 190 211.1 �21.1 �.62
200 320 296.7 23.3 .66
200 280 296.7 �16.7 �.47
250 400 382.3 17.7 .50
250 430 382.3 47.7 1.35
300 440 467.9 �27.9 �.80
300 390 467.9 �77.9 �2.24
350 600 553.4 46.6 1.39
400 610 639.0 �29.0 �.92
400 670 639.0 31.0 .99
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Figure 13.1 presents a scatter plot of the data and the four plots just recommended. The
plot of ŷ versus y confirms the impression given by r2 that x is effective in predicting y
and also indicates that there is no observed y for which the predicted value is terribly
far off the mark. Both residual plots show no unusual pattern or discrepant values.
There is one standardized residual slightly outside the interval (�2, 2), but this is not
surprising in a sample of size 14. The normal probability plot of the standardized resid-
uals is reasonably straight. In summary, the plots leave us with no qualms about either
the appropriateness of a simple linear relationship or the fit to the given data.

Example 13.2 
(Example 13.1 
continued)

Difficulties and Remedies
Although we hope that our analysis will yield plots like those of Figure 13.1, quite
frequently the plots will suggest one or more of the following difficulties:

Figure 13.1 Plots for the data from Example 13.1 ■
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1. A nonlinear probabilistic relationship between x and y is appropriate.

2. The variance of ! (and of Y) is not a constant � 2 but depends on x.

3. The selected model fits the data well except for a very few discrepant or outlying
data values, which may have greatly influenced the choice of the best-fit function.

4. The error term ! does not have a normal distribution.

5. When the subscript i indicates the time order of the observations, the !is exhibit
dependence over time.

6. One or more relevant independent variables have been omitted from the model.

Figure 13.2 presents residual plots corresponding to items 1–3, 5, and 6. In
Chapter 4, we discussed patterns in normal probability plots that cast doubt on the
assumption of an underlying normal distribution. Notice that the residuals from the
data in Figure 13.2(d) with the circled point included would not by themselves nec-
essarily suggest further analysis, yet when a new line is fit with that point deleted,
the new line differs considerably from the original line. This type of behavior is
more difficult to identify in multiple regression. It is most likely to arise when there
is a single (or very few) data point(s) with independent variable value(s) far removed
from the remainder of the data.

We now indicate briefly what remedies are available for the types of difficulties.
For a more comprehensive discussion, one or more of the references on regression 
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Figure 13.2 Plots that indicate abnormality in data: (a) nonlinear relationship; (b) nonconstant
variance; (c) discrepant observation; (d) observation with large influence; (e) dependence in
errors; (f) variable omitted
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analysis should be consulted. If the residual plot looks something like that of Figure
13.2(a), exhibiting a curved pattern, then a nonlinear function of x may be fit.

The residual plot of Figure 13.2(b) suggests that, although a straight-line rela-
tionship may be reasonable, the assumption that V(Yi) � � 2 for each i is of doubtful
validity. When the assumptions of Chapter 12 are valid, it can be shown that among
all unbiased estimators of �0 and �1, the ordinary least squares estimators have min-
imum variance. These estimators give equal weight to each (xi, Yi). If the variance of
Y increases with x, then Yi s for large xi should be given less weight than those with
small xi. This suggests that �0 and �1 should be estimated by minimizing

fw(b0, b1) � �wi[yi � (b0 � b1xi)]2 (13.4)

where the wi s are weights that decrease with increasing xi. Minimization of Ex-
pression (13.4) yields weighted least squares estimates. For example, if the stan-
dard deviation of Y is proportional to x (for x � 0)—that is, V(Y) � kx2—then it can
be shown that the weights wi � 1/x2

i yield best estimators of �0 and �1. The books by
John Neter et al. and by S. Chatterjee and Bertram Price contain more detail (see the
chapter bibliography). Weighted least squares is used quite frequently by econome-
tricians (economists who use statistical methods) to estimate parameters.

When plots or other evidence suggest that the data set contains outliers or points
having large influence on the resulting fit, one possible approach is to omit these outly-
ing points and recompute the estimated regression equation. This would certainly be
correct if it were found that the outliers resulted from errors in recording data values or
experimental errors. If no assignable cause can be found for the outliers, it is still desir-
able to report the estimated equation both with and without outliers omitted. Yet another
approach is to retain possible outliers but to use an estimation principle that puts rela-
tively less weight on outlying values than does the principle of least squares. One such
principle is MAD (minimize absolute deviations), which selects  �̂0 and �̂1 to minimize
�⏐yi � (b0 � b1xi)⏐. Unlike the estimates of least squares, there are no nice formulas
for the MAD estimates; their values must be found by using an iterative computational
procedure. Such procedures are also used when it is suspected that the !i s have a dis-
tribution that is not normal but instead has “heavy tails” (making it much more likely
than for the normal distribution that discrepant values will enter the sample); robust
regression procedures are those that produce reliable estimates for a wide variety of
underlying error distributions. Least squares estimators are not robust in the same way
that the sample mean X� is not a robust estimator for 	.

When a plot suggests time dependence in the error terms, an appropriate
analysis may involve a transformation of the y’s or else a model explicitly including
a time variable. Lastly, a plot such as that of Figure 13.2(f), which shows a pattern
in the residuals when plotted against an omitted variable, suggests that a multiple
regression model that includes the previously omitted variable should be considered.

1. Suppose the variables x � commuting distance and y � com-
muting time are related according to the simple linear regres-
sion model with � � 10.
a. If n � 5 observations are made at the x values x1 � 5,

x2 � 10, x3 � 15, x4 � 20, and x5 � 25, calculate the stan-
dard deviations of the five corresponding residuals.

b. Repeat part (a) for x1 � 5, x2 � 10, x3 � 15, x4 � 20, and
x5 � 50.

c. What do the results of parts (a) and (b) imply about the
deviation of the estimated line from the observation made
at the largest sampled x value?

2. The x values and standardized residuals for the chlorine
flow/etch rate data of Exercise 52 (Section 12.4) are displayed
in the accompanying table. Construct a standardized residual
plot and comment on its appearance.

EXERCISES Section 13.1 (1–14)
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3. Example 12.6 presented the residuals from a simple linear
regression of moisture content y on filtration rate x.
a. Plot the residuals against x. Does the resulting plot sug-

gest that a straight-line regression function is a reasonable
choice of model? Explain your reasoning.

b. Using s � .665, compute the values of the standardized
residuals. Is e*i � ei /s for i � 1, . . . , n, or are the e*i s not
close to being proportional to the ei s?

c. Plot the standardized residuals against x. Does the plot dif-
fer significantly in general appearance from the plot of
part (a)?

4. Wear resistance of certain nuclear reactor components made
of Zircaloy-2 is partly determined by properties of the oxide
layer. The following data appears in an article that proposed a
new nondestructive testing method to monitor thickness of the
layer (“Monitoring of Oxide Layer Thickness on Zircaloy-2
by the Eddy Current Test Method,” J. of Testing and Eval.,
1987: 333–336). The variables are x � oxide-layer thickness
(	m) and y � eddy-current response (arbitrary units).

a. The authors summarized the relationship by giving the
equation of the least squares line as y � 20.6 � .047x.
Calculate and plot the residuals against x and then com-
ment on the appropriateness of the simple linear regres-
sion model.

b. Use s � .7921 to calculate the standardized residuals
from a simple linear regression. Construct a standardized
residual plot and comment. Also construct a normal prob-
ability plot and comment.

5. As the air temperature drops, river water becomes super-
cooled and ice crystals form. Such ice can significantly affect
the hydraulics of a river. The article “Laboratory Study of
Anchor Ice Growth” (J. of Cold Regions Engr., 2001: 60–66)
described an experiment in which ice thickness (mm) was
studied as a function of elapsed time (hr) under specified
conditions. The following data was read from a graph in the
article: n � 33; x � .17, .33, .50, .67, . . . , 5.50; y � .50,
1.25, 1.50, 2.75, 3.50, 4.75, 5.75, 5.60, 7.00, 8.00, 8.25, 9.50,
10.50, 11.00, 10.75, 12.50, 12.25, 13.25, 15.50, 15.00, 15.25,
16.25, 17.25, 18.00, 18.25, 18.15, 20.25, 19.50, 20.00, 20.50,
20.60, 20.50, 19.80.

a. The r2 value resulting from a least squares fit is .977.
Interpret this value and comment on the appropriateness
of assuming an approximate linear relationship.

b. The residuals, listed in the same order as the x values, are

Plot the residuals against elapsed time. What does the plot
suggest?

6. The accompanying data on x � true density (kg/mm3) and 
y � moisture content (% d.b.) was read from a plot in the
article “Physical Properties of Cumin Seed” (J. Agric. Engr.
Res., 1996: 93–98).

The equation of the least squares line is y � 1008.14 �
6.19268x (this differs very slightly from the equation given in
the article); s � 7.265 and r 2 � .968.
a. Carry out a test of model utility and comment.
b. Compute the values of the residuals and plot the residuals

against x. Does the plot suggest that a linear regression
function is inappropriate?

c. Compute the values of the standardized residuals and plot
them against x. Are there any unusually large (positive or
negative) standardized residuals? Does this plot give the
same message as the plot of part (b) regarding the appro-
priateness of a linear regression function?

7. The article “Effects of Gamma Radiation on Juvenile and
Mature Cuttings of Quaking Aspen” (Forest Science, 1967:
240–245) reports the following data on exposure time to radi-
ation (x, in kr/16 hr) and dry weight of roots (y, in mg � 10�1).

a. Construct a scatter plot. Does the plot suggest that a linear
probabilistic relationship is appropriate?

b. A linear regression results in the least squares line y �
127 � 6.65x, with s � 16.94. Compute the residuals and
standardized residuals and then construct residual plots.
What do these plots suggest? What type of function should
provide a better fit to the data than a straight line does?

8. Continuous recording of heart rate can be used to obtain
information about the level of exercise intensity or physical
strain during sports participation, work, or other daily activi-
ties. The article “The Relationship between Heart Rate and
Oxygen Uptake During Non-Steady State Exercise” (Ergo-
nomics, 2000: 1578–1592) reported on a study to investigate
using heart rate response (x, as a percentage of the maximum
rate) to predict oxygen uptake (y, as a percentage of maximum

x 1.50 1.50 2.00 2.50 2.50

e* .31 1.02 �1.15 �1.23 .23

x 3.00 3.50 3.50 4.00

e* .73 �1.36 1.53 .07

x 0 7 17 114 133

y 20.3 19.8 19.5 15.9 15.1

x 142 190 218 237 285

y 14.7 11.9 11.5 8.3 6.6

�1.03 �0.92 �1.35 �0.78 �0.68 �0.11 0.21
�0.59 0.13 0.45 0.06 0.62 0.94 0.80
�0.14 0.93 0.04 0.36 1.92 0.78 0.35

0.67 1.02 1.09 0.66 �0.09 1.33 �0.10
�0.24 �0.43 �1.01 �1.75 �3.14

x 7.0 9.3 13.2 16.3 19.1 22.0

y 1046 1065 1094 1117 1130 1135

x 0 2 4 6 8

y 110 123 119 86 62
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uptake) during exercise. The accompanying data was read
from a graph in the paper.

Use a statistical software package to perform a simple linear
regression analysis, paying particular attention to the pres-
ence of any unusual or influential observations.

9. Consider the following four (x, y) data sets; the first three have
the same x values, so these values are listed only once Frank
Anscombe, “Graphs in Statistical Analysis,” Amer. Statistician,
1973: 17–21):

For each of these four data sets, the values of the summary
statistics �xi, �x2

i , �yi, �y2
i , and �xiyi are virtually identi-

cal, so all quantities computed from these five will be essen-
tially identical for the four sets—the least squares line (y �
3 � .5x), SSE, s2, r 2, t intervals, t statistics, and so on. The
summary statistics provide no way of distinguishing among
the four data sets. Based on a scatter plot and a residual plot
for each set, comment on the appropriateness or inappro-
priateness of fitting a straight-line model; include in your
comments any specific suggestions for how a “straight-line
analysis” might be modified or qualified.

10. a. Show that �n
i�1 ei � 0 when the ei s are the residuals from

a simple linear regression.
b. Are the residuals from a simple linear regression inde-

pendent of one another, positively correlated, or nega-
tively correlated? Explain.

c. Show that �n
i�1 xiei � 0 for the residuals from a simple

linear regression. (This result along with part (a) shows
that there are two linear restrictions on the ei s, resulting
in a loss of 2 df when the squared residuals are used to
estimate � 2.)

d. Is it true that �n
i�1 e*i � 0? Give a proof or a counter

example.

11. a. Express the ith residual Yi �Ŷi (where Ŷi � �̂0 � �̂1xi) in
the form �cjYj, a linear function of the Yj s. Then use
rules of variance to verify that V(Yi �Ŷi) is given by
Expression (13.2).

b. It can be shown that Ŷi and Yi �Ŷi (the ith predicted value
and residual) are independent of one another. Use this
fact, the relation Yi �Ŷi � (Yi �Ŷi), and the expression for
V(Ŷ) from Section 12.4 to again verify Expression (13.2).

c. As xi moves farther away from x�, what happens to V(Ŷ i)
and to V(Yi �Ŷi)?

12. a. Could a linear regression result in residuals 23, �27, 5,
17, �8, 9, and 15? Why or why not?

b. Could a linear regression result in residuals 23, �27, 5,
17, �8, �12, and 2 corresponding to x values 3, �4, 8,
12, �14, �20, and 25? Why or why not? [Hint: See
Exercise 10.]

13. Recall that �̂0 � �̂1x has a normal distribution with expected
value �0 � �1x and variance

� 2� � �
so that

Z �

has a standard normal distribution. If S � �S�S�E�/(�n� �� 2�)� is
substituted for �, the resulting variable has a t distribution
with n � 2 df. By analogy, what is the distribution of any
particular standardized residual? If n � 25, what is the
probability that a particular standardized residual falls out-
side the interval (�2.50, 2.50)?

14. If there is at least one x value at which more than one observa-
tion has been made, there is a formal test procedure for testing

H0: 	Y�x � �0��1x for some values �0, �1 (the true regres-
sion function is linear)

versus

Ha: H0 is not true (the true regression function is not linear)

Suppose observations are made at x1, x2, . . . , xc. Let Y11,
Y12, . . . , Y1n1

denote the n1 observations when x � x1; . . . ;
Yc1, Yc2, . . . , Ycnc

denote the nc observations when x � xc.
With n � �ni (the total number of observations), SSE has
n � 2 df. We break SSE into two pieces, SSPE (pure error)
and SSLF (lack of fit), as follows:

SSPE � �
i
�

j
(Yij � Y�i�)2

� ��Y 2
ij � �niY�

2
i�

SSLF � SSE � SSPE

The ni observations at xi contribute ni � 1 df to SSPE,
so the number of degrees of freedom for SSPE is
�i(ni � 1) � n � c and the degrees of freedom for SSLF is
n � 2 � (n � c) � c � 2. Let MSPE � SSPE/(n � c) and

�̂0 � �̂1x � (�0 � �1x)
���
���

1

n
� � �

�
(

(

x

x

�

i �

x�)

x�

2

)2
��

1/2

(x � x�)2

��
�(xi � x�)2

1
�
n

HR 43.5 44.0 44.0 44.5 44.0 45.0 48.0 49.0

VO2 22.0 21.0 22.0 21.5 25.5 24.5 30.0 28.0

HR 49.5 51.0 54.5 57.5 57.7 61.0 63.0 72.0

VO2 32.0 29.0 38.5 30.5 57.0 40.0 58.0 72.0

Data Set 1–3 1 2 3 4 4

Variable x y y y x y

10.0 8.04 9.14 7.46 8.0 6.58
8.0 6.95 8.14 6.77 8.0 5.76

13.0 7.58 8.74 12.74 8.0 7.71
9.0 8.81 8.77 7.11 8.0 8.84

11.0 8.33 9.26 7.81 8.0 8.47
14.0 9.96 8.10 8.84 8.0 7.04

6.0 7.24 6.13 6.08 8.0 5.25
4.0 4.26 3.10 5.39 19.0 12.50

12.0 10.84 9.13 8.15 8.0 5.56
7.0 4.82 7.26 6.42 8.0 7.91
5.0 5.68 4.74 5.73 8.0 6.89
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The necessity for an alternative model to the linear probabilistic model Y � �0 �
�1x �! may be suggested either by a theoretical argument or else by examining
diagnostic plots from a linear regression analysis. In either case, settling on a model
whose parameters can be easily estimated is desirable. An important class of such
models is specified by means of functions that are “intrinsically linear.”

Four of the most useful intrinsically linear functions are given in Table 13.1. In each
case, the appropriate transformation is either a log transformation—either base 10 or
natural logarithm (base e)—or a reciprocal transformation. Representative graphs of
the four functions appear in Figure 13.3.

MSLF � SSLF/(c � 2). Then it can be shown that whereas
E(MSPE) � � 2 whether or not H0 is true, E(MSLF) � � 2 if
H0 is true and E(MSLF) � � 2 if H0 is false.

Test statistic: F � �
M

M

S

S

L

PE

F
�

Rejection region: f � F�,c�2,n�c

The following data comes from the article “Changes in
Growth Hormone Status Related to Body Weight of
Growing Cattle” (Growth, 1977: 241–247), with x � body
weight and y � metabolic clearance rate/body weight.

(So c � 4, n1 � n2 � 3, n3 � n4 � 4.)
a. Test H0 versus Ha at level .05 using the lack-of-fit test just

described.
b. Does a scatter plot of the data suggest that the rela-

tionship between x and y is linear? How does this com-
pare with the result of part (a)? (A nonlinear regression
function was used in the article.)

x 110 110 110 230 230 230 360

y 235 198 173 174 149 124 115

x 360 360 360 505 505 505 505

y 130 102 95 122 112 98 96

13.2 Regression with Transformed Variables

DEFINITION A function relating y to x is intrinsically linear if by means of a trans-
formation on x and/or y, the function can be expressed as y � �0 � �1x,
where x � the transformed independent variable and y � the transformed
dependent variable.

For an exponential function relationship, only y is transformed to achieve lin-
earity, whereas for a power function relationship, both x and y are transformed.
Because the variable x is in the exponent in an exponential relationship, y increases
(if � � 0) or decreases (if � � 0) much more rapidly as x increases than is the case

Table 13.1 Useful Intrinsically Linear Functions*

Function Transformation(s) to Linearize Linear Form

a. Exponential: y � �e�x y � ln(y) y � ln(�) � �x
b. Power: y � �x� y � log(y), x � log(x) y � log(�) � �x
c. y � � � � � log(x) x � log(x) y � � � �x

d. Reciprocal: y � � � � � �
1
x

� x � �
1
x

� y � � � �x

*When log(�) appears, either a base 10 or a base e logarithm can be used.
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for the power function, though over a short interval of x values it can be difficult to
differentiate between the two functions. Examples of functions that are not intrinsi-
cally linear are y � � � 'e�x and y � � � 'x�.

Intrinsically linear functions lead directly to probabilistic models that, though
not linear in x as a function, have parameters whose values are easily estimated using
ordinary least squares.

The intrinsically linear probabilistic models that correspond to the four functions of
Table 13.1 are as follows:

a. Y � �e�x � !, a multiplicative exponential model, so that ln(Y) � Y � �0 �
�1x � ! with x � x, �0 � ln(�), �1 � �, and ! � ln(!).

b. Y � �x� � !, a multiplicative power model, so that log(Y) � Y � �0 � �1x � !
with x � log(x), �0 � log(�), �1 � �, and ! � log(!).

c. Y �� � � log(x) � !, so that x � log(x) immediately linearizes the model.

d. Y � � � � � 1/x � !, so that x � 1/x yields a linear model.

The additive exponential and power models, Y � �e�x �! and Y � �x� � !, are not
intrinsically linear. Notice that both (a) and (b) require a transformation on Y and, as
a result, a transformation on the error variable !. In fact, if ! has a lognormal distri-
bution (see Chapter 4) with E(!) � e�2/2 and V(!) � ) 2 independent of x, then the
transformed models for both (a) and (b) will satisfy all the assumptions of Chapter 12
regarding the linear probabilistic model; this in turn implies that all inferences for
the parameters of the transformed model based on these assumptions will be valid.
If � 2 is small, 	Y�x � �e�x in (a) or �x� in (b).

y

x
�

� 0� 

(a)

y

x

�

�

� 0�

y

x

0 �     � 1�

(b)

� � 1

y

x

� � 0

y

x

0 0

� 0�

(c)

y

x

� 0�

y

x
(d)

� � 0

y

x

� � 0
�

Figure 13.3 Graphs of the intrinsically linear functions given in Table 13.1

DEFINITION A probabilistic model relating Y to x is intrinsically linear if, by means of a
transformation on Y and/or x, it can be reduced to a linear probabilistic model
Y � �0 � �1x � !.
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The major advantage of an intrinsically linear model is that the parameters �0

and �1 of the transformed model can be immediately estimated using the principle
of least squares simply by substituting x and y into the estimating formulas:

�̂1 �
(13.5)

�̂0 � � y� � �̂1x�

Parameters of the original nonlinear model can then be estimated by transforming
back �̂0 and/or �̂1 if necessary. Once a prediction interval for y when x � x* has
been calculated, reversing the transformation gives a PI for y itself. In cases (a) and
(b), when � 2 is small, an approximate CI for 	Y�x* results from taking antilogs of the
limits in the CI for �0 � �1x* (strictly speaking, taking antilogs gives a CI for the
median of the Y distribution, i.e., for 	~Y�x* . Because the lognormal distribution is
positively skewed, 	 � 	~; the two are approximately equal if � 2 is close to 0.)

Taylor’s equation for tool life y as a function of cutting time x states that xyc � k or,
equivalently, that y � �x�. The article “The Effect of Experimental Error on the
Determination of Optimum Metal Cutting Conditions” (J. Eng. for Industry, 1967:
315–322) observes that the relationship is not exact (deterministic) and that the
parameters � and � must be estimated from data. Thus an appropriate model is the
multiplicative power model Y � � � x� � !, which the author fit to the accompanying
data consisting of 12 carbide tool life observations (Table 13.2). In addition to the x,
y, x, and y values, the predicted transformed values (ŷ) and the predicted values
on the original scale ( ŷ, after transforming back) are given.

�yi � �̂1 �xi��
n

�xiyi � �xi �yi/n��
�(xi )2 � (�xi)2/n

Example 13.3

Table 13.2 Data for Example 13.3

x y x � ln(x) y � ln(y) ŷ ŷ � eŷ

1 600. 2.3500 6.39693 .85442 1.12754 3.0881
2 600. 2.6500 6.39693 .97456 1.12754 3.0881
3 600. 3.0000 6.39693 1.09861 1.12754 3.0881
4 600. 3.6000 6.39693 1.28093 1.12754 3.0881
5 500. 6.4000 6.21461 1.85630 2.11203 8.2650
6 500. 7.8000 6.21461 2.05412 2.11203 8.2650
7 500. 9.8000 6.21461 2.28238 2.11203 8.2650
8 500. 16.5000 6.21461 2.80336 2.11203 8.2650
9 400. 21.5000 5.99146 3.06805 3.31694 27.5760

10 400. 24.5000 5.99146 3.19867 3.31694 27.5760
11 400. 26.0000 5.99146 3.25810 3.31694 27.5760
12 400. 33.0000 5.99146 3.49651 3.31694 27.5760

The summary statistics for fitting a straight line to the transformed data are �xi �
74.41200, �yi � 26.22601, �xi 2 � 461.75874, �yi 2 � 67.74609, and �xi yi �
160.84601, so

�̂1 � � �5.3996

�̂0 � � 35.6684

The estimated values of � and �, the parameters of the power function model, are
�̂ � �̂1 � �5.3996 and �̂ � e�̂0 � 3.094491530 � 1015. Thus the estimated regression

26.22601 � (�5.3996)(74.41200)
����

12

(160.84601) � (74.41200)(26.22601)/12
�����

461.75874 � (74.41200)2/12
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function is 	̂Y�x � 3.094491530 � 1015 � x�5.3996. To recapture Taylor’s (estimated)
equation, set y � 3.094491530 � 1015 � x�5.3996, whence, xy .185 � 740.

Figure 13.4(a) gives a plot of the standardized residuals from the linear regres-
sion using transformed variables (for which r 2 � .922); there is no apparent pattern
in the plot, though one standardized residual is a bit large, and the residuals look as
they should for a simple linear regression. Figure 13.4(b) pictures a plot of ŷ versus
y, which indicates satisfactory predictions on the original scale.

To obtain a confidence interval for median tool life when cutting time is 500,
we transform x � 500 to x � 6.21461. Then �̂0 � �̂1x � 2.1120, and a 95% CI for
�0 � �1(6.21461) is (from Section 12.4) 2.1120 � (2.228)(.0824) � (1.928, 2.296).
The 95% CI for 	̃Y�500 is then obtained by taking antilogs: (e1.928, e2.296) � (6.876,
9.930). It is easily checked that for the transformed data s2 ��̂ 2 � .081. Because
this is quite small, (6.876, 9.930) is an approximate interval for 	Y�500.

In the article “Ethylene Synthesis in Lettuce Seeds: Its Physiological Significance”
(Plant Physiology, 1972: 719–722), ethylene content of lettuce seeds (y, in nL/g
dry wt) was studied as a function of exposure time (x, in min) to an ethylene
absorbent. Figure 13.5 presents both a scatter plot of the data and a plot of the
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Figure 13.4 (a) Standardized residuals versus x from Example 13.3; (b) ŷ versus y from
Example 13.3 ■

Example 13.4
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Figure 13.5 (a) Scatter plot; (b) residual plot from linear regression for the data in Example 13.4
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Table 13.3 Data for Example 13.4

x y y � ln(y) ŷ ŷ � eŷ

2 408 6.01 5.876 353.32
10 274 5.61 5.617 275.12
20 196 5.28 5.294 199.12
30 137 4.92 4.971 144.18
40 90 4.50 4.647 104.31
50 78 4.36 4.324 75.50
60 51 3.93 4.001 54.64
70 40 3.69 3.677 39.55
80 30 3.40 3.354 28.62
90 22 3.09 3.031 20.72

100 15 2.71 2.708 15.00

residuals generated from a linear regression of y on x. Both plots show a strong
curved pattern, suggesting that a transformation to achieve linearity is appropriate.
In addition, a linear regression gives negative predictions for x � 90 and x � 100.

The author did not give any argument for a theoretical model, but his plot of
y � ln(y) versus x shows a strong linear relationship, suggesting that an exponen-
tial function will provide a good fit to the data. Table 13.3 shows the data values and
other information from a linear regression of y on x. The estimates of parameters of
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Figure 13.6 Plot of (a) standardized residuals (after transforming) versus x; (b) ŷ versus y for
data in Example 13.4 ■

the linear model are �̂1 � �.0323 and �̂0 � 5.941, with r 2 � .995. The estimated
regression function for the exponential model is 	̂Y�x � e�̂0 � e�̂1x � 380.32e�.0323x.
The predicted values ŷi can then be obtained by substitution of xi (i � 1, . . . , n)
into 	̂Y�x or else by computing ŷi � eŷi, where the ŷi s are the predictions from the
transformed straight-line model. Figure 13.6 presents both a plot of e* versus x
(the standardized residuals from a linear regression) and a plot of ŷ versus y.
These plots support the choice of an exponential model.

In analyzing transformed data, one should keep in mind the following points:

1. Estimating �1 and �0 as in (13.5) and then transforming back to obtain estimates
of the original parameters is not equivalent to using the principle of least squares
directly on the original model. Thus, for the exponential model, we could estimate
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� and � by minimizing �(yi � �e�xi)2. Iterative computation would be necessary.
The resulting estimates would not be equal: �̂ � e�̂0 and �̂ � �̂1.

2. If the chosen model is not intrinsically linear, the approach summarized in (13.5)
cannot be used. Instead, least squares (or some other fitting procedure) would have
to be applied to the untransformed model. Thus, for the additive exponential model
Y � �e�x � !, least squares would involve minimizing �(yi � �e�xi)2. Taking par-
tial derivatives with respect to � and � results in two nonlinear normal equations
in � and �; these equations must then be solved using an iterative procedure.

3. When the transformed linear model satisfies all the assumptions listed in Chapter 12,
the method of least squares yields best estimates of the transformed parameters.
However, estimates of the original parameters may not be best in any sense,
though they will be reasonable. For example, in the exponential model, the esti-
mator �̂ � e�̂0 will not be unbiased, though it will be the maximum likelihood
estimator of � if the error variable ! is normally distributed. Using least squares
directly (without transforming) could yield better estimates, though the computa-
tions would be quite burdensome.

4. If a transformation on y has been made and one wishes to use the standard for-
mulas to test hypotheses or construct CIs, ! should be at least approximately nor-
mally distributed. To check this, the residuals from the transformed regression
should be examined.

5. When y is transformed, the r 2 value from the resulting regression refers to varia-
tion in the yi s explained by the transformed regression model. Although a high
value of r 2 here indicates a good fit of the estimated original nonlinear model to
the observed yi s, r 2 does not refer to these original observations. Perhaps the best
way to assess the quality of the fit is to compute the predicted values ŷi using the
transformed model, transform them back to the original y scale to obtain ŷi, and
then plot ŷ versus y. A good fit is then evidenced by points close to the 45° line.
One could compute SSE � �(yi � ŷi)2 as a numerical measure of the goodness of
fit. When the model was linear, we compared this to SST � �(yi � y�)2, the total
variation about the horizontal line at height y�; this led to r 2. In the nonlinear case,
though, it is not necessarily informative to measure total variation in this way, so
an r 2 value is not as useful as in the linear case.

More General Regression Methods
Thus far we have assumed that either Y � f(x) � ! (an additive model) or that Y �
f(x) � ! (a multiplicative model). In the case of an additive model, 	Y�x � f(x), so
estimating the regression function f(x) amounts to estimating the curve of mean y
values. On occasion, a scatter plot of the data suggests that there is no simple math-
ematical expression for f(x). Statisticians have recently developed some more flexi-
ble methods that permit a wide variety of patterns to be modeled using the same 
fitting procedure. One such method is LOWESS (or LOESS), short for locally
weighted scatter plot smoother. Let (x*, y*) denote a particular one of the n (x, y)
pairs in the sample. The ŷ value corresponding to (x*, y*) is obtained by fitting a
straight line using only a specified percentage of the data (e.g., 25%) whose x values
are closest to x*. Furthermore, rather than use “ordinary” least squares, which gives
equal weight to all points, those with x values closer to x* are more heavily weighted
than those whose x values are farther away. The height of the resulting line above x*
is the fitted value ŷ*. This process is repeated for each of the n points, so n different
lines are fit (you surely wouldn’t want to do all this by hand). Finally, the fitted
points are connected to produce a LOWESS curve.
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Weighing large deceased animals found in wilderness areas is usually not feasible,
so it is desirable to have a method for estimating weight from various characteristics
of an animal that can be easily determined. MINITAB has a stored data set consist-
ing of various characteristics for a sample of n � 143 wild bears. Figure 13.7(a) dis-
plays a scatter plot of y � weight versus x � distance around the chest (chest girth).
At first glance, it looks as though a single line obtained from ordinary least squares
would effectively summarize the pattern. Figure 13.7(b) shows the LOWESS curve
produced by MINITAB using a span of 50% (the fit at (x*, y*) is determined by the
closest 50% of the sample). The curve appears to consist of two straight line seg-
ments joined together above approximately x � 38. The steeper line is to the right of
38, indicating that weight tends to increase more rapidly as girth does for girths
exceeding 38 in.

Example 13.5
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Figure 13.7 A MINITAB scatter plot and LOWESS curve for the bear weight data ■
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It is complicated to make other inferences (e.g., obtain a CI for a mean y value)
based on this general type of regression model. The bootstrap technique mentioned
earlier can be used for this purpose.

Logistic Regression
The simple linear regression model is appropriate for relating a quantitative response
variable y to a quantitative predictor x. Suppose that y is a dichotomous variable with
possible values 1 and 0 corresponding to success and failure. Let p � P(S) � P(y � 1).
Frequently, the value of p will depend on the value of some quantitative variable x. For
example, the probability that a car needs warranty service of a certain kind might well
depend on the car’s mileage, or the probability of avoiding an infection of a certain
type might depend on the dosage in an inoculation. Instead of using just the symbol p
for the success probability, we now use p(x) to emphasize the dependence of this prob-
ability on the value of x. The simple linear regression equation Y � �0 � �1x � ! is no
longer appropriate, for taking the mean value on each side of the equation gives

	Y�x � 1 � p(x) � 0 � (1 � p(x)) � p(x) � �0 � �1x

Whereas p(x) is a probability and therefore must be between 0 and 1, �0 � �1x need
not be in this range.

Instead of letting the mean value of y be a linear function of x, we now con-
sider a model in which some function of the mean value of y is a linear function
of x. In other words, we allow p(x) to be a function of �0 � �1x rather than 
�0 � �1x itself. A function that has been found quite useful in many applications
is the logit function

p(x) �

Figure 13.8 shows a graph of p(x) for particular values of �0 and �1 with �1 � 0. As
x increases, the probability of success increases. For �1 negative, the success proba-
bility would be a decreasing function of x.

e�0��1x

��
1 � e�0��1x

10 20 30 40 50 60 70 80

0

.5

1.0

x

p(x)

Figure 13.8 A graph of a logit function

Logistic regression means assuming that p(x) is related to x by the logit func-
tion. Straightforward algebra shows that

� e�0��1x
p(x)

�
1 � p(x)
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The expression on the left-hand side is called the odds. If, for example, �
1 �

p(6

p

0

(6

)

0)
�� 3,

then when x � 60 a success is three times as likely as a failure. We now see that the log-
arithm of the odds is a linear function of the predictor. In particular, the slope parame-
ter �1 is the change in the log odds associated with a 1-unit increase in x. This implies
that the odds itself changes by the multiplicative factor e�1 when x increases by 1 unit.

Fitting the logistic regression to sample data requires that the parameters �0

and �1 be estimated. This is usually done using the maximum likelihood technique
described in Chapter 6. The details are quite involved, but fortunately the most pop-
ular statistical computer packages will do this on request and provide quantitative
and pictorial indications of how well the model fits.

Here is data on launch temperature and the incidence of failure for O-rings in 24
space shuttle launches prior to the Challenger disaster of January 1986.

Temperature Failure Temperature Failure Temperature Failure

53 Y 68 N 75 N
56 Y 69 N 75 Y
57 Y 70 N 76 N
63 N 70 Y 76 N
66 N 70 Y 78 N
67 N 70 Y 79 N
67 N 72 N 80 N
67 N 73 N 81 N

Figure 13.9 shows JMP output for a logistic regression analysis. We have chosen to
let p denote the probability of failure. Failures tended to occur at lower temperatures
and successes at higher temperatures, so the graph of p̂ decreases as temperature

Figure 13.9 Logistic regression output from JMP

Example 13.6
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increases. The estimate of �1 is �̂1 � �.1713, and the estimated standard deviation of
�̂1 is s�̂1

� .08344. Provided that n is large enough, and we assume it is in this case,
�̂1 has approximately a normal distribution. If �1 � 0 (temperature does not affect
the likelihood of O-ring failure), z � �̂1/s�̂1

has approximately a standard normal
distribution. The value of this z-ratio is �2.05, and the P-value for a two-tailed test
is .0404 (twice the area captured under the z curve to the left of �2.05). JMP reports
the value of a chi-squared statistic, which is just z2, and the chi-squared P-value dif-
fers from that for z only because of rounding. For each 1-degree increase in temper-
ature, the odds of failure decreases by a factor of roughly .84. The launch tempera-
ture for the Challenger mission was only 31°F. Because this value is much smaller
than any temperature in our sample, it is dangerous to extrapolate the estimated rela-
tionship. Nevertheless, it appears that for a temperature this small, O-ring failure is
almost a sure thing. ■

EXERCISES Section 13.2 (15–25)

15. No tortilla chip aficionado likes soggy chips, so it is impor-
tant to find characteristics of the production process that
produce chips with an appealing texture. The following data
on x � frying time (sec) and y � moisture content (%)
appeared in the article “Thermal and Physical Properties of
Tortilla Chips as a Function of Frying Time” (J. of Food
Processing and Preservation, 1995: 175–189).

a. Construct a scatter plot of y versus x and comment.
b. Construct a scatter plot of the (ln(x), ln(y)) pairs and

comment.
c. What probabilistic relationship between x and y is sug-

gested by the linear pattern in the plot of part (b)?
d. Predict the value of moisture content when frying time is

20 in a way that conveys information about reliability
and precision.

e. Analyze the residuals from fitting the simple linear re-
gression model to the transformed data and comment.

16. Polyester fiber ropes are increasingly being used as compo-
nents of mooring lines for offshore structures in deep water.
The authors of the paper “Quantifying the Residual Creep
Life of Polyester Mooring Ropes” (Intl. J. of Offshore and
Polar Exploration, 2005: 223–228) used the accompanying
data as a basis for studying how time to failure (hr) depended
on load (% of breaking load):

A linear regression of log(time) versus load was fit. The
investigators were particularly interested in estimating the
slope of the true regression line relating these variables.
Investigate the quality of the fit, estimate the slope, and pre-
dict time to failure when load is 80 in a way that conveys
information about reliability and precision.

17. The following data on mass rate of burning x and flame
length y is representative of that which appeared in the arti-
cle “Some Burning Characteristics of Filter Paper” (Com-
bustion Science and Technology, 1971: 103–120):

x | 1.7 2.2 2.3 2.6 2.7 3.0 3.2

y | 1.3 1.8 1.6 2.0 2.1 2.2 3.0

x | 3.3 4.1 4.3 4.6 5.7 6.1

y | 2.6 4.1 3.7 5.0 5.8 5.3

a. Estimate the parameters of a power function model.
b. Construct diagnostic plots to check whether a power

function is an appropriate model choice.
c. Test H0: � � �

4
3

� versus Ha: � � �
4
3

�, using a level .05 test.
d. Test the null hypothesis that states that the median flame

length when burning rate is 5.0 is twice the median flame
length when burning rate is 2.5 against the alternative that
this is not the case.

18. Failures in aircraft gas turbine engines due to high cycle
fatigue is a pervasive problem. The article “Effect of Crystal
Orientation on Fatigue Failure of Single Crystal Nickel Base
Turbine Blade Superalloys (J. of Engineering for Gas
Turbines and Power, 2002: 161–176) gave the accompanying
data and fit a nonlinear regression model in order to predict
strain amplitude from cycles to failure. Fit an appropriate
model, investigate the quality of the fit, and predict ampli-
tude when cycles to failure � 5000.

x 5 10 15 20 25 30 45 60

y 16.3 9.7 8.1 4.2 3.4 2.9 1.9 1.3

Load: 77.7 77.8 77.9 77.8 85.5 85.5

Time: 5.067 552.056 127.809 7.611 .124 .077

Load: 89.2 89.3 73.1 85.5 89.2 85.5

Time: .008 .013 49.439 .503 .362 9.930

Load: 89.2 85.5 89.2 82.3 82.0 82.3

Time: .677 5.322 .289 53.079 7.625 155.299
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Obs Cycfail Strampl Obs Cycfail Strampl

1 1326 .01495 11 7356 .00576
2 1593 .01470 12 7904 .00580
3 4414 .01100 13 79 .01212
4 5673 .01190 14 4175 .00782
5 29516 .00873 15 34676 .00596
6 26 .01819 16 114789 .00600
7 843 .00810 17 2672 .00880
8 1016 .00801 18 7532 .00883
9 3410 .00600 19 30220 .00676

10 7101 .00575

19. Thermal endurance tests were performed to study the rela-
tionship between temperature and lifetime of polyester
enameled wire (“Thermal Endurance of Polyester Enameled
Wires Using Twisted Wire Specimens,” IEEE Trans. In-
sulation, 1965: 38–44), resulting in the following data.

Temp. | 200 200 200 200 200 200

Lifetime | 5933 5404 4947 4963 3358 3878

Temp. | 220 220 220 220 220 220

Lifetime | 1561 1494 747 768 609 777

Temp. | 240 240 240 240 240 240

Lifetime | 258 299 209 144 180 184

a. Does a scatter plot of the data suggest a linear proba-
bilistic relationship between lifetime and temperature?

b. What model is implied by a linear relationship between
expected ln(lifetime) and 1/temperature? Does a scatter
plot of the transformed data appear consistent with this
relationship?

c. Estimate the parameters of the model suggested in part
(b). What lifetime would you predict for a temperature of
220?

d. Because there are multiple observations at each x value,
the method in Exercise 14 can be used to test the null
hypothesis that states the model suggested in part (b) is
correct. Carry out the test at level .01.

20. Exercise 14 presented data on body weight x and metabolic
clearance rate/body weight y. Consider the following intrin-
sically linear functions for specifying the relationship
between the two variables: (a) ln(y) versus x, (b) ln(y) ver-
sus ln(x), (c) y versus ln(x), (d) y versus 1/x, and (e) ln(y)
versus 1/x. Use any appropriate diagnostic plots and analy-
ses to decide which of these functions you would select to
specify a probabilistic model. Explain your reasoning.

21. A plot in the article “Thermal Conductivity of Polyethylene:
The Effects of Crystal Size, Density, and Orientation on
the Thermal Conductivity” (Polymer Eng. and Science,
1972: 204–208) suggests that the expected value of thermal
conductivity y is a linear function of 104 � 1/x, where x is
lamellar thickness.

a. Estimate the parameters of the regression function and
the regression function itself.

b. Predict the value of thermal conductivity when lamellar
thickness is 500 Å.

22. In each of the following cases, decide whether the given
function is intrinsically linear. If so, identify x and y, and
then explain how a random error term ! can be introduced to
yield an intrinsically linear probabilistic model.
a. y � 1/(� � �x)
b. y � 1/(1 � e���x)
c. y � ee

���x

(a Gompertz curve)
d. y � � � �e�x

23. Suppose x and y are related according to a probabilistic
exponential model Y � �e�x � !, with V(!) a constant inde-
pendent of x (as was the case in the simple linear model Y �
�0 � �1x � !). Is V(Y) a constant independent of x [as was
the case for Y � �0 � �1x � !, where V(Y) � � 2]? Explain
your reasoning. Draw a picture of a prototype scatter plot
resulting from this model. Answer the same questions for
the power model Y � �x� � !.

24. Kyphosis refers to severe forward flexion of the spine fol-
lowing corrective spinal surgery. A study carried out to
determine risk factors for kyphosis reported the accompa-
nying ages (months) for 40 subjects at the time of the
operation; the first 18 subjects did have kyphosis and the
remaining 22 did not.

Kyphosis 12 15 42 52 59 73
82 91 96 105 114 120

121 128 130 139 139 157

No kyphosis 1 1 2 8 11 18
22 31 37 61 72 81
97 112 118 127 131 140

151 159 177 206

Use the accompanying MINITAB logistic regression output
to decide whether age appears to have a significant impact
on the presence of kyphosis.

25. The following data resulted from a study commissioned by a
large management consulting company to investigate the
relationship between amount of job experience (months) for
a junior consultant and the likelihood of the consultant
being able to perform a certain complex task.

Success 8 13 14 18 20 21 21 22 25
26 28 29 30 32

Failure 4 5 6 6 7 9 10 11 11
13 15 18 19 20 23 27

Interpret the accompanying MINITAB logistic regression
output, and sketch a graph of the estimated probability of task
performance as a function of experience.

x | 240 410 460 490 520 590 745 8300

y | 12.0 14.7 14.7 15.2 15.2 15.6 16.0 18.1
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The nonlinear yet intrinsically linear models of Section 13.2 involved functions of 
the independent variable x that were either strictly increasing or strictly decreasing.
In many situations, either theoretical reasoning or else a scatter plot of the data sug-
gests that the true regression function 	Y�x has one or more peaks or valleys—that is,
at least one relative minimum or maximum. In such cases, a polynomial function
y � �0 � �1x � 
 
 
 � �kxk may provide a satisfactory approximation to the true
regression function.

13.3 Polynomial Regression

DEFINITION The kth-degree polynomial regression model equation is

Y � �0 � �1x � �2x2 � 
 
 
 � �kxk � ! (13.6)

where ! is a normally distributed random variable with

	! � 0 � 2
! � � 2 (13.7)

From (13.6) and (13.7), it follows immediately that

	Y�x � �0 � �1x � 
 
 
 � �kxk � 2
Y�x � � 2 (13.8)

In words, the expected value of Y is a kth-degree polynomial function of x, whereas
the variance of Y, which controls the spread of observed values about the regression
function, is the same for each value of x. The observed pairs (x1, y1), . . . , (xn, yn) are
assumed to have been generated independently from the model (13.6). Figure 13.10
illustrates both a quadratic and cubic model.

x

y

(a)
x

y

(b)

Figure 13.10 (a) Quadratic regression model; (b) cubic regression model

Logistic regression table for Exercise 24

Predictor Coef StDev Z P Odds Ratio 95% Lower CI Upper
Constant �0.5727 0.6024 �0.95 0.342
age 0.004296 0.005849 0.73 0.463 1.00 0.99 1.02

Logistic regression table for Exercise 25

Predictor Coef StDev Z P Odds Ratio 95% Lower CI Upper
Constant �3.211 1.235 �2.60 0.009
age 0.17772 0.06573 2.70 0.007 1.19 1.05 1.36
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Estimation of Parameters Using Least Squares
To estimate �0, �1, . . . , �k, consider a trial regression function y � b0 � b1x � 
 
 
 �
bkxk. Then the goodness of fit of this function to the observed data can be assessed
by computing the sum of squared deviations

f (b0, b1, . . . , bk) � �
n

i�1
[yi � (b0 � b1xi � b2x 2

i � 
 
 
 � bkx k
i )]2 (13.9)

According to the principle of least squares, the estimates �̂0, �̂1, . . . , �̂k are those
values of b0, b1, . . . , bk that minimize Expression (13.9). It should be noted that
when x1, x2, . . . , xn are all different, there is a polynomial of degree n � 1 that fits
the data perfectly, so that the minimizing value of (13.9) is 0 when k � n � 1.
However, in virtually all applications, the polynomial model (13.6) with k large is
quite unrealistic, and in most applications k � 2 (quadratic) or k � 3 (cubic) is
appropriate.

To find the minimizing values in (13.9), we take the k � 1 partial derivatives
∂f /∂b0, ∂f /∂b1, . . . , ∂f /∂bk and equate them to 0, resulting in the system of normal
equations for the estimates. Because the trial function b0 � b1x � 
 
 
 � bkxk is lin-
ear in b0, . . . , bk (though not in x), the k � 1 normal equations are linear in these 
unknowns:

b0n � b1�xi � b2�x 2
i � 
 
 
 � bk�x k

i � �yi

b0�xi � b1�x 2
i � b2�x3

i � 
 
 
 � bk�xi
k�1 � �xiyi

� � � (13.10)
� � �
� � �

b0�x k
i � b1�xi

k�1 � 
 
 
 � bk�x2k
i � �xk

i yi

All standard statistical computer packages will automatically solve the equations in
(13.10) and provide the estimates as well as much other information.*

The article “Residual Stresses and Adhesion of Thermal Spray Coatings” (Surface
Engineering, 2005: 35–40) considered the relationship between the thickness (	m)
of NiCrAl coatings deposited on stainless steel substrate and corresponding bond
strength (MPa). The following data was read from a plot in the paper: 

Thickness | 220 220 220 220 370 370 370 370 440 440

Strength | 24.0 22.0 19.1 15.5 26.3 24.6 23.1 21.2 25.2 24.0

Thickness | 440 440 680 680 680 680 860 860 860 860

Strength | 21.7 19.2 17.0 14.9 13.0 11.8 12.2 11.2 6.6 2.8

The scatter plot in Figure 13.11(a) supports the choice of the quadratic regression
model. Figure 13.11(b) contains MINITAB output from a fit of this model. The esti-
mated regression coefficients are

�̂0 � 14.521 �̂1 � .04323 �̂2 � �.00006001

* We will see in Section 13.4 that polynomial regression is a special case of multiple regression, so a
command appropriate for this latter task is generally used.

Example 13.7
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from which the estimated regression function is

y � 14.521 � .04323x � .00006001x2

Substitution of the successive x values 220, 220, . . . , 860, and 860 into this func-
tion gives the predicted values ŷ1 � 21.128, . . . , ŷ20 � 7.321, and the residuals
y1 � ŷ1 � 2.872, . . . , y20 � ŷ20 � �4.521 result from subtraction. Figure 13.12
shows a plot of the standardized residuals versus ŷ and also a normal probability
plot of the standardized residuals, both of which validate the quadratic model.
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The regression equation is 
strength = 14.5 + 0.0432 thickness - 0.000060 thicksqd

Predictor Coef SE Coef T P
Constant 14.521 4.754 3.05 0.007
thickness 0.04323 0.01981 2.18 0.043
thicksqd -0.00006001 0.00001786 -3.36 0.004

S = 3.26937 R-Sq = 78.0% R-Sq(adj) = 75.4%

Analysis of Variance

Source DF SS MS F P
Regression 2 643.29 321.65 30.09 0.000
Residual Error 17 181.71 10.69
Total 19 825.00

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI
1 21.136 1.167 (18.674, 23.598) (13.812, 28.460)
2 10.704 1.189 ( 8.195, 13.212) ( 3.364, 18.043)

Values of Predictors for New Observations

New
Obs thickness thicksqd
1 500 250000
2 800 640000

(a)

(b)

Figure 13.11 (a) Scatter plot of data from Example 13.7 (b) MINITAB output from fit of
quadratic model
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̂2 and R2

To make further inferences about the parameters of the regression function, the error
variance � 2 must be estimated. With ŷi � �̂0 � �̂1xi � 
 
 
 � �̂kx k

i, the ith residual is
yi � ŷi, and the sum of squared residuals (error sum of squares) is SSE � �(yi � ŷi)2.
The estimate of � 2 is then

�̂ 2 � s2 � � MSE (13.11)

where the denominator n � (k � 1) is used because k � 1 df are lost in estimating
�0, �1, . . . , �k.

If we again let SST � �(yi � y�)2, then SSE/SST is the proportion of the total
variation in the observed yi s that is not explained by the polynomial model. The
quantity 1 � SSE/SST, the proportion of variation explained by the model, is called
the coefficient of multiple determination and is denoted by R2.

Suppose we consider fitting a cubic model to the data in Example 13.7. Because
the cubic model includes the quadratic as a special case, the fit to a cubic will be at
least as good as the fit to a quadratic. More generally, with SSEk � the error sum of
squares from a kth-degree polynomial, SSEk � SSEk and R2

k � R2
k whenever k � k.

Because the objective of regression analysis is to find a model that is both simple (rel-
atively few parameters) and provides a good fit to the data, a higher-degree polyno-
mial may not specify a better model than a lower-degree model despite its higher R2

value. To balance the cost of using more parameters against the gain in R2, many stat-
isticians use the adjusted coefficient of multiple determination

adjusted R2 � 1 � � � (13.12)

Adjusted R2 adjusts the proportion of unexplained variation upward [since the ratio
(n � 1)/(n � k � 1) exceeds 1], which results in adjusted R2 � R2. Thus if R2

2 � .66,
R2

3 � .70, and n � 10, then

adjusted R2
2 � � .563 adjusted R2

3 � � .550

so the small gain in R2 in going from a quadratic to a cubic model is not enough to
offset the cost of adding an extra parameter to the model.

9(.70) � 3
��

10 � 4

9(.66) � 2
��

10 � 3

(n � 1)R2 � k
��

n � 1 � k

SSE
�
SST

n � 1
��
n � (k � 1)

SSE
��
n � (k � 1)
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Figure 13.12 Diagnostic plots for quadratic model fit to data of Example 13.7 ■
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SSE and SST are typically found on computer output in an ANOVA table. Fig-
ure 13.11(b) gives SSE � 181.71 and SST � 825.00, for the bond strength data,
from which R2 � 1 � 181.71/825.00 � .780 (alternatively, R2 � SSR/SST �
643.29/825.00 � .780). Thus 78.0% of the observed variation in bond strength can
be attributed to the model relationship. Adjusted R2 � .754, only a small downward
change in R2. The estimates of � 2 and � are

�̂ 2 � s2 � � � 10.69

�̂ � s � 3.27 ■

Besides computing R2 and adjusted R2, one should examine the usual diagnos-
tic plots to determine whether model assumptions are valid or whether modification
may be appropriate.

Statistical Intervals and Test Procedures
Because the yi s appear in the normal equations (13.10) only on the right-hand side
and in a linear fashion, the resulting estimates �̂0, . . . , �̂k are themselves linear func-
tions of the yi s. Thus the estimators are linear functions of the Yi s, so each �̂i has a
normal distribution. It can also be shown that each �̂i is an unbiased estimator of �i.

Let ��̂i
denote the standard deviation of the estimator �̂i. This standard devia-

tion has the form

��̂i
� � � �a complicated expression involving all�xj s, x 2

j s, . . . , and xk
j s

Fortunately, the expression in braces has been programmed into all of the most fre-
quently used statistical computer packages. The estimated standard deviation of �̂i,
s�̂i

, results from substituting s in place of � in the expression for ��̂i
. These estimated

standard deviations s�̂0
, s�̂1

, . . . , and s�̂k
appear on output from all the aforementioned

statistical packages. Let S�̂i
denote the estimator of ��̂i

—that is, the random variable
whose observed value is s�̂i

. Then it can be shown that the standardized variable

T � (13.13)

has a t distribution based on n � (k � 1) df. This leads to the following inferential
procedures.

�̂i � �i

�
S�̂i

181.71
��
20 � (2 � 1)

SSE
��
n � (k � 1)

A 100(1 � �)% CI for �i, the coefficient of xi in the polynomial regression
function, is

�̂i � t�/2,n�(k�1) � s�̂i

A test of H0: �i � �i0 is based on the t statistic value

t � �
�̂i �

s�̂i

�i0�

The test is based on n � (k � 1) df and is upper-, lower-, or two-tailed according
to whether the inequality in Ha is � , � , or � .

A point estimate of �Y�x—that is, of �0 � �1x � 
 
 
 � �kxk—is �̂Y�x � �̂0 �
�̂1x � 
 
 
 � �̂kxk. The estimated standard deviation of the corresponding estimator
is rather complicated. Many computer packages will give this estimated standard
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deviation for any x value when requested to do so by a user. This, along with an
appropriate standardized t variable, can be used to justify the following procedures.
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Let x* denote a specified value of x. A 100(1 � �)% CI for �Y�x* is

�̂Y�x* � t�/2,n�(k�1) � � �
With Ŷ � �̂0 � �̂1x* � 
 
 
 � �̂k(x*)k, ŷ denoting the calculated value of Ŷ for
the given data and sŶ denoting the estimated standard deviation of the statistic Ŷ,
the formula for the CI is much like the one in the case of simple linear regression:

ŷ � t�/2,n�(k�1) � sŶ

A 100(1 � �)% PI for a future y value to be observed when x � x* is

�̂Y�x* � t�/2,n�(k�1) � �s2 � � �
2

�
1/2

� ŷ � t�/2,n�(k�1) � �s2� �� s�2
Ŷ�

estimated SD
of �̂Y�x*

estimated SD of

�̂Y�x*

Figure 13.11(b) shows that �̂2 � �.00006001 and s�̂2
� .00001786 (from the SE Coef

column at the top of the output). The null hypothesis H0 : �2 � 0 says that as long as the
linear predictor x is retained in the model, the quadratic predictor x2 provides no addi-
tional useful information. The relevant alternative is Ha : �2 � 0 and the test statistic is
T � �̂2/S�̂ 2

,with computed value �3.36. The test is based on n � (k � 1) � 17 df. At
significance level .05, the null hypothesis is rejected because �3.36 � �2.110 �
�t.025, 17. Inclusion of the quadratic predictor is justified. The same conclusion results
from comparing the reported P-value .004 to the chosen significance level .05.

The output in Figure 13.11(b) also contains estimation and prediction infor-
mation both for x � 500 and for x � 800. In particular, for x � 500,

ŷ � �̂0 � �̂1(500) � �̂2(500)2 � Fit � 21.136

sŶ � estimated SD of Ŷ � SE Fit � 1.167

from which a 95% CI for mean strength when thickness � 500 is 21.136 �
(2.110)(1.167) � (18.67, 23.60). A 95% PI for the strength resulting from a single
bond when thickness � 500 is 21.136 � (2.110)[(3.27)2 � (1.167)2]1/2 � (13.81, 28.46).
As before the PI is substantially wider than the CI because s is large compared to 
SE Fit. ■

Centering x Values
For the quadratic model with regression function �Y�x � �0 � �1x � �2x2, the
parameters �0, �1, and �2 characterize the behavior of the function near x � 0. For
example, �0 is the height at which the regression function crosses the vertical axis
x � 0, whereas �1 is the first derivative of the function at x � 0 (instantaneous rate
of change of �Y�x at x � 0). If the xi s all lie far from 0, we may not have precise
information about the values of these parameters. Let x� � the average of the xi s for
which observations are to be taken, and consider the model

Y � �*0 � �*1 (x � x�) � �*2 (x � x�)2 � � (13.14)

In the model (13.14), �Y�x � �*0 � �*1 (x � x�) � �*2 (x � x�)2, and the parameters now
describe the behavior of the regression function near the center x� of the data.

To estimate the parameters of (13.14), we simply subtract x� from each xi to obtain
xi � xi � x�, and then use the xi s in place of the xi s. An important benefit of this is that
the coefficients of b0, . . . , bk in the normal equations (13.10) will be of much smaller
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magnitude than would be the case were the original xi s used. When the system is solved
by computer, this centering protects against any round-off error that may result.

The article “A Method for Improving the Accuracy of Polynomial Regression
Analysis” (J. Quality Technology, 1971: 149–155) reports the following data on x �
cure temperature (°F) and y � ultimate shear strength of a rubber compound (psi),
with x� � 297.13:

x | 280 284 292 295 298 305 308 315

x | �17.13 �13.13 �5.13 �2.13 .87 7.87 10.87 17.87

y | 770 800 840 810 735 640 590 560

A computer analysis yielded the results shown in Table 13.4.

Table 13.4 Estimated Coefficients and Standard Deviations for Example 13.10

Parameter Estimate Estimated SD Parameter Estimate Estimated SD

�0 �26,219.64 11,912.78 �*0 759.36 23.20
�1 189.21 80.25 �*1 �7.61 1.43
�2 �.3312 .1350 �*2 �.3312 .1350

The estimated regression function using the original model is y � �26,219.64 �
189.21x � .3312x2, whereas for the centered model the function is y � 759.36 �
7.61(x � 297.13) � .3312(x � 297.13)2. These estimated functions are identical;
the only difference is that different parameters have been estimated for the two mod-
els. The estimated standard deviations indicate clearly that �*0 and �*1 have been
more accurately estimated than �0 and �1. The quadratic parameters are identical
(�2 � �*2 ), as can be seen by comparing the x 2 term in (13.14) with the original
model. We emphasize again that a major benefit of centering is the gain in compu-
tational accuracy, not only in quadratic but also in higher-degree models. ■

The book by Neter et al., listed in the chapter bibliography, is a good source
for more information about polynomial regression.
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Example 13.10

EXERCISES Section 13.3 (26–35)

26. In addition to a linear regression of true density on moisture
content, the article cited in Exercise 6 considered a qua-
dratic regression of bulk density versus moisture content.
Data from a graph in the article follows, along with a
MINITAB output from the quadratic fit.

The regression equation is
bulkdens � 403 � 16.2 moiscont � 0.706 contsqd

Predictor Coef StDev T P
Constant 403.24 36.45 11.06 0.002
moiscont 16.164 5.451 2.97 0.059
contsqd �0.7063 0.1852 �3.81 0.032

S � 10.15 R-Sq � 93.8% R-Sq(adj) � 89.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 4637.7 2318.9 22.51 0.016
Residual Error 3 309.1 103.0
Total 5 4946.8

(continued at top of next column)

Analysis of Variance

StDev St
Obs moiscont bulkdens Fit Fit Residual Resid
1 7.0 479.00 481.78 9.35 �2.78 �0.70
2 10.3 503.00 494.79 5.78 8.21 0.98
3 13.7 487.00 492.12 6.49 �5.12 �0.66
4 16.6 470.00 476.93 6.10 �6.93 �0.85
5 19.8 458.00 446.39 5.69 11.61 1.38
6 22.0 412.00 416.99 8.75 �4.99 �0.97

StDev
Fit Fit 95.0% CI 95.0% PI

491.10 6.52 (470.36, 511.83) (452.71, 529.48)

a. Does a scatter plot of the data appear consistent with the
quadratic regression model?

b. What proportion of observed variation in density can be
attributed to the model relationship?

c. Does the quadratic model appear to be useful? Carry out
a test at significance level .05.



d. The last line of output is from a request for estimation and
prediction information when moisture content is 14. Cal-
culate a 99% PI for density when moisture content is 14.

e. Does the quadratic predictor appear to provide useful
information? Test the appropriate hypotheses at signifi-
cance level .05.

27. The following data on y � glucose concentration (g/L) and
x � fermentation time (days) for a particular blend of malt
liquor was read from a scatter plot in the article “Improving
Fermentation Productivity with Reverse Osmosis” (Food
Tech., 1984: 92–96):

x | 1 2 3 4 5 6 7 8

y | 74 54 52 51 52 53 58 71

a. Verify that a scatter plot of the data is consistent with the
choice of a quadratic regression model.

b. The estimated quadratic regression equation is y �
84.482 � 15.875x � 1.7679x2. Predict the value of glu-
cose concentration for a fermentation time of 6 days, and
compute the corresponding residual.

c. Using SSE � 61.77, what proportion of observed variation
can be attributed to the quadratic regression relationship?

d. The n � 8 standardized residuals based on the quadratic
model are 1.91, �1.95, �.25, .58, .90, .04, �.66, and .20.
Construct a plot of the standardized residuals versus x
and a normal probability plot. Do the plots exhibit any
troublesome features?

e. The estimated standard deviation of �̂Y�6—that is, �̂0 �
�̂1(6) � �̂2(36)—is 1.69. Compute a 95% CI for �Y�6.

f. Compute a 95% PI for a glucose concentration observa-
tion made after 6 days of fermentation time.

28. The viscosity (y) of an oil was measured by a cone and plate
viscometer at six different cone speeds (x). It was assumed
that a quadratic regression model was appropriate, and the
estimated regression function resulting from the n � 6 ob-
servations was

y � �113.0937 � 3.3684x � .01780x2

a. Estimate �Y�75, the expected viscosity when speed is
75 rpm.

b. What viscosity would you predict for a cone speed of
60 rpm?

c. If �y2
i � 8386.43, �yi � 210.70, �xiyi � 17,002.00,

and � x2
i yi � 1,419,780, compute SSE [� �y2

i �
�̂0�yi � �̂1�xiyi � �̂2�x2

i yi], s2, and s.
d. From part (c), SST � 8386.43 � (210.70)2/6 � 987.35.

Using SSE computed in part (c), what is the computed
value of R2?

e. If the estimated standard deviation of �̂2 is s�̂2
� .00226,

test H0: �2 � 0 versus Ha: �2 � 0 at level .01, and inter-
pret the result.

29. High-alumina refractory castables have been extensively
investigated in recent years because of their significant
advantages over other refractory brick of the same class—
lower production and application costs, versatility, and per-
formance at high temperatures. The accompanying data on

x � viscosity (MPa 
 s) and y � free-flow (%) was read
from a graph in the article “Processing of Zero-Cement
Self-Flow Alumina Castables” (The Amer. Ceramic Soc.
Bull., 1998: 60–66):

x 351 367 373 400 402 456 484

y 81 83 79 75 70 43 22

The authors of the cited paper related these two variables
using a quadratic regression model. The estimated regres-
sion function is y � �295.96 � 2.1885x � .0031662x2.
a. Compute the predicted values and residuals, and then

SSE and s2.
b. Compute and interpret the coefficient of multiple deter-

mination.
c. The estimated SD of �̂2 is s �̂2

� .0004835. Does the
quadratic predictor belong in the regression model?

d. The estimated SD of �̂1 is .4050. Use this and the infor-
mation in (c) to obtain joint CIs for the linear and qua-
dratic regression coefficients with a joint confidence
level of (at least) 95%.

e. The estimated SD of �̂Y�400 is 1.198. Calculate a 95% CI
for true average free-flow when viscosity � 400 and also
a 95% PI for free-flow resulting from a single observation
made when viscosity � 400, and compare the intervals.

30. The article “A Simulation-Based Evaluation of Three
Cropping Systems on Cracking-Clay Soils in a Summer
Rainfall Environment” (Agricultural Meteorology, 1976:
211–229) proposes a quadratic model for the relationship
between water supply index (x) and farm wheat yield (y).
Representative data and the resulting MINITAB output
follow:

x | 1.2 1.3 1.5 1.8 2.1 2.3 2.5

y | 790 950 740 1230 1000 1465 1370

x | 2.9 3.1 3.2 3.3 3.9 4.0 4.3

y | 1420 1625 1600 1720 1500 1550 1560

The regression equation is
yield � �252 � 1000 index � 135 indexsqd

Predictor Coef Stdev t-ratio p
Constant �251.6 285.1 �0.88 0.396
Index 1000.1 229.5 4.36 0.001
Indexsqd �135.44 41.97 �3.23 0.008

s � 135.6 R-sq � 85.3% R-sq(adj) � 82.6%

Analysis of Variance

SOURCE DF SS MS F p
Regression 2 1170208 585104 31.83 0.000
Error 11 202228 18384
Total 13 1372435

a. Interpret the value of the coefficient of multiple
determination.

b. Calculate a 95% CI for the coefficient of the quadratic
predictor.
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c. The estimated standard deviation of �̂0 � �̂1x ��̂2x2

when x � 2.5 is 53.5. Test H0: 	Y�2.5 � 1500 versus
Ha: 	Y�2.5 � 1500 using � � .01.

d. Obtain a 95% PI for wheat yield when the water supply
index is 2.5 by using the information given in part (c).

31. The accompanying data was obtained from a study of a cer-
tain method for preparing pure alcohol from refinery
streams (“Direct Hydration of Olefins,” Industrial and Eng.
Chemistry, 1961: 209–211). The independent variable x is
volume hourly space velocity, and the dependent variable y
is the amount of conversion of iso-butylene.

x | 1 1 2 4 4 4 6

y | 23.0 24.5 28.0 30.9 32.0 33.6 20.0

a. Assuming that a quadratic probabilistic model is appro-
priate, estimate the regression function.

b. Determine the predicted values and residuals, and con-
struct a residual plot. Does the plot look roughly as ex-
pected when the quadratic model is correct? Does the plot
indicate that any observation has had a great influence on
the fit? Does a scatter plot identify a point having large
influence? If so, which point?

c. Obtain s2 and R2. Does the quadratic model provide a
good fit to the data?

d. In Exercise 11, it was noted that the predicted value Ŷj

and the residual Yj �Ŷj are independent of one another,
so that � 2 � V(Yj) � V(Ŷj) � V(Yj �Ŷj). A computer
printout gives the estimated standard deviations of the
predicted values as .955, .955, .712, .777, .777, .777,
and 1.407. Use these values along with s2 to compute
the estimated standard deviation of each residual. Then
compute the standardized residuals and plot them
against x. Does the plot look much like the plot of part
(b)? Suppose you had standardized the residuals using
just s in the denominator. Would the resulting values
differ much from the correct values?

e. Using information given in part (d), compute a 90% PI
for isobutylene conversion when volume hourly space
velocity is 4.

32. The following data is a subset of data obtained in an experi-
ment to study the relationship between soil pH x and y � A1.
Concentration/EC (“Root Responses of Three Gramineae
Species to Soil Acidity in an Oxisol and an Ultisol,” Soil
Science, 1973: 295–302):

x | 4.01 4.07 4.08 4.10 4.18

y | 1.20 .78 .83 .98 .65

x | 4.20 4.23 4.27 4.30 4.41

y | .76 .40 .45 .39 .30

x | 4.45 4.50 4.58 4.68 4.70 4.77

y | .20 .24 .10 .13 .07 .04

A cubic model was proposed in the article, but the version
of MINITAB used by the author of the present text refused

to include the x3 term in the model, stating that “x3 is highly
correlated with other predictor variables.” To remedy this,
x� � 4.3456 was subtracted from each x value to yield x �
x � x�. A cubic regression was then requested to fit the
model having regression function

y � �*0 � �*1x � �*2(x)2 � �*3(x)3

The following computer output resulted:

Parameter Estimate Estimated SD

�*0 .3463 .0366
�*1 �1.2933 .2535
�*2 2.3964 .5699
�*3 �2.3968 2.4590

a. What is the estimated regression function for the “cen-
tered” model?

b. What is the estimated value of the coefficient �3 in the
“uncentered” model with regression function y � �0 �
�1x � �2x2 � �3x3? What is the estimate of �2?

c. Using the cubic model, what value of y would you pre-
dict when soil pH is 4.5?

d. Carry out a test to decide whether the cubic term should
be retained in the model.

33. In many polynomial regression problems, rather than fitting
a “centered” regression function using x � x � x�, computa-
tional accuracy can be improved by using a function of the
standardized independent variable x � (x � x�)/sx, where sx

is the standard deviation of the xi s. Consider fitting the cubic
regression function y � �*0 � �*1x � �*2(x)2 � �*3(x)3 to
the following data resulting from a study of the relation
between thrust efficiency y of supersonic propelling rockets
and the half-divergence angle x of the rocket nozzle (“More
on Correlating Data,” CHEMTECH, 1976: 266–270):

x | 5 10 15 20 25 30 35

y | .985 .996 .988 .962 .940 .915 .878

Parameter Estimate Estimated SD

�*0 .9671 .0026
�*1 �.0502 .0051
�*2 �.0176 .0023
�*3 .0062 .0031

a. What value of y would you predict when the half-
divergence angle is 20? When x � 25?

b. What is the estimated regression function �̂0 � �̂1x �
�̂2x2 ��̂3x3 for the “unstandardized” model?

c. Use a level .05 test to decide whether the cubic term
should be deleted from the model.

d. What can you say about the relationship between SSE’s
and R2 s for the standardized and unstandardized mod-
els? Explain.

e. SSE for the cubic model is .00006300, whereas for a
quadratic model SSE is .00014367. Compute R2 for each
model. Does the difference between the two suggest that
the cubic term can be deleted?
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34. The following data resulted from an experiment to assess
the potential of unburnt colliery spoil as a medium for plant
growth. The variables are x � acid extractable cations and
y � exchangeable acidity/total cation exchange capacity
(“Exchangeable Acidity in Unburnt Colliery Spoil,” Nature,
1969: 161):

x | �23 �5 16 26 30 38 52

y | 1.50 1.46 1.32 1.17 .96 .78 .77

x | 58 67 81 96 100 113

y | .91 .78 .69 .52 .48 .55

Standardizing the independent variable x to obtain x �
(x � x�)/sx and fitting the regression function y � �*0 �
�*1x � �*2(x)2 yielded the accompanying computer output.

Parameter Estimate Estimated SD

�*0 .8733 .0421
�*1 �.3255 .0316
�*2 .0448 .0319

a. Estimate 	Y�50.
b. Compute the value of the coefficient of multiple deter-

mination. (See Exercise 28(c).)
c. What is the estimated regression function �̂0 � �̂1x �

�̂2x2 using the unstandardized variable x?
d. What is the estimated standard deviation of �̂2 computed

in part (c)?
e. Carry out a test using the standardized estimates to decide

whether the quadratic term should be retained in the model.
Repeat using the unstandardized estimates. Do your con-
clusions differ?

35. The article “The Respiration in Air and in Water of the
Limpets Patella caerulea and Patella lusitanica” (Comp.
Biochemistry and Physiology, 1975: 407–411) proposed a
simple power model for the relationship between respiration
rate y and temperature x for P. caerulea in air. However, a
plot of ln(y) versus x exhibits a curved pattern. Fit the qua-
dratic power model Y � �e�x�'x2 � ! to the accompanying data.

x | 10 15 20 25 30

y | 37.1 70.1 109.7 177.2 222.6
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13.4 Multiple Regression Analysis

In multiple regression, the objective is to build a probabilistic model that relates a
dependent variable y to more than one independent or predictor variable. Let k rep-
resent the number of predictor variables (k � 2) and denote these predictors by x1,
x2, . . . , xk. For example, in attempting to predict the selling price of a house, we
might have k � 3 with x1 � size (ft2), x2 � age (years), and x3 � number of rooms.

DEFINITION The general additive multiple regression model equation is

Y � �0 � �1x1 � �2x2 � 
 
 
 � �kxk � ! (13.15)

where E(!) � 0 and V(!) � � 2. In addition, for purposes of testing hypotheses
and calculating CIs or PIs, it is assumed that ! is normally distributed.

Let x*1, x*2, . . . , x*k be particular values of x1, . . . , xk. Then (13.15) implies that

	*�x*1,...,x*k � �0 � �1x*1 � 
 
 
 � �kx*k (13.16)

Thus just as �0 � �1x describes the mean Y value as a function of x in simple linear
regression, the true (or population) regression function �0 � �1x1 � 
 
 
 � �kxk

gives the expected value of Y as a function of x1, . . . , xk. The �i s are the true (or
population) regression coefficients. The regression coefficient �1 is interpreted as
the expected change in Y associated with a 1-unit increase in x1 while x2, . . . , xk are
held fixed. Analogous interpretations hold for �2, . . . , �k.



Models with Interaction and Quadratic Predictors
If an investigator has obtained observations on y, x1, and x2, one possible model is
Y � �0 � �1x1 � �2x2 � !. However, other models can be constructed by forming
predictors that are mathematical functions of x1 and/or x2. For example, with x3 � x2

1

and x4 � x1x2, the model

Y � �0 � �1x1 � �2x2 � �3 x3 � �4x4 � !

has the general form of (13.15). In general, it is not only permissible for some pre-
dictors to be mathematical functions of others but also often highly desirable in the
sense that the resulting model may be much more successful in explaining variation
in y than any model without such predictors. This discussion also shows that poly-
nomial regression is indeed a special case of multiple regression. For example, the
quadratic model Y � �0 � �1x � �2x2 �! has the form of (13.15) with k � 2, x1 �
x, and x2 � x2.

For the case of two independent variables, x1 and x2, there are four useful mul-
tiple regression models.

1. The first-order model:

Y � �0 � �1x1 � �2x2 � !

2. The second-order no-interaction model:

Y � �0 � �1x1 � �2x2 � �3 x2
1 � �4x2

2 � !

3. The model with first-order predictors and interaction:

Y � �0 � �1x1 � �2x2 � �3 x1x2 � !

4. The complete second-order or full quadratic model:

Y � �0 � �1x1 � �2x2 � �3x 2
1 � �4 x2

2 � �5 x1x2 � !

Understanding the differences among these models is an important first step in build-
ing realistic regression models from the independent variables under study.

The first-order model is the most straightforward generalization of simple linear
regression. It states that for a fixed value of either variable, the expected value of Y is a
linear function of the other variable and that the expected change in Y for a unit increase
in x1 (x2) is �1 (�2) independent of the level of x2 (x1). Thus if we graph the regression
function as a function of x1 for several different values of x2, we obtain as contours of
the regression function a collection of parallel lines, as pictured in Figure 13.13(a). The
function y � �0 � �1x1 � �2x2 specifies a plane in three-dimensional space; the first-
order model says that each observed value of the dependent variable corresponds to a
point which deviates vertically from this plane by a random amount !.

According to the second-order no-interaction model, if x2 is fixed, the expected
change in Y for a 1-unit increase in x1 is

�0 � �1(x1 � 1) � �2x2 � �3(x1 � 1)2 � �4 x2
2

� (�0 � �1x1 � �2x2 � �3x2
1 � �4 x2

2) � �1 � �3 � 2�3 x1

Because this expected change does not depend on x2, the contours of the regression
function for different values of x2 are still parallel to one another. However, the de-
pendence of the expected change on the value of x1 means that the contours are now
curves rather than straight lines. This is pictured in Figure 13.13(b). In this case, the
regression surface is no longer a plane in three-dimensional space but is instead a
curved surface.
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The contours of the regression function for the first-order interaction model
are nonparallel straight lines. This is because the expected change in Y when x1 is
increased by 1 is

�0 � �1(x1 � 1) � �2x2 � �3(x1 � 1)x2 � (�0 � �1x1 � �2x2 � �3x1x2) � �1 � �3x2

This expected change depends on the value of x2, so each contour line must have a
different slope, as in Figure 13.13(c). The word interaction reflects the fact that an
expected change in Y when one variable increases in value depends on the value of
the other variable.

Finally, for the complete second-order model, the expected change in Y when
x2 is held fixed while x1 is increased by 1 unit is �1 � �3 � 2�3 x1 � �5 x2, which is
a function of both x1 and x2. This implies that the contours of the regression function
are both curved and not parallel to one another, as illustrated in Figure 13.13(d).
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Figure 13.13 Contours of four different regression functions

Similar considerations apply to models constructed from more than two inde-
pendent variables. In general, the presence of interaction terms in the model implies 
that the expected change in Y depends not only on the variable being increased or
decreased but also on the values of some of the fixed variables. As in ANOVA, it is
possible to have higher-way interaction terms (e.g., x1x2x3), making model interpreta-
tion more difficult.

Note that if the model contains interaction or quadratic predictors, the generic
interpretation of a �i given previously will not usually apply. This is because it is not
then possible to increase xi by 1 unit and hold the values of all other predictors fixed.



Models with Predictors for Categorical Variables
Thus far we have explicitly considered the inclusion of only quantitative (numerical)
predictor variables in a multiple regression model. Using simple numerical coding,
qualitative (categorical) variables, such as bearing material (aluminum or copper/
lead) or type of wood (pine, oak, or walnut), can also be incorporated into a model.
Let’s first focus on the case of a dichotomous variable, one with just two possible
categories—male or female, U.S. or foreign manufacture, and so on. With any such
variable, we associate a dummy or indicator variable x whose possible values
0 and 1 indicate which category is relevant for any particular observation.

The article “Estimating Urban Travel Times: A Comparative Study” (Trans. Res., 1980:
173–175) described a study relating the dependent variable y � travel time between
locations in a certain city and the independent variable x2 � distance between locations.
Two types of vehicles, passenger cars and trucks, were used in the study. Let

1 if the vehicle is a truck
x1 � {0 if the vehicle is a passenger car

One possible multiple regression model is

Y � �0 � �1x1 � �2x2 � !

The mean value of travel time depends on whether a vehicle is a car or a truck:

mean time � �0 � �2x2 when x1 � 0 (cars)

mean time � �0 � �1 � �2x2 when x1 � 1 (trucks)

The coefficient �1 is the difference in mean times between trucks and cars with dis-
tance held fixed; if �1 � 0, on average it will take trucks longer to traverse any par-
ticular distance than it will for cars.

A second possibility is a model with an interaction predictor:

Y � �0 � �1x1 � �2x2 � �3 x1x2 � !

Now the mean times for the two types of vehicles are

mean time � �0 � �2x2 when x1 � 0

mean time � �0 � �1 � (�2 � �3)x2 when x1 � 1

For each model, the graph of the mean time versus distance is a straight line for
either type of vehicle, as illustrated in Figure 13.14. The two lines are parallel for the
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Figure 13.14 Regression functions for models with one dummy variable (x1) and one quanti-
tative variable x2: (a) no interaction; (b) interaction



first (no-interaction) model, but in general they will have different slopes when the sec-
ond model is correct. For this latter model, the change in mean travel time associated
with a 1-mile increase in distance depends on which type of vehicle is involved—the
two variables “vehicle type” and “travel time” interact. Indeed, data collected by the
authors of the cited article suggested the presence of interaction. ■

You might think that the way to handle a three-category situation is to define
a single numerical variable with coded values such as 0, 1, and 2 corresponding to
the three categories. This is incorrect, because it imposes an ordering on the cate-
gories that is not necessarily implied by the problem context. The correct approach
to incorporating three categories is to define two different dummy variables. Suppose,
for example, that y is the lifetime of a certain cutting tool, x1 is cutting speed, and that
there are three brands of tool being investigated. Then let

x2 � {1 if a brand A tool is used
x3 � {1 if a brand B tool is used

0 otherwise 0 otherwise

When an observation on a brand A tool is made, x2 � 1 and x3 � 0, whereas for a
brand B tool, x2 � 0 and x3 � 1. An observation made on a brand C tool has x2 �
x3 � 0, and it is not possible that x2 � x3 � 1 because a tool cannot simultaneously
be both brand A and brand B. The no-interaction model would have only the pre-
dictors x1, x2, and x3. The following interaction model allows the mean change in life-
time associated with a 1-unit increase in speed to depend on the brand of tool:

Y � �0 � �1x1 � �2x2 � �3 x3 � �4 x1x2 � �5 x1x3 � !

Construction of a picture like Figure 13.14 with a graph for each of the three possi-
ble (x2, x3) pairs gives three nonparallel lines (unless �4 � �5 � 0).

More generally, incorporating a categorical variable with c possible categories
into a multiple regression model requires the use of c � 1 indicator variables (e.g.,
five brands of tools would necessitate using four indicator variables). Thus even one
categorical variable can add many predictors to a model.

Estimating Parameters
The data in simple linear regression consists of n pairs (x1, y1), . . . , (xn, yn).
Suppose that a multiple regression model contains two predictor variables, x1 and x2.
Then the data set will consist of n triples (x11, x21, y1), (x12, x22, y2), . . . , (x1n, x2n, yn).
Here the first subscript on x refers to the predictor and the second to the observa-
tion number. More generally, with k predictors, the data consists of n (k � 1)-
tuples (x11, x21, . . . , xk1, y1), (x12, x22, . . . , xk2, y2), . . . , (x1n, x2n, . . . , xkn, yn), where
xij is the value of the ith predictor xi associated with the observed value yj. The yj s
are assumed to have been observed independently of one another according to the
model (13.15). To estimate the parameters �0, �1, . . . , �k using the principle of
least squares, form the sum of squared deviations of the observed yj s from a trial
function y � b0 � b1x1 � 
 
 
 � bkxk:

f (b0, b1, . . . , bk) � �
j

[yj � (b0 � b1x1j � b2x2j � 
 
 
 � bkxkj)]2 (13.17)

The least squares estimates are those values of the bi s that minimize f(b0, . . . , bk).
Taking the partial derivative of f with respect to each bi (i � 0, 1, . . . , k) and equat-
ing all partials to zero yields the following system of normal equations:
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These equations are linear in the unknowns b0, b1, . . . , bk. Solving (13.18) yields the
least squares estimates �̂0, �̂1, . . . , �̂k. This is best done by utilizing a statistical soft-
ware package.

The article “How to Optimize and Control the Wire Bonding Process: Part II” (Solid
State Technology, Jan. 1991: 67–72) described an experiment carried out to assess
the impact of the variables x1 � force (gm), x2 � power (mW), x3 � temperature
(°C), and x4 � time (msec) on y � ball bond shear strength (gm). The following
data* was generated to be consistent with the information given in the article:

Observation Force Power Temperature Time Strength

1 30 60 175 15 26.2
2 40 60 175 15 26.3
3 30 90 175 15 39.8
4 40 90 175 15 39.7
5 30 60 225 15 38.6
6 40 60 225 15 35.5
7 30 90 225 15 48.8
8 40 90 225 15 37.8
9 30 60 175 25 26.6

10 40 60 175 25 23.4
11 30 90 175 25 38.6
12 40 90 175 25 52.1
13 30 60 225 25 39.5
14 40 60 225 25 32.3
15 30 90 225 25 43.0
16 40 90 225 25 56.0
17 25 75 200 20 35.2
18 45 75 200 20 46.9
19 35 45 200 20 22.7
20 35 105 200 20 58.7
21 35 75 150 20 34.5
22 35 75 250 20 44.0
23 35 75 200 10 35.7
24 35 75 200 30 41.8
25 35 75 200 20 36.5
26 35 75 200 20 37.6
27 35 75 200 20 40.3
28 35 75 200 20 46.0
29 35 75 200 20 27.8
30 35 75 200 20 40.3
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b0n � b1�x1j � b2�x2j � 
 
 
 � bk�xkj � �yj

b0�x1j � b1�x 2
1 j � b2�x1j x2j � 
 
 
 � bk�x1j xkj � �x1jyj

� � �

� � � (13.18)

� � �

b0�xkj � b1�x1j xkj � 
 
 
 � bk�1�xk�1, j xkj � bk�x2
kj � �xkjyj

Example 13.12

* From the book Statistics Engineering Problem Solving by Stephen Vardeman, an excellent exposition of
the territory covered by our book, albeit at a somewhat higher level.



A statistical computer package gave the following least squares estimates:

�̂0 � �37.48 �̂1 � .2117 �̂2 � .4983 �̂3 � .1297 �̂4 � .2583

Thus we estimate that .1297 gm is the average change in strength associated with a 
1-degree increase in temperature when the other three predictors are held fixed; the
other estimated coefficients are interpreted in a similar manner.

The estimated regression equation is

y � �37.48 � .2117x1 � .4983x2 � .1297x3 � .2583x4

A point prediction of strength resulting from a force of 35 gm, power of 75 mW,
temperature of 200° degrees, and time of 20 msec is

ŷ � �37.48 � (.2117)(35) � (.4983)(75) � (.1297)(200) � (.2583)(20)

� 38.41 gm

This is also a point estimate of the mean value of strength for the specified values of
force, power, temperature, and time. ■

̂ 2 and R2

Substituting the values of the predictors from the successive observations into the
equation for the estimated regression gives the predicted or fitted values ŷ1, ŷ2, . . . ,
ŷn. For example, since the values of the four predictors for the last observation in
Example 13.12 are 35, 75, 200, and 20, respectively, the corresponding predicted
value is  ŷ30 � 38.41. The residuals are the differences y1 � ŷ1, . . . , yn � ŷn. The last
residual in Example 13.12 is 40.3 � 38.41 � 1.89. The closer the residuals are to 0,
the better the job our estimated equation is doing in predicting the y values corre-
sponding to values of the predictors in our sample.

As for both simple linear regression and polynomial regression, the estimate
of � 2 is based on the sum of squared residuals:

SSE � �(yj � ŷj)2 � �[yj � (�̂0 � �̂1x1j � 
 
 
 � �̂kxkj)]2

An efficient calculation formula for SSE is employed by most statistical computer
packages. Because k � 1 parameters (�0, �1, . . . , �k) have been estimated, k � 1 df
are lost, so n � (k � 1) df is associated with SSE, and

�̂ 2 � s2 � � MSE

With SST � �(yi � y�)2, the proportion of total variation explained by the multiple
regression model is R2 � 1 � SSE/SST, the coefficient of multiple determination.
As in polynomial regression, R2 is often adjusted for the number of parameters in the
model by the formula

R2
a � [(n � 1)R2 � k]/[n � (k � 1)]

The positive square root of the coefficient of multiple determination is called the
multiple correlation coefficient R. It can be shown that R is the sample correlation
coefficient r between the observed yj s and the predicted ŷj s (i.e., using xj � ŷj in the
formula for r results in r � R).

Investigators carried out a study to see how various characteristics of concrete are
influenced by x1 � % limestone powder and x2 � water–cement ratio, resulting in
the accompanying data (“Durability of Concrete with Addition of Limestone Pow-
der,” Magazine of Concrete Research, 1996: 131–137).

SSE
��
n � (k � 1)
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x1 x2 x1x2 28-day Comp Str. (MPa) Adsorbability (%)

21 .65 13.65 33.55 8.42
21 .55 11.55 47.55 6.26

7 .65 4.55 35.00 6.74
7 .55 3.85 35.90 6.59

28 .60 16.80 40.90 7.28
0 .60 0.00 39.10 6.90

14 .70 9.80 31.55 10.80
14 .50 7.00 48.00 5.63
14 .60 8.40 42.30 7.43

y� � 39.317, SST � 278.52 y� � 7.339, SST � 18.356

Consider first compressive strength as the dependent variable y. Fitting the first-
order model results in

y � 84.82 � .1643x1 � 79.67x2 SSE � 72.25 (df � 6) R2 � .741 R2
a � .654

whereas including an interaction predictor gives

y � 6.22 � 5.779x1 � 51.33x2 � 9.357x1x2

SSE � 29.35 (df � 5) R2 � .895 R2
a � .831

Based on this latter fit, a prediction for compressive strength when % limestone � 14
and water–cement ratio � .60 is

ŷ � 6.22 � 5.779(14) � 51.33(.60) � 9.357(8.4) � 39.32

Fitting the full quadratic relationship results in virtually no change in the R2 value.
However, when the dependent variable is adsorbability, the following results are 
obtained: R2 � .747 when just two predictors are used, .802 when the interaction 
predictor is added, and .889 when the five predictors for the full quadratic relation-
ship are used. ■

In general, �̂1 can be interpreted as an estimate of the average change in y
associated with a 1-unit increase in xi while values of all other predictors are held
fixed. Sometimes, though, it is difficult or even impossible to increase the value of
one predictor while holding all others fixed. In such situations, there is an alternative
interpretation of the estimated regression coefficients. For concreteness, suppose
that k � 2, and let �̂1 denote the estimate of �1 in the regression of y on the two pre-
dictors x1 and x2. Then

1. Regress y against just x2 (a simple linear regression) and denote the resulting
residuals by g1, g2, . . . , gn. These residuals represent variation in y after remov-
ing or adjusting for the effects of x2.

2. Regress x1 against x2 (that is, regard x1 as the dependent variable and x2 as the
independent variable in this simple linear regression), and denote the residuals by
f1, . . . , fn. These residuals represent variation in x1 after removing or adjusting for
the effects of x2.

Now consider plotting the residuals from the first regression against those from the
second; that is, plot the pairs ( f1, g1), . . . , ( fn, gn). The result is called a partial resid-
ual plot or adjusted residual plot. If a regression line is fit to the points in this plot,
the slope turns out to be exactly �̂1 (furthermore, the residuals from this line are
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exactly the residuals e1, . . . , en from the multiple regression of y on x1 and x2). Thus
�̂1 can be interpreted as the estimated changes in y associated with a 1-unit increase
in x1 after removing or adjusting for the effects of any other model predictors. The
same interpretation holds for other estimated coefficients regardless of the number
of predictors in the model (there is nothing special about k � 2; the foregoing argu-
ment remains valid if y is regressed against all predictors other than x1 in Step 1 and
x1 is regressed against the other k � 1 predictors in Step 2).

As an example, suppose that y is the sale price of an apartment building and
that the predictors are number of apartments, age, lot size, number of parking spaces,
and gross building area (ft2). It may not be reasonable to increase the number of
apartments without also increasing gross area. However, if �̂5 � 16.00, then we can
say that a $16 increase in sale price is associated with each extra square foot of gross
area after adjusting for the effects of the other four predictors.

A Model Utility Test
With multivariate data, there is no preliminary picture analogous to a scatter plot to
indicate whether a particular multiple regression model will be judged useful. The
value of R2 certainly communicates a preliminary message, but this value is some-
times deceptive because it can be greatly inflated by using a large number of predic-
tors (large k) relative to the sample size n (this is the rationale behind adjusting R2).

The model utility test in simple linear regression involved the null hypothesis
H0: �1 � 0, according to which there is no useful relation between y and the single
predictor x. Here we consider the assertion that �1 � 0, �2 � 0, . . . , �k � 0, which
says that there is no useful relationship between y and any of the k predictors. If at
least one of these � s is not 0, the corresponding predictor(s) is (are) useful. The test
is based on a statistic that has a particular F distribution when H0 is true.
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Null hypothesis: H0: �1 � �2 � 
 
 
 � �k � 0

Alternative hypothesis: Ha: at least one �i � 0 (i � 1, . . . , k)

Test statistic value*: f � (13.19)

� �

where SSR � regression sum of squares � SST � SSE

Rejection region for a level � test: f � F�,k,n�(k�1)

MSR
�
MSE

SSR/k
���

SSE/[n � (k � 1)]

R2/k
���
(1 � R2)/[n � (k � 1)]

Except for a constant multiple, the test statistic here is R2/(1 � R2), the ratio of
explained to unexplained variation. If the proportion of explained variation is high
relative to unexplained, we would naturally want to reject H0 and confirm the utility
of the model. However, if k is large relative to n, the factor [(n � (k � 1))/k] will
decrease f considerably.

Returning to the bond shear strength data of Example 13.12, a model with k � 4 pre-
dictors was fit, so the relevant hypotheses are

H0: �1 � �2 � �3 � �4 � 0

Ha: at least one of these four � s is not 0

Example 13.14



Figure 13.15 shows output from the JMP statistical package. The values of s (Root
Mean Square Error), R2, and adjusted R2 certainly suggest a useful model. The value
of the model utility F ratio is

f � � � 15.60

This value also appears in the F Ratio column of the ANOVA table in Figure 13.15. The
largest F critical value for 4 numerator and 25 denominator df in Appendix Table 
A.9 is 6.49, which captures an upper-tail area of .001. Thus P-value � .001. The
ANOVA table in the JMP output shows that P-value � .0001. This is a highly sig-
nificant result. The null hypothesis should be rejected at any reasonable significance
level. We conclude that there is a useful linear relationship between y and at least
one of the four predictors in the model. This does not mean that all four predictors
are useful; we will say more about this subsequently.

.713959/4
��
.286041/(30 � 5)

R2/k
���
(1 � R2)/[n � (k � 1)]
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Figure 13.15 Multiple regression output from JMP for the data of Example 13.14 ■

Inferences in Multiple Regression
Before testing hypotheses, constructing CIs, and making predictions, one should
first examine diagnostic plots to see whether the model needs modification or
whether there are outliers in the data. The recommended plots are (standardized)
residuals versus each independent variable, residuals versus ŷ, ŷ versus y, and a normal



probability plot of the standardized residuals. Potential problems are suggested by
the same patterns discussed in Section 13.1. Of particular importance is the identifi-
cation of observations that have a large influence on the fit. In the next section, we
describe several diagnostic tools suitable for this task.

Because each �̂i is a linear function of the yi s, the standard deviation of each
�̂i is the product of � and a function of the xij s, so an estimate s�̂i

is obtained by sub-
stituting s for �. The function of the xij s is quite complicated, but all standard regres-
sion computer packages compute and show the s�̂i

s. Inferences concerning a single
�i are based on the standardized variable

T �

which has a t distribution with n � (k � 1) df.
The point estimate of �Y�x*1, . . . , x*k, the expected value of Y when x1 � x*1, . . . ,

xk � x*k , is �̂Y�x*1, . . . , x*k � �̂0 � �̂1x*1 � 
 
 
 � �̂kx*k . The estimated standard deviation
of the corresponding estimator is again a complicated expression involving the sample
xijs. However, the better statistical computer packages will calculate it on request.
Inferences about �Y�x*1, . . . , x*k are based on standardizing its estimator to obtain a t vari-
able having n � (k � 1) df.

�̂i � �i
�

S�̂i
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1. A 100(1 � �)% CI for �i, the coefficient of xi in the regression function, is

�̂i � t�/2,n�(k�1) 
 s�̂i

2. A test for H0: �i � �i0 uses the t statistic value t � (�̂i � �i0)/s�̂i
based on n �

(k � 1) df. The test is upper-, lower-, or two-tailed according to whether Ha

contains the inequality �, �, or �.

3. A 100(1 � �)% CI for �Y�x*1, . . .,x*k is

�̂Y�x*1, . . .,x*k � t�/2,n�(k�1) � {estimated SD of �̂Y�x*1, . . .,x*k} � ŷ � t�/2,n�(k�1) � sŶ

where Ŷ is the statistic �̂0 � �̂1x*1 � 
 
 
 � �̂kx*k and ŷ is the calculated value
of Ŷ.

4. A 100(1 � �)% PI for a future y value is

�̂Y�x*1, . . .,x*k � t�/2,n�(k�1) � {s2 � (estimated SD of �̂Y�x*1, . . .,x*k)
2}1/2

� ŷ � t�/2,n�(k�1) � �s2� �� s�2
Ŷ
�

Simultaneous intervals for which the simultaneous confidence or prediction
level is controlled can be obtained by applying the Bonferroni technique.

Soil and sediment adsorption, the extent to which chemicals collect in a condensed
form on the surface, is an important characteristic influencing the effectiveness of
pesticides and various agricultural chemicals. The article “Adsorption of Phosphate,
Arsenate, Methanearsonate, and Cacodylate by Lake and Stream Sediments: Compar-
isons with Soils” (J. of Environ. Qual., 1984: 499–504) gives the accompanying data
(Table 13.5) on y � phosphate adsorption index, x1 � amount of extractable iron,
and x2 � amount of extractable aluminum.

Example 13.15



Table 13.5 Data for Example 13.15

x1 � x2 � y �
Extractable Extractable Adsorption 

Observation Iron Aluminum Index

1 61 13 4
2 175 21 18
3 111 24 14
4 124 23 18
5 130 64 26
6 173 38 26
7 169 33 21
8 169 61 30
9 160 39 28

10 244 71 36
11 257 112 65
12 333 88 62
13 199 54 40

The article proposed the model

Y � �0 � �1x1 � �2x2 � !

A computer analysis yielded the following information:

Parameter �i Estimate �̂i Estimated SD s�̂i

�0 �7.351 3.485
�1 .11273 .02969
�2 .34900 .07131

R2 � .948 adjusted R2 � .938 s � 4.379

	̂Y�160,39 � ŷ � �7.351 � (.11273)(160) � (.34900)(39) � 24.30

estimated SD of 	̂Y�160,39 � sŶ � 1.30

A 99% CI for �1, the change in expected adsorption associated with a 1-unit increase
in extractable iron while extractable aluminum is held fixed, requires t.005,13�(2�1) �
t.005,10 � 3.169. The CI is

.11273 � (3.169)(.02969) � .11273 � .09409 � (.019, .207)

Similarly, a 99% interval for �2 is

.34900 � (3.169)(.07131) � .34900 � .22598 � (.123, .575)

The Bonferroni technique implies that the simultaneous confidence level for both
intervals is at least 98%.

A 95% CI for 	Y�160,39, expected adsorption when extractable iron � 160 and
extractable aluminum � 39, is

24.30 � (2.228)(1.30) � 24.30 � 2.90 � (21.40, 27.20)

A 95% PI for a future value of adsorption to be observed when x1 � 160 and x2 � 39 is

24.30 � (2.228){(4.379)2 � (1.30)2}1/2 � 24.30 � 10.18 � (14.12, 34.48) ■

Frequently, the hypothesis of interest has the form H0: �i � 0 for a particular i.
For example, after fitting the four-predictor model in Example 13.12, the investigator
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might wish to test H0: �4 � 0. According to H0, as long as the predictors x1, x2, and
x3 remain in the model, x4 contains no useful information about y. The test statistic value
is the t-ratio �̂i/s�̂i

. Many statistical computer packages report the t-ratio and corre-
sponding P-value for each predictor included in the model. For example, Figure 13.15
shows that as long as power, temperature, and time are retained in the model, the pre-
dictor x1 � force can be deleted.

An F Test for a Group of Predictors The model utility F test was appropriate for
testing whether there is useful information about the dependent variable in any of the
k predictors (i.e., whether �1 � 
 
 
 � �k � 0). In many situations, one first builds a
model containing k predictors and then wishes to know whether any of the predictors
in a particular subset provide useful information about Y. For example, a model to be
used to predict students’ test scores might include a group of background variables
such as family income and education levels and also some school characteristic vari-
ables such as class size and spending per pupil. One interesting hypothesis is that the
school characteristic predictors can be dropped from the model.

Let’s label the predictors as x1, x2, . . . , xl, xl�1, . . . , xk, so that it is the last k � l
that we are considering deleting from the model. We then wish to test

540 CHAPTER 13 Nonlinear and Multiple Regression

H0: �l�1 � �l�2 � 
 
 
 � �k � 0
(so the “reduced” model Y � �0 � �1x1 � 
 
 
 � �l xl �! is correct) 

versus

Ha: at least one among �l�1, . . . , �k is not 0
(so in the “full” model Y � �0 � �1x1 � 
 
 
 � �kxk � !, at least one of
the last k � l predictors provides useful information)

SSEk � unexplained variation for the full model

SSEl � unexplained variation for the reduced model

Test statistic value: f � (13.20)

Rejection region: f � F�,k�l,n�(k�1)

(SSEl � SSEk)/(k � l)
���

SSEk/[n � (k � 1)]

The test is carried out by fitting both the full and reduced models. Because the full
model contains not only the predictors of the reduced model but also some extra 
predictors, it should fit the data at least as well as the reduced model. That is, if we
let SSEk be the sum of squared residuals for the full model and SSEl be the corre-
sponding sum for the reduced model, then SSEk � SSEl.* Intuitively, if SSEk is a
great deal smaller than SSEl, the full model provides a much better fit than the
reduced model; the appropriate test statistic should then depend on the reduction
SSEl � SSEk in unexplained variation. The formal procedure is

* The estimates �̂0, �̂1, . . . , �̂l will in general be different for the full and reduced models, so in general
two different multiple regressions must be run to obtain SSEl and SSEk. If the variables are listed in the
suggested order, though, most computer packages provide a “sequential sums of squares” ANOVA table
for the full model that can be used to avoid fitting the reduced model.



The data in Table 13.6 was taken from the article “Applying Stepwise Multiple
Regression Analysis to the Reaction of Formaldehyde with Cotton Cellulose”
(Textile Research J., 1984: 157–165). The dependent variable y is durable press rat-
ing, a quantitative measure of wrinkle resistance. The four independent variables
used in the model building process are x1 � HCHO (formaldehyde) concentration,
x2 � catalyst ratio, x3 � curing temperature, and x4 � curing time.

Table 13.6 Data for Example 13.16

Observation x1 x2 x3 x4 y Observation x1 x2 x3 x4 y

1 8 4 100 1 1.4 16 4 10 160 5 4.6
2 2 4 180 7 2.2 17 4 13 100 7 4.3
3 7 4 180 1 4.6 18 10 10 120 7 4.9
4 10 7 120 5 4.9 19 5 4 100 1 1.7
5 7 4 180 5 4.6 20 8 13 140 1 4.6
6 7 7 180 1 4.7 21 10 1 180 1 2.6
7 7 13 140 1 4.6 22 2 13 140 1 3.1
8 5 4 160 7 4.5 23 6 13 180 7 4.7
9 4 7 140 3 4.8 24 7 1 120 7 2.5

10 5 1 100 7 1.4 25 5 13 140 1 4.5
11 8 10 140 3 4.7 26 8 1 160 7 2.1
12 2 4 100 3 1.6 27 4 1 180 7 1.8
13 4 10 180 3 4.5 28 6 1 160 1 1.5
14 6 7 120 7 4.7 29 4 1 100 1 1.3
15 10 13 180 3 4.8 30 7 10 100 7 4.6

Consider the full model consisting of k � 14 predictors: x1, x2, x3, x4,
x5 � x2

1, . . . , x8 � x2
4, x9 � x1x2, . . . , x14 � x3 x4 (all first- and second-order predic-

tors). Is the inclusion of the second-order predictors justified? That is, should the
reduced model consisting of just the predictors x1, x2, x3, and x4 (l � 4) be used?
Output resulting from fitting the two models follows:

Estimate for Estimate for 
Parameter Reduced Model Full Model

�0 �.9122 �8.807
�1 .16073 .1768
�2 .21978 .7580
�3 .011226 .10400
�4 .10197 .5052
�5 — �.04393
�6 — �.035887
�7 — �.00003271
�8 — �.01646
�9 — .00588
�10 — .002702
�11 — .01178
�12 — �.0006547
�13 — .00242
�14 — .002526
R2 .692 .921
SSE 17.4951 4.4782
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The hypotheses to be tested are

H0: �5 � �6 � 
 
 
 � �14 � 0

versus

Ha: at least one among �5, . . . , �14 is not 0

With k � 14 and l � 4, the F critical value for a test with � � .01 is F.01,10,15 � 3.80.
The test statistic value is

f � � � 4.36

Since 4.36 � 3.80, H0 is rejected. We conclude that the appropriate model should
include at least one of the second-order predictors. ■

Assessing Model Adequacy
The standardized residuals in multiple regression result from dividing each residual
by its estimated standard deviation; the formula for these standard deviations is sub-
stantially more complicated than in the case of simple linear regression. We recom-
mend a normal probability plot of the standardized residuals as a basis for validating
the normality assumption. Plots of the standardized residuals versus each predictor
and versus ŷ should show no discernible pattern. Adjusted residual plots can also be
helpful in this endeavor. The book by Neter et al. is an extremely useful reference.

Figure 13.16 shows a normal probability plot of the standardized residuals for 
the adsorption data and fitted model given in Example 13.15. The straightness of 
the plot casts little doubt on the assumption that the random deviation ! is nor-
mally distributed.

1.3017
�
.2985

(17.4951 � 4.4782)/10
���

4.4782/15
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Figure 13.16 A normal probability plot of the standardized residuals for the data and model
of Example 13.15

Figure 13.17 shows the other suggested plots for the adsorption data. Given
that there are only 13 observations in the data set, there is not much evidence of a
pattern in any of the first three plots other than randomness. The point at the bottom
of each of these three plots corresponds to the observation with the large residual.
We will say more about such observations subsequently. For the moment, there is no
compelling reason for remedial action.
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Figure 13.17 Diagnostic plots for the adsorption data: (a) standardized residual versus x1;
(b) standardized residual versus x2 (c) standardized residual versus ŷ; (d) ŷ versus y ■

EXERCISES Section 13.4 (36–54)

36. Cardiorespiratory fitness is widely recognized as a major
component of overall physical well-being. Direct measure-
ment of maximal oxygen uptake (VO2max) is the single best
measure of such fitness, but direct measurement is time-
consuming and expensive. It is therefore desirable to have a
prediction equation for VO2max in terms of easily obtained
quantities. Consider the variables

y � VO2max (L/min) x1 � weight (kg)
x2 � age (yr)

x3 � time necessary to walk 1 mile (min)

x4 � heart rate at the end of the walk (beats/min)

Here is one possible model, for male students, consistent with
the information given in the article “Validation of the Rockport
Fitness Walking Test in College Males and Females” (Re-
search Quarterly for Exercise and Sport, 1994: 152–158):

Y � 5.0 � .01x1 � .05x2 � .13x3 � .01x4 � !
� � .4

a. Interpret �1 and �3.

b. What is the expected value of VO2max when weight is
76 kg, age is 20 yr, walk time is 12 min, and heart rate
is 140 b/m?

c. What is the probability that VO2max will be between
1.00 and 2.60 for a single observation made when the
values of the predictors are as stated in part (b)?

37. A trucking company considered a multiple regression model
for relating the dependent variable y � total daily travel
time for one of its drivers (hours) to the predictors x1 � dis-
tance traveled (miles) and x2 � the number of deliveries
made. Suppose that the model equation is 

Y � �.800 � .060x1 � .900x2 � !

a. What is the mean value of travel time when distance
traveled is 50 miles and three deliveries are made?

b. How would you interpret �1 � .060, the coefficient of
the predictor x1? What is the interpretation of �2 � .900?

c. If � � .5 hour, what is the probability that travel time will
be at most 6 hours when three deliveries are made and the
distance traveled is 50 miles?



38. Let y � wear life of a bearing, x1 � oil viscosity, and x2 �
load. Suppose that the multiple regression model relating
life to viscosity and load is

Y � 125.0 � 7.75x1 � .0950x2 � .0090x1x2 � !

a. What is the mean value of life when viscosity is 40 and
load is 1100?

b. When viscosity is 30, what is the change in mean life asso-
ciated with an increase of 1 in load? When viscosity is 40,
what is the change in mean life associated with an increase
of 1 in load?

39. Let y � sales at a fast-food outlet (1000s of $), x1 � number
of competing outlets within a 1-mile radius, x2 � population
within a 1-mile radius (1000s of people), and x3 be an indica-
tor variable that equals 1 if the outlet has a drive-up window
and 0 otherwise. Suppose that the true regression model is

Y � 10.00 � 1.2x1 � 6.8x2 � 15.3x3 � !

a. What is the mean value of sales when the number of com-
peting outlets is 2, there are 8000 people within a 1-mile
radius, and the outlet has a drive-up window?

b. What is the mean value of sales for an outlet without a
drive-up window that has three competing outlets and
5000 people within a 1-mile radius?

c. Interpret �3.

40. The article “Readability of Liquid Crystal Displays: A Re-
sponse Surface” (Human Factors, 1983: 185–190) used a
multiple regression model with four independent variables
to study accuracy in reading liquid crystal displays. The
variables were

y � error percentage for subjects reading a four-digit liq-
uid crystal display

x1 � level of backlight (ranging from 0 to 122 cd/m2)

x2 � character subtense (ranging from .025° to 1.34°)

x3 � viewing angle (ranging from 0° to 60°)

x4 � level of ambient light (ranging from 20 to 1500 lux)

The model fit to data was Y � �0 � �1x1 � �2x2 � �3 x3 �
�4 x4 � !. The resulting estimated coefficients were
�̂0 � 1.52, �̂1 � .02, �̂2 � �1.40, �̂3 � .02, and �̂4 � �.0006.
a. Calculate an estimate of expected error percentage when

x1 � 10, x2 � .5, x3 � 50, and x4 � 100.
b. Estimate the mean error percentage associated with a

backlight level of 20, character subtense of .5, viewing
angle of 10, and ambient light level of 30.

c. What is the estimated expected change in error percentage
when the level of ambient light is increased by 1 unit while
all other variables are fixed at the values given in part (a)?
Answer for a 100-unit increase in ambient light level.

d. Explain why the answers in part (c) do not depend on the
fixed values of x1, x2, and x3. Under what conditions would
there be such a dependence?

e. The estimated model was based on n � 30 observations,
with SST � 39.2 and SSE � 20.0. Calculate and interpret

the coefficient of multiple determination, and then carry
out the model utility test using � � .05.

41. The ability of ecologists to identify regions of greatest species
richness could have an impact on the preservation of genetic
diversity, a major objective of the World Conservation
Strategy. The article “Prediction of Rarities from Habitat
Variables: Coastal Plain Plants on Nova Scotian Lakeshores”
(Ecology, 1992: 1852–1859) used a sample of n � 37 lakes
to obtain the estimated regression equation

y � 3.89 � .033x1 � .024x2 � .023x3

� .0080x4 � .13x5 � .72x6

where y � species richness, x1 � watershed area, x2 �
shore width, x3 � poor drainage (%), x4 � water color (total
color units), x5 � sand (%), and x6 � alkalinity. The coeffi-
cient of multiple determination was reported as R2 � .83.
Carry out a test of model utility.

42. An investigation of a die casting process resulted in the
accompanying data on x1 � furnace temperature, x2 � die
close time, and y � temperature difference on the die sur-
face (“A Multiple-Objective Decision-Making Approach
for Assessing Simultaneous Improvement in Die Life and
Casting Quality in a Die Casting Process,” Quality En-
gineering, 1994: 371–383).

x1 | 1250 1300 1350 1250 1300

x2 | 6 7 6 7 6

y | 80 95 101 85 92

x1 | 1250 1300 1350 1350

x2 | 8 8 7 8

y | 87 96 106 108

MINITAB output from fitting the multiple regression model
with predictors x1 and x2 is given here.

The regression equation is 
tempdiff � �200 � 0.210 furntemp

� 3.00 clostime

Predictor Coef Stdev t-ratio p
Constant �199.56 11.64 �17.14 0.000
furntemp 0.210000 0.008642 24.30 0.000
clostime 3.0000 0.4321 6.94 0.000

s � 1.058 R-sq � 99.1% R-sq(adj) � 98.8%

Analysis of Variance

SOURCE DF SS MS F p
Regression 2 715.50 357.75 319.31 0.000
Error 6 6.72 1.12
Total 8 722.22

a. Carry out the model utility test.
b. Calculate and interpret a 95% confidence interval for �2,

the population regression coefficient of x2.
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c. When x1 � 1300 and x2 � 7, the estimated standard devia-
tion of ŷ is sŶ � .353. Calculate a 95% confidence interval
for true average temperature difference when furnace
temperature is 1300 and die close time is 7.

d. Calculate a 95% prediction interval for the temperature
difference resulting from a single experimental run with
a furnace temperature of 1300 and a die close time of 7.

43. An experiment carried out to study the effect of the mole
contents of cobalt (x1) and the calcination temperature (x2)
on the surface area of an iron–cobalt hydroxide catalyst (y)
resulted in the accompanying data (“Structural Changes and
Surface Properties of CoxFe3�xO4 Spinels,” J. of Chemical
Tech. and Biotech., 1994: 161–170). A request to the SAS
package to fit �0 � �1x1 � �2x2 � �3x3, where x3 � x1x2 (an
interaction predictor) yielded the output below.

x1 | .6 .6 .6 .6 .6 1.0 1.0

x2 | 200 250 400 500 600 200 250

y | 90.6 82.7 58.7 43.2 25.0 127.1 112.3

x1 | 1.0 1.0 1.0 2.6 2.6 2.6 2.6

x2 | 400 500 600 200 250 400 500

y | 19.6 17.8 9.1 53.1 52.0 43.4 42.4

x1 | 2.6 2.8 2.8 2.8 2.8 2.8

x2 | 600 200 250 400 500 600

y | 31.6 40.9 37.9 27.5 27.3 19.0

a. Predict the value of surface area when cobalt content is
2.6 and temperature is 250, and calculate the value of
the corresponding residual.

b. Since �̂1 � �46.0, is it legitimate to conclude that if
cobalt content increases by 1 unit while the values of the
other predictors remain fixed, surface area can be ex-
pected to decrease by roughly 46 units? Explain your
reasoning.

c. Does there appear to be a useful linear relationship be-
tween y and the predictors?

d. Given that mole contents and calcination temperature
remain in the model, does the interaction predictor x3

provide useful information about y? State and test the
appropriate hypotheses using a significance level of .01.

e. The estimated standard deviation of Ŷ when mole con-
tents is 2.0 and calcination temperature is 500 is
sŶ � 4.69. Calculate a 95% confidence interval for the
mean value of surface area under these circumstances.

44. The authors of the article “An Ultracentrifuge Flour
Absorption Method” (Cereal Chemistry, 1978: 96–101)
studied the relationship between water absorption for
wheat flour and various characteristics of the flour. In par-
ticular, the authors used a first-order multiple linear
regression model to relate absorption y (%) to flour pro-
tein x1 (%) and starch damage x2 (Farrand units). The data
and accompanying SPSS output follow on p.546:
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SAS output for Exercise 43

Dependent Variable: SURFAREA

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Prob>F
Model 3 15223.52829 5074.50943 18.924 0.0001
Error 16 4290.53971 268.15873

C Total 19 19514.06800

Root MSE 16.37555 R-square 0.7801
Dep Mean 48.06000 Adj R-sq 0.7389
C.V. 34.07314

Parameter Estimates

Parameter Standard T for H0: Prob
Variable DF Estimate Error Parameter�0 �⏐T⏐
INTERCEP 1 185.485740 21.19747682 8.750 0.0001
COBCON 1 �45.969466 10.61201173 �4.332 0.0005
TEMP 1 �0.301503 0.05074421 �5.942 0.0001
CONTEMP 1 0.088801 0.02540388 3.496 0.0030



x1 x2 y x1 x2 y

8.5 2 30.9 12.9 24 47.0
8.9 3 32.7 12.0 25 46.8

10.6 3 36.7 12.9 28 45.9
10.2 20 41.9 13.1 28 48.8
9.8 22 40.9 11.4 32 46.2

10.8 20 42.9 13.2 28 47.8
11.6 31 46.3 11.6 35 49.2
12.0 32 47.6 12.1 34 48.3
12.5 31 47.2 11.3 35 48.6
10.9 28 44.0 11.1 40 50.2
12.2 36 47.7 11.5 45 49.6
11.9 28 43.9 11.6 50 53.2
11.3 30 46.8 11.7 55 54.3
13.0 27 46.2 11.7 57 55.8

a. Interpret �̂1 and �̂2.
b. What proportion of observed variation in absorption can

be explained by the model relationship?
c. Does the chosen model appear to specify a useful linear

relationship between absorption and at least one of the
two predictors?

d. If flour protein remains in the model, is elimination of
the predictor starch damage justified?

e. When x1 � 10 and x2 � 25, ŷ � 42.253 and sŶ � .350.
Calculate and interpret a confidence interval and a predic-
tion interval.

f. Including an interaction predictor x3 gives �̂3 � �.04304
and s�̂3

� .01773. At significance level .01, should this
predictor be retained?

45. The article “Analysis of the Modeling Methodologies for
Predicting the Strength of Air-Jet Spun Yarns” (Textile Res.
J., 1997: 39–44) reported on a study carried out to relate
yarn tenacity (y, in g/tex) to yarn count (x1, in tex), percent-
age polyester (x2), first nozzle pressure (x3, in kg/cm2), and
second nozzle pressure (x4, in kg/cm2). The estimate of the
constant term in the corresponding multiple regression
equation was 6.121. The estimated coefficients for the four

predictors were �.082, .113, .256, and �.219, respectively,
and the coefficient of multiple determination was .946.
a. Assuming that the sample size was n � 25, state and test

the appropriate hypotheses to decide whether the fitted
model specifies a useful linear relationship between the
dependent variable and at least one of the four model
predictors.

b. Again using n � 25, calculate the value of adjusted R2.
c. Calculate a 99% confidence interval for true mean yarn

tenacity when yarn count is 16.5, yarn contains 50%
polyester, first nozzle pressure is 3, and second nozzle
pressure is 5 if the estimated standard deviation of pre-
dicted tenacity under these circumstances is .350.

46. A regression analysis carried out to relate y � repair time for
a water filtration system (hr) to x1 � elapsed time since the
previous service (months) and x2 � type of repair (1 if elec-
trical and 0 if mechanical) yielded the following model based
on n � 12 observations: y � .950 � .400x1 � 1.250x2. In
addition, SST � 12.72, SSE � 2.09, and s�̂2

� .312.
a. Does there appear to be a useful linear relationship be-

tween repair time and the two model predictors? Carry
out a test of the appropriate hypotheses using a signifi-
cance level of .05.

b. Given that elapsed time since the last service remains in
the model, does type of repair provide useful information
about repair time? State and test the appropriate hypothe-
ses using a significance level of .01.

c. Calculate and interpret a 95% CI for �2.
d. The estimated standard deviation of a prediction for re-

pair time when elapsed time is 6 months and the repair is
electrical is .192. Predict repair time under these circum-
stances by calculating a 99% prediction interval. Does
the interval suggest that the estimated model will give an
accurate prediction? Why or why not?

47. Efficient design of certain types of municipal waste inciner-
ators requires that information about energy content of the
waste be available. The authors of the article “Modeling the
Energy Content of Municipal Solid Waste Using Multiple
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SPSS output for Exercise 44

Multiple R .98207
R Square .96447
Adjusted R Square .96163
Standard Error 1.09412

Analysis of Variance
DF Sum of Squares Mean Square

Regression 2 812.37959 406.18980
Residual 25 29.92755 1.19710

F � 339.31092 Signif F � .0000

Variables in the equation

Variable B SE B 95% Confdnce Intrvl B
STARCH .33563 .01814 .29828 .37298
FLOUR 1.44228 .20764 1.01465 1.86991
(Constant) 19.43976 2.18829 14.93290 23.94662



Regression Analysis” (J. of the Air and Waste Mgmt. Assoc.,
1996: 650–656) kindly provided us with the accompanying
data on y � energy content (kcal/kg), the three physical
composition variables x1 � % plastics by weight, x2 � %
paper by weight, and x3 � % garbage by weight, and the
proximate analysis variable x4 � % moisture by weight for
waste specimens obtained from a certain region.

Energy 
Obs Plastics Paper Garbage Water Content

1 18.69 15.65 45.01 58.21 947
2 19.43 23.51 39.69 46.31 1407
3 19.24 24.23 43.16 46.63 1452
4 22.64 22.20 35.76 45.85 1553
5 16.54 23.56 41.20 55.14 989
6 21.44 23.65 35.56 54.24 1162
7 19.53 24.45 40.18 47.20 1466
8 23.97 19.39 44.11 43.82 1656
9 21.45 23.84 35.41 51.01 1254

10 20.34 26.50 34.21 49.06 1336
11 17.03 23.46 32.45 53.23 1097
12 21.03 26.99 38.19 51.78 1266
13 20.49 19.87 41.35 46.69 1401
14 20.45 23.03 43.59 53.57 1223
15 18.81 22.62 42.20 52.98 1216
16 18.28 21.87 41.50 47.44 1334
17 21.41 20.47 41.20 54.68 1155
18 25.11 22.59 37.02 48.74 1453
19 21.04 26.27 38.66 53.22 1278
20 17.99 28.22 44.18 53.37 1153
21 18.73 29.39 34.77 51.06 1225
22 18.49 26.58 37.55 50.66 1237
23 22.08 24.88 37.07 50.72 1327
24 14.28 26.27 35.80 48.24 1229
25 17.74 23.61 37.36 49.92 1205
26 20.54 26.58 35.40 53.58 1221
27 18.25 13.77 51.32 51.38 1138
28 19.09 25.62 39.54 50.13 1295
29 21.25 20.63 40.72 48.67 1391
30 21.62 22.71 36.22 48.19 1372

Using MINITAB to fit a multiple regression model with the
four aforementioned variables as predictors of energy con-
tent resulted in the following output:

The regression equation is
enercont� 2245� 28.9 plastics

� 7.64 paper� 4.30 garbage
�37.4 water

Predictor Coef StDev T p
Constant 2244.9 177.9 12.62 0.000
plastics 28.925 2.824 10.24 0.000
paper 7.644 2.314 3.30 0.003
garbage 4.297 1.916 2.24 0.034
water �37.354 1.834 �20.36 0.000

s� 31.48 R-Sq� 96.4 %R-Sq(adj)� 95.8%
(continued at top of next column)

Analysis of Variance

Source DF SS MS F p
Regression 4 664931 166233 167.71 0.000
Error 25 24779 991
Total 29 689710

a. Interpret the values of the estimated regression coeffi-
cients �̂1 and �̂4.

b. State and test the appropriate hypotheses to decide
whether the model fit to the data specifies a useful linear
relationship between energy content and at least one of
the four predictors.

c. Given that % plastics, % paper, and % water remain in
the model, does % garbage provide useful information
about energy content? State and test the appropriate
hypotheses using a significance level of .05.

d. Use the fact that sŶ � 7.46 when x1 � 20, x2 � 25, x3 � 40,
and x4 � 45 to calculate a 95% confidence interval for true
average energy content under these circumstances. Does
the resulting interval suggest that mean energy content has
been precisely estimated?

e. Use the information given in part (d) to predict energy
content for a waste sample having the specified charac-
teristics in a way that conveys information about preci-
sion and reliability.

48. An experiment to investigate the effects of a new technique for
degumming of silk yarn was described in the article “Some
Studies in Degumming of Silk with Organic Acids” (J. Society
of Dyers and Colourists, 1992: 79–86). One response variable
of interest was y � weight loss (%). The experimenters made
observations on weight loss for various values of three in-
dependent variables: x1 � temperature (°C) � 90, 100, 110;
x2 � time of treatment (min) � 30, 75, 120; x3 � tartaric acid
concentration (g/L) � 0, 8, 16. In the regression analyses, the
three values of each variable were coded as �1, 0, and 1,
respectively, giving the accompanying data (the value y8 � 19.3
was reported, but our value y8 � 20.3 results in regression out-
put identical to that appearing in the article).

Obs | 1 2 3 4 5 6 7 8

x1 | �1 �1 1 1 �1 �1 1 1

x2 | �1 1 �1 1 0 0 0 0

x3 | 0 0 0 0 �1 1 �1 1

y | 18.3 22.2 23.0 23.0 3.3 19.3 19.3 20.3

Obs | 9 10 11 12 13 14 15

x1 | 0 0 0 0 0 0 0

x2 | �1 �1 1 1 0 0 0

x3 | �1 1 �1 1 0 0 0

y | 13.1 23.0 20.9 21.5 22.0 21.3 22.6

A multiple regression model with k � 9 predictors—x1,
x2, x3, x4 � x2

1, x5 � x2
2, x6 � x2

3, x7 � x1x2, x8 � x1x3, and
x9 � x2x3—was fit to the data, resulting in �̂0 � 21.967,
�̂1 � 2.8125, �̂2 � 1.2750, �̂3 � 3.4375, �̂4 � �2.208,

13.4 Multiple Regression Analysis 547



�̂5 � 1.867, �̂6 � �4.208, �̂7 � �.975, �̂8 � �3.750,
�̂9 � �2.325, SSE � 23.379, and R2 � .938.
a. Does this model specify a useful relationship? State and

test the appropriate hypotheses using a significance level
of .01.

b. The estimated standard deviation of 	̂Y when x1 � 
 
 
 �
x9 � 0 (i.e., when temperature � 100, time � 75, and
concentration � 8) is 1.248. Calculate a 95% CI for
expected weight loss when temperature, time, and con-
centration have the specified values.

c. Calculate a 95% PI for a single weight-loss value to be
observed when temperature, time, and concentration
have values 100, 75, and 8, respectively.

d. Fitting the model with only x1, x2, and x3 as predictors
gave R2 � .456 and SSE � 203.82. Is there a useful
relationship between weight loss and at least one of the
second-order predictors x4, x5, . . . , x9? State and test the
appropriate hypotheses.

49. The article “The Influence of Temperature and Sunshine on
the Alpha-Acid Contents of Hops (Agricultural Meteorology,
1974: 375–382) reports the following data on yield (y), mean
temperature over the period between date of coming into hops
and date of picking (x1), and mean percentage of sunshine dur-
ing the same period (x2) for the fuggle variety of hop:

x1 | 16.7 17.4 18.4 16.8 18.9 17.1

x2 | 30 42 47 47 43 41

y | 210 110 103 103 91 76

x1 | 17.3 18.2 21.3 21.2 20.7 18.5

x2 | 48 44 43 50 56 60

y | 73 70 68 53 45 31

Here is partial MINITAB output from fitting the first-order
model Y � �0 � �1x1 � �2x2 �! used in the article:

Predictor Coef Stdev t-ratio p
Constant 415.11 82.52 5.03 0.000
Temp �6.593 4.859 �1.36 0.208
Sunshine �4.504 1.071 �4.20 0.002

s � 24.45 R-sq � 76.8% R-sq(adj) � 71.6%

a. What is 	̂Y�18.9,43, and what is the corresponding residual?
b. Test H0: �1 � �2 � 0 versus Ha: either �1 or �2 � 0 at

level .05.
c. The estimated standard deviation of �̂0 � �̂1x1 � �̂2x2

when x1 � 18.9 and x2 � 43 is 8.20. Use this to obtain a
95% CI for 	Y�18.9,43.

d. Use the information in part (c) to obtain a 95% PI for
yield in a future experiment when x1 � 18.9 and x2 � 43.

e. MINITAB reported that a 95% PI for yield when x1 � 18
and x2 � 45 is (35.94, 151.63). What is a 90% PI in this
situation?

f. Given that x2 is in the model, would you retain x1?
g. When the model Y � �0 � �2x2 �! is fit, the resulting

value of R2 is .721. Verify that the F statistic for testing

H0: Y � �0 � �2 x2 � ! versus Ha: Y � �0 � �1x1 �
�2 x2 � ! satisfies t2 � f, where t is the value of the t sta-
tistic from part (f ).

50. a. When the model Y � �0 � �1x1 � �2x2 � �3x2
1 � �4x2

2 �
�5 x1x2 � ! is fit to the hops data of Exercise 49, the esti-
mate of �5 is �̂5 � .557 with estimated standard devia-
tion s�̂5

� .94. Test H0: �5 � 0 versus Ha: �5 � 0.
b. Each t-ratio �̂i/s�̂i

(i � 1, 2, 3, 4, 5) for the model of part
(a) is less than 2 in absolute value, yet R2 � .861 for this
model. Would it be correct to drop each term from the
model because of its small t-ratio? Explain.

c. Using R2 � .861 for the model of part (a), test H0: �3 �
�4 � �5 � 0 (which says that all second-order terms can
be deleted).

51. The article “The Undrained Strength of Some Thawed
Permafrost Soils” (Canadian Geotechnical J., 1979:
420–427) contains the following data on undrained shear
strength of sandy soil (y, in kPa), depth (x1, in m), and water
content (x2, in %). 

y x1 x2 ŷ y 
 ŷ e*

1 14.7 8.9 31.5 23.35 �8.65 �1.50
2 48.0 36.6 27.0 46.38 1.62 .54
3 25.6 36.8 25.9 27.13 �1.53 �.53
4 10.0 6.1 39.1 10.99 �.99 �.17
5 16.0 6.9 39.2 14.10 1.90 .33
6 16.8 6.9 38.3 16.54 .26 .04
7 20.7 7.3 33.9 23.34 �2.64 �.42
8 38.8 8.4 33.8 25.43 13.37 2.17
9 16.9 6.5 27.9 15.63 1.27 .23

10 27.0 8.0 33.1 24.29 2.71 .44
11 16.0 4.5 26.3 15.36 .64 .20
12 24.9 9.9 37.8 29.61 �4.71 �.91
13 7.3 2.9 34.6 15.38 �8.08 �1.53
14 12.8 2.0 36.4 7.96 4.84 1.02

The predicted values and residuals were computed by fitting
a full quadratic model, which resulted in the estimated
regression function

y � �151.36 � 16.22x1 � 13.48x2 � .094x2
1

� .253x2
2 � .492x1x2

a. Do plots of e* versus x1, e* versus x2, and e* versus ŷ
suggest that the full quadratic model should be modified?
Explain your answer.

b. The value of R2 for the full quadratic model is .759. Test at
level .05 the null hypothesis stating that there is no linear
relationship between the dependent variable and any of the
five predictors.

c. It can be shown that V(Y) � � 2 � V(Ŷ) � V(Y �Ŷ). The
estimate of � is �̂ � s � 6.99 (from the full quadratic
model). First obtain the estimated standard deviation of
Y �Ŷ, and then estimate the standard deviation of Ŷ (i.e.,
�̂0 � �̂1x1 � �̂2x2 � �̂3x2

1 � �̂4x2
2 � �̂5x1x2) when x1 � 8.0

and x2 � 33.1. Finally, compute a 95% CI for mean
strength. [Hint: What is (y � ŷ)/e*?]
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d. Fitting the first-order model with regression function
	Y�x1�x2

� �0 � �1x1 � �2x2 results in SSE � 894.95. Test
at level .05 the null hypothesis that states that all qua-
dratic terms can be deleted from the model.

52. Utilization of sucrose as a carbon source for the production of
chemicals is uneconomical. Beet molasses is a readily avail-
able and low-priced substitute. The article “Optimization of
the Production of �-Carotene from Molasses by Blakeslea
Trispora (J. of Chemical Technology and Biotechnology, 2002:
933–943) carried out a multiple regression analysis to relate
the dependent variable y � amount of �-carotene (g/dm3) to
the three predictors amount of lineolic acid, amount of ker-
osene, and amount of antioxidant (all g/dm3).

Obs Linoleic Kerosene Antiox Betacaro

1 30.00 30.00 10.00 0.7000
2 30.00 30.00 10.00 0.6300
3 30.00 30.00 18.41 0.0130
4 40.00 40.00 5.00 0.0490
5 30.00 30.00 10.00 0.7000
6 13.18 30.00 10.00 0.1000
7 20.00 40.00 5.00 0.0400
8 20.00 40.00 15.00 0.0065
9 40.00 20.00 5.00 0.2020

10 30.00 30.00 10.00 0.6300
11 30.00 30.00 1.59 0.0400
12 40.00 20.00 15.00 0.1320
13 40.00 40.00 15.00 0.1500
14 30.00 30.00 10.00 0.7000
15 30.00 46.82 10.00 0.3460
16 30.00 30.00 10.00 0.6300
17 30.00 13.18 10.00 0.3970
18 20.00 20.00 5.00 0.2690
19 20.00 20.00 15.00 0.0054
20 46.82 30.00 10.00 0.0640

a. Fitting the complete second-order model in the three pre-
dictors resulted in R2 � .987 and adjusted R2 � .974,
whereas fitting the first-order model gave R2 � .016.
What would you conclude about the two models?

b. For x1 � x2 � 30, x3 � 10, a statistical software package
reported that ŷ � .66573, sŶ � .01785 based on the
complete second-order model. Predict the amount of
�-carotene that would result from a single experimental
run with the designated values of the independent vari-
ables, and do so in a way that conveys information about
precision and reliability.

53. Snowpacks contain a wide spectrum of pollutants that may
represent environmental hazards. The article “Atmospheric
PAH Deposition: Deposition Velocities and Washout Ratios”
(J. of Environmental Engineering, 2002: 186–195) focused
on the deposition of polyaromatic hydrocarbons. The authors
proposed a multiple regression model for relating deposition
over a specified time period (y, in 	g/m2) to two rather com-
plicated predictors x1 (	g-sec/m3) and x2 (	g/m2) defined in

terms of PAH air concentrations for various species, total
time, and total amount of precipitation. Here is data on the
species fluoranthene and corresponding MINITAB output:

obs x1 x2 flth
1 92017 .0026900 278.78
2 51830 .0030000 124.53
3 17236 .0000196 22.65
4 15776 .0000360 28.68
5 33462 .0004960 32.66
6 243500 .0038900 604.70
7 67793 .0011200 27.69
8 23471 .0006400 14.18
9 13948 .0004850 20.64
10 8824 .0003660 20.60
11 7699 .0002290 16.61
12 15791 .0014100 15.08
13 10239 .0004100 18.05
14 43835 .0000960 99.71
15 49793 .0000896 58.97
16 40656 .0026000 172.58
17 50774 .0009530 44.25

The regression equation is 

flth� �33.5� 0.00205 x1� 29836 x2

Predictor Coef SE Coef T P
Constant �33.46 14.90 �2.25 0.041
x1 0.0020548 0.0002945 6.98 0.000
x2 29836 13654 2.19 0.046

S� 44.28 R-Sq� 92.3% R-Sq(adj)� 91.2%

Analysis of Variance

Source DF SS MS F P
Regression 2 330989 165495 84.39 0.000
Residual Error 14 27454 1961
Total 16 358443

Formulate questions and perform appropriate analyses to
draw conclusions.

54. The accompanying data resulted from a study of the rela-
tionship between brightness of finished paper (y) and the
variables H2O2% by weight (x1), NaOH% by weight (x2), sil-
icate % by weight (x3), and process temperature (x4)
(“Advantages of CEHDP Bleaching for High Brightness
Kraft Pulp Production,” TAPPI, 1964: 170A–173A). Each
independent variable was allowed to assume five different
values, and these values were coded for regression analysis
as �2, �1, 0, 1, and 2.

NaOH Silicate 
Test H2O2 Conc. Conc. Temp. Bright. 
No. (x1) (x2) (x3) (x4) ( y)

1 �1 �1 �1 �1 83.9
2 �1 �1 �1 �1 84.9
3 �1 �1 �1 �1 83.4
4 �1 �1 �1 �1 84.2
5 �1 �1 �1 �1 83.8
6 �1 �1 �1 �1 84.7
7 �1 �1 �1 �1 84.0
8 �1 �1 �1 �1 84.8
9 �1 �1 �1 �1 84.5

10 �1 �1 �1 �1 86.0
(continued)
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NaOH Silicate 
Test H2O2 Conc. Conc. Temp. Bright. 
No. (x1) (x2) (x3) (x4) (y)

11 �1 �1 �1 �1 82.6
12 �1 �1 �1 �1 85.1
13 �1 �1 �1 �1 84.5
14 �1 �1 �1 �1 86.0
15 �1 �1 �1 �1 84.0
16 �1 �1 �1 �1 85.4
17 �2 0 0 0 82.9
18 �2 0 0 0 85.5
19 0 �2 0 0 85.2
20 0 �2 0 0 84.5
21 0 0 �2 0 84.7
22 0 0 �2 0 85.0
23 0 0 0 �2 84.9
24 0 0 0 �2 84.0
25 0 0 0 0 84.5
26 0 0 0 0 84.7
27 0 0 0 0 84.6
28 0 0 0 0 84.9
29 0 0 0 0 84.9
30 0 0 0 0 84.5
31 0 0 0 0 84.6

Variables �2 �1 0 �1 �2

x1 Hydrogen peroxide 
(100%), %wt .1 .2 .3 .4 .5

x2 NaOH, %wt .1 .2 .3 .4 .5
x3 Silicate (41°Bé),

%wt 5 1.5 2.5 3.5 4.5
x4 Process temp., °F 130 145 160 175 190

a. When a (coded) model involving all linear terms, all
quadratic terms, and all cross-product terms was fit, the
estimated regression function was

y � 84.67 � .650x1 � .258x2 � .133x3

� .108x4 � .135x2
1 � .028x2

2 � .028x2
3

� .072x2
4 � .038x1x2 � .075x1x3

� .213x1x4 � .200x2x3 � .188x2x4

� .050x3x4

Use this estimated model to predict brightness when H2O2

is .4%, NaOH is .4%, silicate is 3.5%, and temperature is
175. What are the values of the residuals for these values
of the variables?

b. Express the estimated regression function in uncoded form.
c. SST � 17.2567, and R2 for the model of part (a) is .885.

When a model that includes only the four linear terms is
fit, the resulting value of R2 is .721. State and test at level
.05 the null hypothesis that specifies that the coefficients
of all quadratic and cross-product terms in the regression
function are zero.

d. The estimated (coded) regression function when only
linear terms are included is 	̂Y�x1,x2,x3,x4

� 84.5548 �
.6500x1 � .2583x2 � .1333x3 � .1083x4. When x1 �
x2 � x3 � x4 � 0, the estimated standard deviation of
	̂Y
0,0,0,0 is .0772. Suppose it had been believed that
expected brightness for these values of the xi s was at
least 85.0. Does the given information contradict this
belief? State and test the appropriate hypotheses.
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13.5 Other Issues in Multiple Regression

In this section, we touch upon a number of issues that may arise when a multiple
regression analysis is carried out. Consult the chapter references for a more exten-
sive treatment of any particular topic.

Transformations in Multiple Regression
Often, theoretical considerations suggest a nonlinear relation between a dependent
variable and two or more independent variables, whereas on other occasions diag-
nostic plots indicate that some type of nonlinear function should be used. Frequently
a transformation will linearize the model.

An article in Lubrication Eng. (“Accelerated Testing of Solid Film Lubricants,”
1972: 365–372) reports on an investigation of wear life for solid film lubricant. Three
sets of journal bearing tests were run on a Mil-L-8937-type film at each combination
of three loads (3000, 6000, and 10,000 psi) and three speeds (20, 60, and 100 rpm),
and the wear life (hours) was recorded for each run, as shown in Table 13.7.
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Table 13.7 Wear-life Data for Example 13.18

s l(1000s) w s l(1000s) w

20 3 300.2 60 6 65.9
20 3 310.8 60 10 10.7
20 3 333.0 60 10 34.1
20 6 99.6 60 10 39.1
20 6 136.2 100 3 26.5
20 6 142.4 100 3 22.3
20 10 20.2 100 3 34.8
20 10 28.2 100 6 32.8
20 10 102.7 100 6 25.6
60 3 67.3 100 6 32.7
60 3 77.9 100 10 2.3
60 3 93.9 100 10 4.4
60 6 43.0 100 10 5.8
60 6 44.5

The article contains the comment that a lognormal distribution is appropriate
for W, since ln(W) is known to follow a normal law (recall from Chapter 4 that this
is what defines a lognormal distribution). The model that appears is W � (c/salb) � !,
from which ln(W) � ln(c) � a ln(s) � b ln(l) � ln(!); so with Y � ln(W), x1 � ln(s),
x2 � ln(l), �0 � ln(c), �1 � �a, and �2 � �b, we have a multiple linear regression
model. After computing ln(wi), ln(si), and ln(li) for the data, a first-order model in the
transformed variables yielded the results shown in Table 13.8.

Table 13.8 Estimated Coefficients and t-ratios for Example 13.18

Parameter �i Estimate �̂i Estimated SD s�̂ i
t � �̂i/s�̂ i

�0 10.8719 .7871 13.81
�1 �1.2054 .1710 �7.05
�2 �1.3979 .2327 �6.01

The coefficient of multiple determination (for the transformed fit) has value
R2 � .781. The estimated regression function for the transformed variables is

ln(w) � 10.87 � 1.21 ln(s) � 1.40 ln(l)

so that the original regression function is estimated as

w � e10.87 � s�1.21 � l�1.40

The Bonferroni approach can be used to obtain simultaneous CIs for �1 and �2, and
because �1 � �a and �2 � �b, intervals for a and b are then immediately available. ■

In Section 13.2, the logistic regression model was introduced to relate a
dichotomous variable y to a single predictor. This model can be extended in an obvi-
ous way to incorporate more than one predictor.

Standardizing Variables
In Section 13.3, we considered transforming x to x � x � x� before fitting a polyno-
mial. For multiple regression, especially when values of variables are large in mag-
nitude, it is advantageous to carry this coding one step further. Let x�i and si be the
sample average and sample standard deviation of the xij s ( j � 1, . . . , n). We now
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code each variable xi by xi � (xi � x�i)/si. The coded variable xi simply reexpresses
any xi value in units of standard deviation above or below the mean. Thus if x�i � 100
and si � 20, xi � 130 becomes xi � 1.5 because 130 is 1.5 standard deviations above
the mean of the values of xi. For example, the coded full second-order model with
two independent variables has regression function

E(Y ) � �0 � �1� � � �2� � � �3� �
2

� �4� �
2

� �5� �� �
� �0 � �1x1 � �2x2 � �3x3 � �4x4 � �5x5

The benefits of coding are (1) increased numerical accuracy in all computations
(through less computer round-off error) and (2) more accurate estimation than for the
parameters of the uncoded model because the individual parameters of the coded model
characterize the behavior of the regression function near the center of the data rather
than near the origin.

The article “The Value and the Limitations of High-Speed Turbo-Exhausters for the
Removal of Tar-Fog from Carburetted Water-Gas” (Soc. Chemical Industry J., 1946:
166–168) presents the data (in Table 13.9) on y � tar content (grains/100 ft3) of a gas
stream as a function of x1 � rotor speed (rpm) and x2 � gas inlet temperature (°F).
The data is also considered in the article “Some Aspects of Nonorthogonal Data
Analysis” (J. Quality Technology, 1973: 67–79), which suggests using the coded
model described previously.

Table 13.9 Data for Example 13.19

Run y x1 x2 x1 x2

1 60.0 2400 54.5 �1.52428 �.57145
2 61.0 2450 56.0 �1.39535 �.35543
3 65.0 2450 58.5 �1.39535 .00461
4 30.5 2500 43.0 �1.26642 �2.22763
5 63.5 2500 58.0 �1.26642 �.06740
6 65.0 2500 59.0 �1.26642 .07662
7 44.0 2700 52.5 �.75070 �.85948
8 52.0 2700 65.5 �.75070 1.01272
9 54.5 2700 68.0 �.75070 1.37276

10 30.0 2750 45.0 �.62177 �1.93960
11 26.0 2775 45.5 �.55731 �1.86759
12 23.0 2800 48.0 �.49284 �1.50755
13 54.0 2800 63.0 �.49284 .65268
14 36.0 2900 58.5 �.23499 .00461
15 53.5 2900 64.5 �.23499 .86870
16 57.0 3000 66.0 .02287 1.08472
17 33.5 3075 57.0 .21627 �.21141
18 34.0 3100 57.5 .28073 �.13941
19 44.0 3150 64.0 .40966 .79669
20 33.0 3200 57.0 .53859 �.21141
21 39.0 3200 64.0 .53859 .79669
22 53.0 3200 69.0 .53859 1.51677
23 38.5 3225 68.0 .60305 1.37276

(continued)
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Run y x1 x2 x1 x2

24 39.5 3250 62.0 .66752 .50866
25 36.0 3250 64.5 .66752 .86870
26 8.5 3250 48.0 .66752 �1.50755
27 30.0 3500 60.0 1.31216 .22063
28 29.0 3500 59.0 1.31216 .07662
29 26.5 3500 58.0 1.31216 �.06740
30 24.5 3600 58.0 1.57002 �.06740
31 26.5 3900 61.0 2.34360 .36465

The means and standard deviations are x�1 � 2991.13, s1 � 387.81, x�2 � 58.468,
and s2 � 6.944, so x1 � (x1 � 2991.13)/387.81 and x2 � (x2 � 58.468)/6.944. With
x3 � (x1)2, x4 � (x2)2, x5 � x1 � x2, fitting the full second-order model requires solv-
ing the system of six normal equations in six unknowns. A computer analysis yielded
�̂0 � 40.2660, �̂1 � �13.4041, �̂2 � 10.2553, �̂3 � 2.3313, �̂4 � �2.3405, and �̂5 �
2.5978. The estimated regression equation is then

ŷ � 40.27 � 13.40x1 � 10.26x2 � 2.33x3 � 2.34x4 � 2.60x5

Thus if x1 � 3200 and x2 � 57.0, x1 � .539, x2 � �.211, x3 � (.539)2 � .2901, x4 �
(�.211)2 � .0447, and x5 � (.539)(�.211) � �.1139, so

ŷ � 40.27 � (13.40)(.539) � (10.26)(�.211) � (2.33)(.2901)
� (2.34)(.0447) � (2.60)(�.1139) � 31.16 ■

Variable Selection
Often an experimenter will have data on a large number of predictors and then wish
to build a regression model involving a subset of the predictors. The use of the sub-
set will make the resulting model more manageable, especially if more data is to be
subsequently collected, and also result in a model that is easier to interpret and
understand than one with many more predictors. Two fundamental questions in con-
nection with variable selection are the following:

1. If we can examine regressions involving all possible subsets of the predictors for
which data is available, what criteria should be used to select a model?

2. If the number of predictors is too large to permit all regressions to be examined,
is there a way of examining a reduced number of subsets among which a good
model (or models) will be found?

To address Question (1) first, if the number of predictors is small (� 5, say),
then it would not be too tedious to examine all possible regressions using any one of
the readily available statistical computer packages. If data on at least six predictors
is available, all possible regressions involve at least 64 (� 26) different models.
Several packages will, for any specified m between 1 and 10, give the m best one-
predictor models, the m best two-predictor models, and so on (“best” here means
smallest SSE or, equivalently, largest R2). MINITAB will do this for as many as 20
predictors, whereas BMDP will handle up to 27. The corresponding SSEs (or func-
tions of them) can then be compared according to any of the criteria described next.
The reason for specifying an m greater than 1 is to see whether the best models have
similar SSE or R2 values.
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Criteria for Variable Selection Again we use a subscript k to denote a quantity
(say, SSEk) computed from a model with k predictors (and thus k � 1 �i s, because
�0 will always be included). For a fixed value of k, it is reasonable to identify the
best model as the one having minimum SSEk. The more difficult issue concerns
comparison of SSEk s for different values of k. Three different criteria, each one a
simple function of SSEk, are widely used.

1. R2
k, the coefficient of multiple determination for a k-predictor model. Because R2

k

will virtually always increase as k does (and can never decrease), we are not inter-
ested in the k that maximizes R2

k. Instead we wish to identify a small k for which
R2

k is nearly as large as R2 for all predictors in the model.

2. MSEk � SSE/(n � k � 1), the mean squared error for a k-predictor model. This
is often used in place of R2

k, because although R2
k never decreases with increasing

k, a small decrease in SSEk obtained with one extra predictor can be more than
offset by a decrease of 1 in the denominator of MSEk. The objective is then to find
the model having minimum MSEk. Since adjusted R2

k � 1 � MSEk/MST, where
MST � SST/(n � 1) is constant in k, examination of adjusted R2

k is equivalent to
consideration of MSEk.

3. The rationale for the third criterion, Ck, is more difficult to understand, but the cri-
terion is widely used by data analysts. Suppose the true regression model is spec-
ified by m predictors—that is,

Y � �0 � �1x1 � 
 
 
 � �mxm � ! V(!) � � 2

so that

E(Y ) � �0 � �1x1 � 
 
 
 � �mxm

Consider fitting a model by using a subset of k of these m predictors; for sim-
plicity, suppose we use x1, x2, . . . , xk. Then by solving the system of normal equa-
tions, estimates �̂0, �̂1, . . . , �̂k are obtained (but not, of course, estimates of any
�’s corresponding to predictors not in the fitted model). The true expected value
E(Y ) can then be estimated by Ŷ ��̂0 ��̂1x1 � 
 
 
 ��̂kxk. Now consider the nor-
malized expected total error of estimation

�k � � � 2(k � 1) � n (13.21)

The second equality in (13.21) must be taken on faith because it requires a tricky
expected-value argument. A particular subset is then appealing if its �k value is
small. Unfortunately, though, E(SSEk) and � 2 are not known. To remedy this, let
s2 denote the estimate of � 2 based on the model that includes all predictors for
which data is available and define

Ck � � 2(k � 1) � n

A desirable model is then specified by a subset of predictors for which Ck is small.

The review article by Ron Hocking listed in the chapter bibliography reports on an
analysis of data taken from the 1974 issues of Motor Trend magazine. The depen-
dent variable y was gas mileage, there were n � 32 observations, and the predictors
for which data was obtained were x1 � engine shape (1 � straight and 0 � V), x2 �
number of cylinders, x3 � transmission type (1 � manual and 0 � auto), x4 � number

SSEk
�

s2

E(SSEk)
�

� 2

E��
n

i�1
[Ŷi � E(Yi)]2�

��
� 2
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of transmission speeds, x5 � engine size, x6 � horsepower, x7 � number of carbu-
retor barrels, x8 � final drive ratio, x9 � weight, and x10 � quarter-mile time. In
Table 13.10, we present summary information from the analysis. The table describes
for each k the subset having minimum SSEk; reading down the variables column
indicates which variable is added in going from k to k � 1 (in going from k � 2 to
k � 3, both x3 and x10 are added, and x2 is deleted). Figure 13.18 contains plots of R2

k,
adjusted R2

k, and Ck against k; these plots are an important visual aid in selecting a
subset. The estimate of � 2 is s2 � 6.24, which is MSE10. A simple model that rates
highly according to all criteria is the one containing predictors x3, x9, and x10.

Table 13.10 Best Subsets for Gas Mileage Data of Example 13.20

k � Number of 
Predictors Variables SSEk R2

k Adjusted R2
k Ck

1 9 247.2 .756 .748 11.6
2 2 169.7 .833 .821 1.2
3 3, 10, �2 150.4 .852 .836 .1
4 6 142.3 .860 .839 .8
5 5 136.2 .866 .840 1.8
6 8 133.3 .869 .837 3.4
7 4 132.0 .870 .832 5.2
8 7 131.3 .871 .826 7.1
9 1 131.1 .871 .818 9.0

10 2 131.0 .871 .809 11.0
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Figure 13.18 R2
k and Ck plots for the gas mileage data ■

Generally speaking, when a subset of k predictors (k � m) is used to fit a
model, the estimators �̂0, �̂1, . . . , �̂k will be biased for �0, �1, . . . , �k and Ŷ will also
be a biased estimator for the true E(Y) (all this because m � k predictors are miss-
ing from the fitted model). However, as measured by the total normalized expected
error �k, estimates based on a subset can provide more precision than would be
obtained using all possible predictors; essentially, this greater precision is obtained
at the price of introducing a bias in the estimators. A value of k for which Ck � k � 1
indicates that the bias associated with this k-predictor model would be small.

The bond shear strength data introduced in Example 13.12 contains values of four
different independent variables x1–x4. We found that the model with only these four 
variables as predictors was useful, and there is no compelling reason to consider the
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inclusion of second-order predictors. Figure 13.19 is the MINITAB output that
results from a request to identify the two best models of each given size.

The best two-predictor model, with predictors power and temperature, seems
to be a very good choice on all counts: R2 is significantly higher than for models with
fewer predictors yet almost as large as for any larger models, adjusted R2 is almost
at its maximum for this data, and Ck is small and close to 2 � 1 � 3.

Response is strength f p
o o t t
r w e i

Adj. c e m m
Vars R-sq R-sq C-p s e r p e

1 57.7 56.2 11.0 5.9289 X
1 10.8 7.7 51.9 8.6045 X
2 68.5 66.2 3.5 5.2070 X X
2 59.4 56.4 11.5 5.9136 X X
3 70.2 66.8 4.0 5.1590 X X X
3 69.7 66.2 4.5 5.2078 X X X
4 71.4 66.8 5.0 5.1580 X X X X

Figure 13.19 Output from MINITAB’s Best Subsets option ■

Stepwise Regression When the number of predictors is too large to allow for
explicit or implicit examination of all possible subsets, several alternative selection
procedures generally will identify good models. The simplest such procedure is the
backward elimination (BE) method. This method starts with the model in which 
all predictors under consideration are used. Let the set of all such predictors be 
x1, . . . , xm. Then each t-ratio �̂i/s�̂i

(i � 1, . . . , m) appropriate for testing H0: �i �
0 versus Ha: �i � 0 is examined. If the t-ratio with the smallest absolute value is less
than a prespecified constant tout, that is, if

min
i�1, . . . , m

� � � tout

then the predictor corresponding to the smallest ratio is eliminated from the model.
The reduced model is now fit, the m � 1 t-ratios are again examined, and another
predictor is eliminated if it corresponds to the smallest absolute t-ratio smaller than
tout. In this way, the algorithm continues until at some stage, all absolute t-ratios are
at least tout. The model used is the one containing all predictors that were not elimi-
nated. The value tout � 2 is often recommended since most t.05 values are near 2.
Some computer packages focus on P-values rather than t-ratios.

For the coded full quadratic model in which y � tar content, the five potential predic-
tors are x1, x2, x3 � x12, x4 � x22, and x5 � x1x2 (so m � 5). Without specifying tout,
the predictor with the smallest absolute t-ratio (asterisked) was eliminated at each
stage, resulting in the sequence of models shown in Table 13.11.

Table 13.11 Backward Elimination Results for the Data of Example 13.19

⏐t-ratio⏐

Step Predictors 1 2 3 4 5

1 1, 2, 3, 4, 5 16.0 10.8 2.9 2.8 1.8*
2 1, 2, 3, 4 15.4 10.2 3.7 2.0* —
3 1, 2, 3 14.5 12.2 4.3* — —
4 1, 2 10.9 9.1* — — —
5 1 4.4* — — — —

�̂i

�
s�̂i
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Using tout � 2, the resulting model would be based on x1, x2, and x3, since at
Step 3 no predictor could be eliminated. It can be verified that each subset is actually
the best subset of its size, though this is by no means always the case. ■

An alternative to the BE procedure is forward selection (FS). FS starts with
no predictors in the model and considers fitting in turn the model with only x1, only
x2, . . . , and finally only xm. The variable that, when fit, yields the largest absolute 
t-ratio enters the model provided that the ratio exceeds the specified constant tin.
Suppose x1 enters the model. Then models with (x1, x2), (x1, x3), . . . , (x1, xm) are con-
sidered in turn. The largest ⏐�̂j /s�̂j⏐ ( j � 2, . . . , m) then specifies the entering pre-
dictor provided that this maximum also exceeds tin. This continues until at some step
no absolute t-ratios exceed tin. The entered predictors then specify the model. The
value tin � 2 is often used for the same reason that tout � 2 is used in BE. For the tar-
content data, FS resulted in the sequence of models given in Steps 5, 4, . . . , 1 in
Table 13.11 and thus is in agreement with BE. This will not always be the case.

The stepwise procedure most widely used is a combination of FS and BE,
denoted by FB. This procedure starts as does forward selection, by adding variables
to the model, but after each addition it examines those variables previously entered
to see whether any is a candidate for elimination. For example, if there are eight pre-
dictors under consideration and the current set consists of x2, x3, x5, and x6 with x5

having just been added, the t-ratios �̂2/s�̂2
, �̂3/s�̂3

, and �̂6/s�̂6
are examined. If the

smallest absolute ratio is less than tout, then the corresponding variable is eliminated
from the model. The idea behind FB is that with forward selection, a single variable
may be more strongly related to y than either of two or more other variables indi-
vidually, but the combination of these variables may make the single variable sub-
sequently redundant. This actually happened with the gas mileage data discussed in
Example 13.20, with x2 entering and subsequently leaving the model.

The FB procedure is part of several standard computer packages. The BMDP
package specifies tin � 2 and tout � �3�.9� (most packages actually use f � t2 rather
than t itself ).

Although in most situations these automatic selection procedures will identify a
good model, there is no guarantee that the best or even a nearly best model will result.
Close scrutiny should be given to data sets for which there appear to be strong rela-
tionships among some of the potential predictors; we will say more about this shortly.

Identification of Influential Observations
In simple linear regression, it is easy to spot an observation whose x value is much larger
or much smaller than other x values in the sample. Such an observation may have a great
impact on the estimated regression equation (whether it actually does depends on how
consistent the corresponding y value is to the remainder of the data). In multiple regres-
sion, it is also desirable to know whether the values of the predictors for a particular
observation are such that it has the potential for exerting great influence on the estimated
equation. One method for identifying potentially influential observations relies on the
fact that because each �̂i is a linear function of y1, y2, . . . , yn, each predicted y value of
the form ŷ � �̂0 � �̂1x1 � 
 
 
 � �̂kxk is also a linear function of the yj s. In particular,
the predicted values corresponding to sample observations can be written as follows:

ŷ1 � h11y1 � h12y2 � 
 
 
 � h1nyn

ŷ2 � h21y1 � h22y2 � 
 
 
 � h2nyn

� � � �
� � � �
� � � �
ŷn � hn1y1 � hn2y2 � 
 
 
 � hnnyn
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Each coefficient hij is a function only of the xij s in the sample and not of the yj s. It
can be shown that hij � hji and that 0 � hjj � 1.

Let’s focus on the “diagonal” coefficients h11, h22, . . . , hnn. The coefficient
hjj is the weight given to yj in computing the corresponding predicted value ŷj. This
quantity can also be expressed as a measure of the distance between the point
(x1j, . . . , xkj) in k-dimensional space and the center of the data (x�1�, . . . , x�k�). It is
therefore natural to characterize an observation whose hjj is relatively large as one
that has potentially large influence. Unless there is a perfect linear relationship
among the k predictors, �n

j�1 hjj � k � 1, so the average of the hjj s is (k � 1)/n.
Some statisticians suggest that if hjj � 2(k � 1)/n, the jth observation be cited as
being potentially influential; others use 3(k � 1)/n as the dividing line.

The accompanying data appeared in the article “Testing for the Inclusion of
Variables in Linear Regression by a Randomization Technique” (Technometrics,
1966: 695–699) and was reanalyzed in Hoaglin and Welsch, “The Hat Matrix in
Regression and ANOVA” (Amer. Statistician, 1978: 17–23). The hij s (with elements
below the diagonal omitted by symmetry) follow the data.

Beam Number Specific Gravity (x1) Moisture Content (x2) Strength ( y)

1 .499 11.1 11.14
2 .558 8.9 12.74
3 .604 8.8 13.13
4 .441 8.9 11.51
5 .550 8.8 12.38
6 .528 9.9 12.60
7 .418 10.7 11.13
8 .480 10.5 11.70
9 .406 10.5 11.02

10 .467 10.7 11.41

1 2 3 4 5 6 7 8 9 10

1 .418 �.002 .079 �.274 �.046 .181 .128 .222 .050 .242
2 .242 .292 .136 .243 .128 �.041 .033 �.035 .004
3 .417 �.019 .273 .187 �.126 .044 �.153 .004
4 .604 .197 �.038 .168 �.022 .275 �.028
5 .252 .111 �.030 .019 �.010 �.010
6 .148 .042 .117 .012 .111
7 .262 .145 .277 .174
8 .154 .120 .168
9 .315 .148

10 .187

Here k � 2 so (k � 1)/n � 3/10 � .3; since h44 � .604 � 2(.3), the fourth data point
is identified as potentially influential. ■

Another technique for assessing the influence of the jth observation that takes
into account yj as well as the predictor values involves deleting the jth observation
from the data set and performing a regression based on the remaining observations.
If the estimated coefficients from the “deleted observation” regression differ greatly
from the estimates based on the full data, the jth observation has clearly had a sub-
stantial impact on the fit. One way to judge whether estimated coefficients change
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greatly is to express each change relative to the estimated standard deviation of the
coefficient:

�

There exist efficient computational formulas that allow all this information to be
obtained from the “no-deletion” regression, so that the additional n regressions are
unnecessary.

Consider separately deleting observations 1 and 6, whose residuals are the largest,
and observation 4, where hjj is large. Table 13.12 contains the relevant information.

Table 13.12 Changes in Estimated Coefficients for Example 13.24

Change When Point j Is Deleted

Parameter No-deletions Estimates Estimated SD j � 1 j � 4 j � 6

�0 10.302 1.896 2.710 �2.109 �.642
�1 8.495 1.784 �1.772 1.695 .748
�2 .2663 .1273 �.1932 .1242 .0329

ej: �3.25 �.96 2.20
hjj: .418 .604 .148

For deletion of both point 1 and point 4, the change in each estimate is in the range
1–1.5 standard deviations, which is reasonably substantial (this does not tell us what
would happen if both points were simultaneously omitted). For point 6, however, the
change is roughly .25 standard deviation. Thus points 1 and 4, but not 6, might well
be omitted in calculating a regression equation. ■

Multicollinearity
In many multiple regression data sets, the predictors x1, x2, . . . , xk are highly inter-
dependent. Suppose we consider the usual model

Y � �0 � �1x1 � 
 
 
 � �kxk � !

with data (x1j, . . . , xkj, yj) ( j � 1, . . . , n) available for fitting. If we use the princi-
ple of least squares to regress xi on the other predictors x1, . . . , xi�1, xi�1, . . . , xk,
obtaining

x̂i � a0 � a1x1 � 
 
 
 � ai�1xi�1 � ai�1xi�1 � 
 
 
 � akxk

it can be shown that

V(�̂i) � (13.22)

When the sample xi values can be predicted very well from the other predictor val-
ues, the denominator of (13.22) will be small, so V( �̂i) will be quite large. If this
is the case for at least one predictor, the data is said to exhibit multicollinearity.
Multicollinearity is often suggested by a regression computer output in which R2 is
large but some of the t-ratios �̂i/s�̂i

are small for predictors that, based on prior infor-
mation and intuition, seem important. Another clue to the presence of multi-
collinearity lies in a �̂i value that has the opposite sign from that which intuition

� 2

��

�
n

j�1
(xij � x̂ij)2

change in �̂i

��
s�̂i

(�̂i before deletion) � (�̂i after deletion)
�����

s�̂i
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would suggest, indicating that another predictor or collection of predictors is serv-
ing as a “proxy” for xi.

An assessment of the extent of multicollinearity can be obtained by regressing
each predictor in turn on the remaining k � 1 predictors. Let R2

i denote the value of 
R2 in the regression with dependent variable xi and predictors x1, . . . , xi�1, xi�1, . . . ,
xk. It has been suggested that severe multicollinearity is present if R2

i � .9 for any i.
MINITAB will refuse to include a predictor in the model when its R2

i value is quite 
close to 1.

There is unfortunately no consensus among statisticians as to what remedies
are appropriate when severe multicollinearity is present. One possibility involves
continuing to use a model that includes all the predictors but estimating parameters
by using something other than least squares. Consult a chapter reference for more
details.
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EXERCISES Section 13.5 (55–64)

55. The article “Bank Full Discharge of Rivers” (Water
Resources J., 1978: 1141–1154) reports data on discharge
amount (q, in m3/sec), flow area (a, in m2), and slope of the
water surface (b, in m/m) obtained at a number of floodplain
stations. A subset of the data follows. The article proposed
a multiplicative power model Q � �a�b'!.

q | 17.6 23.8 5.7 3.0 7.5

a | 8.4 31.6 5.7 1.0 3.3

b | .0048 .0073 .0037 .0412 .0416

q | 89.2 60.9 27.5 13.2 12.2

a | 41.1 26.2 16.4 6.7 9.7

b | .0063 .0061 .0036 .0039 .0025

a. Use an appropriate transformation to make the model
linear and then estimate the regression parameters for the
transformed model. Finally, estimate �, �, and ' (the
parameters of the original model). What would be your
prediction of discharge amount when flow area is 10 and
slope is .01?

b. Without actually doing any analysis, how would you fit
a multiplicative exponential model Q � �e�ae'b!?

c. After the transformation to linearity in part (a), a 95% CI
for the value of the transformed regression function when
a � 3.3 and b � .0046 was obtained from computer out-
put as (.217, 1.755). Obtain a 95% CI for �a�b' when
a � 3.3 and b � .0046.

56. In an experiment to study factors influencing wood specific
gravity (“Anatomical Factors Influencing Wood Specific
Gravity of Slash Pines and the Implications for the
Development of a High-Quality Pulpwood,” TAPPI, 1964:
401–404), a sample of 20 mature wood samples was obtained,
and measurements were taken on number of fibers/mm2 in
springwood (x1), number of fibers/mm2 in summerwood

(x2), % springwood (x3), light absorption in springwood (x4),
and light absorption in summerwood (x5).
a. Fitting the regression function 	Y�x1,x2,x3,x4,x5

� �0 �
�1x1 � 
 
 
 � �5x5 resulted in R2 � .769. Does the data
indicate that there is a linear relationship between spe-
cific gravity and at least one of the predictors? Test using
� � .01.

b. When x2 is dropped from the model, the value of R2

remains at .769. Compute adjusted R2 for both the full
model and the model with x2 deleted.

c. When x1, x2, and x4 are all deleted, the resulting value of
R2 is .654. The total sum of squares is SST � .0196610.
Does the data suggest that all of x1, x2, and x4 have zero
coefficients in the true regression model? Test the rele-
vant hypotheses at level .05.

d. The mean and standard deviation of x3 were 52.540 and
5.4447, respectively, whereas those of x5 were 89.195 and
3.6660, respectively. When the model involving these two
standardized variables was fit, the estimated regression
equation was y � .5255 � .0236x3 � .0097x5. What
value of specific gravity would you predict for a wood
sample with % springwood � 50 and % light absorption
in summerwood � 90?

e. The estimated standard deviation of the estimated coeffi-
cient �̂3 of x3 (i.e., for �̂3 of the standardized model) was
.0046. Obtain a 95% CI for �3.

f. Using the information in parts (d) and (e), what is the
estimated coefficient of x3 in the unstandardized model
(using only predictors x3 and x5), and what is the esti-
mated standard deviation of the coefficient estimator (i.e.,
s�̂3

for �̂3 in the unstandardized model)?
g. The estimate of � for the two-predictor model is s �

.02001, whereas the estimated standard deviation of �̂0 �
�̂3x3 � �̂5x5 when x3 � �.3747 and x5 � �.2769 (i.e.,
when x3 � 50.5 and x5 � 88.9) is .00482. Compute a
95% PI for specific gravity when % springwood � 50.5
and % light absorption in summerwood � 88.9.



57. In the accompanying table, we give the smallest SSE for each
number of predictors k (k � 1, 2, 3, 4) for a regression prob-
lem in which y � cumulative heat of hardening in cement,
x1 � % tricalcium aluminate, x2 � % tricalcium silicate,
x3 � % aluminum ferrate, and x4 � % dicalcium silicate.

Number of 
Predictors k Predictor(s) SSE

1 x4 880.85
2 x1, x2 58.01
3 x1, x2, x3 49.20
4 x1, x2, x3, x4 47.86

In addition, n � 13, and SST � 2715.76.
a. Use the criteria discussed in the text to recommend the

use of a particular regression model.
b. Would forward selection result in the best two-predictor

model? Explain.

58. The article “Creep and Fatigue Characteristics of Ferrocement
Slabs” (J. Ferrocement, 1984: 309–322) reported data on y �
tensile strength (MPa), x1 � slab thickness (cm), x2 � load
(kg), x3 � age at loading (days), and x4 � time under test
(days) resulting from stress tests of n � 9 reinforced con-
crete slabs. The results of applying the BE elimination
method of variable selection are summarized in the accom-
panying tabular format. Explain what occurred at each step
of the procedure.

Step 1 2 3
Constant 8.496 12.670 12.989

x1 �.29 �.42 �.49
T-RATIO �1.33 �2.89 �3.14
x2 .0104 .0110 .0116
T-RATIO 6.30 7.40 7.33
x3 .0059
T-RATIO .83
x4 �.023 �.023
T-RATIO �1.48 �1.53
S .533 .516 .570
R-SQ 95.81 95.10 92.82

59. MINITAB’s Best Regression option was used on the wood
specific gravity data referred to in Exercise 56, resulting in
the accompanying output. Which model(s) would you rec-
ommend investigating in more detail?

Response is spgrav
s % s
p s s s u
r u p p m
n m r l l
g r w t t
f f o a a

R-Sq i i o b b
Vars R-Sq (adj) C-p s b b d s s

1 56.4 53.9 10.6 0.021832 X
1 10.6 5.7 38.5 0.031245 X
1 5.3 0.1 41.7 0.032155 X

(continued at top of next column)

Response is spgrav
2 65.5 61.4 7.0 0.019975 X X
2 62.1 57.6 9.1 0.020950 X X
2 60.3 55.6 10.2 0.021439 X X
3 72.3 67.1 4.9 0.018461 X X X
3 71.2 65.8 5.6 0.018807 X X X
3 71.1 65.7 5.6 0.018846 X X X
4 77.0 70.9 4.0 0.017353 X X X X
4 74.8 68.1 5.4 0.018179 X X X X
4 72.7 65.4 6.7 0.018919 X X X X
5 77.0 68.9 6.0 0.017953 X X X X X

60. The accompanying MINITAB output resulted from apply-
ing both the backward elimination method and the forward
selection method to the wood specific gravity data referred
to in Exercise 56. For each method, explain what occurred
at every iteration of the algorithm.

Response is spgrav on 5 predictors, 
with N � 20

Step 1 2 3 4
Constant 0.4421 0.4384 0.4381 0.5179

sprngfib 0.00011 0.00011 0.00012
T-Value 1.17 1.95 1.98

sumrfib 0.00001
T-Value 0.12

%sprwood �0.00531 �0.00526 �0.00498 �0.00438
T-Value �5.70 �6.56 �5.96 �5.20

spltabs �0.0018 �0.0019
T-Value �1.63 �1.76

sumltabs 0.0044 0.0044 0.0031 0.0027
T-Value 3.01 3.31 2.63 2.12

S 0.0180 0.0174 0.0185 0.0200
R-Sq 77.05 77.03 72.27 65.50

Step 1 2
Constant 0.7585 0.5179

%sprwood �0.00444 �0.00438
T-Value �4.82 �5.20

sumltabs 0.0027
T-Value 2.12

S 0.0218 0.0200
R-Sq 56.36 65.50

61. Reconsider the wood specific gravity data referred to in
Exercise 56. The following R2 values resulted from regress-
ing each predictor on the other four predictors (in the first
regression, the dependent variable was x1 and the predictors
were x2–x5, etc.): .628, .711, .341, .403, and .403. Does mul-
ticollinearity appear to be a substantial problem? Explain.

62. A study carried out to investigate the relationship between a
response variable relating to pressure drops in a screen-plate
bubble column and the predictors x1 � superficial fluid
velocity, x2 � liquid viscosity, and x3 � opening mesh size
resulted in the accompanying data (“A Correlation of
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Two-Phase Pressure Drops in Screen-Plate Bubble Column,”
Canad. J. of Chem. Engr., 1993: 460–463). The standardized
residuals and hii values resulted from the model with just x1,
x2, and x3 as predictors. Are there any unusual observations?

63. Multiple regression output from MINITAB for the PAH
data of Exercise 53 in the previous section included the fol-
lowing information:

Unusual Observations

Obs x1 flth Fit SE Fit Residual St Resid
6 243500 604.7 582.9 40.7 21.8 1.25X
7 67793 27.7 139.3 12.3 �111.6 �2.62R

R denotes an observation with a large standard-
ized residual

X denotes an observation whose X value gives it
large influence.

What does this suggest about the appropriateness of using
the previously given fitted equation as a basis for inferences?

The investigators actually eliminated observation #7 and
re-regressed. Does this make sense?

64. Refer to the water-discharge data given in Exercise 55 and
let y � ln(q), x1 � ln(a), and x2 � ln(b). Consider fitting
the model Y � �0 � �1x1 � �2x2 � !.
a. The resulting hii s are .138, .302, .266, .604, .464, .360,

.215, .153, .214, and .284. Does any observation appear
to be influential?

b. The estimated coefficients are �̂0 � 1.5652, �̂1 � .9450,
�̂2 � .1815, and the corresponding estimated standard devi-
ations are s�̂0

� .7328, s�̂1
� .1528, and s�̂2

� .1752. The
second standardized residual is e*2 � 2.19. When the sec-
ond observation is omitted from the data set, the resulting
estimated coefficients are �̂0 � 1.8982, �̂1 � 1.025, and
�̂2 � .3085. Do any of these changes indicate that the sec-
ond observation is influential?

c. Deletion of the fourth observation (why?) yields 
�̂0 � 1.4592, �̂1 � .9850, and �̂2 � .1515. Is this obser-
vation influential?

SUPPLEMENTARY EXERCISES (65–82)

65. Curing concrete is known to be vulnerable to shock vibra-
tions, which may cause cracking or hidden damage to the
material. As part of a study of vibration phenomena, the
paper “Shock Vibration Test of Concrete” (ACI Materials

J., 2002: 361–370) reported the accompanying data on
peak particle velocity (mm/sec) and ratio of ultrasonic
pulse velocity after impact to that before impact in con-
crete prisms.

Data for Exercise 62

Observation Velocity Viscosity Mesh size Response Standardized Residual hii

1 2.14 10.00 .34 28.9 2.01721 .202242
2 4.14 10.00 .34 26.1 1.34706 .066929
3 8.15 10.00 .34 22.8 .96537 .274393
4 2.14 2.63 .34 24.2 1.29177 .224518
5 4.14 2.63 .34 15.7 �.68311 .079651
6 8.15 2.63 .34 18.3 .23785 .267959
7 5.60 1.25 .34 18.1 .06456 .076001
8 4.30 2.63 .34 19.1 .13131 .074927
9 4.30 2.63 .34 15.4 �.74091 .074927

10 5.60 10.10 .25 12.0 �1.38857 .152317
11 5.60 10.10 .34 19.8 �.03585 .068468
12 4.30 10.10 .34 18.6 �.40699 .062849
13 2.40 10.10 .34 13.2 �1.92274 .175421
14 5.60 10.10 .55 22.8 �1.07990 .712933
15 2.14 112.00 .34 41.8 �1.19311 .516298
16 4.14 112.00 .34 48.6 1.21302 .513214
17 5.60 10.10 .25 19.2 .38451 .152317
18 5.60 10.10 .25 18.4 .18750 .152317
19 5.60 10.10 .25 15.0 �.64979 .152317



Obs ppv Ratio Obs ppv Ratio

1 160 .996 16 708 .990
2 164 .996 17 806 .984
3 178 .999 18 884 .986
4 252 .997 19 526 .991
5 293 .993 20 490 .993
6 289 .997 21 598 .993
7 415 .999 22 505 .993
8 478 .997 23 525 .990
9 391 .992 24 675 .991

10 486 .985 25 1211 .981
11 604 .995 26 1036 .986
12 528 .995 27 1000 .984
13 749 .994 28 1151 .982
14 772 .994 29 1144 .962
15 532 .987 30 1068 .986

Transverse cracks appeared in the last 12 prisms, whereas
there was no observed cracking in the first 18 prisms.
a. Construct a comparative boxplot of ppv for the cracked

and uncracked prisms and comment. Then estimate the
difference between true average ppv for cracked and
uncracked prisms in a way that conveys information
about precision and reliability.

b. The investigators fit the simple linear regression model to
the entire data set consisting of 30 observations, with ppv
as the independent variable and ratio as the dependent vari-
able. Use a statistical software package to fit several differ-
ent regression models, and draw appropriate inferences.

66. The authors of the article “Long-Term Effects of Cathodic
Protection on Prestressed Concrete Structures” (Corrosion,
1997: 891–908) presented a scatter plot of y � steady-state
permeation flux (	A/cm2) versus x � inverse foil thickness
(cm�1); the substantial linear pattern was used as a basis for
an important conclusion about material behavior. The
MINITAB output from fitting the simple linear regression
model to the data follows.

The regression equation is 
flux � �0.398 � 0.260 invthick

Predictor Coef Stdev t-ratio p
Constant �0.3982 0.5051 �0.79 0.460
invthick 0.26042 0.01502 17.34 0.000

s� 0.4506 R-sq� 98.0% R-sq(adj)� 97.7%

Analysis of Variance

Source DF SS MS F p
Regression 1 61.050 61.050 300.64 0.000
Error 6 1.218 0.203
Total 7 62.269

inv- Stdev. St.
Obs. thick flux Fit Fit Residual Resid

1 19.8 4.3 4.758 0.242 �0.458 �1.20
2 20.6 5.6 4.966 0.233 0.634 1.64
3 23.5 6.1 5.722 0.203 0.378 0.94
4 26.1 6.2 6.399 0.182 �0.199 �0.48

(continued at top of next column)

inv- Stdev. St.
Obs. thick flux Fit Fit Residual Resid

5 30.3 6.9 7.493 0.161 �0.593 �1.41
6 43.5 11.2 10.930 0.236 0.270 0.70
7 45.0 11.3 11.321 0.253 �0.021 �0.06
8 46.5 11.7 11.711 0.271 �0.011 �0.03

a. Interpret the estimated slope and the coefficient of deter-
mination.

b. Calculate a point estimate of true average flux when
inverse foil thickness is 23.5.

c. Does the model appear to be useful?
d. Predict flux when inverse thickness is 45 in a way that

conveys information about precision and reliability.
e. Investigate model adequacy.

67. The article “Validation of the Rockport Fitness Walking Test
in College Males and Females” (Research Quarterly for
Exercise and Sport, 1994: 152–158) recommended the fol-
lowing estimated regression equation for relating y �
VO2max (L/min, a measure of cardiorespiratory fitness) to
the predictors x1 � gender (female � 0, male � 1), x2 �
weight (lb), x3 � 1-mile walk time (min), and x4 � heart
rate at the end of the walk (beats/min):

y � 3.5959 � .6566x1 � .0096x2

� .0996x3 � .0080x4

a. How would you interpret the estimated coefficient
�̂3 � �.0996?

b. How would you interpret the estimated coefficient
�̂1 � .6566?

c. Suppose that an observation made on a male whose weight
was 170 lb, walk time was 11 min, and heart rate was
140 beats/min resulted in VO2max � 3.15. What would
you have predicted for VO2max in this situation, and
what is the value of the corresponding residual?

d. Using SSE � 30.1033 and SST � 102.3922, what
proportion of observed variation in VO2max can be
attributed to the model relationship?

e. Assuming a sample size of n � 20, carry out a test of
hypotheses to decide whether the chosen model specifies
a useful relationship between VO2max and at least one of
the predictors.

68. Feature recognition from surface models of complicated
parts is becoming increasingly important in the develop-
ment of efficient computer-aided design (CAD) systems.
The article “A Computationally Efficient Approach to
Feature Abstraction in Design-Manufacturing Integration”
(J. of Engr. for Industry, 1995: 16–27) contained a graph of
log10(total recognition time), with time in sec, versus
log10(number of edges of a part), from which the following
representative values were read:

Log(edges) 1.1 1.5 1.7 1.9 2.0 2.1
Log(time) .30 .50 .55 .52 .85 .98

Log(edges) 2.2 2.3 2.7 2.8 3.0 3.3
Log(time) 1.10 1.00 1.18 1.45 1.65 1.84

Log(edges) 3.5 3.8 4.2 4.3
Log(time) 2.05 2.46 2.50 2.76
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a. Does a scatter plot of log(time) versus log(edges) suggest
an approximate linear relationship between these two
variables?

b. What probabilistic model for relating y � recognition
time to x � number of edges is implied by the simple
linear regression relationship between the transformed
variables?

c. Summary quantities calculated from the data are

n � 16 � xi � 42.4 � yi � 21.69

� (xi)2 � 126.34 � (yi )2 � 38.5305

� xi yi � 68.640

Calculate estimates of the parameters for the model in part
(b), and then obtain a point prediction of time when the
number of edges is 300.

69. Air pressure (psi) and temperature (°F) were measured for
a compression process in a certain piston-cylinder device,
resulting in the following data (from Introduction to
Engineering Experimentation, Prentice-Hall, Inc., 1996,
p. 153):

Pressure 20.0 40.4 60.8 80.2 100.4
Temperature 44.9 102.4 142.3 164.8 192.2

Pressure 120.3 141.1 161.4 181.9 201.4
Temperature 221.4 228.4 249.5 269.4 270.8

Pressure 220.8 241.8 261.1 280.4 300.1
Temperature 291.5 287.3 313.3 322.3 325.8

Pressure 320.6 341.1 360.8
Temperature 337.0 332.6 342.9

a. Would you fit the simple linear regression model to the
data and use it as a basis for predicting temperature
from pressure? Why or why not?

b. Find a suitable probabilistic model and use it as a basis for
predicting the value of temperature that would result from
a pressure of 200 in the most informative way possible.

70. An aeronautical engineering student carried out an experi-
ment to study how y � lift/drag ratio related to the variables
x1 � position of a certain forward lifting surface relative
to the main wing and x2 � tail placement relative to the
main wing, obtaining the following data (Statistics for En-
gineering Problem Solving, p. 133):

x1 (in.) x2 (in.) y

�1.2 �1.2 .858
�1.2 0 3.156
�1.2 1.2 3.644
0 �1.2 4.281
0 0 3.481
0 1.2 3.918
1.2 �1.2 4.136
1.2 0 3.364
1.2 1.2 4.018

y� � 3.428, SST � 8.55

a. Fitting the first-order model gives SSE � 5.18, whereas
including x3 � x1x2 as a predictor results in SSE � 3.07.
Calculate and interpret the coefficient of multiple deter-
mination for each model.

b. Carry out a test of model utility using � � .05 for each
of the models described in part (a). Does either result
surprise you?

71. An ammonia bath is the one most widely used for deposit-
ing Pd-Ni alloy coatings. The article “Modelling of
Palladium and Nickel in an Ammonia Bath in a Rotary
Device” (Plating and Surface Finishing, 1997: 102–104)
reported on an investigation into how bath composition
characteristics affect coating properties. Consider the fol-
lowing data on x1 � Pd concentration (g/dm3), x2 � Ni con-
centration (g/dm3), x3 � pH, x4 � temperature (°C), x5 � cath-
ode current density (A/dm2), and y � palladium content (%)
of the coating.

Obs pdconc niconc pH temp currdens pallcont
1 16 24 9.0 35 5 61.5
2 8 24 9.0 35 3 51.0
3 16 16 9.0 35 3 81.0
4 8 16 9.0 35 5 50.9
5 16 24 8.0 35 3 66.7
6 8 24 8.0 35 5 48.8
7 16 16 8.0 35 5 71.3
8 8 16 8.0 35 3 62.8
9 16 24 9.0 25 3 64.0
10 8 24 9.0 25 5 37.7
11 16 16 9.0 25 5 68.7
12 8 16 9.0 25 3 54.1
13 16 24 8.0 25 5 61.6
14 8 24 8.0 25 3 48.0
15 16 16 8.0 25 3 73.2
16 8 16 8.0 25 5 43.3
17 4 20 8.5 30 4 35.0
18 20 20 8.5 30 4 69.6
19 12 12 8.5 30 4 70.0
20 12 28 8.5 30 4 48.2
21 12 20 7.5 30 4 56.0
22 12 20 9.5 30 4 77.6
23 12 20 8.5 20 4 55.0
24 12 20 8.5 40 4 60.6
25 12 20 8.5 30 2 54.9
26 12 20 8.5 30 6 49.8
27 12 20 8.5 30 4 54.1
28 12 20 8.5 30 4 61.2
29 12 20 8.5 30 4 52.5
30 12 20 8.5 30 4 57.1
31 12 20 8.5 30 4 52.5
32 12 20 8.5 30 4 56.6

a. Fit the first-order model with five predictors and assess
its utility. Do all the predictors appear to be important?

b. Fit the complete second-order model and assess its utility.
c. Does the group of second-order predictors (interaction

and quadratic) appear to provide more useful information
about y than is contributed by the first-order predictors?
Carry out an appropriate test of hypotheses.

d. The authors of the cited article recommended the use of
all five first-order predictors plus the additional predictor
x6 � (pH)2. Fit this model. Do all six predictors appear to
be important?
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72. The article “An Experimental Study of Resistance Spot
Welding in 1 mm Thick Sheet of Low Carbon Steel” (J. of
Engr. Manufacture, 1996: 341–348) discussed a statistical
analysis whose basic aim was to establish a relationship that
could explain the variation in weld strength (y) by relating
strength to the process characteristics weld current (wc),
weld time (wt), and electrode force (ef).
a. SST � 16.18555, and fitting the complete second-order

model gave SSE � .80017. Calculate and interpret the
coefficient of multiple determination.

b. Assuming that n � 37, carry out a test of model utility (the
ANOVA table in the article states that n � (k � 1) � 1,
but other information given contradicts this and is consis-
tent with the sample size we suggest).

c. The given F ratio for the current–time interaction was
2.32. If all other predictors are retained in the model, can
this interaction predictor be eliminated? [Hint: As in sim-
ple linear regression, an F ratio for a coefficient is the
square of its t-ratio.]

d. The authors proposed eliminating two interaction pre-
dictors and a quadratic predictor and recommended the
estimated equation y � 3.352 � .098wc � .222wt �
.297ef � .0102(wt)2 � .037(ef)2 � .0128(wc)(wt).
Consider a weld current of 10 kA, a weld time of 12 ac
cycles, and an electrode force of 6 kN. Supposing that
the estimated standard deviation of the predicted strength
in this situation is .0750, calculate a 95% PI for strength.
Does the interval suggest that the value of strength can
be accurately predicted?

73. The accompanying data on x � frequency (MHz) and y �
output power (W) for a certain laser configuration was read
from a graph in the article “Frequency Dependence in RF
Discharge Excited Waveguide CO2 Lasers” (IEEE J.
Quantum Electronics, 1984: 509–514).

x | 60 63 77 100 125 157 186 222

y | 16 17 19 21 22 20 15 5

A computer analysis yielded the following information for a
quadratic regression model: �̂0 � �1.5127, �̂1 � .391901,
�̂2 � �.00163141, s�̂2

� .00003391, SSE � .29, SST �
202.88, and sŶ � .1141 when x � 100.
a. Does the quadratic model appear to be suitable for ex-

plaining observed variation in output power by relating it
to frequency?

b. Would the simple linear regression model be nearly as
satisfactory as the quadratic model?

c. Do you think it would be worth considering a cubic
model?

d. Compute a 95% CI for expected power output when fre-
quency is 100.

e. Use a 95% PI to predict the power from a single experi-
mental run when frequency is 100.

74. Conductivity is one important characteristic of glass. The
article “Structure and Properties of Rapidly Quenched
Li2O-Al2O-Nb2O5 Glasses” (J. Amer. Ceramic Soc., 1983:

890–892) reports the accompanying data on x � Li2O con-
tent of a certain type of glass and y � conductivity at 500 K.

x | 19 20 24 27 29 30

y | 10�8.0 10�7.1 10�7.2 10�6.7 10�6.2 10�6.8

x | 31 39 40 43 45 50

y | 10�5.8 10�5.3 10�6.0 10�4.7 10�5.4 10�5.1

(This is a subset of the data that appeared in the article.)
Propose a suitable model for relating y to x, estimate the
model parameters, and predict conductivity when Li2O con-
tent is 35.

75. The effect of manganese (Mn) on wheat growth is examined
in the article “Manganese Deficiency and Toxicity Effects
on Growth, Development and Nutrient Composition in
Wheat” (Agronomy J., 1984: 213–217). A quadratic regres-
sion model was used to relate y � plant height (cm) to x �
log10(added Mn), with 	M as the units for added Mn. The
accompanying data was read from a scatter diagram appear-
ing in the article.

x | �1.0 �.4 0 .2 1.0

y | 32 37 44 45 46

x | 2.0 2.8 3.2 3.4 4.0

y | 42 42 40 37 30

In addition, �̂0 � 41.7422, �̂1 � 6.581, �̂2 � �2.3621,
s�̂0

� .8522, s�̂1
� 1.002, s�̂2

� .3073, and SSE � 26.98.
a. Is the quadratic model useful for describing the relation-

ship between x and y? [Hint: Quadratic regression is a
special case of multiple regression with k � 2, x1 � x,
and x2 � x2.] Apply an appropriate procedure.

b. Should the quadratic predictor be eliminated?
c. Estimate expected height for wheat treated with 10 	M

of Mn using a 90% CI. [Hint: The estimated standard
deviation of �̂0 � �̂1 � �̂2 is 1.031.]

76. The article “Chemithermomechanical Pulp from Mixed
High Density Hardwoods” (TAPPI, July 1988: 145–146)
reports on a study in which the accompanying data was
obtained to relate y � specific surface area (cm3/g) to x1 � %
NaOH used as a pretreatment chemical and x2 � treatment
time (min) for a batch of pulp.

x1 x2 y

3 30 5.95
3 60 5.60
3 90 5.44
9 30 6.22
9 60 5.85
9 90 5.61

15 30 8.36
15 60 7.30
15 90 6.43
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The accompanying MINITAB output resulted from a request
to fit the model Y � �0 � �1x1 � �2x2 � !.

The regression equation is
AREA � 6.05 � 0.142 NAOH � 0.0169 TIME

Predictor Coef Stdev t-ratio p
Constant 6.0483 0.5208 11.61 0.000
NAOH 0.14167 0.03301 4.29 0.005
TIME �0.016944 0.006601 �2.57 0.043

s � 0.4851 R-sq � 80.7% R-sq (adj) 74.2%

Analysis of Variance

SOURCE DF SS MS F p
Regression 2 5.8854 2.9427 12.51 0.007
Error 6 1.4118 0.2353
Total 8 7.2972

a. What proportion of observed variation in specific surface
area can be explained by the model relationship?

b. Does the chosen model appear to specify a useful relation-
ship between the dependent variable and the predictors?

c. Provided that % NaOH remains in the model, would you
suggest that the predictor treatment time be eliminated?

d. Calculate a 95% CI for the expected change in specific
surface area associated with an increase of 1% in NaOH
when treatment time is held fixed.

e. MINITAB reported that the estimated standard deviation
of �̂0 � �̂1(9) � �̂2(60) is .162. Calculate a prediction
interval for the value of specific surface area to be
observed when % NaOH � 9 and treatment time � 60.

77. A multiple regression analysis was carried out to relate y �
tensile strength of a synthetic-fiber specimen to the vari-
ables x1 � percent cotton and x2 � drying time. The data set
consisted of n � 12 observations.
a. The estimated coefficients were �̂0 � 180.00, �̂1 � 1.000,

and �̂2 � 10.500. Calculate a point estimate of the
expected tensile strength when percent cotton � 15 and
drying time � 3.5.

b. Sums of squares were SST � 1210.30 and SSE �
117.40. What proportion of observed variation in tensile
strength can be attributed to the model relationship?

c. Use the information in part (b) to decide whether the model
with variables x1 and x2 specifies a useful relationship.

d. The estimated standard deviation of �̂0 � �̂1x1 � �̂2x2

when x1 � 18 and x2 � 3.0 was 1.20. Calculate a 95%
PI for tensile strength of a fabric specimen for which
x1 � 18 and x2 � 3.0.

78. A study was carried out to relate time to failure (y) of a cer-
tain machine component to the variables operating voltage
(x1), motor speed (x2), and operating temperature (x3). The
resulting data set consisted of n � 20 observations. When
the model with the three variables x1, x2, and x3 was fit to the
data, the value of error sum of squares was 8212.5. Fitting
the second-order interaction model (with quadratic predic-
tors and all products of pairs of variables) gave an error sum
of squares of 5027.1. Should at least one of the quadratic or

interaction predictors be retained in the model? State and
test the relevant hypotheses.

79. The article “A Statistical Analysis of the Notch Toughness
of 9% Nickel Steels Obtained from Production Heats” (J. of
Testing and Eval., 1987: 355–363) reports on the results 
of a multiple regression analysis relating Charpy v-notch
toughness y ( joules) to the following variables: x1 � plate
thickness (mm), x2 � carbon content (%), x3 � manganese
content (%), x4 � phosphorus content (%), x5 � sulphur
content (%), x6 � silicon content (%), x7 � nickel content
(%), x8 � yield strength (Pa), and x9 � tensile strength (Pa).
a. The best possible subsets involved adding variables in

the order x5, x8, x6, x3, x2, x7, x9, x1, and x4. The values
of R2

k, MSEk, and Ck are as follows:

No. of Predictors 1 2 3 4

R2
k .354 .453 .511 .550

MSEk 2295 1948 1742 1607
Ck 314 173 89.6 35.7

No. of Predictors 5 6 7 8 9

R2
k .562 .570 .572 .575 .575

MSEk 1566 1541 1535 1530 1532
Ck 19.9 11.0 9.4 8.2 10.0

Which model would you recommend? Explain the
rationale for your choice.

b. The authors also considered second-order models involv-
ing predictors x2

i and xixj. Information on the best such
models starting with the variables x2, x3, x5, x6, x7, and x8

is as follows (in going from the best four-predictor model
to the best five-predictor model, x8 was deleted and both
x2 x6 and x7 x8 were entered; x8 reentered at a later stage):

No. of Predictors 1 2 3 4 5

R2
k .415 .541 .600 .629 .650

MSEk 2079 1636 1427 1324 1251
Ck 433 109 104 52.4 16.5

No. of Predictors 6 7 8 9 10

R2
k .652 .655 .658 .659 .659

MSEk 1246 1237 1229 1229 1230
Ck 14.9 11.2 8.5 9.2 11.0

Which of these models would you recommend, and why?
[Note: Models based on eight of the original variables did
not yield marked improvement on those under consideration
here.]

80. A sample of n � 20 companies was selected, and the values
of y � stock price and k � 15 predictor variables (such as
quarterly dividend, previous year’s earnings, and debt ratio)
were determined. When the multiple regression model using
these 15 predictors was fit to the data, R2 � .90 resulted.
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a. Does the model appear to specify a useful relationship
between y and the predictor variables? Carry out a test
using significance level .05. [Hint: The F critical value
for 15 numerator and 4 denominator df is 5.86.]

b. Based on the result of part (a), does a high R2 value by
itself imply that a model is useful? Under what circum-
stances might you be suspicious of a model with a high
R2 value?

c. With n and k as given previously, how large would R2

have to be for the model to be judged useful at the .05
level of significance?

81. Does exposure to air pollution result in decreased life
expectancy? This question was examined in the article
“Does Air Pollution Shorten Lives?” (Statistics and Public
Policy, Reading, MA, Addison-Wesley, 1977). Data on

y � total mortality rate (deaths per 10,000)

x1 � mean suspended particle reading (	g/m3)

x2 � smallest sulfate reading ([	g/m3] � 10)

x3 � population density (people/mi2)

x4 � (percent nonwhite) � 10

x5 � (percent over 65) � 10

for the year 1960 was recorded for n � 117 randomly
selected standard metropolitan statistical areas. The esti-
mated regression equation was

y � 19.607 � .041x1 � .071x2

� .001x3 � .041x4 � .687x5

a. For this model, R2 � .827. Using a .05 significance level,
perform a model utility test.

b. The estimated standard deviation of �̂1 was .016.
Calculate and interpret a 90% CI for �1.

c. Given that the estimated standard deviation of �̂4 is .007,
determine whether percent nonwhite is an important vari-
able in the model. Use a .01 significance level.

d. In 1960 the values of x1, x2, x3, x4, and x5 for Pittsburgh
were 166, 60, 788, 68, and 95, respectively. Use the
given regression equation to predict Pittsburgh’s mortal-
ity rate. How does your prediction compare with the
actual 1960 value of 103 deaths per 10,000?

82. Given that R2 � .723 for the model containing predictors x1,
x4, x5, and x8 and R2 � .689 for the model with predictors x1,
x3, x5, and x6, what can you say about R2 for the model con-
taining predictors
a. x1, x3, x4, x5, x6, and x8? Explain.
b. x1 and x4? Explain.
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INTRODUCTION

In the simplest type of situation considered in this chapter, each observation in

a sample is classified as belonging to one of a finite number of categories (e.g.,

blood type could be one of the four categories O, A, B, or AB). With pi denot-

ing the probability that any particular observation belongs in category i (or the

proportion of the population belonging to category i ), we wish to test a null

hypothesis that completely specifies the values of all the pi’s (such as H0:

p1 � .45, p2 � .35, p3 � .15, p4 � .05, when there are four categories). The

test statistic will be a measure of the discrepancy between the observed num-

bers in the categories and the expected numbers when H0 is true. Because a

decision will be reached by comparing the computed value of the test statistic

to a critical value of the chi-squared distribution, the procedure is called a chi-

squared goodness-of-fit test.

Sometimes the null hypothesis specifies that the pi’s depend on some

smaller number of parameters without specifying the values of these pa-

rameters. For example, with three categories the null hypothesis might state

that p1 � 	2, p2 � 2	 (1 � 	), and p3 � (1 � 	)2. For a chi-squared test to be

performed, the values of any unspecified parameters must be estimated from

the sample data. These problems are discussed in Section 14.2. The methods

are then applied to test a null hypothesis that states that the sample comes

from a particular family of distributions, such as the Poisson family (with � esti-

mated from the sample) or the normal family (with � and � estimated).

Chi-squared tests for two different situations are presented in Section 14.3.

In the first, the null hypothesis states that the pi’s are the same for several

different populations. The second type of situation involves taking a sample
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from a single population and classifying each individual with respect to two dif-

ferent categorical factors (such as religious preference and political party regis-

tration). The null hypothesis in this situation is that the two factors are inde-

pendent within the population.

A binomial experiment consists of a sequence of independent trials in which each
trial can result in one of two possible outcomes, S (for success) and F (for failure).
The probability of success, denoted by p, is assumed to be constant from trial to trial,
and the number n of trials is fixed at the outset of the experiment. In Chapter 8, we
presented a large-sample z test for testing H0: p � p0. Notice that this null hypothe-
sis specifies both P(S) and P(F), since if P(S) � p0, then P(F) � 1 � p0. Denoting
P(F) by q and 1 � p0 by q0, the null hypothesis can alternatively be written as 
H0: p � p0, q � q0. The z test is two-tailed when the alternative of interest is p � p0.

A multinomial experiment generalizes a binomial experiment by allowing
each trial to result in one of k possible outcomes, where k � 2. For example, suppose
a store accepts three different types of credit cards. A multinomial experiment would
result from observing the type of credit card used—type 1, type 2, or type 3—by each
of the next n customers who pay with a credit card. In general, we will refer to the k
possible outcomes on any given trial as categories, and pi will denote the probability
that a trial results in category i. If the experiment consists of selecting n individuals
or objects from a population and categorizing each one, then pi is the proportion of
the population falling in the ith category (such an experiment will be approximately
multinomial provided that n is much smaller than the population size).

The null hypothesis of interest will specify the value of each pi. For example,
in the case k � 3, we might have H0: p1 � .5, p2 � .3, p3 � .2. The alternative
hypothesis will state that H0 is not true—that is, that at least one of the pi s has a value
different from that asserted by H0 (in which case at least two must be different, since
they sum to 1). The symbol pi0 will represent the value of pi claimed by the null
hypothesis. In the example just given, p10 � .5, p20 � .3, and p30 � .2.

Before the multinomial experiment is performed, the number of trials that will
result in category i (i � 1, 2, . . . , or k) is a random variable—just as the number of
successes and the number of failures in a binomial experiment are random variables.
This random variable will be denoted by Ni and its observed value by ni. Since each
trial results in exactly one of the k categories, �Ni � n, and the same is true of the
ni s. As an example, an experiment with n � 100 and k � 3 might yield N1 � 46,
N2 � 35, and N3 � 19.

The expected number of successes and expected number of failures in a bino-
mial experiment are np and nq, respectively. When H0: p � p0, q � q0 is true, the
expected numbers of successes and failures are np0 and nq0, respectively. Similarly, in
a multinomial experiment the expected number of trials resulting in category i is
E(Ni) � npi (i � l, . . . , k). When H0: p1 � p10, . . . , pk � pk0 is true, these expected val-
ues become E(N1) � np10, E(N2) � np20, . . . , E(Nk) � npk0. For the case k � 3, H0:
p1 � .5, p2 � .3, p3 � .2, and n � 100, E(N1) � 100(.5) � 50, E(N2) � 30, and
E(N3) � 20 when H0 is true. The ni s are often displayed in a tabular format consisting
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of a row of k cells, one for each category, as illustrated in Table 14.1. The expected val-
ues when H0 is true are displayed just below the observed values. The Ni s and ni s are
usually referred to as observed cell counts (or observed cell frequencies), and np10,
np20, . . . , npk0 are the corresponding expected cell counts under H0.
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i � 1

n1

Category

Observed

i � 2

n2

. . .

. . .

i � k

nk

Row total

n

np10Expected np20 . . . npk0 n

Table 14.1 Observed and Expected Cell Counts

The ni s should all be reasonably close to the corresponding npi0 s when H0 is
true. On the other hand, several of the observed counts should differ substantially
from these expected counts when the actual values of the pi s differ markedly from
what the null hypothesis asserts. The test procedure involves assessing the discrep-
ancy between the nis and the npi0 s, with H0 being rejected when the discrepancy is
sufficiently large. It is natural to base a measure of discrepancy on the squared devi-
ations (n1 � np10)2, (n2 � np20)2, . . . , (nk � npk0)2. An obvious way to combine these
into an overall measure is to add them together to obtain �(ni � npi0)2. However,
suppose np10 � 100 and np20 � 10. Then if n1 � 95 and n2 � 5, the two categories
contribute the same squared deviations to the proposed measure. Yet n1 is only 5%
less than what would be expected when H0 is true, whereas n2 is 50% less. To take
relative magnitudes of the deviations into account, we will divide each squared devi-
ation by the corresponding expected count and then combine.

Before giving a more detailed description, we must discuss a type of proba-
bility distribution called the chi-squared distribution. This distribution was first
introduced in Section 4.4 and was used in Chapter 7 to obtain a confidence interval
for the variance � 2 of a normal population. The chi-squared distribution has a single
parameter �, called the number of degrees of freedom (df) of the distribution, with
possible values 1, 2, 3, . . . . Analogous to the critical value t�,� for the t distribution,
�2

�,� is the value such that � of the area under the � 2 curve with � df lies to the right
of �2

�,� (see Figure 14.1). Selected values of �2
�,� are given in Appendix Table A.7.

0

v curve

Shaded area � �

�
�,�� �

�2

Figure 14.1 A critical value for a chi-squared distribution

THEOREM Provided that npi � 5 for every i (i � 1, 2, . . . , k), the variable

� 2 � �
k

i�1
� �

all cells

has approximately a chi-squared distribution with k � 1 df.

(observed � expected)2

���
expected

(Ni � npi)2

��
npi



The fact that df � k � 1 is a consequence of the restriction �Ni � n. Although there are
k observed cell counts, once any k � 1 are known, the remaining one is uniquely deter-
mined. That is, there are only k � 1 “freely determined” cell counts, and thus k � 1 df.

If npi0 is substituted for npi in �2, the resulting test statistic has a chi-squared dis-
tribution when H0 is true. Rejection of H0 is appropriate when �2 � c (because large
discrepancies between observed and expected counts lead to a large value of �2), and
the choice c � �2

�,k�1 yields a test with significance level �.
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Null hypothesis: H0: p1 � p10, p2 � p20, . . . , pk � pk0

Alternative hypothesis: Ha: at least one pi does not equal pi0

Test statistic value: � 2 � �
all cells

� �
k

i�1

Rejection region: � 2 � �2
�,k�1

(ni � npi0)2

��
npi0

(observed � expected)2

���
expected

If we focus on two different characteristics of an organism, each controlled by a sin-
gle gene, and cross a pure strain having genotype AABB with a pure strain having
genotype aabb (capital letters denoting dominant alleles and small letters recessive
alleles), the resulting genotype will be AaBb. If these first-generation organisms are
then crossed among themselves (a dihybrid cross), there will be four phenotypes
depending on whether a dominant allele of either type is present. Mendel’s laws of
inheritance imply that these four phenotypes should have probabilities �

1
9
6
�, �

1
3
6
�, �

1
3
6
�, and

�
1
1
6
� of arising in any given dihybrid cross.

The article “Linkage Studies of the Tomato” (Trans. Royal Canadian Institute,
1931: 1–19) reports the following data on phenotypes from a dihybrid cross of tall
cut-leaf tomatoes with dwarf potato-leaf tomatoes. There are k � 4 categories corre-
sponding to the four possible phenotypes, with the null hypothesis being

H0: p1 � �
1
9
6
�, p2 � �

1
3
6
�, p3 � �

1
3
6
�, p4 � �

1
1
6
�

The expected cell counts are 9n/16, 3n/16, 3n/16, and n/16, and the test is based on
k � 1 � 3 df. The total sample size was n � 1611. Observed and expected counts
are given in Table 14.2.

Example 14.1

i � 1
Tall,

cut-leaf

926

i � 2
Tall,

potato-leaf

i � 3
Dwarf,
cut-leaf

i � 4
Dwarf,

potato-leaf

288 293 104

906.2

ni

npi0 302.1 302.1 100.7

Table 14.2 Observed and Expected Cell Counts for Example 14.1

The contribution to � 2 from the first cell is

��
(926

9

�

06

9

.2

06.2)2

�� .433
(n1 � np10)2

��
np10



Cells 2, 3, and 4 contribute .658, .274, and .108, respectively, so � 2 � .433 � .658 �
.274 � .108 � 1.473. A test with significance level .10 requires � 2

.10,3
, the number in

the 3 df row and .10 column of Appendix Table A.7. This critical value is 6.251.
Since 1.473 is not at least 6.251, H0 cannot be rejected even at this rather large level
of significance. The data is quite consistent with Mendel’s laws. ■

Although we have developed the chi-squared test for situations in which k � 2,
it can also be used when k � 2. The null hypothesis in this case can be stated as 
H0: p1 � p10, since the relations p2 � 1 � p1 and p20 � 1 � p10 make the inclusion of
p2 � p20 in H0 redundant. The alternative hypothesis is Ha: p1 � p10. These hypothe-
ses can also be tested using a two-tailed z test with test statistic
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Z �
(N1/n) � p10

�
p̂1 � p10

��
p�10�(1� n

�� p�10�)
�� ��

p�10

n�p�20
��

Surprisingly, the two test procedures are completely equivalent. This is because it can
be shown that Z2 � �2 and (z�/2)2 � �2

1,�
, so that �2 � �2

1,�
if and only if (iff) ⏐Z⏐ � z�/2.*

If the alternative hypothesis is either Ha: p1 � p10 or Ha: p1 � p10, the chi-squared test
cannot be used. One must then revert to an upper- or lower-tailed z test.

As is the case with all test procedures, one must be careful not to confuse sta-
tistical significance with practical significance. A computed �2 that exceeds �2

�,k�1

may be a result of a very large sample size rather than any practical differences
between the hypothesized pi0s and true pis. Thus if p10 � p20 � p30 � �

1
3

�, but the true
pis have values .330, .340, and .330, a large value of �2 is sure to arise with a suffi-
ciently large n. Before rejecting H0, the p̂i s should be examined to see whether they
suggest a model different from that of H0 from a practical point of view.

P-Values for Chi-Squared Tests
The chi-squared tests in this chapter are all upper-tailed, so we focus on this case.
Just as the P-value for an upper-tailed t test is the area under the t� curve to the right
of the calculated t, the P-value for an upper-tailed chi-squared test is the area under
the �2

�
curve to the right of the calculated �2. Appendix Table A.7 provides limited

P-value information because only five upper-tail critical values are tabulated for each
different �. We have therefore included another appendix table, analogous to Table A.8,
that facilitates making more precise P-value statements.

The fact that t curves were all centered at zero allowed us to tabulate t-curve tail
areas in a relatively compact way, with the left margin giving values ranging from 0.0
to 4.0 on the horizontal t scale and various columns displaying corresponding upper-
tail areas for various df’s. The rightward movement of chi-squared curves as df
increases necessitates a somewhat different type of tabulation. The left margin of
Appendix Table A.11 displays various upper-tail areas: .100, .095, .090, . . . , .005, and
.001. Each column of the table is for a different value of df, and the entries are values
on the horizontal chi-squared axis that capture these corresponding tail areas. For
example, moving down to tail area .085 and across to the 4 df column, we see that the
area to the right of 8.18 under the 4 df chi-squared curve is .085 (see Figure 14.2).

* The fact that (z�/2)2 � �2
1,� is a consequence of the relationship between the standard normal distribution and

the chi-squared distribution with 1 df; if Z 	 N(0, 1), then Z 2 has a chi-squared distribution with � � 1.



To capture this same upper-tail area under the 10 df curve, we must go out to 16.54. In
the 4 df column, the top row shows that if the calculated value of the chi-squared vari-
able is smaller than 7.77, the captured tail area (the P-value) exceeds .10. Similarly, the
bottom row in this column indicates that if the calculated value exceeds 18.46, the tail
area is smaller than .001 (P-value � .001).

�2 When the pi’s Are Functions of Other Parameters
Frequently the pi s are hypothesized to depend on a smaller number of parameters
	1, . . . , 	m (m � k). Then a specific hypothesis involving the 	i s yields specific pi0 s,
which are then used in the �2 test.

In a well-known genetics article (“The Progeny in Generations F12 to F17 of a Cross
Between a Yellow-Wrinkled and a Green-Round Seeded Pea,” J. Genetics, 1923:
255–331), the early statistician G. U. Yule analyzed data resulting from crossing gar-
den peas. The dominant alleles in the experiment were Y � yellow color and R �
round shape, resulting in the double dominant YR. Yule examined 269 four-seed pods
resulting from a dihybrid cross and counted the number of YR seeds in each pod.
Letting X denote the number of YR’s in a randomly selected pod, possible X values
are 0, 1, 2, 3, 4, which we identify with cells 1, 2, 3, 4, and 5 of a rectangular table
(so, e.g., a pod with X � 4 yields an observed count in cell 5).

The hypothesis that the Mendelian laws are operative and that genotypes of indi-
vidual seeds within a pod are independent of one another implies that X has a binomial
distribution with n � 4 and 	 � �

1
9
6
�. We thus wish to test H0: p1 � p10, . . . , p5 � p50, where

pi0 � P(i � 1 YR’s among 4 seeds when H0 is true)

� � � 	 i�1(1 � 	)4�(i�1) i � 1, 2, 3, 4, 5; 	 � �
1
9
6
�

Yule’s data and the computations are in Table 14.3 with expected cell counts 
npi0 � 269pi0.

4
i � 1
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 8.18

Shaded area = .085

Chi-squared curve for 4 df

Calculated �2

Figure 14.2 A P-value for an upper-tailed chi-squared test

1
0

16

2
1

3
2

4
3

45 100 82

9.86

Observed

Cell i
YR peas/pods

Expected 50.68 97.75 83.78

5
4

26

26.93

3.823
(observed � expected)2

expected
.637 .052 .038 .032

Example 14.2

Table 14.3 Observed and Expected Cell Counts for Example 14.2



Thus �2 � 3.823 � 
 
 
 
 � .032 � 4.582. Since �2
.01,k�1

� �2
.01,4

� 13.277, H0 is
not rejected at level .01. Appendix Table A.11 shows that because 4.582 � 7.77,
the P-value for the test exceeds .10. H0 should not be rejected at any reasonable
significance level. ■

�2 When the Underlying Distribution Is Continuous
We have so far assumed that the k categories are naturally defined in the context 
of the experiment under consideration. The � 2 test can also be used to test whether
a sample comes from a specific underlying continuous distribution. Let X denote the
variable being sampled and suppose the hypothesized pdf of X is f0(x). As in the con-
struction of a frequency distribution in Chapter 1, subdivide the measurement scale
of X into k intervals [a0, a1), [a1, a2), . . . , [ak�1, ak), where the interval [ai�1, ai)
includes the value ai�1 but not ai. The cell probabilities specified by H0 are then

pi0 � P(ai�1 � X � ai) � 
ai

ai�1

f0(x) dx

The cells should be chosen so that npi0 � 5 for i � 1, . . . , k. Often they are selected 
so that the npi0 s are equal.

To see whether the time of onset of labor among expectant mothers is uniformly
distributed throughout a 24-hour day, we can divide a day into k periods, each of
length 24/k. The null hypothesis states that f (x) is the uniform pdf on the interval
[0, 24], so that pi0 � 1/k. The article “The Hour of Birth” (British J. Preventive
and Social Medicine, 1953: 43–59) reports on 1186 onset times, which were cat-
egorized into k � 24 1-hour intervals beginning at midnight, resulting in cell
counts of 52, 73, 89, 88, 68, 47, 58, 47, 48, 53, 47, 34, 21, 31, 40, 24, 37, 31, 47,
34, 36, 44, 78, and 59. Each expected cell count is 1186 � �

2
1
4
� � 49.42, and the

resulting value of � 2 is 162.77. Since � 2
.01,23

� 41.637, the computed value is
highly significant, and the null hypothesis is resoundingly rejected. Generally
speaking, it appears that labor is much more likely to commence very late at night
than during normal waking hours. ■

For testing whether a sample comes from a specific normal distribution, the fun-
damental parameters are 	1 � � and 	2 � �, and each pi0 will be a function of these
parameters.

At a certain university, final exams are supposed to last 2 hours. The psychology 
department constructed a departmental final for an elementary course that was believed
to satisfy the following criteria: (1) actual time taken to complete the exam is normally
distributed, (2) � � 100 min, and (3) exactly 90% of all students will finish within the
2-hour period. To see whether this is actually the case, 120 students were randomly
selected, and their completion times recorded. It was decided that k � 8 intervals
should be used. The criteria imply that the 90th percentile of the completion time dis-
tribution is � � 1.28� � 120. Since � � 100, this implies that � � 15.63.

The eight intervals that divide the standard normal scale into eight equally
likely segments are [0, .32), [.32, .675), [.675, 1.15), [1.15, �), and their four coun-
terparts on the other side of 0. For � � 100 and � � 15.63, these intervals become
[100, 105), [105, 110.55), [110.55, 117.97), and [117.97, �). Thus pi0 � �

1
8

� � .125
(i � 1, . . . , 8), so each expected cell count is npi0 � 120(.125) � 15. The observed
cell counts were 21, 17, 12, 16, 10, 15, 19, and 10, resulting in a � 2 of 7.73. Since
� 2

.10,7
� 12.017 and 7.73 is not � 12.017, there is no evidence for concluding that the

criteria have not been met. ■
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1. What conclusion would be appropriate for an upper-tailed
chi-squared test in each of the following situations?
a. � � .05, df � 4, � 2 � 12.25
b. � � .01, df � 3, � 2 � 8.54
c. � � .10, df � 2, � 2 � 4.36
d. � � .01, k � 6, � 2 � 10.20

2. Say as much as you can about the P-value for an upper-tailed
chi-squared test in each of the following situations:
a. � 2 � 7.5, df � 2 b. � 2 � 13.0, df � 6
c. � 2 � 18.0, df � 9 d. � 2 � 21.3, k � 5
e. � 2 � 5.0, k � 4

3. A statistics department at a large university maintains a tutor-
ing service for students in its introductory service courses. The
service has been staffed with the expectation that 40% of its
clients would be from the business statistics course, 30% from
engineering statistics, 20% from the statistics course for social
science students, and the other 10% from the course for agri-
culture students. A random sample of n � 120 clients revealed
52, 38, 21, and 9 from the four courses. Does this data suggest
that the percentages on which staffing was based are not cor-
rect? State and test the relevant hypotheses using � � .05.

4. It is hypothesized that when homing pigeons are disoriented
in a certain manner, they will exhibit no preference for any
direction of flight after takeoff (so that the direction X should
be uniformly distributed on the interval from 0° to 360°). To
test this, 120 pigeons are disoriented, let loose, and the direc-
tion of flight of each is recorded; the resulting data follows.
Use the chi-squared test at level .10 to see whether the data
supports the hypothesis.

5. An information retrieval system has ten storage locations.
Information has been stored with the expectation that the
long-run proportion of requests for location i is given by
pi � (5.5 �⏐i � 5.5⏐)/30. A sample of 200 retrieval requests
gave the following frequencies for locations 1–10, respec-
tively: 4, 15, 23, 25, 38, 31, 32, 14, 10, and 8. Use a chi-
squared test at significance level .10 to decide whether the
data is consistent with the a priori proportions (use the P-value
approach).

6. Sorghum is an important cereal crop whose quality and
appearance could be affected by the presence of pigments 
in the pericarp (the walls of the plant ovary). The article 

“A Genetic and Biochemical Study on Pericarp Pigments in a
Cross Between Two Cultivars of Grain Sorghum, Sorghum
Bicolor” (Heredity, 1976: 413–416) reports on an experiment
that involved an initial cross between CK60 sorghum (an
American variety with white seeds) and Abu Taima (an
Ethiopian variety with yellow seeds) to produce plants with
red seeds and then a self-cross of the red-seeded plants.
According to genetic theory, this F2 cross should produce
plants with red, yellow, or white seeds in the ratio 9 : 3 : 4.
The data from the experiment follows; does the data confirm
or contradict the genetic theory? Test at level .05 using the 
P-value approach.

7. Criminologists have long debated whether there is a relation-
ship between weather conditions and the incidence of violent
crime. The author of the article “Is There a Season for
Homicide?” (Criminology, 1988: 287–296) classified 1361
homicides according to season, resulting in the accompany-
ing data. Test the null hypothesis of equal proportions using
� � .01 by using the chi-squared table to say as much as pos-
sible about the P-value.

8. The article “Psychiatric and Alcoholic Admissions Do Not
Occur Disproportionately Close to Patients’ Birthdays” (Psy-
chological Reports, 1992: 944–946) focuses on the existence of
any relationship between date of patient admission for treat-
ment of alcoholism and patient’s birthday. Assuming a 
365-day year (i.e., excluding leap year), in the absence of any
relation, a patient’s admission date is equally likely to be any
one of the 365 possible days. The investigators established 
four different admission categories: (1) within 7 days of birth-
day, (2) between 8 and 30 days, inclusive, from the birthday, 
(3) between 31 and 90 days, inclusive, from the birthday, and
(4) more than 90 days from the birthday. A sample of 200
patients gave observed frequencies of 11, 24, 69, and 96 for cat-
egories 1, 2, 3, and 4, respectively. State and test the relevant
hypotheses using a significance level of .01.

9. The response time of a computer system to a request for a
certain type of information is hypothesized to have an expo-
nential distribution with parameter � � 1 sec (so if X �
response time, the pdf of X under H0 is f0(x) � e�x for x � 0).
a. If you had observed X1, X2, . . . , Xn and wanted to use the

chi-squared test with five class intervals having equal
probability under H0, what would be the resulting class
intervals?

b. Carry out the chi-squared test using the following data
resulting from a random sample of 40 response times:
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EXERCISES Section 14.1 (1–11)

Direction 0–�45° 45–�90° 90–�135°

Frequency 12 16 17

Direction 135–�180° 180–�225° 225–�270°

Frequency 15 13 20

Direction 270–�315° 315–�360°

Frequency 17 10

Seed Color Red Yellow White

Observed Frequency 195 73 100

Winter Spring Summer Fall

328 334 372 327



10. a. Show that another expression for the chi-squared statistic is

�2 � �
k

i�1
�n
N
pi

2
i

0
� � n

Why is it more efficient to compute �2 using this 
formula?

b. When the null hypothesis is H0: p1 � p2 � 
 
 
 � pk � 1/k
(i.e., pi0 � 1/k for all i), how does the formula of part (a)
simplify? Use the simplified expression to calculate �2 for
the pigeon/direction data in Exercise 4.

11. a. Having obtained a random sample from a population,
you wish to use a chi-squared test to decide whether the
population distribution is standard normal. If you base

the test on six class intervals having equal probability
under H0, what should be the class intervals?

b. If you wish to use a chi-squared test to test H0: the pop-
ulation distribution is normal with � � .5, � � .002 and
the test is to be based on six equiprobable (under H0)
class intervals, what should be these intervals?

c. Use the chi-squared test with the intervals of part (b) 
to decide, based on the following 45 bolt diameters,
whether bolt diameter is a normally distributed variable
with � � .5 in., � � .002 in.
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.10 .99 1.14 1.26 3.24 .12 .26 .80

.79 1.16 1.76 .41 .59 .27 2.22 .66

.71 2.21 .68 .43 .11 .46 .69 .38

.91 .55 .81 2.51 2.77 .16 1.11 .02
2.13 .19 1.21 1.13 2.93 2.14 .34 .44

.4974 .4976 .4991 .5014 .5008 .4993

.4994 .5010 .4997 .4993 .5013 .5000

.5017 .4984 .4967 .5028 .4975 .5013

.4972 .5047 .5069 .4977 .4961 .4987

.4990 .4974 .5008 .5000 .4967 .4977

.4992 .5007 .4975 .4998 .5000 .5008

.5021 .4959 .5015 .5012 .5056 .4991

.5006 .4987 .4968

14.2 Goodness-of-Fit Tests 
for Composite Hypotheses
In the previous section, we presented a goodness-of-fit test based on a �2 statistic for
deciding between H0: p1 � p10, . . . , pk � pk0 and the alternative Ha stating that H0 is
not true. The null hypothesis was a simple hypothesis in the sense that each pi0 was
a specified number, so that the expected cell counts when H0 was true were uniquely
determined numbers.

In many situations, there are k naturally occurring categories, but H0 states
only that the pi s are functions of other parameters 	1, . . . , 	m without specifying the
values of these 	s. For example, a population may be in equilibrium with respect to
proportions of the three genotypes AA, Aa, and aa. With p1, p2, and p3 denoting these
proportions (probabilities), one may wish to test

H0: p1 � 	 2, p2 � 2	(1 � 	), p3 � (1 � 	)2 (14.1)

where 	 represents the proportion of gene A in the population. This hypothesis is
composite because knowing that H0 is true does not uniquely determine the cell
probabilities and expected cell counts but only their general form. To carry out a �2

test, the unknown 	is must first be estimated.
Similarly, we may be interested in testing to see whether a sample came from

a particular family of distributions without specifying any particular member of the
family. To use the �2 test to see whether the distribution is Poisson, for example, the
parameter � must be estimated. In addition, because there are actually an infinite
number of possible values of a Poisson variable, these values must be grouped so that
there are a finite number of cells. If H0 states that the underlying distribution is nor-
mal, use of a �2 test must be preceded by a choice of cells and estimation of � and �.

�2 When Parameters Are Estimated
As before, k will denote the number of categories or cells and pi will denote the prob-
ability of an observation falling in the ith cell. The null hypothesis now states that each



pi is a function of a small number of parameters 	1, . . . , 	m with the 	is otherwise
unspecified:

H0: p1 � �1(�), . . . , pk � �k(�) where � � (	1, . . . , 	m)
(14.2)

Ha: the hypothesis H0 is not true

For example, for H0 of (14.1), m � 1 (there is only one 	), �1(	) � 	 2, �2(	) �
2	(1 � 	), and �3(	) � (1 � 	)2.

In the case k � 2, there is really only a single rv, N1 (since N1 � N2 � n), which
has a binomial distribution. The joint probability that N1 � n1 and N2 � n2 is then

P(N1 � n1, N2 � n2) � (n
n1

)pn1
1

� pn2
2

� pn1
1

� pn2
2

where p1 � p2 � 1 and n1 � n2 � n. For general k, the joint distribution of N1, . . . , Nk

is the multinomial distribution (Section 5.1) with

P(N1 � n1, . . . , Nk � nk) � pn1
1 � pn2

2 � 
 
 
 � pnk

k (14.3)

When H0 is true, (14.3) becomes

P(N1 � n1, . . . , Nk � nk) � [�1(�)]n1 � 
 
 
 � [�k(�)]nk (14.4)

To apply a chi-squared test, � � (	1, . . . , 	m) must be estimated.
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METHOD OF 
ESTIMATION

Let n1, n2, . . . , nk denote the observed values of N1, . . . , Nk. Then 	̂1, . . . , 	̂m are
those values of the 	i s that maximize (14.4).

The resulting estimators 	̂1, . . . , 	̂m are the maximum likelihood estimators of 
	1, . . . , 	m; this principle of estimation was discussed in Section 6.2.

In humans there is a blood group, the MN group, that is composed of individuals hav-
ing one of the three blood types M, MN, and N. Type is determined by two alleles, and
there is no dominance, so the three possible genotypes give rise to three phenotypes.
A population consisting of individuals in the MN group is in equilibrium if

P(M) � p1 � 	 2

P(MN) � p2 � 2	(1 � 	)

P(N) � p3 � (1 � 	)2

for some 	. Suppose a sample from such a population yielded the results shown
in Table 14.4.

Example 14.5

M

125

MN N

225 150 n � 500Observed

Type

Table 14.4 Observed Counts for Example 14.5

Then

[�1(	)]n1[�2(	)]n2[�3(	)]n3 � [(	 2)]n1[2	(1 � 	)]n2[(1 � 	)2]n3

� 2n2 � 	2n1�n2 � (1 � 	)n2�2n3



Maximizing this with respect to 	 (or, equivalently, maximizing the natural loga-
rithm of this quantity, which is easier to differentiate) yields

	̂ � �

With n1 � 125 and n2 � 225, 	̂ � 475/1000 � .475. ■

Once � � (	1, . . . , 	m) has been estimated by �̂ � (	̂1, . . . , 	̂m), the estimated
expected cell counts are the n�i(�̂)s. These are now used in place of the npi0s of
Section 14.1 to specify a �2 statistic.

2n1 � n2�
2n

2n1 � n2���
[(2n1 � n2) � (n2 � 2n3)]
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THEOREM Under general “regularity” conditions on 	1, . . . , 	m and the �i(�)s, if 	1, . . . , 	m

are estimated by the method of maximum likelihood as described previously and
n is large,

�2 � �
all cells

� �
k

i�1

has approximately a chi-squared distribution with k � 1 � m df when H0 of
(14.2) is true. An approximately level � test of H0 versus Ha is then to reject H0

if �2 � �2
�,k�1�m

. In practice, the test can be used if n�i(�̂) � 5 for every i.

[Ni � n�i(�̂)]2

��
n�i(�̂)

(observed � estimated expected)2

����
estimated expected

Notice that the number of degrees of freedom is reduced by the number of 	i s estimated.

With 	̂ � .475 and n � 500, the estimated expected cell counts are n�1(	̂ ) �
500(	̂ )2 � 112.81, n�2(	̂ ) � (500)(2)(.475)(1 � .475) � 249.38, and n�3(	̂ ) � 500 �
112.81 � 249.38 � 137.81. Then

�2 � � � � 4.78

Since �2
.05,k�1�m

� �2
.05,3�1�1

� �2
.05,1

� 3.843 and 4.78 � 3.843, H0 is rejected. Ap-
pendix Table A.11 shows that P-value � .029. ■

Consider a series of games between two teams, I and II, that terminates as soon as
one team has won four games (with no possibility of a tie). A simple probability
model for such a series assumes that outcomes of successive games are independent
and that the probability of team I winning any particular game is a constant 	. We
arbitrarily designate I the better team, so that 	 � .5. Any particular series can then
terminate after 4, 5, 6, or 7 games. Let �1(	), �2(	), �3(	), �4(	) denote the proba-
bility of termination in 4, 5, 6, and 7 games, respectively. Then

�1(	 ) � P(I wins in 4 games) � P(II wins in 4 games)

� 	 4 � (1 � 	 )4

�2(	 ) � P(I wins 3 of the first 4 and the fifth)
� P(I loses 3 of the first 4 and the fifth)

� � � 	 3(1 � 	 ) � 	 � � � 	(1 � 	)3 � (1 � 	 )

� 4	 (1 � 	 )[	3 � (1 � 	 )3]

�3(	) � 10	 2(1 � 	 )2[	2 � (1 � 	 )2]

�4(	 ) � 20	 3(1 � 	 )3

4
1

4
3

(150 � 137.81)2

��
137.81

(225 � 249.38)2

��
249.38

(125 � 112.81)2

��
112.81

Example 14.6
(Example 14.5
continued)

Example 14.7



The article “Seven-Game Series in Sports” by Groeneveld and Meeden
(Mathematics Magazine, 1975: 187–192) tested the fit of this model to results of
National Hockey League playoffs during the period 1943–1967 (when league mem-
bership was stable). The data appears in Table 14.5.
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1
4

15

2
5

3
6

4
7

26 24 18

16.351

Observed frequency n � 83

Cell
Number of games played

Estimated expected frequency 24.153 23.240 19.256

Table 14.5 Observed and Expected Counts for the Simple Model

The estimated expected cell counts are 83�i(	̂ ), where 	̂ is the value of 	 that maximizes

{	 4 � (1 � 	 )4}15 � {4	(1 � 	 )[	 3 � (1 � 	 )3]}26

� {10	 2(1 � 	 )2[	 2 � (1 � 	 )2]}24 � {20	 3(1 � 	 )3}18 (14.5)

Standard calculus methods fail to yield a nice formula for the maximizing value 	̂,
so it must be computed using numerical methods. The result is 	̂ � .654, from which
�i(	̂ ) and the estimated expected cell counts are computed. The computed value of
�2 is .360, and (since k � 1 � m � 4 � 1 � 1 � 2) �2

.10,2
� 4.605. There is thus no

reason to reject the simple model as applied to NHL playoff series.
The cited article also considered World Series data for the period 1903–1973.

For the simple model, �2 � 5.97, so the model does not seem appropriate. The sug-
gested reason for this is that for the simple model

P(series lasts six games ⏐ series lasts at least six games) � .5 (14.6)

whereas of the 38 series that actually lasted at least six games, only 13 lasted exactly
six. The following alternative model is then introduced:

�1(	1, 	2) � 	 4
1 � (1 � 	1)4

�2(	1, 	2) � 4	1(1 � 	1)[	 3
1 � (1 � 	1)3]

�3(	1, 	2) � 10	2
1(1 � 	1)2	2

�4(	1, 	2) � 10	2
1(1 � 	1)2(1 � 	2)

The first two �i s are identical to the simple model, whereas 	2 is the conditional
probability of (14.6) (which can now be any number between 0 and 1). The values
of 	̂1 and 	̂2 that maximize the expression analogous to expression (14.5) are deter-
mined numerically as 	̂1 � .614, 	̂2 � .342. A summary appears in Table 14.6, and
�2 � .384. Since two parameters are estimated, df � k � 1 � m � 1 with �2

.10,1
�

2.706, indicating a good fit of the data to this new model.

4

12

5 6   7

16 13 25

10.85

Observed frequency

Number of games played

Estimated expected frequency 18.08 12.68 24.39

Table 14.6 Observed and Expected Counts for the More Complex Model

■



One of the regularity conditions on the 	i s in the theorem is that they be func-
tionally independent of one another. That is, no single 	i can be determined from the
values of other 	i s, so that m is the number of functionally independent parameters 
estimated. A general rule of thumb for degrees of freedom in a chi-squared test is the
following.
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�2 df � � � � � �number of independent
parameters estimated

number of freely
determined cell counts

This rule will be used in connection with several different chi-squared tests in the
next section.

Goodness of Fit for Discrete Distributions
Many experiments involve observing a random sample X1, X2, . . . , Xn from some
discrete distribution. One may then wish to investigate whether the underlying dis-
tribution is a member of a particular family, such as the Poisson or negative binomial
family. In the case of both a Poisson and a negative binomial distribution, the set of
possible values is infinite, so the values must be grouped into k subsets before a 
chi-squared test can be used. The groupings should be done so that the expected fre-
quency in each cell (group) is at least 5. The last cell will then correspond to X values
of c, c � 1, c � 2, . . . for some value c.

This grouping can considerably complicate the computation of the 	̂ i s
and estimated expected cell counts. This is because the theorem requires that the
	̂ i s be obtained from the cell counts N1, . . . , Nk rather than the sample values 
X1, . . . , Xn.

Table 14.7 presents count data on the number of Larrea divaricata plants found in each
of 48 sampling quadrats, as reported in the article “Some Sampling Characteristics of
Plants and Arthropods of the Arizona Desert” (Ecology, 1962: 567–571).

Example 14.8

1

0

9

2

1

3

2

4

3

9 10 14Frequency

Cell

Number of plants

5

�4

6

Table 14.7 Observed Counts for Example 14.8

The author fit a Poisson distribution to the data. Let � denote the Poisson pa-
rameter and suppose for the moment that the six counts in cell 5 were actually 4, 4,
5, 5, 6, 6. Then denoting sample values by x1, . . . , x48, nine of the xi s were 0, nine
were 1, and so on. The likelihood of the observed sample is

� 
 
 
 � � �

The value of � for which this is maximized is �̂ � �xi/n � 101/48 � 2.10 (the value
reported in the article).

e�48��101

��
x1! � 
 
 
 � x48!

e�48���xi

��
x1! � 
 
 
 � x48!

e���x48

�
x48!

e���x1

�
x1!



However, the �̂ required for �2 is obtained by maximizing Expression (14.4)
rather than the likelihood of the full sample. The cell probabilities are

�i(�) � �
(
e
i

�

�

��i

1

�

)

1

!
� i � 1, 2, 3, 4

�5(�) � 1 � �
3

i�0
�
e�

i

�

!
�i

�

so the right-hand side of (14.4) becomes

��e
�

0

�

!
�0

��
9

��e
�

1

�

!
�1

��
9

��e
�

2

�

!
�2

��
10

��e
�

3

�

!
�3

��
14

�1 � �
3

i�0
�
e�

i

�

!
�i

��
6

There is no nice formula for �̂, the maximizing value of �, in this latter expression,
so it must be obtained numerically. ■

Because the parameter estimates are usually much more difficult to compute
from the grouped data than from the full sample, they are virtually always computed
using this latter method. When these “full” estimators are used in the chi-squared
statistic, the distribution of the statistic is altered and a level � test is no longer spec-
ified by the critical value �2

�,k�1�m
.
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The test procedure implied by this theorem is the following:

THEOREM Let 	̂1, . . . , 	̂m be the maximum likelihood estimators of 	1, . . . , 	m based on the
full sample X1, . . . , Xn, and let �2 denote the statistic based on these estimators.
Then the critical value c� that specifies a level � upper-tailed test satisfies

�2
�,k�1�m

� c� � �2
�,k�1

(14.7)

If �2 � �2
�,k�1

, reject H0.
If �2 � �2

�,k�1�m
, do not reject H0. (14.8)

If �2
�,k�1�m

� �2 � �2
�,k�1

, withhold judgment.

Using �̂ � 2.10, the estimated expected cell counts are computed from n�i(�̂), where
n � 48. For example,

n�1(�̂) � 48 � �
e�2.1

0
(2
!
.1)0

� � (48)(e�2.1) � 5.88

Similarly, n�2(�̂) � 12.34, n�3(�̂) � 12.96, n�4(�̂) � 9.07, and n�5(�̂) � 48 �
5.88 � 
 
 
 � 9.07 � 7.75. Then

�2 � �
(9 �

5.8
5
8
.88)2

� � 
 
 
 � �
(6 �

7.7
7
5
.75)2

� � 6.31

Since m � 1 and k � 5, at level .05 we need �2
.05,3

� 7.815 and �2
.05,4

� 9.488. Because
6.31 � 7.815, we do not reject H0; at the 5% level, the Poisson distribution provides a rea-
sonable fit to the data. Notice that �2

.10,3
� 6.251 and �2

.10,4
� 7.779, so at level .10 we would

have to withhold judgment on whether the Poisson distribution was appropriate. ■

Example 14.9
(Example 14.8
continued)



Sometimes even the maximum likelihood estimates based on the full sample
are quite difficult to compute. This is the case, for example, for the two-parameter
(generalized) negative binomial distribution. In such situations, method-of-moments
estimates are often used and the resulting �2 compared to �2

�,k�1�m
, though it is not

known to what extent the use of moments estimators affects the true critical value.

Goodness of Fit for Continuous Distributions
The chi-squared test can also be used to test whether the sample comes from a spec-
ified family of continuous distributions, such as the exponential family or the nor-
mal family. The choice of cells (class intervals) is even more arbitrary in the 
continuous case than in the discrete case. To ensure that the chi-squared test is
valid, the cells should be chosen independently of the sample observations. Once
the cells are chosen, it is almost always quite difficult to estimate unspecified
parameters (such as � and � in the normal case) from the observed cell counts, so
instead mle’s based on the full sample are computed. The critical value c� again sat-
isfies (14.7), and the test procedure is given by (14.8).

The Institute of Nutrition of Central America and Panama (INCAP) has carried out
extensive dietary studies and research projects in Central America. In one study
reported in the November 1964 issue of the American Journal of Clinical Nutrition
(“The Blood Viscosity of Various Socioeconomic Groups in Guatemala”), serum
total cholesterol measurements for a sample of 49 low-income rural Indians were
reported as follows (in mg/L):
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204 108 140 152 158 129 175 146 157 174 192 194 144 152 135 223 145

231 115 131 129 142 114 173 226 155 166 220 180 172 143 148 171 143

124 158 144 108 189 136 136 197 131 95 139 181 165 142 162

Is it plausible that serum cholesterol level is normally distributed for this population?
Suppose that prior to sampling, it was believed that plausible values for � and �
were 150 and 30, respectively. The seven equiprobable class intervals for the stan-
dard normal distribution are (��, �1.07), (�1.07, �.57), (�.57, �.18), (�.18, .18), 
(.18, .57), (.57, 1.07), and (1.07, �), with each endpoint also giving the distance in
standard deviations from the mean for any other normal distribution. For � � 150
and � � 30, these intervals become (��, 117.9), (117.9, 132.9), (132.9, 144.6),
(144.6, 155.4), (155.4, 167.1), (167.1, 182.1), and (182.1, �).

To obtain the estimated cell probabilities �1(�̂, �̂), . . . , �7(�̂, �̂), we first need
the mle’s �̂ and �̂. In Chapter 6, the mle of � was shown to be [�(xi � x�)2/n]1/2

(rather than s), so with s � 31.75,

�̂ � x� � 157.02 �̂ � ���(xi

n
� x�)2

��
1/2

� ��(n �

n
1)s2

��
1/2

� 31.42

Each �i(�̂, �̂) is then the probability that a normal rv X with mean 157.02 and stan-
dard deviation 31.42 falls in the ith class interval. For example,

�2(�̂, �̂) � P(117.9 � X � 132.9) � P(�1.25 � Z � �.77) � .1150

so n�2(�̂, �̂) � 49(.1150) � 5.64. Observed and estimated expected cell counts are
shown in Table 14.8.

Example 14.10



The article “Some Studies on Tuft Weight Distribution in the Opening Room”
(Textile Research J., 1976: 567–573) reports the accompanying data on the distribu-
tion of output tuft weight X (mg) of cotton fibers for the input weight x0 � 70.
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(��, 117.9)

5

(117.9, 132.9) (132.9, 144.6) (144.6, 155.4)

5 11 6Observed

5.17 5.64 6.08 6.64Estimated expected

Cell

(155.4,  167.1)

6

(167.1, 182.1) (182.1, �)

7 9Observed

7.12 7.97 10.38Estimated expected

Cell

Table 14.8 Observed and Expected Counts for Example 14.10

0–8

20

8–16 16–24 24–32

8 7 1

18.0

Observed frequency

Interval

Expected frequency 9.9 5.5 3.0

32–40

2

40–48 48–56 56–64

1 0 1

1.8 .9 .5 .3

64–70

0

.1

The authors postulated a truncated exponential distribution:

H0: f (x) � �
1

�

�

e�

e

�

�

x

�x0

� 0 � x � x0

The mean of this distribution is

� � 
x0

0
xf (x) dx � �

�

1
� � �

1
x
�
0e�

e

�

�

x

�

0

x0

�

The parameter � was estimated by replacing � by x� � 13.086 and solving the result-
ing equation to obtain �̂ � .0742 (so �̂ is a method-of-moments estimate and not an
mle). Then with �̂ replacing � in f(x), the estimated expected cell frequencies as dis-
played previously are computed as

40�i(�̂) � 40P(ai�1 � X � ai) � 40 
ai

ai�1

f (x) dx �

where [ai�1, ai) is the ith class interval. To obtain expected cell counts of at least 5,
the last six cells are combined to yield observed counts of 20, 8, 7, 5 and expected
counts of 18.0, 9.9, 5.5, 6.6. The computed value of chi-squared is then �2 � 1.34.
Because �2

.05,2
� 5.992, H0 is not rejected, so the truncated exponential model pro-

vides a good fit. ■

40(e��̂ai�1 � e��̂ai)
��

1 � e��̂x0

Example 14.11

■

The computed �2 is 4.60. With k � 7 cells and m � 2 parameters estimated,
�2

.05,k�1
� �2

.05,6
� 12.592 and �2

.05,k�1�m
� �2

.05,4
� 9.488. Since 4.60 � 9.488, a nor-

mal distribution provides quite a good fit to the data.



A Special Test for Normality
Probability plots were introduced in Section 4.6 as an informal method for assessing
the plausibility of any specified population distribution as the one from which the
given sample was selected. The straighter the probability plot, the more plausible is
the distribution on which the plot is based. A normal probability plot is used for
checking whether any member of the normal distribution family is plausible. Let’s
denote the sample xi s when ordered from smallest to largest by x(1), x(2), . . . , x(n).
Then the plot suggested for checking normality was a plot of the points (x(i), yi),
where yi � ��1((i � .5)/n).

A quantitative measure of the extent to which points cluster about a straight
line is the sample correlation coefficient r introduced in Chapter 12. Consider cal-
culating r for the n pairs (x(1), y1), . . . , (x(n), yn). The yi s here are not observed values
in a random sample from a y population, so properties of this r are quite different
from those described in Section 12.5. However, it is true that the more r deviates
from 1, the less the probability plot resembles a straight line (remember that a prob-
ability plot must slope upward). This idea can be extended to yield a formal test 
procedure: Reject the hypothesis of population normality if r � c�, where c� is a 
critical value chosen to yield the desired significance level �. That is, the critical
value is chosen so that when the population distribution is actually normal, the prob-
ability of obtaining an r value that is at most c� (and thus incorrectly rejecting H0) is
the desired �. The developers of the MINITAB statistical computer package give
critical values for � � .10, .05, and .01 in combination with different sample sizes.
These critical values are based on a slightly different definition of the yi s than that
given previously.

MINITAB will also construct a normal probability plot based on these yi s. The
plot will be almost identical in appearance to that based on the previous yi s. When
there are several tied x(i) s, MINITAB computes r by using the average of the corre-
sponding yi s as the second number in each pair.
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Let yi � ��1[(i � .375)/(n � .25)] and compute the sample correlation coeffi-
cient r for the n pairs (x(1), y1), . . . , (x(n), yn). The Ryan–Joiner test of

H0: the population distribution is normal

versus

Ha: the population distribution is not normal

consists of rejecting H0 when r � c�. Critical values c� are given in Appendix
Table A.12 for various significance levels � and sample sizes n.

The following sample of n � 20 observations on dielectric breakdown voltage of a
piece of epoxy resin first appeared in Example 4.29.

yi �1.871 �1.404 �1.127 �.917 �.742 �.587 �.446 �.313 �.186 �.062

x(i) 24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94

yi .062 .186 .313 .446 .587 .742 .917 1.127 1.404 1.871

x(i) 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88

Example 14.12



We asked MINITAB to carry out the Ryan–Joiner test, and the result appears in
Figure 14.3. The test statistic value is r � .9881, and Appendix Table A.12 gives
.9600 as the critical value that captures lower-tail area .10 under the r sampling dis-
tribution curve when n � 20 and the underlying distribution is actually normal.
Since .9881 � .9600, the null hypothesis of normality cannot be rejected even for
a significance level as large as .10.
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Figure 14.3 MINITAB output from the Ryan–Joiner test for the data of Example 14.12
■

EXERCISES Section 14.2 (12–23)

12. Consider a large population of families in which each fam-
ily has exactly three children. If the genders of the three
children in any family are independent of one another, the
number of male children in a randomly selected family will
have a binomial distribution based on three trials.
a. Suppose a random sample of 160 families yields the fol-

lowing results. Test the relevant hypotheses by proceed-
ing as in Example 14.5.

b. Suppose a random sample of families in a nonhuman
population resulted in observed frequencies of 15, 20,
12, and 3, respectively. Would the chi-squared test be
based on the same number of degrees of freedom as the
test in part (a)? Explain.

13. A study of sterility in the fruit fly (“Hybrid Dysgenesis in
Drosophila melanogaster: The Biology of Female and Male
Sterility,” Genetics, 1979: 161–174) reports the following
data on the number of ovaries developed for each female fly
in a sample of size 1388. One model for unilateral sterility
states that each ovary develops with some probability p

independently of the other ovary. Test the fit of this model
using �2.

14. The article “Feeding Ecology of the Red-Eyed Vireo and
Associated Foliage-Gleaning Birds” (Ecological Mono-
graphs, 1971: 129–152) presents the accompanying data on
the variable X � the number of hops before the first flight
and preceded by a flight. The author then proposed and fit
a geometric probability distribution [p(x) � P(X � x) �
px�1 � q for x � 1, 2, . . . , where q � 1 � p] to the data. The
total sample size was n � 130.

a. The likelihood is (px1�1 � q) � 
 
 
 � (pxn�1 � q) � p�xi�n � qn.
Show that the mle of p is given by p̂ � (�xi � n)/�xi, and
compute p̂ for the given data.

Number of
Male Children 0 1 2 3

Frequency 14 66 64 16

x � Number of
Ovaries Developed 0 1 2

Observed Count 1212 118 58

x 1 2 3 4 5 6 7 8 9 10 11 12

Number
of Times x 48 31 20 9 6 5 4 2 1 1 2 1
Observed



b. Estimate the expected cell counts using p̂ of part (a)
[expected cell counts � n � ( p̂)x�1 � q̂ for x � 1, 2, . . . ],
and test the fit of the model using a �2 test by combining
the counts for x � 7, 8, . . . , and 12 into one cell (x � 7).

15. A certain type of flashlight is sold with the four batteries
included. A random sample of 150 flashlights is obtained,
and the number of defective batteries in each is determined,
resulting in the following data:

Let X be the number of defective batteries in a randomly
selected flashlight. Test the null hypothesis that the distribu-
tion of X is Bin(4, 	). That is, with pi � P(i defectives), test

H0: pi � � � 	i(1 � 	)4�i i � 0, 1, 2, 3, 4

[Hint: To obtain the mle of 	, write the likelihood (the func-
tion to be maximized) as 	 u(1 � 	)v, where the exponents u
and v are linear functions of the cell counts. Then take the
natural log, differentiate with respect to 	, equate the result
to 0, and solve for 	̂.]

16. In a genetics experiment, investigators looked at 300 chro-
mosomes of a particular type and counted the number of
sister-chromatid exchanges on each (“On the Nature of
Sister-Chromatid Exchanges in 5-Bromodeoxyuridine-
Substituted Chromosomes,” Genetics, 1979: 1251–1264). A
Poisson model was hypothesized for the distribution of the
number of exchanges. Test the fit of a Poisson distribution
to the data by first estimating � and then combining the
counts for x � 8 and x � 9 into one cell.

17. An article in Annals of Mathematical Statistics reports the
following data on the number of borers in each of 120
groups of borers. Does the Poisson pmf provide a plausible
model for the distribution of the number of borers in a group?
[Hint: Add the frequencies for 7, 8, . . . , 12 to establish a
single category “ � 7.”]

18. The article “A Probabilistic Analysis of Dissolved Oxygen–
Biochemical Oxygen Demand Relationship in Streams”
(J. Water Resources Control Fed., 1969: 73–90) reports data
on the rate of oxygenation in streams at 20°C in a certain
region. The sample mean and standard deviation were com-
puted as x� � .173 and s � .066, respectively. Based on the
accompanying frequency distribution, can it be concluded
that oxygenation rate is a normally distributed variable? Use
the chi-squared test with � � .05.

19. Each headlight on an automobile undergoing an annual
vehicle inspection can be focused either too high (H), too
low (L), or properly (N). Checking the two headlights simul-
taneously (and not distinguishing between left and right)
results in the six possible outcomes HH, LL, NN, HL, HN,
and LN. If the probabilities (population proportions) for the
single headlight focus direction are P(H) � 	1, P(L) � 	2,
and P(N) � 1 � 	1 � 	2 and the two headlights are focused
independently of one another, the probabilities of the six
outcomes for a randomly selected car are the following:

p1 � 	 2
1 p2 � 	 2

2 p3 � (1 � 	1 � 	2)2

p4 � 2	1	2 p5 � 2	1(1 � 	1 � 	2)

p6 � 2	2(1 � 	1 � 	2)

Use the accompanying data to test the null hypothesis

H0: p1 � �1(	1, 	2), . . . , p6 � �6(	1, 	2)

where the �i(	1, 	2)s are given previously.

[Hint: Write the likelihood as a function of 	1 and 	2, take
the natural log, then compute ∂/∂	1 and ∂/∂	2, equate them
to 0, and solve for 	̂1, 	̂2.]

20. The article “Compatibility of Outer and Fusible Interlining
Fabrics in Tailored Garments (Textile Res. J., 1997:
137–142) gave the following observations on bending rigid-
ity (�N 
 m) for medium-quality fabric specimens, from
which the accompanying MINITAB output was obtained:

4
i
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Number Defective 0 1 2 3 4

Frequency 26 51 47 16 10

X � Number
of Exchanges 0 1 2 3 4 5 6 7 8 9

Observed
Counts 6 24 42 59 62 44 41 14 6 2

Number
of Borers 0 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 24 16 16 18 15 9 6 5 3 4 3 0 1

Rate (per day) Frequency

Below .100 12
.100–below .150 20
.150–below .200 23
.200–below .250 15
.250 or more 13

Outcome HH LL NN HL HN LN

Frequency 49 26 14 20 53 38

24.6 12.7 14.4 30.6 16.1 9.5 31.5 17.2
46.9 68.3 30.8 116.7 39.5 73.8 80.6 20.3
25.8 30.9 39.2 36.8 46.6 15.6 32.3



Would you use a one-sample t confidence interval to esti-
mate true average bending rigidity? Explain your reasoning.

21. The article from which the data in Exercise 20 was obtained
also gave the accompanying data on the composite mass/
outer fabric mass ratio for high-quality fabric specimens.

MINITAB gave r � .9852 as the value of the Ryan–Joiner
test statistic and reported that P-value � .10. Would you
use the one-sample t test to test hypotheses about the
value of the true average ratio? Why or why not?

22. The following data set consists of 25 observations on frac-
ture toughness of base plate of 18% nickel maraging steel
(from “Fracture Testing of Weldments,” ASTM Special Publ.
No. 381, 1965: 328–356). Use the normal probability plot

correlation coefficient test to decide whether a normal distri-
bution provides a plausible model for fracture toughness.

23. The article “Nonbloated Burned Clay Aggregate Con-
crete” (J. Materials, 1972: 555–563) reports the following
data on 7-day flexural strength of nonbloated burned clay
aggregate concrete samples (psi):

Test at level .10 to decide whether flexural strength is a nor-
mally distributed variable.
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1.15 1.40 1.34 1.29 1.36 1.26 1.22 1.40

1.29 1.41 1.32 1.34 1.26 1.36 1.36 1.30

1.28 1.45 1.29 1.28 1.38 1.55 1.46 1.32

69.5 71.9 72.6 73.1 73.3 73.5 74.1 74.2 75.3

75.5 75.7 75.8 76.1 76.2 76.9 77.0 77.9 78.1

79.6 79.7 79.9 80.1 82.2 83.7 93.7

257 327 317 300 340 340 343 374 377 386

383 393 407 407 434 427 440 407 450 440

456 460 456 476 480 490 497 526 546 700

14.3 Two-Way Contingency Tables

In the previous two sections, we discussed inferential problems in which the count
data was displayed in a rectangular table of cells. Each table consisted of one row
and a specified number of columns, where the columns corresponded to categories
into which the population had been divided. We now study problems in which the
data also consists of counts or frequencies, but the data table will now have I rows
(I � 2) and J columns, so IJ cells. There are two commonly encountered situations
in which such data arises:

1. There are I populations of interest, each corresponding to a different row of the
table, and each population is divided into the same J categories. A sample is taken
from the ith population (i � 1, . . . , I ), and the counts are entered in the cells in
the ith row of the table. For example, customers of each of I � 3 department store
chains might have available the same J � 5 payment categories: cash, check,
store credit card, Visa, and MasterCard.

2. There is a single population of interest, with each individual in the population
categorized with respect to two different factors. There are I categories associ-
ated with the first factor, and J categories associated with the second factor. 
A single sample is taken, and the number of individuals belonging in both cat-
egory i of factor 1 and category j of factor 2 is entered in the cell in row i, col-
umn j (i � 1, . . . , I; j � 1, . . . , J). As an example, customers making a 
purchase might be classified according to both department in which the pur-
chase was made, with I � 6 departments, and according to method of payment,
with J � 5 as in (1) above.

Let nij denote the number of individuals in the sample(s) falling in the (i, j )th
cell (row i, column j) of the table—that is, the (i, j)th cell count. The table dis-
playing the nij s is called a two-way contingency table; a prototype is shown in
Table 14.9.
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In situations of type 1, we want to investigate whether the proportions in the
different categories are the same for all populations. The null hypothesis states that
the populations are homogeneous with respect to these categories. In type 2 situa-
tions, we investigate whether the categories of the two factors occur independently
of one another in the population.

Testing for Homogeneity
We assume that each individual in every one of the I populations belongs in exactly
one of J categories. A sample of ni individuals is taken from the ith population; let
n � �ni and

nij � the number of individuals in the ith sample who fall into category j

n�j � �
I

i�1
nij �

The nij s are recorded in a two-way contingency table with I rows and J columns. The
sum of the nij s in the ith row is ni, whereas the sum of entries in the jth column is n�j.

Let

pij �

Thus, for population 1, the J proportions are p11, p12, . . . , p1J (which sum to 1) and
similarly for the other populations. The null hypothesis of homogeneity states that
the proportion of individuals in category j is the same for each population and that
this is true for every category; that is, for every j, p1j � p2j � 
 
 
 � pIj.

When H0 is true, we can use p1, p2, . . . , pJ to denote the population propor-
tions in the J different categories; these proportions are common to all I populations.
The expected number of individuals in the ith sample who fall in the jth category
when H0 is true is then E(Nij) � ni � pj. To estimate E(Nij), we must first estimate pj,
the proportion in category j. Among the total sample of n individuals, N�j fall into cat-
egory j, so we use p̂j � N�j/n as the estimator (this can be shown to be the maximum
likelihood estimator of pj). Substitution of the estimate p̂j for pj in nipj yields a sim-
ple formula for estimated expected counts under H0:

the proportion of the individuals in
population i who fall into category j

the total number of individuals among
the n sampled who fall into category j

1

n111

2

n12

. . .

. . .

j

n1j

n212

. . .

. . .

J

n1J

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

nijni1i . . .

nIJnI1I

Table 14.9 A Two-Way Contingency Table
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The test statistic also has the same form as in previous problem situations. The num-
ber of degrees of freedom comes from the general rule of thumb. In each row of
Table 14.9 there are J � 1 freely determined cell counts (each sample size ni is
fixed), so there are a total of I(J � 1) freely determined cells. Parameters p1, . . . , pJ

are estimated, but because � pi � 1, only J � 1 of these are independent. Thus df �
I(J � 1) � (J � 1) � (J � 1)(I � 1).

êij � estimated expected count in cell (i, j) � ni � �
n

n
�j
�

� (14.9)
(ith row total)( jth column total)
����

n

Null hypothesis: H0: p1j � p2j � 
 
 
 � pIj j � 1, 2, . . . , J

Alternative hypothesis: Ha: H0 is not true

Test statistic value:

�2 � �
all cells

� �
I

i�1
�
J

j�1

Rejection region: �2 � �2
�,(I�1)(J�1)

P-value information can be obtained as described in Section 14.1. The test
can safely be applied as long as êij � 5 for all cells.

(nij � êij)2

��
êij

(observed � estimated expected)2

����
estimated expected

A company packages a particular product in cans of three different sizes, each one
using a different production line. Most cans conform to specifications, but a quality
control engineer has identified the following reasons for nonconformance:

1. Blemish on can

2. Crack in can

3. Improper pull tab location

4. Pull tab missing

5. Other

A sample of nonconforming units is selected from each of the three lines, and each
unit is categorized according to reason for nonconformity, resulting in the following
contingency table data:

Reason for Nonconformity
Sample

Blemish Crack Location Missing Other Size

Production
1 34 65 17 21 13 150

Line
2 23 52 25 19 6 125
3 32 28 16 14 10 100

Total 89 145 58 54 29 375

Example 14.13
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Does the data suggest that the proportions falling in the various nonconformance cat-
egories are not the same for the three lines? The parameters of interest are the vari-
ous proportions, and the relevant hypotheses are

H0: the production lines are homogeneous with respect to the five noncon-
formance categories; that is, p1j � p2j � p3j for j � 1, . . . , 5

Ha: the production lines are not homogeneous with respect to the categories

The estimated expected frequencies (assuming homogeneity) must now be calcu-
lated. Consider the first nonconformance category for the first production line. When
the lines are homogeneous,

estimated expected number among the 150 selected units that are blemished

� � � 35.60

The contribution of the cell in the upper-left corner to � 2 is then

� � .072

The other contributions are calculated in a similar manner. Figure 14.4 shows
MINITAB output for the chi-squared test. The observed count is the top number in
each cell, and directly below it is the estimated expected count. The contribution of
each cell to �2 appears below the counts, and the test statistic value is � 2 � 14.159.
All estimated expected counts are at least 5, so combining categories is unnecessary.
The test is based on (3 � 1)(5 � 1) � 8 df. Appendix Table A.11 shows that the val-
ues that capture upper-tail areas of .08 and .075 under the 8 df curve are 14.06 and
14.26, respectively. Thus the P-value is between .075 and .08; MINITAB gives 
P-value � .079. The null hypothesis of homogeneity should not be rejected at the
usual significance levels of .05 or .01, but it would be rejected for the higher � of .10.

(34 � 35.60)2

��
35.60

(observed � estimated expected)2

����
estimated expected

(150)(89)
��

375

(first row total)(first column total)
����

total of sample sizes

Expected counts are printed below observed counts

blem crack loc missing other Total

1 34 65 17 21 13 150
35.60 58.00 23.20 21.60 11.60

2 23 52 25 19 6 125
29.67 48.33 19.33 18.00 9.67

3 32 28 16 14 10 100
23.73 38.67 15.47 14.40 7.73

Total 89 145 58 54 29 375

Chisq� 0.072� 0.845� 1.657� 0.017� 0.169� 1.498� 0.278�
1.661� 0.056� 1.391� 2.879� 2.943� 0.018� 0.011�
0.664� 14.159

df � 8, p � 0.079

Figure 14.4 MINITAB output for the chi-squared test of Example 14.13 ■

Testing for Independence
We focus now on the relationship between two different factors in a single popu-
lation. The number of categories of the first factor will be denoted by I and the
number of categories of the second factor by J. Each individual in the population



is assumed to belong in exactly one of the I categories associated with the first
factor and exactly one of the J categories associated with the second factor. For
example, the population of interest might consist of all individuals who regularly
watch the national news on television, with the first factor being preferred net-
work (ABC, CBS, NBC, or PBS, so I � 4) and the second factor political philos-
ophy (liberal, moderate, or conservative, giving J � 3).

For a sample of n individuals taken from the population, let nij denote the num-
ber among the n who fall both in category i of the first factor and category j of the
second factor. The nijs can be displayed in a two-way contingency table with I rows
and J columns. In the case of homogeneity for I populations, the row totals were
fixed in advance, and only the J column totals were random. Now only the total sam-
ple size is fixed, and both the ni�s and n�j s are observed values of random variables.
To state the hypotheses of interest, let

pij � the proportion of individuals in the population who belong in category i
of factor 1 and category j of factor 2

� P(a randomly selected individual falls in both category i of factor 1 and 
category j of factor 2)

Then

pi� � �
j

pij � P(a randomly selected individual falls in category i of factor 1)

p�j � �
i

pij � P(a randomly selected individual falls in category j of factor 2)

Recall that two events A and B are independent if P(A � B) � P(A) � P(B). The null
hypothesis here says that an individual’s category with respect to factor 1 is inde-
pendent of the category with respect to factor 2. In symbols, this becomes pij � pi� �
p�j for every pair (i, j).

The expected count in cell (i, j) is n � pij, so when the null hypothesis is true,
E(Nij) � n � pi� � p�j. To obtain a chi-squared statistic, we must therefore estimate the
pi� s (i � 1, . . . , I) and p�j s ( j � 1, . . . , J). The (maximum likelihood) estimates are

p̂i� � �
n
n

i�� � sample proportion for category i of factor 1

and

p̂�j � �
n

n
�j
� � sample proportion for category j of factor 2

This gives estimated expected cell counts identical to those in the case of homogeneity.
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êij � n � p̂i� � p̂�j � n � �
n
n

i�� � �
n

n
�j
� � �

ni�

n

� n�j
�

�
(ith row total)( jth column total)
����

n

The test statistic is also identical to that used in testing for homogeneity, as is the
number of degrees of freedom. This is because the number of freely determined cell
counts is IJ � 1, since only the total n is fixed in advance. There are I estimated pi� s,
but only I � 1 are independently estimated since �pi� � 1, and similarly J � 1 p�j s
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are independently estimated, so I � J � 2 parameters are independently estimated.
The rule of thumb now yields df � IJ � 1 � (I � J � 2) � IJ � I � J � 1 �
(I � 1) � (J � 1).

Null hypothesis: H0: pij � pi� � p�j i � 1, . . . , I; j � 1, . . . , J

Alternative hypothesis: Ha: H0 is not true

Test statistic value:

�2 � �
all cells

� �
I

i�1
�
J

j�1

Rejection region: � 2 � �2
�,(I�1)(J�1)

Again, P-value information can be obtained as described in Section 14.1.
The test can safely be applied as long as êij � 5 for all cells.

(nij � êij)2

��
êij

(observed � estimated expected)2

����
estimated expected

A study of the relationship between facility conditions at gasoline stations and
aggressiveness in the pricing of gasoline (“An Analysis of Price Aggressiveness in
Gasoline Marketing,” J. Marketing Research, 1970: 36–42) reports the accompany-
ing data based on a sample of n � 441 stations. At level .01, does the data suggest
that facility conditions and pricing policy are independent of one another? Observed
and estimated expected counts are given in Table 14.10.

Example 14.14

Aggressive Neutral Nonaggressive
Observed Pricing Policy

24 15 17Substandard

52 73 80Condition    Standard

58 86 36

134 174 133

Modern

n.j

Expected Pricing Policy

17.0256 22.10 16.89

62.29 80.88 61.83

54.69 71.02 54.29

134 174 133

56

205

180

441

205

180

441

ni.

Table 14.10 Observed and Estimated Expected Counts for Example 14.14

Thus

�2 � �
(24 �

17.
1
0
7
2
.02)2

� � 
 
 
 � �
(36 �

54.
5
2
4
9
.29)2

� � 22.47

and because �2
.01,4 � 13.277, the hypothesis of independence is rejected.

We conclude that knowledge of a station’s pricing policy does give informa-
tion about the condition of facilities at the station. In particular, stations with an
aggressive pricing policy appear more likely to have substandard facilities than sta-
tions with a neutral or nonaggressive policy. ■

Models and methods for analyzing data in which each individual is catego-
rized with respect to three or more factors (multidimensional contingency tables) are
discussed in several of the chapter references.



24. The accompanying two-way table was constructed using
data in the article “Television Viewing and Physical
Fitness in Adults” (Research Quarterly for Exercise and
Sport, 1990: 315–320). The author hoped to determine
whether time spent watching television is associated with
cardiovascular fitness. Subjects were asked about their tel-
evision-viewing habits and were classified as physically fit
if they scored in the excellent or very good category on a
step test. We include MINITAB output from a chi-squared
analysis. The four TV groups corresponded to different
amounts of time per day spent watching TV (0, 1–2, 3–4,
or 5 or more hours). The 168 individuals represented in the
first column were those judged physically fit. Expected
counts appear below observed counts, and MINITAB dis-
plays the contribution to �2 from each cell. State and test
the appropriate hypotheses using � � .05.

25. The accompanying data refers to leaf marks found on white
clover samples selected from both long-grass areas and
short-grass areas (“The Biology of the Leaf Mark
Polymorphism in Trifolium repens L.,” Heredity, 1976:
306–325). Use a �2 test to decide whether the true propor-
tions of different marks are identical for the two types of
regions.

26. The following data resulted from an experiment to study the
effects of leaf removal on the ability of fruit of a certain type
to mature (“Fruit Set, Herbivory, Fruit Reproduction, and

the Fruiting Strategy of Catalpa speciosa,” Ecology, 1980:
57–64):

Does the data suggest that the chance of a fruit maturing is
affected by the number of leaves removed? State and test the
appropriate hypotheses at level .01.

27. The article “Human Lateralization from Head to Foot:
Sex-Related Factors” (Science, 1978: 1291–1292) reports
for both a sample of right-handed men and a sample of
right-handed women the number of individuals whose feet
were the same size, had a bigger left than right foot (a dif-
ference of half a shoe size or more), or had a bigger right
than left foot.

Does the data indicate that gender has a strong effect on the
development of foot asymmetry? State the appropriate null
and alternative hypotheses, compute the value of �2, and
obtain information about the P-value.

28. The article “Susceptibility of Mice to Audiogenic Seizure 
Is Increased by Handling Their Dams During Gestation”
(Science, 1976: 427–428) reports on research into the effect
of different injection treatments on the frequencies of audio-
genic seizures.

Treatment

21

15

7

14

24

20

44

54

No
Response

Wild
Running

Clonic
Seizure

Tonic
Seizure

Thienylalanine

Solvent

23

47

10

13

23

28

48

32

Sham

Unhandled

L � R L � R L 	 R

10 28Men

18

2

55 14

Sample
Size

40

87Women

L LL O OthersY 
 YL
Type of Mark

409 7 277

Long-
Grass
Areas

512 11

22

14

11

4 220

Sample
Size

726

761
Short-
Grass
Areas
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EXERCISES Section 14.3 (24–36)

1 2 Total
1 35 147 182

25.48 156.52

2 101 629 730
102.20 627.80

3 28 222 250
35.00 215.00

4 4 34 38
5.32 32.68

Total 168 1032 1200

ChiSq � 3.557 � 0.579 �
0.014 � 0.002 �
1.400 � 0.228 �
0.328 � 0.053 � 6.161

df � 3

Number Number
of Fruits of Fruits

Treatment Matured Aborted

Control 141 206
Two leaves removed 28 69
Four leaves removed 25 73
Six leaves removed 24 78
Eight leaves removed 20 82



Does the data suggest that the true percentages in the differ-
ent response categories depend on the nature of the injection
treatment? State and test the appropriate hypotheses using
� � .005.

29. The accompanying data on sex combinations of two recombi-
nants resulting from six different male genotypes appears in the
article “A New Method for Distinguishing Between Meiotic
and Premeiotic Recombinational Events in Drosophila
melanogaster” (Genetics, 1979: 543–554). Does the data sup-
port the hypothesis that the frequency distribution among the
three sex combinations is homogeneous with respect to the
different genotypes? Define the parameters of interest, state
the appropriate H0 and Ha, and perform the analysis.

30. Three different design configurations are being considered
for a particular component. There are four possible failure
modes for the component. An engineer obtained the follow-
ing data on number of failures in each mode for each of the
three configurations. Does the configuration appear to have
an effect on type of failure?

31. A random sample of individuals who drive alone to work in
a large metropolitan area was obtained, and each individual
was categorized with respect to both size of car and com-
muting distance. Does the accompanying data suggest that
commuting distance and size of car are related in the popu-
lation sampled? State the appropriate hypotheses and use 
a level .05 chi-squared test.

32. Each individual in a random sample of high school and col-
lege students was cross-classified with respect to both po-
litical views and marijuana usage, resulting in the data 
displayed in the accompanying two-way table (“Attitudes
About Marijuana and Political Views,” Psychological Reports,
1973: 1051–1054). Does the data support the hypothesis that
political views and marijuana usage level are independent
within the population? Test the appropriate hypotheses using
level of significance .01.

33. Show that the chi-squared statistic for the test of indepen-
dence can be written in the form

�2 � �
I

i�1
�
J

j�1 � � � n

Why is this formula more efficient computationally than the
defining formula for �2?

34. Suppose that in Exercise 32 each student had been catego-
rized with respect to political views, marijuana usage, and
religious preference, with the categories of this latter fac-
tor being Protestant, Catholic, and other. The data could be
displayed in three different two-way tables, one corre-
sponding to each category of the third factor. With
pijk � P(political category i, marijuana category j, and reli-
gious category k), the null hypothesis of independence of
all three factors states that pijk � pi��p�j�p��k. Let nijk denote
the observed frequency in cell (i, j, k). Show how to esti-
mate the expected cell counts assuming that H0 is true
(êijk � np̂ijk, so the p̂ijk s must be determined). Then use the
general rule of thumb to determine the number of degrees
of freedom for the chi-squared statistic.

35. Suppose that in a particular state consisting of four distinct
regions, a random sample of nk voters is obtained from the
kth region for k � 1, 2, 3, 4. Each voter is then classified
according to which candidate (1, 2, or 3) he or she prefers
and according to voter registration (1 � Dem., 2 � Rep.,
3 � Indep.). Let pijk denote the proportion of voters in
region k who belong in candidate category i and registration
category j. The null hypothesis of homogeneous regions is
H0: pij1 � pij2 � pij3 � pij4 for all i, j (i.e., the proportion
within each candidate/registration combination is the same
for all four regions). Assuming that H0 is true, determine p̂ijk

and êijk as functions of the observed nijks, and use the gen-
eral rule of thumb to obtain the number of degrees of free-
dom for the chi-squared test.

N 2
ij

�
Êij

479

214

173

47

119

15

Never
Usage Level

Rarely Frequently

Liberal

Conservative
Political
Views

172 45 85Other

6

8

27

36

19

17

0–	10 10–	20  �20
Commuting Distance

Subcompact

CompactSize
of
Car 21 45 33Midsize

14 18 6Full-size
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Sex Combination

M/M M/F F/F

1 35 80 39
2 41 84 45

Male 3 33 87 31
Genotype 4 8 26 8

5 5 11 6
6 30 65 20

Failure Mode

1 2 3 4

1 20 44 17 9
Configuration 2 4 17 7 12

3 10 31 14 5
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36. Consider the accompanying 2 � 3 table displaying the sam-
ple proportions that fell in the various combinations of cat-
egories (e.g., 13% of those in the sample were in the first
category of both factors).

a. Suppose the sample consisted of n � 100 people. Use
the chi-squared test for independence with significance
level .10.

b. Repeat part (a) assuming that the sample size was n �
1000.

c. What is the smallest sample size n for which these observed
proportions would result in rejection of the independence
hypothesis?

.13

.07

.19

.11

.28

.22

1 2 3

1

2

SUPPLEMENTARY EXERCISES (37–49)

37. The article “Birth Order and Political Success” (Psych.
Reports, 1971: 1239–1242) reports that among 31 randomly
selected candidates for political office who came from fam-
ilies with four children, 12 were firstborn, 11 were middle-
born, and 8 were lastborn. Use this data to test the null
hypothesis that a political candidate from such a family is
equally likely to be in any one of the four ordinal positions.

38. The results of an experiment to assess the effect of crude oil
on fish parasites are described in the article “Effects of
Crude Oils on the Gastrointestinal Parasites of Two Species
of Marine Fish” (J. Wildlife Diseases, 1983: 253–258).
Three treatments (corresponding to populations in the pro-
cedure described) were compared: (1) no contamination, (2)
contamination by 1-year-old weathered oil, and (3) contam-
ination by new oil. For each treatment condition, a sample
of fish was taken, and then each fish was classified as either
parasitized or not parasitized. Data compatible with that in
the article is given. Does the data indicate that the three
treatments differ with respect to the true proportion of para-
sitized and nonparasitized fish? Test using � � .01.

39. Qualifications of male and female head and assistant col-
lege athletic coaches were compared in the article “Sex Bias
and the Validity of Believed Differences Between Male 
and Female Interscholastic Athletic Coaches” (Research
Quarterly for Exercise and Sport, 1990: 259–267). Each
person in random samples of 2225 male coaches and 1141
female coaches was classified according to number of years
of coaching experience to obtain the accompanying two-
way table. Is there enough evidence to conclude that the
proportions falling into the experience categories are differ-
ent for men and women? Use � � .01.

40. The authors of the article “Predicting Professional Sports
Game Outcomes from Intermediate Game Scores” (Chance,
1992: 18–22) used a chi-squared test to determine whether
there was any merit to the idea that basketball games are not
settled until the last quarter, whereas baseball games are
over by the seventh inning. They also considered football
and hockey. Data was collected for 189 basketball games,
92 baseball games, 80 hockey games, and 93 football
games. The games analyzed were sampled randomly from
all games played during the 1990 season for baseball and
football and for the 1990–1991 season for basketball and
hockey. For each game, the late-game leader was deter-
mined, and then it was noted whether the late-game leader
actually ended up winning the game. The resulting data is
summarized in the accompanying table.

The authors state that “Late-game leader is defined as the
team that is ahead after three quarters in basketball and foot-
ball, two periods in hockey, and seven innings in baseball.
The chi-square value on three degrees of freedom is 10.52
(P � .015).”
a. State the relevant hypotheses and reach a conclusion

using � � .05.
b. Do you think that your conclusion in part (a) can be

attributed to a single sport being an anomaly?

Treatment Parasitized Nonparasitized

Control 30 3
Old oil 16 8
New oil 16 16

Years of Experience

Gender 1–3 4–6 7–9 10–12 13�

Male 202 369 482 361 811
Female 230 251 238 164 258

Late-game Late-game
Sport Leader Wins Leader Loses

Basketball 150 39
Baseball 86 6
Hockey 65 15
Football 72 21
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CATEGORY
AREA

Count
Exp
Row
Col

Val
Pct
Pct 1.00

20
12.7
20.6%
52.6%

2.00

28
24.7
28.9%
37.8%

3.00

23
18.0
23.7%
42.6%

4.00

14
16.0
14.4%
29.2%

5.00

12
25.7
12.4%
15.6%

Row
Total

 97
 33.3%

 95
 32.6%

 99
 34.0%

14
12.4
14.7%
36.8%

34
24.2
35.8%
45.9%

21
17.6
22.1%
38.9%

14
15.7
14.7%
29.2%

12
25.1
12.6%
15.6%

 4

1.00

2.00

3.00
12.9
 4.0%
10.5%

12
25.2
12.1%
16.2%

10
18.4
10.1%
18.5%

20
16.3
20.2%
41.7%

53
26.2
53.5%
68.8%

291
100.0%

 38Column
Total

D.F.

8

Chi-Square

70.64156

Significance

.0000

Cells with E.F. � 5

None

Min E.F.

12.405

13.1%
74

25.4%
54

18.6%
48

16.5%
77

26.5%

41. The accompanying two-way frequency table appears in the
article “Marijuana Use in College” (Youth and Society,
1979: 323–334). Each of 445 college students was classified
according to both frequency of marijuana use and parental
use of alcohol and psychoactive drugs. Does the data sug-
gest that parental usage and student usage are independent
in the population from which the sample was drawn? Use
the P-value method to reach a conclusion.

141

68

54

44

40

51

Never

Standard Level of
Marijuana Use

Occasional Regular

Neither

One

Parental
Use of
Alcohol
and Drugs

17 11 19Both

43. In a study to investigate the extent to which individuals are
aware of industrial odors in a certain region (“Annoyance 
and Health Reactions to Odor from Refineries and Other
Industries in Carson, California,” Environmental Research,
1978: 119–132), a sample of individuals was obtained from
each of three different areas near industrial facilities. Each
individual was asked whether he or she noticed odors (1)
every day, (2) at least once/week, (3) at least once/month, (4)
less often than once/month, or (5) not at all, resulting in the
data and SPSS output at the bottom of this page. State and test
the appropriate hypotheses.

44. Many shoppers have expressed unhappiness because grocery
stores have stopped putting prices on individual grocery
items. The article “The Impact of Item Price Removal on
Grocery Shopping Behavior” (J. Marketing, 1980: 73–93)
reports on a study in which each shopper in a sample was
classified by age and by whether he or she felt the need for
item pricing. Based on the accompanying data, does the
need for item pricing appear to be independent of age?

42. In a study of 2989 cancer deaths, the location of death (home,
acute-care hospital, or chronic-care facility) and age at death
were recorded, resulting in the given two-way frequency table
(“Where Cancer Patients Die,” Public Health Reports, 1983:
173). Using a .01 significance level, test the null hypothesis
that age at death and location of death are independent.

45. Let p1 denote the proportion of successes in a particular
population. The test statistic value in Chapter 8 for testing

Location
Home Acute-care Chronic-care

15–54 94 418 23
55–64 116 524 34

Age
65–74 156 581 109

Over 74 138 558 238

Age

	30 30–39 40–49 50–59 �60

Number in
Sample

150 141 82 63 49

Number
Who Want 127 118 77 61 41
Item Pricing

Crosstabulation: AREA By CATEGORY



H0: p1 � p10 was z � ( p̂1 � p10)/�p�10�p�20�/n�, where p20 �
1 � p10. Show that for the case k � 2, the chi-squared test
statistic value of Section 14.1 satisfies �2 � z2. [Hint: First
show that (n1 � np10)2 � (n2 � np20)2.]

46. The NCAA basketball tournament begins with 64 teams
that are apportioned into four regional tournaments, each
involving 16 teams. The 16 teams in each region are then
ranked (seeded) from 1 to 16. During the 12-year period
from 1991 to 2002, the top-ranked team won its regional
tournament 22 times, the second-ranked team won 10
times, the third-ranked team won 5 times, and the remain-
ing 11 regional tournaments were won by teams ranked
lower than 3. Let Pij denote the probability that the team
ranked i in its region is victorious in its game against the
team ranked j. Once the Pij s are available, it is possible to
compute the probability that any particular seed wins its
regional tournament (a complicated calculation because
the number of outcomes in the sample space is quite large).
The paper “Probability Models for the NCAA Regional
Basketball Tournaments” (The American Statistician,
1991: 35–38) proposed several different models for the
Pij s.
a. One model postulated Pij � .5 � �(i � j) with � � 1/32

(from which P16,1 � �, P16,2 � 2�, etc.). Based on this,
P(seed #1 wins) � .27477, P(seed #2 wins) � .20834,
and P(seed #3 wins) � .15429. Does this model appear
to provide a good fit to the data?

b. A more sophisticated model has game probabilities 
Pij � .5 � .2813625 (zi � zj), where the z’s are measures
of relative strengths related to standard normal per-
centiles (percentiles for successive highly seeded teams
are closer together than is the case for teams seeded
lower, and .2813625 ensures that the range of probabili-
ties is the same as for the model in part (a)). The result-
ing probabilities of seeds 1, 2, or 3 winning their regional
tournaments are .45883, .18813, and .11032, respectively.
Assess the fit of this model.

47. Have you ever wondered whether soccer players suffer
adverse effects from hitting “headers”? The authors of the
article “No Evidence of Impaired Neurocognitive Performance
in Collegiate Soccer Players” (The Amer. J. of Sports
Medicine, 2002: 157–162) investigated this issue from several
perspectives.
a. The paper reported that 45 of the 91 soccer players in

their sample had suffered at least one concussion, 28 of
96 nonsoccer athletes had suffered at least one concus-
sion, and only 8 of 53 student controls had suffered at
least one concussion. Analyze this data and draw appro-
priate conclusions.

b. For the soccer players, the sample correlation coeffi-
cient calculated from the values of x � soccer expo-
sure (total number of competitive seasons played prior
to enrollment in the study) and y � score on an imme-
diate memory recall test was r � �.220. Interpret this
result.

c. Here is summary information on scores on a controlled
oral word-association test for the soccer and nonsoccer
atheletes:

n1 � 26, x�1 � 37.50, s1 � 9.13, n2 � 56,

x�2 � 39.63, s2 � 10.19

Analyze this data and draw appropriate conclusions.
d. Considering the number of prior nonsoccer concussions,

the values of mean � sd for the three groups were .30 �
.67, .49 � .87, and .19 � .48. Analyze this data and draw
appropriate conclusions.

48. Do the successive digits in the decimal expansion of � behave
as though they were selected from a random number table 
(or came from a computer’s random number generator)?
a. Let p0 denote the long run proportion of digits in the

expansion that equal 0, and define p1, . . . , p9 analo-
gously. What hypotheses about these proportions should
be tested, and what is df for the chi-squared test?

b. H0 of part (a) would not be rejected for the nonrandom
sequence 012 . . . 901 . . . 901 . . . . Consider nonover-
lapping groups of two digits, and let pij denote the long
run proportion of groups for which the first digit is i and
the second digit is j. What hypotheses about these pro-
portions should be tested, and what is df for the chi-
squared test?

c. Consider nonoverlapping groups of 5 digits. Could a chi-
squared test of appropriate hypotheses about the pijklms be
based on the first 100,000 digits? Explain.

d. The paper “Are the Digits of � an Independent and
Identically Distributed Sequence?” (The American
Statistician, 2000: 12–16) considered the first 1,254,540
digits of �, and reported the following P-values for
group sizes of 1, . . . , 5: .572, .078, .529, .691, .298.
What would you conclude?

49. In a sample of 91 college soccer players, the mean number of
concussions was 1.07, and the standard deviation was 1.83
(“No Evidence of Impaired Neurocognitive Performance in
Collegiate Soccer Players,” The Amer. J. of Sports Med.,
2002: 157–162). Information was also collected for a sample
of 96 nonsoccer athletes and a sample of student controls,
resulting in the following data:

a. Is it plausible that the number of concussions among
college soccer players has approximately a normal dis-
tribution?
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Soccer Nonsoccer Athletes Controls

Concussion 45 28 8
No concussion 46 68 45

Weschler Digit Span Test:
Group n x� s
Soccer 86 8.20 2.05
Nonsoccer 95 8.11 2.21
Controls 53 7.60 2.29



b. Estimate the true average number of concussions among
college soccer players in a way that conveys information
about precision and reliablity, and interpret the estimate.

c. Does it appear that the true proportions of individuals
who have had a concussion are not identical for the three
categories? Use an appropriate inferential procedure.

d. Does it appear that true average score on the digit span
test is not the same for all three types of individuals? Use
an appropriate inferential procedure. [Note: The cited
article also gave summary information about the results
of other neuropsychological tests; the article’s title tells
the story.]
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INTRODUCTION

When the underlying population or populations are nonnormal, the t and F

tests and t confidence intervals of Chapters 7–13 will in general have actual

levels of significance or confidence levels that differ from the nominal levels

(those prescribed by the experimenter through the choice of, say, t.025, F.01,

etc.) � and 100(1 � �)%, although the difference between actual and nom-

inal levels may not be large when the departure from normality is not too

severe. Because the t and F procedures require the distributional assumption

of normality, they are not “distribution-free” procedures—alternatively, be-

cause they are based on a particular parametric family of distributions (nor-

mal), they are not “nonparametric” procedures.

In this chapter, we describe procedures that are valid [actual level � or

confidence level 100(1 � �)%] simultaneously for many different types of un-

derlying distributions. Such procedures are called distribution-free or non-

parametric. In Section 15.1, we discuss a test procedure for analyzing a single

sample of data; Section 15.2 presents a test procedure for use in two-sample

problems. In Section 15.3, we develop distribution-free confidence intervals

for 	 and 	1 � 	2. Section 15.4 describes distribution-free ANOVA proce-

dures. These procedures are all competitors of the parametric (t and F ) proce-

dures described in previous chapters, so it is important to compare the

performance of the two types of procedures under both normal and nonnor-

mal population models. Generally speaking, the distribution-free procedures

perform almost as well as their t and F counterparts on the “home ground” of

the normal distribution and will often yield a considerable improvement under

nonnormal conditions.

15 Distribution-Free
Procedures



A research chemist performed a particular chemical experiment a total of ten 
times under identical conditions, obtaining the following ordered values of reaction
temperature:

�.57 �.19 �.05 .76 1.30 2.02 2.17 2.46 2.68 3.02

The distribution of reaction temperature is of course continuous. Suppose the inves-
tigator is willing to assume that the reaction temperature distribution is symmetric;
that is, there is a point of symmetry such that the density curve to the left of that
point is the mirror image of the density curve to its right. This point of symmetry is
the median of the distribution (and is also the mean value 	 provided that the mean
is finite). The assumption of symmetry may at first thought seem quite bold, but
remember that any normal distribution is symmetric, so symmetry is actually a
weaker assumption than normality.

Let’s now consider testing the null hypothesis that the median of the reaction
temperature distribution is zero; that is, H0: 	~ � 0. This amounts to saying that a
temperature of any particular magnitude, for example, 1.50, is no more likely to be
positive (�1.50) than it is to be negative (�1.50). A glance at the data suggests that
this hypothesis is not very tenable; for example, the sample median is 1.66, which is
far larger than the magnitude of any of the three negative observations.

Figure 15.1 shows two different symmetric pdf’s, one for which H0 is true and
one for which Ha is true. When H0 is true, we expect the magnitudes of the negative
observations in the sample to be comparable to the magnitudes of the positive obser-
vations. If, however, H0 is “grossly” untrue as in Figure 15.1(b), then observations
of large absolute magnitude will tend to be positive rather than negative.
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For the sample of ten reaction temperatures, let’s for the moment disregard the
signs of the observations and rank the absolute magnitudes from 1 to 10, with the
smallest getting rank 1, the second smallest rank 2, and so on. Then apply the sign
of each observation to the corresponding rank (so some signed ranks will be nega-
tive, e.g., �3, whereas others will be positive, e.g., 8). The test statistic will be S� �
the sum of the positively signed ranks.

15.1 The Wilcoxon Signed-Rank Test

Absolute
Magnitude .05 .19 .57 .76 1.30 2.02 2.17 2.46 2.68 3.02

Rank 1 2 3 4 5 6 7 8 9 10

Signed
Rank �1 �2 �3 4 5 6 7 8 9 10

s� � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 49

	~0 0

(a) (b)

Figure 15.1 Distributions for which (a) 	~ � 0; (b) 	~ + 0



When the median of the distribution is much greater than 0, most of the observations
with large absolute magnitudes should be positive, resulting in positively signed ranks
and a large value of s�. On the other hand, if the median is 0, magnitudes of positively
signed observations should be intermingled with those of negatively signed observa-
tions, in which case s� will not be very large. Thus we should reject H0: 	~ � 0 when
s� is “quite large”—the rejection region should have the form s� � c.

The critical value c should be chosen so that the test has a desired significance
level (type I error probability), such as .05 or .01. This necessitates finding the distri-
bution of the test statistic S� when the null hypothesis is true. Let’s consider n � 5, in
which case there are 25 � 32 ways of applying signs to the five ranks 1, 2, 3, 4, and 5
(each rank could have a � sign or a � sign). The key point is that when H0 is true, any
collection of five signed ranks has the same chance as does any other collection. That
is, the smallest observation in absolute magnitude is equally likely to be positive or
negative, the same is true of the second smallest observation in absolute magnitude,
and so on. Thus the collection �1, 2, 3, �4, 5 of signed ranks is just as likely as the
collection 1, 2, 3, 4, �5, and just as likely as any one of the other 30 possibilities.

Table 15.1 lists the 32 possible signed-rank sequences when n � 5 along with
the value s� for each sequence. This immediately gives the “null distribution” of S�

displayed in Table 15.2. For example, Table 15.1 shows that three of the 32 possible
sequences have s� � 8, so P(S� � 8 when H0 is true) � �

3
1
2
� � �

3
1
2
� � �

3
1
2
� � �

3
3
2
�. Notice

that the null distribution is symmetric about 7.5 [more generally, symmetrically
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Table 15.1 Possible Signed-Rank Sequences for n � 5

Sequence s� Sequence s�

�1 �2 �3 �4 �5 0 �1 �2 �3 �4 �5 4
�1 �2 �3 �4 �5 1 �1 �2 �3 �4 �5 5
�1 �2 �3 �4 �5 2 �1 �2 �3 �4 �5 6
�1 �2 �3 �4 �5 3 �1 �2 �3 �4 �5 7

�1 �2 �3 �4 �5 3 �1 �2 �3 �4 �5 7
�1 �2 �3 �4 �5 4 �1 �2 �3 �4 �5 8
�1 �2 �3 �4 �5 5 �1 �2 �3 �4 �5 9

�1 �2 �3 �4 �5 6 �1 �2 �3 �4 �5 10
�1 �2 �3 �4 �5 5 �1 �2 �3 �4 �5 9

�1 �2 �3 �4 �5 6 �1 �2 �3 �4 �5 10
�1 �2 �3 �4 �5 7 �1 �2 �3 �4 �5 11
�1 �2 �3 �4 �5 8 �1 �2 �3 �4 �5 12

�1 �2 �3 �4 �5 8 �1 �2 �3 �4 �5 12
�1 �2 �3 �4 �5 9 �1 �2 �3 �4 �5 13
�1 �2 �3 �4 �5 10 �1 �2 �3 �4 �5 14

�1 �2 �3 �4 �5 11 �1 �2 �3 �4 �5 15

Table 15.2 Null Distribution of S� When n � 5

s
 0 1 2 3 4 5 6 7

p(s
) �
3
1
2
� �

3
1
2
� �

3
1
2
� �

3
2
2
� �

3
2
2
� �

3
3
2
� �

3
3
2
� �

3
3
2
�

s
 8 9 10 11 12 13 14 15

p(s
) �
3
3
2
� �

3
3
2
� �

3
3
2
� �

3
2
2
� �

3
2
2
� �

3
1
2
� �

3
1
2
� �

3
1
2
�



distributed over the possible values 0, 1, 2, . . . , n(n � 1)/2]. This symmetry is
important in relating the rejection region of lower-tailed and two-tailed tests to that
of an upper-tailed test.

For n � 10 there are 210 � 1024 possible signed-rank sequences, so a listing
would involve much effort. Each sequence, though, would have probability �

10
1
24
� when

H0 is true, from which the distribution of S� when H0 is true can be easily obtained.
We are now in a position to determine a rejection region for testing H0: 	~ � 0

versus Ha: 	~ � 0 that has a suitably small significance level a. Consider the rejec-
tion region R � {s�: s� � 13} � {13, 14, 15}. Then

� � P(reject H0 when H0 is true)

� P(S� � 13, 14, or 15 when H0 is true)

� �
3
1
2
� � �

3
1
2
� � �

3
1
2
� � �

3
3
2
�

� .094

so that R � {13, 14, 15} specifies a test with approximate level .1. For the rejection
region {14, 15}, a � 2/32 � .063. For the sample x1 � .58, x2 � 2.50, x3 � �.21,
x4 � 1.23, x5 � .97, the signed rank sequence is �1, �2, �3, �4, �5, so s� � 14
and at level .063 H0 would be rejected.

A General Description of 
the Wilcoxon Signed-Rank Test
Because the underlying distribution is assumed symmetric, 	 � 	~, so we will state
the hypotheses of interest in terms of 	 rather than 	~.*
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X1, X2, . . . , Xn is a random sample from a continuous and symmetric proba-
bility distribution with mean (and median) 	.

Null hypothesis: H0: 	 � 	0

Test statistic value: s� � the sum of the ranks associated with positive 
(xi � 	0)s

Alternative Hypothesis Rejection Region for Level � Test

Ha: 	 � 	0 s� � c1

Ha: 	 � 	0 s� � c2 [where c2 � n(n � 1)/2 � c1]
Ha: 	 � 	0 either s� � c or s� � n(n � 1)/2 � c

where the critical values c1 and c obtained from Appendix Table A.13 satisfy
P(S� � c1) � � and P(S� � c) � �/2 when H0 is true.

ASSUMPTION

When the hypothesized value of 	 is 	0, the absolute differences ⏐x1 � 	0⏐, . . . ,
⏐xn � 	0⏐ must be ranked from smallest to largest.

* If the tails of the distribution are “too heavy,” as was the case with the Cauchy distribution mentioned in
Chapter 6, then 	 will not exist. In such cases, the Wilcoxon test will still be valid for tests concerning 	~.



A manufacturer of electric irons, wishing to test the accuracy of the thermostat con-
trol at the 500°F setting, instructs a test engineer to obtain actual temperatures at that
setting for 15 irons using a thermocouple. The resulting measurements are as follows:

494.6 510.8 487.5 493.2 502.6 485.0 495.9 498.2

501.6 497.3 492.0 504.3 499.2 493.5 505.8

The engineer believes it is reasonable to assume that a temperature deviation from
500° of any particular magnitude is just as likely to be positive as negative (the
assumption of symmetry) but wants to protect against possible nonnormality of the
actual temperature distribution, so she decides to use the Wilcoxon signed-rank test
to see whether the data strongly suggests incorrect calibration of the iron.

The hypotheses are H0: 	 � 500 versus Ha: 	 � 500, where 	 � the true aver-
age actual temperature at the 500°F setting. Subtracting 500 from each xi gives

�5.6 10.8 �12.5 �6.8 2.6 �15.0 �4.1 �1.8 1.6 �2.7

�8.0 4.3 �.8 �6.5 5.8

The ranks are obtained by ordering these from smallest to largest without regard
to sign.
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Example 15.1

Absolute
Magnitude .8 1.6 1.8 2.6 2.7 4.1 4.3 5.6 5.8 6.5 6.8 8.0 10.8 12.5 15.0

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sign � � � � � � � � � � � � � � �

Thus s� � 2 � 4 � 7 � 9 � 13 � 35. From Appendix Table A.13, P(S� � 95) �
P(S� � 25) � .024 when H0 is true, so the two-tailed test with approximate level .05
rejects H0 when either s� � 95 or � 25 [the exact � is 2(.024) � .048]. Since
s� � 35 is not in the rejection region, it cannot be concluded at level .05 that 	 is
anything other than 500. Even at level .094 (approximately .1), H0 is not rejected,
since P(S� � 30) � .047 implies that s� values between 30 and 90 are not signifi-
cant at that level. The P-value of the data is thus greater than .1. ■

Although a theoretical implication of the continuity of the underlying distribution
is that ties will not occur, in practice they often do because of the discreteness of meas-
uring instruments. If there are several data values with the same absolute magnitude,
then they would be assigned the average of the ranks they would receive if they differed
very slightly from one another. For example, if in Example 15.1 x8 � 498.2 is changed
to 498.4, then two different values of (xi � 500) would have absolute magnitude 1.6.
The ranks to be averaged would be 2 and 3, so each would be assigned rank 2.5.

Paired Observations
When the data consisted of pairs (X1, Y1), . . . , (Xn, Yn) and the differences D1 �
X1 � Y1, . . . , Dn � Xn � Yn were normally distributed, in Chapter 9 we used a
paired t test to test hypotheses about the expected difference 	D. If normality is not
assumed, hypotheses about 	D can be tested by using the Wilcoxon signed-rank
test on the Di s provided that the distribution of the differences is continuous and
symmetric. If Xi and Yi both have continuous distributions that differ only with



respect to their means (so the Y distribution is the X distribution shifted by 	1 �
	2 � 	D), then Di will have a continuous symmetric distribution (it is not neces-
sary for the X and Y distributions to be symmetric individually). The null hypoth-
esis is H0: 	D � �0, and the test statistic S� is the sum of the ranks associated with
the positive (Di � �0)s.

An experiment to compare the abilities of two different solvents to extract creosote
impregnated in test logs involved the use of eight different logs. After dividing each
log into two segments, one segment was randomly selected for application of the
first solvent, with the second solvent used on the other segment, yielding the fol-
lowing data:
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Example 15.2

Log 1 2 3 4 5 6 7 8
Solvent 1 3.92 3.79 3.70 4.08 3.87 3.95 3.55 3.76
Solvent 2 4.25 4.20 4.41 3.89 4.39 3.75 4.20 3.90
Difference �.33 �.41 �.71 .19 �.52 .20 �.65 �.14
Signed rank �4 �5 �8 2 �6 3 �7 �1

The first solvent is currently used, and the second is a new formulation designed to
result in improved extraction capability. Does this data suggest that the true average
amount extracted by the second solvent exceeds that for the first solvent? The rele-
vant hypotheses are H0: 	D � 0 versus Ha: 	D � 0. Appendix Table A.13 shows that
for a test with significance level approximately .05, the null hypothesis should be
rejected if s� � (8)(9)/2 � 30 � 6. The test statistic value is 2 � 3 � 5, which falls
in the rejection region. We therefore reject H0 at significance level .05 in favor of the
conclusion that the new solvent does outperform the one currently used. The accom-
panying MINITAB output gives the test statistic value and also the corresponding 
P-value, which is P(S� � 5 when H0 is true).

A Large-Sample Approximation
Appendix Table A.13 provides critical values for level � tests only when n � 20. For
n � 20, it can be shown that S� has approximately a normal distribution with

	S�
� �

n(n
4
� 1)
� � 2

S�
��

n(n � 1
2
)(
4
2n � 1)
�

when H0 is true.
The mean and variance result from noting that when H0 is true (the symmetric

distribution is centered at 	0), then the rank i is just as likely to receive a � sign as
it is to receive a � sign. Thus

S� � W1 � W2 � W3 � 
 
 
 � Wn

Test of median � 0.000000 versus median � 0.000000

N for Wilcoxon Estimated
N Test Statistic P Median

diff 8 8 5.0 0.040 �0.3025 ■



where

W1 � {1 with probability .5

 
 
 Wn � {n with probability .5

0 with probability .5 0 with probability .5

(Wi � 0 is equivalent to rank i being associated with a �, so i does not contribute to S�.)
S� is then a sum of random variables, and when H0 is true, these Wis can be

shown to be independent. Application of the rules of expected value and variance
gives the mean and variance of S�. Because the Wis are not identically distributed,
our version of the Central Limit Theorem cannot be applied, but there is a more gen-
eral version of the theorem that can be used to justify the normality conclusion.

The large-sample test statistic is now given by
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Z � (15.1)
S� � n(n � 1)/4

���
�n�(n� �� 1�)(�2�n� �� 1�)/�2�4�

For the three standard alternatives, the critical values for level � tests are the usual
standard normal values z�, �z�, and �z�/2.

A particular type of steel beam has been designed to have a compressive strength
(lb/in2) of at least 50,000. For each beam in a sample of 25 beams, the compressive
strength was determined and is given in Table 15.3. Assuming that actual compres-
sive strength is distributed symmetrically about the true average value, use the
Wilcoxon test to decide whether the true average compressive strength is less than
the specified value. That is, test H0: 	 � 50,000 versus Ha: 	 � 50,000 (favoring the
claim that average compressive strength is at least 50,000).

Example 15.3

Table 15.3 Data for Example 15.3

xi 
 50,000 Signed Rank xi 
 50,000 Signed Rank xi 
 50,000 Signed Rank

�10 �1 �99 �10 165 �18
�27 �2 113 �11 �178 �19

36 �3 �127 �12 �183 �20
�55 �4 �129 �13 �192 �21

73 �5 136 �14 �199 �22
�77 �6 �150 �15 �212 �23
�81 �7 �155 �16 �217 �24

90 �8 �159 �17 �229 �25
�95 �9

The sum of the positively signed ranks is 3 � 5 � 8 � 11 � 14 � 18 � 59,
n(n � 1)/4 � 162.5, and n(n � 1)(2n � 1)/24 � 1381.25, so

z � � �2.78

The lower-tailed level .01 test rejects H0 if z � �2.33. Since �2.78 � �2.33, H0 is
rejected in favor of the conclusion that true average compressive strength is less than
50,000. ■

59 � 162.5
��
�1�3�8�1�.2�5�



When there are ties in the absolute magnitudes, so that average ranks must be
used, it is still correct to standardize S� by subtracting n(n � 1)/4, but the following
corrected formula for variance should be used:

�2
S�

� �
2
1
4
�n(n � 1)(2n � 1) � �

4
1
8
��()i � 1)()i)()i � 1) (15.2)

where )i is the number of ties in the ith set of tied values and the sum is over all sets
of tied values. If, for example, n � 10 and the signed ranks are 1, 2, �4, �4, 4, 6, 7,
8.5, 8.5, and 10, then there are two tied sets with )1 � 3 and )2 � 2, so the sum-
mation is (2)(3)(4) � (1)(2)(3) � 30 and � 2

S�
� 96.25 � 30/48 � 95.62. The de-

nominator in (15.1) should be replaced by the square root of (15.2), though as this
example shows, the correction is usually insignificant.

Efficiency of the Wilcoxon Signed-Rank Test
When the underlying distribution being sampled is normal, either the t test or the
signed-rank test can be used to test a hypothesis about 	. The t test is the best test in
such a situation because among all level � tests it is the one having minimum �.
Since it is generally agreed that there are many experimental situations in which nor-
mality can be reasonably assumed, as well as some in which it should not be, there
are two questions that must be addressed in an attempt to compare the two tests:

1. When the underlying distribution is normal (the “home ground” of the t test), how
much is lost by using the signed-rank test?

2. When the underlying distribution is not normal, can a significant improvement be
achieved by using the signed-rank test?

If the Wilcoxon test does not suffer much with respect to the t test on the “home
ground” of the latter, and performs significantly better than the t test for a large num-
ber of other distributions, then there will be a strong case for using the Wilcoxon test.

Unfortunately, there are no simple answers to the two questions. Upon reflection,
it is not surprising that the t test can perform poorly when the underlying distribution
has “heavy tails” (i.e., when observed values lying far from 	 are relatively more likely
than they are when the distribution is normal). This is because the behavior of the t test
depends on the sample mean, which can be very unstable in the presence of heavy tails.
The difficulty in producing answers to the two questions is that � for the Wilcoxon test
is very difficult to obtain and study for any underlying distribution, and the same can be
said for the t test when the distribution is not normal. Even if � were easily obtained,
any measure of efficiency would clearly depend on which underlying distribution was
postulated. A number of different efficiency measures have been proposed by statisti-
cians; one that many statisticians regard as credible is called asymptotic relative effi-
ciency (ARE). The ARE of one test with respect to another is essentially the limiting
ratio of sample sizes necessary to obtain identical error probabilities for the two tests.
Thus if the ARE of one test with respect to a second equals .5, then when sample sizes
are large, twice as large a sample size will be required of the first test to perform as well
as the second test. Although the ARE does not characterize test performance for small
sample sizes, the following results can be shown to hold:

1. When the underlying distribution is normal, the ARE of the Wilcoxon test with
respect to the t test is approximately .95.

2. For any distribution, the ARE will be at least .86 and for many distributions will
be much greater than 1.
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We can summarize these results by saying that, in large-sample problems, the
Wilcoxon test is never very much less efficient than the t test and may be much more
efficient if the underlying distribution is far from normal. Though the issue is far
from resolved in the case of sample sizes obtained in most practical problems, stud-
ies have shown that the Wilcoxon test performs reasonably and is thus a viable alter-
native to the t test.
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EXERCISES Section 15.1 (1–9)

1. Reconsider the situation described in Exercise 32 of Section
8.2, and use the Wilcoxon test with � � .05 to test the rele-
vant hypotheses.

2. Use the Wilcoxon test to analyze the data given in Example
8.9.

3. The accompanying data is a subset of the data reported in the
article “Synovial Fluid pH, Lactate, Oxygen and Carbon
Dioxide Partial Pressure in Various Joint Diseases” (Arthritis
and Rheumatism, 1971: 476–477). The observations are pH
values of synovial fluid (which lubricates joints and tendons)
taken from the knees of individuals suffering from arthritis.
Assuming that true average pH for nonarthritic individuals is
7.39, test at level .05 to see whether the data indicates a differ-
ence between average pH values for arthritic and nonarthritic
individuals.

7.02 7.35 7.34 7.17 7.28 7.77 7.09

7.22 7.45 6.95 7.40 7.10 7.32 7.14

4. A random sample of 15 automobile mechanics certified to
work on a certain type of car was selected, and the time (in
minutes) necessary for each one to diagnose a particular
problem was determined, resulting in the following data:

30.6 30.1 15.6 26.7 27.1 25.4 35.0 30.8

31.9 53.2 12.5 23.2 8.8 24.9 30.2

Use the Wilcoxon test at significance level .10 to decide
whether the data suggests that true average diagnostic time is
less than 30 minutes.

5. Both a gravimetric and a spectrophotometric method are under
consideration for determining phosphate content of a particu-
lar material. Twelve samples of the material are obtained, each
is split in half, and a determination is made on each half using
one of the two methods, resulting in the following data:

Use the Wilcoxon test to decide whether one technique gives
on average a different value than the other technique for this
type of material.

6. Reconsider the situation described in Exercise 41 of Section
9.3, and use the Wilcoxon test to test the appropriate hy-
potheses.

7. Use the large-sample version of the Wilcoxon test at signif-
icance level .05 on the data of Exercise 37 in Section 9.3 to
decide whether the true mean difference between outdoor
and indoor concentrations exceeds .20.

8. The accompanying 25 observations on fracture toughness
of base plate of 18% nickel maraging steel were reported
in the article “Fracture Testing of Weldments” (ASTM
Special Publ. No. 381, 1965: 328–356). Suppose a com-
pany will agree to purchase this steel for a particular ap-
plication only if it can be strongly demonstrated from
experimental evidence that true average toughness exceeds
75. Assuming that the fracture toughness distribution is
symmetric, state and test the appropriate hypotheses at
level .05, and compute a P-value.

9. Suppose that observations X1, X2, . . . , Xn are made on a
process at times 1, 2, . . . , n. On the basis of this data, we
wish to test

H0: the Xi s constitute an independent and identically distrib-
uted sequence

versus

Ha: Xi�1 tends to be larger than Xi for i � 1, . . . , n
(an increasing trend)

Suppose the Xi s are ranked from 1 to n. Then when Ha is
true, larger ranks tend to occur later in the sequence,
whereas if H0 is true, large and small ranks tend to be 
mixed together. Let Ri be the rank of Xi and consider the

Sample 1 2 3 4

Gravimetric 54.7 58.5 66.8 46.1

Spectrophotometric 55.0 55.7 62.9 45.5

Sample 5 6 7 8

Gravimetric 52.3 74.3 92.5 40.2

Spectrophotometric 51.1 75.4 89.6 38.4

Sample 9 10 11 12

Gravimetric 87.3 74.8 63.2 68.5

Spectrophotometric 86.8 72.5 62.3 66.0

69.5 71.9 72.6 73.1 73.3 73.5 74.1 74.2 75.3

75.5 75.7 75.8 76.1 76.2 76.2 76.9 77.0 77.9

78.1 79.6 79.7 80.1 82.2 83.7 93.7



test statistic D � �n
i�1 (Ri � i)2. Then small values of D give

support to Ha (e.g., the smallest value is 0 for R1 � 1, R2 �
2, . . . , Rn � n), so H0 should be rejected in favor of Ha if
d � c. When H0 is true, any sequence of ranks has probabil-
ity 1/n!. Use this to find c for which the test has a level as

close to .10 as possible in the case n � 4. [Hint: List the 4!
rank sequences, compute d for each one, and then obtain the
null distribution of D. See the Lehmann book (in the chapter
bibliography), p. 290, for more information.]
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15.2 The Wilcoxon Rank-Sum Test
When at least one of the sample sizes in a two-sample problem is small, the t test
requires the assumption of normality (at least approximately). There are situa-
tions, though, in which an investigator would want to use a test that is valid even
if the underlying distributions are quite nonnormal. We now describe such a test,
called the Wilcoxon rank-sum test. An alternative name for the procedure is 
the Mann–Whitney test, though the Mann–Whitney test statistic is sometimes
expressed in a slightly different form from that of the Wilcoxon test. The
Wilcoxon test procedure is distribution-free because it will have the desired level
of significance for a very large class of underlying distributions.

ASSUMPTIONS X1, . . . , Xm and Y1, . . . , Yn are two independent random samples from con-
tinuous distributions with means 	1 and 	2, respectively. The X and Y distri-
butions have the same shape and spread, the only possible difference between
the two being in the values of 	1 and 	2.

When H0: 	1 � 	2 � �0 is true, the X distribution is shifted by the amount �0 to the
right of the Y distribution; whereas when H0 is false, the shift is by an amount other 
than �0.

Development of the Test When m � 3, n � 4
Consider first testing H0: 	1 � 	2 � 0. If 	1 is actually much larger than 	2, then
most of the observed x’s will fall to the right of the observed y’s. However, if H0 is
true, then the observed values from the two samples should be intermingled. The test
statistic will provide a quantification of how much intermingling there is in the two
samples.

Consider the case m � 3, n � 4. Then if all three observed x’s were to the right
of all four observed y’s, this would provide strong evidence for rejecting H0 in favor
of Ha: 	1 � 	2 � 0, with a similar conclusion being appropriate if all three x’s fall
below all four of the y’s. Suppose we pool the X’s and Y’s into a combined sample
of size m � n � 7 and rank these observations from smallest to largest, with the
smallest receiving rank 1 and the largest, rank 7. If either most of the largest ranks
or most of the smallest ranks were associated with X observations, we would begin
to doubt H0. This suggests the test statistic

W � the sum of the ranks in the combined sample
associated with X observations

(15.3)

For the values of m and n under consideration, the smallest possible value of W is
w � 1 � 2 � 3 � 6 (if all three x’s are smaller than all four y’s), and the largest pos-
sible value is w � 5 � 6 � 7 � 18 (if all three x’s are larger than all four y’s).



As an example, suppose x1 � �3.10, x2 � 1.67, x3 � 2.01, y1 � 5.27, y2 �
1.89, y3 � 3.86, and y4 � .19. Then the pooled ordered sample is �3.10, .19, 1.67,
1.89, 2.01, 3.86, and 5.27. The X ranks for this sample are 1 (for �3.10), 3 (for 1.67),
and 5 (for 2.01), so the computed value of W is w � 1 � 3 � 5 � 9.

The test procedure based on the statistic (15.3) is to reject H0 if the computed
value w is “too extreme”—that is, � c for an upper-tailed test, � c for a lower-tailed
test, and either � c1 or � c2 for a two-tailed test. The critical constant(s) c (c1, c2)
should be chosen so that the test has the desired level of significance �. To see how
this should be done, recall that when H0 is true, all seven observations come from the
same population. This means that under H0, any possible triple of ranks associated
with the three x’s—such as (1, 4, 5), (3, 5, 6), or (5, 6, 7)—has the same probability
as any other possible rank triple. Since there are (7

3) � 35 possible rank triples, under
H0 each rank triple has probability �

3
1
5
�. From a list of all 35 rank triples and the w

value associated with each, the probability distribution of W can immediately be
determined. For example, there are four rank triples that have w value 11—(1, 3, 7),
(1, 4, 6), (2, 3, 6), and (2, 4, 5)—so P(W � 11) � �

3
4
5
�. The summary of the listing and

computations appears in Table 15.4.
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Table 15.4 Probability Distribution of W (m � 3, n � 4) When H0 Is True

w 6 7 8 9 10 11 12 13 14 15 16 17 18

P(W � w) �
3
1
5
� �

3
1
5
� �

3
2
5
� �

3
3
5
� �

3
4
5
� �

3
4
5
� �

3
5
5
� �

3
4
5
� �

3
4
5
� �

3
3
5
� �

3
2
5
� �

3
1
5
� �

3
1
5
�

The distribution of Table 15.4 is symmetric about the value w � (6 � 18)/2 � 12,
which is the middle value in the ordered list of possible W values. This is because
the two rank triples (r, s, t) (with r � s � t) and (8 � t, 8 � s, 8 � r) have values of
w symmetric about 12, so for each triple with w value below 12, there is a triple with
w value above 12 by the same amount.

If the alternative hypothesis is Ha: 	1 � 	2 � 0, then H0 should be rejected
in favor of Ha for large W values. Choosing as the rejection region the set of W val-
ues {17, 18}, � � P(type I error) � P(reject H0 when H0 is true) � P(W � 17 or
18 when H0 is true) � �

3
1
5
� � �

3
1
5
� � �

3
2
5
� � .057; the region {17, 18} therefore specifies

a test with level of significance approximately .05. Similarly, the region {6, 7},
which is appropriate for Ha: 	1 � 	2 � 0, has � � .057 � .05. The region {6, 7,
17, 18}, which is appropriate for the two-sided alternative, has � � �

3
4
5
� � .114. The

W value for the data given several paragraphs previously was w � 9, which is
rather close to the middle value 12, so H0 would not be rejected at any reasonable
level � for any one of the three Ha s.

General Description of 
the Wilcoxon Rank-Sum Test
The null hypothesis H0: 	1 � 	2 � �0 is handled by subtracting �0 from each Xi and
using the (Xi � �0)s as the Xi s were previously used. Recalling that for any positive
integer K, the sum of the first K integers is K(K � 1)/2, the smallest possible value
of the statistic W is m(m � 1)/2, which occurs when the (Xi � �0)s are all to the left
of the Y sample. The largest possible value of W occurs when the (Xi � �0)s lie
entirely to the right of the Y’s; in this case, W � (n � 1) � 
 
 
 � (m � n) � (sum
of first m � n integers) � (sum of first n integers), which gives m(m � 2n � 1)/2. As
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with the special case m � 3, n � 4, the distribution of W is symmetric about the
value that is halfway between the smallest and largest values; this middle value is
m(m � n � 1)/2. Because of this symmetry, probabilities involving lower-tail criti-
cal values can be obtained from corresponding upper-tail values.

Null hypothesis: H0: 	1 � 	2 � �0

Test statistic value: w � �
m

i�1
ri where ri � rank of (xi � �0) in the com-

bined sample of m � n (x � �0)s and ys

Alternative Hypothesis Rejection Region

Ha: 	1 � 	2 � �0 w � c1

Ha: 	1 � 	2 � �0 w � m(m � n � 1) � c1

Ha: 	1 � 	2 � �0 either w � c or w � m(m � n � 1) � c

where P(W � c1 when H0 is true)  �, P(W � c when H0 is true)  �/2.

Because W has a discrete probability distribution, there will not always exist a
critical value corresponding exactly to one of the usual levels of significance. Appendix
Table A.14 gives upper-tail critical values for probabilities closest to .05, .025, .01, and
.005, from which level .05 or .01 one- and two-tailed tests can be obtained. The table
gives information only for m � 3, 4, . . . , 8 and n � m, m � 1, . . . , 8 (i.e., 3 � m �
n � 8). For values of m and n that exceed 8, a normal approximation can be used. To
use the table for small m and n, though, the X and Y samples should be labeled so that
m � n.

The urinary fluoride concentration (parts per million) was measured both for a sample
of livestock grazing in an area previously exposed to fluoride pollution and for a sim-
ilar sample grazing in an unpolluted region:

Example 15.4

Polluted 21.3 18.7 23.0 17.1 16.8 20.9 19.7

Unpolluted 14.2 18.3 17.2 18.4 20.0

Does the data indicate strongly that the true average fluoride concentration for live-
stock grazing in the polluted region is larger than for the unpolluted region? Use the
Wilcoxon rank-sum test at level � � .01.

The sample sizes here are 7 and 5. To obtain m � n, label the unpolluted
observations as the x’s (x1 � 14.2, . . . , x5 � 20.0) and the polluted observations as
the y’s. Thus 	1 is the true average fluoride concentration without pollution, and 	2

is the true average concentration with pollution. The alternative hypothesis is Ha:
	1 � 	2 � 0 (pollution causes an increase in concentration), so a lower-tailed test is
appropriate. From Appendix Table A.14 with m � 5 and n � 7, P(W � 47 when H0

is true) � .01. The critical value for the lower-tailed test is therefore m(m � n � 1) �
47 � 5(13) � 47 � 18; H0 will now be rejected if w � 18. The pooled ordered sample
follows; the computed W is w � r1 � r2 � 
 
 
 � r5 (where ri is the rank of xi) �
1 � 5 � 4 � 6 � 9 � 25. Since 25 is not � 18, H0 is not rejected at (approxi-
mately) level .01.
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x y y x x x y y x y y y

14.2 16.8 17.1 17.2 18.3 18.4 18.7 19.7 20.0 20.9 21.3 23.0
1 2 3 4 5 6 7 8 9 10 11 12

■

Theoretically, the assumption of continuity of the two distributions ensures that
all m � n observed x’s and y’s will have different values. In practice, though, there
will often be ties in the observed values. As with the Wilcoxon signed-rank test, the
common practice in dealing with ties is to assign each of the tied observations in a
particular set of ties the average of the ranks they would receive if they differed very
slightly from one another.

A Normal Approximation for W
When both m and n exceed 8, the distribution of W can be approximated by an
appropriate normal curve, and this approximation can be used in place of Appendix
Table A.14. To obtain the approximation, we need 	W and � 2

W when H0 is true. In
this case, the rank Ri of Xi � �0 is equally likely to be any one of the possible val-
ues 1, 2, 3, . . . , m � n (Ri has a discrete uniform distribution on the first m � n pos-
itive integers), so 	Ri � (m � n � 1)/2. This gives, since W � �Ri,

	W � 	R1 � 	R2 � 
 
 
 � 	Rm ��
m(m �

2
n � 1)
� (15.4)

The variance of Ri is also easily computed to be (m � n � 1)(m � n � 1)/12. However,
because the Ris are not independent variables, V(W) � mV(Ri). Using the fact that,
for any two distinct integers a and b between 1 and m � n inclusive, P(Ri � a,
Rj � b) � 1/[(m � n)(m � n � 1)] (two integers are being sampled without replace-
ment), Cov(Ri, Rj) � �(m � n � 1)/12, which yields

�2
W � �

m

i�1
V(Ri) � �

i�j
� Cov(Ri, Rj) ��

mn(m �

12
n � 1)
� (15.5)

A Central Limit Theorem can then be used to conclude that when H0 is true,
the test statistic

Z �

has approximately a standard normal distribution. This statistic is used in conjunc-
tion with the critical values z�, �z�, and �z�/2 for upper-, lower-, and two-tailed tests,
respectively.

An article in the Journal of Applied Physiology (“Histamine Content in Sputum from
Allergic and Non-Allergic Individuals,” 1969: 535–539) reports the following data on
sputum histamine level (	g/g dry weight of sputum) for a sample of 9 individuals clas-
sified as allergics and another sample of 13 individuals classified as nonallergics:

W � m(m � n � 1)/2
���
�m�n�(m� �� n� �� 1�)/�1�2�

Example 15.5

Allergics 67.6 39.6 1651.0 100.0 65.9 1112.0 31.0 102.4 64.7

Nonallergics 34.3 27.3 35.4 48.1 5.2 29.1 4.7 41.7 48.0 6.6 18.9 32.4 45.5
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Does the data indicate that there is a difference in true average sputum histamine
level between allergics and nonallergics?

Since both sample sizes exceed 8, we use the normal approximation. The null
hypothesis is H0: �1 � �2 � 0, and observed ranks of the xis are r1 � 18, r2 � 11,
r3 � 22, r4 � 19, r5 � 17, r6 � 21, r7 � 7, r8 � 20, and r9 � 16, so w � �ri � 151.
The mean and variance of W are given by �W � 9(23)/2 � 103.5 and �2

W �
9(13)(23)/12 � 224.25. Thus

z � � 3.17

The alternative hypothesis is Ha: �1 � �2 � 0, so at level .01 H0 is rejected if either
z � 2.58 or z � �2.58. Because 3.17 � 2.58, H0 is rejected, and we conclude that
there is a difference in true average sputum histamine levels (the article also used
the Wilcoxon test). ■

If there are ties in the data, the numerator of Z is still appropriate, but the
denominator should be replaced by the square root of the adjusted variance

�2
W �

� �(�i � 1)(�i)(�i � 1)
(15.6)

where �i is the number of tied observations in the ith set of ties and the sum is over
all sets of ties. Unless there are a great many ties, there is little difference between
Equations (15.6) and (15.5).

Efficiency of the Wilcoxon Rank-Sum Test
When the distributions being sampled are both normal with �1 � �2, and therefore
have the same shapes and spreads, either the pooled t test or the Wilcoxon test can be
used (the two-sample t test assumes normality but not equal variances, so assumptions
underlying its use are more restrictive in one sense and less in another than those for
Wilcoxon’s test). In this situation, the pooled t test is best among all possible tests in
the sense of minimizing � for any fixed �. However, an investigator can never be
absolutely certain that underlying assumptions are satisfied. It is therefore relevant to
ask (1) how much is lost by using Wilcoxon’s test rather than the pooled t test when
the distributions are normal with equal variances and (2) how W compares to T in
nonnormal situations.

The notion of test efficiency was discussed in the previous section in connec-
tion with the one-sample t test and Wilcoxon signed-rank test. The results for the
two-sample tests are the same as those for the one-sample tests. When normality and
equal variances both hold, the rank-sum test is approximately 95% as efficient as the
pooled t test in large samples. That is, the t test will give the same error probabilities
as the Wilcoxon test using slightly smaller sample sizes. On the other hand, the
Wilcoxon test will always be at least 86% as efficient as the pooled t test and may
be much more efficient if the underlying distributions are very nonnormal, especially
with heavy tails. The comparison of the Wilcoxon test with the two-sample
(unpooled) t test is less clear-cut. The t test is not known to be the best test in any
sense, so it seems safe to conclude that as long as the population distributions have
similar shapes and spreads, the behavior of the Wilcoxon test should compare quite
favorably to the two-sample t test.

mn
���
12(m � n)(m � n � 1)

mn(m � n � 1)
��

12

151 � 103.5
��

�2�2�4�.2�5�



Lastly, we note that � calculations for the Wilcoxon test are quite difficult.
This is because the distribution of W when H0 is false depends not only on 	1 � 	2

but also on the shapes of the two distributions. For most underlying distributions, the
nonnull distribution of W is virtually intractable. This is why statisticians have devel-
oped large-sample (asymptotic relative) efficiency as a means of comparing tests.
With the capabilities of modern-day computer software, another approach to calcu-
lation of � is to carry out a simulation experiment.

15.2 The Wilcoxon Rank-Sum Test 613

EXERCISES Section 15.2 (10–16)

10. In an experiment to compare the bond strength of two dif-
ferent adhesives, each adhesive was used in five bondings of
two surfaces, and the force necessary to separate the sur-
faces was determined for each bonding. For adhesive 1, the
resulting values were 229, 286, 245, 299, and 250, whereas
the adhesive 2 observations were 213, 179, 163, 247, and
225. Let 	i denote the true average bond strength of adhe-
sive type i. Use the Wilcoxon rank-sum test at level .05 to
test H0: 	1 � 	2 versus Ha: 	1 � 	2.

11. The article “A Study of Wood Stove Particulate Emissions”
(J. Air Pollution Control Assn., 1979: 724–728) reports the
following data on burn time (hours) for samples of oak and
pine. Test at level .05 to see whether there is any difference
in true average burn time for the two types of wood.

12. A modification has been made to the process for producing
a certain type of “time-zero” film (film that begins to
develop as soon as a picture is taken). Because the modifi-
cation involves extra cost, it will be incorporated only if
sample data strongly indicates that the modification has
decreased true average developing time by more than 1 sec-
ond. Assuming that the developing-time distributions differ
only with respect to location if at all, use the Wilcoxon rank-
sum test at level .05 on the accompanying data to test the
appropriate hypotheses.

13. The accompanying data resulted from an experiment to
compare the effects of vitamin C in orange juice and in
synthetic ascorbic acid on the length of odontoblasts in
guinea pigs over a 6-week period (“The Growth of the
Odontoblasts of the Incisor Tooth as a Criterion of the
Vitamin C Intake of the Guinea Pig,” J. Nutrition, 1947:
491–504). Use the Wilcoxon rank-sum test at level .01 to
decide whether true average length differs for the two
types of vitamin C intake. Compute also an approximate
P-value.

14. Test the hypotheses suggested in Exercise 13 using the fol-
lowing data:

15. The article “Measuring the Exposure of Infants to Tobacco
Smoke” (N. Engl. J. Med., 1984: 1075–1078) reports on a
study in which various measurements were taken both
from a random sample of infants who had been exposed to
household smoke and from a sample of unexposed infants.
The accompanying data consists of observations on uri-
nary concentration of cotanine, a major metabolite of nico-
tine (the values constitute a subset of the original data and
were read from a plot that appeared in the article). Does
the data suggest that true average cotanine level is higher
in exposed infants than in unexposed infants by more than
25? Carry out a test at significance level .05.

16. Reconsider the situation described in Exercise 79 of
Chapter 9 and the accompanying MINITAB output (the
Greek letter eta is used to denote a median).

Mann-Whitney Confidence Interval and Test
good N � 8 Median � 0.540
poor N � 8 Median � 2.400
Point estimate for ETA1-ETA2 is �1.155
95.9 Percent CI for ETA1-ETA2 is (�3.160, �0.409)
W � 41.0
Test of ETA1 � ETA2 vs ETA1 � ETA2 is significant
at 0.0027

a. Verify that the value of MINTAB’s test statistic is 
correct.

b. Carry out an appropriate test of hypotheses using a sig-
nificance level of .01.

Oak 1.72 .67 1.55 1.56 1.42 1.23 1.77 .48
Pine .98 1.40 1.33 1.52 .73 1.20

Original
Process 8.6 5.1 4.5 5.4 6.3 6.6 5.7 8.5
Modified
Process 5.5 4.0 3.8 6.0 5.8 4.9 7.0 5.7

Orange Juice 8.2 9.4 9.6 9.7 10.0 14.5
15.2 16.1 17.6 21.5

Ascorbic Acid 4.2 5.2 5.8 6.4 7.0 7.3
10.1 11.2 11.3 11.5

Orange Juice 8.2 9.5 9.5 9.7 10.0 14.5
15.2 16.1 17.6 21.5

Ascorbic Acid 4.2 5.2 5.8 6.4 7.0 7.3
9.5 10.0 11.5 11.5

Unexposed 8 11 12 14 20 43 111
Exposed 35 56 83 92 128 150 176 208
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The method we have used so far to construct a confidence interval (CI) can be
described as follows: Start with a random variable (Z, T, "2, F, or the like) that
depends on the parameter of interest and a probability statement involving the vari-
able, manipulate the inequalities of the statement to isolate the parameter between
random endpoints, and finally substitute computed values for random variables.
Another general method for obtaining CIs takes advantage of a relationship between
test procedures and CIs. A 100(1 � �)% CI for a parameter � can be obtained from a
level � test for H0: � � �0 versus Ha: � � �0. This method will be used to derive inter-
vals associated with the Wilcoxon signed-rank test and the Wilcoxon rank-sum test.

Before using the method to derive new intervals, reconsider the t test and the
t interval. Suppose a random sample of n � 25 observations from a normal popula-
tion yields summary statistics x� � 100, s � 20. Then a 90% CI for 	 is

�x� � t.05,24 � , x� � t.05,24 � � � (93.16, 106.84) (15.7)

Suppose that instead of a CI, we had wished to test a hypothesis about 	. For H0:
	 � 	0 versus Ha: 	 � 	0, the t test at level .10 specifies that H0 should be rejected
if t is either � 1.711 or � �1.711, where

t � � � (15.8)

Consider now the null value 	0 � 95. Then t � 1.25 so H0 is not rejected.
Similarly, if 	0 � 104, then t � �1 so again H0 is not rejected. However, if 	0 � 90,
then t � 2.5 so H0 is rejected, and if 	0 � 108, then t � �2 so H0 is again rejected.
By considering other values of 	0 and the decision resulting from each one, the fol-
lowing general fact emerges: Every number inside the interval (15.7) specifies a
value of 	0 for which t of (15.8) leads to nonrejection of H0, whereas every number
outside interval (15.7) corresponds to a t for which H0 is rejected. That is, for the
fixed values of n, x�, and s, the set of all 	0 values for which testing H0: 	 � 	0 ver-
sus Ha: 	 � 	0 results in nonrejection of H0 is precisely the interval (15.7).

100 � 	0��
4

100 � 	0�
20/�2�5�

x� � 	0�
s/�2�5�

s
�
�2�5�

s
�
�2�5�

15.3 Distribution-Free Confidence Intervals

Suppose we have a level � test procedure for testing H0: � � �0 versus Ha: � �
�0. For fixed sample values, let A denote the set of all values �0 for which H0

is not rejected. Then A is a 100(1 � �)% CI for �.

PROPOSITION

There are actually pathological examples in which the set A defined in the
proposition is not an interval of � values, but instead the complement of an interval
or something even stranger. To be more precise, we should really replace the notion
of a CI with that of a confidence set. In the cases of interest here, the set A does turn
out to be an interval.

The Wilcoxon Signed-Rank Interval
To test H0: 	 � 	0 versus Ha: 	 � 	0 using the Wilcoxon signed-rank test, where 	 is
the mean of a continuous symmetric distribution, the absolute values ⏐x1 � 	0⏐, . . . ,
⏐xn � 	0⏐ are ordered from smallest to largest, with the smallest receiving rank 1 and
the largest, rank n. Each rank is then given the sign of its associated xi � 	0, and the test



statistic is the sum of the positively signed ranks. The two-tailed test rejects H0 if s� is
either � c or � n(n � 1)/2 � c, where c is obtained from Appendix Table A.13 once
the desired level of significance � is specified. For fixed x1, . . . , xn, the 100(1 � �)%
signed-rank interval will consist of all 	0 for which H0: 	 � 	0 is not rejected at level
�. To identify this interval, it is convenient to express the test statistic S� in another
form.
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S� � the number of pairwise averages (Xi � Xj)/2 with i � j that
are � 	0

(15.9)

That is, if we average each xj in the list with each xi to its left, including (xj � xj)/2
(which is just xj), and count the number of these averages that are � 	0, s� results. In
moving from left to right in the list of sample values, we are simply averaging every
pair of observations in the sample [again including (xj � xj)/2] exactly once, so the
order in which the observations are listed before averaging is not important. The
equivalence of the two methods for computing s� is not difficult to verify. The num-
ber of pairwise averages is (n

2) � n (the first term due to averaging of different obser-
vations and the second due to averaging each xi with itself), which equals n(n � 1)/2.
If either too many or too few of these pairwise averages are � 	0, H0 is rejected.

The following observations are values of cerebral metabolic rate for rhesus monkeys:
x1 � 4.51, x2 � 4.59, x3 � 4.90, x4 � 4.93, x5 � 6.80, x6 � 5.08, x7 � 5.67. The 28
pairwise averages are, in increasing order,

Example 15.6

4.51 4.55 4.59 4.705 4.72 4.745 4.76 4.795 4.835 4.90

4.915 4.93 4.99 5.005 5.08 5.09 5.13 5.285 5.30 5.375

5.655 5.67 5.695 5.85 5.865 5.94 6.235 6.80

The first few and the last few of these are pictured on a measurement axis in
Figure 15.2.

4.5 4.6 4.7 4.8 5.5 5.75

s� � 28

s� � 27 s� � 26

s� � 2
s� � 1

s� � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎧⎨⎩ ⎧⎨⎩⎧⎨⎩ ⎧⎨⎩

At level .0469, H0 is accepted for 0 in here	

6

3 � s� � 25{ {

Figure 15.2 Plot of the data for Example 15.6

Because of the discreteness of the distribution of S�, � � .05 cannot be
obtained exactly. The rejection region {0, 1, 2, 26, 27, 28} has � � .046, which is as
close as possible to .05, so the level is approximately .05. Thus if the number of pair-
wise averages � 	0 is between 3 and 25, inclusive, H0 is not rejected. From Figure
15.2 the (approximate) 95% CI for 	 is (4.59, 5.94). ■

In general, once the pairwise averages are ordered from smallest to largest, the
endpoints of the Wilcoxon interval are two of the “extreme” averages. To express
this precisely, let the smallest pairwise average be denoted by x�(1), the next smallest
by x�(2), . . . , and the largest by x�(n(n�1)/2).
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If the level � Wilcoxon signed-rank test for H0: 	 � 	0 versus Ha: 	 � 	0 is to
reject H0 if either s� � c or s� � n(n � 1)/2 � c, then a 100(1 � �)% CI for 	 is

(x�(n(n�1)/2�c�1), x�(c)) (15.10)

PROPOSITION

In words, the interval extends from the dth smallest pairwise average to the dth largest
average, where d � n(n � 1)/2 � c � 1. Appendix Table A.15 gives the values of c
that correspond to the usual confidence levels for n � 5, 6, . . . , 25.

For n � 7, an 89.1% interval (approximately 90%) is obtained by using c � 24
(since the rejection region {0, 1, 2, 3, 4, 24, 25, 26, 27, 28} has � � .109). The inter-
val is (x�(28�24�1), x�(24)) � (x�(5), x�(24)) � (4.72, 5.85), which extends from the fifth
smallest to the fifth largest pairwise average. ■

The derivation of the interval depended on having a single sample from a contin-
uous symmetric distribution with mean (median) 	. When the data is paired, the inter-
val constructed from the differences d1, d2, . . . , dn is a CI for the mean (median) 
difference 	D. In this case, the symmetry of X and Y distributions need not be assumed;
as long as the X and Y distributions have the same shape, the X � Y distribution will be
symmetric, so only continuity is required.

For n � 20, the large-sample approximation to the Wilcoxon test based on
standardizing S� gives an approximation to c in (15.10). The result [for a 
100(1 � �)% interval] is

c � � z� /2���
The efficiency of the Wilcoxon interval relative to the t interval is roughly the

same as that for the Wilcoxon test relative to the t test. In particular, for large sam-
ples when the underlying population is normal, the Wilcoxon interval will tend to be
slightly longer than the t interval, but if the population is quite nonnormal (symmetric
but with heavy tails), then the Wilcoxon interval will tend to be much shorter than
the t interval.

The Wilcoxon Rank-Sum Interval
The Wilcoxon rank-sum test for testing H0: 	1 � 	2 � �0 is carried out by first com-
bining the (Xi � �0)s and Yj’s into one sample of size m � n and ranking them from
smallest (rank 1) to largest (rank m � n). The test statistic W is then the sum of the ranks
of the (Xi � �0)s. For the two-sided alternative, H0 is rejected if w is either too small or
too large.

To obtain the associated CI for fixed xis and yj s, we must determine the set of all
�0 values for which H0 is not rejected. This is easiest to do if we first express the test
statistic in a slightly different form. The smallest possible value of W is m(m � 1)/2,
corresponding to every (Xi � �0) less than every Yj, and there are mn differences of the
form (Xi � �0) � Yj. A bit of manipulation gives

W � [number of (Xi � Yj � �0)s � 0] � �
m(m

2
� 1)
�

� [number of (Xi � Yj)s � �0] � �
m(m

2
� 1)
�

(15.11)

n(n � 1)(2n � 1)
��

24
n(n � 1)
�

4

Example 15.7
(Example 15.6
continued)



Thus rejecting H0 if the number of (xi � yj)s � �0 is either too small or too large is
equivalent to rejecting H0 for small or large w.

Expression (15.11) suggests that we compute xi � yj for each i and j and order
these mn differences from smallest to largest. Then if the null value �0 is neither
smaller than most of the differences nor larger than most, H0: 	1 � 	2 � �0 is not
rejected. Varying �0 now shows that a CI for 	1 � 	2 will have as its lower endpoint
one of the ordered (xi � yj)s, and similarly for the upper endpoint.
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Let x1, . . . , xm and y1, . . . , yn be the observed values in two independent samples
from continuous distributions that differ only in location (and not in shape). With
dij � xi � yj and the ordered differences denoted by dij(1), dij(2), . . . , dij(mn), the 
general form of a 100(1 � �)% CI for 	1 � 	2 is

(dij(mn�c�1), dij(c)) (15.12)

where c is the critical constant for the two-tailed level � Wilcoxon rank-sum test.

PROPOSITION

Notice that the form of the Wilcoxon rank-sum interval (15.12) is very similar to the
Wilcoxon signed-rank interval (15.10); (15.10) uses pairwise averages from a single
sample, whereas (15.12) uses pairwise differences from two samples. Appendix
Table A.16 gives values of c for selected values of m and n.

The article “Some Mechanical Properties of Impregnated Bark Board” (Forest
Products J., 1977: 31–38) reports the following data on maximum crushing strength
(psi) for a sample of epoxy-impregnated bark board and for a sample of bark board
impregnated with another polymer:

Example 15.8

Epoxy (x’s) 10,860 11,120 11,340 12,130 14,380 13,070
Other ( y’s) 4,590 4,850 6,510 5,640 6,390

Obtain a 95% CI for the true average difference in crushing strength between the
epoxy-impregnated board and the other type of board.

From Appendix Table A.16, since the smaller sample size is 5 and the larger sam-
ple size is 6, c � 26 for a confidence level of approximately 95%. The dijs appear in
Table 15.5. The five smallest dijs [dij(1), . . . , dij(5)] are 4350, 4470, 4610, 4730, and 4830;
and the five largest dijs are (in descending order) 9790, 9530, 8740, 8480, and 8220.
Thus the CI is (dij(5), dij(26)) � (4830, 8220).

Table 15.5 Differences for the Rank-Sum Interval in Example 15.8

yj

dij 4590 4850 5640 6390 6510

10,860 6270 6010 5220 4470 4350
11,120 6530 6270 5480 4730 4610

xi 11,340 6750 6490 5700 4950 4830
12,130 7540 7280 6490 5740 5620
13,070 8480 8220 7430 6680 6560
14,380 9790 9530 8740 7990 7870

■



618 CHAPTER 15 Distribution-Free Procedures

When m and n are both large, the Wilcoxon test statistic has approximately a
normal distribution. This can be used to derive a large-sample approximation for the
value c in interval (15.12). The result is

c � �
m
2
n
� � z�/2 ��m�n�(m� �

1�2
n� �� 1�)
�� (15.13)

As with the signed-rank interval, the rank-sum interval (15.12) is quite effi-
cient with respect to the t interval; in large samples, (15.12) will tend to be only a bit
longer than the t interval when the underlying populations are normal and may be
considerably shorter than the t interval if the underlying populations have heavier
tails than do normal populations.

EXERCISES Section 15.3 (17–22)

17. The article “The Lead Content and Acidity of Christchurch
Precipitation” (New Zealand J. Science, 1980: 311–312)
reports the accompanying data on lead concentration (	g/L)
in samples gathered during eight different summer rainfalls:
17.0, 21.4, 30.6, 5.0, 12.2, 11.8, 17.3, and 18.8. Assuming
that the lead-content distribution is symmetric, use the
Wilcoxon signed-rank interval to obtain a 95% CI for 	.

18. Compute the 99% signed-rank interval for true average pH
	 (assuming symmetry) using the data in Exercise 3. [Hint:
Try to compute only those pairwise averages having rela-
tively small or large values (rather than all 105 averages).]

19. Compute a CI for 	D of Example 15.2 using the data given
there; your confidence level should be roughly 95%.

20. The following observations are amounts of hydrocarbon
emissions resulting from road wear of bias-belted tires
under a 522-kg load inflated at 228 kPa and driven at 64
km/hr for 6 hours (“Characterization of Tire Emissions
Using an Indoor Test Facility,” Rubber Chemistry and
Technology, 1978: 7–25): .045, .117, .062, and .072. What
confidence levels are achievable for this sample size using
the signed-rank interval? Select an appropriate confidence
level and compute the interval.

21. Compute the 90% rank-sum CI for 	1 � 	2 using the data
in Exercise 10.

22. Compute a 99% CI for 	1 � 	2 using the data in Exercise 11.

15.4 Distribution-Free ANOVA

The single-factor ANOVA model of Chapter 10 for comparing I population or treat-
ment means assumed that for i � 1, 2, . . . , I, a random sample of size Ji was drawn
from a normal population with mean 	i and variance �2. This can be written as

Xij � 	i � !ij j � 1, . . . , Ji; i � 1, . . . , I (15.14)

where the !ijs are independent and normally distributed with mean zero and variance
� 2. Although the normality assumption was required for the validity of the F test
described in Chapter 10, the validity of the Kruskal–Wallis test for testing equality
of the 	is depends only on the !ijs having the same continuous distribution.

The Kruskal–Wallis Test
Let N � �Ji, the total number of observations in the data set, and suppose we rank
all N observations from 1 (the smallest Xij) to N (the largest Xij). When H0: 	1 �
	2 � 
 
 
 � 	I is true, the N observations all come from the same distribution, in
which case all possible assignments of the ranks 1, 2, . . . , N to the I samples are



equally likely and we expect ranks to be intermingled in these samples. If, however,
H0 is false, then some samples will consist mostly of observations having small ranks
in the combined sample, whereas others will consist mostly of observations having
large ranks. More specifically, if Rij denotes the rank of Xij among the N observations,
and Ri� and R�i� denote, respectively, the total and average of the ranks in the ith sam-
ple, then when H0 is true

E(Rij) � �
N �

2
1

� E(R�i�) � �
J
1

i

� �
j

E(Rij) �

The Kruskal–Wallis test statistic is a measure of the extent to which the R�i� s deviate
from their common expected value (N � 1)/2, and H0 is rejected if the computed
value of the statistic indicates too great a discrepancy between observed and ex-
pected rank averages

N � 1
�

2
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K � �
N(N

12
� 1)
� �

I

j�1
Ji�R�i� � �

N �

2
1

��
2

� �
N(N

12
� 1)
� �

I

i�1
� 3(N � 1)

(15.15)
R2

i��
Ji

TEST STATISTIC

When H0 is true and either

I � 3 Ji � 6 (i � 1, 2, 3)

or

I � 3 Ji � 5 (i � 1, . . . , I)

then K has approximately a chi-squared distribution with I � 1 df. This implies
that a test with approximate significance level � rejects H0 if k � "2

�,I�1.

PROPOSITION

The second expression for K is the computational formula; it involves the rank totals
(Ri� s) rather than the averages and requires only one subtraction.

If H0 is rejected when k � c, then c should be chosen so that the test has level
�. That is, c should be the upper-tail critical value of the distribution of K when H0

is true. Under H0, each possible assignment of the ranks to the I samples is equally
likely, so in theory all such assignments can be enumerated, the value of K deter-
mined for each one, and the null distribution obtained by counting the number of
times each value of K occurs. Clearly, this computation is tedious, so even though
there are tables of the exact null distribution and critical values for small values
of the Jis, we will use the following “large-sample” approximation.

The accompanying observations (Table 15.6) on axial stiffness index resulted from a
study of metal-plate connected trusses in which five different plate lengths—4 in., 6
in., 8 in., 10 in., and 12 in.—were used (“Modeling Joints Made with Light-Gauge
Metal Connector Plates,” Forest Products J., 1979: 39–44).

Example 15.9
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The computed value of K is

k � �
35

1
(
2
36)
� ��(47

9)2

� � �
(9

7
6)2

� � �
(11

7
7)2

� � �
(16

7
0)2

� � �
(20

7
8)2

�� � 3(36)

� 20.12

At level .01, "2
.01,4 � 13.277, and since 20.12 � 13.277, H0 is rejected and we con-

clude that expected axial stiffness does depend on plate length. ■

Friedman’s Test for a Randomized 
Block Experiment
Suppose Xij � 	 � �i � �j � !ij, where �i is the ith treatment effect, �j is the jth block
effect, and the !ijs are drawn independently from the same continuous (but not neces-
sarily normal) distribution. Then to test H0: �1 � �2 � 
 
 
 � �I � 0, the null hypothe-
sis of no treatment effects, the observations are first ranked separately from 1 to I within
each block, and then the rank average r�i� is computed for each of the I treatments. When
H0 is true, the r�i�s should be close to one another, since within each block all I! assign-
ments of ranks to treatments are equally likely. Friedman’s test statistic measures the
discrepancy between the expected value (I � 1)/2 of each rank average and the r�i�s.

Table 15.6 Data and Ranks for Example 15.9

i � 1 (4,): 309.2 309.7 311.0 316.8 326.5 349.8 409.5
i � 2 (6,): 331.0 347.2 348.9 361.0 381.7 402.1 404.5
i � 3 (8,): 351.0 357.1 366.2 367.3 382.0 392.4 409.9
i � 4 (10,): 346.7 362.6 384.2 410.6 433.1 452.9 461.4
i � 5 (12,): 407.4 410.7 419.9 441.2 441.8 465.8 473.4

ri� r�i�

i � 1: 1 2 3 4 5 10 24 49 7.00
i � 2: 6 8 9 13 17 21 22 96 13.71

Ranks i � 3: 11 12 15 16 18 20 25 117 16.71
i � 4: 7 14 19 26 29 32 33 160 22.86
i � 5: 23 27 28 30 31 34 35 208 29.71

Fr � �
I(I

1

�

2J

1)
� �

I

i�1
�R�i� � �

I �

2
1

��
2

� �
IJ(I

1
�

2
1)

� � R2
i� � 3J(I � 1)TEST STATISTIC

As with the Kruskal–Wallis test, Friedman’s test rejects H0 when the computed value of
the test statistic is too large. For the cases I � 3, J � 2, . . . , 15 and I � 4, J � 2, . . . , 8,
Lehmann’s book (see the chapter bibliography) gives the upper-tail critical values for the
test. Alternatively, for even moderate values of J, the test statistic Fr has approximately a
chi-squared distribution with I � 1 df when H0 is true, so H0 can be rejected if fr � "2

�,I�1.

The article “Physiological Effects During Hypnotically Requested Emotions” (Psy-
chosomatic Med., 1963: 334–343) reports the following data (Table 15.7) on skin
potential (mV) when the emotions of fear, happiness, depression, and calmness were
requested from each of eight subjects.

Example 15.10



Table 15.7 Data and Ranks for Example 15.10

Blocks (Subjects)
xij 1 2 3 4 5 6 7 8

Fear 23.1 57.6 10.5 23.6 11.9 54.6 21.0 20.3
Happiness 22.7 53.2 9.7 19.6 13.8 47.1 13.6 23.6
Depression 22.5 53.7 10.8 21.1 13.7 39.2 13.7 16.3
Calmness 22.6 53.1 8.3 21.6 13.3 37.0 14.8 14.8

Ranks 1 2 3 4 5 6 7 8 ri� r2
i�

Fear 4 4 3 4 1 4 4 3 27 729
Happiness 3 2 2 1 4 3 1 4 20 400
Depression 1 3 4 2 3 2 2 2 19 361
Calmness 2 1 1 3 2 1 3 1 14 196

1686

Thus

fr � �
4(8

1
)
2
(5)
� (1686) � 3(8)(5) � 6.45

At level .05, "2
.05,3 � 7.815, and because 6.45 is not � 7.815, H0 is not rejected.

There is no evidence that average skin potential depends on which emotion is 
requested. ■

The book by Myles Hollander and Douglas Wolfe (see chapter bibliography)
discusses multiple comparisons procedures associated with the Kruskal–Wallis and
Friedman tests, as well as other aspects of distribution-free ANOVA.
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EXERCISES Section 15.4 (23–27)

23. The accompanying data refers to concentration of the
radioactive isotope strontium-90 in milk samples obtained
from five randomly selected dairies in each of four different
regions.

Test at level .10 to see whether true average strontium-90
concentration differs for at least two of the regions.

24. The article “Production of Gaseous Nitrogen in Human
Steady-State Conditions” (J. Applied Physiology, 1972:
155–159) reports the following observations on the amount
of nitrogen expired (in liters) under four dietary regimens:
(1) fasting, (2) 23% protein, (3) 32% protein, and (4) 67%
protein. Use the Kruskal–Wallis test at level .05 to test
equality of the corresponding 	is.

25. The accompanying data on cortisol level was reported in the
article “Cortisol, Cortisone, and 11-Deoxycortisol Levels in
Human Umbilical and Maternal Plasma in Relation to the
Onset of Labor” (J. Obstetric Gynaecology British Com-
monwealth, 1974: 737–745). Experimental subjects were
pregnant women whose babies were delivered between 38
and 42 weeks gestation. Group 1 individuals elected to
deliver by Caesarean section before labor onset, group 2

1 6.4 5.8 6.5 7.7 6.1

Region 2 7.1 9.9 11.2 10.5 8.8
3 5.7 5.9 8.2 6.6 5.1
4 9.5 12.1 10.3 12.4 11.7

1. 4.079 4.859 3.540 5.047 3.298

2. 4.368 5.668 3.752 5.848 3.802

3. 4.169 5.709 4.416 5.666 4.123

4. 4.928 5.608 4.940 5.291 4.674

1. 4.679 2.870 4.648 3.847

2. 4.844 3.578 5.393 4.374

3. 5.059 4.403 4.496 4.688

4. 5.038 4.905 5.208 4.806
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delivered by emergency Caesarean during induced labor,
and group 3 individuals experienced spontaneous labor. Use
the Kruskal–Wallis test at level .05 to test for equality of the
three population means.

26. In a test to determine whether soil pretreated with small
amounts of Basic-H makes the soil more permeable to
water, soil samples were divided into blocks, and each block
received each of the four treatments under study. The treat-
ments were (A) water with .001% Basic-H flooded on con-
trol soil, (B) water without Basic-H on control soil, (C )
water with Basic-H flooded on soil pretreated with Basic-H,
and (D) water without Basic-H on soil pretreated with
Basic-H. Test at level .01 to see whether there are any
effects due to the different treatments.

27. In an experiment to study the way in which different anesthet-
ics affect plasma epinephrine concentration, ten dogs were
selected and concentration was measured while they were
under the influence of the anesthetics isoflurane, halothane,
and cyclopropane (“Sympathoadrenal and Hemodynamic Ef-
fects of Isoflurane, Halothane, and Cyclopropane in Dogs,”
Anesthesiology, 1974: 465–470). Test at level .05 to see
whether there is an anesthetic effect on concentration.

Group 1 262 307 211 323 454 339
304 154 287 356

Group 2 465 501 455 355 468 362
Group 3 343 772 207 1048 838 687

Blocks
1 2 3 4 5

A 37.1 31.8 28.0 25.9 25.5
B 33.2 25.3 20.2 20.3 18.3
C 58.9 54.2 49.2 47.9 38.2
D 56.7 49.6 46.4 40.9 39.4

Dog
1 2 3 4 5

Isoflurane .28 .51 1.00 .39 .29
Halothane .30 .39 .63 .38 .21
Cyclopropane 1.07 1.35 .69 .28 1.24

6 7 8 9 10

Isoflurane .36 .32 .69 .17 .33
Halothane .88 .39 .51 .32 .42
Cyclopropane 1.53 .49 .56 1.02 .30

SUPPLEMENTARY EXERCISES (28–36)

28. The article “Effects of a Rice-Rich Versus Potato-Rich Diet
on Glucose, Lipoprotein, and Cholesterol Metabolism in
Noninsulin-Dependent Diabetics” (Amer. J. Clinical Nutr.,
1984: 598–606) gives the accompanying data on cholesterol-
synthesis rate for eight diabetic subjects. Subjects were fed
a standardized diet with potato or rice as the major carbo-
hydrate source. Participants received both diets for specified
periods of time, with cholesterol-synthesis rate (mmol/day)
measured at the end of each dietary period. The analysis
presented in this article used a distribution-free test. Use
such a test with significance level .05 to determine whether
the true mean cholesterol-synthesis rate differs significantly
for the two sources of carbohydrates.

Cholesterol-Synthesis Rate

Subject 1 2 3 4 5 6 7 8

Potato 1.88 2.60 1.38 4.41 1.87 2.89 3.96 2.31
Rice 1.70 3.84 1.13 4.97 .86 1.93 3.36 2.15

29. High-pressure sales tactics or door-to-door salespeople can be
quite offensive. Many people succumb to such tactics, sign a

purchase agreement, and later regret their actions. In the mid-
1970s, the Federal Trade Commission implemented regula-
tions clarifying and extending rights of purchasers to cancel
such agreements. The accompanying data is a subset of that
given in the article “Evaluating the FTC Cooling-Off Rule” (J.
Consumer Affairs, 1977: 101–106). Individual observations
are cancellation rates for each of nine salespeople during each
of 4 years. Use an appropriate test at level .05 to see whether
true average cancellation rate depends on the year.

30. The given data on phosphorus concentration in topsoil for
four different soil treatments appeared in the article
“Fertilisers for Lotus and Clover Establishment on a Se-
quence of Acid Soils on the East Otago Uplands” (N. Zeal. 

6 7 8 9 10

A 25.3 23.7 24.4 21.7 26.2
B 19.3 17.3 17.0 16.7 18.3
C 48.8 47.8 40.2 44.0 46.4
D 37.1 37.5 39.6 35.1 36.5

Salesperson
1 2 3 4 5 6 7 8 9

1973 2.8 5.9 3.3 4.4 1.7 3.8 6.6 3.1 0.0
1974 3.6 1.7 5.1 2.2 2.1 4.1 4.7 2.7 1.3
1975 1.4 .9 1.1 3.2 .8 1.5 2.8 1.4 .5
1976 2.0 2.2 .9 1.1 .5 1.2 1.4 3.5 1.2



J. Exper. Ag., 1984: 119–129). Use a distribution-free proce-
dure to test the null hypothesis of no difference in true mean
phosphorus concentration (mg/g) for the four soil treatments.

31. Refer to the data of Exercise 30 and compute a 95% CI for
the difference between true average concentrations for treat-
ments II and III.

32. The study reported in “Gait Patterns During Free Choice
Ladder Ascents” (Human Movement Sci., 1983: 187–195)
was motivated by publicity concerning the increased acci-
dent rate for individuals climbing ladders. A number of dif-
ferent gait patterns were used by subjects climbing a portable
straight ladder according to specified instructions. The as-
cent times for seven subjects who used a lateral gait and six
subjects who used a four-beat diagonal gait are given.

Lateral .86 1.31 1.64 1.51 1.53 1.39 1.09
Diagonal 1.27 1.82 1.66 .85 1.45 1.24

a. Carry out a test using � � .05 to see whether the data
suggests any difference in the true average ascent times
for the two gaits.

b. Compute a 95% CI for the difference between the true
average gait times.

33. The sign test is a very simple procedure for testing hypothe-
ses about a population median assuming only that the under-
lying distribution is continuous. To illustrate, consider the
following sample of 20 observations on component lifetime
(hr):

We wish to test H0: �~ � 25.0 versus Ha: �~ � 25.0. The test
statistic is Y � the number of observations that exceed 25.
a. Consider rejecting H0 if Y � 15. What is the value of �

(the probability of a type I error) for this test? [Hint:
Think of a “success” as a lifetime that exceeds 25.0.
Then Y is the number of successes in the sample.] What
kind of a distribution does Y have when �~ � 25.0?

b. What rejection region of the form Y � c specifies a test
with a significance level as close to .05 as possible? Use
this region to carry out the test for the given data.

[Note: The test statistic is the number of differences Xi � 25
that have positive signs, hence the name sign test.]

34. Refer to Exercise 33, and consider a confidence interval
associated with the sign test, the sign interval. The relevant
hypotheses are now H0: �~ � �~0 versus Ha: �~ � �~0. Let’s
use the following rejection region: either Y � 15 or Y � 5.

a. What is the significance level for this test?
b. The confidence interval will consist of all values �~0 for

which H0 is not rejected. Determine the CI for the given
data, and state the confidence level.

35. Suppose we wish to test

H0: the X and Y distributions are identical

versus

Ha: the X distribution is less spread out than the 
Y distribution

The accompanying figure pictures X and Y distributions for
which Ha is true. The Wilcoxon rank-sum test is not appro-
priate in this situation because when Ha is true as pictured,
the Y’s will tend to be at the extreme ends of the combined
sample (resulting in small and large Y ranks), so the sum of
X ranks will result in a W value that is neither large nor small.

Consider modifying the procedure for assigning ranks as
follows: After the combined sample of m � n observations
is ordered, the smallest observation is given rank 1, the
largest observation is given rank 2, the second smallest is
given rank 3, the second largest is given rank 4, and so on.
Then if Ha is true as pictured, the X values will tend to be
in the middle of the sample and thus receive large ranks.
Let W denote the sum of the X ranks and consider reject-
ing H0 in favor of Ha when w � c. When H0 is true, every
possible set of X ranks has the same probability, so W has
the same distribution as does W when H0 is true. Thus c
can be chosen from Appendix Table A.14 to yield a level 
� test. The accompanying data refers to medial muscle
thickness for arterioles from the lungs of children who
died from sudden infant death syndrome (x’s) and a control
group of children (y’s). Carry out the test of H0 versus Ha

at level .05.

SIDS 4.0 4.4 4.8 4.9
Control 3.7 4.1 4.3 5.1 5.6

Consult the Lehmann book (in the chapter bibliography) for
more information on this test, called the Siegel–Tukey test.

36. The ranking procedure described in Exercise 35 is some-
what asymmetric, because the smallest observation receives
rank 1 whereas the largest receives rank 2, and so on.
Suppose both the smallest and the largest receive rank 1, the
second smallest and second largest receive rank 2, and so
on, and let W, be the sum of the X ranks. The null distribu-
tion of W, is not identical to the null distribution of W, so
different tables are needed. Consider the case m � 3, n � 4.

X distribution
Y distribution

“Ranks” 1 3 5 6 4 2. . ...

Supplementary Exercises 623

I 8.1 5.9 7.0 8.0 9.0
II 11.5 10.9 12.1 10.3 11.9

Treatment III 15.3 17.4 16.4 15.8 16.0
IV 23.0 33.0 28.4 24.6 27.7

1.7 3.3 5.1 6.9 12.6 14.4 16.4

24.6 26.0 26.5 32.1 37.4 40.1 40.5

41.5 72.4 80.1 86.4 87.5 100.2
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List all 35 possible orderings of the three X values among
the seven observations (e.g., 1, 3, 7 or 4, 5, 6), assign ranks
in the manner described, compute the value of W, for each
possibility, and then tabulate the null distribution of W,. For

the test that rejects if w, � c, what value of c prescribes
approximately a level .10 test? This is the Ansari–Bradley
test; for additional information, see the book by Hollander
and Wolfe in the chapter bibliography.
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16 Quality Control Methods

INTRODUCTION

Quality characteristics of manufactured products have received much attention

from design engineers and production personnel as well as those concerned

with financial management. An article of faith over the years was that very high

quality levels and economic well-being were incompatible goals. Recently, how-

ever, it has become increasingly apparent that raising quality levels can lead to

decreased costs, a greater degree of consumer satisfaction, and thus increased

profitability. This has resulted in renewed emphasis on statistical techniques for

designing quality into products and for identifying quality problems at various

stages of production and distribution.

Control charting is now used extensively in industry as a diagnostic tech-

nique for monitoring production processes to identify instability and unusual

circumstances. After an introduction to basic ideas in Section 16.1, a number

of different control charts are presented in the next four sections. The basis for

most of these lies in our previous work concerning probability distributions of

various statistics such as the sample mean X� and sample proportion p̂ � X/n.

Another commonly encountered situation in industrial settings involves a

decision by a customer as to whether a batch of items offered by a supplier is

of acceptable quality. In the last section of the chapter, we briefly survey some

acceptance sampling methods for deciding, based on sample data, on the dis-

position of a batch.

Besides control charts and acceptance sampling plans, which were first

developed in the 1920s and 1930s, statisticians and engineers have recently

introduced many new statistical methods for identifying types and levels of pro-

duction inputs that will ensure high-quality output. Japanese investigators, and
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in particular the engineer/statistician G. Taguchi and his disciples, have been

very influential in this respect, and there is now a large body of material known

as “Taguchi methods.” The ideas of experimental design, and in particular frac-

tional factorial experiments, are key ingredients. There is still much controversy

in the statistical community as to which designs and methods of analysis are

best suited to the task at hand. A recent critique is contained in the expository

article by George Box et al., cited in the chapter bibliography; the book by

Thomas Ryan listed there is also a good source of information.

A central message throughout this book has been the pervasiveness of naturally occur-
ring variation associated with any characteristic or attribute of different individuals or
objects. In a manufacturing context, no matter how carefully machines are calibrated,
environmental factors are controlled, materials and other inputs are monitored, and
workers are trained, diameter will vary from bolt to bolt, some plastic sheets will be
stronger than others, some fuses will be defective whereas others are not, and so on.
We might think of such natural random variation as uncontrollable background noise.

There are, however, other sources of variation that may have a pernicious
impact on the quality of items produced by some process. Such variation may be
attributable to contaminated material, incorrect machine settings, unusual tool wear,
and the like. These sources of variation have been termed assignable causes in the
quality control literature. Control charts provide a mechanism for recognizing sit-
uations where assignable causes may be adversely affecting product quality. Once a
chart indicates an out-of-control situation, an investigation can be launched to iden-
tify causes and take corrective action.

A basic element of control charting is that samples have been selected from the
process of interest at a sequence of time points. Depending on the aspect of the
process under investigation, some statistic, such as the sample mean or sample pro-
portion of defective items, is chosen. The value of this statistic is then calculated for
each sample in turn. A traditional control chart then results from plotting these cal-
culated values over time, as illustrated in Figure 16.1.

16.1 General Comments on Control Charts

Value of quality
statistic

UCL � Upper control limit

Center
line

Time

LCL � Lower control limit

1     2     3     4     5  . . .

Figure 16.1 A prototypical control chart
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Notice that in addition to the plotted points themselves, the chart has a center
line and two control limits. The basis for the choice of a center line is sometimes a
target value or design specification, for example, a desired value of the bearing diam-
eter. In other cases, the height of the center line is estimated from the data. If the
points on the chart all lie between the two control limits, the process is deemed to be
in control. That is, the process is believed to be operating in a stable fashion reflect-
ing only natural random variation. An out-of-control “signal” occurs whenever a
plotted point falls outside the limits. This is assumed to be attributable to some
assignable cause, and a search for such causes commences. The limits are designed
so that an in-control process generates very few false alarms, whereas a process not
in control quickly gives rise to a point outside the limits.

There is a strong analogy between the logic of control charting and our previous
work in hypothesis testing. The null hypothesis here is that the process is in control.
When an in-control process yields a point outside the control limits (an out-of-control
signal), a type I error has occurred. On the other hand, a type II error results when an
out-of-control process produces a point inside the control limits. Appropriate choice of
sample size and control limits (the latter corresponding to specifying a rejection region
in hypothesis testing) will make the associated error probabilities suitably small.

We emphasize that “in control” is not synonymous with “meets design speci-
fications or tolerance.” The extent of natural variation may be such that the percent-
age of items not conforming to specification is much higher than can be tolerated. In
such cases, a major restructuring of the process will be necessary to improve process
capability. An in-control process is simply one whose behavior with respect to vari-
ation is stable over time, showing no indications of unusual extraneous causes.

As a final introductory comment, software for control charting is now widely
available. The journal Quality Progress contains many advertisements for statistical
quality control computer packages. In addition, SAS and the newest version of
MINITAB, among other general-purpose packages, have attractive quality control
capabilities.

1. A control chart for thickness of rolled-steel sheets is based on
an upper control limit of .0520 in. and a lower limit of .0475
in. The first ten values of the quality statistic (in this case X�,
the sample mean thickness of n � 5 sample sheets) are .0506,
.0493, .0502, .0501, .0512, .0498, .0485, .0500, .0505, and
.0483. Construct the initial part of the quality control chart,
and comment on its appearance.

2. Refer to Exercise 1 and suppose the ten most recent values of
the quality statistic are .0493, .0485, .0490, .0503, .0492,
.0486, .0495, .0494, .0493, and .0488. Construct the relevant

portion of the corresponding control chart, and comment on
its appearance.

3. Suppose a control chart is constructed so that the probability
of a point falling outside the control limits when the process
is actually in control is .002. What is the probability that ten
successive points (based on independently selected samples)
will be within the control limits? What is the probability that
25 successive points will all lie within the control limits?
What is the smallest number of successive points plotted for
which the probability of observing at least one outside the
control limits exceeds .10?

EXERCISES Section 16.1 (1–3)

Suppose the quality characteristic of interest is associated with a variable whose
observed values result from making measurements. For example, the characteristic
might be resistance of electrical wire (ohms), internal diameter of molded rubber
expansion joints (cm), or hardness of a certain alloy (Brinell units). One important

16.2 Control Charts for Process Location
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use of control charts is to see whether some measure of location of the variable’s
distribution remains stable over time. The most popular chart for this purpose is the
X� chart.

The XX� Chart Based on Known Parameter Values
Because there is uncertainty about the value of the variable for any particular item or
specimen, we denote such a random variable (rv) by X. Assume that for an in-control
process, X has a normal distribution with mean value � and standard deviation �.
Then if X� denotes the sample mean for a random sample of size n selected at a par-
ticular time point, we know that

1. E(X�) � �

2. � X� � �/�n�

3. X� has a normal distribution.

It follows that

P(� � 3� X� � X� � � � 3� X�) � P(�3.00 � Z � 3.00) � .9974

where Z is a standard normal rv.* It is thus highly likely that for an in-control
process, the sample mean will fall within 3 standard deviations (3� X�) of the process
mean �.

Consider first the case in which the values of both � and � are known. Suppose
that at each of the time points 1, 2, 3, . . . , a random sample of size n is available.
Let x�1, x�2, x�3, . . . denote the calculated values of the corresponding sample means.
An X� chart results from plotting these x�is over time—that is, plotting points (1, x�1),
(2, x�2), (3, x�3), and so on—and then drawing horizontal lines across the plot at

LCL � lower control limit � � � 3 � �
�
�

n�
�

UCL � upper control limit � � � 3 � �
�
�

n�
�

Such a plot is often called a 3-sigma chart. Any point outside the control limits sug-
gests that the process may have been out of control at that time, so a search for
assignable causes should be initiated.

Once each day, three specimens of motor oil are randomly selected from the produc-
tion process, and each is analyzed to determine viscosity. The accompanying data
(Table 16.1) is for a 25-day period. Extensive experience with this process suggests
that when the process is in control, viscosity of a specimen is normally distributed
with mean 10.5 and standard deviation .18. Thus �X� � �/�n� � .18/�3� � .104,
so the 3 SD control limits are 

LCL � � � 3 � �
�
�

n�
� � 10.5 � 3(.104) � 10.188

UCL � � � 3 � �
�
�

n�
� � 10.5 � 3(.104) � 10.812

* The use of charts based on 3 SD limits is traditional, but tradition is certainly not inviolable.

Example 16.1
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All points on the control chart shown in Figure 16.2 are between the control limits,
indicating stable behavior of the process mean over this time period (the standard
deviation and range for each sample will be used in the next subsection).

Table 16.1 Viscosity Data for Example 16.1

Day Viscosity Observations x� s Range

1 10.37 10.19 10.36 10.307 .101 .18
2 10.48 10.24 10.58 10.433 .175 .34
3 10.77 10.22 10.54 10.510 .276 .55
4 10.47 10.26 10.31 10.347 .110 .21
5 10.84 10.75 10.53 10.707 .159 .31
6 10.48 10.53 10.50 10.503 .025 .05
7 10.41 10.52 10.46 10.463 .055 .11
8 10.40 10.38 10.69 10.490 .173 .31
9 10.33 10.35 10.49 10.390 .087 .16

10 10.73 10.45 10.30 10.493 .218 .43
11 10.41 10.68 10.25 10.447 .217 .43
12 10.00 10.60 10.71 10.437 .382 .71
13 10.37 10.50 10.34 10.403 .085 .16
14 10.47 10.60 10.75 10.607 .140 .28
15 10.46 10.46 10.56 10.493 .058 .10
16 10.44 10.68 10.32 10.480 .183 .36
17 10.65 10.42 10.26 10.443 .196 .39
18 10.73 10.72 10.83 10.760 .061 .11
19 10.39 10.75 10.27 10.470 .250 .48
20 10.59 10.23 10.35 10.390 .183 .36
21 10.47 10.67 10.64 10.593 .108 .20
22 10.40 10.55 10.38 10.443 .093 .17
23 10.24 10.71 10.27 10.407 .263 .47
24 10.37 10.69 10.40 10.487 .177 .32
25 10.46 10.35 10.37 10.393 .059 .11

Figure 16.2 X� chart for the viscosity data of Example 16.1 ■

X� Charts Based on Estimated Parameters
In practice it frequently happens that values of � and � are unknown, so they must be
estimated from sample data prior to determining the control limits. This is especially

Time
5            10           15           20           25

10.85

10.15

UCL

LCL

x

10.50
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true when a process is first subjected to a quality control analysis. Again denote the
number of observations in each sample by n and let k represent the number of sam-
ples available. Typical values of n are 3, 4, 5, or 6, and it is recommended that k be
at least 20. We assume that the k samples were gathered during a period when the
process was believed to be in control. More will be said about this assumption
shortly.

With x�1, x�2, . . . , x�k denoting the k calculated sample means, the usual estimate
of � is simply the average of these means:

�̂ � x�� �

We present two different commonly used methods for estimating �, one based on the k
sample standard deviations and the other on the k sample ranges (recall that the sam-
ple range is the difference between the largest and smallest sample observations).
Prior to the wide availability of good calculators and statistical computer software,
ease of hand calculation was of paramount consideration, so the range method pre-
dominated. However, in the case of a normal population distribution, the unbiased
estimator of � based on S is known to have smaller variance than that based on the
sample range. Statisticians say that the former estimator is more efficient than the lat-
ter. The loss in efficiency for the estimator is slight when n is very small but becomes
important for n � 4.

Recall that the sample standard deviation is not an unbiased estimator for �.
When X1, . . . , Xn is a random sample from a normal distribution, it can be shown
(cf. Exercise 6.37) that

E(S) � an � �

where

an �

and �(�) denotes the gamma function (see Section 4.4). A tabulation of an for
selected n follows:

n | 3 4 5 6 7 8

an | .886 .921 .940 .952 .959 .965

Let

S� �

where S1, S2, . . . , Sk are the sample standard deviations for the k samples. Then

E(S�) � �
1
k

�E��
k

i�1
Si� � �

1
k

� �
k

i�1
E(Si) � �

1
k

� �
k

i�1
an � � � an � �

Thus

E��
a
S�

n

�� � �
a
1

n

� E(S�) � �
a
1

n

� � an � � � �

so �̂ � S�/an is an unbiased estimator of �.

�
k

i�1
Si

�k

�2��(n/2)
���
�n� �� 1��[(n � 1)/2]

�
k

i�1
x�i

�k
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Referring to the viscosity data of Example 16.1, we had n � 3 and k � 25. The val-
ues of x�i and si (i � 1, . . . , 25) appear in Table 16.1, from which it follows that x�� �
261.896/25 � 10.476 and s� � 3.834/25 � .153. With a3 � .886, we have

LCL � 10.476 � 3 � �
.8

.

8

1

6

5

�
3

3�
� � 10.476 � .299 � 10.177

UCL � 10.476 � 3 � �
.8

.

8

1

6

5

�
3

3�
� � 10.476 � .299 � 10.775

These limits differ a bit from previous limits based on � � 10.5 and � � .18 because
now �̂ � 10.476 and �̂ � s�/a3 � .173. Inspection of Table 16.1 shows that every x�i is
between these new limits, so again no out-of-control situation is evident. ■

To obtain an estimate of � based on the sample range, note that if X1, . . . , Xn

form a random sample from a normal distribution, then

R � range(X1, . . . , Xn)

� max(X1, . . . , Xn) � min(X1, . . . , Xn)

� max(X1 � �, . . . , Xn � �) � min(X1 � �, . . . , Xn � �)

� ��max��X1

�

� �
�, 
 
 
 , �

Xn

�

� �
�� � min��X1

�

� �
�, 
 
 
 , �

Xn

�

� �
���

� � � {max(Z1, . . . , Zn) � min(Z1, . . . , Zn)}

where Z1, . . . , Zn are independent standard normal rv’s. Thus

E(R) � � � E(range of a standard normal sample)

� � � bn

so that R/bn is an unbiased estimator of �.
Now denote the ranges for the k samples in the quality control data set by r1,

r2, . . . , rk. The argument just given implies that the estimate

�̂ � �

comes from an unbiased estimator for �. Selected values of bn appear in the accom-
panying table [their computation is based on using statistical theory and numerical
integration to determine E(min(Z1, . . . , Zn)) and E(max(Z1, . . . , Zn))].

r��
bn

�
1
k

� �
k

i�1
ri

�bn

Control Limits Based on the Sample Standard Deviations

LCL � x�� � 3 � �
an�

s�
n�

�

UCL � x�� � 3 � �
an�

s�
n�

�

where

x�� � s� �
�
k

i�1
si

�k

�
k

i�1
x�i

�k

Example 16.2
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n | 3 4 5 6 7 8

bn | 1.693 2.058 2.325 2.536 2.706 2.844

Control Limits Based on the Sample Ranges

LCL � x�� � 3 � �
bn�

r�
n�

�

UCL � x�� � 3 � �
bn�

r�
n�

�

where r� � �k

i�1
ri /k and r1, . . . , rk are the k individual sample ranges.

It is easily verified from Table 16.1 that r� � .292, so �̂ � .292/b3 � .292/1.693 �
.172 and

LCL � 10.476 � 3 � �
1.6

.2

9

9

3

2

�3�
� � 10.476 � .299 � 10.177

UCL � 10.476 � 3 � �
1.6

.2

9

9

3

2

�3�
� � 10.476 � .299 � 10.775

These limits are identical to those based on s�, and again every x�i lies between the
limits. ■

Recomputing Control Limits
We have assumed that the sample data used for estimating � and � was obtained
from an in-control process. Suppose, though, that one of the points on the resulting
control chart falls outside the control limits. Then if an assignable cause for this
out-of-control situation can be found and verified, it is recommended that new con-
trol limits be calculated after deleting the corresponding sample from the data set.
Similarly, if more than one point falls outside the original limits, new limits should
be determined after eliminating any such point for which an assignable cause can
be identified and dealt with. It may even happen that one or more points fall outside
the new limits, in which case the deletion/recomputation process must be repeated.

Performance Characteristics of Control Charts
Generally speaking, a control chart will be effective if it gives very few out-of-
control signals when the process is in control, but shows a point outside the
control limits almost as soon as the process goes out of control. One assessment
of a chart’s effectiveness is based on the notion of “error probabilities.” Suppose
the variable of interest is normally distributed with known � (the same value for
an in-control or out-of-control process). In addition, consider a 3-sigma chart
based on the target value �0, with � � �0 when the process is in control. One
error probability is

Example 16.3
(Example 16.2
continued)
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� � P(a single sample gives a point outside the control limits when � � �0)

� P(X� � �0 � 3�/�n� or X� � �0 � 3�/�n� when � � �0)

� P��X��
�

/�
�

n�
0

� � 3 or �
X�
�

�

/�
�

n�
0

� � �3 when � � �0�
The standardized variable Z � (X� � �0)/(�/�n�) has a standard normal distribution
when � � �0, so

� � P(Z � 3 or Z � �3) � �(�3.00) � 1 � �(3.00) � .0026

If 3.09 rather than 3 had been used to determine the control limits (this is customary
in Great Britain), then

� � P(Z � 3.09 or Z � �3.09) � .0020

The use of 3-sigma limits makes it highly unlikely that an out-of-control signal will
result from an in-control process.

Now suppose the process goes out of control because � has shifted to � ���
(� might be positive or negative); � is the number of standard deviations by which 
� has changed. A second error probability is

� � P� �
� P(�0 � 3�/�n� � X� � �0 � 3�/�n� when � � �0 � ��)

We now standardize by first subtracting �0 � �� from each term inside the paren-
theses and then dividing by �/�n�. This gives

� � P(�3 � �n�� � standard normal rv � 3 � �n��)

� �(3 � �n��) � �(�3 � �n��)

This error probability depends on �, which determines the size of the shift, and on
the sample size n. In particular, for fixed �, � will decrease as n increases (the larger
the sample size, the more likely it is that an out-of-control signal will result), and for
fixed n, � decreases as ⏐�⏐ increases (the larger the magnitude of a shift, the more
likely it is that an out-of-control signal will result). The accompanying table gives �
for selected values of � when n � 4.

� .25 .50 .75 1.00 1.50 2.00 2.50 3.00

� when n � 4 .9936 .9772 .9332 .8413 .5000 .1587 .0668 .0013

It is clear that a small shift is quite likely to go undetected in a single sample.
If 3 is replaced by 3.09 in the control limits, then � decreases from .0026 to

.002, but for any fixed n and �, � will increase. This is just a manifestation of the
inverse relationship between the two types of error probabilities in hypothesis test-
ing. For example, changing 3 to 2.5 will increase � and decrease �.

The error probabilities discussed thus far are computed under the assumption
that the variable of interest is normally distributed. If the distribution is only slightly
nonnormal, the Central Limit Theorem effect implies that X� will have approximately
a normal distribution even when n is small, in which case the stated error probabili-
ties will be approximately correct. This is, of course, no longer the case when the
variable’s distribution deviates considerably from normality.

a single sample gives a point inside
the control limits when � � �0 � ��
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A second performance assessment involves expected or average run length
needed to observe an out-of-control signal. When the process is in control, we should
expect to observe many samples before seeing one whose x� lies outside the control
limits. On the other hand, if a process goes out of control, the expected number of
samples necessary to detect this should be small.

Let p denote the probability that a single sample yields an x� value outside the
control limits, that is,

p � P(X� � �0 � 3�/�n� or X� � �0 � 3�/�n�)

Consider first an in-control process, so that X�1, X�2, X�3, . . . are all normally distrib-
uted with mean value �0 and standard deviation �/�n�. Define an rv Y by

Y � the first i for which X�i falls outside the control limits

If we think of each sample number as a trial and an out-of-control sample as a suc-
cess, then Y is the number of (independent) trials necessary to observe a success.
This Y has a geometric distribution, and we showed in Example 3.18 that E(Y) �
1/p. The acronym ARL (for average run length) is often used in place of E(Y).
Because p � � for an in-control process, we have

ARL � E(Y ) � �
1
p

� � �
�

1
� � �

.00
1
26
� � 384.62

Replacing 3 in the control limits by 3.09 gives ARL � 1/.002 � 500.
Now suppose that, at a particular time point, the process mean shifts to � �

�0 � ��. If we define Y to be the first i subsequent to the shift for which a sample
generates an out-of-control signal, it is again true that ARL � E(Y) � 1/p, but now
p � 1 � �. The accompanying table gives selected ARLs for a 3-sigma chart when
n � 4. These results again show the chart’s effectiveness in detecting large shifts but
also its inability to quickly identify small shifts. When sampling is done rather infre-
quently, a great many items are likely to be produced before a small shift in � is
detected. The CUSUM procedures discussed in Section 16.5 were developed to
address this deficiency.

� .25 .50 .75 1.00 1.50 2.00 2.50 3.00

ARL when n � 4 156.25 43.86 14.97 6.30 2.00 1.19 1.07 1.0013

Supplemental Rules for XX� Charts
The inability of X� charts with 3-sigma limits to quickly detect small shifts in the
process mean has prompted investigators to develop procedures that provide im-
proved behavior in this respect. One approach involves introducing additional condi-
tions that cause an out-of-control signal to be generated. The following conditions
were recommended by Western Electric (then a subsidiary of AT&T). An intervention
to take corrective action is appropriate whenever one of these conditions is satisfied:

1. Two out of three successive points fall outside 2-sigma limits on the same side of
the center line.

2. Four out of five successive points fall outside 1-sigma limits on the same side of
the center line.

3. Eight successive points fall on the same side of the center line.
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A quality control text should be consulted for a discussion of these and other sup-
plemental rules. In Section 16.5, we present a different type of procedure to over-
come the X� chart’s deficiency.

Robust Control Charts
The presence of outliers in the sample data tends to reduce the sensitivity of control-
charting procedures when parameters must be estimated. This is because the control
limits are moved outward from the center line, making the identification of unusual
points more difficult. We do not want the statistic whose values are plotted to be
resistant to outliers because that would mask any out-of-control signal. For example,
plotting sample medians would be less effective than plotting x�1, x�2, . . . as is done
on an X� chart.

The article “Robust Control Charts” by David M. Rocke (Technometrics,
1989: 173–184) presents a study of procedures for which control limits are based on
statistics resistant to the effects of outliers. Rocke recommends control limits calcu-
lated from the interquartile range (IQR), which is very similar to the fourth spread
introduced in Chapter 1. In particular,

IQR � �

For a random sample from a normal distribution, E(IQR) � kn� ; the values of kn are
given in the accompanying table.

n | 4 5 6 7 8

kn | .596 .990 1.282 1.512 .942

The suggested control limits are

LCL � x�� � 3 � UCL � x�� � 3 �

The values of x�1, x�2, x�3, . . . are plotted. Simulations reported in the article indicated
that the performance of the chart with these limits is superior to that of the traditional
X� chart.

IQR
�
kn�n�

IQR
�
kn�n�

(2nd largest xi) � (2nd smallest xi) n � 4, 5, 6, 7
(3rd largest xi) � (3rd smallest xi) n � 8, 9, 10, 11

4. In the case of known � and �, what control limits are neces-
sary for the probability of a single point being outside the
limits for an in-control process to be .005?

5. Consider a 3-sigma control chart with center line at �0 and
based on n � 5. Assuming normality, calculate the probability
that a single point will fall outside the control limits when the
actual process mean is

a. �0 � .5�
b. �0 � �
c. �0 � 2�

6. The table on page 636 gives data on moisture content for spec-
imens of a certain type of fabric. Determine control limits for
a chart with center line at height 13.00 based on � � .600, con-
struct the control chart, and comment on its appearance.

EXERCISES Section 16.2 (4–13)
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7. Refer to the data given in Exercise 6, and construct a control
chart with an estimated center line and limits based on using
the sample standard deviations to estimate �. Is there any evi-
dence that the process is out of control?

8. Refer to Exercises 6 and 7, and now employ control limits
based on using the sample ranges to estimate �. Does the
process appear to be in control?

9. The accompanying table gives sample means and standard
deviations, each based on n � 6 observations of the refractive
index of fiber-optic cable. Construct a control chart, and
comment on its appearance. [Hint: �x�i � 2317.07 and �si �
30.34.]

Day x� s Day x� s

1 95.47 1.30 9 96.63 1.48
2 97.38 .88 10 96.50 .80
3 96.85 1.43 11 97.22 1.42
4 96.64 1.59 12 96.55 1.65
5 96.87 1.52 13 97.02 1.28
6 96.52 1.27 14 95.55 1.14
7 96.08 1.16 15 96.29 1.37
8 96.48 .79 16 96.80 1.40

(continued )

Day x� s Day x� s

17 96.01 1.58 21 97.06 1.34
18 95.39 .98 22 98.34 1.60
19 96.58 1.21 23 96.42 1.22
20 96.43 .75 24 95.99 1.18

10. Refer to Exercise 9. An assignable cause was found for the
unusually high sample average refractive index on day 22.
Recompute control limits after deleting the data from this day.
What do you conclude?

11. Consider the control chart based on control limits �0 � 2.81
�/�n�.
a. What is the ARL when the process is in control?
b. What is the ARL when n � 4 and the process mean has

shifted to � � �0 � �?
c. How do the values of parts (a) and (b) compare to the

corresponding values for a 3-sigma chart?

12. Apply the supplemental rules suggested in the text to the data
of Exercise 6. Are there any out-of-control signals?

13. Calculate control limits for the data of Exercise 6, using the
robust procedure presented in this section.

Data for Exercise 6

Sample No. Moisture-Content Observations x� s Range

1 12.2 12.1 13.3 13.0 13.0 12.72 .536 1.2
2 12.4 13.3 12.8 12.6 12.9 12.80 .339 .9
3 12.9 12.7 14.2 12.5 12.9 13.04 .669 1.7
4 13.2 13.0 13.0 12.6 13.9 13.14 .477 1.3
5 12.8 12.3 12.2 13.3 12.0 12.52 .526 1.3
6 13.9 13.4 13.1 12.4 13.2 13.20 .543 1.5
7 12.2 14.4 12.4 12.4 12.5 12.78 .912 2.2
8 12.6 12.8 13.5 13.9 13.1 13.18 .526 1.3
9 14.6 13.4 12.2 13.7 12.5 13.28 .963 2.4

10 12.8 12.3 12.6 13.2 12.8 12.74 .329 .9
11 12.6 13.1 12.7 13.2 12.3 12.78 .370 .9
12 13.5 12.3 12.8 13.1 12.9 12.92 .438 1.2
13 13.4 13.3 12.0 12.9 13.1 12.94 .559 1.4
14 13.5 12.4 13.0 13.6 13.4 13.18 .492 1.2
15 12.3 12.8 13.0 12.8 13.5 12.88 .432 1.2
16 12.6 13.4 12.1 13.2 13.3 12.92 .554 1.3
17 12.1 12.7 13.4 13.0 13.9 13.02 .683 1.8
18 13.0 12.8 13.0 13.3 13.1 13.04 .182 .5
19 12.4 13.2 13.0 14.0 13.1 13.14 .573 1.6
20 12.7 12.4 12.4 13.9 12.8 12.84 .619 1.5
21 12.6 12.8 12.7 13.4 13.0 12.90 .316 .8
22 12.7 13.4 12.1 13.2 13.3 12.94 .541 1.3
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The control charts discussed in the previous section were designed to control the
location (equivalently, central tendency) of a process, with particular attention to the
mean as a measure of location. It is equally important to ensure that a process is under
control with respect to variation. In fact, most practitioners recommend that control
be established on variation prior to constructing an X� chart or any other chart for con-
trolling location. In this section, we consider charts for variation based on the sample
standard deviation S and also charts based on the sample range R. The former are gen-
erally preferred because the standard deviation gives a more efficient assessment of
variation than does the range, but R charts were used first and tradition dies hard.

The S Chart
We again suppose that k independently selected samples are available, each one
consisting of n observations on a normally distributed variable. Denote the sample
standard deviations by s1, s2, . . . , sk, with s� � �si /k. The values s1, s2, s3, . . . are
plotted in sequence on an S chart. The center line of the chart will be at height s�,
and the 3-sigma limits necessitate determining 3�S (just as 3-sigma limits of an X�
chart required 3� X� � 3�/�n�, with � then estimated from the data).

Recall that for any rv Y, V(Y) � E(Y 2) � [E(Y)]2, and that a sample variance
S2 is an unbiased estimator of � 2, that is, E(S2) � � 2. Thus

V(S) � E(S2) � [E(S)]2 � � 2 � (an�)2 � � 2(1 � a2
n)

where values of an for n � 3, . . . , 8 are tabulated in the previous section. The
standard deviation of S is then

�S � �V�(S�)� � ��1� �� a�2
n�

It is natural to estimate � using s1, . . . , sk as was done in the previous section,
namely, �̂ � s�/an. Substituting �̂ for � in the expression for �S gives the quantity
used to calculate 3-sigma limits.

16.3 Control Charts for Process Variation

The 3-sigma control limits for an S control chart are

LCL � s� � 3s� �1� �� a�2
n�/an

UCL � s� � 3s� �1� �� a�2
n�/an

The expression for LCL will be negative if n � 5, in which case it is custom-
ary to use LCL � 0.

Table 16.2 displays observations on stress resistance of plastic sheets (the force, in
psi, necessary to crack a sheet). There are k � 22 samples, obtained at equally
spaced time points, and n � 4 observations in each sample. It is easily verified that
�si � 51.10 and s� � 2.32, so the center of the S chart will be at 2.32 (though
because n � 4, LCL � 0 and the center line will not be midway between the control
limits). From the previous section, a4 � .921, from which the UCL is

UCL � 2.32 � 3(2.32)(�1� �� (�.9�2�1�)2�)�/.921

� 2.32 � 2.94

� 5.26

Example 16.4
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Table 16.2 Stress-Resistance Data for Example 16.4

Sample No. Observations SD Range

1 29.7 29.0 28.8 30.2 .64 1.4
2 32.2 29.3 32.2 32.9 1.60 3.6
3 35.9 29.1 32.1 31.3 2.83 6.8
4 28.8 27.2 28.5 35.7 3.83 8.5
5 30.9 32.6 28.3 28.3 2.11 4.3
6 30.6 34.3 34.8 26.3 3.94 8.5
7 32.3 27.7 30.9 27.8 2.30 4.6
8 32.0 27.9 31.0 30.8 1.76 4.1
9 24.2 27.5 28.5 31.1 2.85 6.9

10 33.7 24.4 34.3 31.0 4.53 9.9
11 35.3 33.2 31.4 28.0 3.09 7.3
12 28.1 34.0 31.0 30.8 2.41 5.9
13 28.7 28.9 25.8 29.7 1.71 3.9
14 29.0 33.0 30.2 30.1 1.71 4.0
15 33.5 32.6 33.6 29.2 2.07 4.4
16 26.9 27.3 32.1 28.5 2.37 5.2
17 30.4 29.6 31.0 33.8 1.83 4.2
18 29.0 28.9 31.8 26.7 2.09 5.1
19 33.8 30.9 31.7 28.2 2.32 5.6
20 29.7 27.9 29.1 30.1 .96 2.2
21 27.9 27.7 30.2 32.9 2.43 5.2
22 30.0 31.4 27.7 28.1 1.72 3.7

The resulting control chart is shown in Figure 16.3. All plotted points are well within
the control limits, suggesting stable process behavior with respect to variation.

Sample
number

5            10           15           20

6.0

4.0

2.0

0.0

UCL

LCL

s

0

Figure 16.3 S chart for stress-resistance data for Example 16.4 ■

The R Chart
Let r1, r2, . . . , rk denote the k sample ranges and r� � �ri /k. The center line of an R chart
will be at height r�. Determination of the control limits requires �R, where R denotes the
range (prior to making observations—as a random variable) of a random sample of size
n from a normal distribution with mean value � and standard deviation �. Because

R � max(X1, . . . , Xn) � min(X1, . . . , Xn)

� �{max(Z1, . . . , Zn) � min(Z1, . . . , Zn)}
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where Zi � (Xi � �)/�, and the Zi s are standard normal rv’s, it follows that

�R � � � � �
� � � cn

The values of cn for n � 3, . . . , 8 appear in the accompanying table.

n | 3 4 5 6 7 8

cn | .888 .880 .864 .848 .833 .820

It is customary to estimate � by �̂ � r�/bn as discussed in the previous section. This
gives �̂R � cnr�/bn as the estimated standard deviation of R.

standard deviation of the range of a random sample
of size n from a standard normal distribution

The 3-sigma limits for an R chart are

LCL � r� � 3cnr�/bn

UCL � r� � 3cnr�/bn

The expression for LCL will be negative if n � 6, in which case LCL � 0
should be used.

Table 16.2 yields �ri � 115.3 and r� � 5.24. Since n � 4, LCL � 0. With b4 � 2.058
and c4 � .880,

UCL � 5.24 � 3(.880)(5.24)/2.058 � 11.96

The R chart appears as Figure 16.4. As with the S chart, all points are between the
limits, indicating an in-control process as far as variation is concerned.

Example 16.5
(Example 16.4
continued)

Sample
number

5            10           15           20

15.0

10.0

5.0

0.0

UCL

LCL

0

Sample
range

Figure 16.4 R chart for stress-resistance data of Example 16.5 ■
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Charts Based on Probability Limits
Consider an X� chart based on the in-control (target) value �0 and known �. When the
variable of interest is normally distributed and the process is in control,

P(X�i � �0 � 3�/�n�) � .0013 � P(X�i � �0 � 3�/�n�)

That is, the probability that a point on the chart falls above the UCL is .0013, as is
the probability that the point falls below the LCL (using 3.09 in place of 3 gives .001
for each probability). When control limits are based on estimates of � and �, these
probabilities will be approximately correct provided that n is not too small and k is
at least 20.

By contrast, it is not the case for a 3-sigma S chart that P(Si � UCL) �
P(Si � LCL) � .0013, nor is it true for a 3-sigma R chart that P(Ri � UCL) �
P(Ri � LCL) � .0013. This is because neither the sample standard deviation S nor
the sample range R has a normal distribution even when the population distribu-
tion is normal. Instead, both S and R have skewed distributions. The best that can
be said for 3-sigma S and R charts is that an in-control process is quite unlikely to
yield a point at any particular time that is outside the control limits. Some authors
have advocated the use of control limits for which the “exceedance probability”
for each limit is approximately .001. The book Statistical Methods for Quality
Improvement (see the chapter bibliography) contains more information on this
topic.

14. A manufacturer of dustless chalk instituted a quality control
program to monitor chalk density. The sample standard
deviations of densities for 24 different subgroups, each con-
sisting of n � 8 chalk specimens, were as follows:

.204 .315 .096 .184 .230 .212 .322 .287

.145 .211 .053 .145 .272 .351 .159 .214

.388 .187 .150 .229 .276 .118 .091 .056

Calculate limits for an S chart, construct the chart, and check
for out-of-control points. If there is an out-of-control point,
delete it and repeat the process.

15. Subgroups of power supply units are selected once each hour
from an assembly line, and the high-voltage output of each
unit is determined.
a. Suppose the sum of the resulting sample ranges for 30

subgroups, each consisting of four units, is 85.2. Calculate
control limits for an R chart.

b. Repeat part (a) if each subgroup consists of eight units
and the sum is 106.2.

16. Calculate control limits for both an S chart and an R chart
using the moisture-content data from Exercise 6. Then check
for the presence of any out-of-control signals.

17. Calculate control limits for an S chart from the refractive
index data of Exercise 9. Does the process appear to be in
control with respect to variability? Why or why not?

18. When S2 is the sample variance of a normal random sample,
(n � 1)S2/� 2 has a chi-squared distribution with n � 1 df,
so

P��2
.999,n�1

� �
( n �

� 2

1)S 2

� � � 2
.001,n�1� � .998

from which

P� � S 2 � � � .998

This suggests that an alternative chart for controlling
process variation involves plotting the sample variances and
using the control limits

LCL � s�2��2
.999,n�1

/(n � 1)

UCL � s�2��2
.001,n�1

/(n � 1)

Construct the corresponding chart for the data of Exercise 9.
[Hint: The lower- and upper-tailed chi-squared critical values
for 5 df are .210 and 20.515, respectively.]

� 2�2
.001,n�1��

n � 1

� 2�2
.999,n�1��

n � 1

EXERCISES Section 16.3 (14–18)
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The term attribute data is used in the quality control literature to describe two
situations:

1. Each item produced is either defective or nondefective (conforms to specifica-
tions or does not).

2. A single item may have one or more defects, and the number of defects is
determined.

In the former case, a control chart is based on the binomial distribution; in the latter
case, the Poisson distribution is the basis for a chart.

The p Chart for Fraction Defective
Suppose that when a process is in control, the probability that any particular item is
defective is p (equivalently, p is the long-run proportion of defective items for an in-
control process) and that different items are independent of one another with respect
to their conditions. Consider a sample of n items obtained at a particular time, and
let X be the number of defectives and p̂ � X/n. Because X has a binomial distribu-
tion, E(X) � np and V(X) � np(1 � p), so

E( p̂) � p V( p̂) �

Also, if np � 10 and n(1 � p) � 10, p̂ has approximately a normal distribution.
In the case of known p (or a chart based on target value), the control limits are

LCL � p � 3��
p�(1� n

�� p�)
�� UCL � p � 3��

p�(1� n

�� p�)
��

If each sample consists of n items, the number of defective items in the ith sample
is xi, and p̂i � xi/n, then p̂1, p̂2, p̂3, . . . are plotted on the control chart.

Usually the value of p must be estimated from the data. Suppose that k samples
from what is believed to be an in-control process are available, and let

p� �

The estimate p� is then used in place of p in the aforementioned control limits.

�
k

i�1
p̂i

�k

p(1 � p)
�

n

16.4 Control Charts for Attributes

The p chart for the fraction of defective items has its center line at height p� and
control limits

LCL � p� � 3��
p�(1� n

�� p��)
��

UCL � p� � 3��
p�(1� n

�� p��)
��

If LCL is negative, it is replaced by 0.
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A sample of 100 cups from a particular dinnerware pattern was selected on each of
25 successive days, and each was examined for defects. The resulting numbers of
unacceptable cups and corresponding sample proportions are as follows:

Day (i) 1 2 3 4 5 6 7 8 9 10 11 12 13

xi 7 4 3 6 4 9 6 7 5 3 7 8 4

p̂i .07 .04 .03 .06 .04 .09 .06 .07 .05 .03 .07 .08 .04

Day (i) 14 15 16 17 18 19 20 21 22 23 24 25

xi 6 2 9 7 6 7 11 6 7 4 8 6

p̂i .06 .02 .09 .07 .06 .07 .11 .06 .07 .04 .08 .06

Assuming that the process was in control during this period, let’s establish control
limits and construct a p chart. We have that � p̂i � 1.52, giving p� � 1.52/25 � .0608
and

LCL � .0608 � 3�(.�0�6�0�8�)(�.9�3�9�2�)/�1�0�0� � .0608 � .0717 � �.0109

UCL � .0608 � 3�(.�0�6�0�8�)(�.9�3�9�2�)/�1�0�0� � .0608 � .0717 � .1325

The LCL is therefore set at 0. The control chart pictured in Figure 16.5 shows that
all points are within the control limits. This is consistent with the assumption of an
in-control process.

Example 16.6

Day
5            10           15           20           25

.10

.05

UCL

LCL

0

p̂

Figure 16.5 Control chart for fraction-defective data of Example 16.6 ■

The c Chart for Number of Defectives
We now consider situations in which the observation at each time point is the num-
ber of defects in a unit of some sort. The unit may consist of a single item (e.g., one
automobile) or a group of items (e.g., blemishes on a set of four tires). In the second
case, the group size is assumed to be the same at each time point.

The control chart for number of defectives is based on the Poisson probability
distribution. Recall that if Y is a Poisson random variable with parameter 	, then

E(Y ) � 	 V(Y ) � 	 �Y � �	�
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Also, Y has approximately a normal distribution when 	 is large (	 � 10 will suffice
for most purposes). Furthermore, if Y1, Y2, . . . , Yn are independent Poisson variables
with parameters 	1, 	2, . . . , 	n, it can be shown that Y1 � 
 
 
 � Yn has a Poisson dis-
tribution with parameter 	1 � 
 
 
 � 	n. In particular, if 	1 � 
 
 
 � 	n � 	 (the dis-
tribution of the number of defects per item is the same for each item), then the
Poisson parameter is � � n	.

Let � denote the Poisson parameter for the number of defects in a unit (it is the
expected number of defects per unit). In the case of known � (or a chart based on a
target value),

LCL � � � 3��� UCL � � � 3���

With xi denoting the total number of defects in the ith unit (i � 1, 2, 3, . . .), then
points at heights x1, x2, x3, . . . are plotted on the chart. Usually the value of � must
be estimated from the data. Since E(Xi) � �, it is natural to use the estimate �̂ � x�
(based on x1, x2, . . . , xk).

The c chart for the number of defectives in a unit has center line at height x�
and

LCL � x� � 3�x��

UCL � x� � 3�x��

If LCL is negative, it is replaced by 0.

A company manufactures metal panels that are baked after first being coated with a
slurry of powdered ceramic. Flaws sometimes appear in the finish of these panels,
and the company wishes to establish a control chart for the number of flaws. The
numbers of flaws in each of the 24 panels sampled at regular time intervals are as
follows:

with �xi � 235 and �̂ � x� � 235/24 � 9.79. The control limits are

LCL � 9.79 � 3�9�.7�9� � .40 UCL � 9.79 � 3�9�.7�9� � 19.18

The control chart is in Figure 16.6 (page 644). The point corresponding to the fif-
teenth panel lies above the UCL. Upon investigation, the slurry used on that panel
was discovered to be of unusually low viscosity (an assignable cause). Elim-
inating that observation from the data set gives x� � 214/23 � 9.30 and new con-
trol limits

LCL � 9.30 � 3�9�.3�0� � .15 UCL � 9.30 � 3�9�.3�0� � 18.45

The remaining 23 observations all lie between these limits, indicating an in-control
process.

7 10 9 12 13 6 13 7 5 11 8 10

13 9 21 10 6 8 3 12 7 11 14 10

Example 16.7
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Control Charts Based on Transformed Data
The use of 3-sigma control limits is presumed to result in P(statistic � LCL) � P
(statistic � UCL) � .0013 when the process is in control. However, when p is small,
the normal approximation to the distribution of p̂ � X/n will often not be very accu-
rate in the extreme tails. Table 16.3 gives evidence of this behavior for selected val-
ues of p and n (the value of p is used to calculate the control limits). In many cases,
the probability that a single point falls outside the control limits is very different from
the nominal probability of .0026.

Sample
number

5            10           15           20

20

15

10

5

Final LCL

Final UCL

0

x

Original LCL

Original UCL

Figure 16.6 Control chart for number of flaws data of Example 16.7 ■

Table 16.3 In-Control Probabilities for a p Chart

p n P( p̂ 	 LCL) P( p̂ � UCL) P(out-of-control point)

.10 100 .00003 .00198 .00201

.10 200 .00048 .00299 .00347

.10 400 .00044 .00171 .00215

.05 200 .00004 .00266 .00270

.05 400 .00020 .00207 .00227

.05 600 .00031 .00189 .00220

.02 600 .00007 .00275 .00282

.02 800 .00036 .00374 .00410

.02 1000 .00023 .00243 .00266

This problem can be remedied by applying a transformation to the data. Let
h(X) denote a function applied to transform the binomial variable X. Then h(�)
should be chosen so that h(X) has approximately a normal distribution and this
approximation is accurate in the tails. A recommended transformation is based on
the arcsin (i.e., sin�1) function:

Y � h(X ) � sin�1(�X�/n�)
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Then Y is approximately normal with mean value sin�1(�p�) and variance 1/(4n);
note that the variance is independent of p. Let yi � sin�1(�xi�/n�). Then points on
the control chart are plotted at heights y1, y2, . . . . For known n, the control limits
are

LCL � sin�1(�p�) � 3�1�/(�4�n�)� UCL � sin�1(�p�) � 3�1�/(�4�n�)�

When p is not known, sin�1(�p�) is replaced by y�.
Similar comments apply to the Poisson distribution when � is small. The

suggested transformation is Y � h(X) � 2�X�, which has mean value 2��� and
variance 1. Resulting control limits are 2��� � 3 when � is known and y� � 3
otherwise. The book Statistical Methods for Quality Improvement listed in the
chapter bibliography discusses these issues in greater detail.

19. On each of the previous 25 days, 100 electronic devices of
a certain type were randomly selected and subjected to a
severe heat stress test. The total number of items that failed
to pass the test was 578.
a. Determine control limits for a 3-sigma p chart.
b. The highest number of failed items on a given day was

39, and the lowest number was 13. Does either of these
correspond to an out-of-control point? Explain.

20. A sample of 200 ROM computer chips was selected on each
of 30 consecutive days, and the number of nonconforming
chips on each day was as follows: 10, 18, 24, 17, 37, 19, 7,
25, 11, 24, 29, 15, 16, 21, 18, 17, 15, 22, 12, 20, 17, 18, 12,
24, 30, 16, 11, 20, 14, 28. Construct a p chart and examine
it for any out-of-control points.

21. When n � 150, what is the smallest value of p� for which the
LCL in a p chart is positive?

22. Refer to the data of Exercise 20, and construct a control
chart using the sin�1 transformation as suggested in the text.

23. The accompanying observations are numbers of defects in
25 1-square-yard specimens of woven fabric of a certain
type: 3, 7, 5, 3, 4, 2, 8, 4, 3, 3, 6, 7, 2, 3, 2, 4, 7, 3, 2, 4, 4,
1, 5, 4, 6. Construct a c chart for the number of defects.

24. For what x� values will the LCL in a c chart be negative?

25. In some situations, the sizes of sampled specimens vary,
and larger specimens are expected to have more defects
than smaller ones. For example, sizes of fabric samples
inspected for flaws might vary over time. Alternatively,
the number of items inspected might change with time.
Let

ui �

� �
g
xi

i

�

where “size” might refer to area, length, volume, or simply the
number of items inspected. Then a u chart plots u1, u2, . . . ,
has center line u�, and the control limits for the ith observations
are u� � 3�u��/g�i�.

Painted panels were examined in time sequence, and for
each one, the number of blemishes in a specified sampling
region was determined. The surface area (ft2) of the region
examined varied from panel to panel. Results are given
below. Construct a u chart.

Area No. of
Panel Examined Blemishes

1 .8 3
2 .6 2
3 .8 3
4 .8 2
5 1.0 5
6 1.0 5
7 .8 10
8 1.0 12
9 .6 4

10 .6 2
11 .6 1
12 .8 3
13 .8 5
14 1.0 4
15 1.0 6
16 1.0 12
17 .8 3
18 .6 3
19 .6 5
20 .6 1

26. Construct a control chart for the data of Exercise 23 by
using the transformation suggested in the text.

the number of defects observed at time i
�����

size of entity inspected at time i

EXERCISES Section 16.4 (19–26)
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A defect of the traditional X chart is its inability to detect a relatively small change
in a process mean. This is largely a consequence of the fact that whether a process
is judged out of control at a particular time depends only on the sample at that time,
and not on the past history of the process. Cumulative sum (CUSUM) control
charts and procedures have been designed to remedy this defect.

There are two equivalent versions of a CUSUM procedure for a process mean,
one graphical and the other computational. The computational version is used almost
exclusively in practice, but the logic behind the procedure is most easily grasped by
first considering the graphical form.

The V-Mask
Let � 0 denote a target value or goal for the process mean, and define cumulative
sums by

S1 � x�1 � �0

S2 � (x�1 � �0) � (x�2 � �0) � �
2

i�1
(x�i � �0)










Sl � (x�1 � �0) � 
 
 
 � (x�l � �0) � �
l

i�1
(x�i � �0)

(in the absence of a target value, x�� is used in place of �0). These cumulative sums are
plotted over time. That is, at time l, we plot a point at height Sl. At the current time
point r, the plotted points are (1, S1), (2, S2), (3, S3), . . . , (r, Sr).

Now a V-shaped “mask” is superimposed on the plot, as shown in Figure 16.7.
The point 0, which lies a distance d behind the point at which the two arms of
the mask intersect, is positioned at the current CUSUM point (r, Sr). At time r, the
process is judged out of control if any of the plotted points lies outside the 
V-mask—either above the upper arm or below the lower arm. When the process is
in control, the x�i s will vary around the target value �0, so successive Si s should vary
around 0. Suppose, however, that at a certain time, the process mean shifts to a
value larger than the target. From that point on, differences x�i � �0 will tend to be
positive, so that successive Sl s will increase and plotted points will drift upward. If
a shift has occurred prior to the current time point r, there is a good chance that 
(r, Sr) will be substantially higher than some other points in the plot, in which case
these other points will be below the lower arm of the mask. Similarly, a shift to a
value smaller than the target will subsequently result in points above the upper arm
of the mask.

Any particular V-mask is determined by specifying the “lead distance” d and
“half-angle” 	, or, equivalently, by specifying d and the length h of the vertical line
segment from 0 to the lower (or to the upper) arm of the mask. One method for
deciding which mask to use involves specifying the size of a shift in the process
mean that is of particular concern to an investigator. Then the parameters of the mask
are chosen to give desired values of � and �, the false-alarm probability and the
probability of not detecting the specified shift, respectively. An alternative method

16.5 CUSUM Procedures
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involves selecting the mask that yields specified values of the ARL (average run
length) both for an in-control process and for a process in which the mean has shifted
by a designated amount. After developing the computational form of the CUSUM
procedure, we will illustrate the second method of construction.

A wood products company manufactures charcoal briquettes for barbecues. It pack-
ages these briquettes in bags of various sizes, the largest of which is supposed to
contain 40 lb. Table 16.4 displays the weights of bags from 16 different samples,
each of size n � 4. The first 10 of these were drawn from a normal distribution with
� � �0 � 40 and � � .5. Starting with the eleventh sample, the mean has shifted
upward to � � 40.3.

1    2     3     4     5     6     7

(a) (b)

(c) (d)
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Figure 16.7 CUSUM plots: (a) successive points (I, Si) in a CUSUM plot; (b) a V-mask with 0 �
(r, Sr); (c) an in-control process; (d) an out-of-control process

Example 16.8

Table 16.4 Observations, x� s, and Cumulative Sums for Example 16.8

Sample
Number Observations x� �(x�i 
 40)

1 40.77 39.95 40.86 39.21 40.20 .20
2 38.94 39.70 40.37 39.88 39.72 �.08
3 40.43 40.27 40.91 40.05 40.42 .34

(continued)
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Figure 16.8 displays an X� chart with center line at height 40 and control
limits at

�0 � 3� X� � 40 � 3 � (.5/�4�) � 40 � .75

Sample
number

3           6           9          12         15

40.20

39.60

39.00

LCL

UCL

x

Figure 16.8 X�control chart for the data of Example 16.8

Table 16.4 Observations, x� s, and Cumulative Sums for Example 16.8 (Cont.)

Sample
Number Observations x� �(x�i 
 40)

4 39.55 40.10 39.39 40.89 39.98 .32
5 41.01 39.07 39.85 40.32 40.06 .38
6 39.06 39.90 39.84 40.22 39.76 .14
7 39.63 39.42 40.04 39.50 39.65 �.21
8 41.05 40.74 40.43 39.40 40.41 .20
9 40.28 40.89 39.61 40.48 40.32 .52

10 39.28 40.49 38.88 40.72 39.84 .36
11 40.57 40.04 40.85 40.51 40.49 .85
12 39.90 40.67 40.51 40.53 40.40 1.25
13 40.70 40.54 40.73 40.45 40.61 1.86
14 39.58 40.90 39.62 39.83 39.98 1.84
15 40.16 40.69 40.37 39.69 40.23 2.07
16 40.46 40.21 40.09 40.58 40.34 2.41

No point on the chart lies outside the control limits. This chart suggests a stable
process for which the mean has remained on target.

Figure 16.9 shows CUSUM plots with a particular V-mask superimposed. The
plot in Figure 16.9(a) is for current time r � 12. All points in this plot lie inside the
arms of the mask. However, the plot for r � 13 displayed in Figure 16.9(b) gives an
out-of-control signal. The point falling below the lower arm of the mask suggests
an increase in the value of the process mean. The mask at r � 16 is even more
emphatic in its out-of-control message. This is in marked contrast to the ordinary
X� chart.
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Reconsider the charcoal briquette data displayed in Table 16.4 of Example 16.8. The
target value is �0 � 40, and the size of a shift to be quickly detected is � � .3. Thus

k � �
�

2
� � .15 �0 � k � 40.15 �0 � k � 39.85

so

dl � max[0, dl�1 � (x�l � 40.15)]

el � max[0, el�1 � (x�l � 39.85)]

Sample
number3          6          9         12        15

2.0

1.0

0.0

0

CUSUM

(a)

Sample
number3          6          9         12        15

2.0

1.0

0.0

0

CUSUM

(b)

Figure 16.9 CUSUM plots and V-masks for data of Example 16.8: (a) V-mask at time r � 12,
process in control; (b) V-mask at time r � 13, out-of-control signal ■

Let d0 � e0 � 0, and calculate d1, d2, d3, . . . and e1, e2, e3, . . . recursively using
the relationships

dl � max[0, dl�1 � (x�l � (�0 � k))]
(l � 1, 2, 3, . . .)

el � max[0, el�1 � (x�l � (�0 � k))]

Here the symbol k denotes the slope of the lower arm of the V-mask, and its
value is customarily taken as �/2 (where � is the size of a shift in � on which
attention is focused).

If at current time r, either dr � h or er � h, the process is judged to be out
of control. The first inequality suggests the process mean has shifted to a value
greater than the target, whereas er � h indicates a shift to a smaller value.

Example 16.9

Computational Form of the CUSUM Procedure
We first describe the computational version of the CUSUM procedure, then show its
equivalence to the graphical form, and finally discuss designing a procedure to meet
specified criteria.
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Calculations of the first few dls proceeds as follows:

d0 � 0

d1 � max[0, d0 � (x�1 � 40.15)]

� max[0, 0 � (40.20 � 40.15)]

� .05

d2 � max[0, d1 � (x�2 � 40.15)]

� max[0, .05 � (39.72 � 40.15)]

� 0

d3 � max[0, d2 � (x�3 � 40.15)]

� max[0, 0 � (40.42 � 40.15)]

� .27

The remaining calculations are summarized in Table 16.5.

Table 16.5 CUSUM Calculations for Example 16.9

Sample
Number x�l x�l 
 40.15 dl x�l 
 39.85 el

1 40.20 .05 .05 .35 0
2 39.72 �.43 0 �.13 .13
3 40.42 .27 .27 .57 0
4 39.98 �.17 .10 .13 0
5 40.06 �.09 .01 .21 0
6 39.76 �.39 0 �.09 .09
7 39.65 �.50 0 �.20 .29
8 40.41 .26 .26 .56 0
9 40.32 .17 .43 .47 0

10 39.84 �.31 .12 �.01 .01
11 40.49 .34 .46 .64 0
12 40.40 .25 .71 .55 0
13 40.61 .46 1.17 .76 0
14 39.98 �.17 1.00 .13 0
15 40.23 .08 1.08 .38 0
16 40.34 .19 1.27 .49 0

The value h � .95 gives a CUSUM procedure with desirable properties—false
alarms (incorrect out-of-control signals) rarely occur, yet a shift of � � .3 will
usually be detected rather quickly. With this value of h, the first out-of-control signal
comes after the 13th sample is available. Since d13 � 1.17 � .95, it appears that the
mean has shifted to a value larger than the target. This is the same message as the
one given by the V-mask in Figure 16.9(b). ■

Equivalence of the V-Mask
and Computational Form
Again let r denote the current time point, so that x�1, x�2, . . . , x�r are available.
Figure 16.10 displays a V-mask with the point labeled 0 at (r, Sr). The slope of
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the lower arm, which we denote by k, is h/d. Thus the points on the lower arm above
r, r � 1, r � 2, . . . are at heights Sr � h, Sr � h � k, Sr � h � 2k, and so on.

The process is in control if all points are on or between the arms of the mask.
We wish to describe this condition algebraically. To do so, let

Tl � �
l

i�1
[x�i � (�0 � k)] l � 1, 2, 3, . . . , r

The conditions under which all points are on or above the lower arm are

Sr � h � Sr (trivially satisfied) i.e., Sr � Sr � h

Sr � h � k � Sr�1 i.e., Sr � Sr�1 � h � k

Sr � h � 2k � Sr�2 i.e., Sr � Sr�2 � h � 2k


 
 



 
 



 
 


Now subtract rk from both sides of each inequality to obtain

Sr � rk � Sr � rk � h i.e., Tr � Tr � h

Sr � rk � Sr�1 � (r � 1)k � h i.e., Tr � Tr�1 � h

Sr � rk � Sr�2 � (r � 2)k � h i.e., Tr � Tr�2 � h


 



 



 


Thus all plotted points lie on or above the lower arm if and only if (iff) Tr � Tr � h,
Tr � Tr�1 � h, Tr � Tr�2 � h, and so on. This is equivalent to

Tr � min(T1, T2, . . . , Tr) � h

In a similar manner, if we let

Vr � �
r

i�1
[x�i � (�0 � k)] � Sr � rk

r

Sr� h � k
Sr� h

Sr� h � 2k

Sr

d

�
h

⎧⎨⎩

⎧
⎨
⎩

0

Slope � k � h
d

r � 3
r � 2

r � 1

Figure 16.10 A V-mask with slope of lower arm � k
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it can be shown that all points lie on or below the upper arm iff

max(V1, . . . , Vr) � Vr � h

If we now let

dr � Tr � min(T1, . . . , Tr)

er � max(V1, . . . , Vr) � Vr

it is easily seen that d1, d2, . . . and e1, e2, . . . can be calculated recursively as illustrated
previously. For example, the expression for dr follows from consideration of two cases:

1. min(T1, . . . , Tr) � Tr, whence dr � 0

2. min(T1, . . . , Tr) � min(T1, . . . , Tr�1), so that

dr � Tr � min(T1, . . . , Tr�1)

� x�r � (�0 � k) � Tr�1 � min(T1, . . . ,Tr�1)

� x�r � (�0 � k) � dr�1

Since dr cannot be negative, it is the larger of these two quantities.

Designing a CUSUM Procedure
Let � denote the size of a shift in � that is to be quickly detected using a CUSUM
procedure.* It is common practice to let k � �/2. Now suppose a quality control
practitioner specifies desired values of two average run lengths:

1. ARL when the process is in control (� � �0)

2. ARL when the process is out of control because the mean has shifted by � (� �
�0 � � or � � �0 � �)

A chart developed by Kenneth Kemp (“The Use of Cumulative Sums for Sampling
Inspection Schemes,” Applied Statistics, 1962: 23), called a nomogram, can then be
used to determine values of h and n that achieve the specified ARLs.† This chart is
shown as Figure 16.11. The method for using the chart is described in the accompa-
nying box. Either the value of � must be known or an estimate is used in its place.

* This contrasts with previous notation, where � represented the number of standard deviations by which
� changed.

† The word nomogram is not specific to this chart; nomograms are used for many other purposes.

Using the Kemp Nomogram

1. Locate the desired ARLs on the in-control and out-of-control scales.
Connect these two points with a line.

2. Note where the line crosses the k scale, and solve for n using the equation

k �

Then round n up to the nearest integer.

3. Connect the point on the k scale with the point on the in-control ARL
scale using a second line, and note where this line crosses the h scale.
Then h � (�/�n�) � h.

�/2
�
�/�n�
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The value h � .95 was used in Example 16.9. In that situation, it follows that the in-
control ARL is 500 and the out-of-control ARL (for � � .3) is 7.

The target value for the diameter of the interior core of a hydraulic pump is 2.250 in.
If the standard deviation of core diameter is � � .004, what CUSUM procedure will
yield an in-control ARL of 500 and an ARL of 5 when the mean core diameter shifts
by the amount .003 in.?

Connecting the point 500 on the in-control ARL scale to the point 5 on the
out-of-control ARL scale and extending the line to the k scale on the far left in
Figure 16.11 gives k � .74. Thus

k � .74 � � � .375�n�

so

�n� � �
.
.
3
7
7
4
5

� � 1.973 n � (1.973)2 � 3.894

The CUSUM procedure should therefore be based on the sample size n � 4. Now
connecting .74 on the k scale to 500 on the in-control ARL scale gives h � 3.2,
from which

h � (�/�n�) � (3.2) � (.004/�4�)(3.2) � .0064

An out-of-control signal results as soon as either dr � .0064 or er � .0064. ■
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Figure 16.11 The Kemp nomogram*

Example 16.10

* SOURCE: Kemp, Kenneth W., “The Use of Cumulative Sums for Sampling Inspection Schemes,”
Applied Statistics, Vol. XI, 1962: 23. With permission of Blackwell Publishing.
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We have discussed CUSUM procedures for controlling process location. There
are also CUSUM procedures for controlling process variation and for attribute data.
The chapter references should be consulted for information on these procedures.

27. Containers of a certain treatment for septic tanks are sup-
posed to contain 16 oz of liquid. A sample of five containers
is selected from the production line once each hour and the
sample average content is determined. Consider the follow-
ing results: 15.992, 16.051, 16.066, 15.912, 16.030, 16.060,
15.982, 15.899, 16.038, 16.074, 16.029, 15.935, 16.032,
15.960, 16.055. Using � � .10 and h � .20, employ the
computational form of the CUSUM procedure to investigate
the behavior of this process.

28. The target value for the diameter of a certain type of drive-
shaft is .75 in. The size of the shift in the average diameter
considered important to detect is .002 in. Sample average
diameters for successive groups of n � 4 shafts are as fol-
lows: .7507, .7504, .7492, .7501, .7503, .7510, .7490, .7497,

.7488, .7504, .7516, .7472, .7489, .7483, .7471, .7498,

.7460, .7482, .7470, .7493, .7462, .7481. Use the computa-
tional form of the CUSUM procedure with h � .003 to see
whether the process mean remained on target throughout the
time of observation.

29. The standard deviation of a certain dimension on an aircraft
part is .005 cm. What CUSUM procedure will give an in-
control ARL of 600 and an out-of-control ARL of 4 when
the mean value of the dimension shifts by .004 cm?

30. When the out-of-control ARL corresponds to a shift of 1
standard deviation in the process mean, what are the char-
acteristics of the CUSUM procedure that has ARLs of 250
and 4.8 for the in-control and out-of-control conditions,
respectively?

EXERCISES Section 16.5 (27–30)

Items coming from a production process are often sent in groups to another company
or commercial establishment. A group might consist of all units from a particular
production run or shift, in a shipping container of some sort, sent in response to a
particular order, and so on. The group of items is usually called a lot, the sender is
referred to as a producer, and the recipient of the lot is the consumer. Our focus will
be on situations in which each item is either defective or nondefective, with p denot-
ing the proportion of defective units in the lot. The consumer would naturally want
to accept the lot only if the value of p is suitably small. Acceptance sampling is that
part of applied statistics dealing with methods for deciding whether the consumer
should accept or reject a lot.

Until quite recently, control chart procedures and acceptance sampling tech-
niques were regarded by practitioners as equally important parts of quality control
methodology. This is no longer the case. The reason is that the use of control charts
and other recently developed strategies offers the opportunity to design quality
into a product, whereas acceptance sampling deals with what has already been
produced and thus does not provide for any direct control over process quality.
This led the late American quality control expert W. E. Deming, a major force in
persuading the Japanese to make substantial use of quality control methodology,
to argue strongly against the use of acceptance sampling in many situations. In a
similar vein, the recent book by Ryan (see the chapter bibliography) devotes sev-
eral chapters to control charts and mentions acceptance sampling only in passing.
As a reflection of this deemphasis, we content ourselves here with a brief intro-
duction to basic concepts. More information can be found in several references of
the chapter bibliography.

16.6 Acceptance Sampling
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Single-Sampling Plans
The most straightforward type of acceptance sampling plan involves selecting a sin-
gle random sample of size n and then rejecting the lot if the number of defectives in
the sample exceeds a specified critical value c. Let the rv X denote the number of
defective items in the lot and A denote the event that the lot is accepted. Then P(A) �
P(X � c) is a function of p; the larger the value of p, the smaller will be the proba-
bility of accepting the lot.

If the sample size n is large relative to N, P(A) is calculated using the hyper-
geometric distribution (the number of defectives in the lot is Np):

P(X � c) � �
c

x�0
h(x; n, Np, N ) � �

c

x�0

When n is small relative to N (the rule of thumb suggested previously was n � .05N,
but some authors employ the less conservative rule n � .10N ), the binomial distri-
bution can be used:

P(X � c) � �
c

x�0
b(x; n, p) � �

c

x�0
� � p x(1 � p)n�x

Finally, if P(A) is large only when p is small (this depends on the value of c), the
Poisson approximation to the binomial distribution is justified:

P(X � c) � �
c

x�0
p(x; np) � �

c

x�0
�
e�np

x
(
!
np)x

�

The behavior of a sampling plan can be nicely summarized by graphing P(A)
as a function of p. Such a graph is called the operating characteristic (OC) curve
for the plan.

Consider the sampling plan with critical value c � 2 and sample size n � 50, and
suppose that the lot size N exceeds 1000, so the binomial distribution can be used.
This gives

P(A) � P(X � 2) � (1 � p)50 � 50p(1 � p)49 � 1255p2(1 � p)48

The accompanying table shows P(A) for selected values of p, and the corresponding
operating characteristic (OC) curve is shown in Figure 16.12.

p | .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .15

P(A) | .986 .922 .811 .677 .541 .416 .311 .226 .161 .112 .051 .014

The OC curve for the plan of Example 16.11 has P(A) near 1 for p very close
to 0. However, in many applications a defective rate of 8% [for which P(A) � .226]
or even just 5% [P(A) � .541] would be considered excessive, in which case the
acceptance probabilities are too high. Increasing the critical value c while holding
n fixed gives a plan for which P(A) increases at each p (except 0 and 1), so the new
OC curve lies above the old one. This is desirable for p near 0 but not for larger
values of p. Holding c constant while increasing n gives a lower OC curve, which

n
x

�N
x
p� � �N(

n
1
�

�

x
p)�

��

�N
n �

Example 16.11
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Designing a Single-Sample Plan
An effective sampling plan is one with the following characteristics:

1. It has a specified high probability of accepting lots that the producer considers to
be of good quality.

2. It has a specified low probability of accepting lots that the consumer considers to
be of poor quality.

A plan of this sort can be developed by proceeding as follows. Let’s designate two
different values of p, one for which P(A) is a specified value close to 1 and the other
for which P(A) is a specified value near 0. These two values of p—say, p1 and p2—
are often called the acceptable quality level (AQL) and the lot tolerance percent
defective (LTPD). That is, we require a plan for which

1. P(A) � 1 � � when p � p1 � AQL (� small)

2. P(A) � � when p � p2 � LTPD (� small)

This is analogous to seeking a test procedure with specified type I error probability
� and specified type II error probability � when testing hypotheses. For example, we
might have

AQL � .01 � � .05 (P(A) � .95)

LTPD � .045 � � .10 (P(A) � .10)

Because X is discrete, we must typically be content with values of n and c that
approximately satisfy these conditions.

Table 16.6 gives information from which n and c can be determined in the case
� � .05, � � .10.

.02 .04 .06 .08 .10 .12
0.0

0.2

0.4

0.6

0.8

1.0

P(A)

p

Figure 16.12 OC curve for sampling plan with c � 2, n � 50 ■

is fine for larger p but not for p close to 0. We want an OC curve that is higher for
very small p and lower for larger p. This can be achieved by increasing n and adjust-
ing c.
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Let’s determine a plan for which AQL � p1 � .01 and LTPD � p2 � .045. The ratio
of p2 to p1 is

�
L
A
T
Q
P
L
D

� � �
p
p

2

1

� � �
.0
.0

4
1
5

� � 4.50

This value lies between the ratio 4.89 given in Table 16.6, for which c � 3, and 4.06,
for which c � 4. Once one of these values of c is chosen, n can be determined either
by dividing the np1 value in Table 16.6 by p1 or via np2/p2. Thus four different plans
(two values of c, and for each two values of n) give approximately the specified value
of � and �. Consider, for example, using c � 3 and

n � �
n
p
p

1

1� � �
1.

.
3
0

6
1

6
� � 136.6 � 137

Then

� � 1 � P(X � 3 when p � p1)

� 1 � �
3

x�0
� �(.01)x(.99)137�x � .050

(the Poisson approximation with � � 1.37 also gives .050) and

� � P(X � 3 when p � p2) � .131

The plan with c � 4 and n determined from np2 � 7.99 has n � 178, � � .034, and
� � .094. The larger sample size results in a plan with both � and � smaller than the
corresponding specified values. ■

The book by Douglas Montgomery cited in the chapter bibliography contains a chart
from which c and n can be determined for any specified � and �.

It may happen that the number of defective items in the sample reaches c � 1
before all items have been examined. For example, in the case c � 3 and n � 137, it
may be that the 125th item examined is the fourth defective item, so that the remain-
ing 12 items need not be examined. However, it is generally recommended that all
items be examined even when this does occur in order to provide a lot-by-lot qual-
ity history and estimates of p over time.

137
x

Table 16.6 Factors for Determining n and c for a Single-Sample Plan with
� � .05, � � .10

c np1 np2 p2/p1 c np1 np2 p2/p1

0 .051 2.30 45.10 8 4.695 12.99 2.77
1 .355 3.89 10.96 9 5.425 14.21 2.62
2 .818 5.32 6.50 10 6.169 15.41 2.50
3 1.366 6.68 4.89 11 6.924 16.60 2.40
4 1.970 7.99 4.06 12 7.690 17.78 2.31
5 2.613 9.28 3.55 13 8.464 18.86 2.24
6 3.285 10.53 3.21 14 9.246 20.13 2.18
7 3.981 11.77 2.96 15 10.040 21.29 2.12

Example 16.12
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Double-Sampling Plans
In a double-sampling plan, the number of defective items x1 in an initial sample of
size n1 is determined. There are then three possible courses of action: immediately
accept the lot, immediately reject the lot, or take a second sample of n2 items and
reject or accept the lot depending on the total number x1 � x2 of defective items in
the two samples. Besides the two sample sizes, a specific plan is characterized by
three further numbers—c1, r1, and c2—as follows:

1. Reject the lot if x1 � r1.

2. Accept the lot if x1 � c1.

3. If c1 � x1 � r1, take a second sample; then accept the lot if x1 � x2 � c2 and reject
it otherwise.

Consider the double-sampling plan with n1 � 80, n2 � 80, c1 � 2, r1 � 5, and c2 � 6.
Thus the lot will be accepted if (1) x1 � 0, 1, or 2; (2) x1 � 3 and x2 � 0, 1, 2, or 3; or
(3) x1 � 4 and x2 � 0, 1, or 2.

Assuming that the lot size is large enough for the binomial approximation to
apply, the probability P(A) of accepting the lot is

P(A) � P(X1 � 0, 1, or 2) � P(X1 � 3, X2 � 0, 1, 2, or 3)

� P(X1 � 4, X2 � 0, 1, or 2)

� �
2

x1�0
b(x1; 80, p) � b(3; 80, p) �

3

x2�0
b(x2; 80, p)

� b(4; 80, p) �
2

x2�0
b(x2; 80, p)

Again the graph of P(A) versus p is the plan’s OC curve. The OC curve for this plan
appears in Figure 16.13.

Example 16.13
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Figure 16.13 OC curve for the double-sampling plan of Example 16.13 ■

One standard method for designing a double-sampling plan involves proceed-
ing as suggested earlier for single-sample plans. Specify values p1 and p2 along with
corresponding acceptance probabilities 1 � � and �. Then find a plan that satisfies
these conditions. The book by Montgomery provides tables similar to Table 16.6 for
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this purpose in the cases n2 � n1 and n2 � 2n1 with 1 � � � .95, � � .10. Much
more extensive tabulations of plans are available in other sources.

Analogous to standard practice with single-sample plans, it is recommended
that all items in the first sample be examined even when the (r1 � 1)st defective is
discovered prior to inspection of the n1th item. However, it is customary to terminate
inspection of the second sample if the number of defectives is sufficient to justify
rejection before all items have been examined. This is referred to as curtailment in
the second sample. Under curtailment, it can be shown that the expected number of
items inspected in a double-sampling plan is smaller than the number of items exam-
ined in a single-sampling plan when the OC curves of the two plans are close to
being identical. This is the major virtue of double-sampling plans. For more on these
matters as well as a discussion of multiple and sequential sampling plans (which
involve selecting items for inspection one-by-one rather than in groups), a book on
quality control should be consulted.

Rectifying Inspection and Other Design Criteria
In some situations, sampling inspection is carried out using rectification. For single-
sample plans, this means that each defective item in the sample is replaced with a
satisfactory one, and if the number of defectives in the sample exceeds the accept-
ance cutoff c, all items in the lot are examined and good items are substituted for any
defectives. Let N denote the lot size. One important characteristic of a sampling plan
with rectifying inspection is average outgoing quality, denoted by AOQ. This is the
long-run proportion of defective items among those sent on after the sampling plan
is employed. Now defectives will occur only among the N � n items not inspected
in a lot judged acceptable on the basis of a sample. Suppose, for example, that
P(A) � P(X � c) � .985 when p � .01. Then in the long run, 98.5% of the N � n
items not in the sample will not be inspected, of which we expect 1% to be defec-
tive. This implies that the expected number of defectives in a randomly selected
batch is (N � n) � P(A) � p � .00985(N � n). Dividing this by the number of items in
a lot gives average outgoing quality:

AOQ ��
(N � n)

N
� P(A) � p
�

� P(A) � p if N �� n

Because AOQ � 0 when either p � 0 or p � 1 [P(A) � 0 in the latter case], it fol-
lows that there is a value of p between 0 and 1 for which AOQ is a maximum. The
maximum value of AOQ is called the average outgoing quality limit, AOQL. For
example, for the plan with n � 137 and c � 3 discussed previously, AOQL � .0142,
the value of AOQ at p � .02.

Proper choices of n and c will yield a sampling plan for which AOQL is a spec-
ified small number. Such a plan is not, however, unique, so another condition can be
imposed. Frequently this second condition will involve the average (i.e., expected)
total number inspected, denoted by ATI. The number of items inspected in a ran-
domly chosen lot is a random variable that takes on the value n with probability P(A)
and N with probability 1 � P(A). Thus the expected number of items inspected in a
randomly selected lot is

ATI � n � P(A) � N � (1 � P(A))

It is common practice to select a sampling plan that has a specified AOQL and, in
addition, minimum ATI at a particular quality level p.



660 CHAPTER 16 Quality Control Methods

Standard Sampling Plans
It may seem as though the determination of a sampling plan that simultaneously sat-
isfies several criteria would be quite difficult. Fortunately, others have already laid
the groundwork in the form of extensive tabulations of such plans. MIL STD 105D,
developed by the military after World War II, is the most widely used set of plans. A
civilian version, ANSI/ASQC Z1.4, is quite similar to the military version. A third
set of plans that is quite popular was developed at Bell Laboratories prior to World
War II by two applied statisticians named Dodge and Romig. The book by Mont-
gomery (see the chapter bibliography) contains a readable introduction to the use 
of these plans.

31. Consider the single-sample plan with c � 2 and n � 50, as
discussed in Example 16.11, but now suppose that the lot
size is N � 500. Calculate P(A), the probability of accepting
the lot, for p � .01, .02, . . . , .10 using the hypergeometric
distribution. Does the binomial approximation give satisfac-
tory results in this case?

32. A sample of 50 items is to be selected from a batch consist-
ing of 5000 items. The batch will be accepted if the sample
contains at most one defective item. Calculate the probabil-
ity of lot acceptance for p � .01, .02, . . . , .10, and sketch
the OC curve.

33. Refer to Exercise 32 and consider the plan with n � 100 and
c � 2. Calculate P(A) for p � .01, .02, . . . , .05, and sketch
the two OC curves on the same set of axes. Which of the two
plans is preferable (leaving aside the cost of sampling) and
why?

34. Develop a single-sample plan for which AQL � .02 and
LTPD � .07 in the case � � .05, � � .10. Once values of n
and c have been determined, calculate the achieved values
of � and � for the plan.

35. Consider the double-sampling plan for which both sample
sizes are 50. The lot is accepted after the first sample if
the number of defectives is at most 1, rejected if the
number of defectives is at least 4, and rejected after the

second sample if the total number of defectives is 6 or
more. Calculate the probability of accepting the lot when
p � .01, .05, and .10.

36. Some sources advocate a somewhat more restrictive type of
doubling-sampling plan in which r1 � c2 � 1; that is, the lot
is rejected if at either stage the (total) number of defectives is
at least r1 (see the book by Montgomery). Consider this type
of sampling plan with n1 � 50, n2 � 100, c1 � 1, and r1 � 4.
Calculate the probability of lot acceptance when p � .02, .05,
and .10.

37. Refer to Example 16.11, in which a single-sample plan with
n � 50 and c � 2 was employed.
a. Calculate AOQ for p � .01, .02, . . . , .10. What does this

suggest about the value of p for which AOQ is a maxi-
mum and the corresponding AOQL?

b. Determine the value of p for which AOQ is a maximum
and the corresponding value of AOQL. [Hint: Use calcu-
lus.]

c. For N � 2000, calculate ATI for the values of p given in
part (a).

38. Consider the single-sample plan that utilizes n � 50 and
c � 1 when N � 2000. Determine the values of AOQ and
ATI for selected values of p, and graph each of these against
p. Also determine the value of AOQL.

EXERCISES Section 16.6 (31–38)

39. Observations on shear strength for 26 subgroups of test spot
welds, each consisting of six welds, yield �x�i � 10,980,
�si � 402, and �ri � 1074. Calculate control limits for any
relevant control charts.

40. The number of scratches on the surface of each of 24
rectangular metal plates is determined, yielding the follow-
ing data: 8, 1, 7, 5, 2, 0, 2, 3, 4, 3, 1, 2, 5, 7, 3, 4, 6, 5, 2, 4,

0, 10, 2, 6. Construct an appropriate control chart, and
comment.

41. The following numbers are observations on tensile strength
of synthetic fabric specimens selected from a production
process at equally spaced time intervals. Construct appro-
priate control charts, and comment (assume an assignable
cause is identifiable for any out-of-control observations).

SUPPLEMENTARY EXERCISES (39–44)
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1. 51.3 51.7 49.5 12. 49.6 48.4 50.0
2. 51.0 50.0 49.3 13. 49.8 51.2 49.7
3. 50.8 51.1 49.0 14. 50.4 49.9 50.7
4. 50.6 51.1 49.0 15. 49.4 49.5 49.0
5. 49.6 50.5 50.9 16. 50.7 49.0 50.0
6. 51.3 52.0 50.3 17. 50.8 49.5 50.9
7. 49.7 50.5 50.3 18. 48.5 50.3 49.3
8. 51.8 50.3 50.0 19. 49.6 50.6 49.4
9. 48.6 50.5 50.7 20. 50.9 49.4 49.7

10. 49.6 49.8 50.5 21. 54.1 49.8 48.5
11. 49.9 50.7 49.8 22. 50.2 49.6 51.5

42. An alternative to the p chart for the fraction defective is the
np chart for number defective. This chart has UCL � np� �
3�n�p��(1� �� p��)�, LCL � np� � 3�n�p��(1� �� p��)�, and the num-
ber of defectives from each sample is plotted on the chart.
Construct such a chart for the data of Example 16.6. Will
the use of an np chart always give the same message as the
use of a p chart (i.e., are the two charts equivalent)?

43. Resistance observations (ohms) for subgroups of a certain
type of register gave the following summary quantities:

i ni x�i si i ni x�i si

1 4 430.0 22.5 7 4 420.8 25.4
2 4 418.2 20.6 8 4 431.4 24.0
3 3 435.5 25.1 9 4 428.7 21.2
4 4 427.6 22.3 10 4 440.1 25.8
5 4 444.0 21.5 11 4 445.2 27.3
6 3 431.4 28.9 12 4 430.1 22.2

(continued )

i ni x�i si i ni x�i si

13 4 427.2 24.0 17 3 447.0 19.8
14 4 439.6 23.3 18 4 434.4 23.7
15 3 415.9 31.2 19 4 422.2 25.1
16 4 419.8 27.5 20 4 425.7 24.4

Construct appropriate control limits. [Hint: Use x� � �nix�i/�ni

and s2 � �(ni � 1)s2
i /�(ni � 1).]

44. Let � be a number between 0 and 1 and define a sequence W1,
W2, W3, . . . by W0 �� and Wt � �X�t � (1 � �)Wt�1 for t �
1, 2, . . . . Substituting for Wt�1 its representation in terms of
X�t�1 and Wt�2, then substituting for Wt�2, and so on, results in

Wt � �X�t � �(1 � �)X�t�1 � 
 
 


� �(1 � �)t�1X�1 � (1 � �)t�

The fact that Wt depends not only on X�t but also on averages
for past time points, albeit with (exponentially) decreasing
weights, suggests that changes in the process mean will be
more quickly reflected in the Wts than in the individual X�ts.
a. Show that E(Wt) � �.
b. Let � 2

t � V(Wt), and show that

� 2
t ��

�[1 �

2
(
�

1 �

�

�)2t]
� � �

�

n

2

�

c. An exponentially weighted moving-average control chart
plots the Wts and uses control limits �0 � 3�t (or x�� in
place of �0). Construct such a chart for the data of Ex-
ample 16.9, using �0 � 40.
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Table A.1 Cumulative Binomial Probabilities

a. n � 5

p

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

0 .951 .774 .590 .328 .237 .168 .078 .031 .010 .002 .001 .000 .000 .000 .000
1 .999 .977 .919 .737 .633 .528 .337 .188 .087 .031 .016 .007 .000 .000 .000

x 2 1.000 .999 .991 .942 .896 .837 .683 .500 .317 .163 .104 .058 .009 .001 .000
3 1.000 1.000 1.000 .993 .984 .969 .913 .812 .663 .472 .367 .263 .081 .023 .001
4 1.000 1.000 1.000 1.000 .999 .998 .990 .969 .922 .832 .763 .672 .410 .226 .049

b. n � 10

p

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

0 .904 .599 .349 .107 .056 .028 .006 .001 .000 .000 .000 .000 .000 .000 .000
1 .996 .914 .736 .376 .244 .149 .046 .011 .002 .000 .000 .000 .000 .000 .000
2 1.000 .988 .930 .678 .526 .383 .167 .055 .012 .002 .000 .000 .000 .000 .000
3 1.000 .999 .987 .879 .776 .650 .382 .172 .055 .011 .004 .001 .000 .000 .000

x
4 1.000 1.000 .998 .967 .922 .850 .633 .377 .166 .047 .020 .006 .000 .000 .000

5 1.000 1.000 1.000 .994 .980 .953 .834 .623 .367 .150 .078 .033 .002 .000 .000
6 1.000 1.000 1.000 .999 .996 .989 .945 .828 .618 .350 .224 .121 .013 .001 .000
7 1.000 1.000 1.000 1.000 1.000 .998 .988 .945 .833 .617 .474 .322 .070 .012 .000
8 1.000 1.000 1.000 1.000 1.000 1.000 .998 .989 .954 .851 .756 .624 .264 .086 .004
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .994 .972 .944 .893 .651 .401 .096

c. n � 15

p

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

0 .860 .463 .206 .035 .013 .005 .000 .000 .000 .000 .000 .000 .000 .000 .000
1 .990 .829 .549 .167 .080 .035 .005 .000 .000 .000 .000 .000 .000 .000 .000
2 1.000 .964 .816 .398 .236 .127 .027 .004 .000 .000 .000 .000 .000 .000 .000
3 1.000 .995 .944 .648 .461 .297 .091 .018 .002 .000 .000 .000 .000 .000 .000
4 1.000 .999 .987 .836 .686 .515 .217 .059 .009 .001 .000 .000 .000 .000 .000

5 1.000 1.000 .998 .939 .852 .722 .402 .151 .034 .004 .001 .000 .000 .000 .000
6 1.000 1.000 1.000 .982 .943 .869 .610 .304 .095 .015 .004 .001 .000 .000 .000

x 7 1.000 1.000 1.000 .996 .983 .950 .787 .500 .213 .050 .017 .004 .000 .000 .000
8 1.000 1.000 1.000 .999 .996 .985 .905 .696 .390 .131 .057 .018 .000 .000 .000
9 1.000 1.000 1.000 1.000 .999 .996 .966 .849 .597 .278 .148 .061 .002 .000 .000

10 1.000 1.000 1.000 1.000 1.000 .999 .991 .941 .783 .485 .314 .164 .013 .001 .000
11 1.000 1.000 1.000 1.000 1.000 1.000 .998 .982 .909 .703 .539 .352 .056 .005 .000
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .973 .873 .764 .602 .184 .036 .000
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .920 .833 .451 .171 .010
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .987 .965 .794 .537 .140

(continued)

B(x; n, p) � �
x

y�0
b(y; n, p)
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Table A.1 Cumulative Binomial Probabilities (cont.)

d. n � 20

p

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

0 .818 .358 .122 .012 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
1 .983 .736 .392 .069 .024 .008 .001 .000 .000 .000 .000 .000 .000 .000 .000
2 .999 .925 .677 .206 .091 .035 .004 .000 .000 .000 .000 .000 .000 .000 .000
3 1.000 .984 .867 .411 .225 .107 .016 .001 .000 .000 .000 .000 .000 .000 .000
4 1.000 .997 .957 .630 .415 .238 .051 .006 .000 .000 .000 .000 .000 .000 .000

5 1.000 1.000 .989 .804 .617 .416 .126 .021 .002 .000 .000 .000 .000 .000 .000
6 1.000 1.000 .998 .913 .786 .608 .250 .058 .006 .000 .000 .000 .000 .000 .000
7 1.000 1.000 1.000 .968 .898 .772 .416 .132 .021 .001 .000 .000 .000 .000 .000
8 1.000 1.000 1.000 .990 .959 .887 .596 .252 .057 .005 .001 .000 .000 .000 .000

x
9 1.000 1.000 1.000 .997 .986 .952 .755 .412 .128 .017 .004 .001 .000 .000 .000

10 1.000 1.000 1.000 .999 .996 .983 .872 .588 .245 .048 .014 .003 .000 .000 .000
11 1.000 1.000 1.000 1.000 .999 .995 .943 .748 .404 .113 .041 .010 .000 .000 .000
12 1.000 1.000 1.000 1.000 1.000 .999 .979 .868 .584 .228 .102 .032 .000 .000 .000
13 1.000 1.000 1.000 1.000 1.000 1.000 .994 .942 .750 .392 .214 .087 .002 .000 .000
14 1.000 1.000 1.000 1.000 1.000 1.000 .998 .979 .874 .584 .383 .196 .011 .000 .000

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .994 .949 .762 .585 .370 .043 .003 .000
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .984 .893 .775 .589 .133 .016 .000
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .965 .909 .794 .323 .075 .001
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .992 .976 .931 .608 .264 .017
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .997 .988 .878 .642 .182

(continued )

B(x; n, p) � �
x

y�0
b(y; n, p)
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Table A.1 Cumulative Binomial Probabilities (cont.)

e. n � 25

p

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

0 .778 .277 .072 .004 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1 .974 .642 .271 .027 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .998 .873 .537 .098 .032 .009 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 1.000 .966 .764 .234 .096 .033 .002 .000 .000 .000 .000 .000 .000 .000 .000
4 1.000 .993 .902 .421 .214 .090 .009 .000 .000 .000 .000 .000 .000 .000 .000

5 1.000 .999 .967 .617 .378 .193 .029 .002 .000 .000 .000 .000 .000 .000 .000
6 1.000 1.000 .991 .780 .561 .341 .074 .007 .000 .000 .000 .000 .000 .000 .000
7 1.000 1.000 .998 .891 .727 .512 .154 .022 .001 .000 .000 .000 .000 .000 .000
8 1.000 1.000 1.000 .953 .851 .677 .274 .054 .004 .000 .000 .000 .000 .000 .000
9 1.000 1.000 1.000 .983 .929 .811 .425 .115 .013 .000 .000 .000 .000 .000 .000

10 1.000 1.000 1.000 .994 .970 .902 .586 .212 .034 .002 .000 .000 .000 .000 .000
11 1.000 1.000 1.000 .998 .980 .956 .732 .345 .078 .006 .001 .000 .000 .000 .000

x 12 1.000 1.000 1.000 1.000 .997 .983 .846 .500 .154 .017 .003 .000 .000 .000 .000
13 1.000 1.000 1.000 1.000 .999 .994 .922 .655 .268 .044 .020 .002 .000 .000 .000
14 1.000 1.000 1.000 1.000 1.000 .998 .966 .788 .414 .098 .030 .006 .000 .000 .000

15 1.000 1.000 1.000 1.000 1.000 1.000 .987 .885 .575 .189 .071 .017 .000 .000 .000
16 1.000 1.000 1.000 1.000 1.000 1.000 .996 .946 .726 .323 .149 .047 .000 .000 .000
17 1.000 1.000 1.000 1.000 1.000 1.000 .999 .978 .846 .488 .273 .109 .002 .000 .000
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .993 .926 .659 .439 .220 .009 .000 .000
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .971 .807 .622 .383 .033 .001 .000

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .910 .786 .579 .098 .007 .000
21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .967 .904 .766 .236 .034 .000
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .968 .902 .463 .127 .002
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .993 .973 .729 .358 .026
24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .996 .928 .723 .222

Table A.2 Cumulative Poisson Probabilities

�

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .905 .819 .741 .670 .607 .549 .497 .449 .407 .368
1 .995 .982 .963 .938 .910 .878 .844 .809 .772 .736
2 1.000 .999 .996 .992 .986 .977 .966 .953 .937 .920

x 3 1.000 1.000 .999 .998 .997 .994 .991 .987 .981
4 1.000 1.000 1.000 .999 .999 .998 .996
5 1.000 1.000 1.000 .999
6 1.000

(continued )

B(x; n, p) � �
x

y�0
b(y; n, p)

F(x; �) � �
x

y�0
�
e�

y

�

!
�y

�
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Table A.2 Cumulative Poisson Probabilities (cont.)

�

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 15.0 20.0

0 .135 .050 .018 .007 .002 .001 .000 .000 .000 .000 .000
1 .406 .199 .092 .040 .017 .007 .003 .001 .000 .000 .000
2 .677 .423 .238 .125 .062 .030 .014 .006 .003 .000 .000
3 .857 .647 .433 .265 .151 .082 .042 .021 .010 .000 .000
4 .947 .815 .629 .440 .285 .173 .100 .055 .029 .001 .000

5 .983 .916 .785 .616 .446 .301 .191 .116 .067 .003 .000
6 .995 .966 .889 .762 .606 .450 .313 .207 .130 .008 .000
7 .999 .988 .949 .867 .744 .599 .453 .324 .220 .018 .001
8 1.000 .996 .979 .932 .847 .729 .593 .456 .333 .037 .002
9 .999 .992 .968 .916 .830 .717 .587 .458 .070 .005

10 1.000 .997 .986 .957 .901 .816 .706 .583 .118 .011
11 .999 .995 .980 .947 .888 .803 .697 .185 .021
12 1.000 .998 .991 .973 .936 .876 .792 .268 .039
13 .999 .996 .987 .966 .926 .864 .363 .066
14 1.000 .999 .994 .983 .959 .917 .466 .105

15 .999 .998 .992 .978 .951 .568 .157
16 1.000 .999 .996 .989 .973 .664 .221
17 1.000 .998 .995 .986 .749 .297

x
18 .999 .998 .993 .819 .381
19 1.000 .999 .997 .875 .470

20 1.000 .998 .917 .559
21 .999 .947 .644
22 1.000 .967 .721
23 .981 .787
24 .989 .843

25 .994 .888
26 .997 .922
27 .998 .948
28 .999 .966
29 1.000 .978

30 .987
31 .992
32 .995
33 .997
34 .999

35 .999
36 1.000

F(x; �) � �
x

y�0
�
e�

y

�

!
�y

�
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Table A.3 Standard Normal Curve Areas

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

�3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
�3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
�3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
�3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
�3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

�2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014
�2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
�2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
�2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
�2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0038

�2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
�2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
�2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
�2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
�2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

�1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
�1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
�1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
�1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
�1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

�1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681
�1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
�1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
�1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
�1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

�0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
�0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
�0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
�0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
�0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

�0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
�0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3482
�0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
�0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
�0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

(continued )

Standard normal density function

0 z

Shaded area = Φ(z)

Φ(z) � P(Z � z)
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Table A.3 Standard Normal Curve Areas (cont.) �(z) � P(Z � z)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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Table A.4 The Incomplete Gamma Function

x � 1 2 3 4 5 6 7 8 9 10

1 .632 .264 .080 .019 .004 .001 .000 .000 .000 .000
2 .865 .594 .323 .143 .053 .017 .005 .001 .000 .000
3 .950 .801 .577 .353 .185 .084 .034 .012 .004 .001
4 .982 .908 .762 .567 .371 .215 .111 .051 .021 .008

5 .993 .960 .875 .735 .560 .384 .238 .133 .068 .032
6 .998 .983 .938 .849 .715 .554 .394 .256 .153 .084
7 .999 .993 .970 .918 .827 .699 .550 .401 .271 .170
8 1.000 .997 .986 .958 .900 .809 .687 .547 .407 .283
9 .999 .994 .979 .945 .884 .793 .676 .544 .413

10 1.000 .997 .990 .971 .933 .870 .780 .667 .542
11 .999 .995 .985 .962 .921 .857 .768 .659
12 1.000 .998 .992 .980 .954 .911 .845 .758
13 .999 .996 .989 .974 .946 .900 .834
14 1.000 .998 .994 .986 .968 .938 .891

15 .999 .997 .992 .982 .963 .930

F(x; �) � 
x

0
�
�(

1
�)
�y��1e�y dy
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Table A.5 Critical Values for t Distributions

�

v .10 .05 .025 .01 .005 .001 .0005

1 3.078 6.314 12.706 31.821 63.657 318.31 636.62
2 1.886 2.920 4.303 6.965 9.925 22.326 31.598
3 1.638 2.353 3.182 4.541 5.841 10.213 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.767
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
32 1.309 1.694 2.037 2.449 2.738 3.365 3.622
34 1.307 1.691 2.032 2.441 2.728 3.348 3.601
36 1.306 1.688 2.028 2.434 2.719 3.333 3.582
38 1.304 1.686 2.024 2.429 2.712 3.319 3.566

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
50 1.299 1.676 2.009 2.403 2.678 3.262 3.496
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291

t� density curve

t�,�0

Shaded area = �
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Table A.6 Tolerance Critical Values for Normal Population Distributions

Two-sided Intervals One-sided Intervals

Confidence Level 95% 99% 95% 99%

% of Population Captured � 90% � 95% � 99% � 90% � 95% � 99% � 90% � 95% � 99% � 90% � 95% � 99%

2 32.019 37.674 48.430 160.193 188.491 242.300 20.581 26.260 37.094 103.029 131.426 185.617
3 8.380 9.916 12.861 18.930 22.401 29.055 6.156 7.656 10.553 13.995 17.370 23.896
4 5.369 6.370 8.299 9.398 11.150 14.527 4.162 5.144 7.042 7.380 9.083 12.387
5 4.275 5.079 6.634 6.612 7.855 10.260 3.407 4.203 5.741 5.362 6.578 8.939
6 3.712 4.414 5.775 5.337 6.345 8.301 3.006 3.708 5.062 4.411 5.406 7.335
7 3.369 4.007 5.248 4.613 5.488 7.187 2.756 3.400 4.642 3.859 4.728 6.412
8 3.136 3.732 4.891 4.147 4.936 6.468 2.582 3.187 4.354 3.497 4.285 5.812
9 2.967 3.532 4.631 3.822 4.550 5.966 2.454 3.031 4.143 3.241 3.972 5.389

10 2.839 3.379 4.433 3.582 4.265 5.594 2.355 2.911 3.981 3.048 3.738 5.074
11 2.737 3.259 4.277 3.397 4.045 5.308 2.275 2.815 3.852 2.898 3.556 4.829
12 2.655 3.162 4.150 3.250 3.870 5.079 2.210 2.736 3.747 2.777 3.410 4.633
13 2.587 3.081 4.044 3.130 3.727 4.893 2.155 2.671 3.659 2.677 3.290 4.472
14 2.529 3.012 3.955 3.029 3.608 4.737 2.109 2.615 3.585 2.593 3.189 4.337
15 2.480 2.954 3.878 2.945 3.507 4.605 2.068 2.566 3.520 2.522 3.102 4.222
16 2.437 2.903 3.812 2.872 3.421 4.492 2.033 2.524 3.464 2.460 3.028 4.123

Sample Size n 17 2.400 2.858 3.754 2.808 3.345 4.393 2.002 2.486 3.414 2.405 2.963 4.037
18 2.366 2.819 3.702 2.753 3.279 4.307 1.974 2.453 3.370 2.357 2.905 3.960
19 2.337 2.784 3.656 2.703 3.221 4.230 1.949 2.423 3.331 2.314 2.854 3.892
20 2.310 2.752 3.615 2.659 3.168 4.161 1.926 2.396 3.295 2.276 2.808 3.832
25 2.208 2.631 3.457 2.494 2.972 3.904 1.838 2.292 3.158 2.129 2.633 3.601
30 2.140 2.549 3.350 2.385 2.841 3.733 1.777 2.220 3.064 2.030 2.516 3.447
35 2.090 2.490 3.272 2.306 2.748 3.611 1.732 2.167 2.995 1.957 2.430 3.334
40 2.052 2.445 3.213 2.247 2.677 3.518 1.697 2.126 2.941 1.902 2.364 3.249
45 2.021 2.408 3.165 2.200 2.621 3.444 1.669 2.092 2.898 1.857 2.312 3.180
50 1.996 2.379 3.126 2.162 2.576 3.385 1.646 2.065 2.863 1.821 2.269 3.125
60 1.958 2.333 3.066 2.103 2.506 3.293 1.609 2.022 2.807 1.764 2.202 3.038
70 1.929 2.299 3.021 2.060 2.454 3.225 1.581 1.990 2.765 1.722 2.153 2.974
80 1.907 2.272 2.986 2.026 2.414 3.173 1.559 1.965 2.733 1.688 2.114 2.924
90 1.889 2.251 2.958 1.999 2.382 3.130 1.542 1.944 2.706 1.661 2.082 2.883

100 1.874 2.233 2.934 1.977 2.355 3.096 1.527 1.927 2.684 1.639 2.056 2.850
150 1.825 2.175 2.859 1.905 2.270 2.983 1.478 1.870 2.611 1.566 1.971 2.741
200 1.798 2.143 2.816 1.865 2.222 2.921 1.450 1.837 2.570 1.524 1.923 2.679
250 1.780 2.121 2.788 1.839 2.191 2.880 1.431 1.815 2.542 1.496 1.891 2.638
300 1.767 2.106 2.767 1.820 2.169 2.850 1.417 1.800 2.522 1.476 1.868 2.608

� 1.645 1.960 2.576 1.645 1.960 2.576 1.282 1.645 2.326 1.282 1.645 2.326
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Table A.7 Critical Values for Chi-Squared Distributions

�

	 .995 .99 .975 .95 .90 .10 .05 .025 .01 .005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.843 5.025 6.637 7.882
2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.344 12.837
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.085 16.748

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.440 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.012 18.474 20.276
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.534 20.090 21.954
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.022 21.665 23.587

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.724 26.755
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.735 27.687 29.817
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.600 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.577 32.799

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.407 7.564 8.682 10.085 24.769 27.587 30.190 33.408 35.716
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.843 7.632 8.906 10.117 11.651 27.203 30.143 32.852 36.190 38.580
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.033 8.897 10.283 11.591 13.240 29.615 32.670 35.478 38.930 41.399
22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796
23 9.260 10.195 11.688 13.090 14.848 32.007 35.172 38.075 41.637 44.179
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558
25 10.519 11.523 13.120 14.611 16.473 34.381 37.652 40.646 44.313 46.925

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.807 12.878 14.573 16.151 18.114 36.741 40.113 43.194 46.962 49.642
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.120 14.256 16.147 17.708 19.768 39.087 42.557 45.772 49.586 52.333
30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

31 14.457 15.655 17.538 19.280 21.433 41.422 44.985 48.231 52.190 55.000
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328
33 15.814 17.073 19.046 20.866 23.110 43.745 47.400 50.724 54.774 57.646
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.191 18.508 20.569 22.465 24.796 46.059 49.802 53.203 57.340 60.272

36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.584 19.960 22.105 24.075 26.492 48.363 52.192 55.667 59.891 62.880
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181
39 19.994 21.425 23.654 25.695 28.196 50.660 54.572 58.119 62.426 65.473
40 20.706 22.164 24.433 26.509 29.050 51.805 55.758 59.342 63.691 66.766

For � � 40, �2
�,�

� ��1 � �
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�
� � z� ��
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Shaded area = �
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Table A.8 t Curve Tail Areas

t 	 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500
0.1 .468 .465 .463 .463 .462. .462 .462 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461
0.2 .437 .430 .427 .426 .425 .424 .424 .423 .423 .423 .423 .422 .422 .422 .422 .422 .422 .422
0.3 .407 .396 .392 .390 .388 .387 .386 .386 .386 .385 .385 .385 .384 .384 .384 .384 .384 .384
0.4 .379 .364 .358 .355 .353 .352 .351 .350 .349 .349 .348 .348 .348 .347 .347 .347 .347 .347
0.5 .352 .333 .326 .322 .319 .317 .316 .315 .315 .314 .313 .313 .313 .312 .312 .312 .312 .312

0.6 .328 .305 .295 .290 .287 .285 .284 .283 .282 .281 .280 .280 .279 .279 .279 .278 .278 .278
0.7 .306 .278 .267 .261 .258 .255 .253 .252 .251 .250 .249 .249 .248 .247 .247 .247 .247 .246
0.8 .285 .254 .241 .234 .230 .227 .225 .223 .222 .221 .220 .220 .219 .218 .218 .218 .217 .217
0.9 .267 .232 .217 .210 .205 .201 .199 .197 .196 .195 .194 .193 .192 .191 .191 .191 .190 .190
1.0 .250 .211 .196 .187 .182 .178 .175 .173 .172 .170 .169 .169 .168 .167 .167 .166 .166 .165

1.1 .235 .193 .176 .167 .162 .157 .154 .152 .150 .149 .147 .146 .146 .144 .144 .144 .143 .143
1.2 .221 .177 .158 .148 .142 .138 .135 .132 .130 .129 .128 .127 .126 .124 .124 .124 .123 .123
1.3 .209 .162 .142 .132 .125 .121 .117 .115 .113 .111 .110 .109 .108 .107 .107 .106 .105 .105
1.4 .197 .148 .128 .117 .110 .106 .102 .100 .098 .096 .095 .093 .092 .091 .091 .090 .090 .089
1.5 .187 .136 .115 .104 .097 .092 .089 .086 .084 .082 .081 .080 .079 .077 .077 .077 .076 .075

1.6 .178 .125 .104 .092 .085 .080 .077 .074 .072 .070 .069 .068 .067 .065 .065 .065 .064 .064
1.7 .169 .116 .094 .082 .075 .070 .065 .064 .062 .060 .059 .057 .056 .055 .055 .054 .054 .053
1.8 .161 .107 .085 .073 .066 .061 .057 .055 .053 .051 .050 .049 .048 .046 .046 .045 .045 .044
1.9 .154 .099 .077 .065 .058 .053 .050 .047 .045 .043 .042 .041 .040 .038 .038 .038 .037 .037
2.0 .148 .092 .070 .058 .051 .046 .043 .040 .038 .037 .035 .034 .033 .032 .032 .031 .031 .030

2.1 .141 .085 .063 .052 .045 .040 .037 .034 .033 .031 .030 .029 .028 .027 .027 .026 .025 .025
2.2 .136 .079 .058 .046 .040 .035 .032 .029 .028 .026 .025 .024 .023 .022 .022 .021 .021 .021
2.3 .131 .074 .052 .041 .035 .031 .027 .025 .023 .022 .021 .020 .019 .018 .018 .018 .017 .017
2.4 .126 .069 .048 .037 .031 .027 .024 .022 .020 .019 .018 .017 .016 .015 .015 .014 .014 .014
2.5 .121 .065 .044 .033 .027 .023 .020 .018 .017 .016 .015 .014 .013 .012 .012 .012 .011 .011

2.6 .117 .061 .040 .030 .024 .020 .018 .016 .014 .013 .012 .012 .011 .010 .010 .010 .009 .009
2.7 .113 .057 .037 .027 .021 .018 .015 .014 .012 .011 .010 .010 .009 .008 .008 .008 .008 .007
2.8 .109 .054 .034 .024 .019 .016 .013 .012 .010 .009 .009 .008 .008 .007 .007 .006 .006 .006
2.9 .106 .051 .031 .022 .017 .014 .011 .010 .009 .008 .007 .007 .006 .005 .005 .005 .005 .005
3.0 .102 .048 .029 .020 .015 .012 .010 .009 .007 .007 .006 .006 .005 .004 .004 .004 .004 .004

3.1 .099 .045 .027 .018 .013 .011 .009 .007 .006 .006 .005 .005 .004 .004 .004 .003 .003 .003
3.2 .096 .043 .025 .016 .012 .009 .008 .006 .005 .005 .004 .004 .003 .003 .003 .003 .003 .002
3.3 .094 .040 .023 .015 .011 .008 .007 .005 .005 .004 .004 .003 .003 .002 .002 .002 .002 .002
3.4 .091 .038 .021 .014 .010 .007 .006 .005 .004 .003 .003 .003 .002 .002 .002 .002 .002 .002
3.5 .089 .036 .020 .012 .009 .006 .005 .004 .003 .003 .002 .002 .002 .002 .002 .001 .001 .001

3.6 .086 .035 .018 .011 .008 .006 .004 .004 .003 .002 .002 .002 .002 .001 .001 .001 .001 .001
3.7 .084 .033 .017 .010 .007 .005 .004 .003 .002 .002 .002 .002 .001 .001 .001 .001 .001 .001
3.8 .082 .031 .016 .010 .006 .004 .003 .003 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001
3.9 .080 .030 .015 .009 .006 .004 .003 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001
4.0 .078 .029 .014 .008 .005 .004 .003 .002 .002 .001 .001 .001 .001 .001 .001 .001 .000 .000

(continued )
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Table A.8 t Curve Tail Areas (cont.)

t 	 19 20 21 22 23 24 25 26 27 28 29 30 35 40 60 120 �(� z)

0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500
0.1 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .460 .460 .460 .460 .460
0.2 .422 .422 .422 .422 .422 .422 .422 .422 .421 .421 .421 .421 .421 .421 .421 .421 .421
0.3 .384 .384 .384 .383 .383 .383 .383 .383 .383 .383 .383 .383 .383 .383 .383 .382 .382
0.4 .347 .347 .347 .347 .346 .346 .346 .346 .346 .346 .346 .346 .346 .346 .345 .345 .345
0.5 .311 .311 .311 .311 .311 .311 .311 .311 .311 .310 .310 .310 .310 .310 .309 .309 .309

0.6 .278 .278 .278 .277 .277 .277 .277 .277 .277 .277 .277 .277 .276 .276 .275 .275 .274
0.7 .246 .246 .246 .246 .245 .245 .245 .245 .245 .245 .245 .245 .244 .244 .243 .243 .242
0.8 .217 .217 .216 .216 .216 .216 .216 .215 .215 .215 .215 .215 .215 .214 .213 .213 .212
0.9 .190 .189 .189 .189 .189 .189 .188 .188 .188 .188 .188 .188 .187 .187 .186 .185 .184
1.0 .165 .165 .164 .164 .164 .164 .163 .163 .163 .163 .163 .163 .162 .162 .161 .160 .159

1.1 .143 .142 .142 .142 .141 .141 .141 .141 .141 .140 .140 .140 .139 .139 .138 .137 .136
1.2 .122 .122 .122 .121 .121 .121 .121 .120 .120 .120 .120 .120 .119 .119 .117 .116 .115
1.3 .105 .104 .104 .104 .103 .103 .103 .103 .102 .102 .102 .102 .101 .101 .099 .098 .097
1.4 .089 .089 .088 .088 .087 .087 .087 .087 .086 .086 .086 .086 .085 .085 .083 .082 .081
1.5 .075 .075 .074 .074 .074 .073 .073 .073 .073 .072 .072 .072 .071 .071 .069 .068 .067

1.6 .063 .063 .062 .062 .062 .061 .061 .061 .061 .060 .060 .060 .059 .059 .057 .056 .055
1.7 .053 .052 .052 .052 .051 .051 .051 .051 .050 .050 .050 .050 .049 .048 .047 .046 .045
1.8 .044 .043 .043 .043 .042 .042 .042 .042 .042 .041 .041 .041 .040 .040 .038 .037 .036
1.9 .036 .036 .036 .035 .035 .035 .035 .034 .034 .034 .034 .034 .033 .032 .031 .030 .029
2.0 .030 .030 .029 .029 .029 .028 .028 .028 .028 .028 .027 .027 .027 .026 .025 .024 .023

2.1 .025 .024 .024 .024 .023 .023 .023 .023 .023 .022 .022 .022 .022 .021 .020 .019 .018
2.2 .020 .020 .020 .019 .019 .019 .019 .018 .018 .018 .018 .018 .017 .017 .016 .015 .014
2.3 .016 .016 .016 .016 .015 .015 .015 .015 .015 .015 .014 .014 .014 .013 .012 .012 .011
2.4 .013 .013 .013 .013 .012 .012 .012 .012 .012 .012 .012 .011 .011 .011 .010 .009 .008
2.5 .011 .011 .010 .010 .010 .010 .010 .010 .009 .009 .009 .009 .009 .008 .008 .007 .006

2.6 .009 .009 .008 .008 .008 .008 .008 .008 .007 .007 .007 .007 .007 .007 .006 .005 .005
2.7 .007 .007 .007 .007 .006 .006 .006 .006 .006 .006 .006 .006 .005 .005 .004 .004 .003
2.8 .006 .006 .005 .005 .005 .005 .005 .005 .005 .005 .005 .004 .004 .004 .003 .003 .003
2.9 .005 .004 .004 .004 .004 .004 .004 .004 .004 .004 .004 .003 .003 .003 .003 .002 .002
3.0 .004 .004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .001

3.1 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001
3.2 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001
3.3 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000
3.4 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000
3.5 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000

3.6 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000
3.7 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
3.8 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3.9 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4.0 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

t
0

t curve Area to the
right of t
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Table A.9 Critical Values for F Distributions

		1 � numerator df

� 1 2 3 4 5 6 7 8 9

.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86

1
.050 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
.010 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5
.001 405284 500000 540379 562500 576405 585937 592873 598144 602284

.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38

2
.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39

.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

3
.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86

.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94

4
.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47

.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32

5
.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
.001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24

.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96

6
.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
.001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69

.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72

7
.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33

.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56

8
.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77

.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

9
.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35
.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11

.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

10
.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96

.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27

11
.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12

.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21

12
.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
.001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48
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Table A.9 Critical Values for F Distributions (cont.)

	1 � numerator df

10 12 15 20 25 30 40 50 60 120 1000

60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79 63.06 63.30
241.88 243.91 245.95 248.01 249.26 250.10 251.14 251.77 252.20 253.25 254.19

6055.8 6106.3 6157.3 6208.7 6239.8 6260.6 6286.8 6302.5 6313.0 6339.4 6362.7
605621 610668 615764 620908 624017 626099 628712 630285 631337 633972 636301

9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.49
19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48 19.49 19.49
99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48 99.49 99.50

999.40 999.42 999.43 999.45 999.46 999.47 999.47 999.48 999.48 999.49 999.50

5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.15 5.14 5.13
8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.58 8.57 8.55 8.53

27.23 27.05 26.87 26.69 26.58 26.50 26.41 26.35 26.32 26.22 26.14
129.25 128.32 127.37 126.42 125.84 125.45 124.96 124.66 124.47 123.97 123.53

3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.76
5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.63

14.55 14.37 14.20 14.02 13.91 13.84 13.75 13.69 13.65 13.56 13.47
48.05 47.41 46.76 46.10 45.70 45.43 45.09 44.88 44.75 44.40 44.09

3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.12 3.11
4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.44 4.43 4.40 4.37

10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.20 9.11 9.03
26.92 26.42 25.91 25.39 25.08 24.87 24.60 24.44 24.33 24.06 23.82

2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.77 2.76 2.74 2.72
4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.75 3.74 3.70 3.67
7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.09 7.06 6.97 6.89

18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21 15.98 15.77

2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51 2.49 2.47
3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.32 3.30 3.27 3.23
6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82 5.74 5.66

14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.20 12.12 11.91 11.72

2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.30
3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01 2.97 2.93
5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.07 5.03 4.95 4.87

11.54 11.19 10.84 10.48 10.26 10.11 9.92 9.80 9.73 9.53 9.36

2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.22 2.21 2.18 2.16
3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.80 2.79 2.75 2.71
5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.52 4.48 4.40 4.32
9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.26 8.19 8.00 7.84

2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.12 2.11 2.08 2.06
2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.64 2.62 2.58 2.54
4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.12 4.08 4.00 3.92
8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.19 7.12 6.94 6.78

2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 1.98
2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.51 2.49 2.45 2.41
4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.81 3.78 3.69 3.61
7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.42 6.35 6.18 6.02

2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.97 1.96 1.93 1.91
2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.40 2.38 2.34 2.30
4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.57 3.54 3.45 3.37
7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.83 5.76 5.59 5.44

(continued )
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Table A.9 Critical Values for F Distributions (cont.)

	1 � numerator df

� 1 2 3 4 5 6 7 8 9

.100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16

13
.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98

.100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12

14
.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58

.100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09

15
.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26

.100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06

16
.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
.001 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98

.100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03

17
.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
.010 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68
.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75

.100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00

18
.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56

.100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98

19
.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39

.100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

20
.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24

.100 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95

21
.050 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
.010 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11

.100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93

22
.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
.001 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99

.100 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92

23
.050 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
.010 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
.001 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89

.100 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91

24
.050 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
.010 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80
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Table A.9 Critical Values for F Distributions (cont.)

	1 � numerator df

10 12 15 20 25 30 40 50 60 120 1000

2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.85
2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.31 2.30 2.25 2.21
4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.38 3.34 3.25 3.18
6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.37 5.30 5.14 4.99

2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.87 1.86 1.83 1.80
2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.24 2.22 2.18 2.14
3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.22 3.18 3.09 3.02
6.40 6.13 5.85 5.56 5.38 5.25 5.10 5.00 4.94 4.77 4.62

2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.83 1.82 1.79 1.76
2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.18 2.16 2.11 2.07
3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.08 3.05 2.96 2.88
6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.70 4.64 4.47 4.33

2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.79 1.78 1.75 1.72
2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.12 2.11 2.06 2.02
3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.97 2.93 2.84 2.76
5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.45 4.39 4.23 4.08

2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.76 1.75 1.72 1.69
2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.08 2.06 2.01 1.97
3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.87 2.83 2.75 2.66
5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.24 4.18 4.02 3.87

1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.74 1.72 1.69 1.66
2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.04 2.02 1.97 1.92
3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.78 2.75 2.66 2.58
5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.06 4.00 3.84 3.69

1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.70 1.67 1.64
2.38 2.31 2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.93 1.88
3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.71 2.67 2.58 2.50
5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.90 3.84 3.68 3.53

1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.69 1.68 1.64 1.61
2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.97 1.95 1.90 1.85
3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.64 2.61 2.52 2.43
5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.77 3.70 3.54 3.40

1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.67 1.66 1.62 1.59
2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.94 1.92 1.87 1.82
3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.58 2.55 2.46 2.37
4.95 4.70 4.44 4.17 4.00 3.88 3.74 3.64 3.58 3.42 3.28

1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.60 1.57
2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.91 1.89 1.84 1.79
3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.53 2.50 2.40 2.32
4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.54 3.48 3.32 3.17

1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.64 1.62 1.59 1.55
2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.88 1.86 1.81 1.76
3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.48 2.45 2.35 2.27
4.73 4.48 4.23 3.96 3.79 3.68 3.53 3.44 3.38 3.22 3.08

1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.57 1.54
2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.86 1.84 1.79 1.74
3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.44 2.40 2.31 2.22
4.64 4.39 4.14 3.87 3.71 3.59 3.45 3.36 3.29 3.14 2.99

(continued )
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Table A.9 Critical Values for F Distributions (cont.)

	1 � numerator df

� 1 2 3 4 5 6 7 8 9

.100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89

25
.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71

.100 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88

26
.050 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
.010 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
.001 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64

.100 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87

27
.050 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
.010 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
.001 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57

.100 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87

28
.050 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
.010 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50

.100 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86

29
.050 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
.010 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45

.100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85

30
.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39

.100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79

40
.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
.001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02

.100 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76

50
.050 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07
.010 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78
.001 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82

.100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

60
.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69

.100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69

100
.050 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97
.010 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59
.001 11.50 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44

.100 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66

200
.050 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93
.010 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50
.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26

.100 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64

1000
.050 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89
.010 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43
.001 10.89 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13

(continued )
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Table A.9 Critical Values for F Distributions (cont.)

	1 � numerator df

10 12 15 20 25 30 40 50 60 120 1000

1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.61 1.59 1.56 1.52
2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82 1.77 1.72
3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.40 2.36 2.27 2.18
4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.28 3.22 3.06 2.91

1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.59 1.58 1.54 1.51
2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.82 1.80 1.75 1.70
3.09 2.96 2.81 2.66 2.57 2.50 2.42 2.36 2.33 2.23 2.14
4.48 4.24 3.99 3.72 3.56 3.44 3.30 3.21 3.15 2.99 2.84

1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.58 1.57 1.53 1.50
2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.81 1.79 1.73 1.68
3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.33 2.29 2.20 2.11
4.41 4.17 3.92 3.66 3.49 3.38 3.23 3.14 3.08 2.92 2.78

1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.57 1.56 1.52 1.48
2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.71 1.66
3.03 2.90 2.75 2.60 2.51 2.44 2.35 2.30 2.26 2.17 2.08
4.35 4.11 3.86 3.60 3.43 3.32 3.18 3.09 3.02 2.86 2.72

1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.56 1.55 1.51 1.47
2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.77 1.75 1.70 1.65
3.00 2.87 2.73 2.57 2.48 2.41 2.33 2.27 2.23 2.14 2.05
4.29 4.05 3.80 3.54 3.38 3.27 3.12 3.03 2.97 2.81 2.66

1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.55 1.54 1.50 1.46
2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.76 1.74 1.68 1.63
2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.25 2.21 2.11 2.02
4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.98 2.92 2.76 2.61

1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.42 1.38
2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.66 1.64 1.58 1.52
2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.06 2.02 1.92 1.82
3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.64 2.57 2.41 2.25

1.73 1.68 1.63 1.57 1.53 1.50 1.46 1.44 1.42 1.38 1.33
2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.60 1.58 1.51 1.45
2.70 2.56 2.42 2.27 2.17 2.10 2.01 1.95 1.91 1.80 1.70
3.67 3.44 3.20 2.95 2.79 2.68 2.53 2.44 2.38 2.21 2.05

1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.41 1.40 1.35 1.30
1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.56 1.53 1.47 1.40
2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.88 1.84 1.73 1.62
3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.32 2.25 2.08 1.92

1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.35 1.34 1.28 1.22
1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.48 1.45 1.38 1.30
2.50 2.37 2.22 2.07 1.97 1.89 1.80 1.74 1.69 1.57 1.45
3.30 3.07 2.84 2.59 2.43 2.32 2.17 2.08 2.01 1.83 1.64

1.63 1.58 1.52 1.46 1.41 1.38 1.34 1.31 1.29 1.23 1.16
1.88 1.80 1.72 1.62 1.56 1.52 1.46 1.41 1.39 1.30 1.21
2.41 2.27 2.13 1.97 1.87 1.79 1.69 1.63 1.58 1.45 1.30
3.12 2.90 2.67 2.42 2.26 2.15 2.00 1.90 1.83 1.64 1.43

1.61 1.55 1.49 1.43 1.38 1.35 1.30 1.27 1.25 1.18 1.08
1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.36 1.33 1.24 1.11
2.34 2.20 2.06 1.90 1.79 1.72 1.61 1.54 1.50 1.35 1.16
2.99 2.77 2.54 2.30 2.14 2.02 1.87 1.77 1.69 1.49 1.22
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Table A.10 Critical Values for Studentized Range Distributions

m

	 � 2 3 4 5 6 7 8 9 10 11 12

5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32
.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70

6 .05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79
.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48

7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43
.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71

8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18
.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18

9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98
.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78

10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83
.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49

11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71
.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25

12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61
.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06

13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53
.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90

14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46
.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77

15 .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40
.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66

16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35
.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56

17 .05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31
.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27
.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41

19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23
.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34

20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20
.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28

24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10
.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11

30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00
.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93

40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90
.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76

60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81
.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60

120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71
.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44

∞ .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62
.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29
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Table A.11 Chi-Squared Curve Tail Areas

Upper-tail Area 	 � 1 	 � 2 	 � 3 	 � 4 	 � 5

� .100 � 2.70 � 4.60 � 6.25 � 7.77 � 9.23
.100 2.70 4.60 6.25 7.77 9.23
.095 2.78 4.70 6.36 7.90 9.37
.090 2.87 4.81 6.49 8.04 9.52
.085 2.96 4.93 6.62 8.18 9.67
.080 3.06 5.05 6.75 8.33 9.83
.075 3.17 5.18 6.90 8.49 10.00
.070 3.28 5.31 7.06 8.66 10.19
.065 3.40 5.46 7.22 8.84 10.38
.060 3.53 5.62 7.40 9.04 10.59
.055 3.68 5.80 7.60 9.25 10.82
.050 3.84 5.99 7.81 9.48 11.07
.045 4.01 6.20 8.04 9.74 11.34
.040 4.21 6.43 8.31 10.02 11.64
.035 4.44 6.70 8.60 10.34 11.98
.030 4.70 7.01 8.94 10.71 12.37
.025 5.02 7.37 9.34 11.14 12.83
.020 5.41 7.82 9.83 11.66 13.38
.015 5.91 8.39 10.46 12.33 14.09
.010 6.63 9.21 11.34 13.27 15.08
.005 7.87 10.59 12.83 14.86 16.74
.001 10.82 13.81 16.26 18.46 20.51

� .001 � 10.82 � 13.81 � 16.26 � 18.46 � 20.51

Upper-tail Area 	 � 6 	 � 7 	 � 8 	 � 9 	 � 10

� .100 � 10.64 � 12.01 � 13.36 � 14.68 � 15.98
.100 10.64 12.01 13.36 14.68 15.98
.095 10.79 12.17 13.52 14.85 16.16
.090 10.94 12.33 13.69 15.03 16.35
.085 11.11 12.50 13.87 15.22 16.54
.080 11.28 12.69 14.06 15.42 16.75
.075 11.46 12.88 14.26 15.63 16.97
.070 11.65 13.08 14.48 15.85 17.20
.065 11.86 13.30 14.71 16.09 17.44
.060 12.08 13.53 14.95 16.34 17.71
.055 12.33 13.79 15.22 16.62 17.99
.050 12.59 14.06 15.50 16.91 18.30
.045 12.87 14.36 15.82 17.24 18.64
.040 13.19 14.70 16.17 17.60 19.02
.035 13.55 15.07 16.56 18.01 19.44
.030 13.96 15.50 17.01 18.47 19.92
.025 14.44 16.01 17.53 19.02 20.48
.020 15.03 16.62 18.16 19.67 21.16
.015 15.77 17.39 18.97 20.51 22.02
.010 16.81 18.47 20.09 21.66 23.20
.005 18.54 20.27 21.95 23.58 25.18
.001 22.45 24.32 26.12 27.87 29.58

� .001 � 22.45 � 24.32 � 26.12 � 27.87 � 29.58

(continued )
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Table A.11 Chi-Squared Curve Tail Areas (cont.)

Upper-tail Area 	 � 11 	 � 12 	 � 13 	 � 14 	 � 15

� .100 � 17.27 � 18.54 � 19.81 � 21.06 � 22.30
.100 17.27 18.54 19.81 21.06 22.30
.095 17.45 18.74 20.00 21.26 22.51
.090 17.65 18.93 20.21 21.47 22.73
.085 17.85 19.14 20.42 21.69 22.95
.080 18.06 19.36 20.65 21.93 23.19
.075 18.29 19.60 20.89 22.17 23.45
.070 18.53 19.84 21.15 22.44 23.72
.065 18.78 20.11 21.42 22.71 24.00
.060 19.06 20.39 21.71 23.01 24.31
.055 19.35 20.69 22.02 23.33 24.63
.050 19.67 21.02 22.36 23.68 24.99
.045 20.02 21.38 22.73 24.06 25.38
.040 20.41 21.78 23.14 24.48 25.81
.035 20.84 22.23 23.60 24.95 26.29
.030 21.34 22.74 24.12 25.49 26.84
.025 21.92 23.33 24.73 26.11 27.48
.020 22.61 24.05 25.47 26.87 28.25
.015 23.50 24.96 26.40 27.82 29.23
.010 24.72 26.21 27.68 29.14 30.57
.005 26.75 28.29 29.81 31.31 32.80
.001 31.26 32.90 34.52 36.12 37.69

� .001 � 31.26 � 32.90 � 34.52 � 36.12 � 37.69

Upper-tail Area 	 � 16 	 � 17 	 � 18 	 � 19 	 � 20

� .100 � 23.54 � 24.77 � 25.98 � 27.20 � 28.41
.100 23.54 24.76 25.98 27.20 28.41
.095 23.75 24.98 26.21 27.43 28.64
.090 23.97 25.21 26.44 27.66 28.88
.085 24.21 25.45 26.68 27.91 29.14
.080 24.45 25.70 26.94 28.18 29.40
.075 24.71 25.97 27.21 28.45 29.69
.070 24.99 26.25 27.50 28.75 29.99
.065 25.28 26.55 27.81 29.06 30.30
.060 25.59 26.87 28.13 29.39 30.64
.055 25.93 27.21 28.48 29.75 31.01
.050 26.29 27.58 28.86 30.14 31.41
.045 26.69 27.99 29.28 30.56 31.84
.040 27.13 28.44 29.74 31.03 32.32
.035 27.62 28.94 30.25 31.56 32.85
.030 28.19 29.52 30.84 32.15 33.46
.025 28.84 30.19 31.52 32.85 34.16
.020 29.63 30.99 32.34 33.68 35.01
.015 30.62 32.01 33.38 34.74 36.09
.010 32.00 33.40 34.80 36.19 37.56
.005 34.26 35.71 37.15 38.58 39.99
.001 39.25 40.78 42.31 43.81 45.31

� .001 � 39.25 � 40.78 � 42.31 � 43.81 � 45.31
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Table A.12 Critical Values for the Ryan–Joiner Test of Normality

�

.10 .05 .01

5 .9033 .8804 .8320
10 .9347 .9180 .8804
15 .9506 .9383 .9110
20 .9600 .9503 .9290

n
25 .9662 .9582 .9408
30 .9707 .9639 .9490
40 .9767 .9715 .9597
50 .9807 .9764 .9664
60 .9835 .9799 .9710
75 .9865 .9835 .9757



686 Appendix Tables

Table A.13 Critical Values for the Wilcoxon Signed-Rank Test P0(S� � c1) � P(S� � c1 when H0 is true)

n c1 P0(S
 � c1) n c1 P0(S
 � c1)

3 6 .125 78 .011
4 9 .125 79 .009

10 .062 81 .005
5 13 .094 14 73 .108

14 .062 74 .097
15 .031 79 .052

6 17 .109 84 .025
19 .047 89 .010
20 .031 92 .005
21 .016 15 83 .104

7 22 .109 84 .094
24 .055 89 .053
26 .023 90 .047
28 .008 95 .024

8 28 .098 100 .011
30 .055 101 .009
32 .027 104 .005
34 .012 16 93 .106
35 .008 94 .096
36 .004 100 .052

9 34 .102 106 .025
37 .049 112 .011
39 .027 113 .009
42 .010 116 .005
44 .004 17 104 .103

10 41 .097 105 .095
44 .053 112 .049
47 .024 118 .025
50 .010 125 .010
52 .005 129 .005

11 48 .103 18 116 .098
52 .051 124 .049
55 .027 131 .024
59 .009 138 .010
61 .005 143 .005

12 56 .102 19 128 .098
60 .055 136 .052
61 .046 137 .048
64 .026 144 .025
68 .010 152 .010
71 .005 157 .005

13 64 .108 20 140 .101
65 .095 150 .049
69 .055 158 .024
70 .047 167 .010
74 .024 172 .005
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Table A.14 Critical Values for the Wilcoxon Rank-Sum Test P0(W � c) � P(W � c when H0 is true)

m n c P0(W � c) m n c P0(W � c)

3 3 15 .05 40 .004
4 17 .057 6 40 .041

18 .029 41 .026
5 20 .036 43 .009

21 .018 44 .004
6 22 .048 7 43 .053

23 .024 45 .024
24 .012 47 .009

7 24 .058 48 .005
26 .017 8 47 .047
27 .008 49 .023

8 27 .042 51 .009
28 .024 52 .005
29 .012 6 6 50 .047
30 .006 52 .021

4 4 24 .057 54 .008
25 .029 55 .004
26 .014 7 54 .051

5 27 .056 56 .026
28 .032 58 .011
29 .016 60 .004
30 .008 8 58 .054

6 30 .057 61 .021
32 .019 63 .01
33 .010 65 .004
34 .005 7 7 66 .049

7 33 .055 68 .027
35 .021 71 .009
36 .012 72 .006
37 .006 8 71 .047

8 36 .055 73 .027
38 .024 76 .01
40 .008 78 .005
41 .004 8 8 84 .052

5 5 36 .048 87 .025
37 .028 90 .01
39 .008 92 .005
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Table A.15 Critical Values for the Wilcoxon Signed-Rank Interval (x�(n(n�1)/2�c�1), x�(c))

Confidence Confidence Confidence
n Level (%) c n Level (%) c n Level (%) c

5 93.8 15 13 99.0 81 20 99.1 173
87.5 14 95.2 74 95.2 158

6 96.9 21 90.6 70 90.3 150
93.7 20 14 99.1 93 21 99.0 188
90.6 19 95.1 84 95.0 172

7 98.4 28 89.6 79 89.7 163
95.3 26 15 99.0 104 22 99.0 204
89.1 24 95.2 95 95.0 187

8 99.2 36 90.5 90 90.2 178
94.5 32 16 99.1 117 23 99.0 221
89.1 30 94.9 106 95.2 203

9 99.2 44 89.5 100 90.2 193
94.5 39 17 99.1 130 24 99.0 239
90.2 37 94.9 118 95.1 219

10 99.0 52 90.2 112 89.9 208
95.1 47 18 99.0 143 25 99.0 257
89.5 44 95.2 131 95.2 236

11 99.0 61 90.1 124 89.9 224
94.6 55 19 99.1 158
89.8 52 95.1 144

12 99.1 71 90.4 137
94.8 64
90.8 61
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Table A.16 Critical Values for the Wilcoxon Rank-Sum Interval (dij(mn�c�1), dij(c))

Smaller Sample Size

5 6 7 8

Larger Confidence Confidence Confidence Confidence
Sample Size Level (%) c Level (%) c Level (%) c Level (%) c

5 99.2 25
94.4 22
90.5 21

6 99.1 29 99.1 34
94.8 26 95.9 31
91.8 25 90.7 29

7 99.0 33 99.2 39 98.9 44
95.2 30 94.9 35 94.7 40
89.4 28 89.9 33 90.3 38

8 98.9 37 99.2 44 99.1 50 99.0 56
95.5 34 95.7 40 94.6 45 95.0 51
90.7 32 89.2 37 90.6 43 89.5 48

9 98.8 41 99.2 49 99.2 56 98.9 62
95.8 38 95.0 44 94.5 50 95.4 57
88.8 35 91.2 42 90.9 48 90.7 54

10 99.2 46 98.9 53 99.0 61 99.1 69
94.5 41 94.4 48 94.5 55 94.5 62
90.1 39 90.7 46 89.1 52 89.9 59

11 99.1 50 99.0 58 98.9 66 99.1 75
94.8 45 95.2 53 95.6 61 94.9 68
91.0 43 90.2 50 89.6 57 90.9 65

12 99.1 54 99.0 63 99.0 72 99.0 81
95.2 49 94.7 57 95.5 66 95.3 74
89.6 46 89.8 54 90.0 62 90.2 70

Smaller Sample Size

9 10 11 12

Larger Confidence Confidence Confidence Confidence
Sample Size Level (%) c Level (%) c Level (%) c Level (%) c

9 98.9 69
95.0 63
90.6 60

10 99.0 76 99.1 84
94.7 69 94.8 76
90.5 66 89.5 72

11 99.0 83 99.0 91 98.9 99
95.4 76 94.9 83 95.3 91
90.5 72 90.1 79 89.9 86

12 99.1 90 99.1 99 99.1 108 99.0 116
95.1 82 95.0 90 94.9 98 94.8 106
90.5 78 90.7 86 89.6 93 89.9 101
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1. a. Los Angeles Times, Oberlin Tribune, Gainesville Sun,
Washington Post
b. Duke Energy, Clorox, Seagate, Neiman Marcus
c. Vince Correa, Catherine Miller, Michael Cutler, Ken Lee
d. 2.97, 3.56, 2.20, 2.97

3. a. How likely is it that more than half of the sampled com-
puters will need or have needed warranty service? What is
the expected number among the 100 that need warranty
service? How likely is it that the number needing warranty
service will exceed the expected number by more than 10?
b. Suppose that 15 of the 100 sampled needed warranty
service. How confident can we be that the proportion of all
such computers needing warranty service is between .08
and .22? Does the sample provide compelling evidence for
concluding that more than 10% of all such computers need
warranty service?

5. a. No. All students taking a large statistics course who par-
ticipate in an SI program of this sort.
b. Randomization protects against various biases and helps
ensure that those in the SI group are as similar as possible to
the students in the control group.
c. There would be no firm basis for assessing the effective-
ness of SI (nothing to which the SI scores could reasonably
be compared).

7. One could generate a simple random sample of all single-
family homes in the city, or a stratified random sample by
taking a simple random sample from each of the 10 district
neighborhoods. From each of the selected homes, values of
all desired variables would be determined. This would be an
enumerative study because there exists a finite, identifiable
population of objects from which to sample.

9. a. Possibly measurement error, recording error, differences
in environmental conditions at the time of measurement, etc.
b. No. There is no sampling frame.

11. 6L | 430
6H | 769689
7L | 42014202
7H |
8L | 011211410342
8H | 9595578
9L | 30
9H | 58
The gap in the data—no scores in the high 70’s.

13. a. 12 2 leaf: ones digit
12 445
12 6667777
12 889999
13 00011111111
13 222222222233333333333333
13 44444444444444444455555555555555555555
13 6666666666667777777777
13 888888888888999999
14 0000001111
14 2333333
14 444
14 77 
symmetry

b. Close to bell-shaped, center � 135, not insignificant dis-
persion, no gaps or outliers.

Chapter 1

Answers to Selected 
Odd-Numbered Exercises
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15. Crunchy Creamy

| 2 | 2
644 | 3 | 0069

77220 | 4 | 00145 stem: tens
6320 | 5 | 003666 leaf: ones

222 | 6 | 258
55 | 7 |
0 | 8 |

Both sets of scores are rather spread out. There appear to be
no outliers. The distribution of crunchy scores appears to be
shifted to the right (toward larger values) of that for creamy
scores by something on the order of 10.

17. a. # Nonconforming Frequency Rel. freq.

0 7 .117
1 12 .200
2 13 .217
3 14 .233
4 6 .100
5 3 .050
6 3 .050
7 1 .017
8 1 .017

60 1.001
b. .917, .867, 1 � .867 � .133
c. The histogram has a substantial positive skew. It is cen-
tered somewhere between 2 and 3 and spreads out quite a bit
about its center.

19. a. .99 (99%), .71 (71%) b. .64 (64%), .44 (44%)
c. Strictly speaking, the histogram is not unimodal, but is
close to being so with a moderate positive skew. A much
larger sample size would likely give a smoother picture.

21. a. y Freq. Rel. freq. b. z Freq. Rel. freq.

0 17 .362 0 13 .277
1 22 .468 1 11 .234
2 6 .128 2 3 .064
3 1 .021 3 7 .149
4 0 .000 4 5 .106
5 1 .021 5 3 .064

47 1.000 6 3 .064
.362, .638 7 0 .000

8 2 .043
47 1.001

.894, .830

23. a. Class Freq. Rel. freq.

0–�100 21 .21
100–�200 32 .32
200–�300 26 .26
300–�400 12 .12
400–�500 4 .04
500–�600 3 .03
600–�700 1 .01
700–�800 0 .00
800–�900 1 .01

100 1.00

b. Class Freq. Rel. freq. Density

0–�50 8 .08 .0016
50–�100 13 .13 .0026

100–�150 11 .11 .0022
150–�200 21 .21 .0042
200–�300 26 .26 .0026
300–�400 12 .12 .0012
400–�500 4 .04 .0004
500–�600 3 .03 .0003
600–�900 2 .02 .00007

100 1.00
c. .79

25. Class Freq. Class Freq.

10–�20 8 1.1–�1.2 2
20–�30 14 1.2–�1.3 6
30–�40 8 1.3–�1.4 7
40–�50 4 1.4–�1.5 9
50–�60 3 1.5–�1.6 6
60–�70 2 1.6–�1.7 4
70–�80 1 1.7–�1.8 5

40 1.8–�1.9 1
40

Original: positively skewed;
Transformed: much more symmetric, not far from bell-shaped.

27. a. The observation 50 falls on a class boundary.

b. Class Freq. Rel. freq.

0–�50 9 .18
50–�100 19 .38

100–�150 11 .22
150–�200 4 .08
200–�300 4 .08
300–�400 2 .04
400–�500 0 .00
500–�600 1 .02

50 1.00
A representative (central) value is either a bit below or a bit
above 100, depending on how one measures center. There is a
great deal of variability in lifetimes, especially in values at the
upper end of the data. There are several candidates for outliers.

c. Class Freq.       Rel. freq.

2.25–�2.75 2 .04
2.75–�3.25 2 .04
3.25–�3.75 3 .06
3.75–�4.25 8 .16
4.25–�4.75 18 .36
4.75–�5.25 10 .20
5.25–�5.75 4 .08
5.75–�6.25 3 .06

50 1.00
There is much more symmetry in the distribution of the
ln(x) values than in the x values themselves, and less vari-
ability. There are no longer gaps or obvious outliers.
d. .38, .14
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29. Complaint Freq. Rel. freq.

J 10 .1667
F 9 .1500
B 7 .1167
M 4 .0667
C 3 .0500
N 6 .1000
O 21 .3500

60 1.0001

31. Class Freq. Cum. freq. Cum. rel. freq.

0–�4 2 2 .050
4–�8 14 16 .400
8–�12 11 27 .675
12–�16 8 35 .875
16–�20 4 39 .975
20–�24 0 39 .975
24–�28 1 40 1.000

33. a. x� � 192.57, ~x � 189.0
b. New x� � 189.71; ~x unchanged
c. 191.0, 7.14% d. 122.6

35. a. x� � 12.55, ~x � 12.50, x�tr(12.5) � 12.40. Deletion of the
largest observation (18.0) causes ~x and x�tr to be a bit smaller
than x�.
b. By at most 4.0 c. No; multiply the values of x� and ~x
by the conversion factor 1/2.2.

37. x�tr(10) � 11.46

39. a. x� � 1.0297, ~x � 1.009 b. .383

41. a. .7 b. Also .7 c. 13

43. xx~x � 68.0, x�tr(20) � 66.2, x�tr(30) � 67.5

45. a. x� � 115.58; the deviations are .82, .32, �.98, �.38, .22
b. .482, .694 c. .482 d. .482

47. x� � 116.2, s � 25.75. The magnitude of s indicates a sub-
stantial amount of variation about the center (a “representa-
tive” deviation of roughly 25).

49. a. 56.80, 197.8040 b. .5016, .708

51. a. 1264.766, 35.564 b. .351, .593

53. a. 2.74, 3.88 b. 1.14 c. Unchanged
d. At most .40 e. 1.19

55. a. 33 b. No
c. Slight positive skewness in the middle half, but rather
symmetric overall. The extent of variability appears sub-
stantial.
d. At most 32

57. a. Yes. 125.8 is an extreme outlier and 250.2 is a mild
outlier.
b. In addition to the presence of outliers, there is positive
skewness both in the middle 50% of the data and, excepting
the outliers, overall. Except for the two outliers, there appears
to be a relatively small amount of variability in the data.

59. a. ED: .4, .10, 2.75, 2.65;
Non-Ed: 1.60, .30, 7.90, 7.60
b. ED: 8.9 and 9.2 are mild outliers, and 11.7 and 21.0 are
extreme outliers.
There are not outliers in the non-ED sample.
c. Four outliers for ED, none for non-ED. Substantial pos-
itive skewness in both samples; less variability in ED
(smaller fs), and non-ED observations tend to be somewhat
larger than ED observations.

61. Outliers, both mild and extreme, only at 6 A.M. Distributions
at other times are quite symmetric. Variability increases
somewhat until 2 P.M. and then decreases slightly, and the
same is true of “typical” gasoline-vapor coefficient values.

63. 6 34
7 17
8 4589
9 1

10 12667789
11 122499
12 2
13 1
x� � 9.96, ~x � 10.6, s � 1.7594, fs � 2.3, no outliers, nega-
tive skew

65. a. Representative value � 90. Reasonably symmetric, uni-
modal, somewhat bell-shaped, fair amount of variability.
b. .9231, .9053
c. .48

67. a. M: x� � 3.64, ~x � 3.70, s � .269, fs � .40
F: x� � 3.28, ~x � 3.15, s � .478, fs � .50
Female values are typically somewhat smaller than male
values, and show somewhat more variability. An M boxplot
shows negative skew whereas an F boxplot shows positive
skew.
b. F: x�tr(10) � 3.24 M: x�tr(10) � 3.652 � 3.65

69. a. y� � ax� � b, sy
2 � a2sx

2 b. 189.14, 1.87

71. a. The mean, median, and trimmed mean are virtually iden-
tical, suggesting a substantial amount of symmetry in the
data; the fact that the quartiles are roughly the same distance
from the median and that the smallest and largest observa-
tions are roughly equidistant from the center provides addi-
tional support for symmetry. The standard deviation is quite
small relative to the mean and median.
b. See the comments of (a). In addition, using 1.5(Q3 � Q1)
as a yardstick, the two largest and three smallest observa-
tions are mild outliers.

73. x� � .9255, s � .0809, ~x � .93, small amount of variability,
slight bit of skewness

75. a. The “five-number summaries” (~x, the two fourths, and
the smallest and largest observations) are identical and
there are no outliers, so the three individual boxplots are
identical.
b. Differences in variability, nature of gaps, and existence
of clusters for the three samples.
c. No. Detail is lost.
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77. a. 0 | 2355566777888
1 | 0000135555
2 | 00257
3 | 0033
4 | 0057 stem: ones
5 | 044 leaf: tenths
6 |
7 | 05
8 | 8
9 | 0

10 | 3
HI | 22.0, 24.5

b. Class Freq. Rel. freq. Density

0–�2 23 .500 .250
2–�4 9 .196 .098
4–�6 7 .152 .076
6–�10 4 .087 .022

10–�20 1 .022 .002
20–�30 2 .043 .004

79. a. x�n�1 � (nx�n � xn�1)/(n � 1)
c. 12.53, .532

81. A substantial positive skew (assuming unimodality)

83. a. All points fall on a 45° line. Points fall below a 45° line.
b. Points fall well below a 45° line, indicating a substantial
positive skew.

Chapter 2

1. a. S � {1324, 3124, 1342, 3142, 1423, 1432, 4123, 4132,
2314, 2341, 3214, 3241, 2413, 2431, 4213, 4231}
b. A � {1324, 1342, 1423, 1432}
c. B � {2314, 2341, 3214, 3241, 2413, 2431, 4213, 4231}
d. A � B � {1324, 1342, 1423, 1432, 2314, 2341, 3214,
3241, 2413, 2431, 4213, 4231},
A � B contains no outcomes (A and B are disjoint),
A � {3124, 3142, 4123, 4132, 2314, 2341, 3214, 3241,
2413, 2431, 4213, 4231}

3. a. A � {SSF, SFS, FSS}
b. B � {SSF, SFS, FSS, SSS}
c. C � {SFS, SSF, SSS}
d. C � {FFF, FSF, FFS, FSS, SFF},
A � C � {SSF, SFS, FSS, SSS},
A � C � {SSF, SFS},
B � C � {SSF, SFS, FSS, SSS} � B,
B � C � {SSF, SFS, SSS} � C

5. a. S � {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3),
(1, 3, 1), (1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), 
(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1),
(3, 1, 2), (3, 1, 3), (3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), 
(3, 3, 2), (3, 3, 3)} b. {(1, 1, 1), (2, 2, 2), (3, 3, 3)}
c. {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}
d. {(1, 1, 1), (1, 1, 3), (1, 3, 1), (1, 3, 3), (3, 1, 1), (3, 1, 3), 
(3, 3, 1), (3, 3, 3)}

7. a. There are 35 outcomes in S. b. {AABABAB,
AABAABB, AAABBAB, AAABABB, AAAABBB}

11. a. .07 b. .30 c. .57

13. a. .36 b. .64 c. .53
d. .47 e. .17 f. .75

15. a. .572 b. .879

17. a. There are statistical software packages other than SPSS
and SAS.
b. .70 c. .80 d. .20

19. a. .8841 b. .0435

21. a. .10 b. .18, .19 c. .41 d. .59
e. .31 f. .69

23. a. .067 b. .400 c. .933 d. .533

25. a. .98 b. .02 c. .03 d. .24

27. a. .1 b. .7 c. .6

29. a. 676; 1296 b. 17,576; 46,656 c. 456,976;
1,679,616 d. .942

31. a. 243 b. 3645 days (roughly 10 yr)

33. a. 362,880 b. 131,681,894,400 c. 2100

35. a. .0048 b. .0054 c. .9946 d. .2885

37. a. 60 b. 10 c. .0456

39. a. .0839 b. .24975

41. a. .929 b. .0714 c. .99997520

43. .000394, .00394, .00001539

45. a. .447, .500, .200 b. .400, .447 c. .211

47. a. .50 b. .50 c. .625
d. .375 e. .769

49. .217, .178

51. .436, .581

53. .083

55. .236

59. a. .21 b. .455 c. .264, .274

61. a. .578, .278, .144 b. 0, .457, .543

63. b. .54 c. .68 d. .74 e. .7941

65. P(Mean⏐S) � .3922, P(Median⏐S) � .2941, so Mean and
Median are most and least likely, respectively.

67. .000329; very uneasy.
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69. a. .126 b. .05 c. .1125 d. .2725
e. .5325 f. .2113

71. a. .300 b. .820 c. .146

75. .401, .722

77. a. .06235 b. .00421

79. .0059

81. a. .95

83. a. .10, .20 b. 0

85. a. p(2 � p) b. 1 � (1 � p)n c. (1 � p)3

d. .9 � (1 � p)3(.1)
e. .1(1 � p)3/[.9 � .1(1 � p)3] � .0137 for p � .5

87. .8588, .9897

89. [2� (1 � �)]/(1 � � 2)

91. a. .333, .444 b. .150 c. .291

93. .45, .32

95. a. .0083 b. .2 c. .2

97. .905

99. a. .956 b. .994

101. .926

103. a. .018 b. .601

105. a. .883, .117 b. 23 c. .156

107. 1 � (1 � p1)(1 � p2) � 
 
 
 � (1 � pn)

109. a. .0417 b. .375

111. P(hire #1) � 6/24 for s � 0, � 11/24 for s � 1,
� 10/24 for s � 2, and � 6/24 for s � 3, so s � 1 is best.

113. 1/4 � P(A1 � A2 � A3)
� P(A1) � P(A2) � P(A3) � 1/8

Chapter 3

1. x � 0 for FFF; x � 1 for SFF, FSF, and FFS; x � 2 for SSF,
SFS, and FSS; and x � 3 for SSS

3. Z � average of the two numbers, with possible values 2/2,
3/2, . . . , 12/2; W � absolute value of the difference, with
possible values 0, 1, 2, 3, 4, 5

5. No. In Example 3.4, let Y � 1 if at most three batteries are
examined and let Y � 0 otherwise. Then Y has only two
values.

7. a. {0, 1, . . . , 12}; discrete c. {1, 2, 3, . . . }; discrete
e. {0, c, 2c, . . . , 10,000c}, where c is the royalty per book;
discrete g. {x� m � x � M} where m (M) is the mini-
mum (maximum) possible tension; continuous

9. a. {2, 4, 6, 8, . . . }, that is, {2(1), 2(2), 2(3), 2(4), . . . }, an
infinite sequence; discrete
b. {2, 3, 4, 5, 6, . . . }, that is, {1 � 1, 1 � 2, 1 � 3, 1 �
4, . . . }, an infinite sequence; discrete

11. a. p(4) � .45, p(6) � .40, p(8) � .15, p(x) � 0 for x � 4,
6, or 8 c. .55, .15

13. a. .70 b. .45 c. .55
d. .71 e. .65 f. .45

15. a. (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4),
(3, 5), (4, 5) b. p(0) � .3, p(1) � .6, p(2) � .1
c. F(x) � 0 for x � 0, � .3 for 0 � x � 1, � .9 for 1 �
x � 2, and � 1 for 2 � x

17. a. .81 b. .162 c. It is A; AUUUA, UAUUA, UUAUA,
UUUAA; .00405

19. p(0) � .09, p(1) � .40, p(2) � .32, p(3) � .19

21. a. p(x) � .301, .176, .125, .097, .079, .067, .058, .051, .046
for x � 1, 2, . . . , 9

b. F(x) � 0 for x � 1, � .477 for 1 � x � 2, � .602 for
2 � x � 3, . . . , � .954 for 8 � x � 9, � 1 for x � 9
c. .602, .301

23. a. .20 b. .33 c. .78 d. .53

25. a. p(y) � (1 � p)y � p for y � 0, 1, 2, 3, . . .

27. a. 1234, 1243, 1324, . . . , 4321
b. p(0) � 9/24, p(1) � 8/24, p(2) � 6/24, p(3) � 0,
p(4) � 1/24

29. a. 2.06 b. .9364 c. .9677 d. .9364

31. .74, .8602, .85

33. a. p b. p(1 � p) c. p

35. E[h3(X)] � 2.4667, E[h4(X)] � 2.667, so 4 copies is better.

37. E(X ) � (n � 1)/2, E(X 2) � (n � 1)(2n � 1)/6, V(X ) �
(n2 � 1)/12

39. 2.3, .81, 88.5, 20.25

43. E(X � c) � E(X) � c, E(X � �) � 0

47. a. .515 b. .218 c. .011 d. .480 e. .965
f. .000 g. .595

49. a. .354 b. .115 c. .918

51. a. 6.25 b. 2.17 c. .030

53. a. .403 b. .787 c. .774

55. .1478

57. .407, independence

59. a. .017 b. .811, .425 c. .006, .902, .586

61. When p � .9, the probability is .99 for A and .9963 for B. If
p � .5, these probabilities are .75 and .6875, respectively.
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63. The tabulation for p � .5 is unnecessary.

65. a. 20, 16 b. 70, 21

67. P(⏐X � �⏐� 2�) � .042 when p � .5 and � .065 when
p � .75, compared to the upper bound of .25. Using k � 3 in
place of k � 2, these probabilities are .002 and .004, respec-
tively, whereas the upper bound is .11.

69. a. .114 b. .879 c. .121 d. Use the binomial
distribution with n � 15, p � .10

71. a. h(x; 15, 10, 20) for x � 5, . . . , 10
b. .0325 c. .697

73. a. h(x; 10, 10, 20) b. .033

75. a. nb(x; 2, .5) b. .188 c. .688 d. 2, 4

77. nb(x; 6, .5), 6

79. a. .932 b. .065 c. .068 d. .492
e. .251

81. a. .011 b. .441 c. .554, .459 d. .945

83. Poisson(5) a. .492 b. .133

85. a. .122, .809, .283 b. 12, 3.464
c. .530, .011

87. a. .099 b. .135 c. 2

89. a. 4 b. .215 c. At least �ln(.1)/2 � 1.1513 years

91. a. .221 b. 6,800,000 c. p(x; 20.106)

95. b. 3.114, .405, .636

97. a. b(x; 15, .75) b. .686
c. .313 d. 11.25, 2.81 e. .310

99. .991

101. a. p(x; 2.5) b. .067 c. .109

103. 1.813, 3.05

105. p(2) � p2, p(3) � (1 � p)p2, p(4) � (1 � p)p2, p(x) �
[1 � p(2) � . . . � p(x � 3)](1 � p)p2 for x � 5, 6, 7, . . . ;
.99950841

107. a. .0029 b. .0767, .9702

109. a. .135 b. .00144 c. � x
∞
�0[p(x; 2)]5

111. 3.590

113. a. No b. .0273

115. b. .6p(x; �) � .4p(x; �) c. (� � �)/2
d. (� � �)2/4 � (� � �)/2

117. � i
10
�1(pi�j�1 � pi�j�1)pi, where pk � 0 if k � 0 or k � 10.

121. a. 2.50 b. 3.1

Chapter 4

1. a. .25 b. .50 c. .4375

3. b. .5 c. .6875 d. .6328

5. a. .375 b. .125 c. .297 d. .578

7. a. f(x) � .1 for 25 � x � 35 and 0 otherwise
b. .20 c. .40 d. .20

9. a. .562 b. .438, .438 c. .071

11. a. .25 b. .1875 c. .9375 d. 1.4142
e. f(x) � x/2 for 0 � x � 2
f. 1.33 g. .222, .471 h. 2

13. a. 3 b. 0 for x � 1, 1 � x�3 for x � 1
c. .125, .088 d. 1.5, .866 e. .924

15. a. F(x) � 0 for x � 0, � 90[�
x
9

9

� � �
x
1

1

0

0

�] for 0 � x � 1, � 1 for
x � 1 b. .0107 c. .0107, .0107
d. .9036 e. .818, .111 f. .3137

17. a. A � (B � A)p b. E(X) � (A � B)/2, �� �
(B � A)/�12� c. [Bn � 1 � An � 1]/[(n � 1)(B � A)]

19. a. .597 b. .369
c. f(x) � .3466 � .25 ln(x) for 0 � x � 4

21. 314.79

23. 248, 3.60

25. b. 1.8(90th percentile for X) � 32
c. a(X percentile) � b

27. 0, 1.814

29. a. 2.14 b. .81 c. 1.17
d. .97 e. 2.41

31. a. 2.54 b. 1.34 c. �.42

33. a. .9918 b. .0082 c. .8664

35. a. .3336 b. Approximately 0
c. .5795 d. 6.524 e. .8028

37. a. 0, .5793, .5793 b. .3174, no c. � 87.6 or � 120.4

39. a. 36.7 b. 22.225 c. 3.179

41. .002

43. 10, .2

45. 7.3%

47. 21.155

49. a. .1190, .6969 b. .0021 c. .7054

d. �5020 or �1844 (using z.0005 � 3.295)

e. Normal, � � 7.576, � � 1.064, .7054
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51. .3174 for k � 1, .0456 for k � 2, .0026 for k � 3, as com-
pared to the bounds of 1, .25, and .111, respectively.

53. a. Exact: .212, .577, .573; Approximate: .211, .567, .596
b. Exact: .885, .575, .017; Approximate: .885, .579, .012
c. Exact: .002, .029, .617; Approximate: .003, .033, .599

55. a. .9409 b. .9943

57. b. Normal, � � 239, � 2 � 12.96

59. a. 1 b. 1 c. .982 d. .129

61. a. .449, .699, .148 b. .05, .018

63. a. short d plan #1 better, whereas long d plan #2 better
b. 1\� � 10 d E[h1 (X)] � 100, E[h2(X)] � 112.53

1\� � 15 d E[h1 (X)] � 150, E[h2(X)] � 138.51

65. a. .238 b. .238 c. .313 d. .653 e. .653
f. .713

67. a. .424 b. .567, �~ � 24 c. 60 d. 66

69. a. � Ai b. Exponential with � � .05
c. Exponential with parameter n�

73. a. .826, .826, .0636 b. .664 c. 172.727

77. a. 123.97, 117.373 b. .5517 c. .1587

79. a. 68.0, 122.1 b. .3204
c. .7257, skewness

81. a. 149.157, 223.595 b. .9573 c. .0414
d. 148.41 e. 9.57 f. 125.90

83. � � �

85. b. [�(� � �) � �(m � �)]/[�(� � � � m) � �(�)], �/(� � �)

87. Yes, since the pattern in the plot is quite linear.

89. Yes

91. Yes

93. Plot ln(x) vs. z percentile. The pattern is straight, so a log-
normal population distribution is plausible.

95. The pattern in the plot is quite linear; it is very plausible that
strength is normally distributed.

97. There is substantial curvature in the plot. � is a scale
parameter (as is � for the normal family).

99. a. F(y) � �
4
1
8
�(y 2 � y 3/18) for 0 � y � 12

b. .259, .5, .241 c. 6, 43.2, 7.2
d. .518 e. 3.75

101. a. f(x) � x2 for 0 � x � 1 and � �
7
4

� � �
3
4

�x for 1 � x � �
7
3

�

b. .917 c. 1.213

103. a. .9162 b. .9549 c. 1.3374

105. a. .3859 b. .0663 c. (72.97, 119.03)

107. b. F(x) � 0 for x � �1, � (4x � x3/3)/9 � �
1
2

1
7
� for �1 �

x � 2, and � 1 for x � 2
c. No. F(0) � .5 d �~ � 0
d. Y 	 Bin(10, �

2
5
7
�)

109. a. .368, .828, .460 b. 352.53
c. 1/� � exp[�exp(�(x � �)/�)] � exp(�(x � �)/�)
d. � e. � � 201.95, mode � 150, �~ � 182.99

111. a. � b. No c. 0
d. (� � 1)� e. � � 2

113. b. p(1 � exp(��1x)) � (1 � p)(1 � exp(��2x)) for x � 0
c. p/�1 � (1 � p)/�2

d. V(X) � 2p/�1
2 � 2(1 � p)/�2

2 � �2

e. 1, CV � 1 f. CV � 1

115. a. Lognormal b. 1 c. 2.72, .0185

119. a. Exponential with � � 1
c. Gamma with parameters � and c�

121. a. (1/365)3 b. (1/365)2 c. .000002145

123. b. Let u1, u2, u3, . . . be a sequence of observations from a
Unif[0, 1] distribution (a sequence of random numbers).
Then with xi � (�.1)ln(1 � ui), the xi’s are observations
from an exponential distribution with � � 10.

125. g(E(X)) � E(g(X))

127. a. 710, 84.423, .684 b. .376

Chapter 5

1. a. .20 b. .42 c. At least one hose is in use at each
pump; .70. d. pX(x) � .16, .34, .50 for x � 0, 1, 2,
respectively; pY (y) � .24, .38, .38 for y � 0, 1, 2, respec-
tively; .50 e. No; p(0, 0) � pX(0) � pY (0)

3. a. .15 b. .40 c. .22 d. .17, .46

5. a. .054 b. .00018

7. a. .030 b. .120 c. .300
d. .380 e. Yes

9. a. 3/380,000 b. .3024 c. .3593
d. 10Kx2 � .05 for 20 � x � 30 e. No

11. a. e���� � �x � �y/x!y! b. e���� � [1 � � � �]
c. e�(���) � (� � �)m/m!; Poisson (� � �)

13. a. e�x�y for x � 0, y � 0 b. .400 c. .594
d. .330

15. a. F(y) � 1 � e��y � (1 � e��y)2 � (1 � e��y)3 for y � 0
b. 2/3�

17. a. .25 b. .318 c. .637
d. fX(x) � 2�R�2��� x�2�/�R2 for �R � x � R; no

19. a. K(x2 � y2)/(10Kx2 � .05); K(x2 � y2)/(10Ky2 � .05)
b. .556, .549 c. 25.37, 2.87
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21. a. f(x1, x2, x3)/fX1,X2
(x1, x2) b. f(x1, x2, x3)/fX1

(x1)

23. .15

25. L2

27. .25 hr

29. ��
2
3

�

31. a. �.1082 b. �.0131

37. a. x� | 25 32.5 40 45 52.5 65
, E(X�) � � � 44.5

p(x�) | .04 .20 .25 .12 .30 .09

b. s2 | 0 112.5 312.5 800
, E(S2) � 212.25 � �2

p(s2) | .38 .20 .30 .12

39. Proportion | 0 .1 .2 .3 .4 .5

Probability | .000 .000 .000 .001 .005 .027

Proportion | .6 .7 .8 .9 1.0

Probability | .088 .201 .302 .269 .107

41. a. x� | 1 1.5 2 2.5 3 3.5 4

p(x�) | .16 .24 .25 .20 .10 .04 .01

b. .85 c. r | 0 1 2 3

p(r) | .30 .40 .22 .08

47. a. .6826 b. .1056

49. a. .6026 b. .2981

51. .7720

53. a. .0062 b. 0

55. a. .9838 b. .8926

57. .9616

59. a. .9986, .9986 b. .9015, .3970
c. .8357 d. .9525, .0003

61. a. 3.5, 2.27, 1.51 b. 15.4, 75.94, 8.71

63. a. .695 b. 4.0675 � 2.6775

65. a. .9232 b. .9660

67. .1588

69. a. 2400 b. 1205; independence c. 2400, 41.77

71. a. 158, 430.25 b. .9788

73. a. Approximately normal with mean � 105, SD � 1.2649;
Approximately normal with mean � 100, SD � 1.0142
b. Approximately normal with mean � 5, SD � 1.6213
c. .0068 d. .0010, yes

75. a. .2, .5, .3 for x � 12, 15, 20; .10, .35, .55 for y � 12, 15, 20
b. .25 c. No d. 33.35 e. 3.85

77. a. 3/81,250 b. fX(x) � k(250x � 10x2) for 0 � x � 20
and � k(450x � 30x2 � �

1
2

�x3) for 20 � x � 30; fY(y) results
from substituting y for x in fX(x). They are not independent.
c. .355 d. 25.969
e. 204.6154, �.894 f. 7.66

79. � 1

81. a. 400 min b. 70

83. 97

85. .9973

89. b, c. Chi-squared with � � n.

91. a. � 2
W /(� 2

W � � 2
E) b. .9999

93. 26, 1.64

95. a. .6 b. U � �X � �1 � �2� Y

Chapter 6

1. a. 8.14, X� b. .77, X
~

c. 1.66, S
d. .148 e. .204, S/X�

3. a. 1.348, X� b. 1.348, X�
c. 1.781, X� � 1.28S
d. .6736 e. .0905

5. Nx� � 1,703,000; T � Nd� � 1,591,300; T � (x�/ y�) �
1,601,438.281

7. a. 120.6 b. 1,206,000 c. .80 d. 120.0

9. a. 2.11 b. .119

11. b. ��
p

n
1q

1

1� � �
p

n
2q

2

2��
1/2

c. Use p̂i � xi/ni and q̂i � 1 � p̂i

in place of pi and qi in part (b) for i � 1, 2.

d. �.245 e. .041

15. a. 	̂ � �X 2
i /2n b. 74.505

17. b. .444

19. a. p̂ � 2�̂ � .30 � .20 b. p̂ � (100�̂ � 9)/70

21. b. �̂ � 5, �̂ � 28.0/�(1.2)

23. �̂1 � x�, �̂2 � y�, estimate of (�1 � �2) is x� � y�.

25. a. 384.4, 18.86 b. 415.42

29. a. 	̂ � min(Xi), �̂ � n/�[Xi � min(Xi)]
b. .64, .202

33. With xi � time between birth i � 1 and birth i, �̂ �
6/�6

i �1 ixi � .0436.

35. 29.5

37. 1.0132
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1. a. 99.5% b. 85% c. 2.96 d. 1.15

3. a. Narrower b. No c. No d. No

5. a. (4.52, 5.18) b. (4.12, 5.00)
c. .55 d. 94

7. By a factor of 4; the width is decreased by a factor of 5.

9. a. (x� � 1.645�/�n�, ∞); (4.57, ∞)
b. (x� � z� � �/�n�, ∞) c. (�∞, x� � z� � �/�n�);
(�∞, 59.7)

11. 950, .8714

13. a. (608.58, 699.74) b. 189

15. a. 80% b. 98% c. 75%

17. 134.53

19. (.513, .615)

21. .218

23. a. (.438, .814) b. 659

25. a. 381 b. 339

29. a. 2.228 b. 2.086 c. 2.845 d. 2.680
e. 2.485 f. 2.571

31. a. 1.812 b. 1.753 c. 2.602 d. 3.747
e. 2.1716 (from MINITAB) f. Roughly 2.43

33. a. Reasonable amount of symmetry, no outliers
b. Yes (based on a normal probability plot)
c. (430.5, 446.1), yes, no

35. a. 95% CI: (23.1, 26.9)
b. 95% PI: (17.2, 32.8), roughly 4 times as wide

37. a. (.888, .964) b. (.752, 1.100)
c. (.634, 1.218)

39. a. Yes b. (6.45, 98.01)
c. (18.63, 85.83)

41. All 70%; (c), because it is shortest

43. a. 18.307 b. 3.940 c. .95 d. .10

45. (3.6, 8.1); no

47. a. 95% CI: (6.702, 9.456) b. (.166, .410)

49. a. There appears to be a slight positive skew in the middle
half of the sample, but the lower whisker is much longer
than the upper whisker. The extent of variability is rather
substantial, although there are no outliers.
b. Yes. The pattern of points in a normal probability plot is
reasonably linear.
c. (33.53, 43.79)

51. a. (.624, .732) b. 1080 c. No

53. (�.84, �.16)

55. 246

57. (2tr /�
2
1��/2,2r, 2tr /�

2
�/2,2r) � (65.3, 232.5)

59. a. (max(xi)/(1 � �/2)1/n, max(xi)/(�/2)1/n)
b. (max(xi), max(xi)/�

1/n) c. (b); (4.2, 7.65)

61. (73.6, 78.8) versus (75.1, 79.6)

Chapter 7

Chapter 8

1. a. Yes b. No c. No
d. Yes e. No f. Yes

5. H0: � � .05 versus Ha: � � .05. I: conclude variability in
thickness is satisfactory when it isn’t. II: conclude variabil-
ity in thickness isn’t satisfactory when in fact it is.

7. I: concluding that the plant isn’t in compliance when it is; II:
concluding that the plant is in compliance when it isn’t.

9. a. R1 b. I: judging that one of the two companies is
favored over the other when that is not the case; II: judging
that neither company is favored over the other when in fact
one of the two really is preferred. c. .044
d. �(.3) � �(.7) � .488, �(.4) � �(.6) � .845
e. Reject H0 in favor of Ha.

11. a. H0: � � 10 versus Ha: � � 10 b. .01
c. .5319, .0078 d. 2.58
e. 10.1032 is replaced by 10.124, and 9.8968 is replaced by
9.876. f. x� � 10.020, so H0 should not be rejected.
g. z � 2.58 or � �2.58

13. b. .0004, 0, less than .01

15. a. .0301 b. .003 c. .004

17. a. z � 2.56 � 2.33, so reject H0. b. .8413 c. 143
d. .0052

19. a. z � �2.27, so don’t reject H0. b. .2266 c. 22

21. a. t.025,12 � 2.179 � 1.6, so don’t reject H0: � � .5.
b. �1.6 � �2.179, so don’t reject H0.
c. Don’t reject H0.
d. Reject H0 in favor of Ha: � � .5.

23. t � 2.24 � 1.708, so H0 should be rejected. The data does
suggest a contradiction of prior belief.

25. a. z � �3.33 � �2.58, so reject H0.
b. .1056 c. 217

27. a. x� � .750, x~ � .640, s � .3025, fs � .480. A boxplot
shows substantial positive skew; there are no outliers.
b. No. A normal probability plot shows substantial curva-
ture. No, since n is large.
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c. z � �5.79; reject H0 at any reasonable significance
level; yes. d. .821

29. a. .498 � 1.895, so do not reject H0. b. .72

31. �1.24 � �1.397, so prior belief does not appear to be 
contradicted.

35. Yes, because �2.47 � �1.96.

37. z � 3.67 � 2.58, so reject H0: p � .40. No.

39. a. H0: p � .02 vs Ha: p � .02, z ��1.01 � �1.645, don’t
reject H0, carry out inventory. b. .1949
c. � 0

41. a. z � 3.07 � 2.58, reject H0 and the company’s premise.
b. .0332

43. No, no, yes. R � {5, 6, . . . , 24, 25}, � � .098, � � .090

45. a. Reject H0. b. Reject H0.
c. Don’t reject H0. d. Reject H0. (a close call)
e. Don’t reject H0.

47. a. .0778 b. .1841 c. .0250
d. .0066 e. .5438

49. a. 0.40 b. .018 c. .130 d. .653
e. �.005 f. � .000

51. P-value � �, so don’t reject H0; no apparent difference.

53. P-value � .0004 � .01, so H0: � � 5 should be rejected in
favor of Ha: � � 5.

55. No; P-value � .2

57. t � 1.9, so P-value � .041. Since P-value � �, H0: � � 25
should be rejected in favor of Ha: � � 25.

59. t � 1.9, so P-value � .116. H0 should therefore not be
rejected.

61. a. .8980, .1049, .0014 b. P-value � 0. Yes. c. No

63. z � �3.12 � �1.96, so H0 should be rejected.

65. a. H0: � � .85 versus Ha: � � .85
b. H0 cannot be rejected for either �.

67. a. Yes, because t � 12.9 � 2.228.
b. Normal population distribution

69. a. No; no
b. No, because z � .44 and P-value � .33 � .10.

71. a. Approximately .6; approximately .2 (from Appendix
Table A.17) b. n � 28

73. a. z � 1.64 � 1.96, so H0 cannot be rejected; Type II
b. .10. Yes.

75. Yes. z � �3.32 � �3.08, so H0 should be rejected.

77. No, since z � 1.33 � 2.05.

79. P-value � 0, so reject H0; it appears that � � 15.

81. a. .01 � P-value � .025, so do not reject H0; no extradic-
tion

83. a. For H2: � � �0, reject H0 if z � xi /�0 � "2
1��, 2n

b. Test statistic value � 19.65 � 8.260, so do not reject H0.

85. a. Yes, � � .002

Chapter 9

1. a. �.4 hr; it doesn’t b. .0724, .2691 c. No

3. z � 1.76 � 2.33, so don’t reject H0.

5. a. z � �2.90, so reject H0. b. .0019
c. .8212 d. 66

7. Yes, since z � 1.83 � 1.645.

9. a. 6.2; yes b. z � 1.14, P-value � .25, no
c. No d. A 95% CI is (10.0, 21.8).

11. A 95% CI is (.99, 2.41).

13. 50

15. b. It increases.

17. a. 17 b. 21 c. 18 d. 26

19. t � �1.20 � �t.01,9 � �2.821, so do not reject H0.

21. Yes; �2.64 � �2.602, so reject H0.

23. b. No c. t � �.38 � �t�/2,10 for any reasonable �, so
don’t reject H0 (P-value � .7).

25. (.3, 6.1), yes, yes

27. (6.5, 31.3) based on 9 df; yes, yes

29. t � �2.10, df � 25, P-value � .023. At significance level
.05, we would conclude that cola results in a higher average
strength, but not at significance level .01.

31. a. Virtually identical centers, substantially more variability in
medium range observations than in higher range observations
b. (�7.9, 9.6), based on 23 df; no

33. t � 1.33, P-value � .094, don’t reject H0, no

35. t � �2.2, df � 16, P-value � .021 � .01 � �, so don’t
reject H0.

37. a. (�.561, �.287) b. Between �1.224 and .376

39. a. Yes
b. t � 2.7, P-value � .018 � .05 � �, so H0 should be
rejected.

41. t � 1.9, P-value � .047. H0 cannot be rejected at signifi-
cance level .01, but is barely rejected at � � .05.

43. a. No b. �49.1 c. 49.1

45. a. 95% CI: (�2.52, 1.05); plausible that they are identical
b. Linear pattern in npp implies normality of difference dis-
tribution is plausible.
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47. H0 is rejected because �4.18 � �2.33

49. P-value � .4247, so H0 cannot be rejected.

51. a. z � .80 � 1.96, so don’t reject H0.
b. n � 1211

53. a. The CI for ln(	) is ln(	̂) � z�/2[(m � x)/(mx) �
(n � y)/(ny)]1/2. Taking the antilogs of the lower and upper
limits gives a CI for 	 itself.
b. (1.43, 2.31); aspirin appears to be beneficial.

55. (�.35, .07)

57. a. 3.69 b. 4.82 c. .207 d. .271
e. 4.30 f. .212 g. .95 h. .94

59. f � .384; since .167 � .384 � 3.63, don’t reject H0.

61. f � 2.85 � 2.08, so reject H0; there does appear to be more
variability in low-dose weight gain.

63. (s2
2F1��/2/s1

2, s2
2F�/2/s1

2); (.023, 1.99)

65. No. t � 3.2, df � 15, P-value � .006, so reject H0: �1 � �2 �
0 using either � � .05 or .01.

67. z � 0 d P-value � .5, so H0: p1 � p2 � 0 cannot be
rejected.

69. (�299.3, 1517.9)

71. (1024.0, 1336.0), yes

73. Yes. t � �2.25, df � 57, P-value � .028

75. a. No. t � �2.84, df � 18, P-value � .012
b. No. t � �.56, P-value � .29

77. Not at significance level .05. t � �1.76 � �t.05,4 � �2.015

79. No, nor should the two-sample t test be used, because a nor-
mal probability plot suggests that the good-visibility distri-
bution is not normal.

81. Unpooled: df � 15, t � �1.8, P-value � .092
Pooled: df � 24, t � �1.9, P-value � .070

83. a. m � 141, n � 47 b. m � 240, n � 160

85. z � .83, P-value � .20, no.

87. .9015, .8264, .0294, .0000; true average IQs; no

89. Yes; z � 4.2, P-value � 0

91. a. Yes. t � �6.4, df � 57, and P-value � 0
b. t � 1.1, P-value � .14, so don’t reject H0.

93. (�1.29, �.59)

Chapter 10

1. a. f � 1.85 � 3.06 � F.05,4,15, so don’t reject H0.
b. P-value � .10

3. f � 1.30 � 2.57 � F.10,2,21, so P-value � .10. H0 cannot be
rejected at any reasonable significance level.

5. f � 1.73 � 5.49 � F.01,2,27, so the three grades don’t appear
to differ.

7. f � 1.70 � 2.46 � F.10,3,16, so P-value � .10. H0 cannot be
rejected at any reasonable significance level.

9. f � 3.96 and F.05,3,20 � 3.10 � 3.96 � 4.94 � F.01,3,20, so
.01 � P-value � .05. Thus H0 can be rejected at significance
level .05; there appear to be differences among the grains.

11. w � 36.09 3 1 4 2 5
437.5 462.0 469.3 512.8 532.1

Brands 2 and 5 don’t appear to differ, nor does there appear
to be any difference between brands 1, 3, and 4, but each
brand in the first group appears to differ significantly from
all brands in the second group.

13.

15.

The only significant differences are between 4 and both 
1 and 2.

17. (�.029, .379)

19. Any value of SSE between 422.16 and 431.88 will work.

21. a. f � 22.6 and F.01,5,78 � 3.3, so reject H0.
b. (�99.16, �35.64), (29.34, 94.16)

23.

25. a. Normal, equal variances
b. SSTr � 8.33, SSE � 77.79, f � 1.7, H0 should not be
rejected (P-value � .10)

27. a. f � 3.75 � 3.10 � F.05,3,20, so brands appear to differ.
b. Normality is quite plausible (a normal probability plot of
the residuals xij � x�i� shows a linear pattern).
c. 4 3 2 1 Only brands 1 and 4 appear to differ

significantly.

31. Approximately .62

33. arcsin(�x/�n�)

35. a. 3.68 � 4.94, so H0 is not rejected.
b. .029 � .01, so again H0 is not rejected.

37. f � 8.44 � 6.49 � F.001, so P-value � .001 and H0 should
be rejected.

5 3 1 4 2 This underscoring pattern is a bit awkward
to interpret.

w � 5.94 2 1 3 4
24.69 26.08 29.95 33.84

3 1 4 2 5

427.5 462.0 469.3 502.8 532.1

1 2 3 4
1 � 2.88 � 5.81 7.43 � 5.81 12.78 � 5.48
2 � � 4.55 � 6.13 9.90 � 5.81
3 � � � 5.35 � 5.81
4 � � � �

4 3 2 1
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39. The CI is (�.144, .474), which does include 0.

41. f � 3.96 � 4.07, so H0: �A
2 � 0 cannot be rejected.

43. (�3.70, 1.04), (�4.83, �.33), (�3.77, 1.27), (�3.99, .15).
Only �1 � �3 among these four contrasts appears to differ
significantly from zero.

45. They are identical.

Chapter 11

1. a. fA � 1.55, so don’t reject H0A.
b. fB � 2.98, so don’t reject H0B.

3. a. fA � 12.987 � F.01,3.9, so conclude that there is a gas 
rate effect; fB � 105.31, so conclude that there is a 
liquid rate effect. b. w � 95.44; 231.75 325.25 441.0
613.25, so only the lowest two rates do not differ signifi-
cantly from one another.
c. 336.75 382.25 419.25 473 so only the lowest and
highest rates appear to differ significantly from one another.

5. fA � 2.56, F.01,3.12 � 5.95, so there appears to be no effect
due to angle of pull.

7. a. Source df SS MS f

Treatments 2 28.78 14.39 1.04
Blocks 17 2977.67 175.16 12.68
Error 34 469.55 13.81
Total 53 3476.00

True average adaptation score does not appear to depend on
which treatment is given. b. Yes; fB is quite large, sug-
gesting great variability between subjects.

9. Source df SS MS f F.05

Treatments 3 81.19 27.06 22.4 3.01
Blocks 8 66.50 8.31
Error 24 29.06 1.21
Total 35 176.75

1 4 3 2
8.56 9.22 10.78 12.44

11. The residuals are .0350, .0117, �.0750, .0283,
.0875, �.0758, �.0825, .0708, �.1225, .0642, .1575,
and �.0992. The pattern in the normal probability plot is
quite linear.

13. b. Each SS is multiplied by c2, but fA and fB are unchanged.

15. a. Approximately .20, .43 b. Approximately .30

17. a. fA � 3.76, fB � 6.82, fAB � .74, and F.05,2,9 � 4.26, so the
amount of carbon fiber addition appears significant.
b. fA � 6.54, fB � 5.33, fAB � .27

19. a. Source df SS MS f

Coal 2 1.00241 .50121 29.49
NaOH 2 .12431 .06216 3.66
Interaction 4 .01456 .00364 .21
Error 9 .15295 .01699
Total 17 1.29423
Type of coal does appear to affect total acidity.

b. Coals 1 and 3 don’t differ significantly from one another,
but both differ significantly from coal 2.

21. a, b. Source df SS MS f

A 2 22941.80 11470.90 22.98
B 4 22765.53 5691.38 5.60
AB 8 3993.87 499.23 .49
Error 15 15253.50 1016.90
Total 29 64954.70
H0A and H0B are both rejected.

23. Source df SS MS f

A 2 11,573.38 5786.69 �
M
M

S
S
A
A
B

� � 26.70

B 4 17,930.09 4482.52 �
M
M

S
S

B
E

� � 28.51

AB 8 1734.17 216.77 �
M
M
S
S
A
E
B

� � 1.38

Error 30 4716.67 157.22
Total 44 35,954.31
Since F.01,8.30 � 3.17, F.01,2.8 � 8.65, and F.01,4.30 � 4.02,
H0G is not rejected but both H0A and H0B are rejected.

25. (�1.39, �1.05)

27. a. Source df SS MS f F.05

A 2 14,144.44 7,072.22 61.06 3.35
B 2 5,511.27 2,755.64 23.79 3.35
C 2 244,696.39 122,348.20 1,056.27 3.35
AB 4 1,069.62 267.41 2.31 2.73
AC 4 62.67 15.67 .14 2.73
BC 4 331.67 82.92 .72 2.73
ABC 8 1,080.77 135.10 1.17 2.31
Error 27 3,127.50 115.83
Total 53 270,024.33

d. Q.05,3.27 � 3.51, w � 8.90, and all three of the levels dif-
fer significantly from one another.

29. Source df SS MS f

A 2 12.896 6.448 1.04
B 1 100.041 100.041 16.10
C 3 393.416 131.139 21.10
AB 2 1.646 .823 �1
AC 6 71.021 11.837 1.905
BC 3 1.542 .514 �1
ABC 6 9.771 1.629 �1
Error 72 447.500 6.215
Total 95 1037.833
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a. No interaction effects are significant.
b. Factor B and factor C main effects are significant.
c. w � 1.89; only machines 2 and 4 do not differ signifi-
cantly from one another.

31. The P-value column shows that several interaction effects
are significant at level .01.

33. Source df SS MS f

A 6 67.32 11.02
B 6 51.06 8.51
C 6 5.43 .91 .61
Error 30 44.26 1.48
Total 48 168.07
F.05,6.30 � 2.42, fC � .61, so H0C is not rejected.

35. Source df SS MS f

A 4 28.88 7.22 10.7
B 4 23.70 5.93 8.79
C 4 .62 .155 �1
Error 12 8.10 .675
Total 24 61.30
Since F.05,4.12 � 3.26, both A and B are significant.

37. Source df MS f

A 2 2207.329 2259*
B 1 47.255 48.4*
C 2 491.783 503*
D 1 .044 �1
AB 2 15.303 15.7*
AC 4 275.446 282*
AD 2 .470 �1
BC 2 2.141 2.19
BD 1 .273 �1
CD 2 .247 �1
ABC 4 3.714 3.80
ABD 2 4.072 4.17*
ACD 4 .767 �1
BCD 2 .280 �1
ABCD 4 .347 �1
Error 36 .977
Total 71 93.621
*Denotes a significant F ratio.

39. a. �̂1 � 54.38, ̂ AC
11 � �2.21, ̂ AC

21 � 2.21.

b. Effect
Source Contrast MS f

A 1307 71,177.04 436.7
B 1305 70,959.34 435.4
C 529 11,660.04 71.54
AB 199 1,650.04 10.12
AC �53 117.04 �1
BC 57 135.38 �1
ABC 27 30.38 �1
Error 162.98

41. Source SS f

A 136,640.02 1,007.6
B 139,644.19 1,029.8
C 24,616.02 181.5
D 20,377.52 150.3
AB 2,173.52 16.0
AC 2.52 �1
AD 58.52 �1
BC 165.02 1.2
BD 9.19 �1
CD 17.52 �1
ABC 42.19 �1
ABD 117.19 �1
ACD 188.02 1.4
BCD 13.02 �1
ABCD 204.19 1.5
Error 4339.33
Total 328,607.98
F.05,1.32 � 4.15, so only the four main effects and the AB
interaction appear significant.

43. Source df SS f

A 1 .436 �1
B 1 .099 �1
C 1 .109 �1
D 1 414.12 851
AB 1 .003 �1
AC 1 .078 �1
AD 1 .017 �1
BC 1 1.404 3.62
BD 1 .456 �1
CD 1 2.190 4.50
Error 5 2.434
F.05,1,5 � 6.61, so only the factor D main effect is judged 
significant.

45. a. 1: (1), ab, cd, abcd; 2: a, b, acd, bcd; 3: c, d, abc, 
abd; 4: ac, bc, ad, bd.
b. Source df SS f

A 1 14,028.13 53.89
B 1 92,235.13 345.33
C 1 3.13 �1
D 1 18.00 �1
AC 1 105.13 �1
AD 1 200.00 �1
BC 1 91.13 �1
BD 1 420.50 1.62
ABC 1 276.13 1.06
ABD 1 2.00 �1
ACD 1 450.00 1.73
BCD 1 2.00 �1
Blocks 7 898.88 �1
Error 12 3,123.72
Total 31 111,853.88

F.01,1,12 � 9.33, so only the A and B main effects are 
significant.
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47. a. ABFG; (1), ab, cd, ce, de, fg, acf, adf, adg, aef, acg, aeg,
bcg, bcf, bdf, bdg, bef, beg, abcd, abce, abde, abfg, cdfg, cefg,
defg, acdef, acdeg, bcdef, bcdeg, abcdfg, abcefg, abdefg. {A,
BCDE, ACDEFG, BFG}, {B, ACDE, BCDEFG, AFG}, {C,
ABDE, DEFG, ABCFG}, {D, ABCE, CEFG, ABDFG}, {E,
ABCD, CDFG, ABEFG}, {F, ABCDEF, CDEG, ABG}, {G,
ABCDEG, CDEF, ABF}. b. 1: (1), aef, beg, abcd, abfg,
cdfg, acdeg, bcdef; 2: ab, cd, fg, aeg, bef, acdef, bcdeg, abcd-
fg; 3: de, acg, adf, bcf, bdg, abce, cefg, abdefg; 4: ce, acf, adg,
bcg, bdf, abde, defg, abcefg.

49. SSA � 2.250, SSB � 7.840, SSC � .360, SSD � 52.563,
SSE � 10.240, SSAB � 1.563, SSAC � 7.563, SSAD �
.090, SSAE � 4.203, SSBC � 2.103, SSBD � .010, SSBE �
.123, SSCD � .010, SSCE � .063, SSDE � 4.840. Error
SS � sum of two-factor SS’s � 20.568, Error MS � 2.057,
F.01,1.10 � 10.04, so only the D main effect is significant.

51. Source df SS MS f

A main effects 1 322.667 322.667 980.38
B main effects 3 35.623 11.874 36.08
Interaction 3 8.557 2.852 8.67
Error 16 5.266 0.329
Total 23 372.113
F.05,3.16 � 3.24, so interactions appear to be present.

53. Source df SS MS f

A 1 30.25 30.25 6.72
B 1 144.00 144.00 32.00
C 1 12.25 12.25 2.72
AB 1 1,122.25 1,122.25 249.39
AC 1 1.00 1.00 .22
BC 1 12.25 12.25 2.72
ABC 1 16.00 16.00 3.56
Error 4 36.00 4.50
Total 7
Only the main effect for B and the AB interaction effect are
significant at � � .01.

55. a. �̂1 � 9.00, �̂1 � 2.25, �̂ 1 � 17.00, ̂ 1 � 21.00,
(��̂)11 � 0, (�̂�)11 � 2.00, (�̂)11 � 2.75, (�̂�)11 � .75,
(�̂)11 � .50, (�̂)11 � 4.50
b. A normal probability plot suggests that the A, C, and D
main effects are quite important, and perhaps the CD inter-
action. In fact, pooling the 4 three-factor interaction SS’s
and the four-factor interaction SS to obtain an SSE based on
5 df and then constructing an ANOVA table suggests that
these are the most important effects.

57. Source df SS MS f P

A 2 34,436 17,218 436.92 0.000
B 2 105,793 52,897 1342.30 0.000
C 2 516,398 258,199 6552.04 0.000
AB 4 6,868 1,717 43.57 0.000
AC 4 10,922 2,731 69.29 0.000
BC 4 10,178 2,545 64.57 0.000
ABC 8 6,713 839 21.30 0.000
Error 27 1,064 39
Total 53 692,372
All effects are significant.

59. Based on the P-values in the ANOVA table, statistically
significant factors at the level � � .01 are adhesive type
and cure time. The conductor material does not have a sta-
tistically significant effect on bond strength. There are no
significant interactions.

61. Source df SS MS f

A 4 285.76 71.44 .594
B 4 227.76 56.94 .473
C 4 2867.76 716.94 5.958
D 4 5536.56 1384.14 11.502
Error 8 962.72 120.34 F.05,4.8 � 3.84
Total 24
H0A and H0B cannot be rejected, while H0C and H0D are
rejected.

Chapter 12

1. a. The accompanying displays are based on repeating each
stem value five times (once for leaves 0 and 1, a second time
for leaves 2 and 3, etc.).
17 | 0
17 | 2 3
17 | 4 4 5
17 | 6 7
17 | stem: hundreds and tens
18 | 0 0 0 0 0 1 1 leaf: ones
18 | 2 2 2 2
18 | 4 4 5
18 | 6
18 | 8

There are no outliers, no significant gaps, and the distribu-
tion is roughly bell-shaped with a reasonably high degree of
concentration about its center at approximately 180.

A typical value is about 1.6, and there is a reasonable
amount of dispersion about this value. The distribution is
somewhat skewed toward large values, the two largest of
which may be candidates for outliers.

0 | 8 8 9
1 | 0 0 0 0
1 | 3
1 | 4 4 4 4
1 | 6 6
1 | 8 8 8 9 stem: ones
2 | 1 1 leaf: tenths
2 |
2 | 5
2 | 6
2 |
3 | 0 0
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b. No, because observations with identical x values have
different y values.
c. No, because the points don’t appear to fall at all close to
a line or simple curve.

3. Yes. Yes.

5. b. Yes.
c. There appears to be an approximate quadratic relation-
ship (points fall close to a parabola).

7. a. 5050 b. 1.3 c. 130 d. �130

9. a. .095 b. �.475 c. .830, 1.305
d. .4207, .3446 e. .0036

11. a. �.01, �.10 b. 3.00, 2.50
c. .3627 d. .4641

13. a. Yes, because r2 � .972

15. a. 2 | 9
3 | 3 3 5 5 6 6 6 7 7 8 8 9
4 | 1 2 2 3 5 6 6 8 9
5 | 1
6 | 2 9
7 | 9
8 | 0

Typical value in low 40’s, reasonable amount of variability,
positive skewness, two potential outliers
b. No
c. y � 3.2925 � .10748x � 7.59. No; danger of extrapolation
d. 18.736, 71.605, .738, yes

17. a. We estimate that .144 is the expected change in calcium
content associated with a 1 mg/cm2 increase in the amount
of dissolved material. Roughly 86% of the observed varia-
tion in calcium content can be attributed to the simple linear
regression model relationship between content and the
amount of dissolved material.
b. 10.88 c. 1.46

19. a. y � �45.5519 � 1.7114x b. 339.51
c. �85.57 d. The ŷi’s are 125.6, 168.4, 168.4, 211.1,
211.1, 296.7, 296.7, 382.3, 382.3, 467.9, 467.9, 553.4,
639.0, 639.0; a 45° line through (0, 0).

21. a. Yes; r2 � .985 b. 368.89 c. 368.89

23. a. 16,213.64; 16,205.45
b. 414,235.71; yes, since r2 � .961.

27. �̂1 � �xiYi /�x2
i

29. Data set r2 s Most effective: set 3

1 .43 4.03 Least effective: set 1
2 .99 4.03
3 .99 1.90

31. a. .001017 b. (�.00956, �.00516)

33. a. (.081, .133)
b. Ha: �1 � .1, P-value � .277, no

35. a. (.63, 2.44) is a 95% CI.
b. Yes. t � 3.6, P-value � .004
c. No; extrapolation
d. (.54, 2.82), no

37. a. Yes. t � 7.99, P-value � 0. Note: There is one mild 
outlier, so the resulting normal probability plot is not entirely
satisfactory.
b. Yes. t �� 5.8, P-value � 0, so reject H0 :�1 � 1 in favor
of Ha: �1 � 1

39. f � 71.97, s�̂1
� .004837, t � 8.48, P-value � .000

43. d � 1.20, df � 13, and � � .1.

45. a. (77.80, 78.38)
b. (76.90, 79.28), same center but wider
c. wider, since 115 is further from x�
d. t � �11, P-value � 0

47. a. 95% PI is (20.21, 43.69), no
b. (28.53, 51.92), at least 90%

49. (431.3, 628.5)

51. a. .40 is closer to x� � .7495 b. (.745, .875)
c. (.059, .523)

53. (a) narrower than (b), (c) narrower than (d), (a) narrower
than (c), (b) narrower than (d)

57. If, for example, 18 is the minimum age of eligibility, then
for most people y � x � 18.

59. a. .966
b. The percent dry fiber weight for the first specimen tends
to be larger than for the second.
c. No change d. 93.3%
e. t � 14.9, P-value � 0, so there does appear to be such a
relationship.

61. a. r � .748, t � 3.9, P-value � .001. Using either � � .05
or .01, yes.
b. .560 (56%), same

63. r � .773, yet t � 2.44 � 2.776; so H0: � � 0 cannot be
rejected.

65. a. The x plot is a bit curved but not disturbingly so in light
of the small sample size. The y plot is quite straight.
b. t � 6.3 � 3.355, so there does appear to be a linear rela-
tionship.

67. a. Reject H0

b. No. P-value � .00032 ⇒ z � 3.6 ⇒ r � .16, which
indicates only a weak relationship.
c. Yes, but very large n ⇒ � � .022, so no practical signif-
icance.

69. a. 95% CI: (.888, 1.086)
b. .95% CI: (47.730, 49.172)
c. 95% PI: (45.378, 51.524)
d. Narrower for x � 25, since 25 is closer to x�
e. .981

71. a. t � �1.24 � �2.201, so don’t reject H0

b. .970

73. a. .507 b. .712 c. P-value � .0013 � .01 � �, so
reject H0: �1 � 0 and conclude that there is a useful linear
relationship. d. A 95% CI is (1.056, 1.275).
e. 1.0143, .2143
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75. a. y � 14.1904 � .14892x b. t � �1.43, so don’t
reject H0: �1 � �.10. c. No; �(x � x�)2 � 143 here and
182 for the given data. d. A 95% CI for �Y�28 is (9.599,
10.443).

77. a. A substantial linear relationship
b. y � �.08259 � .044649x

c. 98.3%
d. .7702, �.0902 e. Yes; t � 19.96
f. (.0394, .0499) g. (.762, .858)

81. b. .573

87. t � �1.14, so it is plausible that �1 � 1.

Chapter 13

1. a. 6.32, 8.37, 8.94, 8.37, and 6.32 b. 7.87, 8.49, 8.83,
8.94, and 2.83 c. The deviation is likely to be much
smaller for the x values of part (b).

3. a. Yes. b. �.31, �.31, .48, 1.23, �1.15, .35, �.10,
�1.39, .82, �.16, .62, .09, 1.17, �1.50, .96, .02, .65,
�2.16, �.79, 1.74. Here e/e* ranges between .57 and .65,
so e* is close to e/s. c. No.

5. a. About 98% of observed variation in thickness is ex-
plained by the relationship.
b. A nonlinear relationship

7. a. No. b. ei’s are �16.60, 9.70, 19.00, �.70, 11.40;
e*i ’s are �1.55, .68, 1.25, �.05, �1.06; a quadratic function.

9. For set 1, simple linear regression is appropriate. A quadratic
regression is reasonable for set 2. In set 3, (13, 12.74) appears
very inconsistent with the remaining data. The estimated
slope for set 4 depends largely on the single observation (19,
12.5), and evidence for a linear relationship is not compelling.

11. c. V(Ŷi) increases, and V(Yi � Ŷi) decreases.

13. t with n � 2 df; .02

15. a. A curved pattern b. A linear pattern
c. Y � �x� � � d. A 95% PI is (3.06, 6.50).
e. One standardized residual, corresponding to the third
observation, is a bit large. There are only two positive stan-
dardized residuals, but two others are essentially 0. The
patterns in a standardized residual plot and normal proba-
bility plot are marginally acceptable.

17. a. �xi � 15.501, �yi � 13.352, �(xi)
2 � 20.228, �xiyi �

18.109, �(yi)
2 � 16.572, �̂1 � 1.254, �̂0 � �.468, �̂ � .626,

�̂ � 1.254 c. t � �1.07, so don’t reject H0. d. H0: � �
1, t � �4.30, so reject H0.

19. a. No b. Y � �0 � �1 � (1/t) � �, where Y � ln(Y),
so Y � �e�/t � �. c. �̂ � �̂1 � 3735.45, �̂0 � �10.2045,
�̂ � (3.70034) � (10�5), ŷ  � 6.7748, ŷ � 875.5 d.
SSE � 1.39587, SSPE � 1.36594 (using transformed val-
ues), f � .33 � 8.68 � F.01,1,15, so don’t reject H0.

21. a. �̂Y�x � 18.14 � 1485/x b. ŷ � 15.17

23. For the exponential model, V(Y⏐x) � �2e2�x� 2, which does
depend on x. A similar result holds for the power model.

25. a. The point estimate of �1 is �̂1 � .1772, and the estimated
odds ratio is 1.194. H0: �1 � 0 is rejected in favor of the

conclusion that experience does appear to affect the likeli-
hood of successful task performance.

27. b. 52.88, .12 c. .895 d. No
e. (48.54, 57.22) f. (42.85, 62.91)

29. a. SSE � 16.8, s � 2.048 b. R2 � .995 c. Yes.
t � �6.55, P-value � .003 (from MINITAB) d. 98%
individual confidence levels ⇒ joint confidence level � 96% :
(.671, 3.706), (�.00498, �.00135) e. (69.531, 76.186),
(66.271, 79.446), using software

31. a. 13.636 � 11.406x � 1.7155x2

b. Yes. Yes, (6, 20) c. 2.040, .947. The model utility F
test via MINITAB gives f � 35.9, P-value � .003, suggest-
ing a useful model. d. Yes, yes e. (28.35, 35.28)

33. a. .9671, .9407
b. .0000492x3 � .000446058x2 � .007290688x �
.96034944 c. t � 2 � 3.182 � t.025,3, so the cubic term
should be deleted. d. Identical
e. .987, .994, yes

35. ŷ � 7.6883e.1799x�.0022x 2

37. a. 4.9 b. When number of deliveries is held fixed, the
average change in travel time associated with a 1-mile
increase in distance traveled is .060 hr. When distance trav-
eled is held fixed, the average change in travel time associ-
ated with one extra delivery is .900 hr. c. .9861

39. a. 77.3 b. 40.4

41. f � 24.4 � 5.12 � F.001,6.30, so P-value �� .001. The chosen
model appears to be useful.

43. a. 48.31, 3.69 b. No. If x1 increases, either 
x3 or x2 must change. c. Yes, since f � 18.924, P-
value � .001. d. Yes, using � � .01, since t � 3.496
and P-value � .003.

45. a. f � 87.6, P-value � 0, there does appear to be a useful lin-
ear relationship between y and at least one of the predictors.
b. .935 c. (9.095, 11.087)

47. b. P-value � .000, so conclude that the model is useful.
c. P-value � .034 � .05 � �, so reject H0: �3 � 0; %
garbage does appear to provide additional useful informa-
tion. d. (1479.8, 1531.1), reasonable precision e. A
95% PI is (1435.7, 1575.2).
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49. a. 96.8303, �5.8303 b. f � 14.9 � 8.02 � F.05,2.9,
so reject H0 and conclude that the model is useful.
c. (78.28, 115.38) d. (38.50, 155.16) e. (46.91,
140.66) f. No. P-value � .208, so H0: �1 � 0 cannot be
rejected.

51. a. No b. f � 5.04 � 3.69 � F.05,5.8. There does appear
to be a useful linear relationship. c. 6.16, 3.304, (16.67,
31.91) d. f � 3.44 � 4.07 � F.05,3.8, so H0: �3 � �4 �
�5 � 0 cannot be rejected. The quadratic terms can be deleted.

55. a. The dependent variable is ln(q), and the predictors are
x1 � ln(a) and x2 � ln(b); �̂ � �̂1 � .9450, ̂ � �̂2 �
.1815, �̂ � 4.7836, q̂ � 18.27.
b. Now regress ln(q) against x1 � a and x2 � b.
c. (1.24, 5.78)

57. k R2 adj. R2 Ck

1 .676 .647 138.2
2 .979 .975 2.7
3 .9819 .976 3.2
4 .9824 4
a. The model with k � 2 b. No

59. The model with predictors x1, x3, and x5

61. No. All R2 values are much less than .9.

63. The impact of these two observations should be further
investigated. Not entirely. The elimination of observation #6
followed by re-regressing should also be considered.

65. a. The two distributions have similar amounts of variabil-
ity, are both reasonably symmetric, and contain no outliers.
The main difference is that the median of the crack values is
about 840, whereas it is about 480 for the no-crack values.
A 95% t CI for the difference between means is (132, 557).

b. r2 � .577 for the simple linear regression model, P-
value for model utility � 0, but one standardized residual is
�4.11! Including an indicator for crack–no crack does not
improve the fit, nor does including an indicator and interac-
tion predictor.

67. a. When gender, weight, and heart rate are held fixed, we
estimate that the average change in VO2 max associated with

a 1-minute increase in walk time is �.0996. b. When
weight, walk time, and heart rate are held fixed, the estimate
of average difference between VO2 max for males and
females is .6566. c. 3.669, �.519 d. .706
e. f � 9.0 � 4.89 � F.01,4.15, so there does appear to be a use-
ful relationship.

69. a. No. There is substantial curvature in the scatter plot.
b. Cubic regression yields R2 � .998 and a 95% PI of
(261.98, 295.62), and the cubic predictor appears to be
important (P-value � .001). A regression of y versus ln(x)
has r2 � .991, but there is a very large standardized residual
and the standardized residual plot is not satisfactory.

71. a. R2 � .802, f � 21.03, P-value � .000. pH is a candidate
for deletion. Note that there is one extremely large stan-
dardized residual.
b. R2 � .920, adjusted R2 � .774, f � 6.29, P-value � .002
c. f � 1.08, P-value � .10, don’t reject H0: �6 � 
 
 
 �
�20 � 0. The group of second-order predictors does not
appear to be useful.
d. R2 � .871, f � 28.50, P-value � .000, and now all six
predictors are judged important (the largest P-value for any
t-ratio is .016); the importance of pH2 was masked in the test
of (c). Note that there are two rather large standardized
residuals.

73. a. f � 1783, so the model appears useful.
b. t � �48.1 � �6.689, so even at level .001 the qua-
dratic predictor should be retained.
c. No d. (21.07, 21.65) e. (20.67, 22.05)

75. a. f � 30.8 � 9.55 � F.01,2.7, so the model appears useful.
b. t � �7.69 and P-value � .001, so retain the quadratic
predictor. c. (44.01, 47.91)

77. a. 231.75 b. .903 c. f � 41.9, indicating a useful
relationship. d. (220.9, 238.1)

79. There are several reasonable choices in each case.

81. a. f � 106, P-value � 0 b. (.014, .068)
c. t � 5.9, reject H0: �4 � 0, percent nonwhite appears
to be important. d. 99.514, y � ŷ � 3.486

Chapter 14

1. a. Reject H0. b. Don’t reject H0.
c. Don’t reject H0. d. Don’t reject H0.

3. No. �2 � 1.57 and P-value � .10, so H0 cannot be rejected.

5. �2 � 6.61 � 14.684 � �2
.10,9

, so don’t reject H0.

7. �2 � 4.03 and P-value � .10, so don’t reject H0.

9. a. [0, .2231), [.2231, .5108), [.5108, .9163), [.9163, 1.6094),
and [1.6094, ∞) b. �2 � 1.25 � �2

�,4
for any reasonable

�, so the specified exponential distribution is quite plausible.

11. a. (�∞, �.97), [�.97, �.43), [�.43, 0), [0, .43), [.43, .97),
and [.97, ∞) b. (�∞, .49806), [.49806, .49914),
[.49914, .5), [.5, .50086), [.50086, .50194), and [.50194, ∞)
c. �2 � 5.53, �2

.10,5
� 9.236, so P-value � .10 and the spec-

ified normal distribution is plausible.

13. p̂ � .0843, �2 � 280.3 � �2
�,1

for any tabulated �, so the
model gives a poor fit.

15. The likelihood is proportional to 	233(1 � 	)367, from which
	̂ � .3883. The estimated expected counts are 21.00, 53.33,
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50.78, 21.50, and 3.41. Combining cells 4 and 5, �2 � 1.62,
so don’t reject H0.

17. �̂ � 3.167, from which �2 � 103.98 �� �2
�,k�1

� �2
�,7

for
any tabulated �, so the Poisson distribution provides a very
poor fit.

19. 	̂1 � (2n1 � n3 � n5)/2n � .4275, 	̂ 2 � .2750, �2 � 29.1,
�2

.01,3
� 11.344, so reject H0.

21. Yes. The null hypothesis of a normal population distribution
cannot be rejected.

23. MINITAB gives r � .967, and since c.10 � .9707 and c.05 �
.9639, .05 � P-value � .10. Using � � .05, normality is
judged plausible.

25. �2 � 23.18 � 13.277 � �2
.01,4

, so H0 is rejected. The pro-
portions appear to be different.

27. Yes. �2 � 44.98 and P-value � .001.

29. pij � proportion of jth sex combination resulting from ith
genotype. �2 � 6.46, so P-value � .10 and the null hypothe-
sis of homogeneity cannot be rejected.

31. Yes. �2 � 14.15, so .025 � P-value � .03 and H0 should be
rejected at significance level .05.

35. Nij�/n, nkNij�/n, 24

37. �2 � 3.65 � 5.992 � �2
.05,2

, so H0 cannot be rejected.

39. Yes. �2 � 131 and P-value � .001.

41. �2 � 22.4 and P-value � .001, so the null hypothesis of
independence is rejected.

43. P-value � 0, so the null hypothesis of homogeneity is
rejected.

47. a. Test statistic value � 19.2, P-value � 0
b. Evidence of at best a weak relationship; test statistic 
value � �2.13
c. Test statistic value � �.98, P-value � .10
d. Test statistic value � 3.3, .01 � P-value � .05

49. a. No
b. 99% CI: (.58, 1.56)
c. Yes. "2 � 19.18, P-value � 0
d. No. f � 1.35, P-value � .1

Chapter 15

1. s� � 35 and 14 � 35 � 64, so H0 cannot be rejected.

3. s� � 18 � 21, so H0 is rejected.

5. Reject H0 if either s� � 64 or s� � 14. Because s� � 72, H0

is rejected.

7. s� � 442.5, z � 2.89 � 1.645, so reject H0.

9.

11. w � 37 and 29 � 37 � 61, so H0 cannot be rejected.

13. z � 2.27 � 2.58, so H0 cannot be rejected. P-value � .023

15. w � 39 � 41, so H0 is rejected.

17. (x�(5), x�(32)) � (11.15, 23.80)

19. (�13.0, �6.0)

21. (dij(5), dij(21)) � (16, 87)

23. k � 14.06 � 6.251, so reject H0.

25. k � 9.23 � 5.992, so reject H0.

27. fr � 2.60 � 5.992, so don’t reject H0.

29. fr � 9.62 � 7.815 � �2
.05,3

, so reject H0.

31. (�5.9, �3.8)

33. a. .021 b. c � 14 gives � � .058; y � 12, so H0 can-
not be rejected.

35. w � 26 � 27, so don’t reject H0.

Chapter 16

1. All points on the chart fall between the control limits.

3. .9802, .9512, 53

5. a. .0301 b. .2236 c. .6808

7. LCL � 12.20, UCL � 13.70. No.

9. LCL � 94.91, UCL � 98.17. There appears to be a problem
on the 22nd day.

11. a. 200 b. 4.78 c. 384.62 (larger), 6.30 (smaller)

13. LCL � 12.37, UCL � 13.53

15. a. LCL � 0, UCL � 6.48
b. LCL � .48, UCL � 6.60

17. LCL � .045, UCL � 2.484. Yes, since all points are inside
the control limits.

19. a. LCL � .105, UCL � .357
b. Yes, since .39 � UCL.

d 0 2 4 6 8 10 12 14 16 18 20
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21. p� � 3/53

23. LCL � 0, UCL � 10.1

25. When area � .6, LCL � 0 and UCL � 14.6; when area �
.8, LCL � 0 and UCL � 13.4; when area � 1.0, LCL � 0
and UCL � 12.6.

27. l: 1 2 3 4 5 6 7 8
dl: 0 .001 .017 0 0 .010 0 0
el: 0 0 0 .038 0 0 0 .054

l: 9 10 11 12 13 14 15
dl: 0 .024 .003 0 0 0 .005
el: 0 0 0 .015 0 0 0
There are no out-of-control signals.

29. n � 5, h � .00626

31. Hypergeometric probabilities (calculated on an HP21S calcu-
lator) are .9919, .9317, .8182, .6775, .5343, .4047, .2964,
.2110, .1464, and .0994, whereas the corresponding binomial
probabilities are .9862, .9216, .8108, .6767, .5405, .4162,
.3108, .2260, .1605, and .1117. The approximation is 
satisfactory.

33. .9206, .6767, .4198, .2321, .1183; the plan with n � 100,
c � 2 is preferable.

35. .9981 .5968, and .0688

37. a. .010, .018, .024, .027, .027, .025, .022, .018, .014, .011
b. .0477, .0274 c. 77.3, 202.1, 418.6, 679.9, 945.1,
1188.8, 1393.6, 1559.3, 1686.1, 1781.6

39. x� chart based on sample standard deviations: LCL �
402.42, UCL � 442.20. x� chart based on sample ranges:
LCL � 402.36, UCL � 442.26. S chart: LCL � .55, UCL �
30.37. R chart: LCL � 0, UCL � 82.75.

41. S chart: LCL � 0, UCL � 2.3020; because s21 � 2.931 �
UCL, the process appears to be out of control at this time.
Because an assignable cause is identified, recalculate limits
after deletion: for an S chart, LCL � 0 and UCL � 2.0529;
for an x� chart, LCL � 48.583 and UCL � 51.707. All points
on both charts lie between the control limits.

43. �xx� � 430.65, s � 24.2905; for an S chart, UCL � 62.43
when n � 3 and UCL � 55.11 when n � 4; for an x� chart,
LCL � 383.16 and UCL � 478.14 when n � 3, and LCL �
391.09 and UCL � 470.21 when n � 4.
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Index

Acceptance quality level, 656
Acceptance sampling, 654–660

double-sampling plans, 658–659
single-sampling plans, 655–657
standard sampling plans, 660

Additive model, 399–400
Adjusted coefficient of multiple determination, 522
Adjusted residual plot, 535
Aliasing, 437
Alias pairs, 437
Alternative hypothesis, 285, 286
Analysis of variance. See ANOVA
Analytic studies, 7
ANOVA (analysis of variance), 369

distribution-free, 618–621
expected mean squares, 403
fixed effects model, 391–392, 399–401, 411–412, 420–421
F test, 374–375, 387–389
Latin square designs, 424–426
model equation, 385–386
multifactor, 397–445
multiple comparisons procedure, 379–384, 404, 415–416
noncentrality parameter, 387
notation and assumptions, 372–373
random effects model, 392, 407–408, 416
randomized block experiments, 404–407
regression and, 475
sample sizes, 389–391
single-factor, 369, 370–379, 385–394
sums of squares, 375–378
test procedures, 373–374, 401–403, 412–415
three-factor, 419–429
transformations, 391
two-factor, 398–419

ANOVA table, 377
Ansari–Bradley test, 624
Assignable causes, 626
Asymptotic relative efficiency, 606
Attribute control charts, 641–645
Attribute data

control charts for, 641–645
explanation of, 641

Average outgoing quality, 659
Average outgoing quality limit, 659
Average total number inspected, 659
Axioms of probability, 51

Backward elimination method, 556
Bayes’ theorem, 72–73
Bernoulli distributions, 94
Bernoulli random variable, 88

Beta distribution, 167–168
Biased estimators, 231
Bimodal histograms, 18
Binomial distributions, 108–113

hypergeometric, 116–118
negative, 118–120
normal distributions and, 152–154
Poisson distributions and, 122–123
tables, 111–112, 663–665

Binomial experiments, 108
Binomial random variables, 110–111
Binomial tables, 111–112
Bivariate data, 3
Bivariate normal distribution, 489
Blocking, 407

confounding and, 434–436
randomized experiments and, 404–407, 620–621

Bonferroni inequality, 481
Bonferroni intervals, 481
Bootstrap method, 239

confidence intervals and, 261
estimate of standard error and, 239–240

Bound on the error of estimation, 260
Box, George, 626
Boxplots, 35–39

comparative, 37–39
outliers in, 36–37

“Broken stick” model, 141

Calibration, 495
Categorical data

analysis of, 568–598
sample proportions and, 29

Cauchy distribution, 237
c control chart, 642–643
Cell counts

estimated expected, 578, 579
expected, 570
observed, 570

Censoring, 237
Census, 2
Centering x values, 524–525
Central limit theorem, 215–218
Charts, control. See Control charts
Chatterjee, S., 505
Chebyshev’s inequality, 107, 252
Chi-squared distribution, 161–162, 570

critical values, 279, 570, 672
curve tail areas, 682–683
degrees of freedom, 162, 570, 578
Chi-squared tests, 572–573, 582



Classes, 15
Classical confidence interval, 258
Class intervals, 15
Coefficient of determination, 462–464
Coefficient of multiple determination, 522, 534
Coefficient of variation, 42
Combinations, 62
Comparative boxplots, 37–39
Comparative stem-and-leaf display, 21
Complement of an event, 49
Complete layout, 424
Composite hypotheses, 576
Compound event, 48
Conceptual population, 6
Conditional distributions, 193
Conditional probability, 67–68

definition of, 68–69
distributions, 193

Conditional probability density function, 193
Conditional probability mass function, 193
Confidence intervals, 5, 254–283

basic properties of, 255–257
bootstrap, 261
bounds, 260, 268, 272
classical, 258
correlation coefficient, 492
derivation of, 260–261
distribution-free, 614–618
exponential distribution, 260–261
hypothesis testing and, 614
interpretation of, 257–258
large-sample, 263–265, 268, 332, 357–358
levels of confidence and, 254, 257–259
means differences, 347–348
multiple regression, 538, 539
nonnormal distribution, 276
normal distribution, 262, 270
one-sided, 267–268
paired data and, 347–348
parametric functions and, 384
Poisson distribution, 269
polynomial regression, 523–524
population mean, 263–264, 347–348
population proportion, 265–266, 357–358
precision of, 259
prediction, 274–275
proportion differences, 357–358
sample size and, 259–260
sign interval, 623
simple linear regression, 479–481
simultaneous, 379, 380, 383
slope of regression line, 471
standard deviation, 278–279
t distribution, 270–273
tolerance, 275–276
two-sample t, 337
uniform distribution, 282
variance, 278–279, 363

Confidence levels, 254, 257–259
Confounding, 434–436
Consistent estimator, 252
Contingency tables, 587–595

Continuity correction, 152
Continuous distributions

goodness of fit for, 582–583
median of, 140
percentiles of, 139

Continuous random variables, 89
cumulative distribution function, 136
expected values, 141
jointly distributed, 186–189
probability distributions, 131–132
variance, 142

Continuous variables, 13
Contrasts, 430
Control charts, 626–645

attribute data, 641–645
CUSUM procedures, 646–654
general explanation, 626–627
location, 627–635
performance characteristics, 632–634
probability limits, 640
recomputing control limits, 632
robust, 635
supplemental rules, 634–635
transformed data, 644–645
variation, 637–640

Convenience sample, 7
Convex function, 183
Correction factor for the mean, 376
Correlation coefficient, 485–492

confidence intervals, 492
hypothesis testing, 489
multiple, 534
point estimation, 488
population, 488–492
random variables, 200–201
sample, 485–488

Counting techniques, 59–65
Covariance, 198–199
Critical values, 148

chi-squared, 279, 570, 672
F distribution, 360, 675–680
normal distribution, 671
Ryan–Joiner test, 684
Studentized range, 380, 681
t, 271, 670
tolerance, 275
Wilcoxon interval, 687–688
Wilcoxon test, 685–686
z, 148

Cubic regression, 519
Cumulative binomial probabilities, 

663–665
Cumulative distribution function, 95, 136
Cumulative frequency, 24
Cumulative Poisson probabilities, 665–666
Cumulative sums, 646
Curtailment, 659
CUSUM procedures, 646–654

computational, 649–650
designing, 652–654
equivalence of, 650–652
V-mask, 646–649
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Danger of extrapolation, 458
Data, 2

attribute, 641
bivariate, 3
categorical, 29
collecting, 7–9
multivariate, 3
paired, 344
qualitative, 19
univariate, 3

Degrees of freedom
chi-squared distribution, 162
F distribution, 360
goodness-of-fit tests, 570, 578
homogeneity test, 589
independence test, 591–592
paired vs. unpaired experiment, 350
regression, 461
sample variance, 34
single-factor ANOVA, 374
t distribution, 271
two-sample t test, 336

Deming, W. E., 6, 654
Density curve, 132
Density scale, 17
Dependent events, 77
Dependent random variables, 190
Dependent variables, 447
Descriptive statistics, 3
Deterministic relationship, 446
Deviations from the mean, 32
Diagnostic plots, 502–503
Diagrams

Pareto, 24
tree, 60–61
Venn, 50

Discrete distributions, 580–582
Discrete populations, 152
Discrete random variables, 89

cumulative distribution function, 95
expected value, 101
jointly distributed, 185–186
probability distributions, 90–91
variance, 105

Discrete uniform distribution, 107
Discrete variables, 13
Disjoint events, 49
Distribution-free ANOVA, 618–621

Friedman test, 620–621
Kruskal–Wallis test, 618–620

Distribution-free confidence intervals, 614–618
Wilcoxon rank-sum interval, 616–618
Wilcoxon signed-rank interval, 614–616

Distribution-free procedures, 321, 599–624
ANOVA and, 618–621
confidence intervals and, 614–618
Wilcoxon rank-sum test, 608–613
Wilcoxon signed-rank test, 600–608

Distribution function, 95, 136
Distributions. See Probability distributions
Dotplots, 12–13
Double-bind experiments, 357

Double-sampling plans, 658–659
Dummy variable, 531
Dunnett’s method, 384

Effects
fixed, 391, 399, 411, 420
main, 411
mixed, 408, 416
random, 392, 407, 416

Efron, Bradley, 240
Empirical rule, 151
Enumerative studies, 6
Equality of variances, 361
Equally likely outcomes, 57
Error probabilities, 632–633
Errors

hypothesis test, 287–288
mean square, 230, 373
measurement, 172
prediction, 274, 275
standard, 238–240
type I and II, 288

Error sum of squares, 376, 460
Estimated expected cell counts, 578, 579
Estimated regression line, 455
Estimated standard error, 238–240
Estimates, 5

interval, 5, 254
least squares, 455
parameter, 520, 532
point, 26, 204, 227–253

Estimators. See Point estimators
Events, 48

complement of, 49
compound, 48
dependent, 77
disjoint, 49
exhaustive, 72
independent, 77, 79
intersection of, 49
mutually exclusive, 49
mutually independent, 79
simple, 48
union of, 49

Exhaustive events, 72
Expected cell counts, 570
Expected mean squares, 403–404
Expected values, 100–106

continuous random variable, 141
definition of, 101
discrete random variable, 101
jointly distributed random variables, 196–197
related to functions, 103
rules of, 104
variance and, 104–106

Experiments, 47
binomial, 108
double-bind, 357
factorial, 429–440
multinomial, 191, 569
paired vs. unpaired, 349–350
randomized block, 404–407, 620–621



randomized controlled, 329
sample space of, 47–48
simulation, 208–211

Experimentwise error rate, 383
Explanatory variables, 447
Exponential distributions, 157–159

confidence interval, 260–261
hypothesis test, 324
memoryless property of, 159
point estimation, 246, 252
Poisson process and, 158

Exponentially weighted moving-average control chart, 661
Exponential smoothing, 44
Extrapolation, danger of, 458
Extreme outlier, 37
Extreme value distribution, 176, 181

Factorial experiments, 429–440
Factorial notation, 63
Factors, 369
Failure rate function, 182
Family error rate, 383
Family of probability distributions, 94
F distribution, 360–363, 374–375

critical values, 360, 675–680
degrees of freedom, 360

Finite population correction factor, 118
First-order multiple regression models, 529–530
Fisher, R. A., 245
Fisher–Irwin test, 358
Fisher transformation, 491
Fitted values, 403, 459, 534
Fixed effects model

single-factor ANOVA, 391–392
two-factor ANOVA, 399–401, 411–412
three-factor ANOVA, 420–421

Forward selection method, 557
Fourth spread, 35
Fractional replication, 436–440
Fraction-defective data, 641–642
Frequency, 13

cumulative, 24
relative, 13, 53

Frequency distribution, 14
Friedman test, 620–621
F tests

equality of variances, 361
multiple regression, 540–542
P-values for, 362–363
single-factor ANOVA, 374–375, 387–388
t tests and, 389

Functions
estimating for parameters, 248–249
expected value of, 103

Fundamental identity, 376
Fundamental Theorem of Calculus, 139

Galton, Francis, 464
Gamma distribution, 160–161

point estimation, 244, 251
Gamma function, 159–160

incomplete, 161, 669

Gauss, Carl Friedrich, 455
General additive multiple regression model equation, 528
Generalized interaction, 435
Generalized negative binomial distribution, 120
Geometric distribution, 119
Geometric random variables, 119
Goodness-of-fit tests, 569–587

category probabilities and, 569–576
composite hypotheses and, 576–587
continuous distributions and, 582–583
discrete distributions and, 580–582
normality and, 584–585

Grand mean, 372
Grand total, 375
Graphs, line, 92
Greco-Latin square design, 444–445

Half-normal plot, 179
Half-replicate, 436–437
Heavy tails, 102, 174, 505
Histograms, 13–18

bimodal, 18
continuous data, 15, 17
discrete data, 14
multimodal, 19
negatively skewed, 19
positively skewed, 19
probability, 93
shapes of, 18–19
symmetric, 19
unimodal, 18

Hoaglin, David, 251
Hodges–Lehmann estimator, 252
Hollander, Myles, 621
Homogeneity

null hypothesis of, 588
testing for, 588–590

Homogenous populations, 588
Hyperexponential distribution, 181
Hypergeometric distribution, 116–118, 358
Hypotheses, 285

alternative, 285, 286
composite, 576
null, 285, 286
simple, 576

Hypothesis testing, 284–324
Ansari–Bradley test, 624
confidence intervals and, 614
correlation coefficient, 489
distribution-free, 321
errors in, 287–288
explanation of, 285–286
exponential distribution, 324
Fisher–Irwin test, 358
Friedman test, 620–621
goodness of fit, 571, 578
homogeneity of populations, 589
independence of factors, 592
issues related to, 319
Kruskal–Wallis test, 618–620
large-sample, 299–300, 306–307, 331, 354
likelihood ratio principle, 320–321
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Hypothesis testing, (continued)
lower-tailed, 289, 295, 315, 316
McNemar test, 368
means differences, 345, 346–347
multiple regression, 536–537, 538, 539–540
normal distribution, 300–301, 323–324
Poisson distribution, 323
polynomial regression, 523
population mean, 294–304, 346–347
population proportion, 306–310, 354–355
power of, 303–304
procedures for, 286–287
proportion differences, 354–355
P-values and, 311–317
rejection region, 287
sample-size determination, 297–298, 302–303, 308
Siegel–Tukey test, 623
significance level, 292, 319–320
sign test, 623
simple linear regression, 473–475, 481
small-sample, 309
steps in process of, 318–319
test statistic, 287
two-tailed, 296, 315, 316
type II error probability, 288, 298, 308, 329–330, 

340–341
upper-tailed, 288, 295, 315, 316
variance, 323
Wilcoxon rank-sum test, 610
Wilcoxon signed-rank test, 602

Hypothetical population, 6

Incomplete gamma function, 161, 669
Incomplete layout, 424
Independence

definition of, 77
mutual, 79
testing for, 590–592

Independent events, 77
Independent random variables, 190, 192
Independent variables, 447
Indicator variable, 531
Inferences in multiple regression, 537–542
Inferential statistics, 5
Influential observations, 557–559
Interaction, 411

generalized, 435
two-factor, 411–412
three-factor, 420

Interaction parameters, 411
Interaction sum of squares, 412
Interpreting probability, 53–54
Interquartile range, 635
Intersection of events, 49
Interval estimates, 5, 254

See also Confidence intervals
Intervals

class, 15
confidence, 5, 254–283
prediction, 481–482
random, 256
sign, 623

Intrinsically linear functions, 508–509
Intrinsically linear models, 509–510
Invariance principle, 248

Jensen’s inequality, 183
Joint confidence level, 383
Joint marginal density function, 196
Joint probability density function, 186
Joint probability distributions, 185–193, 489
Joint probability mass function, 185
Joint probability table, 185

Kemp nomogram, 652–653
k-out-of-n system, 126
k-predictor model, 554
Kruskal–Wallis test, 618–620
k-tuples, 61

Lack-of-fit test, 508
Large-sample confidence intervals, 263–265, 268, 332, 

357–358
Large-sample hypothesis tests, 299–300, 306–307, 331, 354
Latin square designs, 424–426
Law of total probability, 72
Least squares estimates, 455
Least squares line, 455
Least squares principle, 455, 520
Level � test, 292
Levels of significance, 292, 313, 319–320
Levels of the factor, 369
Light tails, 174
Likelihood function, 246
Likelihood ratio principle, 320–321
Limiting relative frequency, 53
Linear combination, 219–221
Linear probabilistic model, 450–452
Linear relationship, 200
Line graph, 92
Line of mean values, 451
Location

control charts for, 627–635
measures of, 24–30

Location parameter, 176
Logistic regression, 515–517
Logit function, 515
Lognormal distribution, 166–167
Lot tolerance percent defective, 656
Lower fourth, 35
Lower prediction bound, 5
Lower-tailed test, 289, 295, 315, 316
LOWESS method, 513–514

MAD regression, 505
Main effects, 411
Mann–Whitney test, 608
Marginal probability density function, 188
Marginal probability mass function, 186
Maximum likelihood estimation, 245–248

large sample behavior of, 249
potential complications with, 249–251

Maximum likelihood estimators, 246, 249
McNemar test, 368



Mean, 25–26
confidence interval, 263–264
correction factor for, 376
deviations from, 32
grand, 372
hypothesis test, 294–304
paired data and, 247–248
population, 26
sample, 25, 213–218
trimmed, 28, 237, 251

Mean square error, 230, 252, 373
Mean square for treatments, 373
Mean value, 101, 141, 451
Measurement error, 172
Measures

of location, 24–30
of variability, 31–39

Median, 26–28
continuous distribution, 140
population, 27
sample, 27

Memoryless property, 159
M-estimator, 251
Method of moments, 243–245
Midfourth, 44
Midrange, 44
Mild outlier, 37
Minimum variance unbiased estimator, 235
Mixed effects model, 408, 416
Mixed exponential distribution, 181
Mode, 43, 128, 181
Model adequacy assessment, 501–505, 542–543
Model equation

simple linear regression, 450
single-factor ANOVA, 385–386

Model utility test
multiple regression, 536–537
simple linear regression, 473, 474

Moment estimators, 244
Moments, method of, 243–245
Montgomery, Douglas, 423, 657
Multicollinearity, 559–560
Multifactor ANOVA, 397–445

expected mean squares, 403–404
experiment analysis, 421–423, 430–432
fixed effects model, 399–401, 411–412, 420–421
Latin square designs, 424–426
multiple comparisons procedure, 404, 415–416
random effects model, 407–408, 416
randomized block experiments, 404–407
test procedures, 401–403, 412–415
three-factor ANOVA, 419–429
two-factor ANOVA, 398–419
See also Single-factor ANOVA

Multimodal histogram, 19
Multinomial distributions, 191
Multinomial experiments, 191, 569
Multiple comparisons procedure

multifactor ANOVA, 404, 415
single-factor ANOVA, 379

Multiple correlation coefficient, 534
Multiple regression, 528–560

confidence intervals, 538, 539
F test for predictor group, 540–542
general additive model equation, 528
hypothesis test, 536–537, 538, 539–540
inferences in, 537–542
influential observations, 557–559
model adequacy assessment, 542–543
models with predictors, 529–532
model utility test, 536–537
multicollinearity, 559–560
parameter estimation, 532–534
predictor intervals, 538, 539
standardizing variables, 551–553
transformations, 550–551
variable selection, 553–557

Multiplication rule for probabilities, 69–70, 77–78
Multiplicative exponential model, 509
Multiplicative power model, 509
Multivariate data, 3
Mutually exclusive events, 49
Mutually independent events, 79

Negative binomial random variables, 119
Negatively skewed histogram, 19
Neter, John, 465, 505, 525
Nomogram, 652–653
Noncentrality parameter, 387
Nonhomogeneous Poisson process, 129
Nonlinear regression, 508–517
Nonparametric procedures. See Distribution-free procedures
Nonstandard normal distributions, 149–151
Normal distributions, 144–154

binomial distributions and, 152–154
bivariate, 489
chi-squared test, 582
confidence intervals and, 262, 270
critical values for, 671
definition of, 145
discrete populations and, 152
hypothesis tests and, 300–301, 323–324
nonstandard, 149–151
percentiles of, 147–148, 151
point estimation and, 237, 247, 251
probability plots and, 584
sample mean and, 213–214
standard, 145–147

Normal equations, 456, 532
Normalized expected total error of estimation, 554
Normal probability plot, 173–175, 584
Normal random variables, 220–221
Null event, 52
Null hypothesis, 285, 286
Null hypothesis of homogeneity, 588
Null value, 286, 295
Number-defective data, 642–644

Objective interpretation, 54–55
Observational studies, 328–329
Observations

influential, 557–559
retrospective, 329

Observed cell counts, 570
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Observed significance level, 313
Odds ratio, 516
One-sided confidence intervals, 267–268
One-tailed test

lower-tailed, 289, 295
upper-tailed, 288, 295

One-way ANOVA, 369
Operating characteristic curve, 115, 655
Ordered pairs, 60–61
Outliers, 36–37

extreme, 37
mild, 37

Paired data, 344–350
confidence intervals and, 347–348
experiments and, 349–350
paired t test and, 345–347
two-sample t procedures and, 349
Wilcoxon signed-rank test and, 603–604

Paired t test, 345–347
Parameter estimation

multiple regression, 532–534
polynomial regression, 520–522
See also Point estimation

Parameters
interaction, 411
location, 176
noncentrality, 387
probability distribution, 94
scale, 160, 176
shape, 176

Parametric functions, 384
Pareto diagram, 24
Partial residual plot, 535
p control chart, 641–642, 644
Percentiles, 28

continuous distribution, 139
normal distribution, 147–148, 151
sample, 170–171

Permutations, 62
Pielou, E. C., 141
Point estimates, 26, 204, 227

definition of, 228
reporting, 238–240

Point estimation, 227–253
bootstrap method, 239–240
Cauchy distribution, 237
censoring procedure, 237
correlation coefficient, 488
explanation of, 228–229
exponential distribution, 246, 252
functions of parameters, 248–249
gamma distribution, 244, 251
invariance principle, 248
least squares method, 455
maximum likelihood, 245–248, 249
method of moments, 243–245
minimum variance unbiased, 235–236
normal distribution, 237, 247, 251
Poisson distribution, 247, 251
randomized response technique, 243
Rayleigh distribution, 242, 251
robust, 237

standard error, 238–240
unbiased, 231–235
uniform distribution, 237
Weibull distribution, 248, 251

Point estimators, 228
biased, 231
bootstrap, 239–240
consistent, 252
Hodges–Lehmann, 252
maximum likelihood, 246, 249
mean squared error, 230, 252
M-estimator, 251
moment, 244
robust, 237, 250
standard error, 238–240
unbiased, 231–235

Point prediction, 274
Poisson distribution, 121–124

binomial distribution and, 122–123
confidence intervals and, 269
data transformations and, 391
definition of, 121
goodness of fit, 580–581
hypothesis testing and, 323
point estimation and, 247, 251
rationale for using, 122
tables, 123, 665–667

Poisson process, 124
exponential distributions and, 158
nonhomogeneous, 129

Polynomial regression, 519–528
centering x values, 524–525
coefficient of multiple determination, 522
model equation, 519
parameter estimation, 520–522
statistical intervals, 523–524
test procedures, 523–524

Pooled estimator, 340
Pooled t procedures, 339–340
Population, 2

conceptual, 6
hypothetical, 6

Population correlation coefficient, 488–492
Population mean, 26
Population median, 27
Population moment, 243
Population regression coefficients, 528
Population regression function, 528
Population regression line, 450
Population variance, 33
Positively skewed histogram, 19
Posterior probability, 72, 73
Power, 303–304
Power models, 509
Practical significance, 319–320
Predicted values, 403, 459, 534
Prediction intervals, 274–275, 481–482, 524, 538
Prediction levels, 274
Predictor variables, 447
Price, Bertram, 505
Principal block, 436
Principle of least squares, 455
Prior probability, 72, 73



Probability, 46
axioms of, 51–52
conditional, 67–68
determining systematically, 56
equally likely outcomes and, 57
inferential statistics and, 5–6
interpretation of, 53–54
law of total, 72
multiplication rule for, 69–70, 77–78
posterior, 72, 73
prior, 72, 73

Probability density function, 132
conditional, 193
joint, 186
marginal, 188

Probability distributions
Bernoulli, 94
beta, 167–168
binomial, 108–113
bivariate normal, 489
chi-squared, 161–162
conditional, 193
continuous variable, 131–132
discrete random variable, 90–91
exponential, 157–159
F, 360–363
family of, 94
gamma, 160–161
geometric, 119
hypergeometric, 116–118
joint, 185–193, 489
linear combination, 219–221
lognormal, 166–167
multinomial, 191
negative binomial, 118–120
normal, 144–154
parameter of, 94
Poisson, 121–124
sample mean, 213–218
sampling, 204, 205–208
standard normal, 145–147
statistics and, 202–211
Studentized range, 380
symmetric, 140
t, 270
uniform, 133
Weibull, 163–166
See also specific distributions

Probability histograms, 93
Probability mass function, 91, 93

conditional, 193
joint, 185
marginal, 186

Probability plots, 170–178
half-normal, 179
normal, 173–175, 584
parameters and, 176–178
sample percentiles and, 170–171

Product rule
k-tuples, 61
ordered pairs, 60–61

Proportions
confidence interval, 265–267, 357–358

differences between, 353–354
hypothesis test, 306–310, 354–355
sample, 29–30

Pure birth process, 252
P-values, 311–317

chi-squared test, 572–573
definitions of, 313, 314
F test, 362–363
t test, 315–317
z test, 314–315, 327

Quadratic regression, 519, 521, 522
Qualitative data, 19
Quality control methods, 625–661

acceptance sampling, 654–660
control charts, 626–645
CUSUM procedures, 646–654

Quartiles, 28

Random deviation, 450
Random effects model

multifactor ANOVA, 407–408, 416
single-factor ANOVA, 392

Random error term, 450
Random interval, 256
Randomized block experiments, 404–407, 620–621
Randomized controlled experiments, 329
Randomized response technique, 243
Random samples, 7, 205
Random variables, 87

Bernoulli, 88
binomial, 110–111
continuous, 89, 186
correlation coefficient of, 200–201
covariance between, 198–199
dependent, 190
difference between, 220
discrete, 89, 185
expected value of, 101, 141, 196–197
geometric, 119
independent, 190, 192
jointly distributed, 185–193
negative binomial, 119
normally distributed, 220–221
standard normal, 146
uncorrelated, 201

Range, 31
Rayleigh distribution, 135, 242, 251
R control chart, 638–639, 640
Rectification, 659
Regression

ANOVA and, 475
calibration and, 495
cubic, 519
definition of, 464
exponential, 509
influential observations, 557–559
intrinsically linear, 509–510
logistic, 515–517
LOWESS, 513–514
model adequacy, 501–505, 542–543
multicollinearity, 559–560
multiple, 528–560
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Regression (continued)
nonlinear, 508–517
polynomial, 519–528
power, 509
quadratic, 519, 521, 522
residual analysis, 501–505
simple linear, 447–485
through the origin, 234
transformations, 508–513, 550–551
variable selection, 553–557

Regression analysis, 447, 464–465
Regression coefficients, 528, 535
Regression effect, 464
Regression line, 464
Regression sum of squares, 464
Rejection region, 287

lower-tailed, 289, 295
two-tailed, 296
upper-tailed, 288, 295

Relative frequency, 13, 53
Repeated-measures designs, 406
Replication, fractional, 436–440
Researcher’s hypothesis, 286
Residual analysis, 501–505
Residual plots, 502–505
Residuals, 459, 501, 534

standardized, 501–502
sum of squared, 534

Response variables, 447
Restricted model, 416n
Retrospective observational study, 329
Rice, John, 240
Robust control charts, 635
Robust estimator, 237
Rocke, David M., 635
Ryan, Thomas, 626
Ryan–Joiner test, 584–585, 684

Sample, 2
convenience, 7
simple random, 7, 205
stratified, 7

Sample coefficient of variation, 42
Sample correlation coefficient, 485–488
Sample mean, 25, 213–218
Sample median, 27
Sample moment, 243
Sample percentiles, 170–171
Sample proportions, 29
Sample size, 10

confidence intervals and, 259–260, 357–358
hypothesis tests and, 297–298, 302–303, 308
single-factor ANOVA and, 389–391
small-sample inferences and, 358
type II errors and, 297–298, 308, 329–330, 

355–357
Sample space, 47
Sample standard deviation, 32
Sample variance, 32

computing formula, 34–35
motivation for, 33–34

Sampling distributions, 204
examples of deriving, 205–208

sample mean and, 213–218
simulation experiments and, 208–211

Sampling frame, 6
Scale, density, 17
Scale parameter, 160, 176
Scatter plots, 447–450

LOWESS method, 513–514
residual plots, 502–503

S control chart, 637–638, 640
Second-order multiple regression models, 529–530
Shape parameter, 176
Siegel–Tukey test, 623
Significance

observed level of, 313
statistical vs. practical, 319–320

Significance level, 292, 313, 319–320
Sign interval, 623
Sign test, 623
Simple event, 48
Simple hypothesis, 576
Simple linear regression, 447–485

linear probabilistic model, 450–452
model parameter estimates, 454–468
slope parameter inferences, 468–475

Simple random sample, 7, 205
Simulation experiments, 208–211
Simultaneous confidence level, 379, 380, 383
Single-factor ANOVA, 369, 370–379, 385–394

explanation of, 369
fixed effects model, 391–392
F test, 374–375, 387–389
model equation, 385–386
noncentrality parameter, 387
notation and assumptions, 372
random effects model, 392
sample sizes, 389–391
sums of squares, 375–378
test statistic, 373–374
transformations, 391
See also Multifactor ANOVA

Single-sampling plans, 655–657
Skewed distribution, 174
Slope, 447n

confidence intervals, 471
hypothesis-testing procedures, 473–475
parameter inferences, 468–475

Small-sample hypothesis tests, 309
Small-sample inferences, 358
Standard beta distribution, 167
Standard deviation

confidence interval, 278–279
continuous random variable, 142
discrete random variable, 105
population, 33
sample, 32

Standard distribution, 177
Standard error, 238–240
Standard gamma distribution, 160
Standardized independent variable, 527
Standardized residuals, 501
Standardized variables, 149, 551–553
Standard normal curve, 146, 667–668
Standard normal distribution, 145–147



definition of, 146
percentiles of, 147–148

Standard normal random variable, 146
Standard order, 431
Standard sampling plans, 660
Statistic

defined, 204
test, 287

Statistical hypothesis, 285
Statistical significance, 319–320
Statistics

branches of, 3–6
descriptive, 3
inferential, 5

Stem-and-leaf displays, 10–12
comparative, 21
steps for constructing, 10

Step function, 96
Stepwise regression, 556–557
Stratified sampling, 7
Studentized range distribution, 380, 681
Subjective interpretation, 54
Sums of squares, 375–378

error sum of squares, 376, 460
interaction sum of squares, 412
Latin square experiment, 425
regression sum of squares, 464
total sum of squares, 376, 462
treatment sum of squares, 376

Symmetric distribution, 140, 174
Symmetric histogram, 19

Tables, 662–689
Taguchi methods, 626
t critical values, 271, 670
t distributions, 270

confidence intervals, 272–273
critical values, 271, 670
curve tail areas, 673–674
properties, 270–272

Test of hypotheses, 285
See also Hypothesis testing

Test statistic
hypothesis testing, 287
single-factor ANOVA, 373–374

Three-factor ANOVA, 419–429
experiment analysis, 421–423
fixed effects model, 420–421
Latin square designs, 424–426
See also Multifactor ANOVA

Tibshirani, Robert, 240
Time series, 44, 494
T method, 380–383
Tolerance intervals, 275–276
Total probability law, 72
Total sum of squares, 376, 462
Transformations

ANOVA, 391
control chart, 644–645
regression, 508–513, 550–551

t ratio, 474, 540
Treatments, 397

mean square for, 373

Treatment sum of squares, 376
Tree diagram, 60–61
Trials, 108
Trimmed mean, 28, 237, 251
True regression coefficients, 528
True regression function, 528
True regression line, 450
t tests, 301, 689

F tests and, 389
paired, 345–347
P-values for, 315–317
two-sample, 337, 349, 389

Tukey’s procedure, 380–383, 404, 415
Two-factor ANOVA, 398–419

expected mean squares, 403–404
fixed effects model, 399–401, 411–412
multiple comparisons procedure, 404, 415–416
random effects model, 407–408, 416
randomized block experiments, 404–407
test procedures, 401–403, 412–415
See also Multifactor ANOVA

2p factorial experiments, 429–440
Two-sample t procedures, 337, 349, 389
Two-tailed tests, 296, 315, 316
Two-way contingency tables, 587–595

testing for homogeneity, 588–590
testing for independence, 590–592

Type I errors, 288
Type II errors, 288

sample size and, 297–298, 308, 329–330, 355–357
two-sample t test and, 340–341

u control chart, 645
Unbiased estimators, 231–235

minimum variance, 235
principle of, 232

Unbiasedness, 230, 231–235
Uncorrelated random variables, 201
Uniform distribution, 133, 237, 282
Unimodal histogram, 18
Union of events, 49
Univariate data, 3
Unrestricted model, 416n
Upper fourth, 35
Upper-tailed test, 288, 295, 315, 316, 572

Variability measures, 31–39
Variables, 3

continuous, 13
dependent, 447
discrete, 13
explanatory, 447
independent, 447
predictor, 447
random, 87
response, 447
standardized, 149, 551–553

Variable selection, 553–557
backward elimination, 556–557
criteria for, 554
forward selection, 557

Variance, 105
confidence interval, 278–279, 363
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Variance, (continued)
continuous random variable, 142
discrete random variable, 105
expected value and, 104–105
hypothesis test, 323
linear combination, 219–220
pooled estimator of, 340
population, 33
rules of, 106
sample, 32
shortcut formula, 105–106
two-population, 360–363
See also ANOVA

Variation
coefficient of, 42
control charts for, 637–640

Venn diagrams, 50
V-mask, 646–649

Weibull, Waloddi, 163
Weibull distribution, 163–166

point estimation, 248, 251
probability plot, 177

Weighted least squares, 505
Wilcoxon rank-sum interval, 616–618, 688
Wilcoxon rank-sum test, 608–613

critical values for, 686

efficiency of, 612–613
general description of, 609–611
normal approximation, 611–612

Wilcoxon signed-rank interval, 614–616, 687
Wilcoxon signed-rank test, 600–608

critical values for, 685
efficiency of, 606–607
general description of, 602–603
large-sample approximation and, 604–606
paired observations and, 603–604

Winkler, Robert, 54
Wolfe, Douglas, 621

X charts, 628–632
estimated parameters and, 628–632
known parameter values and, 628–629
probability limits and, 640
supplemental rules for, 634–635

Yates’s method, 431

z critical values, 148, 312
z curves, 146, 296
z tests, 327–328

large-sample, 299, 306
P-values for, 314–315, 327
rejection regions for, 296, 312
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Symbol/
Abbreviation Page Description

n 10 sample size
x 10 variable on which observations 

are made
x1, x2, . . . , xn 10 sample observations on x

25 sum of x1, x2, . . . , xn

25 sample mean
µ 26 population mean
N 26 population size when the 

population is finite
27 sample median

27 population median

29 trimmed mean
x/n 29 sample proportion
s2 32 sample variance
s 32 sample standard deviation
� 2, � 33 population variance and standard 

deviation
n � 1 34 degrees of freedom for a single 

sample
Sxx 34 sum of squared deviations from 

the sample mean
fs 35 sample fourth spread

S 47 sample space of an experiment
A, B, C1, C2, . . . 48 various events

A 49 complement of the event A
A � B 49 union of the events A and B
A � B 49 intersection of the events A and B

49 the null event (event containing 
no outcomes)

P(A) 51 probability of the event A
N 57 number of equally likely outcomes
N(A) 57 number of outcomes in the event A
n1, n 2 60 number of ways of selecting 1st 

(2nd) element of an ordered pair
Pk,n 62 number of permutations of size k

from n distinct entities

64 number of combinations of size k
from n distinct entities

P(A⏐B) 67 conditional probability of A given 
that B occurred

rv 87 random variable
X 87 a random variable
X(s) 87 value of the rv X associated with 

the outcome s
x 87 some particular value of the rv x

an
k
b

[

xtr

m|
x|

x

g
n

i51
xi

Symbol/
Abbreviation Page Description

p(x) 90 probability distribution (mass 
function) of a discrete rv X

pmf 91 probability mass function
p(x; �) 94 pmf with parameter �
F(x) 95 cumulative distribution function 

of an rv
cdf 95, 136 cumulative distribution function
a� 97 largest possible X value smaller 

than a
E(X), µX, µ 101, 141 mean or expected value of the rv X
E[h(X)] 103, 141 expected value of the function h(X)
V(X), � X

2 , � 2 105, 142 variance of the rv X
�X, � 105, 142 standard deviation of the rv X
S, F 108 success/failure on a single trial 

of a binomial experiment
n 108 number of trials in a binomial 

experiment
p 108, 119 probability of success on a single 

trial of a binomial or negative 
binomial experiment

X ~ Bin(n, p) 110 the rv X has a binomial distribution
with parameters n and p

b(x; n, p) 110 binomial pmf with parameters 
n and p

B(x; n, p) 112 cumulative distribution function 
of a binomial rv

M 116 number of successes in a dichoto-
mous population of size N

h(x; n, M, N) 117 hypergeometric pmf with parameters
n, M, and N

r 119 number of desired successes in a 
negative binomial experiment

nb(x; r, p) 119 negative binomial pmf with 
parameters r and p

� 121 parameter of a Poisson distribution
p(x; �) 121 Poisson pmf
F(x; �) 123 Poisson cdf
�t 124 length of a short time interval
o(�t) 124 quantity that approaches 0 faster 

than �t
� 124 rate parameter of a Poisson process
�(t) 124 rate function of a variable-rate 

Poisson process
pdf 132 probability density function
f(x) 132 probability density function 

of a continuous rv X
f(x; A, B) 133 uniform pdf on the interval [A, B]
F(x) 136 cumulative distribution function



Symbol/
Abbreviation Page Description


(p) 139 100pth percentile of a continuous 
distribution

140 median of a continuous distribution
f(x; µ, �) 145 pdf of a normally distributed rv
N(µ, �2) 145 normal distribution with parameters

µ and �2

Z 146 a standard normal rv
�(z) 146 cdf of a standard normal rv
z� 148 value that captures tail area �

under the z curve
� 157 parameter of an exponential 

distribution
f(x; �) 157 exponential pdf
�(�) 159 the gamma function
f(x; �, �) 160 gamma pdf with parameters � and �
df 162 degrees of freedom
� 162 number of df for a chi-squared 

distribution
f(x; �, �) 164 Weibull pdf with parameters � and �
f(x; µ, �) 166 lognormal pdf with parameters 

µ and �
f(x; �, �, A, B) 167 beta pdf with parameters �, �, A, B
	1, 	2 176 location and scale parameters
p(x, y) 185 joint pmf of two discrete rv’s X and Y
pX(x), pY(y) 186 marginal pmf’s of X and Y,

respectively
fX(x), fY(y) 186 marginal pdf’s of X and Y,

respectively
p(x1, . . . , xn) 191 joint pmf of the n rv’s X1, . . . , Xn

f(x1, . . . , xn) 191 joint pdf of the n rv’s X1, . . . , Xn

fY⏐X(y⏐x) 193 conditional pdf of Y given that X � x
pY⏐X(y⏐x) 193 conditional pmf of Y given that X � x
E(Y⏐X � x) 193 expected value of Y given that X � x
E[h(X, Y)] 197 expected value of the function h(X, Y)
Cov(X, Y) 198 covariance between X and Y
Corr(X, Y), �X,Y, � 200 correlation coefficient for X and Y
X� 204 the sample mean regarded as an rv
S2 205 the sample variance regarded as an rv
CLT 215 Central Limit Theorem
	 228 generic symbol for a parameter
	̂ 228 point estimate or estimator of 	
MVUE 235 minimum variance unbiased 

estimator (estimate)
�̂	̂ 238 estimated standard deviation of 	̂

x*1, . . . , x*n 239 bootstrap sample

	̂* 239 estimate of 	 from a bootstrap sample
mle 246 maximum likelihood estimate 

(estimator)
CI 257 confidence interval
100(1 � �)% 258 confidence level for a CI
T 270 variable having a t distribution
� 271 degrees of freedom (df) parameter 

for a t distribution
t� 271 t distribution with � df
t�,� 271 value that captures upper-tail area 

� under the t� density curve
PI 274 prediction interval 

m|

Symbol/
Abbreviation Page Description

�2
�,� 279 value that captures upper-tail area 

� under the chi-squared density
curve with � df

H0 285 null hypothesis
Ha 285 alternative hypothesis
� 288 probability of a type I error
� 288 probability of a type II error
µ0 295 null value in a test concerning µ
z 296 test statistic based on standard 

normal distribution
µ 297 alternative value of µ in a �

calculation
�(µ) 298 type II error probability when µ � µ

t 301 test statistic based on t distribution
	0 306 null value in a test concerning 	
p0 307 null value in a test concerning p
p 308 alternative value of p in a �

calculation
�(p) 308 type II error probability when p � p

#0, #a 320 disjointed sets of parameter values 
in a likelihood ratio test

m, n 326 sample sizes in two-sample problems
�0 327 null value in a test concerning 

µ1 � µ2

� 330 alternative value of µ1 � µ2 in a �
calculation

Sp
2 340 pooled estimator of �2

Di 345 the difference Xi � Yi for the pair 
(Xi, Yi)

d�, sD 347 sample mean difference, sample 
standard deviation of differences
for paired data

p 354 common value of p1 and p2 when
p1 � p2

F 360 rv having an F distribution
�1, �2 360 numerator and denominator df for 

an F distribution
F�,�1,�2

360 value capturing upper-tail, area �
under an F curve with �1, �2 df

ANOVA 369 analysis of variance
I 370 number of populations in 

a single-factor ANOVA
J 372 common sample size when sample

sizes are equal 
Xij, xij 372 jth observation in a sample from 

the ith population
X�i� 372 mean of observations in sample 

from ith population
X��� 372 mean of all observations in 

a data set
MSTr 373 mean square for treatments
MSE 373 mean square for error
F 375 test statistic based on F

distribution
xi. 375 total of observations in 

ith sample
x.. 375 grand total of all observations
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Symbol/
Abbreviation Page Description

SST 376 total sum of squares
SSTr 376 treatment sum of squares
SSE 376 error sum of squares
m, � 380 parameters for Studentized range 

distribution
Q�,m,� 380 value that captures upper-tail area �

under the associated Studentized
range density curve

µ 386 average of population means in 
single-factor ANOVA

�1, . . . , �I 386 treatment effects in a single-factor 
ANOVA

�ij 386 deviation of Xij from its mean value

J1, . . . , JI 389 individual sample sizes in 
a single-factor ANOVA

n 389 total number of observations in 
a single-factor ANOVA data set

A1, . . . , AI 392 random effects in a single-factor 
ANOVA

A, B 398 factors in a two-factor ANOVA
Kij 398 number of observations when 

factor A is at level i and factor B
is at level j

I, J 398 number of levels of factors A and B,
respectively

X�i�, X��j 399 average of observations when A (B)
is at level i ( j)

µij 399 expected response when A is at 
level i and B is at level j

�i, �j 401 effect of A (B) at level i ( j)

fA, fB 402 F ratios for testing hypotheses about
factor effects

Ai, Bj 408 factor effects in random effects 
model

�2
A, �2

B 408 variances of factor effects

K 411 sample size for each pair (i, j)
of levels

ij 411 interaction between A and B at
levels i and j

Ai, Bj, Gij 416 effects in mixed or random effects 
models

�i, �j, �k 420 main effects in a three-factor 
ANOVA

420 two-factor interactions in 
a three-factor ANOVA

ijk 420 three-factor interaction in 
a three-factor ANOVA

I, J, K 420 number of levels of A, B, C in
a three-factor ANOVA

�1, �0 450 slope and intercept of population 
regression line

� 450 deviation of Y from its mean value
in simple linear regression

�2 450 variance of the random deviation �
�Y�x* 451 mean value of Y when x � x*

�2
Y�x* 451 variance of Y when x � x*

�̂1, �̂0 455 least squares estimates of �1 and �0

gAB
ij , gAC

ik , gBC
jk

Symbol/
Abbreviation Page Description

Sxy 456 �(xi�x�)(yi�y�)

ŷi 459 predicted value of y when x � xi

SSE 460 error (residual) sum of squares
SST 462 total sum of squares Syy

r2 463 coefficient of determination
s�̂1

471 estimated standard deviation of �̂1

r, R 486 sample correlation coefficient
e*i 501 a standardized residual
�i (i � 1, . . . , k) 519 coefficient of xi in polynomial 

regression
�̂i 520 least squares estimate of �i

R2 522, 534 coefficient of multiple determination
�*i 524 coefficient in centered polynomial 

regression
�i 528 population regression coefficient 

of predictor xi

�̂i 533 least squares estimate of �i

SSEk, SSEl 540 SSE for full and reduced models, 
respectively

�k 554 normalized expected total 
estimation error

Ck 554 estimate of �k

hii 557–8 coefficient of yi in ŷi

�2
�,� 570 value that captures upper-tail area �

under the �2 curve with � df
�2 571 test statistic based on a chi-squared 

distribution
p10, . . . , pk0 571 null values for a chi-squared test 

of a simple H0

�i(	) 577 category probability as a function 
of parameters 	1, . . . , 	m

I, J 587 number of populations and 
categories in each population
when testing for homogeneity

I, J 587 numbers of categories in each 
of two factors when testing for
independence

nij 588 number of individuals in sample 
from population i who fall into 
category j

n.j 588 total number of sampled individuals
in category j

pij 588 proportion of population i in
category j

êij 589 estimated expected count in cell i, j
nij 591 number in sample falling into 

category i of 1st factor and 
category j of 2nd factor

pij 591 proportion of population in category i
of 1st factor and category j of
2nd factor

S+ 601 signed-rank statistic
W 608 rank-sum statistic
K 619 Kruskal-Wallis test statistic
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Symbol/
Abbreviation Page Description

Rij 619 rank of Xij among all N observations
in the data set

R�i� 619 average of ranks for observations 
in the sample from population or
treatment i

Fr 620 Friedman’s test statistic
UCL 626 upper control limit
LCL 626 lower control limit
R 631 sample range

Symbol/
Abbreviation Page Description

ARL 634 average run length
IQR 635 interquartile range
CUSUM 646 cumulative sum
OC 655 operating characteristic
AQL 656 acceptable quality level
LTPD 656 lot tolerance percent defective
AOQ 659 average outgoing quality
AOQL 659 average outgoing quality limit
ATI 659 average total number inspected
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Sample Exams

Exam 1-1
INSTRUCTIONS: Show all the work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [10�10]* Six students took the same test and got 65, 91, 84,
79, 58, and 82 points, respectively. 
a. Compute the sample range, sample mean, and sample

median of these data. 
b. Compute the sample variance and sample standard deviation. 

2. [15�5] Consider the following record of the daily tempera-
tures (°F) in Seattle: 

65 68 73 66 62 63 61 68 67 70 69 68 68 65 63 61 66
69 68 63 59 64 66 68 69 61 60 62 61 59 57 58 53 55

a. Construct a stem-and-leaf display of the data, using the
tenth digit as the stem value and the ones digit as the leaf
value. 

b. What proportion of these days have a temperature in the
50s, 60s, and 70s, respectively? 

3. [20] Construct a histogram for the following data using four
classes of equal width: 

78.8 36.1 78.7 10.4 24.0 74.1 32.8 89.8 32.0 30.7
61.3 82.9 17.0 43.8 51.5 97.7 22.4 16.5 77.6 14.6

Mark the upper limits and lower limits of the class intervals
on the horizontal axis of the histogram. 

4. [5�10] Jim surveyed his classmates’ reading preferences.
Eight students responded with the following choices: 

fiction science science fiction science fiction science science 

a. What is the sample proportion of people who prefer reading
fiction?

b. Suppose seven more questionnaires will be collected. How
many of these seven people must be in favor of fiction to
give a 40% sample proportion of fiction readers for the
entire sample? 

5. [15�10] The printing server keeps track of the amount of
printing requests submitted by each user. A report for last
month shows the number of pages printed for the users: 

49 59 71 16 20 17 46 44 40 38 57 21 4 10
38 59 0 42 49 40 5 7 17 4 0 37 60 54 16 2 

a. Compute the following features of the data: (i) sample
median, (ii) upper fourth, (iii) lower fourth, (iv) fourth
spread fx.

b. Construct a boxplot using the results of (a). 

Exam 1-2
INSTRUCTIONS: Show all the work related to your solution. Credit
may be deducted for numerical answers unsupported by valid rea-
soning or calculations. You may use calculators as needed. 

1. [10�10] A set of one- or two-digit numbers are listed in the
following stem-and-leaf display, where the stem values are the
tenth digits and the leaf values are the ones digits: 

0 111355
1 1223666689
2 56
3 11244778

a. Identify the numbers in this stem-and-leaf display, and list
them in ascending order. What is the sample size of this
data set? 

b. Compute the sample range, sample mean, and sample
median of these data. 

2. [10�10] A laboratory performed twenty tests on the flying
distances of footballs filled with helium. The footballs are

launched by a machine and their flying distances (in yards)
are recorded as follows: 

25 16 25 14 23 29 25 26 22 26
12 28 28 31 22 29 23 26 35 23

a. Using class boundaries 10, 17, 24, 32, and 38, compute the
frequencies and relative frequencies of observing flying
distances in these classes.

b. Construct a relative frequency histogram using the results
of part (a).

3. [20] A biologist measures the body weights (in kg) of different
animals and has the following records in his computer:
ArcticFox 3.385, OwlMonkey 0.480, MountainBeaver 1.350,
Cow 465.0, GreyWolf 36.33, Goat 27.66, RoeDeer 14.83,
GuineaPig 1.04, Sheep 55, Chinchilla 0.425, Squirrel 0.101,
Donkey 187.1, StarNoseMole 0.06, TreeHyrax 2.0, Asian-
Elephant 2547.0, Horse 521.0, Cat 3.3, Galago 0.2, Genet
1.41. What proportion of the animals in this record have their

*Point values for each problem are provided in brackets.



body weights (a) less than 100 kg? (b) greater than 200 kg?
(c) between 10 kg and 500 kg?

4. [10�10] The math department provides a free walk-in tutoring
service to the students. The dean needs to determine if they
should hire more tutors this semester to match the increasing
number of students. Last Friday, the tutors marked down the
number of students in the tutoring room every hour from
10:00 A.M. to 4:00 P.M. Here is a copy of the table they sub-
mitted to the dean:

10:00 11:00 12:00 13:00 14:00 15:00 16:00
13 16 23 20 11 22 19 

a. Construct a digidot plot for the preceding data, with the
horizontal axis standing for time and the vertical axis list-
ing the number of students in the tutoring room.

b. Compute the sample mean and variance for the number of
students in the tutoring room. 

5. [15�5] The size of twelve cathedrals in different cities are
measured and their lengths (in feet) are 

502 522 425 344 407 451 551 530 547 519 225 300

a. Compute the following features of the data: (i) sample
median, (ii) upper fourth, (iii) lower fourth, (iv) fourth
spread fx.

b. Construct a boxplot using the results of (a). 
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Exam 1-3
INSTRUCTIONS: Show all the work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�10] A laboratory performed fifteen tests comparing the
flying distances of footballs filled with helium and those filled
with air. They launched the footballs using a common machine
and logged the flying distances (in yards) as follows: 

Helium: 26 30 29 29 30 29 30 32 26 11 33 27 30 28 14
Air: 28 28 31 25 28 32 28 26 27 20 25 31 22 29 27

a. Compute the sample means, variances, and standard devia-
tions for these two groups of observations, respectively. 

b. Construct a comparative stem-and-leaf display. 

2. [20] A phone service center keeps track of the number of incom-
ing calls every day. Here is a record from last month: 

11 13 12 19 25 13 15 17 18 20 9 32 11 16 15 18
16 17 23 22 15 10 11 26 14 14 10 11 15 17 18

Construct a dotplot of the data. 

3. [15�10] Largemouth bass were studied in 53 different Florida
lakes to examine the factors that influence the level of mer-
cury contamination. The average mercury concentration

(parts per million) in the muscle tissue of the fish sampled
from the lakes are as follows:

1.23 7 6 0.44 12 14 10 0.19 0.83
12 12 12 7 5.8 11 10 40 6
10 0.98 12 0.56 12 0.73 0.34 0.59 0.34

8 0.5 0.34 10 10 0.87 0.56 0.17 13
0.19 4 12 10 14 0.10 10 12 12

12 0.65 0.27 10 0.40 11 12 12

a. Construct a frequency distribution and histogram of the data
using class boundaries 0, 4, 8, and 12. Lump all the obser-
vations above 12 into a single category. 

b. The cumulative frequency for a particular class interval is
the sum of frequencies for that interval and all intervals
lying below it. Compute the cumulative frequencies for
the same data with the same class definitions. 

4. [15�15] The sizes of fifteen cathedrals in different cities are
measured and their heights (in feet) are:

75 80 68 64 83 80 70 76 74 100 75 52 62 68 86

a. Compute the following features of the data: (i) sample median,
(ii) upper fourth, (iii) lower fourth, (iv) fourth spread fx.

b. Construct a boxplot using the results of (a). 

Exam 2-1
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�5�5] In a community, 60% of the families have at least 
1 child, 48% of the families have at least 2 children, and 10%
have 3 or more children.

Let Ai � {a randomly chosen family has 
at least i children}, i � 1, 2, 3.

a. Using operations on events, write in terms of A1, A2, and
A3 the following events:

B � {a family has exactly 1 child}, C � {a family has exactly 
2 children}, D � {a family has less than 3 children}.

b. Calculate P(B), P(C ), P(D), and P(A1 | D).
c. Draw the Venn diagram for the events. 

2. [10�5�10] In a state, 12% of the electorate voted for A1 for
the governor and for B1 for the attorney general, 18% voted
for A2 for the governor and for B1 for the attorney general,
30% voted for A1 for the governor and for B2 for the attorney
general, and 40% voted for A2 for the governor and for B2 for
the attorney general. 
a. Find the percentage of voters who voted for A1 for the

governor. 
b. Find the percentage of voters who voted for B2 for the

attorney general. 
c. Did the voters’ choice of the attorney general depend on

their choice of the governor? 



3. [10�5] Suppose that 6.5% of men and 2.1% of women are
color-blind. Assume that 51.4% of a population are women
and 48.6% are men.
a. Find the probability that a randomly selected person is

color-blind. 
b. Given that a randomly selected person is not color-blind,

what is the (conditional) probability that the selected
person was a man? 

4. [10�10] A system consisting of four components, C1 through
C4, operates as long as at least one of the following holds true: 
• Both C1 and C2 operate.
• Both C1 and C3 operate.
• C4 operates.

a. Draw a design of such a system.
b. Assuming that the components operate independently and

the probability of a failure for each component during a one-
month period is 0.15, find the probability that the system
will not fail during the same period. 

5. [10�5] An instructor gave her students 12 problems, telling
them that 3 of the problems will be on a quiz and that pass-
ing the quiz requires solving all 3 of the problems. 
a. Given that the instructor chooses the 3 problems at

random, what is the probability for a student who knows
only 10 problems to pass? 

b. What are the chances to fail for a student who knows only
8 problems? 
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Exam 2-2
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�10] In a community, 50% of the families have at least 
1 child, 35% of the families have at least 2 children, and 8%
have 3 or more children.

Let Ai � {a randomly chosen family has 
at least i children}, i � 1, 2, 3.

a. Using operations on events, write in terms of A1, A2, and
A3 the following events:

B � {a family has exactly 1 child}, C � {a family has exactly
2 children}, D � {a family has less than 3 children}, E � {a
family has no children}.
b. Calculate P(B), P(C ), P(D), P(E ), and P(A1 | D).

2. [15�10] Let A, B, and C be three events with P(A) � 0.55,
P(B) � 0.49, P(C ) � 0.45, P(A � B) � 0.20, P(A � C) � 0.18,
P(B � C ) � 0.19, and P(A � B � C ) � 0.08.
a. Draw a Venn diagram and calculate P(A � B).
b. Prove that at least one of the events A, B, or C occurs with

probability one.

3. [10�5] Jim and Paula and another couple, John and Ann, pur-
chased tickets for seats 7, 8, 9, and 10 in the same row. 

a. If they take the seats at random, what is the probability that
the husbands are in seats 8 and 9?

b. What is the probability that the husbands are sitting next
to their wives? 

4. [15�5] An instructor gave her students 14 problems, telling
them that 4 of the problems will be on a quiz and that passing
the quiz requires solving all 4 of the problems. 
a. Given that the instructor chooses the 4 problems at random,

what is the probability that a student who knows only 
9 problems will pass? 

b. If passing the quiz requires solving at least 3 problems, what
is the probability that a student who knows only 10 problems
will pass? 

5. [10�5] Suppose that 40% of cars have anti-theft devices.
Within a 1-year period, 1.0% of cars with anti-theft devices were
stolen, while among cars without anti-theft devices, 2.5% were
stolen within the same period. 
a. Among the stolen cars, what is the percentage of cars with

anti-theft devices? 
b. Among the cars that were not stolen, what is the percentage

of cars with anti-theft devices? 

Exam 2-3
INSTRUCTIONS: Show all the work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed.

1. [15�5] A student is working on three projects. Let Ai, where
i � 1, 2, 3, denote the event that the ith project will be com-
pleted by the due date. 
a. Using the operations of union, intersection, and complemen-

tation, describe the following events in terms of A1, A2, and
A3: (i) exactly one project will be completed by the due date;
(ii) at least one project will be completed by the due date. 

b. If P(A1) � 0.52, P(A2) � 0.48, P(A3) � 0.34, P(A1 � A2) �
0.16, P(A1 � A3) � 0.12, P(A2 � A3) � 0.10, and P(A1 � A2

� A3) � 0.04, find the probability that none of the projects
will be completed by the due date. 

2. [15�5] a. How many different 7-letter words can be formed
using each of the letters a, a, a, b, b, b, and c only once? 
b. How many different 7-letter words can be formed using

each of the preceding letters only once, provided that the
words not start with an a and not end with a b?



3. [15�5] A box contains 13 spare parts, 9 good and 4 defective. 
a. If five parts are selected at random, find the probability

that at least four selected parts are good. 
b. If five parts are selected at random, what is the probability

that at least one of them is defective? 

4. [10�10] Suppose that in a certain community 15% of men
and 8% of women are color-blind. Assume that 65% of the
residents are women and 35% are men. 
a. Using the Law of Total Probability, find the probability

that a randomly selected person is color-blind. 

b. Using Bayes’ theorem, find the (conditional) probability
that, given that a randomly selected person is color-blind,
the person is a woman? 

5. [15�5] Let A1, A2, and A3 be three independent events with 

P(A1) � 0.70, P(A2) � 0.40, P(A3) � 0.35.

a. Find the probability of the event B � {none of A1, A2, or
A3 occurs}.

b. Given that B did not occur, what is the probability that A1

occurred?
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Exam 3-1
INSTRUCTIONS: Show all work related to your solution. Credit
will be deducted for numerical answers unsupported by valid rea-
soning or calculations. You may use calculators as needed. 

1. [10�10] In an exam, each of 4 questions has 5 multiple-choice
answers, only one correct. A student wanted to try his good luck
by randomly choosing answers for each question. 
a. What is the distribution of X, the number of questions the

student answered correctly? 
b. If passing requires correct answers to at least 3 questions, what

is the probability that the student passed the exam? 

2. [15�5] A trial consists of tossing, simultaneously, a fair coin
and a fair die so that the outcomes are pairs (H, 4), (T, 3), etc.
Independent trials are performed until, for the first time, an
outcome is (H, 6). Let X be the total number of trials (including
the last one).
a. Find the pmf of X.
b. Calculate E(X ).

3. [15�10] The number of requests for assistance received 
by a towing service is a Poisson process with rate � � 1.5
per hour. 

a. Compute the probability that at least one request is
received during the period 1–3 P.M. What is the expected
number of requests during this period? 

b. If the operators of the towing service take a lunch break
from 11:45 A.M.–12:30 P.M., what is the probability that they
won’t miss any calls for assistance? 

4. [10�5] In a class of 18 students, 8 are business majors, 6 are
computer science majors, and 4 are math majors. The instructor
selected 6 students at random for an interview. 
a. What is the probability that at least one is a computer sci-

ence major? 
b. What is the probability that there are exactly 2 students

from each major in the group of 6? 

5. [10�10] Five problems are given in a quiz. The probability
that a student solves an individual problem is 0.7. Assume
that solving different problems are independent events. Let X
be the number of problems the student solved. 
a. What is the distribution of X?
b. What is the probability that the student passes the quiz if

passing requires solving (i) 3 problems, (ii) 4 problems?

Exam 3-2
INSTRUCTIONS: Show all work related to your solution. Credit
will be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [10�5] From past experience, the owner of a small drugstore
knows that the (random) demand X for a weekly news magazine
is given by the table: 

x 1 2 3 4 5 6 7 8
p(x) .10 .15 .15 .20 .15 .10 .10 .05 

The store owner pays $1.00 for each copy of the magazine,
while customers pay $2.50 for a copy. The copies left at the
end of the week have no salvage value. 
a. Compute the expected profit if the owner orders 6 copies

of the magazine. 
b. Find the probability that the profit exceeds $5.00. 

2. [15�10] A salesman gets a $100 commission for every vacuum
cleaner (VC) he sells. He can visit four potential customers a
day, spending 1.5 hours with each, in which case each customer
(acting independently of the others) will buy a VC with a prob-
ability 0.2. Or he can visit six potential customers spending
only 1 hour with each, in which case each customer will buy a
VC with a probability 0.1. Let a random variable X denote the
amount of money the salesman makes in a day. 
a. Find the pmf of X under each strategy and calculate E(X ).
b. Calculate P(X � 100) under each strategy. 

3. [10�10] In an exam, each of 5 questions has 4 multiple-choice
answers, with only one of them correct. A student wanted to try
his good luck by randomly choosing answers for each question. 
a. What is the distribution of X, the number of questions the

student answered correctly? 



b. If getting an “A” requires correct answers to all five ques-
tions, getting a “B” requires four correct answers, and
getting a “C” requires three correct answers, what is the
probability that the student gets (i) an “A,” (ii) a “B,” and
(iii) a “C”? 

4. [15�5] A trial consists of simultaneously tossing two coins, one
fair and the other biased, with P(Head) � 0.6 and P(Tail) � 0.4.
Independent trials are performed until, for the first time, both
coins land heads. Let X be the total number of trials (including
the last one).

a. Find the pmf of X.
b. Calculate E(X ).

5. [15�5] The number of requests for assistance received by a
towing service is a Poisson process with rate � � 2 per hour. 
a. Compute the probability that at least two requests are

received during the period 2–4 P.M. Find the expected
number of requests during this period. 

b. If an operator of the towing service takes a 45-minute break,
what is the probability that he will not miss any calls for
assistance?
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Exam 3-3
INSTRUCTIONS: Show all the work related to your solution.
Credit may be deducted for numerical answers unsupported 
by valid reasoning or calculations. You may use calculators 
as needed. 

1. [15�10] The owner of a bakery knows that the daily demand
X (in dozens) for bagels is given by the table: 

x 4 5 6 7
p(x) .25 .30 .30 .15

The owner makes $3 on each dozen bagels sold and loses
$1.5 on each dozen left unsold. 
a. How many dozens of bagels should the owner order to

maximize the expected profit? 
b. Calculate the probability that the profit exceeds $15. 

2. [10�10] Let X be the number of successes in a series of 4 inde-
pendent Bernoulli trials with a probability of an individual
success 0.7 and let Y be the number of successes in another
series of 5 independent Bernoulli trials with a probability of
individual success 0.6. 
a. If your goal is to maximize the expected number of suc-

cesses, which of the two series would you choose?
b. If your goal is to maximize the probability of getting at

least one success, which of the two series would you choose?

3. [10�5] A trial consists of tossing simultaneously 2 (biased)
coins with P(Head) � 0.6 for one coin and P(Head) � 0.7 for
the other. Independent trials are performed until two “doubles”
(i.e., (Head, Head) or (Tail, Tail)) occur. Let X be the total
number of trials. 
a. Find the pmf of X.
b. Calculate E(X ).

4. [10�10] Assume that the number of requests for assistance
received over the phone by a local AAA office is a Poisson
process with rate � � 2 per hour. 
a. Compute the probability that at least one request is received

during the period 12:30–2:15 P.M. What is the expected
number of requests during this period? 

b. If the telephone operator in the office takes a 40-minute
break, what is the probability that no request for assistance
is missed? 

5. [15�5] Of 20 problems on a list given by an instructor to his
students, 7 are easy, 9 are medium, and 4 are difficult. The
instructor chooses 5 problems for an exam at random. Let X
be the number of easy problems, and Y the number of difficult
problems among the 5 chosen.
a. Find P(X � 2, Y � 3) and P(X � 2).
b. Find P(X � Y ).

Exam 4-1
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [10�10�5] Assume the commuting time X (in minutes) of a
student has a uniform distribution on the interval (25, 50).
a. Compute P(X � 30), P(X � 35), and P(30 � X � 40).
b. If the student leaves home at 8:50 A.M. and a class begins

at 9:30 A.M., find the probability that the student won’t be
late by more than 5 minutes. 

c. Find the cdf of X and draw its graph.

2. [10�10�10] The daily demand (in thousands of gallons) X
for gas at a gas station can be considered a random variable
with pdf:

0.04(x � 10) if 10 � x � 15
f (x) � { 0.04(20 � x) if 15 � x � 20

0 if x � 10 or x � 20

a. Find the cdf of X and draw the graphs of the pdf and cdf.
b. Find the probability that the daily demand will exceed

12,000 gallons.
c. Find the median of X and the 75th percentile of X. (Note:

Geometric arguments suffice; no need to integrate.) 

3. [20�10] Assume that the mileage (in miles per gallon) of a
certain brand of cars has a normal distribution with mean 28
and standard deviation 1.4. 

a. Find the probability that a randomly selected car will 
(i) get more than 30 miles per gallon; (ii) get less than



25 miles per gallon; (iii) get between 25 and 30 miles
per gallon.

b. If the tank contains only one gallon of gas and the driver
has to drive 31.5 miles, should the driver first stop at the
gas station? Justify your answer by calculations. 

4. [5�5�5] Statistics show that 40% of drivers in a certain group
are a good risk. Using the normal approximation to the binomial

distribution, calculate the probability that in a randomly selected
group of 60 drivers:
a. Not more than 30 are a good risk.
b. At least 25 are a good risk.
c. Between 20 and 28 (inclusive) are a good risk. 
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Exam 4-2
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [10�10�5] Assume that the time X (in milliseconds) it takes a
read/write head to locate a desired record on a computer disk
memory device is uniformly distributed on the interval (0, 35).
a. Compute P(X � 15), P(X � 25), and P(10 � X � 30).
b. Find the cdf of X and draw its graph. 
c. Compute the median and 80th percentile of X.

2. [15�5] The breakdown voltage of a randomly chosen diode of
a certain type has a normal distribution with mean 38V and
standard deviation 1.5V. 
a. Find the probability that the voltage of a single diode is

between 35V and 40V. 
b. What value is such that only 10% of all diodes have voltages

exceeding this value? 

3. [5�5�5] Suppose that 10% of all steel shafts produced by a
certain process are nonconforming. Using the normal approxi-
mation to the binomial distribution, calculate the probability
that in a randomly selected group of 200 shafts:

a. Not more than 30 are nonconforming.
b. At least 28 are nonconforming.
c. Between 16 and 24 (inclusive) are nonconforming. 

4. [15�5] A system consists of two identical components oper-
ating independently. The lifetime of each component has an
exponential distribution with mean 4 days. 
a. Find the median and the 80th percentile of the lifetime of

each component. 
b. Assuming that the system fails when both components

fail, calculate the probability that the system will not fail
during the first 3 days. 

5. [10�10] The daily demand for a certain product is a random
variable uniformly distributed on (2.5, 5.0). 
a. Calculate the 75th percentile of the demand. What is the

meaning of this characteristic?
b. Assuming that the initial stock of the product was 4.0, cal-

culate the expected value of the leftover of the product at
the end of the day. 

Exam 4-3
INSTRUCTIONS: Show all work related to your solution. Credit
will be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�10] The reaction time X (in seconds) to a certain stimulus
is a continuous random variable with pdf 

2–3 (x � 1) if 1 � x � 2

f (x) � {1–3 (4 � x) if 2 � x � 4

0 if x � 1 or x � 4

a. Find the cdf F(x) and draw the graphs of f (x) and F(x).
Calculate the probability that the reaction time is between
1.5 and 2.5. 

b. Find the median, 25th, and 75th percentile of X. (Note:
Geometric arguments suffice; no need to integrate.) 

2. [10�10] Assume that the time X (in milliseconds) it takes a read/
write head to locate a desired record on a computer disk memory
device is uniformly distributed on the interval (10, 25).

a. Find the cumulative distribution function (cdf ) of X,
draw the graphs of the probability density function (pdf )
and the cdf of X, and compute P(X � 14), P(X � 20), and
P (12 � X � 22).

b. Find the mean, variance, and 35th and 80th percentiles of X.

3. [10�10] The breakdown voltage of a randomly chosen diode
of a certain type has a normal distribution with mean 25V and
standard deviation 0.75V. 
a. Compute the probability that the voltage of a diode is

between 23.5V and 27V. 
b. Find the value c such that exactly 7.5% of all diodes have

voltages exceeding c.

4. [10�5] Assume that the commuting time (in minutes) of 
a student is a random variable having normal distribution
with mean µ � 30 and standard deviation � � 2.5. 
a. If the student leaves her home at 7:40 A.M., find the proba-

bility that she won’t be late for a class that starts at 8:00 A.M.



b. What’s the latest she can leave her home and yet guarantee
a probability of 0.90 that she won’t be late for the class?

5. [10�10] The time X (in hours) it takes auto mechanic A to
complete a car inspection may be considered a random
variable uniformly distributed on (2, 3.5). The time Y it takes
auto mechanic B to do the same job is a random variable

uniformly distributed on (1.5, 3.0). Assume that A and B
started working on different cars at the same time and that X
and Y are independent.
a. Find the joint pdf of (X, Y ) and calculate the probability

that both A and B finish their jobs in less than 2.5 hours.
b. Find the probability that B finishes the job first. 
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Exam 4-4
INSTRUCTIONS: Show all work related to your solution. Credit
will be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�5] The daily demand for gasoline (in thousands of gallons)
at a gas station is a random variable X with probability density
function (pdf)

x � 1 if 1 � x � 2
f (x) � { 3 � x if 2 � x � 3

0 otherwise

a. Draw the graph of f (x) and calculate the 80th percentile
and P(1.4 � X � 2.7). 

b. Find c such that P(X � c) � 0.9. 

2. [10�10] The weight distribution (in lb) of parcels sent in a
certain manner is normal with mean value µ � 15 and standard
deviation � � 3.8. A surcharge is applied to parcels weighing
more than 21 lb.
a. Find the percentage of parcels under the surcharge weight. 
b. Find the probability that among three randomly chosen

parcels at least one is above the surcharge weight.

3. [15�5] Peter and Ann agreed to meet for lunch. Assume that
the arrival time X of Peter is a random variable uniformly
distributed on (11:30 A.M., 12:30 P.M.) and the arrival time Y of
Ann is a random variable uniformly distributed on (12 P.M.,
2 P.M.) and that X and Y are independent. 

a. Find the joint pdf of (X, Y) and calculate the probability that
both Peter and Ann arrive between 12:15 P.M. and 1 P.M.

b. Find the probability that (i) Peter arrives first, (ii) Ann arrives
first, (iii) Peter and Ann arrive at the same time. 

4. [15�5] The system consisting of two components works as long
as both components work. Assume that the lifetimes X1, X2 of
the components are independent random variables, X1 having an
exponential distribution with mean 100 hours, and X2 having
an exponential distribution with mean 150 hours. 
a. Draw a design of such a system and find the probability

density function of X, the lifetime of the system.
b. Calculate E(X ) and P(60 � X � 80).

5. [15�5] The time it takes an instructor to grade an exam paper
is a random variable with expected value 7.5 minutes and
standard deviation 1.5 minutes. Assume that the grading times
for different papers are independent.
a. Using the Central Limit Theorem, find the probability that the

instructor will grade 70 papers in less than 9 hours.
b. Suppose the instructor grades 40 papers on one day and

the remaining 30 papers on another. What is the probabil-
ity that the mean times of grading a paper on both days do
not exceed 7.8 minutes?

Exam 4-5
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�10] Let (X, Y ) be a pair of random variables with 

P(X � �2, Y � 0) � P(X � �2, Y � 1) � 0.1
P(X � �1, Y � 2) � 0.2
P(X � �1, Y � 0) � 0
P(X � �1, Y � 1) � 0.3
P(X � 1, Y � 2) � 0.1
P(X � 2, Y � 0) � P(X � 2, Y � 2) � 0.1
P(X � 2, Y � 1) � 0

a. Write the pmf of (X, Y) in the form of a table. Are X and Y
independent? Justify the answer using the definition of
independence. Find P(X � Y ).

b. For the random variable Z � |X � Y|, calculate E (Z).

2. [15�10] Jim and Paula agreed to meet for lunch. Assume that
Jim’s arrival time X is a random variable uniformly distributed
on (11:45, 12:45) and Paula’s arrival time Y is a random vari-
able uniformly distributed on (12:00, 1:00) and that X and Y
are independent. 
a. Find the joint pdf of (X, Y) and calculate the probability

that both Jim and Paula arrive before 12:30.
b. Find the probability that (i) Paula comes first, (ii) Jim comes

first. (Hint: Choosing the origin at x � 11:45, y � 11:45
makes calculations easier.)

3. [15�10] The time it takes an instructor to grade an exam paper
is a random variable with expected value 7 minutes and standard
deviation 1.2 minutes. Assume that the grading times for dif-
ferent papers are independent.



a. Using the Central Limit Theorem, calculate the probability
that the instructor will need more than 8.5 hours to grade
70 papers. 

b. Suppose the instructor grades 50 papers on one day and the
remaining 20 papers on another. What is the probability
that the mean times of grading a paper on both days do not
exceed 7.4 minutes? 

4. [15�10] Two problems are given in a quiz. The time it takes
a randomly chosen student to solve the first problem is a
random variable X1 having normal distribution with mean

14 minutes and standard deviation 2 minutes. For the second
problem, it is a random variable X2 independent of X1, having
normal distribution with mean 12 minutes and standard devia-
tion 1.5 minutes.
a. Find the probability that a student will solve both problems

in less than 30 minutes.
b. What is the percentage of students who solve the second

problem in less time than the first? 
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Exam 5-1
INSTRUCTIONS: Show all work related to your solution. Credit
will be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�10] To compare the unknown proportions p1 and p2 of steel
shafts produced by two manufacturers, M1 and M2, a sample
of size n1 of shafts manufactured by M1 and an independent
sample of size n2 of shafts manufactured by M2 were drawn.
The first sample contained X1 conforming shafts, and the second
contained X2 conforming shafts. 
a. Show that X1 /n1 � X2 /n2 is an unbiased estimator of p1 � p2

and find its standard deviation. (Hint: Use the formula for
the variance of X � Y where X, Y are independent random
variables.)

b. For n1 � 100, X1 � 84, n2 � 80, X2 � 65, estimate the stan-
dard error of X1 /n1 � X2 /n2.

2. [15�10] The following sample of size n � 9 was drawn
from a population with mean µ, median µ̃, and standard
deviation �:

x1 � 8.9, x2 � 7.1, x3 � 6.6, x4 � 7.8, x5 � 5.8, x6 � 11.2,
x7 � 8.1, x8 � 12.6, x9 � 9.2.

a. Calculate point estimators of the population mean, median,
and standard deviation.

b. What is the estimated standard error of the estimator you
used in estimating µ?

3. [10�15] Let (x1, . . . , xn) be a sample from a population 
with pdf 

3	x2 if �1 � x � 0
f (x; 	) � {3(1 � 	)x2 if 0 � x � 1

with 	, 0 � 	 � 1 as a parameter.
a. Check that f (x; 	) is a pdf and draw its graph for 	 � 0.25

and 	 � 0.5.
b. Find the estimator of 	 by the method of moments and show

that it is unbiased.

4. [10�15] Let x1, . . . , xn be a sample from a population with pdf 

f (x; 	) � 	2 xe�	x if x � 0
f (x; 	) � 0 if x � 0

with 	 � 0 as a parameter.
a. Check that f (x; 	) is a pdf and draw its graph for 	 � 1.

(Note: �0
∞xe�xdx � 1.)

b. Find the maximum likelihood estimator of 	.

Exam 5-2
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�10] Of n1 randomly selected male smokers, X1 smoked
filter cigarettes, whereas of n2 randomly selected female
smokers, X2 smoked filter cigarettes. Denote by p1 and p2 the
probabilities that a randomly selected male and female,
respectively, smoke filter cigarettes. 
a. Show that X1 /n1 � X2 /n2 is an unbiased estimator of p1 � p2

and find its standard error.
b. For n1 � 250, n2 � 150, x1 � 175, x2 � 120, and the esti-

mator from (a), calculate the estimate of p1 � p2 and estimate
the standard error of the estimator.

2. [10�10�5] Let (x1, . . . , xn) be a sample from a population
with pdf 

�2	x if �1 � x � 0
f (x; 	) � {2(1 � 	)x if 0 � x � 1

with 	, 0 � 	 � 1 as a parameter.
a. Check that f (x; 	) is a pdf.
b. Find the estimator 	˜ of 	 by the method of moments. 
c. Calculate E(	˜ ) and show that 	˜ is an unbiased estimator of 	.

3. [15�10] Let (x1, . . . , xn ) be a sample from a population
with pdf 

1/	 if 0 � x � 	
f (x; 	) � {0 otherwise

with 	, 	 � 0 as a parameter.



a. Find the estimator of 	 by the method of moments and
show that it is unbiased. 

b. Find the standard error and the estimated standard error of
the method of moments estimator. 

4. [10�15] Let (x1, . . . , xn) be a sample from a population with pdf 

(	 � 1) /x	 if x � 1
f (x; 	) � {0 otherwise
with 	 �1 as a parameter.

a. Check that f (x; 	) is a pdf and draw its graph for 	 � 2.
b. Find the estimator of 	 by the method of maximum 

likelihood. 
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Exam 6-1
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [10�10�5] A sample of size n is drawn from a normal popu-
lation with unknown mean µ and known sd � � 2.5.
a. Compute a 95% confidence interval (CI) for µ when n � 25

and the sample mean x� � 62.4.
b. Compute a 95% CI for µ when n � 100 and has the same

sample mean as in (a). Explain the difference between the
CIs in (a) and (b).

c. How large must n be if the width of the 95% CI is to be 1.8?

2. [10�10] A sample of size n is drawn from a normal population
with unknown mean µ and unknown standard deviation (sd) �.
a. Construct a 95% CI for µ when n � 25, the sample mean

x� � 62.4 and the sample sd s � 2.5.
b. Compare this CI with the CI in part (a) of Problem 1 and

explain the difference.

3. [5�10�10] A (large) random sample of 350 spare parts con-
tains 30 defective parts.
a. Estimate the true proportion p of good parts in the population.
b. Construct a 90% confidence interval for p.
c. How large should the sample size be to ensure that the length

of the 90% confidence interval for p is less than 0.04? 

4. [10�20] Let X�1, X�2 be the sample means of two independent
samples of sizes n1, n2 drawn from two normal populations,
one with unknown mean µ1 and known variance �1

2, the other
with unknown mean µ2 and known variance �2

2.
a. Show that X�1 � X�2 is an unbiased estimator of µ1 � µ2 and

find its standard deviation. 
b. For 

n1 � 10, n2 � 8, �1
2 � 1.2, �2

2 � 0.94, x�1 � 9.0, x�2 � 7.6 

construct a 95% confidence interval for µ1 � µ2.

Exam 5-3
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [15�10] In a group of n1 randomly selected patients treated
for a common cold by medicine A, X1 were cured within a
specified time period, whereas in another group of n2 randomly
selected patients treated using medicine B, X2 were cured
within the same period. Denote by p1 the efficiency of medicine
A defined as the probability that a randomly selected patient
using A recovers within the specified period, and by p2 the
same characteristic for medicine B. 
a. Show that X1 /n1 � X2 /n2 is an unbiased estimator of p1 � p2

and find its standard error and estimated standard error. 
b. For n1 � 85, n2 � 90, x1 � 68, x2 � 77, and the estimator

from (a), calculate the estimate of p1 � p2 and estimate the
standard error of the estimator. 

2. [10�10�5] Let (x1, . . . , xn) be a sample from a population
with pdf 

�(1/2)	x if �2 � x � 0
f (x; 	) � {(1/2)(1 � 	)x if 0 � x � �2

0 otherwise 

with 	, 0 � 	 � 1 as a parameter.

a. Calculate the population mean as a function of the parameter. 
b. Find the estimator of 	 by the method of moments and

show that it is unbiased.
c. For n � 4 and x1 � �1.7, x2 � �1.3, x3 � 1.2, and x4 � 1.6,

calculate the method of moments estimate of 	.

3. [15�10] The following sample of size n � 7 was drawn from
a population with mean µ, median µ̃, and standard deviation �:

x1 � 5.1, x2 � 6.4, x3 � 3.5, x4 � 8.0, x5 � 6.1,
x6 � 7.6, x7 � 9.2.

a. Calculate point estimators of the population mean, median,
and standard deviation. 

b. Calculate the estimated standard error of the estimator used
in estimating µ.

4. [10�15] Let (x1, . . . , xn ) be a sample from a population
with pdf 

4	2xe�2	x if x � 0
f (x; 	) � {0 otherwise

with 	 � 0 as a parameter.
a. Check that f (x; 	) is a pdf and draw its graph for 	 � 1.
b. Find the estimator of 	 by the method of maximum 

likelihood.



Exam 6-2
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid rea-
soning or calculations. You may use calculators as needed.

1. [5�5�10] A sample of size n is drawn from a normal popu-
lation with unknown mean � and known variance �2 � 6.1.
a. Compute a 95% confidence interval (CI) for � when n � 15

and the sample mean x� � 56.8.
b. Compute a 95% CI for � when n � 30 and x� is the same as

in (a). Explain the difference between the CIs in (a) and (b).
c. How large must n be if the length of the 95% CI is to be 0.75?

2. [15�15�5] A random sample of size n � 10 from a normal
population with an unknown mean � and an unknown variance
�2 yielded a sample mean of 19.6 and a sample variance of 9.2.
a. Compute a 95% confidence interval for �.
b. Compute a 95% confidence interval for �2.
c. Compute a 95% confidence interval for �.

3. [5�10�15] Among 210 randomly selected credit card cus-
tomers, 142 incurred an interest charge in year 2008 because
of an unpaid balance.

a. Estimate the true proportion p of customers who incurred
the interest charge in year 2008, along with the standard
error of the estimator used.

b. Construct a 95% confidence interval for p.
c. How many customers must be selected to ensure that the

width of the 95% confidence interval will be 0.06? 

4. [10�5] Two independent samples of sizes n1 and n2 are drawn
from normal populations with an unknown mean � and known
standard deviations �1 and �2, respectively.
a. If �1 � 1.2�2, is it enough to have n1 � 1.2n2 to guarantee

that the standard 95% confidence interval (CI) for � con-
structed from the first be shorter than the 95% CI constructed
from the second sample?

b. What is the relation between �1, �2, n1, n2 that would guar-
antee the smaller length of the 95% CI is constructed from
the first sample? 
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Exam 7-1
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed.

1. [15�15] The sample mean of a sample of size 20 from a normal
population with an unknown mean � and known standard
deviation � � 0.7 is x� �11.2.
a. Test H0 :� �11.0 versus Ha:��11.0 using a two-tailed

level 0.10 test.
b. Compute the type II error probability �(�) of the test for

the alternative ��11.3.

2. [15�15�10] The average lifetime (in thousands of miles) of a
tire of a certain brand is 60. An inventor claims that tires manu-
factured on his new technology have a longer average lifetime. To
support the claim, he brings eight tires manufactured on the new
technology for testing. The actual lifetimes of the eight tires are

x1 � 62, x2 � 64.2, x3 � 58.8, x4 � 60.4, x5 � 61.4,
x6 � 59.0, x7 � 63.0, x8 � 62.6.

a. State the null hypothesis and the alternative to test the
inventor’s claim.

b. Assuming the lifetimes of the tires to be independent random
variables having a normal distribution, use the t test at level
0.10 to test H0.

c. Determine whether the p-value of the data exceeds 0.10.

3. [10�10�10] A (large) sample of 140 students taking STAT
300 reveals that 78 passed the class with a “B” or an “A.” Does
this suggest that the actual percentage of students in STAT 300
who got a “B” or an “A” for the class is at least 0.55?
a. State the appropriate null hypothesis and the alternative to

answer the question.
b. Carry out a test using a significance level of � � 0.10.
c. Compute the p-value of the data. 

Exam 7-2
INSTRUCTIONS: Show all work related to your solution. Credit
may be deducted for numerical answers unsupported by valid
reasoning or calculations. You may use calculators as needed. 

1. [10�10�10] Assume that the mileage (in miles per gallon) of
a certain brand of cars has a normal distribution with mean �

and standard deviation � � 1.4. If the actual mileages for 
n � 6 cars are 

x1 � 27.8, x2 � 30.0, x3 � 31.8, x4 � 32.6,
x5 � 28.4, x6 � 34.0,

does this suggest that the mean is at least 30?



a. State the appropriate null hypothesis and the alternative to
answer the question.

b. Carry out a test using a significance level of � � 0.10.
c. Compute the type II error probability �(�) of the test for the

alternative � � 32.

2. [15�15�10] The response time (in seconds) to a certain signal
is a random variable having a normal distribution with an
unknown mean � and unknown standard deviation �. Seven
independent measurements of actual response times are as
follows: 

x1 � 1.80, x2 � 1.62, x3 � 2.00, x4 � 2.02, x5 � 1.78,
x6 � 1.82, x7 � 1.94.

Some indirect arguments suggest that � � 1.90.
a. State the null hypothesis and the alternative to test the claim.
b. Test the null hypothesis using a two-tailed level 0.10 test.
c. Determine whether the p-value of the data exceeds 0.10.

3. [10�10�10] A (large) sample of 180 drivers insured by a
certain company reveals that 105 of them had at least one
moving violation in 2008. The company classifies a driver as
a good risk if he/she had no moving violations in a previous
year. Does the preceding data suggest that at least 40% of the
drivers insured by the company are a good risk?
a. State the appropriate null hypothesis and the alternative to

answer the question.
b. Carry out a test using a significance level of � � 0.05.
c. Compute the p-value of the data.
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Table A.3 Standard Normal Curve Areas

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

�3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
�3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
�3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
�3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
�3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

�2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014
�2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
�2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
�2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
�2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0038

�2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
�2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
�2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
�2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
�2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

�1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
�1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
�1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
�1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
�1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

�1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681
�1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
�1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
�1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
�1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

�0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
�0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
�0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
�0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
�0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

�0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
�0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3482
�0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
�0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
�0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

(continued)

Standard normal density function

0 z

Shaded area = Φ(z)

Φ(z) � P(Z � z)



Table A.3 Standard Normal Curve Areas (cont.) �(z) � P(Z � z)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998



Table A.5 Critical Values for t Distributions

�

v .10 .05 .025 .01 .005 .001 .0005

1 3.078 6.314 12.706 31.821 63.657 318.31 636.62
2 1.886 2.920 4.303 6.965 9.925 22.326 31.598
3 1.638 2.353 3.182 4.541 5.841 10.213 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.767
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
32 1.309 1.694 2.037 2.449 2.738 3.365 3.622
34 1.307 1.691 2.032 2.441 2.728 3.348 3.601
36 1.306 1.688 2.028 2.434 2.719 3.333 3.582
38 1.304 1.686 2.024 2.429 2.712 3.319 3.566

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
50 1.299 1.676 2.009 2.403 2.678 3.262 3.496
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291

t� density curve

t�,�0

Shaded area = �
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