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Preface 
Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the 
full breadth of the field, which encompasses logic, probability, and continuous mathematics; 
perception, reasoning, learning, and action; and everything from microelectronic devices to 
robotic planetary explorers. The book is also big because we go into some depth. 

The subtitle of this book is "A Modern Approach." The intended meaning of this rather 
empty phrase is that we have tried to synthesize what is now known into a common frame-
work, rather than trying to explain each subfield of AI in its own historical context. We 
apologize to those whose subfields are, as a result, less recognizable. 

New to this edition 
This edition captures the changes in Al that have taken place since the last edition in 2003. 
There have been important applications of AI technology, such as the widespread deploy-
ment of practical speech recognition, machine translation autonomous vehicles, and house-
hold robotics. There have been algorithmic landmarks, such as the solution of the game of 
checkers. And there has been a great deal of theoretical progress, particularly in areas such 
as probabilistic reasoning, machine learning, and computer vision. Most important from our 
point of view is the continued evolution in how we think about the field, and thus how we 
organize the book. The major changes are as follows: 

• We place more emphasis on partially observable and nondeterministic environments, 
especially in the nonprobabilistic settings of search and planning. The concepts of 
belief state (a set of possible worlds) and stare  estimation (maintaining the belief state) 
are introduced in these settings; later in the book, we add probabilities. 

• In addition to discussing the types of environments and types of agents, we now cover 
in more depth the types of representations that an agent can use. We distinguish among 
atomic representations (in which each slate of the world is treated as a black box), 
factored representations (in which a state is a set of attribute/value pairs), and structured 
representations (in which the world consists of objects and relations between them). 

• Our coverage of planning goes into more depth on contingent planning in partially 
observable environments and includes a new approach to hierarchical planning. 

• We have added new material on first-order probabilistic models, including open-universe 
models for cases where there is uncertainty as to what objects exist. 

• We have completely rewritten the introductory machine-learning  chapter, stressing a 
wider variety of more modern  learning algorithms and placing them on a firmer theo-
retical footing. 

• We have expanded coverage of Web search and information extraction, and of tech-
niques for learning from very large data sets. 

• 20% of the citations in this edition are to works published after 2003. 
• We estimate that about 20%  of the material is brand new. The remaining SO% reflects 

older work but has been largely rewritten to present a more unified picture of the field. 
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viii Preface 

Overview of the book 
The main unifying theme is the idea of an  intelligent agent. We define Al as the study of 
agents that receive percepts from the environment and perform actions. Each such agent im-
plements a function that maps percept sequences to actions, and we cover different ways to 
represent these functions, such as reactive agents, real-time planners, and decision-theoretic 
systems. We explain the role of learning as extending the reach of the designer into unknown 
environments, and we show how that role constrains agent design, favoring explicit knowl- 
edge representation and reasoning. We treat robotics and vision not as independently defined 
problems, but as occurring  in the service of achieving, goals.  We stress the importance of the 

task environment in determining the appropriate agent design. 
Our primary aim is to convey the ideas that have emerged over the past fifty years of Al 

research and the past two millennia of related work. We have tried to avoid excessive formal-
ity in the presentation of these ideas while retaining precision. We have included pseudocode 
algorithms to make the key ideas concrete; our pseudocode is described in Appendix B. 

This book is primarily intended for use in an undergraduate course or course sequence. 
The book has 27 chapters, each requiring about a week's worth of lectures, so working 
through the whole book requires a two-semester sequence. A one-semester course can use 
selected chapters to suit the interests of the instructor and students. The book can also be 
used in a graduate-level course (perhaps with the addition of some of the primary sources 
suggested in the bibliographical notes). Sample syllabi are available at the book's Web site. 
airia  . es  . berkeley edu.  The only prerequisite is familiarity with basic concepts of 
computer science (algorithms, data structures, complexity) at a sophomore level. Freshman 
calculus and linear algebra are useful for some of the topics; the required mathematical back-
ground is supplied in Appendix A. 

Exercises are given at the end of each chapter. Exercises requiring significant pro-
gramming are marked with a keyboard icon. These exercises can best be solved by taking 
advantage of the code repository at a ima c s  . berkeley.edu. Some of them are large 

enough to be considered term projects. A number of exercises require some investigation of 
the literature; these are marked with a book icon. 

Throughout the book, important points are marked with a pointing icon. We have in-
cluded an extensive index of around 6,000 items to make it easy to find things in the book. 
Wherever a new term is first defined, it is also marked in the margin. 

About the Web site 
nine. cs  .herkeley.edu,  the Web site for the hook, contains 

• implementations of the algorithms in the book in several programming languages, 
• a list of over 1000 schools that have used the book, many with links to online course 

materials and syllabi, 
• an annotated list of over 800 links to sites around the Web with useful Al content, 
• a chapter-by-chapter list of supplementary material and links 
• instructions on how to join a discussion group for the book, 

http://site.airia.es
http://site.airia.es
http://site.airia.es
http://berkeley.edu
http://nine.cs.herkeley.edu
http://nine.cs.herkeley.edu
http://nine.cs.herkeley.edu
http://nine.cs.herkeley.edu
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• instructions on how to contact the authors with questions or comments, 
• instructions on how to report errors in the book, in the likely event that some exist, and 
• slides and other materials for instructors. 

About the cover 
The cover depicts the final position from the decisive game 6 of the 1997 match between 
chess champion Garry Kasparov and program DEEP BLUE. Kaspamv, playing Black, was 
forced to resign, making this the first time a computer had beaten a world champion in a 
chess match. Kasparov is shown at the top. To his left is the Asimo  humanoid robot and 
to his right is Thomas Bayes (1702-1761),  whose ideas about probability as a measure of 
belief underlie much of modem AI technology. Below that we see a Mars Exploration Rover, 
a robot that landed on Mars in 2004-  and has been exploring the planet ever since. To the 
right is Alan Turing (1912-1954), whose fundamental work defined the fields of computer 
science in general and artificial intelligence in particular. At the bottom is Shakey (1966—  
1972), the first robot to combine perception, world-modeling, planning, and learning. With 
Shakey  is project leader Charles Rosen (1917-2002).  At the bottom right is Aristotle (384  
B.C.-322 B.c.),  who pioneered the study of logic; his work was state of the art until the 19th 
century (copy of a bust by Lysippos). At the bottom left, lightly screened behind the authors' 
names, is a planning algorithm by Aristotle from De Motu Anitaaliton  in the original Greek. 
Behind the title is a portion of the CPSC Bayesian network for medical diagnosis (Pradhan 
et ill_,  1994). Behind the chess board is part of a Bayesian logic model for detecting nuclear 
explosions from seismic signals, 

Credits: Stan Honda/Getty (Kasparaov), Library of Congress (Bayes),  NASA (Mars 
rover), National Museum of Rome (Aristotle), Peter Norvig (book), Ian Parker (Berkeley 
skyline), Shunerstock  (Asimo, Chess pieces), Time Life/Getty (Shakey, Turing). 

Acknowledgments 
This hook would not have been possible without the many contributors whose names did not 
make it to the cover. Jitendra Malik and David Forsyth wrote Chapter 24  (computer vision) 
and Sebastian Thrun wrote Chapter 25 (robotics). Vibhu Mittal wrote part of Chapter 22 
(natural language). Nick Hay, Mehran Sahami,  and Ernest Davis wrote some of the exercises. 
Zoran Durk  (George Mason), Thomas C. Henderson (Utah), Leon Reznik (R1T),  Michael 
Gourley (Central Oklahoma) and Ernest Davis (NYU) reviewed the manuscript and made 
helpful suggestions. We thank Ernie Davis in particular for his tireless ability to read multiple 
drafts and help improve the book. Nick Hay whipped the bibliography into shape and on 
deadline stayed up to 5:30 AM writing code to make the book better. Jon Barron formatted 
and improved the diagrams in this edition, while Tim Huang. Mark Paskin, and Cynthia 
Bruyns  helped with diagrams and algorithms in previous editions. Ravi Mohan and Ciaran 
O'Reilly wrote and maintain the Java code examples on the Web site. John Canny wrote 
the robotics chapter for the first edition and Douglas Edwards researched the historical notes. 
Tracy Dunkelberger,  Allison Michael, Scutt Disarm°, and lane Bunnell at Pearson tried their 
best to keep us on schedule and made many helpful suggestions. Most helpful of all has 
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Preface 
Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the 
full breadth of the field, which encompasses logic, probability, and continuous mathematics; 
perception, reasoning, learning, and action; and everything from microelectronic devices to 
robotic planetary explorers. The book is also big because we go into some depth. 

The subtitle of this book is "A Modern Approach." The intended meaning of this rather 
empty phrase is that we have tried to synthesize what is now known into a common frame-
work, rather than trying to explain each subfield of AI in its own historical context. We 
apologize to those whose subfields are, as a result, less recognizable. 

New to this edition 
This edition captures the changes in Al that have taken place since the last edition in 2003. 
There have been important applications of AI technology, such as the widespread deploy-
ment of practical speech recognition, machine translation autonomous vehicles, and house-
hold robotics. There have been algorithmic landmarks, such as the solution of the game of 
checkers. And there has been a great deal of theoretical progress, particularly in areas such 
as probabilistic reasoning, machine learning, and computer vision. Most important from our 
point of view is the continued evolution in how we think about the field, and thus how we 
organize the book. The major changes are as follows: 

• We place more emphasis on partially observable and nondeterministic environments, 
especially in the nonprobabilistic settings of search and planning. The concepts of 
belief state (a set of possible worlds) and stare  estimation (maintaining the belief state) 
are introduced in these settings; later in the book, we add probabilities. 

• In addition to discussing the types of environments and types of agents, we now cover 
in more depth the types of representations that an agent can use. We distinguish among 
atomic representations (in which each slate of the world is treated as a black box), 
factored representations (in which a state is a set of attribute/value pairs), and structured 
representations (in which the world consists of objects and relations between them). 

• Our coverage of planning goes into more depth on contingent planning in partially 
observable environments and includes a new approach to hierarchical planning. 

• We have added new material on first-order probabilistic models, including open-universe 
models for cases where there is uncertainty as to what objects exist. 

• We have completely rewritten the introductory machine-learning  chapter, stressing a 
wider variety of more modern  learning algorithms and placing them on a firmer theo-
retical footing. 

• We have expanded coverage of Web search and information extraction, and of tech-
niques for learning from very large data sets. 

• 20% of the citations in this edition are to works published after 2003. 
• We estimate that about 20% of the material is brand new. The remaining SO% reflects 

older work but has been largely rewritten to present a more unified picture of the field. 
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Overview of the book 
The main unifying theme is the idea of an  intelligent agent. We define Al as the study of 
agents that receive percepts from the environment and perform actions. Each such agent im-
plements a function that maps percept sequences to actions, and we cover different ways to 
represent these functions, such as reactive agents, real-time planners, and decision-theoretic 
systems. We explain the role of learning as extending the reach of the designer into unknown 
environments, and we show how that role constrains agent design, favoring explicit knowl- 
edge representation and reasoning. We treat robotics and vision not as independently defined 
problems, but as occurring  in the service of achieving, goals.  We stress the importance of the 

task environment in determining the appropriate agent design. 
Our primary aim is to convey the ideas that have emerged over the past fifty years of Al 

research and the past two millennia of related work. We have tried to avoid excessive formal-
ity in the presentation of these ideas while retaining precision. We have included pseudocode 
algorithms to make the key ideas concrete; our pseudocode is described in Appendix B. 

This book is primarily intended for use in an undergraduate course or course sequence. 
The book has 27 chapters, each requiring about a week's worth of lectures, so working 
through the whole book requires a two-semester sequence. A one-semester course can use 
selected chapters to suit the interests of the instructor and students. The book can also be 
used in a graduate-level course (perhaps with the addition of some of the primary sources 
suggested in the bibliographical notes). Sample syllabi are available at the book's Web site. 
airia  . es  . berkeley edu.  The only prerequisite is familiarity with basic concepts of 
computer science (algorithms, data structures, complexity) at a sophomore level. Freshman 
calculus and linear algebra are useful for some of the topics; the required mathematical back-
ground is supplied in Appendix A. 

Exercises are given at the end of each chapter. Exercises requiring significant pro-
gramming are marked with a keyboard icon. These exercises can best be solved by taking 
advantage of the code repository at a ima c  s  . berkeley.edu. Some of them are large 

enough to be considered term projects. A number of exercises require some investigation of 
the literature; these are marked with a book icon. 

Throughout the book, important points are marked with a pointing icon. We have in-
cluded an extensive index of around 6,000 items to make it easy to find things in the book. 
Wherever a new term is first defined, it is also marked in the margin. 

About the Web site 
nine. cs  .herkeley.edu,  the Web site for the hook, contains 

• implementations of the algorithms in the book in several programming languages, 
• a list of over 1000 schools that have used the book, many with links to online course 

materials and syllabi, 
• an annotated list of over 800 links to sites around the Web with useful Al content, 
• a chapter-by-chapter list of supplementary material and links 
• instructions on how to join a discussion group for the book, 

http://site.airia.es
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http://site.airia.es
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• instructions on how to contact the authors with questions or comments, 
• instructions on how to report errors in the book, in the likely event that some exist, and 
• slides and other materials for instructors. 

About the cover 
The cover depicts the final position from the decisive game 6 of the 1997 match between 
chess champion Garry Kasparov and program DEEP BLUE. Kaspamv, playing Black, was 
forced to resign, making this the first time a computer had beaten a world champion in a 
chess match. Kasparov is shown at the top. To his left is the Asimo  humanoid robot and 
to his right is Thomas Bayes (1702-1761), whose ideas about probability as a measure of 
belief underlie much of modem AI technology. Below that we see a Mars Exploration Rover, 
a robot that landed on Mars in 2004- and has been exploring the planet ever since. To the 
right is Alan Turing (1912-1954), whose fundamental work defined the fields of computer 
science in general and artificial intelligence in particular. At the bottom is Shakey (1966-
1972), the first robot to combine perception, world-modeling, planning, and learning. With 
Shakey  is project leader Charles Rosen (1917-2002). At the bottom right is Aristotle (384 
B.C.-322 B.C.),  who pioneered the study of logic; his work was state of the art until the 19th 
century (copy of a bust by Lysippos). At the bottom left, lightly screened behind the authors' 
names, is a planning algorithm by Aristotle from De Motu Anitaaliton  in the original Greek. 
Behind the title is a portion of the CPSC Bayesian network for medical diagnosis (Pradhan 
et ill_,  1994). Behind the chess board is part of a Bayesian logic model for detecting nuclear 
explosions from seismic signals, 

Credits: Stan Honda/Getty  (Kasparaov), Library of Congress (Bayes),  NASA (Mars 
rover), National Museum of Rome (Aristotle), Peter Norvig (book), Ian Parker (Berkeley 
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INTRODUCTION 

In which we try  to explain why we consider artificial intelligence to be a subject 
most worthy of study, and in which we try to decide what exactly it is, this being a 
good thing to decide before embarking. 

INTELLIGENCE We call ourselves _Homo  sapiens—man the wise—because  our intelligence is so important 
to us. For thousands of years, we have tried to understand how we think; that is, how a mere 
handful of matter can perceive, understand, predict, and manipulate a world far larger and 

AR
NTIIII  GER

TIFICIAL  
HIE more complicated than itself. The field of artificial intelligence, or Al, goes further still: it  

attempts not just to understand but also to build intelligent entities. 
AI is one of the newest fields in science and engineering. Work started in earnest soon 

after World War II, and the name itself was coined in 1956. Along with molecular biology, 
AI is regularly cited as the "field I would most like to be in" by scientists in other disciplines.  
A student in physics might reasonably feel that all the good ideas have already been taken by 
Galileo, Newton, Einstein, and the rest. AI, on the other hand, still has openings for several 
full-time Einsteins and Edisons.  

Al currently encompasses a huge variety of subfields, ranging from the general (learning 
and perception) to the specific, such as playing chess, proving mathematical theorems, writing 
poetry, driving a car on a crowded street, and diagnosing diseases. AI is relevant to any 
intellectual task; it is truly a universal field.  

1.1  WHAT IS AI? 

RATIONFJJT'  

We have claimed that AI is exciting, but we have not said what it is. In Figure 1.1 we see 
eight definitions of AI, laid out along two dimensions. The definitions on top are concerned 
with thought processes and reasoning, whereas the ones on the bottom address behavior. The 
definitions on the left measure success in terms of fidelity to human performance, whereas 
the ones on the right measure against an ideal performance measure, called rationality.  A 
system is rational if it does the "right thing," given what it knows. 

Historically, all four approaches to AI have been followed, each by different people 
with different methods. A human-centered approach must be in part an empirical science, in- 
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TURING TEST 

NATURAL LANGUAGE 
PROCESSING 

KNOWLEDGE 
EPRESENTATION  

AUTOMATED 
REASONING 

MACHINE LEARNING 

Thinking Humanly Thinking Rationally 
"The exciting new effort to make comput- "The study of mental faculties through the 
ers think ...  machines with minds, in the use of computational models." 
full and literal sense." (Haugeland, 1985) (Charniak and McDermott, 1985) 

"[The automation of] activities that we "The study of the computations that make 
associate with human thinking, activities it possible to perceive, reason, and act."  
such as decision-making, problem solv- 
ing, learning .. ."  (Hellman, 1978) 

(Winston, 1992) 

Acting Humanly Acting Rationally 

"The art of creating machines that per- "Computational Intelligence is the study 
form functions that require intelligence of the design of intelligent agents." (Poole 
when performed by people." (Kurzweil, et at, 1998) 
1990) 
"The study of how to make computers do "Al ...  is concerned with intelligent be- 
things at which, at the moment, people are 
better." (Rich and Knight, 1991) 

havior in artifacts." (Nilsson, 1998) 

Figure 1.1 Some definitions of artificial intelligence, organized into four categories. 

volving observations and hypotheses about human behavior. A rationalist s  approach involves 
a combination of mathematics and engineering. The various group have both disparaged and 
helped each other. Let us look at the four approaches in more detail. 

1.1.1 Acting humanly: The Turing Test approach 

The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactory 
operational definition of intelligence. A computer passes the test if a human interrogator, after 
posing some written questions, cannot tell whether the written responses come from a person 
or from a computer. Chapter 26 discusses the details of the test and whether a computer would 
really be intelligent if it passed. For now, we note that programming a computer-  to pass a 
rigorously applied test provides plenty to work on. The computer would need to possess the 
following capabilities: 

• natural language processing to enable it to communicate successfully in English; 
• knowledge representation to store what it knows or hears; 
• automated reasoning to use the stored information to answer questions and to draw 

new conclusions; 
■ machine learning to adapt to new circumstances and to detect and extrapolate patterns. 

By distinguishing between human and rational behavior, we are not suggesting that humans are necessarily 
"irrational-  in the sense of -emotionally  unstable" or "insane.-  One merely need note that we are not perfect:.  
not all chess players are grandmasters; and, unfortunately, not everyone gets an A on the exam. Some systematic 
errors in human reasoning are cataloged by Kahneman et al. (1982). 
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Turing's test deliberately avoided direct physical interaction between the interrogator and the 
computer, because physical simulation of a person is unnecessary for intelligence. However, 

TOTAL TURING  TEST  the so-called total Turing Test includes a video signal so that the interrogator can test the 
subject's perceptual abilities, as well as the opportunity for the interrogator to pass physical 
objects "through the hatch." To pass the total Turing Test, the computer will need 

COMPUTER VISION • computer vision to perceive objects, and 
ROBOTICS • robotics to manipulate objects and move about. 

These six disciplines compose most of Al, and Turing deserves credit for designing a test 
that remains relevant 60 years later. Yet Al researchers have devoted little effort to passing 
the Turing Test, believing that it is more important to study the underlying principles of in-
telligence than to duplicate an exemplar. The quest for "artificial flight" succeeded when the 
Wright brothers and others stopped imitating birds and started using wind tunnels and learn-
ing about aerodynamics. Aeronautical engineering texts do not define the goal of their field 
as making "machines that fly so exactly like pigeons that they can fool even other pigeons." 

1.1.2 Thinking humanly: The cognitive modeling approach 

If we are going to say that a given program thinks like a human, we must have some way of 
determining how humans think. We need to get inside the actual workings of human minds.  
There are three ways to do this: through introspection—trying to catch our own thoughts as 
they go by; through psychological experiments—observing a person in action; and through 
brain imaging—observing the brain in action. Once we have a sufficiently precise theory of 
the mind, it becomes possible to express the theory as a computer program. If the program's 
input—output behavior matches corresponding human behavior, that is evidence that some of 
the program's mechanisms could also be operating in humans. For example, Allen Newell 
and Herbert Simon, who developed GPS, the "General Problem Solver" (Newell and Simon, 
1961),  were not content merely to have their program solve problems correctly. They were 
more concerned with comparing the trace of its reasoning steps to traces of human subjects 

COGNITIVE SCIENCE  solving the same problems. The interdisciplinary field of cognitive science brings together 
computer models from AI and experimental techniques from psychology to construct precise 
and testable theories of the human mind 

Cognitive science is a fascinating field in itself, worthy of several textbooks and at least 
one encyclopedia (Wilson and. Keil, 1999). We will occasionally comment on similarities or 
differences between AI techniques and human cognition. Real cognitive science, however, is 
necessarily based on experimental investigation of actual humans or animals. We will leave 
that for other books, as we assume the reader has only a computer for experimentation. 

In the early days of AI there was often confusion between the approaches: an author 
would argue that an algorithm performs well on a task and that it is therefore a good model 
of human performance, or vice versa. Modem authors separate the two kinds of claims; 
this distinction has allowed both AI and cognitive science to develop more rapidly. The two 
fields continue to fertilize each other, must notably in computer vision, which incorporates 
neurophysiological evidence into computational models. 
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1.1.3 Thinking rationally: The "laws of thought" approach 

The Greek philosopher Aristotle was one of the first to attempt to codify "right thinking," that 
SYLLOGISM 
 is, irrefutable reasoning processes. His syllogisms provided patterns for argument structures 

that always yielded correct conclusions when given correct premises—for example, "Socrates 
is a man; all men are mortal; therefore, Socrates is mortal." These laws of thought were 

LDG  IC supposed to govern the operation of the mind; their study initiated the field called logic. 
Logicians in the 19th century developed a precise notation fur statements about all kinds 

of objects in the world and the relations among them. (Contrast this with ordinary arithmetic 
notation, which provides only for statements about numbers.) By 1965, programs existed 
that could, in principle, solve any solvable problem described in logical notation. (Although 

LOG ICIST 

	

	 if no solution exists, the program might loop forever.) The so-called logicist tradition within 
artificial intelligence hopes to build on such programs to create intelligent systems. 

There are two main obstacles to this approach. First, it is not easy to take informal 
knowledge and state it in the formal terms required by logical notation, particularly when 
the knowledge is less than 100% certain. Second, there is a big difference between solving 
a problem "in principle" and solving it in practice. Even problems with just a few hundred 
facts can exhaust the computational resources of any computer unless it has some guidance 
as to which reasoning steps to try first. Although both of these obstacles apply to any attempt 
to build computational reasoning systems, they appeared first in the logicist tradition. 

1.1.4 Acting rationally: The rational agent approach 

AGENT An agent is just something that acts (agent comes from the Latin agere, to do). Of course, 
all computer programs do something, but computer agents are expected to do more: operate 
autonomously, perceive their environment, persist over a prolonged time period, adapt to 

RATIONAL AGENT 

	

	change, and create and pursue goals. A rational agent is one that acts so as to achieve the 
best outcome or, when there is uncertainty, the best expected outcome. 

In the "laws of thought" approach to Al, the emphasis was on correct inferences. Mak-
ing correct inferences is 3nmetimes  part  of being a rational agent, because one way to act 
rationally is to reason logically to the conclusion that a given action will achieve one's goals 
and then to act on that conclusion. On the other hand, correct inference is not all of ration-
ality; in some situations, there is no provably correct thing to do, but something must still be 
done. There are also ways of acting rationally that cannot be said to involve inference. For 
example, recoiling from a hot stove is a reflex action that is usually more successful than a 
slower action taken after careful deliberation. 

All the skills needed for the Turing Test also allow an agent to act rationally, Knowledge 
representation and reasoning enable agents to reach good decisions. We need to be able to 
generate comprehensible sentences in natural language to get by in a complex society. We 
need learning not only for erudition, but also because it improves our ability to generate 
effective behavior. 

The rational-agent approach has two advantages over the other approaches. First, it 
is more general than the "laws of thought" approach because correct inference is just one 

of several possible mechanisms for achieving rationality. Second, it is more amenable to 



Section 1.2. The Foundations of Artificial Intelligence 5 

llY  11E3  
RATION0.1.17  

scientific development than are approaches based on human behavior or human thought. The 
standard of rationality is mathematically well defined and completely general. and can be 
"unpacked" to generate agent designs that provably achieve it. Human behavior, on the other 
hand, is well adapted for one specific environment and is defined by, well, the sum total 
of all the things that humans do. This book therefore concentrates on general principles 
of rational agents and on components for constructing them. We will see that despite the 
apparent simplicity with which the problem can be stated, an enormous variety of issues 
come up when we try to solve it. Chapter 2 outlines some of these issues in more detail. 

One important point to keep in mind: We will see before too long that achieving perfect 
rationality—always doing the right thing—is not feasible in complicated environments. The 
computational demands are just too high. For most of the book, however, we will adopt the 
working hypothesis that perfect rationality is a good starting point for analysis. It simplifies 
the problem and provides the appropriate setting for most of the foundational material in 
the field. Chapters 5 and 17 deal explicitly with the issue of limited rationality—acting 
appropriately when there is not enough time to do all the computations one might like. 

1.2 THE FOUNDATIONS OF ARTIFICIAL INTELLIGENCE 

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints, 
and techniques to Al. Like any history, this one is forced to concentrate on a small number 
of people, events, and ideas and to ignore others that also were important. We organize the 
history around a series of questions. We certainly would not wish to give the impression that 
these questions are the only ones the disciplines address or that the disciplines have all been 
working toward Al as their ultimate fruition. 

1.2.1 Philosophy 

• Can formal rules be used to draw valid conclusions? 
• How does the mind arise from a physical brain? 
• Where does knowledge come from? 
• How does knowledge lead to action? 

Aristotle (384-322  B.C.),  whose bust appears on the front cover of this book, was the first 
to formulate a precise set of laws governing the rational part of the mind. He developed an 
informal system of syllogisms for proper reasoning, which in principle allowed one to gener-
ate conclusions mechanically, given initial premises. Much later, Ramon Lull (d. 1315) had 
the idea that useful reasoning could actually be carried out by a mechanical artifact. Thomas 
Hobbes (1588-1679) proposed that reasoning was like numerical computation, that "we add 
and subtract in our silent thoughts." The automation of computation itself was already well 
under way. Around 1500, Leonardo (La Vinci (l452-1519)  designed but did not build a me-
chanical calculator; recent reconstructions have shown the design to be functional. The first 
known calculating machine was constructed mound 1623 by the German scientist Wilhelm 
Schickard (1592-1635), although the Pascaline, built in 1642 by Blaise Pascal (1623-16621,  
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is more famous. Pascal wrote that "the arithmetical machine produces effects which appear 
nearer to thought than all the actions of animals." Gottfried Wilhelm  Lcibniz  (1646-1716) 
built a mechanical device intended to carry out operations on concepts rather than numbers, 
but its scope was rather limited. Letniz  did surpass Pascal by building a calculator that 
could add, subtract, multiply, and take roots, whereas the Pascaline could only add and sub-
tract. Some speculated that machines might not just do calculations but actually be able to 
think and act on their own. In his 1651 book Leviathan, Thomas Hobbes suggested the idea 
of an "artificial animal," arguing "For what is the heart but a spring; and the nerves, but so 
many strings; and the joints, but so many wheels." 

It's one thing to say that the mind operates, at least in part, according to logical rules, and 
to build physical systems that emulate some of those rules; it's another to say that the mind 
itself is such a physical system. Rene Descartes (1596-1650) gave the first clear discussion 
of the distinction between mind and matter  and of the problems that arise. One problem with 
a purely physical conception of the mind is that it seems to leave little room for free will: 
if the mind is governed entirely by physical laws, then it has no more free will than a rock 
"deciding" to fall toward the center of the earth. Descartes was a strong advocate of the power 
of reasoning in understanding the world, a philosophy now called rationalism, and one that 
counts Aristotle and Leibnitz as members. But Descartes was also a proponent of dualism. 
He held that there is a part of the human mind (or soul or spirit) that is outside of nature ;  
exempt from physical laws. Animals, on the other hand, did not possess this dual quality; 
they could be treated as machines. An alternative to dualism is materialism, which holds 
that the brain's operation according to the laws of physics constitutes the mind. Free will is 
simply the way that the perception of available choices appears to the choosing entity. 

Given a physical mind that manipulates knowledge, the next problem is to establish 
the source of knowledge. The empiricism movement, starting with Francis Bacon's (1561-
1626) Novum  Organum,2  is characterized by a dictum of John Locke (1632-1704): "Nothing 
is in the understanding, which was not first in the senses." David Hume's (1711-1776) A 
Treatise of Human Nature (Hume, 1739) proposed what is now known as the principle of 
induction: that general rules are acquired by exposure to repeated associations between their 
elements. Building on the work of Ludwig Wittgenstein (1889-1951) and Bertrand Russell 
(1872-1970), the famous Vienna Circle, led by Rudolf Carnap (1891-1970), developed the 
doctrine of logical positivism. This doctrine holds that all knowledge can be characterized by 
logical theories connected, ultimately. to observation sentences that correspond to sensory 
inputs; thus logical positivism combines rationalism and empiricism.3  The confirmation the-
ory of Catnap and Carl Hempel (1905-1997) attempted to analyze the acquisition of knowl-
edge from experience. Camap's book The Logical Structure of the World (1928) defined an 
explicit computational procedure for extracting knowledge from elementary experiences. It 
was probably the first theory of mind as a computational process. 

2  The Novion  Organ um is an update of Aristotle's Organon, cr  instrument of thought. Thus Aristotle can be 
seen as both an empiricist and a rationalist. 
3  In this picture, all meaningful statements can be verified or falsified either by experimentation or by analysis 
of the meaning of the words. Because this rules out most of metaphysics, as was the intention, logical positivism 
was unpopular in some circles. 

RATIONALISM 

DUALISM 

MATERIALISM 

EMPIRIC ISM 

INDUCTION 

LOGICAL POSITIVISM 
OBSERVATION 
SENTENCES 

CONFIRMATION 
TI-LEORY  
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The final element in the philosophical picture of the mind is the connection between 
knowledge and action. This question is vital to Al because intelligence requires action as well 
as reasoning. Moreover, only by understanding how actions are justified can we understand 
how to build an agent whose actions are justifiable (or rational). Aristotle argued (in De Motu 
Animalium)  that actions are justified by a logical connection between goals and knowledge of 
the action's outcome (the last part of this extract also appears on the front cover of this book, 
in the original Greek): 

But how does it happen that thinking is sometimes accompanied by action and sometimes 
not, sometimes by motion, and sometimes not? It looks as if almost the same thing 
happens as in the case of reasoning and making inferences about unchanging objects. But 
in that case the end is a speculative proposition ...  whereas here the conclusion which 
results from the two premises is an action. ...  I need covering; a cloak is a covering. 1 
need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And 
the conclusion, the "I have to make a cloak," is an action. 

In the Nicomachean  Ethics (Book III. 3, 1112b),  Aristotle further elaborates on this topic, 
suggesting an algorithm: 

We deliberate not about ends, but about means. For a doctor does not deliberate whether 
he shall heal, nor an orator whether he shall persuade, ...  They assume  the end and 
consider how and by what means it is attained, and if it seems easily and best produced 
thereby; while if it is achieved by one means only they consider how it will be achieved 
by this and by what means this will be achieved, till they come to the first cause, ... and 
what is last in the order of analysis seems to be first in the order of becoming. And if we 

come on an impossibility, we give up the search, e.g., if we need money and this cannot 
be got; but if a thing appears possible we try to do it 

Aristotle's algorithm was implemented 2300 years later by Newell and Simon in their GP S  
program. We would now call it a regression planning system (see Chapter 10). 

Goal-based analysis is useful, but does not say what to do when several actions will 
achieve the goal or when no action will achieve it completely. Antoine Arnauld  (1612-1694) 
correctly described a quantitative formula for deciding what action to take in cases like this 
(see Chapter 16). John Stuart Mill's (1806-1873) book Utilitarianism (Mill, 1863) promoted 
the idea of rational decision criteria in all spheres of human activity. The more formal theory 
of decisions is discussed in the following section. 

1.2.2 Mathematics 

• What are the formal rules to draw valid conclusions? 
■ What can be computed? 
• How do we reason with uncertain information? 

Philosophers staked out some of the fundamental ideas of Al, but the leap to a formal science 
required a level of mathematical formalization in three fundamental areas: logic, computa- 
tion, and probability. 

The idea of formal logic can be traced back to the philosophers of ancient Greece, but 
its mathematical development really began with the work of George Boole (1815-1864), who 
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worked out the details of propositional, or Boolean, logic (Boole, 1847). In 1879, Gottlob 
Frcgc  (1848-1925) extended Boolc's logic to include objects and relations, creating the first-
order logic that is used today.4  Alfred Tarski (1902-1983) introduced a theory of reference 
that shows how to relate the objects in a logic to objects in the real world. 

The next step was to determine the limits of what could be done with logic and com- 
ALBORTHM  putation.  The first nontrivial algorithm is thought to be Euclid's algorithm for computing 

greatest common divisors. The word algorithm (and the idea of studying them) comes from 
al-Khowarazmi,  a Persian mathematician of the 9th century, whose writings also introduced 
Arabic numerals and algebra to Europe. Book and others discussed algorithms for logical 
deduction, and, by the late 19th century, efforts were under way to formalize general mathe-
matical reasoning as logical deduction. In 1930, Kurt Godel  (1906-1978) showed that there 
exists an effective procedure to prove any true statement in the first-order logic of Frege and 
Russell, but that first-order logic could not capture the principle of mathematical induction 
needed to characterize the natural numbers. In 1931, Godel  showed that limits on deduc-  

INCO
O  
MPLETENESS tion do exist. His incompleteness theorem showed that in any formal theory as strong as THEREM  

Peano arithmetic (the elementary theory of natural numbers), there are true statements that 
are undecidable in the sense that they have no proof within the theory. 

This fundamental result can also be interpreted as showing that some functions on the 
integers cannot be represented by an algorithm—that is, they cannot be computed. This 
motivated Alan Turing (1912-1954) to try to characterize exactly which functions are com- 

COMPUTABLE  putable—capable of being computed. This notion is actually slightly problematic because 
the notion of a computation or effective procedure really cannot be given a formal definition. 
However, the Church–Turing thesis, which states that the Turing machine (Turing, 1936) is 
capable of computing any computable function, is generally accepted as providing a sufficient 
definition. Turing also showed that there were some functions that no Turing machine can 
compute. For example, no machine can tell in general whether a given program will return 
an answer on a given input or run forever. 

Although decidability and computability are important to an understanding of computa- 
TRACTABILITY  tine, the notion of tractability has had an even greater impact. Roughly speaking, a problem 

is called intractable if the time required to solve instances of the problem grows exponentially 
with the size of the instances. The distinction between polynomial and exponential growth 
in complexity was first emphasized in the mid- l  960s (Cobham, 1964: Edmonds, 1965). It is 
important because exponential growth means that even moderately large instances cannot be 
solved in any reasonable time. Therefore, one should strive to divide the overall problem of 
generating intelligent behavior into tractable subproblems rather than intractable ones. 

NP-COMPLETENESS  How can one recognize an intractable problem? The theory of NP-completeness, pio-
neered by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp 
showed the existence of large classes of canonical combinatorial search and reasoning prob-
lems that are NP-complete. Any problem class to which the class of NP-complete problems 
can be reduced is likely to be intractable. (Although it has not been proved that NP-complete 

4  Freze's  proposed notation for first-order logic—an arcane combination of textual and geometric features—
never became popular. 
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problems are necessarily intractable, most theoreticians believe it.) These results contrast 
with thc  optimism with which thc  popular press greeted thc  first computcrs—"Electronic  
Super-Brains" that were "Faster than Einstein!" Despite the increasing speed of computers, 
careful use of resources will characterize intelligent systems. Put crudely, the world is an 
extremely large problem instance! Work in AI has helped explain why some instances of 
NP-complete problems are hard, yet others are easy (Cheeseman  et al., 1991).  

Besides logic and computation, the third great contribution of mathematics to AI is the 
theory of probability. The Italian Gerolamo Cardano (1501-1576) first framed the idea of 
probability, describing it in terms of the possible outcomes of gambling events. hi 1654, 
Blaise Pascal (1623-1662), in a letter to Pierre Fermat (1601-1665), showed how to pre-
dict the future of an unfinished gambling game and assign average payoffs to the gamblers. 
Probability quickly became an invaluable part of all the quantitative sciences, helping to deal 
with uncertain measurements and incomplete theories. James Bernoulli (1654-1705), Pierre 
Laplace (1749-1827), and others advanced the theory and introduced new statistical meth-
ods. Thomas Bayes (1702-1761), who appears on the front cover of this book, proposed 
a rule for updating probabilities in the light of new evidence. Bayes' rule underlies most 
modern approaches to uncertain reasoning in AI systems. 

1.2.3 Economics 

• How should we make decisions so as to maximize payoff? 
• How should we do this when others may not go along? 
• How should we do this when the payoff may be far in the future? 

The science of economics got its start in 1776, when Scottish philosopher Adam Smith 
(1723-1790) published An Inquiry into the Nature and Causes of the Wealth of Nations. 
While the ancient Greeks and others had made contributions to economic thought, Smith was 
the first to treat it as a science, using the idea that economies can be thought of as consist-
ing of individual agents maximizing their own economic well-being. Most people think of 
economics as being about money, but economists will gay that they are really studying how 
people make choices that lead to preferred outcomes. When McDonald's offers a hamburger 
for a dollar, they are asserting that they would prefer the dollar and hoping that customers will 
prefer the hamburger. The mathematical treatment of "preferred outcomes" or utility was 
first formalized by Leon Walras  (pronounced "Valrasse")  (1834-1910) and was improved by 
Frank Ramsey (1931) and later by John von Neumann and Oskar Morgenstern in their book 
The Theory of Games and Economic Behavior (1944). 

Decision theory, which combines probability theory with utility theory, provides a for-
mal  and complete framework for decisions (economic or otherwise) made under uncertainty—
that is, in cases where probabilistic descriptions appropriately capture the decision maker's 
environment. This is suitable for "large" economies where each agent need pay no attention 
to the actions of other agents as individuals. For "small" economies, the situation is much 
more like a game: the actions of one player can significantly affect the utility of another 
(either positively or negatively). Von Neumann and Morgenstem's  development of game 
theory (see also Luce and Raiffa, 1957) included the surprising result that, for some games, 
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a rational agent should adopt policies that are (or least appear to be) randomized. Unlike de- 
cision theory, game theory does not offer an unambiguous prescription for selecting actions. 

For the most part, economists did not address the third question listed above, namely. 
how to make rational decisions when payoffs from actions are not immediate but instead re 
sult from several actions taken in sequence. This topic was pursued in the field of operations 
research, which emerged in World War II from efforts in Britain to optimize radar installa- 
tions, and later found civilian applications in complex management decisions. The work of 
Richard Gellman  (  l957) formalized a class of sequential decision problems called Marko 
decision processes, which we study in Chapters 17 and 21. 

Work in economics and operations research has contributed much to our notion of ra-
tional agents, yet for many years AI research developed along entirely separate paths. One 
reason was the apparent complexity of making rational decisions. The pioneering AI re-
searcher Herbert Simon (1916-2001) won the Nobel Prize in economics in 1978 for his early 
work showing that models based on satisficing—making decisions that are "good enough," 
rather than laboriously calculating an optimal decision—gave a better description of actual 
human behavior (Simon, 1947).  Since the 1990s, there has been a resurgence of interest in 
decision-theoretic techniques for agent systems (Wellman, 1995). 

1.2.4 Neuroscience 

• How do brains process information? 

Neuroscience is the study of the nervous system, particularly the brain. Although the exact 
way in which the brain enables thought is one of the great mysteries of science, the fact that it 
does enable thought has been appreciated for thousands of years because of the evidence that 
strong blows to the head can lead to mental incapacitation, It has also long been known that 
human brains are somehow different in about 335 B.C.  Aristotle wrote, "Of all the animals,  
man has the largest brain in proportion to his size." 5  Still, it was not until the middle of the 
18th century that the brain was widely recognized as the seat of consciousness. Before then. 
candidate locations included the heart and the spleen.  

Paul Broca's (1824-1880) study of aphasia (speech deficit) in brain-damaged patients 
in 1861 demonstrated the existence of localized areas of the brain responsible for specific 
cognitive functions. In particular, he showed that speech production was localized to the 
portion of the left hemisphere now called Broca's area. 6  By that time, it was known that 
the brain consisted of nerve cells, or neurons, but it was not until 1873 that Camillo Golgi 
(1843-1926) developed a staining technique allowing the observation of individual neurons 
in the brain (see Figure L2). This technique was used by Santiago Ramon  y Cajal (1852-
1934) in his pioneering studies of the brain's neuronal structures. 7  Nicolas Rashevsky (1936. 
1938) was the first to apply mathematical models to the study of the nervous sytern.  

5  Since then, it has been discovered ihat  the tree shrew (Scandentia)  has a higher ratio of brain to body mass. 
6  Many cite Alexander Hood (18241  as a possible prior source. 
7  Golgi persisted in his belief that the brain's functions were carried out primarily in a continuous medium in 
which neurons were embedded, whereas Cajal  propounded the "neuronal doctrine." The two shared the Nobel 
prize in 1906 but gave mutually antagonistic acceptance speeches. 



Axon from another cell 

Figure 1.2 The parts of a nerve cell or neuron. Each neuron consists of a cell body, 
or soma,  that contains a cell nucleus. Branching out from the cell body are a number of 
fibers called dendrites and a single long fiber called the axon. The axon stretches out for a 
long distance, much longer than the scale in this diagram indicates. Typically, an axon is 
1 cm long 000  times the diameter of the cell body), but can reach up to 1 meter. A neuron 
makes connections with 10 to 100,000 other neurons at junctions called synapses Signals are 
propagated from neuron to neuron by a complicated electrochemical reaction. The signals 
control brain activity in the short term and also enable long-term changes in the connectivity 
of neurons. These mechanisms are thought to form the basis fur learning in the brain. Most 
information processing goes en in the cerebral cortex, the outer layer of  the brain. The basic 
organizational unit appears to be a column of tissue about 0.5 ram  in diameter, containing 
about 20,000 neurons and extending the full depth of the cortex about 4 mm in humans). 
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We now have some data on the mapping between areas of the brain and the parts of the 
body that they control or from which they receive sensory input. Such mappings are ahle  to 
change radically over the course of a few weeks, and some animals seem to have multiple 
maps. Moreover, we do not fully understand how other areas can take over functions when 
one area is damaged. There is almost no theory on how an individual memory is stored. 

The measurement of intact brain activity began in 1929 with the invention by Hans 
Berger of the electroencephalograph (EEG). The recent development of functional magnetic 
resonance imaging OMR')  (Ogawa  et al., 1990; Cabeza and Nyberg, 2001) is giving neu-
roscientists unprecedentedly detailed images of brain activity, enabling measurements that 
correspond in interesting ways to ongoing cognitive processes. These are augmented by 
advances in single-cell recording of neuron activity. Individual neurons can be stimulated 
electrically, chemically, or even optically (Han and Boyden, 2007), allowing neuronal input— 
output relationships to be mapped. Despite these advances, we are still a long way from 

understanding how cognitive processes actually work. 
The truly amazing conclusion is that a collection of simple cells can lead to Thought, 

action, and consciousness or, in the pithy words of John Searle (1992), brains cause minds. 
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Supercomputer Personal Computer Human Brain 

Computational units 104  CPUs, 1012  transistors 4 CPUs, 10 transistors 1011  neurons 
Storage units 10 14  bits RAM 10 11  bits RAM 1011  neurons 

10 15  bits disk 1013  bits disk 10 14  synapses 
Cycle time 10 -9  sec 10 -9  sec 10 -  3  sec 
Operations/sec 10 15  1010 1017 

Memory updates/Nee  10" 10 10  1014  

Figure 1.3 A crude comparison of the raw computational resources available to the IBM 
BLUE GENE supercomputer, is typical personal computer of 2008, and the human brain. The 
brain's numbers are essentially fixed, whereas the supercomputer's numbers have been in- 
creasing by a factor of 10 every 5 years or so, allowing it to achieve rough parity with the 
brain. The personal computer lags behind on all metrics except cycle time. 

The only real alternative theory is mysticism!  that minds operate in some mystical realm that 
is beyond physical science. 

Brains and digital computers have somewhat different properties, Figure L3 shows that 
computers have a cycle time that is a million times faster than a brain. The brain makes up 
for that with far more storage and interconnection than even a high-end personal computer, 
although the largest supercomputers have a capacity that is similar to the brain's_ (It should 
be noted, however, that the brain does not seem to use all of its neurons simultaneously.) 
Futurists make much of these numbers, pointing to an approaching singularity at which 
computers reach a superhuman level of performance (Vinge, 1993; Kurzweil, 2005), but the 
raw comparisons are not especially informative. Even with a computer of virtually unlimited 
capacity, we still would not know how to achieve the brain's level of intelligence. 

1.2.5 Psychology 

■  How do humans and animals think and act? 

BEHRVIOFirahl  

The origins of scientific psychology are usually traced to the work of the German physi-
cist Hermann von Helmholtz (1821-1894) and his student Wilhelm Wundt (1832-1920). 
Helmholtz applied the scientific method to the study of human vision, and his Handbook 
of Physiological Optics is even now described as "the single most important treatise on the 
physics and physiology of human vision" (Nalwa, 1993, p.15). In 1879, Wundt opened the 
first laboratory of experimental psychology, at the University of Leipzig. Wundt insisted 
on carefully controlled experiments in which his workers would perform a perceptual or as-
sociative task while introspecting on their thought processes. The careful controls went a 
long way toward making psychology a science, but the subjective nature of the data made 
it unlikely that an experimenter would ever disconfirm his or her own theories. Biologists 
studying animal behavior, on the other hand, lacked introspective data and developed an ob-
jective methodology, as described by H. S. Jennings (1906) in his influential work Behavior of 
the Lower Organisms. Applying this viewpoint to humans,  the behaviorism movement, led 
by John Watson (1878-1958), rejected any theory involving mental processes on the grounds 
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that introspection could not provide reliable evidence. Behaviorists insisted on studying only 
objective measures of the percepts (or stimulus) given to an animal and its resulting actions 
(or response). Behaviorism discovered a lot about rats and pigeons but had less success at 
understanding humans. 

Cognitive psychology, which views the brain as an information-processing device, 
can be traced back at least to the works of William James (1842-1910). Helmholtz also 
insisted that perception involved a form of unconscious logical inference. The cognitive 
viewpoint was largely eclipsed by behaviorism in the United States, but at Cambridge's Ap-
plied Psychology Unit, directed by Frederic Bartlett (1886-1969), cognitive modeling was 
able to flourish. The Nature of Explanation, by Bartlett's student and successor Kenneth 
Craik (1943), forcefully reestablished the legitimacy of such "mental" terms as beliefs and 
goals, arguing that they are just as scientific as, say, using pressure and temperature to talk 
abuut  gases, despite their being made of molecules that  have neither. Craik specified the 
three key steps of a knowledge-based agent: (1) the stimulus must be translated into an inter-
nal representation, (2) the representation is manipulated by cognitive processes to derive new 
internal representations, and (3)  these are in turn retranslated back into action. He clearly 
explained why this was a good design for an agent: 

if  the organism carries a "small-scale model' of external reality and of its own possible 
actions within its head, it is able to try out various alternatives, conclude which is the best 
of them, react to future situations before they arise, utilize the knowledge of past events 
in dealing with the present and future, and in every way to react in a much fuller, safer, 
and more competent manner to the emergencies which face it. (Craik, 1943) 

After Craik's death in a bicycle accident in 1945, his work was continued by Donald Broad-
bent, whose book Perception and Communication (1958) was one of the first works to model 
psychological phenomena as information processing. Meanwhile, in the United States, the 
development of computer modeling led to the creation of the field of cognitive science. The 
field can be said to have started at a workshop in September 1956 at MIT. (We shall see that 
this is just two months after the conference at which AI itself was "born.") At the workshop, 
George Miller presented The Magic Number Seven, Noam Chomsky presented Three Models 
of Language, and Allen Newell and Herbert Simon presented The Logic Theory Machine. 
These three influential papers showed how computer models could be used to address the 
psychology of memory, language, and logical thinking, respectively. It is now a common 
(although far from universal) view among psychologists that "a cognitive theory should be 
like a computer program" (Anderson, 1980); that is, it should describe a detailed infonnation-
processing  mechanism whereby some cognitive function might be implemented. 

1.2.6 Computer engineering 

• How can we build an efficient computer? 

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The 
computer has been the artifact of choice. The modern digital electronic computer was  in- 
vented independently and almost simultaneously by scientists in three countries embattled in 
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World War II. The first operational computer was the electromechanical Heath Robinson, g  
built in 1940 by Alan Turing's team for a single purpose: deciphering German messages.  In 
1943, the same group developed the Colossus, a powerful general-purpose machine based 
on vacuum tubes. 9  The first operational programmable computer was the Z-3, the inven-
tion of Konrad Zuse in Germany in 1941. Zuse also invented floating-point numbers and the 
first high-level programming language, Plankalkiil.  The first electronic computer, the ABC, 
was assembled by John Atanasoff and his student Clifford Berry between 1940 and 1942 
at Iowa State University. Atanasoff's  research received little support or recognition; it was 
the ENIAC,  developed as part of a secret military project at the University of Pennsylvania 
by a team including John Mauchly  and John Eckert, that proved to be the most influential 
forerunner of modem computers. 

Since that time, each generation of computer hardware has brought an increase in speed 
and capacity and a decrease in price. Performance doubled ev ery 18 months or so until around 
2005, when power dissipation problems led manufacturers to start multiplying the number of 
CPU cores rather than the clock speed. Current expectations are that future increases in power 
will come from massive parallelism—a curious convergence with the properties of the brain. 

Of course, there were calculating devices before the electronic computer. The earliest 
automated machines,  dating from the 17th century,  were discussed on page 6. The first pro-
grammable machine was a loom, devised in 1805 by Joseph Marie Jacquard (1752-1834), 
that used punched cards to store instructions for the pattern to be woven. In the mid-19th 
century, Charles Babbage (1792-1871) designed two machines, neither of which he com-
pleted. The Difference Engine was intended to compute mathematical tables for engineering 
and scientific projects. It was finally built and shown to work in 1991 at the Science Museum 
in London (Swade, 2000). Babbage's  Analytical Engine was far more ambitious: it included 
addressable memory, stored programs, and conditional jumps and was the first artifact capa-
ble of universal computation. Babbage's colleague Ada Lovelace, daughter of the poet Lord 
Byron, was perhaps the world's first programmer. (The programming language Ada is named 
after her.) She wrote programs for the unfinished Analytical Engine and even speculated that 
the machine could play chess or compose music. 

AI also owes a debt to the software side of computer science, which has supplied the 
operating systems, programming languages, and tools needed to write modem programs (and 
papers about them). But this is one area where the debt has been repaid: work in AI has pio-
neered many ideas that have made their way back to mainstream computer science, including 
time sharing, interactive interpreters. personal computers with windows and mice, rapid de-
velopment environments, the linked list data type, automatic storage management, and key 
concepts of symbolic, functional, declarative, and object-oriented programming. 

Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly complicated contrap-
tions for everyday tasks such as buttering toast. 

In the postwar period, Turing wanted to use these computers for AI research—for example, one of the first 
chess programs (Turing at al., 1953). His efforts were blocked by the British government. 
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1.2.7 Control theory and cybernetics 
• How can artifacts operate under their own control? 

Ktesibios of Alexandria (c.  250 B.C.) built the first self-controlling machine: a water clock 
with a regulator that maintained a constant flow rate. This invention changed the definition 
of what an artifact could do. Previously, only living things could modify their behavior in 
response to changes in the environment. Other examples of self-regulating feedback control 
systems include the steam engine governor, created by James Watt (1736-1819), and the 
thermostat. invented by Cornelis Drebbel (1572-1633), who also invented the submarine. 
The mathematical theory of stable feedback systems was developed in the 19th century. 

The central figure in the creation of what is now called control theory was Norbert 
Wiener (1894-1964).  Wiener was a brilliant mathematician who worked with Bertrand Rus-
sell, among others, before developing an interest in biological and mechanical control systems 
and their connection to cognition. Like Craik (who also used control systems as psychological 
models), Wiener and his colleagues Arturo Rosenblueth and Julian Bigelow challenged the 
behaviorist orthodoxy (Rosenblueth et al., 1943). They viewed purposive behavior as aris-
ing from a regulatory mechanism trying to minimize "error"—the difference between current 
state and goal state. In the late 1940s, Wiener, along with Warren McCulloch, Walter Pitts, 
and John von Neumann, organized a series of influential conferences that explored the new 
mathematical and computational models of cognition. Wiener's book Cybernetics (1948) be-
came a bestseller and awoke the public to the possibility of artificially intelligent machines. 
Meanwhile, in Britain, W. Ross Ashby (Ashby, 1940) pioneered similar ideas. Ashby, Alan 
Turing, Grey Walter,  and others formed the Ratio Club for "those who had Wiener's ideas 
before Wiener's book appeared." Ashby's Design for a Brain (1948, 1952) elaborated on his 
idea that intelligence could be created by the use of homeostatic devices containing appro-
priate feedback loops to achieve stable adaptive behavior. 

Modem control theory, especially the branch known as stochastic optimal control, has 
as its goal the design of systems that maximize an objective function over time. This roughly 
matches our view of All  designing systems that behave optimally Why, then_ are AI and 
control theory two different fields, despite the close connections among their founders? The 
answer lies in the close coupling between the mathematical techniques that were familiar to 
the participants and the corresponding sets of problems that were encompassed in each world 
view. Calculus and matrix algebra, the tools of control theory, lend themselves to systems that 
are describable by fixed sets of continuous variables, whereas AI was founded in part as a way 
to escape from the these perceived limitations. The tools of logical inference and computation 
allowed Al researchers to consider problems such as language, vision, and planning that fell 
completely outside the control theorist's purview. 

1.2.8 Linguistics 

• How does language relate to thought? 

In 1957, B.  F. Skinner published Verbal Behavior. This was a comprehensive, detailed ac- 
count of the behaviorist approach to language learning, written by the foremost expert in 
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the field. But curiously, a review of the book became as well known as the book itself, and 
served to almost kill off interest in behaviorism. The author of the review was the linguist 
Noam Chomsky, who had just published a book on his own theory, Syntactic Structures. 
Chomsky pointed out that the behaviorist theory did not address the notion of creativity in 
language—it did not explain how a child could understand and make up sentences that he or 
she had never heard before. Chomsky's theory—based on syntactic models going back to the 
Indian linguist Panini  (c. 350 B.c.)—could  explain this, and unlike previous theories, it was 
formal enough that it could in principle he programmed. 

Modem linguistics and AL then, were "born" at about the same time, and grew up 
together, intersecting in a hybrid field called computational linguistics or natural language 
processing. The problem of understanding language soon turned out to be considerably more 
complex than it seemed in 1957. Understanding language requires an understanding of the 
subject matter and context, not just an understanding of the structure of sentences, This might 
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in 
knowledge representation (the study of how to put knowledge into a form that a computer 
can reason with) was tied to language and informed by research in linguistics, which was 
connected in turn to decades of work on the philosophical analysis of language. 

1.3 THE HISTORY OF ARTIFICIAL INTELLIGENCE 

With the background material behind us, we are ready to cover the development of AI itself. 

HEBBIAN  LEARNING 

1.3.1 The gestation of artificial intelligence (1943-1955) 

The first work that is now generally recognized as AI was done by Warren McCulloch and 
Walter Pins (1943). They drew on three sources: knowledge of the basic physiology and 
function of neurons in the brain; a formal analysis of propositional logic due to Russell and 
Whitehead; and Turing's theory of computation. They proposed a model of artificial neurons 
in which each neuron is characterized as being "on" or "off," with a switch to "on" occurring 
in response to stimulation by a sufficient number of neighboring neurons. The state of a 
neuron was conceived of as "factually equivalent to a proposition which proposed its adequate 
stimulus." They showed, for example, that any computable function could be computed by 
some network of connected neurons, and that all the logical connectives (and, or, not, etc.) 
could be implemented by simple net structures. McCulloch and Pitts also suggested that 
suitably defined networks could learn. Donald Hebb (1949) demonstrated a simple updating 
rule  for modifying the connection strengths between neurons. His rule, now called Hebbian 
learning, remains an influential model to this day. 

Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds, built the 
first neural network computer in 1950. The SNARL,  as it was called, used 3000 vacuum 
tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate a network of 
40 neurons.  Later, at Princeton, Minsky studied universal computation in neural networks. 
His Ph.D. committee was skeptical about whether this kind of work should be considered 
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mathematics, but von Neumann reportedly said, "If it isn't now, it will be someday." Minsky 
was later to prove influential theorems showing the limitations of neural network research. 

There were a number of early examples of work that can be characterized as Al, but 
Alan Turing's vision was perhaps the most influential. He gave lectures on the topic as early 
as 1947  at the London Mathematical Society and articulated a persuasive agenda in his 1950 
article "Computing Machinery and Intelligence." Therein, he introduced the Turing Test, 
machine learning, genetic algorithms, and reinforcement learning. He proposed the Child 
Programme idea, explaining  "Instead of trying to produce  a programme to simulate the adult 
mind, why not rather try to produce one which simulated the child's?" 

1.3.2 The birth of artificial intelligence (1956) 
Princeton was home to another influential figure in AI, John McCarthy. After receiving his 
PhD there in 1951 and working for two years as an instructor, McCarthy moved to Stan-
ford and then to Dartmouth College, which was to become the official birthplace of the field. 
McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him bring 
together U.S. researchers interested in automata theory, neural nets, and the study of intel-
ligence_ They organized a two-month workshop at Dartmouth in the summer of 1956. The 
proposal states: 1°  

We propose that a 2 month, 10 man study of artificial intelligence be carried 
out during the summer of 1956 at Dartmouth College in Hanover, New Hamp-
shire_ The study is to proceed on the basis of the conjecture that every aspect of 
learning or arty  other feature of intelligence can in principle be so precisely de-
scribed that a machine can be made to simulate it. An attempt will be made to find 
how to make machines use language, form abstractions and concepts, solve kinds 
of problems now reserved for humans, and improve themselves. We think that a 
significant advance can be made in one or more of these problems if a carefully 
selected group of scientists work on it together fur a summer. 

There were 10 attendees in all, including Trenchard More from Princeton, Arthur Samuel 
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT. 

Two researchers from Carnegie Tech, 11  Allen Newell and Herbert Simon, rather stole 
the show. Although the others had ideas and in some cases programs for particular appli-
cations such as checkers, Newell and Simon already had a reasoning program, the Logic 
Theorist (LT), about which Simon claimed, "We have invented a computer program capable 
of drinking  non-numerically,  and thereby solved the venerable mind—body problem." 12  Soon 
after the workshop, the program was able to prove most of the theorems in Chapter 2 of Rus- 

F°  This was the first official usage of McCarhy's term artificial intelligence. Perhaps "computational rationality" 
would have been more precise and less threatening. but "Al" has stuck. At the 50th anniversary of the Dartmouth 
conference, McCarthy stated film  he resisted the terms "computer" or "computational" in deference to Norbert 
Weiner, who was promoting analog cybernetic devices rather than digital computers. 
11  Now Carnegie Mellon University (CMU).  
12  Newell and Simon also invented a list-processing language, IPL,  to write LT. They had no compiler and 
translated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to 
each other as they wrote each instruction to make sure they agreed. 
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sell and Whitehead's Principia  Mathetnatica.  Russell was reportedly delighted when Simon 
showed him that the program had come up with a proof for one theorem that was shorter than 
the one in Principia  The editors of the Journal of Symbolic Logic were less impressed; they 
rejected a paper coauthored by Newell, Simon, and Logic Theorist. 

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce 
all the major figures to each other. For the next 20 years, the field would be dominated by 
these people and their students and colleagues at MIT, CMU,  Stanford, and IBM. 

Looking at the proposal for the Dartmouth workshop (McCarthy et al., 1955), we can 
see why it was necessary for Al to become a separate field. Why couldn't all the work done 
in AI have taken place under the name of control theory or operations research or decision 
theory. which, after all, have objectives similar to those of Al? Or why isn't Al a branch 
of mathematics? The first answer is that AI from the start embraced the idea of duplicating 
human faculties such as creativity, self-improvement, and language use. None of the other 
fields were addressing these issues. The second answer is methodology. Al is the only one 
of these fields that is clearly a branch of computer science (although operations research does 
share an emphasis on computer simulations), and AI is the only field to attempt to build 
machines that will function autonomously in complex, changing environments. 

1.3.3 Early enthusiasm, great expectations (1952-1969) 

The early years of AI were full of successes—in a limited way. Given the primitive comput-
ers and programming tools of the time and the fact that only a few years earlier computers 
were seen as things that could do arithmetic and no more, it was astonishing whenever a com-
puter did anything remotely clever. The intellectual establishment, by and large, preferred to 
believe that "a machine can never do X." (See Chapter 26 for a long list of X 's gathered 
by Turing.) AI researchers naturally responded by demonstrating one X after another. John 
McCarthy referred to this period as the "Look, Ma, no hands!" era. 

Newell and Simon's early success was followed up with the General Problem Solver,  
or (IPS_  Unlike Logic  Theorist, this program was designed from the start to imitate human 
problem-solving protocols. Within the limited class of puzzles it could handle, it turned out 
that the order in which the program considered subgoals and possible actions was similar to 
that in which humans approached the same problems. Thus, GPS was probably the first pro- 
grarn  to embody the "thinking humanly" approach. The success of GPS and subsequent pro- 
grams as models of cognition led Newell and Simon (1976) to formulate the famous physical 
symbol system hypothesis, which states that "a physical symbol system has the necessary and 
sufficient means for general intelligent action." What they meant is that any system (human 
or machine) exhibiting intelligence must operate by manipulating data structures composed 
of symbols. We will see later that this hypothesis has been challenged from many directions. 

At IBM, Nathaniel Rochester and his colleagues produced some of the first AI pro- 
grams. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was 
able to prove theorems that many students of mathematics would find quite tricky. Starting 
in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that eventually 
teamed  to play at a strong amateur level. Along the way, he disproved the idea that comput- 
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ers can do only what they are told to: his program quickly learned to play a better game than 
its creator. The program was demonstrated on television in February 1956, creating a strong 
impression. Like Turing, Samuel had trouble finding computer time. Working at night, he 
used machines that were still on the testing floor at IBM's manufacturing plant. Chapter 5 
covers game playing, and Chapter 21 explains the learning techniques used by Samuel. 

John McCarthy moved from Dartmouth to MIT and there made three crucial contribu-
tions in one historic year: 1958. In MIT AI Lab Memo No. 1, McCarthy defined the high-level 
language Lisp, which was to become the dominant AI programming language for the next 30  
years. With Lisp. McCarthy had the tool he needed, but access to scarce and expensive com-
puting resources was also a serious problem. In response, he and others at MIT invented time 
sharing. Also in 1958, McCarthy published a paper entitled Programs with Common Sense, 

in which he described the Advice Taker, a hypothetical program that can be seen as the first 
complete Al system. Like the Logic Theorist and Geometry Theorem Prover, McCarthy's 
program was designed to use knowledge to search for solutions to problems. But unlike the 
others, it was to embody general knowledge of the world. For example, he showed how 
some simple axioms would enable the program to generate a plan to drive to the airport. The 
program was also designed to accept new axioms in the normal course of operation, thereby 
allowing it to achieve competence in new areas without being reprogrammed. The Advice 
Taker thus embodied the central principles of knowledge representation and reasoning: that 
it is useful to have a formal, explicit representation of the world and its workings and to be 
able to manipulate that representation with deductive processes. It is remarkable how much 
of the 1958 paper remains relevant today. 

1958 also marked the year that Marvin Minsky moved to MIT. His initial collaboration 
with McCarthy did not last, however. McCarthy stressed representation and reasoning in for-
mal logic, whereas Minsky was more interested in getting programs to work and eventually 
developed an anti-logic outlook. In 1963, McCarthy started the AI lab at Stanford. His plan 
to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson's discov-
ery in 1965 of the resolution method (a complete theorem-proving algorithm for first-order 
logic; see Chapter 9).  Work at Stanford emphasized general-purpose methods for logical 
reasoning. Applications of logic included Cordell Green's question-answering and planning 
systems (Green, 1969b)  and the Shakey robotics project at the Stanford Research Institute 
(SRI). The latter project, discussed further in Chapter 25, was the first to demonstrate the 
complete integration of logical reasoning and physical activity. 

Minsky supervised a series of students who chose limited problems that appeared to 
require intelligence to solve. These limited domains became known as microworlds.  James 
Slagle's  SAINT program (1963) was able to solve closed-form calculus integration problems 
typical of first-year college courses. Tom Evans's ANALOGY program (1968) solved geo-
metric analogy problems that appear in IQ tests. Daniel Bobrow's  STUDENT program (1967) 
solved algebra story problems, such as the following: 

If the number of customers Tom gets is twice the square of 20 percent of the number 
of advertisements he runs, and  the number of advertisements he runs is 43,  what is the 
number of customers Tom gets? 
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Figure 1.4  A scene from the blocks world. S HRDLU  (Winograd, 1972) has just completed 
the command "Find a block which is taller than the one you are holding and put it in the box." 

Chapter 1. Introduction 

The most famous mieroworld  was the blocks world, which consists of a set of solid blocks 
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.4. 
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand 
that can pick up one block at a time. The blocks world was home to the vision project of 
David Huffman (1971), the vision and constraint-propagation work of David Waltz (1975). 
the learning theory of Patrick Winston (1970), the natural-language-understanding program 
of Terry Winograd (1972), and the planner of Scott Fahlman  (1974). 

Early work building on the neural networks of McCulloch and Pitts also flourished. 
The work of Winograd and Cowan (1963) showed how a large number of elements could 
collectively represent an individual concept, with a corresponding increase in robustness and 
parallelism. Hebb's learning methods were enhanced by Bernie Widrow (Widrow and Hoff. 
1960; Widrow,  1962), who called his networks adalines.  and by Frank Rosenblatt (1962) 
with his perceptrons. The perceptron convergence theorem (Block et a1., 1962) says that 
the learning algorithm can adjust the connection strengths of a perceptron to match any input 
data, provided such a match exists. These topics are covered in Chapter 20. 

1.3.4 A dose of reality (1966-1973) 

From the beginning, Al  researchers were not shy about making predictions of their coming 
successes. The following statement by Herbert Simon in 1957 is often quoted: 

It is not my aim to surprise or shock you butthe simplest way I can summarize is  to say 
that there are now in the world machines that think, that learn and that create. Moreover, 
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their ability to do these things is going to increase rapidly until—in a visible future—the 
range of problems they can handle will be coextensive with the range to which the human 
mind has been applied. 

Irk  
MCHIN  E EVOLLMON  

GENETIC  
Ainonm  Irn  

Terms such as "visible future" can be interpreted in various ways, but Simon also made 
more concrete predictions: that within 10 years a computer would be  chess champion, and 
a significant mathematical theorem would be proved by machine. These predictions came 
true (or approximately true) within 40 years rather than 10. Simon's overconfidence was due 
to the promising performance of early Al systems on simple examples. In almost all cases. 
however, these early systems turned out to fail miserably when tried out on wider selections 
of problems and on more difficult problems. 

The first kind of difficulty arose because most early programs knew nothing of their 
subject matter, they succeeded by means of simple syntactic manipulations. A typical story 
occurred in early machine translation efforts, which were generously funded by the U.S. Na-
tional Research Council in an attempt to speed up the translation of Russian scientific papers 
in the wake of the Sputnik launch in 1957. It was thought initially that simple syntactic trans-
formations based on the grammars of Russian and English, and word replacement from an 
electronic dictionary, would suffice to preserve the exact meanings of sentences. The fact is 
that accurate translation requires background knowledge in order to resolve ambiguity and 
establish the content of the sentence. The famous retranslation of "the spirit is willing but 
the flesh is weak" as The vodka is good but the meat is rotten" illustrates the difficulties en-
countered. In 1966, a report by an advisory committee found that "there has been no machine 
translation of general scientific text, and none is in immediate prospect." All U.S. government 
funding for academic translation projects was canceled. Today, machine translation is an im-
perfect but widely used tool for technical, commercial, government, and Internet documents. 

The second kind of difficulty was the intractability of many of the problems that Al was 
attempting to solve. Most of the early Al programs solved problems by trying out different 
combinations of steps until the solution was found. This strategy worked initially because 
microworlds  contained very few objects and hence very few possible actions and very short 
solution sequences. Before the theory of computational complexity was developed, it was 
widely thought that "scaling up" to larger problems was simply a matter of faster hardware 
and larger memories. The optimism that accompanied the development of resolution theorem 
proving, for example, was soon dampened when researchers failed to prove theorems involv-
ing more than a few dozen facts. The fact that a program can find a solution in principle does 
not mean that the program contains any of the mechanisms needed to find it in practice. 

The illusion of unlimited computational power was not confined to problem-solving 
programs. Early experiments in machine evolution (now called genetic algorithms) (Fried-
berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by 
making an appropriate series of small mutations to a machine-code program, one can gen-
erate a program with good performance for any particular task. The idea, then, was to try 
random mutations with a selection process to preserve mutations that seemed useful. De- 
spite thousands of hours of CPU time, almost no progress was demonstrated. Modern genetic 
algorithms use better representations and have shown more success. 
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Failure to come to grips with the "combinatorial explosion" was one of the main criti- 
cisms of AI contained in the Lighthill report (Lighthill,  1973), which formed the basis for the 
decision by the British government to end support for AI research in all but two universities. 
(Oral tradition paints a somewhat different and more colorful picture, with political ambitions 
and personal animosities whose description is beside the point.) 

A third difficulty arose because of some fundamental limitations on the basic structures 
being used to generate intelligent behavior. For example, Minsky and Papert's book Percep- 
tions  (1969) proved that, although perceptrons (a simple form of neural network) could be 
shown to learn anything they were capable of representing, they could represent very little. In 
particular, a two-input perceptron (restricted to be simpler than the form Rosenblatt originally 
studied) could not be trained to recognize when its two inputs were different. Although their 
results did not apply to more complex, multilayer networks, research funding for neural-net 
research soon dwindled to almost nothing. Ironically, the new back-propagation learning al-
gorithms for multilayer  networks that were to cause an enormous resurgence in neural-net 
research in the late 1980s were actually discovered first in 1969 (Bryson and Ho, 1969). 

1.3.5 Knowledge -based systems: The key to power? (1969-1979) 

The picture of problem solving that had arisen during the first decade of AT research was of 
a general-purpose search mechanism trying to string together elementary reasoning steps to 
find complete solutions. Such approaches have been called weak methods because, although 
general, they do not scale up to large or difficult problem instances. The alternative to weak 
methods is to use more powerful, domain-specific knowledge that allows larger reasoning 
steps and can more easily handle typically occurring cases in narrow areas of expertise_ One 
might say that to solve a hard problem, you have to almost know the answer already. 

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach. 
It was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon), 
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel 
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the 
information provided by a mass spectrometer. The input to the program consists of the ele-
mentary formula of the molecule (e.g.,  C614131\102) and the mass spectrum giving the masses 
of the various fragments of the molecule generated when it is bombarded by an electron beam. 
For example, the -mass spectrum might contain a peak at rn = 15, corresponding to the mass 

of a methyl (CH3) fragment. 
The naive version of the program generated all possible structures consistent with the 

formula, and then predicted what mass spectrum would be observed for each, comparing this 
with the actual spectrum. As one might expect, this is intractable fur even moderate-sized  
molecules. The DENDRAL researchers consulted analytical chemists and found that they 
worked by looking for well-known patterns of peaks in the spectrum that suggested common 
substructures in the molecule. For example, the following rule is used to recognize a ketone 
(C=O) subgroup (which weighs 28): 

if there are two peaks at x l  and x 2  such that 
(a) ri = M + 28 (M is the mass of the whole molecule); 
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(b) xi — 28 is a high peak; 
(c) x2  — 28 is a high peak; 
(d) At least one of x i  and x2  is high. 
then there is a ketone subgroup 

EXPERT SYSTEMS 

CERTAINTY FACTOR 

Recognizing that the molecule contains a particular substructure reduces the number of pos-
sible candidates enormously. DENDRAL was powerful because 

Allthe  relevant theoretical knowledge to solve these problems has been mapped over from 
its general form in the ]spectrum  prediction component] ("first principles") to efficient 
special forms ("cookbook recipes"). (Feigenbaum el al., 1971) 

The significance of DENDRAL was that it was the first successful latowledge - intensive  sys-
tem: its expertise derived from large numbers of special-purpose rules. Later systems also 
incorporated the main theme of McCarthy's Advice Taker approach—the  clean separation of 
the knowledge (in the form of rules) from the reasoning component. 

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Pro-
gramming Project (HPP)  to investigate the extent to which the new methodology of expert 
systems could be applied to other areas of human expertise. The next major effort was in 
the area of medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe  developed 
MYCIN  to diagnose blood infections. With about 450 rules, MYCIN  was able to perform 
as well as some experts, and considerably better than junior doctors. It also contained two 
major differences from DENDRAL. First, unlike the DENDRAL rules, no general theoretical 
model existed from which the MYCIN  rules could be deduced. They had to be acquired from 
extensive interviewing of experts, who in turn acquired them from textbooks, other experts, 
and direct experience of cases. Second, the rules had to reflect the uncertainty associated with 
medical knowledge. MYCIN  incorporated a calculus of uncertainty called certainty factors 
(see Chapter 14), which seemed (at the time) to fit well with how doctors assessed the impact 
of evidence on the diagnosis. 

The importance of domain knowledge was also apparent in the area of understanding 
natural langliaE,,e.  Although Winograd's SHtint.11  system for understanding natural language 
had engendered a good deal of excitement, its dependence on syntactic analysis caused some 
of the same problems as occurred in the early machine translation work. It was able to 
overcome ambiguity and understand pronoun references, but this was mainly because it was 
designed specifically for one area—the blocks world. Several researchers, including Eugene 
Charniak,  a fellow graduate student of Winograd's at MIT, suggested that robust language 
understanding would require general knowledge about the world and a general method for 
using that knowledge. 

At Yale, linguist-turned-Al-researcher Roger Schank emphasized this point, claiming, 
"There is no such thing as syntax," which upset a lot of linguists but did serve to start a useful 
discussion. Schank and his students built a series of programs (Schank and Abelson, 1977; 
Wilensky,  19'78;  Schank and Riesbeck,  1981; Dyer, 1983) that all had the task of under-
standing natural language. The emphasis, however, was less on language per se and more on 
the problems of representing and reasoning with the knowledge required fur language under-
standing. The problems included representing stereotypical situations (Cullingford, 1981),  



24 Chapter 1. Introduction 

describing human memory organization (Rieger, 1976; Kolodner, 1983), and understanding 
plans and goals (WilmsIcy, 1983). 

The widespread growth of applications to real-world problems caused a concurrent in-
crease in the demands for workable knowledge representation schemes. A large number 
of different representation and reasoning languages were developed. Some were based on 
logic—for example, the Prolog language became popular in Europe, and the PLANNER fam- 

FR/JAES 
 ily in the United States. Others, following Minsky's idea of frames (19751, adopted a more 

structured approach, assembling facts about particular object and event types and arranging 
the types into a large taxonomic hierarchy analogous to a biological taxonomy. 

1.3.6 AI becomes an industry (198()—present)  

The first successful commercial expert system, RI, began operation at the Digital Equipment 
Corporation (McDermott, 1982). The program helped configure orders for new computer 
systems; by 1986, it was saving the company an estimated $40 million a year. By 1988. 
DEC's Al  group had 40 expert systems deployed, with more on the way. DuPont had 100 in 
use and 500 in development, saving an estimated $10 million a year. Nearly every major U.S. 
corporation had its own AI group and was either using or investigating expert systems. 

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build 
intelligent computers running Prolog. In response, the United States formed the Microelec-
tronics and Computer Technology Corporation (MCC) as a research consortium designed to 
assure national competitiveness. In both cases, AI was part of a broad effort, including chip 
design and human-interface research. In Britain, the Alvey report reinstated the funding that 
was cut by the Lighthill  report. 13  In all three countries, however, the projects never met their 
ambitious goals. 

Overall, the AT industry boomed from a few million dollars in 1980  to billions of dollars 
in 1988, including hundreds of companies building expert systems, vision systems, robots, 
and software and hardware specialized for these purposes. Soon after that came a period 
called the "AI Winter," in which many companies fell by the wayside as they failed to deliver 
on extravagant promises. 

1.3.7 The return of neural networks (1986—present)  

BACK PROPAGkrION  In the mid-1980s  at least four different groups reinvented the back-propagation learning 
algorithm first found in 1969 by Bryson and I-1o.  The algorithm was applied to many learn-
ing problems in computer science and psychology, and the widespread dissemination of the 
results in the collection Parallel Distributed Processing (Rumelhart and McClelland, 1986) 
caused great excitement. 

CONNECTIONIST These so-called connectionist models of intelligent systems were seen by some as di- 
rect competitors both to the symbolic models promoted by Newell and Simon and to the 
logicist approach of McCarthy and others (Smolensky, 1988). It might seem obvious that 
at some level humans manipulate symbols—in fact, Terrence Deacon's book The Symbolic 

13  To save embarrassment, a new field called IKBS (Intelligent Knowledge-Based Systems) was invented because 
Artificial Intelligence had been officially canceled. 
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Species (1997) suggests that this is the defining characteristic of humans—but the most ar- 
dent connoctionists  questioned whether symbol manipulation had any real explanatory role in 
detailed models of cognition. This question remains unanswered, but the current view is that 
connectionist and symbolic approaches are complementary, not competing. As occurred with 
the separation of AI  and cognitive science, modern  neural network research has bifurcated 
into two fields, one concerned with creating effective network architectures and algorithms 
and understanding their mathematical properties, the other concerned with careful modeling 
of the empirical properties of actual neurons and ensembles of neurons. 

1.3.8 AI adopts the scientific method (1987–present) 

Recent years have seen a revolution in both the content and the methodology of work in 
artificial intelligence. 

14 
 It  is now more common to build on existing theories than to propose 

brand-new ones, to base claims on rigorous theorems or hard experimental evidence rather 
than on intuition, and to show relevance to real-world applications rather than toy examples. 

AI was founded in part as a rebellion against the limitations of existing fields like control 
theory and statistics, but now it is embracing those fields_  As David McAllester (1998) put it!  

In the early period of Al it seemed plausible that new forms of symbolic computation, 
e.g., frames and semantic networks, made much of classical theory oasolete.  this led to 
a form of isolationism in which Al became largely separated from the rest of computer 
science. This isolationism is currently being abandoned. There is a recognition that 
machine learning should not be isolated from information theory, that uncertain reasoning 
should not be isolated from stochastic modeling, that search should not be isolated from 
classical optimization and control, and that automated reasoning should not be isolated 
from forimil  methods and static  analysis. 

In terms of methodology, AI has finally come firmly under the scientific method. To be ac-
cepted, hypotheses must be subjected to rigorous empirical experiments, and the results must 
be analyzed statistically for their importance (Cohen, 1995). It is now possible to replicate 
experiments by using shared repositories of test data and code. 

The Geld of speech recognition  illustrates the pattern. In the 1. 970s,  a wide variety of 
different architectures and approaches were teed-  Many of these were rather ad hoc and 
fragile, and were demonstrated on only a few specially selected examples. In recent years, 
approaches based on hidden Markov models (HMMs) have come to dominate the area. Two 
aspects of HMMs are relevant. First, they are based on a rigorous mathematical theory. This 
has allowed speech researchers to build on several decades of mathematical results developed 
in other fields. Second, they are generated by a process of training on a large corpus of 
real speech data. This ensures that the performance is robust, and in rigorous blind tests the 
HMMs have been improving their scores steadily. Speech technology and the related field of 
handwritten character recognition are already making the transition to widespread industrial 
14  Some have characterized this change as a victory of the meats—those  who think. that AI theories should be 
grounded in mathematical rigor—over the seruffies—those  who would rather try out lots of ideas, write some 
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness 
implies that the field has reached a level of stability and maturity. Whether that stability will be disrupted by a 
new scruffy idea is another question. 
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and consumer applications. Note that there is no scientific claim that humans use 1-1MMs  to 
recognize speech; rather, HMMs provide a mathematical framework for understanding the 
problem and support the engineering claim that they work well in practice. 

Machine translation follows the same course as speech recognition. In the 1950s there 
was initial enthusiasm for an approach based on sequences of words, with models learned 
according to the principles of information theory. That approach fell out of favor in the 
1960s, but returned in the late 1990s and now dominates the field. 

Neural networks also fit this trend. Much of the work on neural nets in the 1980s was 
done in an attempt to scope out what could be done and to learn how neural nets differ from 
"traditional" techniques. Using improved methodology and theoretical frameworks, the field 
arrived at an understanding in which neural nets can now be compared with corresponding 
techniques from statistics, pattern recognition, and machine learning, and the most promising 
technique can be applied to each application. As a result of these developments, so-called 

DAIS MINING data mining technology has spawned a vigorous new industry. 
Judea Pearl's (1988) Probabilistic Reasoning in Intelligent Systems led to a new accep-

tance of probability and decision theory in Al, following a resurgence of interest epitomized 
BAYESIAN  NETWORK 

 by Peter Cheeseman's (1985) article "In Defense of Probability." The Bayesian network 
formalism was invented to allow efficient representation of, and rigorous reasoning with. 
uncertain knowledge. This approach largely overcomes many problems of the probabilistic 
reasoning systems of the 1960s and 1970s; it now dominates AI research on uncertain reason-
ing and expert systems. The approach allows for learning from experience, and it combines 
the best of classical AI and neural nets. Work by Judea Pearl ( I  982a) and by Eric Horvitz and 
David Beckerman (Horvitz and Beckerman, 1986; _Horvitz  et al., 1986) promoted the idea of 
normative expert systems: ones that act rationally according to the laws of decision theory 
and do not try to imitate the thought steps of human experts. The WindowsTM  operating sys-
tem includes several normative diagnostic expert systems for correcting problems. Chapters 
13 to 16 cover this area. 

Similar gentle revolutions have occurred in robotics, computer vision, and knowledge 
representation_ A better understanding of the problems and their complexity properties, com-
bined with increased mathematical sophistication, has led to workable research agendas and 
robust methods. Although increased formalization and specialization led fields such as vision 
and robotics to become somewhat isolated from "mainstream" Al in the 1990s, this trend has 
reversed in recent years as tools from machine learning in particular have proved effective for 
many problems. The process of reintegration is already yielding significant benefits 

1.19 The emergence of intelligent agents (1995—present)  

Perhaps encouraged by the progress in solving the subproblems of AI, researchers have also 
started to look at the "whole agent" problem again. The work of Allen Newell, John Laird. 
and Paul Rosenbloom on SOAR (Newell, 1990; Laird et al., 1987) is the best-known example 
of a complete agent architecture. One of the most important environments for intelligent 
agents is the Internet. Al systems have become so common in Web-based applications that 
the "-hot"  suffix has entered everyday language. Moreover, Al technologies underlie many 
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Internet tools, such as search engines, recommender systems, and Web site aggregators. 
One consequence of trying to build complete agents is the realization that the previously 

isolated subfields of AI might need to be reorganized somewhat when their results are to be 
tied together. In particular, it is now widely appreciated that sensory systems (vision, sonar, 
speech recognition, etc.) cannot deliver perfectly reliable information about the environment. 
Hence, reasoning and planning systems must be able to handle uncertainty. A second major 
consequence of the agent perspective is that AI has been drawn into much closer contact 
with other fields, such as control theory and economics, that also deal with agents. Recent 
progress in the control of robotic cars has derived from a mixture of approaches ranging from 
better sensors, control-theoretic integration of sensing, localization and mapping, as well as 
a degree of high-level planning. 

Despite these successes, some influential founders of AI, including John McCarthy 
(2007),  Marvin Minsky (2007), Nils Nilsson (1995,  2005) and Patrick Winston (Beal and 
Winston, 2009), have expressed discontent with the progress of AI. They think that AI should 
put less emphasis on creating ever-improved versions of applications that are good at a spe-
cific task, such as driving a car, playing chess, or recognizing speech. Instead, they believe 
AI should return to its roots of striving for, in Simon's words, "machines that think, that learn 

HUMAN-LEVEL  Al  and that create." They call the effort human-level  AI or HLAI; their first symposium was in 
2004 (Minsky et al.. 2004). The effort will require very large knowledge bases; Hendler et al. 
(1995) discuss where these knowledge bases might come from 

ACELLIGEN
RTIFICIAL  GECENERAL A related idea is the subfield of Artificial General Intelligence or AGI (Goenzel and II   

Pennachin, 2007), which held its first conference and organized the Amnia! of Artificial Gen-
eral Intelligence in 2008. AGI  looks for a universal algorithm for learning and acting in 
any environment, and has its roots in the work of Ray Solomonoff (1964), one of the atten-
dees of the original 1956 Dartmouth conference. Guaranteeing that what we create is really 

FRIENDLY AL  Friendly AI is also a concern (Yudkowsky, 2008; Omohundro,  2008), one we will return to 
in Chapter 26. 

1.3.10 The availability of very large data sets (2001—present) 

Throughout the 60-year history of computer science, the emphasis has been on the algorithm 
as the main subject of study. But some recent work in Al suggests that for many problems, it 
makes more sense to worry about the data and be less picky about what algorithm to apply. 
This is true because of the increasing availability of very large data sources: for example, 
trillions of words of English and billions of images from the Web (Kilgarriff  and Grefenstette, 
2006); or billions of base pairs of genomic sequences (Collins et al., 2003). 

One influential paper in this line was Yarowsky's (1995) work on word-sense disam-
biguation: given the use of the word "plant" in a sentence, does that refer to flora or factory? 
Previous approaches to the problem had relied on human-labeled examples combined with 
machine learning algorithms. Yarowsky  showed that the task can be done, with accuracy 
above 96%, with no labeled examples at all. Instead, given a very large corpus of unanno-
tated  text and just the dictionary definitions of the two senses—"works,  industrial plant" and 
"flora, plant life"—one can label examples in the corpus, and from there bootstrap to learn 
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new patterns that help label new examples. Banko and Brill (2001) show that techniques 
like this perform even better as the amount of available text goes from a million words to a 
billion and that the increase in performance from using more data exceeds any difference in 
algorithm choice; a mediocre algorithm with 100 million words of unlabeled training data 
outperforms the best known algorithm with 1 million words. 

As another example, Hays and Efros (2007) discuss the problem of filling in holes in a 
photograph. Suppose you use Photoshop to mask out an ex-friend from a group photo, but 
now you need to fill in the masked area with something that matches the background. Hays 
and Efros defined an algorithm that searches through a collection of photos to find something 
that  will match. They found the performance of their algorithm was poor when they used 
a collection of only ten thousand photos, but crossed a threshold into excellent performance 
when they grew the collection to two million photos. 

Work like this suggests that the -knowledge bottleneck" in Al—the problem of how to 
express all the knowledge that a system needs—may be solved in many applications by learn-
ing methods rather than hand-coded knowledge engineering, provided the learning algorithms 
have enough data to go on (Halevy et al_  2009). Reporters have noticed the surge of new ap-
plications and have written that "Al Winter" may be yielding to a new Spring (Ilavenstein,  
20125).  As Kurzweil (2005) writes, "today, many thousands of AI applications are deeply 
embedded in the infrastructure of every industry." 

1.4 THE STATE. OF THF.  ART 

What can AI do today? A concise answer is difficult because there are so many activities in 
so many subfields. Here we sample a few applications; others appear throughout the book. 

Robotic vehicles: A driverless robotic car named STANLEY sped through the rough 
terrain of the Mojave dessert at 22 mph, finishing the 132-mile course first to win the 2005 
DARPA Grand Challenge_ STANI,EY  is a Volkswagen Touareg  outfitted with cameras, radar, 
and laser rangefinders to sense the environment and onboard software to command the steer-
ing, braking, and acceleration (Thrun,  2006). The following year CMU's Boss won the Ur-
ban Challenge. safely driving in traffic through the streets of a closed Air Farce base, obeying 
traffic rules and avoiding pedestrians and other vehicles. 

Speech recognition: A traveler calling United Airlines to book a flight can have the en-
tire conversation guided by an automated speech recognition and dialog management system. 

Autonomous planning and scheduling: A hundred million miles from Earth, NASA's 
Remote Agent program became the first on-board autonomous planning program to control 
the scheduling of operations for a spacecraft (Jonsson et al., 2000). REMOTE AGENT gen-
erated plans from high-level goals specified from the ground and monitored the execution of 
those plans—detecting, diagnosing, and recovering from problems as they occurred. Succes-
sor program MAPGEN  (Al-Chang et at, 2004) plans the daily operations for NASA's Mars 
Exploration Rovers, and MEXAR2 (Cesta et al., 2007) did mission planning—both logistics 
and science planning—for the European Space Agency's Mars Express mission in 2008. 
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Game playing: IBM's DEEP BLUE became the first computer program to defeat the 
world champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in 
an exhibition match (Goodman and Keene, 1997). Kasparov said that he felt a 'new kind of 
intelligence" across the board from him. Newsweek magazine described the match as "The 
brain's last stand." The value of IBM's stock increased by $18 billion. Human champions 
studied Kasparov's loss and were able to draw a few matches in subsequent years, but the 
most recent human-computer matches have been won convincingly by the computer. 

Spam fighting: Each day, learning algorithms classify over a billion messages as spam, 
saving the recipient from having to waste time deleting what, for many users, could comprise 
80% or 90% of all messages, if not classified away by algorithms. Because the spammers are 
continually updating their tactics, it is difficult for a static programmed approach to keep up, 
and learning algorithms work best (Sahami et al., 1998; Goodman and lieckerman,  2004). 

Logistics planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a 
Dynamic Analysis and Replanning Tool, DART (Cross and Walker, 1994), to do automated 
logistics planning and scheduling for transportation. This involved up to 50,000  vehicles, 
cargo, and people at a time, and had to account for starting points, destinations. routes, and 
conflict resolution among all parameters. The AI planning techniques generated in hours 
a plan that would have taken weeks with older methods. The Defense Advanced Research 
Project Agency (DARPA) stated that this single application more than paid back DARPA's 
30-year investment in Al. 

Robotics: The iRobot Corporation has sold over two million Roomba robotic vacuum 
cleaners for home use. The company also deploys the more rugged PackBot  to Iraq and 
Afghanistan, where it is used to handle hazardous materials, clear explosives, and identify 
the location of snipers. 

Machine Translation: A computer program automatically translates from Arabic to 
English, allowing an English speaker to see the headline "Ardogan Confirms That Turkey 
Would Not Accept Any Pressure, Urging Them to Recognize Cyprus." The program uses a 
statistical model built from examples of Arabic-to-English translations and from examples of 
English text totaling two trillion words (Brants or al. :  2007).  None of the computer scientists 
on the team speak Arabic, but they do understand statistics and machine learning algorithms. 

These are just a few examples of artificial intelligence systems that exist today. Not 
magic or science fiction—but rather science, engineering, and mathematics, to which this 
book provides an introduction. 

1.5  SUMMARY 

This chapter defines AI and establishes the cultural background against which it has devel-
oped. Some of the important paints are as follows: 

• Different people approach Al with different goals in mind, Two important questions to 
ask are: Are you concerned with thinking or behavior? Do you want to model humans 
or work from an ideal standard? 
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■ In this book, we adopt the view that intelligence is concerned mainly with rational 
action. Ideally, an intelligent agent takes the best possible action in a situation. We 

study the problem of building agents that are intelligent in this sense. 
• Philosophers (going back to 400 B.C.)  made AI conceivable by considering the ideas 

that the mind is in some ways like a machine, that it operates on knowledge encoded in 
some internal language, and that thought can be used to choose what actions to take. 

• Mathematicians provided the tools to manipulate statements of logical certainty as well 
as uncertain, probabilistic statements. They also set the groundwork for understanding 
computation and reasoning about algorithms. 

■ Economists formalized the problem of making decisions that maximize the expected 
outcome to the decision maker. 

■ Neuroscientists discovered some facts about how the brain works and the ways in which 
it is similar to and different from computers. 

• Psychologists adopted the idea that humans and animals can be considered information-
processing machines. Linguists showed that language use fits into this model. 

■ Computer engineers provided the ever-more-powerful machines that make AI applica-
tions possible. 

■ Control theory deals with designing devices that act optimally on the basis of feedback 
from the environment. Initially, the mathematical tools of control theory were quite 
different from AI, but the fields are coming closer together. 

• The history of Al has had cycles of success, misplaced optimism. and resulting cutbacks 
in enthusiasm and funding. There have also been cycles of introducing new creative 
approaches and systematically refining the best ones. 

■ AI has advanced more rapidly in the past decade because of greater use of the scientific 
method in experimenting with and comparing approaches. 

■ Recent progress in understanding the theoretical basis for intelligence has gone hand in 
hand with improvements in the capabilities of real systems. The subfields of AI have 
become more integrated, and AI has found common ground with other disciplines. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The methodological status of artificial intelligence is investigated in The Sciences of the Artifi-
cial, by Herb Simon (1981), which discusses research areas concerned with complex artifacts. 
It explains how Al can be viewed as both science and mathematics. Cohen (1995) gives an 
overview of experimental methodology within AI. 

The Turing Test (Turing, 1950) is discussed by Shieber (1994), who severely criticizes 
the usefulness of its instantiation in the Loebner Prize competition, and by Ford and Hayes 
(1995), who argue that the test itself is not helpful for AI. Bringsjord (2008) gives advice for 
a 'Ruing  Test judge. Shieber  (2004) and Epstein et al. (2008) collect a number of essays on 
the Turing Test. Artificial Intelligence: The Very Idea, by John Haugeland (1985), gives a 
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readable account of the philosophical and practical problems of AI. Significant early papers 
in AI arc anthologized in the collections by Webber and Nilsson (1981) and by Luger (1995). 
The Encyclopedia of Al (Shapiro, 1992) contains survey articles on almost every topic in 
AI, as does Wikipedia.  These articles usually provide a good entry point into the research 
literature on each topic. An insightful and comprehensive history of AI is given by Nils 
Nillson (2009), one of the early pioneers of the field. 

The most recent work appears in the proceedings of the major AI conferences: the bi-
ennial International Joint Conference on Al (LICAI),  the annual European Conference on AI 
(ECAI),  and the National Conference on AI, more often known as AAAI,  after its sponsoring 
organization The major journals for general Al are Artificial Intelligence, Computational 
Intelligence, the IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE In-
telligent Systems, and the electronic Journal of Artificial Intelligence Research. There are also 
many conferences and journals devoted to specific areas, which we cover in the  appropriate 
chapters. The main professional societies for AI are the American Association for Artificial 
Intelligence (AAAI),  the ACM Special Interest Group in Artificial Intelligence (SIGART), 
and the Society for Artificial Intelligence and Simulation of Behaviour (AISB). AAAI's AI 
Magazine contains many topical and tutorial articles, and its Web site, aaai  . org,  contains 
news, tutorials, and background information_ 

EXERCISES 

1E11  

These exercises are intended to stimulate discussion, and some might be set as term projects. 
Alternatively, preliminary attempts can be made now, and these attempts can be reviewed 
after the completion of the book. 

1.1 Define in your own words: (a) intelligence, (b) artificial intelligence, (c) agent, (d) 
rationality, (e) logical reasoning. 

1.2 Read Turing's original paper on Al (Turing, 1950). In the paper, he discusses several 
objections to his proposed enterprise and his test for intelligence. Which objections still carry 
weight? Are his refutations valid? Can you think of new objections arising from develop-
ments since he wrote the paper? In the paper, he predicts that, by the year 2000. a computer 
will have a 30% chance of passing a five-minute Turing Test with an unskilled interrogator. 
What chance do you think a computer would have today? In another 50 years? 

1.3 Are reflex actions (such as flinching from a hot stove) rational? Are they intelligent? 

1.4 Suppose we extend Evans's  ANALOGY program so that it can score 200 on a standard 
IQ test. Would we then have it program more intelligent than a human? Explain. 

1.5 The neural structure of the sea slug Aplysia has been widely studied (first by Nobel 
Laureate Eric Kandel) because it has only about 20,000 neurons, most of them large and 
easily manipulated. Assuming that the cycle time for an Aplysia  neuron is roughly the same 
as for a human neuron, how does the computational power, in terms of memory updates per 
second, compare with the high-end computer described in Figure 1.31  
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1.6 How could introspection—reporting on one's inner thoughts—be  inaccurate? Could I 
be wrong about what I'm thinking? Discuss.  

1.7 To what extent are the following computer systems instances of artificial intelligence: 
• Supermarket bar code scanners. 
• Web search engines. 
• Voice-activated telephone menus. 
■ Internet routing algorithms that respond dynamically to the state of the network. 

1.8 Many of the computational models of cognitive activities that have been proposed in-
volve quite complex mathematical operations, such as convolving an image with a Gaussian 
or finding a minimum of the entropy function. Most humans (and certainly all animals) never 
learn this kind of mathematics at all, almost no one learns it before college, and almost no 
one can compute the convolution of a function with a Gaussian in their head. What sense 
does it make to say that the "vision system" is doing this kind of mathematics, whereas the 
actual person has no idea how to do it? 

1.9 Why would evolution tend to result in systems that act rationally? What goals are such 
systems designed to achieve? 

1.10 Is AI a science, or is it engineering' Or neither or both? Explain. 

1.11 "Surely computers cannot be intelligent—they can do only what their programmers 
tell them." Is the Liner statement true, and does it imply the former? 

1.12 "Surely animals cannot be intelligent—they can do only what their genes tell them." 
Is the latter statement true, and does it imply the former? 

1.13 "Surely animals, humans, and computers cannot be intelligent—they can do only what 
their constituent atoms are told to do by the laws of physics." Is the latter statement true, and 
does it imply the former? 

1.14 Examine the AI literature to discover whether the following tasks can currently be 
solved by computers: 

a. Playing a decent game of table tennis (Ping-Pong). 
b. Driving in the center of Cairo, Egypt. 
c. Driving in Victorville, California. 
d. Buying a week's worth of groceries at the market. 
e. Buying a week's worth of groceries on the Web. 
f. Playing a decent game of bridge at a competitive level. 
g. Discovering and proving new mathematical theorems. 
h. Writing an intentionally funny story. 
i. Giving competent legal advice in a specialized area of law. 
j. Translating spoken English into spoken Swedish in real time. 
k. Performing a complex surgical operation. 
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For the currently infeasible tasks, try to find out what the difficulties are and predict when, if 
ever, they will be overcome. 

1.15 Various subfields  of AI have held contests by defining a standard task and inviting re- 
searchers to do their best Examples include the DARPA Grand Challenge for robotic cars, 
The International Planning Competition, the Robocup robotic soccer league, the TREC infor- 
mation retrieval event, and contests in machine translation, speech recognition. Investigate 
five of these contests, and describe the progress made over the years. To what degree have the 

contests advanced toe state of the art in Al? Do what degree do they hurt the field by drawing 
energy away from new ideas? 



2 INTELLIGENT AGENTS 

In which we discuss the nature of agents, perfect or otherwise, the diversity of 
environments, and the resulting menagerie of agent types. 

Chapter 1 identified the concept of rational agents as central to our approach to artificial 
intelligence. In this chapter, we make this notion more concrete. We will see that the concept 
of rationality can be applied to a wide variety of agents operating in any imaginable environ-
ment. Our plan in this book is to use this concept to develop a small set of design principles 
for building successful agents—systems that can reasonably be called intelligent. 

We begin by examining agents, environments, and the coupling between them. The 
observation that some agents hehave  Netter  than others leads naturally to the idea of a rational 
agent—one that behaves as well as possible. How well an agent can behave depends on 
the nature of the environment; some environments are more difficult than others. We give a 
crude categorization of environments and show how properties of an environment influence 
the design of suitable agents for that environment. We describe a number of basic "skeleton" 
agent designs, which we flesh out in the rest of the book. 

2.1 AGENTS AND ENVIRONMENTS 

ENVIRONMENT 

SENSOR 

ACTUATOR 

PERCEPT 

PERCEPT SEQUENCE 

An agent is anything that can be viewed as perceiving its environment through sensors and 
acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1. 
A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract, and so 
on for actuators. A robotic agent might have cameras and infrared range finders for sensors 
and various motors for actuators. A software agent receives keystrokes, file contents, and 
network packets as sensory inputs and acts on the environment by displaying on the screen, 
writing files, and sending network packets. 

We use the term percept to refer to the agent's perceptual inputs at any given instant. An 
agent's percept sequence is the complete history of everything the agent has ever perceived. 
In general, an agent's choice of action at  any given instant can depend on the entire percept 
sequence  observed to date, but not on anything it hasn't perceived. By specifying the agent's 
choice of action for every possible percept sequence, we have said more or less everything 
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Figure 2.1 Agents interact with environments through sensors and actuators. 
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there is to say about the agent. Mathematically speaking, we say that an agent's behavior is 
AGENT FUNCTION described by the agent function that maps any given percept sequence to an action. 

We can imagine tabulating the agent function that describes any given agent; for most 
agents, this would he a very large table—infinite, in fact, unless we place a bound on the 
length of percept sequences we want to consider. Given an agent to experiment with, we can, 
in principle, construct this table by trying out all possible percept sequences and recording 
which actions the agent does in response) The table is of course, an eviernal  characterization 
of the agent. Internally, the agent  function for an artificial agent will be implemented by an 

AGMIT  mown,' agent program. It is important to keep these two ideas distinct. The agent function is an 
abstract mathematical description; the agent program is a concrete implementation, running 
within some physical system. 

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world 
shown in Figure 2.2. This world is so simple that we can describe everything that happens; 
it's also a made-up world, so we can invent many variations. This particular world has just two 
locations: squares A and B. The vacuum agent perceives which square it is in and whether 
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do 
nothing. One very simple agent function is the following: if the current square is dirty, then 
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown 
in Figure 2.3 and an agent program that implements it appears in Figure 2.8  on page 48.  

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply 
by filling in the right-hand column in various ways. The obvious question, then, is this: Wiwi 
is the right way to fill out the table? In other words, what makes an agent good or bad, 
intelligent or stupid? We answer these questions in the next section, 

If the agent uses some randomization to choose its actions, then we would have to try each sequence many 
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we 
show later in this chapter that it can be very intelligent. 
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Figure 2.2  A vacuum-cleaner world with just two locations. 

  

Percept sequence Acticn 

[A, Clean] 
[A, Dirty] 
[B, Clean] 
[l3, Dirty] 
[A, Clean], [A, Clean] 
[A, Clean], [A, Dirty] 

.  
[A, Clean], [A, Clean], [A, Clean] 
[A, Clean], [A, Clean], [A, Dirty] 

:  

Right 
Suck 
Left 
Suck 
Right 
Suck 

:  
Right 
Snek  

.  

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world 
shown in Figure 2.2. 

Before closing this section, we should emphasize that the notion of an agent is meant to 
be a tool for analyzing systems, not an absolute characterization that divides the world into 
agents and non-agents. One could view a hand-held calculator as an agent that chooses the 
action of displaying "4" when given the percept sequence "2 t- 2 =,"  but such an analysis 
would hardly aid our understanding of the calculator. In a sense. all areas of engineering can 
be seen as designing artifacts that interact with the world; AI operates at (what the authors 
consider to he) the most interesting end of the spectrum, where the artifacts have significant 
computational resources and the task environment requires nontrivial decision making. 

2.2 GOOD B EHAVIOR:  THE CONCEPT OF RATIONALITY 

RATIONAL AGENT A rational agent is one that does the right thing—conceptually speaking, every entry in the 
table for the agent function is filled out correctly. Obviously, doing the right thing is better 
than doing the wrong thing, but what does it mean to do the right thing' 
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PERFORMANCE 
MEASURE 

DENITION  OF A 
RARONAL  AGENT 

We answer this age-old question in an age-old way: by considering the consequences 
of the agent's behavior. When an agent is plunked down in an environment, it generates a 
sequence of actions according to the percepts it receives. This sequence of actions causes the 
environment to go through a sequence of states. If the sequence is desirable, then the agent 
has performed well. This notion of desirability is captured by a performance measure that 
evaluates any given sequence of environment states. 

Notice that we said environment states, not agent states. if we define success in terms 
of agent's opinion of its own performance, an agent could achieve perfect rationality simply 
by deluding itself that its performance was perfect. Human agents in particular are notorious 
for "sour grapes"—believing  they did not really want something (e.g., a Nobel Prize) after 
not getting it 

Obviously, there is not one fixed performance measure for all tasks and agents; typically, 
a designer will devise one appropriate to the circumstances. This is not as easy  as it sounds. 
Consider, for example, the vacuum-cleaner agent from the preceding section. We might 
propose to measure performance by the amount of dirt cleaned up in a single eight-hour  shift.  
With a rational agent, of course, what you ask for is what you get. A rational agent can 
maximize this performance measure by cleaning up the dirt, then dumping it all on the floor, 
then cleaning it up again, and so on. A more suitable performance measure would reward the 
agent for having a clean floor. For example, one point could be awarded for each clean square 
at each time step (perhaps with a penalty for electricity consumed and noise generated). As 
a general rule, it is better to design performance measures according to what one actually 
wants in the environment, rather than according to how one thinks the agent should behave. 

Even when the obvious pitfalls are avoided, there remain some knotty issues to untangle. 
For example, the notion of "clean floor" in the preceding paragraph is based on average 
cleanliness over time. Yet the same average cleanliness can be achieved by two different 
agents, one of which does a mediocre job all the time while the other cleans energetically but 
takes long breaks. Which is preferable might seem to be a fine point of janitorial science, but 
in fact it is a deep philosophical question with far-reaching implications. Which is better—
a reckless life of highs and lows, or a safe but himidnim  existence? Which is better—an  
economy where everyone lives in moderate poverty, or one in which some live in plenty 
while others are very poor? We leave these questions as an exercise for the diligent reader. 

2.2.1 Rationality 

What is rational at any given time depends on four things: 
• The performance measure that defines the criterion of success. 
• The agent's prior knowledge of the environment. 
• The actions that the agent can perform. 
• The agent's percept sequence to date. 

This leads to a definition of a rational agent: 

For each possible percept sequence,  a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence provided by the percept 
sequence and whatever built-in  knowledge the agent has. 
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OMNECENCE  

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the 
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent? 
That depends! First, we need to say what the performance measure is, what is known about 
the environment, and what sensors and actuators the agent has Let us assume the following: 

■ The performance measure awards one point for each clean square at each time step,  
over a "lifetime" of 1000 time steps. 

■ The "geography" of the environment is known a priori (Figure 2.2) but the dirt distri-
bution and the initial location of the agent are not. Clean squares stay clean and sucking 
cleans the current square. The Left and Hight actions move the agent left and right 
except when this would take the agent outside the environment, in which case the agent 
remains where it is. 

• The only available actions are Left, Right,  and Suck. 

■ The agent correctly perceives its location and whether that location contains dirt. 

We claim that under these circumstances the agent is indeed rational; its expected perfor-
mance is at least as high as any other agent's. Exercise 2.2 asks you to prove this. 

One can see easily that the same agent would be irrational under different circum-
stances. For example, once all the dirt is cleaned up, the agent will oscillate needlessly back 
and forth; if the performance measure includes a penalty of one point for each movement left 
or right, the agent will fare poorly. A better agent for this case would do nothing once it is 
sure that all the squares are clean. If clean squares can become dirty again, the agent should 
occasionally check and re-clean them if needed. If the geography of the environment is un-
known, the agent will nccd  to explore it rather than stick to squares A and B. Exercise 2.2 
asks you to design agents for these cases. 

2.2.2 Omniscience, learning, and autonomy 

We need to be careful to distinguish between rationality and omniscience. An omniscient 
agent knows the actual outcome of its actions and can act accordingly; but omniscience is 
impossible in reality. Consider the following example: I am walking along the Champs 
Elysees  one day and I see an old friend across the street There is no traffic nearby and I'm 
not otherwise engaged, so, being rational, I start to cross the street Meanwhile, at 33,000 
feet, a cargo door falls off a passing airliner, 2  and before I make it to the other side of the 
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would 
read "Idiot attempts to cross street." 

This example shows that rationality is not the same as perfection. Rationality max-
imizes expected performance, while perfection maximizes actual performance. Retreating 
from a requirement of perfection is not  just a question of being fair to agents. The point is 
that if we expect an agent to do what turns out to be the best action after the fact, it will be 
impossible to design an agent to fulfill this specification—unless we improve the performance 
of crystal balls or time machines. 

2  See N. Henderson, "New door latches  urged for Boeing 747 jumbo jets," Washington Poe, August 24. 1989. 



Section 2.2. Good Behavior: The Concept of Rationality 39 

AUTONOMY 

Our definition of rationality does not require omniscience, then, because the rational 
choice depends only on the percept sequence to date. We must also ensure that we haven't 
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam- 
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence 
will not tell it that there is a large truck approaching at high speed. Does our definition of 
rationality say that it's now OK to cross the road? Far from it! First, it would net be rational 
to cross the road given this uninformative percept sequence: the risk of accident from cross-
ing without looking is too great. Second, a rational agent should choose the "looking" action 
before stepping into the street, because looking helps maximize the expected performance. 
Doing  actions in order to modify future percepts—sometimes called information gather-
ing—is an important part of rationality and is covered in depth in Chapter 16. A second 
example of information gathering is provided by the exploration that must be undertaken by 
a vacuum-cleaning  agent in an initially unknown environment. 

Our definition requires a rational agent not only to gather information but also to learn 
as much as possible from what it perceives. The agent's initial configuration could reflect 
sonic prior knowledge of the environment, but as the agent gains experience this may be 
modified and augmented. There are extreme cases in which the environment is completely 
known a priori. In such cases, the agent need not perceive or learn; it simply acts correctly. 
Of course, such agents are fragile. Consider the lowly dung beetle. After digging its nest and 
laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the hall of 

dung is removed from its grasp en route, the beetle continues its task and pantomimes plug-
ging the nest with the nonexistent dung ball, never noticing that it is missing. Evolution has 
built an assumption into the beetle's behavior, and when it is violated, unsuccessful behavior 
results. Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go 
out and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is 
well, drag the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when 
the eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches 
away while the sphex is doing the check, it will revert to the "drag" step of its plan and will 
continue the plan without modification, even after dozens of caterpillar-moving interventions_  
The sphex is unable to learn that its innate plan is failing, and thus will not change it. 

To the extent that an agent relies on the prior knowledge of its designer rather than 
on its own percepts, we say that the agent lacks autonomy. A rational agent should be 
autonomous—it should learn what it can to compensate for partial or incorrect prior knowl-
edge. For example, a vacuum-cleaning agent that learns to foresee where and when additional 
dirt will appear will do better than one that does not. As a practical matter, one seldom re-
quires complete autonomy from the start: when the agent has had little or no experience, it 
would have to act randomly unless the designer gave some assistance. So, just as evolution 
provides animals with enough built-in reflexes to survive long enough to learn for themselves, 
it would be reasonable to provide an artificial intelligent agent with some initial knowledge 
as well as an ability to learn. After sufficient experience of its environment, the behavior 
of a rational agent can become effectively independent of its prior knowledge. Hence, the 
incorporation of learning allows one  to design a single rational agent that will succeed in a 
vast variety of environments. 

INFORMATICN  
GATHERING 

EXPLORATION  

LEARNING 
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2.3 THE NATURE OF ENVIRONMENTS 

Now that we have a definition of rationality, we are almost ready to think about building 
TAa  ENVIRCNMENT  rational agents. First, however, we must think about task environments, which are essen-

tially the "problems" to which rational agents are the "solutions." We begin by showing how 
to specify a task environment, illustrating the process with a number of examples. We then 
show that task environments come in a variety of flavors. The flavor of the task environment 
directly affects the appropriate design for the agent program_ 

2.3.1 Specifying the task environment 

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify 
the performance measure. the environment, and the agent's actuators and sensors. We group 
all these under the heading of the task environment. For the acronymically minded, we call 

PEAS 

	

	 this the PEAS (Performance, Environment, Actuators, Sensors) description. In designing an 
agent, the first step must always be to specify the task environment as filly as possible 

The vacuum world was a simple example; let us consider a more complex problem: an 
automated taxi driver. We should point out, before the reader becomes alarmed, that a fully 
automated taxi is currently somewhat beyond the capabilities of existing technology. (page 28 
describes an existing driving robot.) The full driving task is extremely open-ended. There is 
no limit to the novel combinations of circumstances that can arise—another reason we chose 
it as a focus for discussion Figure 2A summarizes the PEAS description for the taxi's task 
environment. We discuss each element in more detail in the following paragraphs. 

Agent Type Performance 
Measure 

Environment Actuators Sensors 

Taxi driver Safe, fast, legal, 
comfortable trip, 
maximize profits 

Roads, other 
traffic, 
pedestrians, 
customers 

Steering, 
accelerator, 
brake, signal, 
horn, display 

Cameras, sonar, 
speedometer, 
GPS,  odometer, 
accelerometer, 
engine sensors, 

keyboard 

Figure 2.4 PEAS description of the task environment for an automated taxi. 

First, what is the performance measure to which we would like our automated driver 
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic 
laws and disturbances to other drivers; maximizing safety and passenger comfort; maximiz-
ing profits.  Obviously, some of these goals conflict, so tradeoffs will be required. 

Next, what is the driving environment that the taxi will face? Any taxi driver must 
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways. 
The roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles, 
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and potholes. The taxi must also interact with potential and actual passengers. There are also 
some optional choices. The taxi might need to operate in Southern California, where snow 
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the 
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan. 
Obviously, the more restricted the environment, the easier the design problem. 

The actuators for an automated taxi include those available to a human driver: control 
over the engine through the accelerator and control over steering and braking. In addition, it 
will need output to a display screen or voice synthesizer to talk back to the passengers, and 
perhaps some way to communicate with other vehicles, politely or otherwise. 

The basic sensors for the taxi will include one or more controllable video cameras so 
that it can see the road; it might augment these with infrared or sonar sensors to detect dis-
tances to other cars and obstacles. To avoid speeding tickets, the taxi should have a speedome-
ter, and Lu  consul  the vehicle properly, especially on curves, it should have an accelerometer. 
To determine the mechanical state of the vehicle, it will need the usual array of engine, fuel, 
and electrical system sensors. Like many human drivers, it might want a global positioning 
system (GPS) so that it doesn't get lost. Finally, it will need a keyboard or microphone for 
the passenger to request a destination. 

In Figure 2.5.  we have sketched the basic PEAS elements for a number of additional 
agent types. Further examples appear in Exercise 2.4. It may come as a surprise to some read- 
ers that our list of agent types includes some programs that operate in the entirely artificial 
environment defined by keyboard input and character output on a screen. "Surely," one might 
say, "this is not a real environment, is it?" In fact, what matters is not the distinction between 
"real" and "artificial" environments, but the complexity of the relationship among the behav-
ior of the agent, the percept sequence generated by the environment, and the performance 
measure. Some "real" environments are actually quite simple. For example, a robot designed 
to inspect parts as they come by on a conveyor belt can make use of a number of simplifying 
assumptions: that the lighting is always just so, that the only thing on the conveyor belt will 
be parts of a kind that it knows about, and that only two actions (accept or reject) are possible. 

SCMYARE  AGENT In contrast, some software agents (or software robots or softhots)  exist in rich, unlitm- 
S0=TBOT ited domains. Imagine a softbot Weh  site operator designed to scan Internet news sources and 

show the interesting items to its users, while selling advertising space to generate revenue. 
To do well, that operator will need some natural language processing abilities, it will need 
to learn what each user and advertiser is interested in, and it will need to change its plans 
dynamically—for  example, when the connection for one news source goes down or when a 
new one comes online. The Internet is an environment whose complexity rivals that of the 
physical world and whose inhabitants include many artificial and human agents. 

2.3.2 Properties of task environments 

The range of task environments that might arise in AI is obviously vast. We can, however, 
identify a fairly small number of dimensions along which task environments can be catego- 
rized. These dimensions determine, to a large extent, the appropriate  agent design and the 
applicability of each of the principal families of techniques for agent implementation. First, 
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Agent Type Performance 
Measure 

Environment Actuators Sensors 

Medical 
diagnosis system 

Healthy patient, 
reduced costs 

Patient, hospital, 
staff 

Display of 
questions, tests, 
diagnoses, 
treatments, 
referrals 

Keyboard entry 
of symptoms, 
findings, patient's 
answers 

Satellite image 

analysis system 
Correct image 

categorization 
Downlink from 

orbiting satellite 
Display of scene 

categorization 
Color pixel 

arrays 

Part-picking 
robot 

Percentage cf  
parts in correct 
bins 

Conveyor belt 
with parts: bins 

Jointed arm and 
hand 

Camera, joint 
angle sensors 

Refinery 

controller 
Purity, yield, 

safety 
Refinery, 

operators 
Valves, pumps, 

beaters, displays 
Temperature, 

pressure, 
chemical sensors 

Interactive 
English tutor 

Student's score 
on test 

Set of students, 
testing agency 

Display of 
exercises. 
suggestions, 
corrections 

Keyboard entry 

Figure 2.5 Examples of agent types and their PEAS descriptions. 

we list the dimensions, then we analyze several task environments to illustrate the ideas. The 
definitions here are  informal; later chapters provide more precise statements and examples of 
each kind of environment. 

Fully observable vs. partially observable: If an agent's sensors give it access to the 
complete state of the environment at each point in time, then we say that the task environ-
ment is fully observable. A task environment is effectively fully observable if the sensors 
detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the 
performance measure. Fully observable environments are convenient because the agent need 
not maintain any internal state to keep track of the world. An environment might be partially 
observable because of noisy and inaccurate sensors or because parts of the state are simply 
missing from the sensor data—for example, a vacuum agent with only a local dirt sensor 
cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other 
diners  are thinking If the agent has no sensors at all then the environment is unobserv- 
able. One might think that in such cases the agent's plight is hopeless, but, as we discuss in 
Chapter 4, the agent's goals may still be achievable, sometimes with certainty. 

Single agent vs. multiagent: The distinction between single-agent and multiagent en- 

FULLY OGGEKVA6LE  

PAFTIALLY  
OBSERVABLE 

UNOBSERVABLE 

SINGLE  AGENT 

MUILTIAGENF  
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vironments may seem simple enough. For example, an agent solving a crossword puzzle by 
itself is clearly in a single-agent  environment, whereas an agent playing chess is in a two-
agent environment. There are, however, some subtle issues. First, we have described how an 
entity may be viewed as an agent, but we have not explained which entities must be viewed 
as agents. Does an agent A (the taxi driver for example) have to treat an object B (another 
vehicle) as an agent. or can it be treated merely as an object behaving according to the laws of 
physics, analogous to waves at the beach or leaves blowing in the wind? The key distinction 
is whether B's behavior is best described as maximizing a performance measure whose value 
depends on agent A's behavior. For example, in chess, the opponent entity B is trying to 
maximize its performance measure, which, by the rules of chess, minimizes agent As per- 

COMPETITIVE 

	

	formance measure. Thus, chess is a competitive multiagent environment. In the taxi-driving 
environment, on the other hand, avoiding collisions maximizes the performance measure of 

CLEHEHAEIVE 
 all agents, so it is a partially cooperative rnultiagent environment. It is also partially com-

petitive because, for example, only one car can occupy a parking space. The agent-design 
problems in multiagent environments are often quite different from those in single-agent en-
vironments; for example, communication often emerges as a rational behavior in multiagent 
environments; in some competitive environments, randomized behavior is rational because 
it avoids the pitfalls of predictability. 

DETERMINISTIC Deterministic vs. stochastic. If the next state of the environment is completely deter- 
STOCHASTIC mined by the current state and the action executed by the agent, then we say the environment 

is deterministic; otherwise, it is stochastic. In principle, an agent need not worry about uncer-
tainty in a fully observable, deterministic environment. (In our definition, we ignore uncer-
tainty that arises purely from the actions of other agents in a multiagent environment: thus, 
a game can be deterministic even though each agent may be unable to predict the actions of 
the others.) If the environment is partially observable, however, then it could appear to be 
stochastic. Most real situations are so complex that it is impossible to keep track of all the 
unobserved aspects; for practical purposes, they must be treated as stochastic. Taxi driving is 
clearly stochastic in this sense, because one can never predict the behavior of traffic exactly; 
moreover, one's tires blow out and one's engine seizes up without warning_  The vacuum 
world as we described it is deterministic, but variations can include stochastic elements such 
as randomly appearing dirt and an unreliable suction mechanism (Exercise 2.13). We say an 

UNIT  RTAIN 

	

	 environment is uncertain if it is not fully observable or not deterministic. One final note: 
our use of the word "stochastic"  generally implies that uncertainty about outcomes is quan- 

NCNDETERMINISTIC 
 tified in terms of probabilities; a nondeterministic environment is one in which actions are 

characterized by their possible outcomes, but no probabilities are attached to them. Nonde-
tenninistic environment descriptions are usually associated with performance measures that 
require the agent to succeed for all possible outcomes of its actions. 

EPLSOLIIC Episodic vs. sequential: In an episodic task environment, the agent's experience is 
SEQUENTIAL divided into atomic episodes. In each episode the agent receives a percept and then performs 

a single action. Crucially, the next episode does not depend on the actions taken in previous 

episodes. Many classification tasks are episodic. For example, an agent that has to spot 
defective parts on an assembly line bases each decision on the current part, regardless of 
previous decisions; moreover, the current decision doesn't affect whether the next part is 
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STATIC 

DYSAMIC  

SEMIDYNAMIC  

DISCRETE 

CONI1NUDLIS  

KNOWN 

UNKNOWN 

defective. In sequential environments, on the other hand, the current decision could affect 
all future clecisions. 3  Chess and taxi driving arc sequential: in both cases, short-term actions 
can have long-term consequences. Episodic environments are much simpler than sequential 
environments because the agent does not need to think ahead. 

Static vs. dynamic: If the environment can change while an agent is deliberating, then 
we say the environment is dynamic for that agent; otherwise, it is static. Static environments 
are easy to deal with because the agent need not keep looking at the world while it is deciding 
on an action, nor need it worry about the passage of time. Dynamic environments, on the 
other hand. are continuously asking the agent what it wants to do; if it hasn't decided yet. 
that counts as deciding to do nothing. If the environment itself does not change with the 
passage of time but the agent's performance score does, then we say the environment is 
semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi itself keep moving 
while the driving algorithm dithers about what to  do next. Chess, when played with a clock,  
is semidynamic. Crossword puzzles are static. 

Discrete vs. continuous: The discrete/continuous distinction applies to the state of the 
environment, to the way time is handled, and to the percepts and actions of the agent. For 
example, the chess environment has a finite number of distinct states (excluding the clock), 
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-state and 
continuous-time problem: the speed and location of the taxi and of the other vehicles sweep 
through a range of continuous values and do so smoothly over time. Taxi-driving actions are 
also continuous (steering angles, etc.). Input from digital cameras is discrete, strictly speak-
ing, but is typically treated as representing continuously varying intensities and locations. 

Known vs. unknown: Strictly speaking, this distinction refers not to the environment 
itself but to the agent's or designer's) state of knowledge about the "laws of physics" of 
the environment. In a known environment, the outcomes (or outcome probabilities if the 
environment is stochastic) for all actions are given. Obviously, if the environment is unknown, 
the agent will have to learn how it works in order to make good decisions. Note that the 
distinction between known and unknown environments is not the same as the one between 
fully and partially observable environments. It is quite possible for a known environment 
to be partially observable—for example, in solitaire card games, I know the rules but am 
still unable to see the cards that have not yet been turned over. Conversely, an unknown 

environment can be fully observable—in a new video game, the screen may show the entire 
game state but I still don't know what the buttons do until I try them. 

As one might expect, the hardest case is partially observable, multiagent,  stochastic,  
sequential, dynamic, continuous, and unknown. Taxi driving is hard in all these senses, except 
that for the most pan the driver's environment is known. Driving a rented car in a new country 
with unfamiliar geography and traffic laws is a lot more exciting. 

Figure 2.6 lists the properties of a number of familiar environments. Note that the 
answers are not always cut and dried. For example, we describe the part-picking robot as 
episodic, because it normally considers each part in isolation. But if one day there is a large 

s  The word "sequential" is also used in computer science as the antonym of "parallel." The two meanings are  
largely unrelated. 
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ENAIONMEVT  
CLASS.  

Task Environment Observable Agents Deterministic Episodic Static Discrete 

Crossword puzzle 
Chess with a clock 

Fully Single Deterministic Sequential Static Discrete 
Fully Multi Deterministic Sequential Semi Discrete 

Poker 
Backgammon 

Partially Multi Stochastic Sequential Static Discrete 
Fully Multi Stochastic Sequential Static Discrete 

Taxi driving 

Medical diagnosis 
Partially Multi Stochastic. Sequential Dynamic Continuous 

Partially Single Stochastic Sequential Dynamic Continuous 

Image analysis 
Part-picking robot 

Fully Single Deterministic Episodic Semi Continuous 
Partially Single Stochastic Episodic Dynamic Continuous 

Refinery controller 
Interactive. English tutor 

Partially Single Stochastic Sequential Dynamic Continuous 
Partially Multi Stochastic Sequential Dynamic Discrete 

Figure 2.6 Examples of task environments and their characteristics. 

batch of defective parts, the robot should learn from several observations that the distribution 
of defects has changed, and should modify its behavior for subsequent parts. We have not 
included a "known/unknown" column because, as explained earlier, this is not strictly a prop- 
erty of the environment. For some environments, such as chess and poker, it is quite easy to 
supply the agent with full knowledge of the rules, but it is nonetheless interesting to consider 
how an agent might learn to play these games without such knowledge. 

Several of the answers in the table depend on how the task environment is defined. We 
have listed the medical-diagnosis task as single-agent because the disease process in a patient 
is not profitably modeled as an agent; but a medical-diagnosis system might also have to 
deal with recalcitrant patients and skeptical staff, so the environment could have a multiagent 
aspect. Furthermore, medical diagnosis is episodic if one conceives of the task as selecting a 
diagnosis given a list of symptoms; the problem is sequential if the task can include proposing 
a series of tests, evaluating progress over the course of treatment, and so on. Also, many 
environments are episodic at higher levels than the agent's individual actions. For example, 
a chess tournament consists of a sequence of games; each game is an episode because (by 
and large) the contribution of the moves in one game to the agent's overall performance is 
not affected by the moves in its previous game. On the other hand, decision making within a 
single game is certainly sequential. 

The code repository associated with this book (aima.cs.berkeley.edu)  includes imple-
mentations of a number of environments, together with a general-purpose environment simu-
lator that places one or more agents in a simulated environment, observes their behavior over 
time, and evaluates them according to a given performance measure. Such experiments are 
often carried out not for a single environment but for many environments drawn from an en•  
vironment  class. For example, to evaluate a taxi driver in simulated traffic, we would want to 
run many simulations with different traffic, lighting, and weather conditions. If we designed 
the agent fur a single scenario, we might be able to take advantage of specific properties 
of the particular case but might not identify a good design for driving in general. For this 
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ENVIRONMENT 
GENERATOR reason, the code repository also includes an environment generator for each environment 

class that selects particular environments (with certain likelihoods) in which to run the agent. 
For example, the vacuum environment generator initializes the dirt pattern and agent location 
randomly. We are then interested in the agent's average performance over the environment 
class. A rational agent for a given environment class maximizes this average performance.  
Exercises 2.8 to 2.13 take you through the process of developing an environment class and 
evaluating various agents therein. 

2.4 THE STRUCTURE OF AGENTS 

So far we have talked about agents by describing behavior—the action that is performed after 
any given sequence of percepts. Now we must bite the bullet and talk about how the insides 

AGENT PRIX RAM work. The joh of Al is to design an agent program that implements the agent function— 
the mapping from percepts to actions. We assume this program will run on some sort of 

Anc  I II-MOTU1C computing device with physical sensors and actuators—we call this the architecture: 

agent = architecture  +  program .  

Obviously, the program we choose has to be one that is appropriate for the architecture. If the 
program is going to recommend actions like Walk, the architecture had better have legs. The 
architecture might be just an ordinary PC, or it might be a robotic car with several onboard 
computers, cameras, and other sensors. In general, the architecture makes the percepts from 
the sensors available to the program, runs the program, and feeds the program's action choices 
to the actuators as they are generated. Most of this book is about designing agent programs, 
although Chapters 24 and 25 deal directly with the sensors and actuators_ 

2.4.1 Agent programs 

The agent programs that we design in this book all have the same skeleton: they take the 
current percept as input from the sensors and return an action to the actuators. 4  Notice the 
difference between the agent program, which takes the current percept as input, and the agent 
function, which takes the entire percept history. The agent program takes just the current 
percept as input because nothing more is available from the environment; if the agent's actions 
need to depend on the entire percept sequence, the agent will have to remember the percepts. 

We describe the agent programs in the simple pseudocode language that is defined in 
Appendix B. (The online code repository contains implementations in real programming 
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of 
the percept sequence and then uses it to index into a table of actions to decide what to do, 
The table—an example of which is given for the vacuum world in Figure 2.3—represents 
explicitly the agent function that the agent program embodies_  To huild a rational agent in 

4  There are other choices for the agent program skeleton; for example, we could have the agent programs be 
coruutines  that run asynchronously with the environment. Each such coroutine  has an input and output port and 
consists of a loop that reads the input port for percepts and writes actions to the output port. 
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function TABLE-DRIVEN-AGENT(percept)  returns an action 
persistent percepts, a sequence, initially empty 

tablc,  a table of actions, indexed by percept sequences, initially fully specified 

append percept to the end of percepts 
action  LOOKUP( percepts,table)  
return action, 

Figure 2.7  The TABLE DRIVEN AGENT program is invoked for each new percept and 
returns an action each time. It retains the complete percept sequence in memory. 

this way, we as designers must construct a table that contains the appropriate action for every 
possible percept sequence. 

It is instructive to consider why the table-driven approach to agent construction is 
doomed to failure. Let  be the set of possible percepts and let T be the lifetime of the 
agent (the total number of percepts it will receive). The lookup table will contain ET„IPrt  
entries. Consider the automated taxi: the visual input from a single camera comes in at the 
rate of roughly 27 megabytes per second (30 frames per second, 690  x 4B0  pixels with 24 
bits of color information). This gives a lookup table with over 102500WuPM  entries for an 
hour's driving. Even the lookup table for chess—a tiny, well-behaved fragment of the real 
world—would have at least 1015n  entries. The daunting size of these tables (the number of 
atoms in the observable  universe is less than 1 00 )  means that (a) no physical agent in this 
universe will have the space to store the table, (b) the designer would not have time to create 
the table, (c) no agent could ever learn all the right table entries from its experience, and (d) 
even if the environment is simple enough to yield a feasible table size, the designer still has 
no guidance about how to fill in the table entries. 

Despite all this, TARLE-DRIVEN-AGFNT  does do what we want: it implements the 
desired agent function. The key challenge for AI is to find out how to write programs that, 
to the extent possible, produce rational behavior from a smallish program rather than from 
a vast table. We have many examples showing that this can be done successfully in other 
areas: for example, the huge tables of square roots used by engineers and schoolchildren prior 
to the 1970s have now been replaced by a five-line program for Newton's method naming 
on electronic calculators. The question is, can AI do for general intelligent behavior what 
Newton did for square roots? We believe the answer is yes. 

In the remainder of this section, we outline four basic kinds of agent programs that 
embody the principles underlying almost all intelligent systems: 

• Simple reflex agents; 
• Model-based reflex agents; 
• Goal-based agents; and 
• Utility-based agents. 

Each kind of agent program combines particular components in particular ways to generate 
actions. Section 2.4.6 explains in general terms how to convert all these agents into learning 
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function REFLEx- VACUUM-AsENT(  ilocation,statual)  returns an action 
if stratus  = Dirty  then return Suck 
else if location = A then return Right 
else if location = B then return Left 

Figure 2.1i The agent program for a simple reflex agent in the two-state vacuum environ- 

ment. This program implements the agent function tabulated in Figure 2.3. 

agents that can improve the performance of their components so as to generate better actions. 
Finally, Section /  4.7 describes the variety of ways in which the components themselves can 
be represented within the agent. This variety provides a major organizing principle for the 
field and for the book itself. 

2.4.2 Simple reflex agents 

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis 
of the current percept, ignoring the rest of the percept history. For example, the vacuum agent 
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision 
is based only on the current location and on whether that location contains dirt. Art agent 
program for this agent is shown in Figure 2.8. 

Notice that the vacuum agent program is very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts 
down the number of possibilities from 4 T  to just 4. A further, small reduction comes from 
the fact that when the current square is dirty, the action does not depend on the location. 

Simple reflex behaviors occur even in more complex environments. Imagine yourself 
as the driver of the automated taxi. If the car in front brakes and its brake lights come on, then 
you should notice this and initiate braking. In other words, some processing is done on the 
visual input to establish the condition we call "The car in front is braking." Then, this triggers 
some established connection in the agent program to the action "initiate braking." We call 
such a connection a condition-action ritle, 5  written as 

if car- in-front - is-braking then initiate-braking.  

Humans also have many such connections, some of which are learned responses (as for driv-
ing) and some of which are innate reflexes (such as blinking when something approaches the 
eye). In the course of the book, we show several different ways in which such connections 
can be learned and implemented. 

The program in Figure 2,8  is specific to one particular vacuum environment. A more 
general and flexible approach is first to build a general-purpose interpreter for condition-
action rules and then to create rule sets for specific task environments. Figure 2.9 gives the 
structure of this general program in schematic form, showing how the condition-action rules 
allow the agent to make the connection from percept to action. (Do not worry if this seems 

Also called situation-actiou  rules, productions, or if-then roles.  

SIMPLE  REFLEX 
AGENT 

CONDMON-ACTION  
RULE 
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Figure 2.9  Schematic diagram of a simple reflex agent. 
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function  SIMPLE-REFLEX-AGENT(  percept) returns an action 
persistent, rates,  a set of condition—action rules 

state  INTERPRET-INPUT(percept)  
rule  RULE-MATen(state,  ruie)  
action 4— rule.ACTION  
return action 

Figure 2_10 A simple reflex agent It acts according to a vile whose condition matches 
the current state, as defined by the percept. 
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trivial; it gets more interesting shortly) We use  rectangles to denote the current internal state 
of the agent's decision process, and ovals to represent the background information used in 
the process. The agent program, which is also very simple, is shown in Figure 2.10. The 
INTERPRET-INPUT function generates an abstracted description of the current slate from the 
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches 
the given state description. Note that the description in terms of "rules" and "matching" is 
purely conceptual; actual implementations can be as simple as a collection of logic gates 
implementing a Boolean circuit. 

Simple reflex agents have the admirable property of being simple, but they turn out to be 
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be 
made on the basis of only the current percept—that is. only if the environment is fully observ- 
able. Even a little bit of unobservability  can cause serious trouble. For example, the braking 
rule given earlier assumes that the condition car- in -front - is -braking can be determined from 
the current percept—a  single frame of video. This works if the car in front has a centrally 

mounted brake Light. Unfortunately, older models have different configurations of taillights, 
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RAR➢OMIZAllON  

brake lights, and turn-signal lights, and it is not always possible to tell from a single image 
whether the car is braking. A simple reflex agent driving behind such a car would either brake 
continuously and unnecessarily, or, worse, never brake at all. 

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex 
vacuum agent is deprived of its location sensor and has only a dirt sensor. Such an agent 
has just two possible percepts: [ Dirty!  and [ Clean]. It can Suck in response to [Dirty[;  what 
should it do in response to [Clean]? Moving Left fails (forever) if it happens to start in square 
A, and moving Right fails (forever) if it happens to start in square B. Infinite loops are often 
unavoidable for simple reflex agents operating in partially observable environments. 

Escape from infinite loops is possible if the agent can randomize its actions. For ex-
ample, if the vacuum agent perceives [ Clean], it might flip a coin to choose between Left and 
Right. It is easy to show that the agent will reach the other square in an average of two steps. 
Then, if that square is dirty, the agent will clean it and the task will be complete. Hence, a 
randomized simple reflex agent might outperform a deterministic simple reflex agent. 

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational 
in some multiagent environments. In single-agent environments, randomization is usually not 
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most 
cases we can do much better with more sophisticated deterministic agents. 

2.4.3 Model-based reflex agents 

The most effective way to handle partial observability is for the agent to keep track of the 
parr of the world it can't see now. That is, the agent should maintain some sort of internal 

INTERNAL  STATE  state that depends on the percept history and thereby reflects at least some of the unobserved 
aspects of the current state. For the braking problem, the internal state is not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at 
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing 
lanes, the agent needs to keep track of where the other cars are if it can't see them all at once. 
And for any driving to he possible at all, the agent needs to keep track of where its keys are 

Updating this internal state information as time goes by requires two kinds of knowl-
edge to be encoded in the agent program. First, we need some information about how the 
world evolves independently of the agent—for example, that an overtaking car generally will 
be closer behind than it was a moment ago. Second, we need some information about how 
the agent's own actions affect the world—for example, that when the agent turns the steering 
wheel clockwise, the car turns to the right, or that after driving for five minutes northbound 
on the freeway, one is usually about five miles north of where one was five minutes ago. This 
knowledge about "how the world works"—whether implemented in simple Boolean circuits 
or in complete scientific theories—is called a model of the world. An agent that uses such a 

MODELNT  
MODEL-BASED model is called a model-based agent. -BASED 

 

Figure 2.11 gives the structure of the model-based reflex agent with internal state, show-

ing how the current percept is combined with the old internal state to generate the updated 
description of the current state, based on the agent's model of how the world works. The agent 
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which 
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Figure 2.11 A model-based reflex agent. 

function ivIODEL-BASED-REFLEX-AGENr(pc.rc:ept.)  returns an action 
persistent state, the agent's current conception of the world state 

model, a description of how the next state depends on current state and action 
rules, a set of condition—action rules 
action, the most recent action, initially none 

state 4—  UPDATE-STATE(state,  action, percept, model) 
rule. 4—  RULE MATCH(siate,  
action  Tyde.AcTioN  
return action 

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world, 
using an internal model. It then chooses an action in the same way as the reflex agent. 
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is responsible for creating the new internal state description. The details of how models and 
states are represented vary widely depending on the type of environment and the particular 
technology used in the agent design. Detailed examples of models and updating algorithms 
appear in Chapters 4, 12, 11, 15. 17, and 25. 

Regardless of the kind of representation used, it is seldom possible for the agent to 
determine the current state of a partially observable environment exactly. Instead, the box 
labeled "what the world is like now" (Figure 2.11) represents the agent's "best guess" (or 
sometimes best guesses). For example, an automated taxi may not be able to see around the 
large truck that has stopped in front of it and can only guess about what may be causing the 
hold -up. Thus, uncertainty about the current state may be unavoidable, but the agent still has 
to make a decision. 

A perhaps less obvious point about the internal  "state" maintained by a model - based 
agent is that it does not have to describe "what the world is like now" in a literal sense. For 
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Figure 2.13 A model-based.  goal-based agent. It keeps track of the world stale as well as 
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the 
achievement of its goals. 
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example, the taxi may be driving back home, and it may have a rule telling it to fill up with 
gas on the way home unless it has at least half a tank. Although "driving back home" may 
seem to an aspect of the world state, the fact of the taxi's destination is actually an aspect of 
the agent's internal state. if you find this puzzling, consider that the taxi could be in exactly 
the same place at the same time, but intending to reach a different destination. 

2.4.4 Goal-haserl  agen ts  

Knowing something about the current state of the environment is not always enough to decide 
what to do. For example. at a road junction, the taxi can turn left, turn right, or go straight 
on. The correct decision depends nn where the taxi is trying to get to. In other words, as well 

Goa  as a current state description, the agent needs some sort of goal information that describes 
situations that are desirable—for  example, being at the passenger's destination. The agent 
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based 
agent's structure. 

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for 
example, when the agent has to consider long sequences of twists and turns in order to find a 
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the 
subfields of Al devoted to finding action sequences that achieve the agent's goals. 

Notice that decision making of this kind is fundamentally different from the condition- 
action rules described earlier, in that it involves consideration of the future—both "What will 
happen if I do such-and-such?" and "Will that make me happy?" In the reflex agent designs ;  
this information is not explicitly represented, because the built-in rules map directly from 
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percepts to actions. The reflex agent brakes when it sees brake lights. A goal-based agent, in 
principle, could reason that if the car in front has its brake lights on, it will slow down. Given 
the way the world usually evolves, the only action that will achieve the goal of not hitting 
other cars is to brake. 

Although the goal-based agent appears less efficient, it is more flexible because the 
knowledge that supports its decisions is represented explicitly and can be modified. If it starts  
to rain, the agent can update its knowledge of how effectively its brakes will operate; this will 
automatically cause all of the relevant behaviors to be altered to suit the new conditions. 
For the reflex agent, on the other hand, we would have to rewrite many condition–action 
rules. The goal-based agent's behavior can easily be changed to go to a different destination, 
simply by specifying that destination as the goal. The reflex agent's rules for when to turn 
and when to go straight will work only for a single destination; they must all be replaced to 
go somewhere new. 

UTILITY  

UTILITY  FUNCTION 

2.4.5 Utility -based agents 

Goals alone are not enough to generate high-quality behavior in most environments. For 
example, many action sequences will get the taxi to its destination (thereby achieving the 
goal) but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a 
crude binary distinction between "happy" and "unhappy" states. A more general performance 
measure should allow a comparison of different world states according to exactly how happy 
they would make the agent. Because "happy" does not sound very scientific, economists and 
computer scientists use the term utility instead.6  

We have already seen that a performance measure assigns a score to any given sequence 
of environment states, so it can easily distinguish between more and less desirable ways of 
getting to the taxi's destination. An agent's utility function is essentially an internalization 
of the performance measure. If the internal utility function and the external performance 
measure are in agreement, then an agent that chooses actions to maximize its utility will be 
rational according to the external performance measure. 

Let us emphasize again that this is not the only way to be rational—we have already 
seen a rational agent program for the vacuum world (Figure 2,8) that has no idea what its  
utility function is—but,  like goal-based agents, a utility-based agent has many advantages in 
terms of flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but 
a utility-based agent can still make rational decisions. First, when there are conflicting goals, 
only some of which can be achieved (for example, speed and safety), the utility function 
specifies the appropriate tradeoff. Second, when there are several goals that the agent can 
aim for, none of which can be achieved with certainty, utility provides a way in which the 
likelihood of success can be weighed against the importance of the goals. 

Partial observability and stochasticity are ubiquitous in the real world, and so, therefore, 
is decision making under uncertainty. Technically speaking, a rational utility-based agent 
chooses the action that maximizes the expected utility of the action outcomes—that is, the 
utility the agent expects to derive, on average, given the probabilities and utilities of each 

EXPECTED UTILITY 

 

6  The word "utility" here refers to "the quality of being useful," not to the electric company or waterworks. 
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Figure 2.14 A model-based,  utility-based agent. It uses a model of the world, along with 
a utility function that measures its preferences among states of the world. Then it chooses the 
action that leads to the best expected utility, where expected utility is computed by averaging 
over all possible outcome states, weighted by the probability of the outcome. 

54 Chapter 2. intelligent Agents 

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any 
rational agent must behave as if it possesses a utility function whose expected value it tries 
to maximize. An agent that possesses an erplieli  utility fiinctinn  can make rational decisions 
with a general-purpose algorithm that does not depend on the specific utility function being 
maximized_  In this way, the "global" definition of rationality—designating as rational those 
agent functions that have the highest performance—is  turned into a "local" constraint on 
rational-agent designs that can be expressed in a simple program. 

The utility-based agent stnichire  appears in Figure 2.14. Iltility-based  agent programs 
appear in Part IV, where we design decision-making agents that must handle the uncertainty 
inherent in stochastic or partially observable environments. 

At this point, the reader may be wondering, "Is  it that simple? We just build agents that 
maximize expected utility, and we're done?" It's true that such agents would be intelligent, 
but it's not simple. A utility-based agent has to model and keep track of its environment, 
tasks that have involved a great deal of research on perception, representation, reasoning, 
and learning. The results of this research fill many of the chapters of this book. Choosing 
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms 
that fill several more chapters, Even with these algorithms, perfect rationality is usually 
unachievable in practice because of computational complexity, as we noted in Chapter 1. 

2.4.6 Learning agents 

We have described agent programs with various methods for selecting actions. We have 
not, so far, explained how the agent programs come into being. In his famous early paper, 
Turing (1950) considers the idea of actually programming his intelligent machines by hand. 
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Figure 2.15 A general learning agent. 

He estimates how much work this might take and concludes "Some more expeditious method 
seems desirable." The method he proposes is to build learning machines and then to teach 
them. In many areas of AI, this is now the preferred method for creating state-of-the-art 
systems. Learning has another advantage, as we noted earlier it allows the agent to operate 
in initially unknown environments and to become more competent than its initial knowledge 
alone might allow. In this section, we briefly introduce the main ideas of learning agents. 
Throughout the book, we comment on opportunities and methods for learning in particular 
kinds of agents. Part V goes into much more depth on the learning algorithms themselves. 

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-
sponsible for making improvements, and the performance element, which is responsible for 
selecting external actions. The performance element is what we have previously considered 
to be the entire agent: it takes in percepts and decides on actions. The learning element uses 
feedback from the critic on how the agent is doing and determines how the performance 
element should be modified to do better in the future. 

The design of the learning element depends very much on the design of the performance 
element. When trying to design an agent that learns a certain capability, the first question is 
not "How am I going to get it to team  this?" but "What kind of performance element will my 
agent need to do this once it has learned how?" Given an agent design, learning mechanisms 
can be constructed to improve every part of the agent. 

The critic tells the learning element how well the agent is doing with respect to a fixed 
performance standard. The critic is necessary because the percepts themselves provide no 
indication of the agent's success. For example, a chess program could receive a percept 
indicating that it has checkmated its opponent, bin  it  needs a performance standard to know 
that this is a good thing; the percept itself does not say so. It is important that the performance 
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standard be fixed. Conceptually, one should think of it as being outside the agent altogether 
because the agent must not modify it to  fit its own behavior. 

The last component of the learning agent is the problem generator. It is responsible 
for suggesting actions that will lead to new and informative experiences. The point is that 
if the performance element had its way, it would keep doing the actions that are best ;  given 
what it knows. But if the agent is willing to explore a little and do some perhaps suboptimal 
actions in the short run, it might discover much better actions for the long run. The problem 
generator's job is to suggest these exploratory actions. This is what scientists do when they 
carry out experiments. Galileo did not think that dropping rocks from the top of a tower in 
Pisa was valuable in itself. He was not trying to break the rocks or to modify the brains of 
unfortunate passers-by. His aim was to modify his own brain by identifying a better theory 
of the motion of objects. 

To make the overall design more concrete, let us return to the automated taxi example. 
The performance element consists of whatever collection of knowledge and procedures the 
taxi has for selecting its driving actions. The taxi goes out on the road and drives, using 
this performance element. The critic observes the world and passes information along to the 
learning element. For example, after the taxi makes a quick left turn across three lanes of traf-
fic, the critic observes the shocking language used by other drivers. From this experience. the 
learning element is able to formulate a rule saying this was a bad action, and the performance 
element is modified by installation of the new rule. The problem generator might identify 
certain areas of behavior in need of improvement and suggest experiments, such as trying out 
the brakes on different road surfaces under different conditions. 

The learning element can make changes to any of the "knowledge" components shown 
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest cases involve learning 
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent to learn "How the world evolves," and observation of the results of 
its actions can allow the agent to learn "What my actions do." For example, if the taxi exerts 
a certain braking pressure when driving on a wet road, then it will soon find out how much 
deceleration is actually achieved_ Clearly, these two learning tasks are more difficult if the 
environment is only partially observable. 

The forms of learning in the preceding paragraph do not need to access the external 
performance standard—in a sense, the standard is the universal one of making predictions 
that agree with experiment. The situation is slightly more complex for a utility-based agent 
that wishes to learn utility information. For example, suppose the taxi-driving agent receives 
no tips from passengers who have been thoroughly shaken up during the trip. The external 
performance standard must inform the agent that the loss of tips is a negative contribution to 
its overall performance; then the agent might be able to learn that violent maneuvers do not 
contribute to its own utility. In a sense, the performance standard distinguishes part of the 
incoming percept as a reward (or penalty) that provides direct feedback on the quality of the 
agent's behavior. Hard-wired performance standards such as pain and hunger in animals can 
be understood in this way. This issue is discussed further in Chapter 21. 

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among 
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learning methods. There is, however, a single unifying theme. Learning in intelligent agents 
can be sununarized  as a process of modification of each component of the agent to bring the 
components into closer agreement with the available feedback information, thereby improv-
ing  the overall performance of the agent. 

2.4.7 How the components of agent programs work 

We have described agent programs (in very high-level terms) as consisting of various compo- 
nents, whose function it is to answer questions such as: "What is the world like now?" "What 
action should l  do now?" "What do my actions do?" The next question for a student of AI 
is, "How on earth do these components work?" It takes about a thousand pages to begin to 
answer that question properly, but here we want to draw the reader's attention to some basic 
distinctions among the various ways that the components can represent the environment that 
the agent inhabits. 

Roughly speaking, we can place the representations along an axis of increasing com-
plexity and expressive power—atomic, factored, and structured. To illustrate these ideas, 
it helps to consider a particular agent component, such as the one that deals with "What my 
actions do." This component describes the changes that might occur in the environment as 
the result of taking an action, and Figure 2.16 provides schematic depictions of how those 
transitions might be represented. 
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Figure 2.16 Three ways ha  represent states and the transitions between them. (a) Atomic 
representation: a state (such as B or C) is a black box with no internal structure; (b)  Factored 
representation: a state consists of a vector of attribute values; values can be Boolean, real- 
valued, or one of a fixed set of symbols. (c) Structured representation: a state includes 
objects, each of which may have attributes of its own as well as relationships to other objects. 

In an atomic representation each state of the world is indivisible—it has no internal 
structure. Consider the problem of finding a driving route from one end of a country to the 
other via some sequence of cities (we address this problem in Figure 3.2 on page 68).  For the 
purposes of solving this problem, it may suffice to reduce the state of world to just the name 
of the city we ai-e  .in—a  single atom of knowledge; a "black box" whose only discernible 
property is that of being identical to or different from another black box. The algorithms 
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underlying search and game-playing (Chapters 3-5), Hidden Markov models (Chapter 15), 
and Markov decision processes (Chapter 17) all work with atomic rcprcscntations—or,  at 
least, they treat representations as if they were atomic. 

Now consider a higher-fidelity description for the same pmblern,  where we need to be 
concerned with more than just atomic location in one city or another; we might need to pay 
attention to how much gas is in the tank, our current GPS coordinates, whether or not the oil 
warning light is working, how much spare change we have for toll crossings, what station is 
on the radio, and so on. A factored representation splits up each state into a fixed set of 
variables or attributes, each of which can have a value. While two different atomic states 
have nothing in common—they are just different black boxes—two different factored states 
can share some attributes (such as being at some particular GPS location) and not others (such 
as having lots of gas or having no gas); this makes it much easier to work out how to turn 
one state into another. With factored representations, we can also represent uncertainty—for 
example, ignorance about the amount of gas in the tank can be represented by leaving that 
attribute blank. Many important areas of Al are based on factored representations, including 
constraint satisfaction algorithms (Chapter 6), propositional logic (Chapter 7), planning 
(Chapters 10 and 11), Bayesian networks (Chapters 13-16), and the machine learning al-
gorithms in Chapters 18,20,  and 21.  

For many purposes, we need to understand the world as having things in it that are 
related to each other, not just variables with values. For example, we might notice that a 

large truck ahead of us is reversing into the driveway of a dairy farm but a cow has got loose 
and is blocking the truck's path. A factored representation is unlikely to be pre-equipped 
with the attribute D-ackAkeatiBackingIntoDairyFarrnDrivetuayBlackedEpLoaseCow  with 
value true  or false Instead, we would need a structured representation, in which ob- 
jects such as cows and trucks and their various and varying relationships can be described 
explicitly. (See Figure 2.16(c).) Structured representations underlie relational databases 
and first-order logic (Chapters 8, 9, and 12), first-order probability models (Chapter 14),  
knowledge-based learning (Chapter 19) and much of natural language understanding 
(Chapters 22 and 21).  In fact, almost everything that humans express in natural language 
concerns objects and their relationships. 

As we mentioned earlier, the axis along which atomic, factored, and structured repre-
sentations lie is the axis of increasing expressiveness. Roughly speaking, a more expressive 
representation can capture, at least as concisely, everything a less expressive one can capture, 
plus some more. Often, the more expressive language is much more concise; for example, the 
rules of chess can be written in a page or two of a structured-representation language such 
as first-order logic but require thousands of pages when written in a factored-representation 
language such as propositional logic. On the other hand, reasoning and learning become 
more complex as the expressive power of the representation increases. To gain the benefits 
of expressive representations while avoiding their drawbacks, intelligent systems for the real 
world may need to operate at all points along the axis simultaneously. 



Section 2.5. Summary 59 

2.5 SUMMARY 

This chapter has been something of a whirlwind tour of AI, which we have conceived of as 
the science of agent design. The major points to recall are as follows: 

• An agent is something that perceives and acts in an environment. The agent ftmction  
for an avail.  specifics the action taken by the agent in response to any percept sequence.  

• The performance measure evaluates the behavior of the agent in an environment A 
rational agent acts so as to maximize the expected value of the performance measure, 
given the percept sequence it has seen so far 

• A task environment specification includes the performance measure, the external en-
vironment, the actuators. and the sensors. In designing an agent, the first step must 
always be to specify the task environment as fully as possible. 

• Task environments vary along several significant dimensions. They can be fully or 
partially observable, single-agent or multiagent, deterministic or stochastic, episodic or 
sequential, static or dynamic, discrete or continuous, and known or unknown. 

• The agent program implements the agent function_ There exists a variety of basic 
agent-program designs reflecting the kind of information made explicit and used in the 
decision process. The designs vary in efficiency, compactness, and flexibility. The 
appropriate design of the agent program depends on the nature of the environment. 

• Simple reflex agents respond directly to percepts, whereas model-based reflex agents 
maintain internal state to track aspects of the world that are not evident in the current 
percept. Goal-based agents act to achieve their goals, and utility-based agents try to 
maximize their own expected "happiness."  

• All agents can improve their performance through learning. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

CONTROLLER 

The central role of action in intelligence—the notion of practical reasoning—goes back at 
least as far as Aristotle's Niconuchean  Ethics. Practical reasoning was also the subject of 
McCarthy's (1958) influential paper "Programs with Common Sense." The fields of robotics 
and control theory are, by their very nature, concerned principally with physical agents. The 
concept of a controller in control theory is identical to that of an agent in Al. Perhaps sur-
prisingly, Al has concentrated for most of its history on isolated components of agents-
question-answering systems, theorem-provers, vision systems, and so on—rather than on 
whole agents. The discussion of agents in the text by Genesereth  and Nilsson (1987) was an 
influential exception. The whole-agent view is now widely accepted and is a central theme in 
recent texts (Poole et al., 1998: Nilsson, 1998; Padgham and Winikoff, 2004; Jones, 2007). 

Chapter  1 traced the roots of the concept of rationality in philosophy and economics. In 
Al, the concept was of peripheral interest until the mid-1980s,  when it began to suffuse many 
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discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983) 
predicted that rational agent design would come to be seen as the core mission of Al, while 
other popular topics would spin off to form new disciplines. 

Careful attention to the properties of the environment and their consequences for ra-
tional agent design is most apparent in the control theory tradition—for example, classical 
control systems (Dorf and Bishop, 2004; Kirk, 2004) handle fully observable, deterministic 
environments; stochastic optimal control (Kumar and Varaiya,  1986; Bertsekas and Shreve. 
2007) handles partially observable, stochastic environments; and hybrid control (Henninger 
and Sastry,  1998; Cassandras and Lygeros,  2006) deals with environments containing both 
discrete and continuous elements. The distinction between fully and partially observable en-
vironments is also central in the dynamic programming literature developed in the field of 
operations research (Puterman, 1994), which we discuss in Chapter 17. 

Reflex agents were the primary model fur psychological behaviorists such as Skinner 
(1953), who attempted to reduce the psychology of organisms strictly to input/output or stim-
ulus/response  mappings. The advance from behaviorism to functionalism in psychology, 
which was at least partly driven by the application of the computer metaphor to agents (Put-
nam, 1960; Lewis, 1966), introduced the internal state of the agent into the picture. Most 
work in AI views the idea of pure reflex agents with state as too simple to provide much 
leverage, but work by Rosenschein (1985) and Brooks (1986) questioned this assumption 
(see Chapter 25). In recent years, a great deal of work has gone into finding efficient algo-
rithms for keeping track of complex environments (Hamscher et aL, 1992; Simon, 2006). The 
Remote Agent program (described on page 28) that controlled the Deep Space One spacecraft 
is a particularly impressive example (Muscettola et a! 1998; Jonsson et aL,  2000). 

Goal-based agents are presupposed in everything from Aristotle's view of practical rea-
soning to McCarthy's early papers on logical AI. Shakey the Robot (Pikes and Nilsson. 
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A 
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a 
goal-based programming methodology called agent-oriented programming was developed by 
Shoham (1993).  The agent-based approach is now extremely popular in software engineer-
ing (Ciancarini and Wooldridge, 2001). It has also infiltrated the area of operating systems, 
where autonomic computing refers to computer systems and networks that monitor and con-
trol themselves with a perceive–act loop and machine learning methods (Kephart and Chess. 
2003). Noting that a collection of agent programs designed to work well together in a true 
multiagent environment necessarily exhibits modularity—the programs share no internal state 
and communicate with each other only through the environment—it is common within the 
field of multiagent systems to design the agent program of a single agent as a collection of 
autonomous sub-agents. In some cases, one can even prove that the resulting system gives 
the same optimal solutions as a monolithic design.  

The goal-based view of agents also dominates the cognitive psychology tradition in the 
area of problem solving, beginning with the enormously influential Human Problem Solv-
ing  (Newell and Simon, 1972) and running through all of Newell's later work (Newell, 1990). 
Goals, further analysed  as desires (general) and intentions (currently pursued), are central Lu  
the theory of agents developed by Bratman (1987). This theory has been influential both in 
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natural language understanding and multiagent systems. 
Horvitz et al. (1988)  specifically suggest the use of rationality conceived as the maxi-

mization of expected utility as a basis for AI. The text by Pearl (1988) was the first in AI to 
cover probability and utility theory in depth; its exposition of practical methods for reasoning 
and decision making under uncertainty was probably the single biggest factor in the rapid 
shift towards utility-based agents in the 1990s (see Part IV). 

The general design for learning agents portrayed in Figure 2.15 is classic in the machine 
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em-
bodied in programs, go back at least as far as Arthur Samuel's (1959, 1967) learning program 
for playing checkers. Learning agents are discussed in depth in Part V. 

Interest in agents and in agent design has risen rapidly in recent years, partly because of 
the growth of the Internet and the perceived need for automated and mobile softbot (Etzioni 
and Weld, 1994). Relevant pacers are collected in Readings in Agents (Huhns and Singh, 
1998) and Foundations of Rational Agency (Wooldridge and Rao, 1999). Texts on multiagent 
systems usually provide a good introduction to many aspects of agent design (Weiss, 2000a; 
Wooldridge, 2002), Several conference series devoted to agents began in the 1990s, including 
the International Workshop on Agent Theories, Architectures, and Languages (ATAL), the 
International Conference on Autonomous Agents (AGENTS), and the International Confer-
ence on Multi-Agent Systems (ICMAS). In 2002, these three merged to form the international 
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). The joumal  
Autonomous Agents and Multi-Agent Systems was founded in 1998. Finally, Dung Beetle 
Ecology (Hanski  and Cambefort,  1991) provides a wealth of interesting information on the 
behavior of dung beetles. YouTube  features inspiring video recordings of their activities. 

EXERCISES 

2.1 Suppose that the performance measure is concerned with just the first T time steps of 
the environment and ignores everything thereafter. Show that a rational agcnt'a  action  may 
depend not just on the state of the environment but also on the time step it has reached. 
2.2 Let us examine the rationality of various vacuum-cleaner agent functions. 

a. Show that the simple vacuum-cleaner agent function described in Figure 2.3 is indeed 
rational under the assumptions listed on page 38. 

b. Describe a rational agent function for the case in which each movement costs one point 
Does the corresponding agent program require internal state? 

c. Discuss possible agent designs for the cases in which clean squares can become dirty 
and the geography of the environment is unknown.  Does it make sense for the agent to 
learn from its experience in these cases? If so, what should it learn? If not, why not? 

2.3 For each of the following assertions, say whether it is true or false and support your 
answer with examples or counterexamples where appropriate. 

a. An agent that senses only partial information about the state cannot be perfectly rational. 
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b. There exist task environments in which no pure reflex agent can behave rationally. 
c. There exists a task environment in which every agent is rational. 
d. The input to an agent program is the same as the input to the agent function. 
e. Every agent function is implementable  by some program/machine combination. 
f. Suppose an agent selects its action uniformly aL  random from the set of possible actions. 

There exists a deterministic task environment in which this agent is rational. 
g. It is possible for a given agent to be perfectly rational in two distinct task environments. 
h. Every agent is rational in an unobservable environment. 

i. A perfectly rational poker-playing agent never loses. 

2.4 For each of the following activities, give a PEAS description of the task environment 
and characterize it in terms of the properties listed in Section 2.3.2.  

• Playing soccer. 
• Exploring the subsurface oceans of Titan. 
• Shopping for used AI books on the Internet. 
■ Playing a tennis match. 
■ Practicing tennis against a wall, 
• Performing a high jump.  
• K nitting a swearer. 
• Bidding on an item at an auction. 

2.5 Define in your own words the following terms: agent, agent function, agent program, 
rationality, autonomy, reflex agent, model-based agent, goal-based agent, utility-based agent,  
teaming  agent. 

2.6 This exercise explores the differences between agent functions and agent programs. 

a. Can there be more than one agent program that implements a given agent function? 
Give an example, or show why one is not possible. 

b. Are there agent functions that cannot be implemented by any agent program? 
c. Given a fixed machine architecture, does each agent program implement exactly one 

agent function? 
d. Given an architecture with n bits of storage, how many different possible agent pro-

grams are there? 
e. Suppose we keep the agent program fixed but speed up the machine by a factor of two. 

Does that change the agent function? 

2.7 Write pseudocode  agent programs for the goal-based and utility-based agents. 

The following exercises all concern the implementation of environments  and agents for die 
vacuum-cleaner world. 
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2.8 Implement a performance-measuring environment simulator for the vacuum-cleaner 
world depicted in Figurc 2.2 and specified on pagc 38. Your implementation should be modu-
lar so that the sensors, actuators, and environment characteristics (size, shape, dirt placement, 
etc.) can be changed easily. (Note: for some choices of programming language and operating 
system there are already implementations in the online code repository.) 

2.9 Implement a simple reflex agent for the vacuum environment in Exercise 2.8. Run the 
environment with this agent fur all possible initial dirt configurations and ageut  locutions. 

Record the performance score for each configuration and the overall average score. 

2.10 Consider a modified version of the vacuum environment in Exercise 2.8, in which the 
agent is penalized one point for each movement. 

a. Can a simple reflex agent be perfectly rational for this environment? Explain. 
b. What about a reflex agent with state'? Design such an agent. 
c_ How do your answers to a and b change if the agent's percepts give it the clean/dirty 

status of every square in the environment? 

2.11 Consider a modified version of the vacuum environment in Exercise 2.8, in which the 
geography of the environment—its  extent, boundaries, and obstacles—is unknown, as is the 
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.) 

a. Can a simple reflex agent be perfectly rational for this environment? Explain. 
h. Can a simple reflex agent with a randomized  agent function outperform a simple reflex 

agent? Design such an agent and measure its performance on several environments. 
c. Can you design an environment in which your randomized agent will perform poorly? 

Show your results. 
d. Can a reflex agent with state outperform a simple reflex agent? Design such an agent 

and measure its performance on several environments. Can you design a rational agent 
of this type? 

2.12 Repeat Exercise 2.11 for the case in which the location sensor is replaced with a 
"bump" sensor that detects the agent's attempts to move into an obstacle or to cross the 
boundaries of the environment. Suppose the bump sensor stops working; how should the 
agent behave? 

2.13 The vacuum environments in the preceding exercises have all been deterministic. Dis-
cuss possible agent programs for each of the following stochastic versions: 

a. Murphy's law: twenty-five percent of the time, the Suck action fails to clean the floor if 
it is dirty and deposits dirt  unto the floor if the floor is clean. How is your agent program 
affected if the dirt sensor gives the wrong answer 10% of the time? 

b. Small children: At each time step, each clean square has a 10% chance of becoming 
dirty. Can you come up with a rational agent design for this case? 



SOLVING PROBLEMS BY 
SEARCHING 

In which we see how an agent can find a sequence of actions that achieves its 
goals when no single action will do. 

PROBLEM-SOLVING 
AGENT 

The simplest agents discussed in Chapter 2 were the reflex agents, which base their actions on 
a direct mapping from states to actions. Such agents cannot operate well in environments for 
which this mapping would be too large to store and would take too long to learn. Goal-based 
agents, on the other hand, consider future actions and the desirability of their outcomes. 

This chapter describes one kind of goal-based agent called a problem-solving agent. 
Problem-solving agents use atomic representations, as described in Section 2.4.7—that  is,  
states of the world are considered as wholes, with no interns  I structure visible to the problem-
solving algorithms,  Goal-based agents that use more advanced factored or structured rep-
resentations are usually called planning agents and are discussed in Chapters 7 and 10.  

Our discussion of problem solving begins with precise definitions of problems and their 
solutions  and give several examples to illustrate these definitions. We then describe several 
general-purpose search algorithms that can be used to solve these problems. We will see 
several uninformed search algorithms algorithms that are given no information about the 
problem other than its definition. Although some of these algorithms can solve any solvable 
problem, none of them can do so efficiently. Informed search algorithms, on the other hand, 
can do quite well given some guidance on where to look for solutions. 

In this chapter, we limit ourselves to the simplest kind of task environment, for which 
the solution to a problem is always afixed  sequence of actions. The more general case—where  

the agent's future actions may vary depending on future percepts—is handled in Chapter 4. 
This chapter uses the concepts of asymptotic complexity (that is, O()  notation) and 

NP-completeness. Readers unfamiliar with these concepts should consult Appendix A. 

3.1 PROBLEM-SOLVING AGENTS 

Intelligent agents are supposed to maximize their performance measure. As we mentioned 
in Chapter 2, achieving this is sometimes simplified if the agent can adopt a goal and aim at 

satisfying it. Let us first look at why and how an agent might do this. 

64  
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Imagine an agent in the city of Arad, Romania, enjoying a touring holiday. The agent's 
performance measure contains many factors: it wants to improve its suntan, improve its Ro- 
manian, take in the sights, enjoy the nightlife (such as it is), avoid hangovers, and so on. The 
decision problem is a complex one involving many tradeoffs and careful reading of guide- 
books. Now, suppose the agent has a nonrefundable ticket to fly out of Bucharest the follow-
ing day. In that case, it makes sense for the agent to adopt the goal of getting to Bucharest. 
Courses of action that don't reach Bucharest on time can be rejected without further consid-
eration and the agent's decision problem is greatly simplified. Goals help organize behavior 
by limiting the objectives that the agent is trying to achieve and hence the actions it needs 

GOAL FORMULATION  to consider. Goal formulation, based on the current situation and the agent's performance 
measure, is the first step in problem solving. 

We will consider a goal to be a set of world states—exactly those states in which the 
goal is satisfied. The agent's task is to find out how to act, now and in the future, so that it 
reaches a goal state. Before it can do this, it needs to decide {or we need to decide on its 
behalf) what sorts of actions and states it should consider. If it were to consider actions at 
the level of "move the left foot forward an inch" or "turn the steering wheel one degree left."  
the agent would probably never find its way out of the parking lot, let alone to Bucharest, 
because at that level of detail there is too much uncertainty in the world and there would be 

P

KA  
ROBLEMRCH too many steps in a solution. Problem formulation is the process of deciding what actions M  LA  

and states to consider, given a goal. We discuss this process in more detail later. For now, let 
us assume that the agent will consider actions at the level of driving from one major town to 
another. Each state therefore corresponds to being in a particular  town. 

Our agent has now adopted the goal of driving to Bucharest and is considering where 
to go from Arad. Three roads lead out of Arad, one toward Sibiu, one to Timisoara, and one 
to Zerind. None of these achieves the goal, so unless the agent is familiar with the geography 
of Romania, it will not know which road to follow.' In other words, the agent will not know 
Mitch  of its possible actions is best, because it does not yet know enough about the state 
that results from taking each action. If the agent has no additional information—i.e., if the 
environment is unknown in the sense defined in Section 2.1—then  it is has no choice but to 
try one of the actions at random. This sad situation is discussed in Chapter 4. 

But suppose the agent has a map of Romania. The point of a map is to provide the 
agent with information about the states it might get itself into and the actions it can take. The 
agent can use this information to consider subsequent stages of a hypothetical journey via 
each of the three towns, trying to find a journey that eventually gets to Bucharest. Once it has 
found a path on the map from Arad to Bucharest, it can achieve its goal by carrying cut the 
driving actions that correspond to the legs of the journey. In general, an agent with several 
immediate options of unknown value can decide what to do by first examining future actions 
that eventually lead to states of known value. 

To be more specific about what we mean by "examining future actions," we have to 
be more specific about properties of the environment, as defined in Section 2.3. For now, 

We are assuming that most readers are  in the same position and can easily imagine themselves to be as clueless 
as our agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device, 
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we assume that the environment is observable, so the agent always knows the current state. 
For the agent driving in Romania, it's reasonable to suppose that each city on the map has a 

sign indicating its presence to arriving drivers. We also assume the environment is discrete. 
so  at any given state there are only finitely many actions to choose from, This is true for 
navigating in Romania because each city is connected to a small number of other cities. We 
will assume the environment is known, so the agent knows which states are reached by each 
action. (Having an accurate map suffices to meet this condition for navigation problems.) 
Finally, we assume that the environment is deterministic, so each action has exactly one 
outcome. Under ideal conditions, this is true for the agent in Romania—it means that if it 
chooses to drive from Arad to Sibiu, it does end up in Sibiu. Of course, conditions are not 
always ideal, as we show in Chapter 4. 

Under these assumptions, the solution in any problem is a,  fired  sequence of actions. 
"Of course?" une  might say, "What else could it be?" Well, in general it could be a branching 
strategy that recommends different actions in the future depending on what percepts arrive. 
For example, under less than ideal conditions, the agent might plan to drive from Arad to 
Sibiu and then to Rimnicu Vilcea but may also need to have a contingency plan in case it 
arrives by accident in Zerind instead of Sibiu. Fortunately, if the agent knows the initial state 
and the environment is known and deterministic, it knows exactly where it will be after the 
first action and what it will perceive. Since only one percept is possible after the first action, 
the solution can specify only one possible second action, and so om  

SEARCH The process of looking for a sequence of actions that reaches the goal is called search. 
SOWHON A search algorithm takes a problem as input and returns a solution in the form of an action 

sequence. Once a solution is found, the actions it recommends can be carried out. This 
IXECTRON  is called the execution phase. Thus, we have a simple "formulate, search, execute" design 

for the agent, as shown in Figure 3.1. After formulating a goal and a problem to solve. 
the agent calls a search procedure to solve it. It then uses the solution to guide its actions,  
doing whatever the solution recommends as the next thing to do—typically, the first action of 
the sequence—and then removing that step from the sequence. Once the solution has been 
executed, the agent will formulate a new goal 

Notice that while the agent is executing the solution sequence it ignores its percepts 
when choosing an action because it knows in advance what they will be. An agent that 
carries out its plans with its eyes closed, so to speak. must be quite certain of what is going 

OPEN-LDOP  on. Control theorists call this an open-loop system, because ignoring the percepts breaks the 
loop between agent and environment. 

We first describe the process of problem formulation, and then devote the bulk of the 
chapter to various algorithms for the SEARCH function. We do not discuss the workings of 
the UPDATE-STATE and FORMULATE-GOAL functions further in this chapter. 

3.1.1 Well-defined problems and solutions 

PROBLEM A problem can be defined formally by five components: 

INITIAL STATE • The initial state that the agent starts in_ For example, the initial state for our agent in 
Romania might be described as In(A  rad). 

http://discrete.so
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function SIMPLE-PnontEm-SOLVING-AGENr(percept)  returns an action 
persistent seg,  an action sequence, initially empty 

state, some description of the current world state 
goal, a goal, initially null 
problem, a problem formulation 

state  UPDATE-ST ATE(state  , percept) 
if seq is empty then 

goal +(—  FORM ULATE-GOAL(state)  
problem +—  FORMULATE -PROBLEM( state, goal) 
seq  SEARcii(  pro blem) 
if seq = failure then return a null action 

action 4—  FIRST(seq)  
s +—  REST(seq)  
return action  

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem. 
searches for a sequence of actions that would solve the problem, and then executes the actions 
one at a time. When this is complete, it formulates another goal and starts over. 

ACTIONS • A description of the possible actions available to the agent Given a particular state s, 
ACTIONS(s)  returns the set of actions that can be executed in s. We say that each of 

APPUCAPLE these actions is applicable in s. For example, from the state Ir.(Arad), the applicable 
actions are { Go(Sibiu),  Go(Timisoara),  Go(Zerim1)}.  

• A description of what each action does; the formal name for this is the transition 
TRANSITION  MODFI model, specified by a function REsuur(s, a) that returns the state that results from 
SUCC ESSOR doing action a in state s. We also use the term successor to refer to any state reachable 

from a given state by a single action. 2  For example, we have 

REstrug/n(Arad),  Go(Zeriad))  = In(Zeririd)  . 

STATE SPACE Together, the initial state, actions, and transition model implicitly define the state space 
of the problem—the set  of all states reachable from the initial state by any sequence 

GRAPH  of actions. The state space forms a directed network or graph in which the nodes 
are states and the links between nodes are actions. {The map of Romania shown in 
Figure 3.2 can be interpreted as a state-space graph if we view each road as standing 

PATH 

	

	 for two driving actions, one in each direction.) A path in the slate space is a sequence 
of states connected by a sequence of actions. 

GOAL TEST • The goal test, which determines whether a given state is a goal state. Sometimes there 
is an explicit set of possible goal states, and the test simply checks whether the given 
state is one of them. The agent's goal in Romania is the singleton set {  In(Bucharest)}.  

2  Many treatments of problem solving, including previous editions of this book, use a successor function, which 
returns the set of all successors, instead of separate ACTIONS and RESULT functions. The successor function 
makes it difficult to describe an agent that knows what actions it can try but not what they achieve. Also, note 
some author use RES ULT(a,$)  instead of RESIJ  LT(s, a), and some use DO  instead of RESULT. 
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PAIN COST 

STEP COST 

OPTIMAL SOLUTION 

Figure 3.2  A simplified road map of part of Romania. 

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called "checkmate," 
where the opponent's king is under attack and can't escape. 

• A path cost function that assigns a numeric cost to each path. The problem-solving 
agent chooses a cost function that reflects its own performance measure. For the agent 
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length 
in kilometers. In this chapter, we assume that the cost of a path can be described as the 
guns  of the costs of the individual actions along the path 3 The step cost of taking action 
a in state s to reach state s'  is denoted by e(s,  a, s').  The step costs for Romania are 
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4  

The preceding elements define a problem and can be gathered into a single data structure 
that is given as input to a problem-solving algorithm. A solution to a problem is an action 
sequence that leads from the initial state to a goal state. Solution quality is measured by the 
path cost function, and an optimal solution has the lowest path cost among all solutions. 

3.1.2 Formulating problems 

In the preceding section we proposed a formulation of the problem of getting to Bucharest in 
terms of the initial state, actions, transition model, goal test, and path cost. This formulation 
seems reasonable, but it is still a model—an  abstract mathematical description—and not the 
3  This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17. 

The implications of negative costs are explored in Exercise 3.B. 
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real thing. Compare the simple state description we have chosen, In(Arad),  to an actual cross-
country trip, where the state of the world includes so many things: the traveling companions, 
the current radio program, the scenery out of the window, the proximity of law enforcement 
officers, the distance to the next rest stop, the condition of the road, the weather, and so on. 
All these considerations are left out of our state descriptions because they are irrelevant to the 
problem of finding a route to Bucharest. The process of removing detail from a representation 

ABSTRACTION is called abstraction. 
hi addition to abstracting the state description, we must abstract the actions themselves. 

A driving action has many effects. Besides changing the location of the vehicle and its oc-
cupants, it takes up time, consumes fuel, generates pollution, and changes the agent (as they 
say, travel is broadening). Our formulation takes into account only the change in location. 
Also, there are many actions that we omit altogether: turning on the radio, looking out of 
the window, slowing down fur law enforcemern  officers, and so on. And of course, we don't 
specify actions at the level of "turn steering wheel to the left by one degree." 

Can we be more precise about defining the appropriate level of abstraction'? Think of the 
abstract states and actions we have chosen as corresponding to large sets of detailed world 
states and detailed action sequences. Now consider a solution to the abstract problem: for 
example. the path from Arad to Sibiu to Rimnicu  Vilcea to Pitesti to Bucharest. This abstract 
solution corresponds to a large number of more detailed paths. For example, we could drive 
with the radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of 

the trip. The abstraction is valid if we can expand any abstract solution into a solution in the 
more detailed world; a sufficient condition is that for every detailed state that is "in Arad." 
there is a detailed path to some state that is "in Sibiu," and so on. 5  The abstraction is useful 
if carrying out each of the actions in the solution is easier than the original problem; in this 
case they are easy enough that they can be carried out without further search or planning by 
an average driving agent. The choice of a good abstraction thus involves removing as much 
detail as possible while retaining validity and ensuring that the abstract actions are easy to 
carry out. Were it not for the ability to construct useful abstractions, intelligent agents would 
be completely swamped by the real world. 

3.2 EXAMPLE PROBLEMS 

TOY PROBLEM 

REAL-WORLD  
PROBLEM 

The problem-solving approach has been applied to a vast array of task environments. We 
list some of the best known here, distinguishing between b y and real-world problems. A 
toy problem is intended to illustrate or exercise various problem-solving methods. It can be 
given a concise, exact description and hence is usable by different researchers to compare the 
performance of algorithms. A real-world problem is one whose solutions people actually 
care about. Such problems tend not to have a single agreed-upon description, but we can give 
the general flavor of their formulations. 

 

5  See Section 11.2 for a more comp/etc  set of definitions and algorithms. 
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Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R = 
Right, S = Suck 
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3.2.1 Toy problems 

The first example we examine is the vacuum world first introduced in Chapter 2. (See 
Figure 2.2.) This can be formulated as a problem as follows: 

■ States: The state is determined by both the agent location and the dirt locations. The 
agent is in one of two locations, each of which might or might not contain dirt. Thus, 
there are 2 x 22  = B possible world states. A larger environment with n locations has 
rt  • 2'  states. 

■ Initial state: Any state can be designated as the initial state. 
• Actions: In this simple environment, each state has just three actions: Left, Right, and 

Suck. Larger environments might also include Up and Down. 

• Transition model: The actions have their expected effects, except that moving Left in 
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square 
have no effect. The complete state space is shown in Figure 3.3. 

• Goal test: This checks whether all the squares are clean. 
• Path cost: Each step costs 1, so the path cost is the number of steps in the path. 

Compared with the real world. this toy problem has discrete locations, discrete dirt, reliable 
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions. 

El-PUZZLE The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3 x3 board with 
eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the 
space. The object is to reach a specified goal state, such as the one shown on the tight of the 
figure. The standard formulation is as follows: 



7  

I  1 4 

5 6 

8 3 1 

Start State 

1 2 

3 4 5 

6 7 8 

Goal State 

Figure 3.4 A typical instance  of the 2 - puzzle.  
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• States: A state description specifies the location of each of the eight Ides and the blank 
in one of the nine squares. 

• Initial state: Any state can be designated as the initial state. Note that any given goal 
can he reached Front  exactly half of the possible initial states (Exercise 3 41.)  

• Actions: The simplest formulation defines the actions as movements of the blank space 
Left, Right, Up, or Down. Different subsets of these are  possible depending on where 
the blank is. 

• Transition model: Given a state and action, this returns the resulting state; for example, 
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank 
switched. 

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.) 

• Path cost: Each step costs 1, so the path cost is the number of steps in the path. 
What abstractions have we included here? The actions are abstracted to their beginning and 
final states, ignoring the intermediate locations where the block is sliding. We have abstracted 
away actions such as shaking the hoard when pieces get stuck and niled  out  extracting the 
pieces with a knife and putting them back again. We are left with a description of the rules of 
the puzzle, avoiding all the details of physical manipulations. 

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as 
test problems for new search algorithms in AI. This family is known to be NP-complete, 
so one does not expect to find methods significantly better in the worst case than the search 
algorithms described in this chapter and the next. The 8-puzzle has 91/2 =181, 440 reachable 
states and is easily solved. The 15-puzzle (on a 4 x 4 board) has around 1.3 trillion states, and 
random instances can be solved optimally in a few milliseconds by the best search algorithms.  
The 24-puzzle (on a 5 x 5 board) has around 1025  states, and random instances take several 
hours to solve optimally. 

The goal of the 8-queens  problem is to place eight queens on a chessboard such that 

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails; the queen in the rightmost column is 
attacked by the queen at the top left. 

SIMIK-BLOCK  
PUZZLES 

1:1-01.JEEN  S PROBLEM 



Figure 3.5 Almost a solution to the 8 queens problem. (Solution is left as an exercise.) 
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Although efficient special-purpose algorithms exist for this problem and for the whole 
n-queens family, it remains a useful test problem for search algorithms. There are two main 
kinds of formulation. An incremental formulation involves operators that augment the state 
description, starting with an empty state; for the 8-queens problem, this means that each 
action adds a queen to the state. A complete-state formulation starts with all 8 queens on 
the board and moves them amend. In either  case, the path cost is of no interest because only 
the final state counts. The first incremental formulation one might try is the following: 

■ States: Any arrangement of 0 to 8 queens on the board is a state. 
• Initial state: No queens on the board. 

■ Actions: Add a queen to any empty square. 
• Transition model: Returns the board with a queen added to the specified square. 
• Goal test: 8 queens are on the board, none attacked. 

In this formulation, we have 69  • 63 • • • 57  1.8 x 10 14  possible sequences to investigate. A 
better formulation would prohibit placing a queen in any square that is already attacked: 

■ States: All possible arrangements of n queens (0 < rt  < 8), one per column in the 
leftmost n.  columns, with no queen attacking another. 

■ Actions: Add a queen to any square in the leftmost empty column such that it is not 
attacked by any other queen. 

This formulation reduces the 8-queens state space from 1.8 x 10 14  to just 2,057, and solutions 
are easy to find. On the other hand, for 100 queens the reduction is from roughly 10'"  states 
to about 10 52  states (Exercise 3.5)—a big improvement, but not enough to make the problem 
tractable. Section 4.1  describes the complete-state formulation, and Chapter 6 gives a simple 
algorithm that solves even the million-queens problem with ease. 

INCREMENTAL 
FORMU  LATION  

UCIIFLE  I E- S  IA1  t  
FORMA LAT I ON  
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Our final toy problem was devised by Donald Knuth (1964) and illustrates how infinite 
state spaces can arise. Knuth conjectured that, starting with the number 4, a sequence of fac-
torial, square root, and floor operations will reach any desired positive integer. For example, 
we can reach 5 from 4 as follows: 

6/(4!)!]  = 5 . 

FXIJTE-FSIONG  
PROBLEM 

The problem definition is very simple: 
• States: Positive numbers. 
• Initial state: 4.  
• Actions: Apply factorial, square root, or floor operation (factorial for integers only). 
• Transition model: As given by the mathematical definitions of the operations. 
• Goal test: State is the desired positive integer. 

To our knowledge there is no bound on how large a number might be constructed in the pro- 
cess of reaching a given target—for example, the  number 620,448,401,733,239,439,360,000 
is generated in the expression for 5—so  the state space for this problem is infinite. Such 
state spaces arise frequently in tasks involving the generation of mathematical expressions, 
circuits, proofs, programs, and other recursively defined objects. 

3.2.2 Real-world problems 

We have already seen how the route-finding problem is defined in terms of specified loca- 
tions and transitions along links between them.  Route-finding algorithms are used in a variety 
of applications. Some, such as Web sites and in-car systems that provide driving directions, 
are relatively straightforward extensions of the Romania example Others, such as routing 
video streams in computer networks, military operations planning, and airline travel-planning 
systems, involve much more complex specifications. Consider the airline travel problems that 
must be solved by a travel-planning Web site: 

• States: Each state obviously includes a location (e.g., an airport) and the current time. 
Furthermore, because the cost of an action (a flight segment) may depend on previous 
segments, their fare bases, and their status as domestic or international, the state must 
record extra information about these "historical" aspects. 

• Initial state: This is specified by the user's query. 
• Actions: Take any flight from the current location, in any seat class, leaving after the 

current time, leaving enough time for within-airport  transfer if needed. 
• Transition model: The state resulting from taking a flight will have the flight's desti-

nation as the current location and the flight's arrival time as the current time. 
• Goal test: Are we at the final destination specified by the user? 
• Path cost: This depends on monetary cost, waiting time, flight time, customs and im-

migration procedures, seat quality, time of day, type of airplane, frequent-flyer mileage 
awards, and so on. 
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TOURING PROBLEM 

TRAVELING 
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PROBLEM 

01-S!  LAYOUT 

SCOOT NAVIGATION 

All1MIATIC  
ASSEMBLY 
SEOUENCING  

Commercial travel advice systems use a problem formulation of this kind, with many addi- 
tional complications to handle the byzantine fare structures that airlines impose. Any sea- 
soned traveler knows, however, that not all air travel goes according to plan. A really good 
system should include contingency plans—such as backup reservations on alternate flights— 
to the extent that these are justified by the cost and likelihood of failure of the original plan. 

Touring problems are closely related to route-finding problems, but with an impor-
tant difference. Consider, for example, the problem "Visit every city in Figure 3.2 at least 
once, starting and ending in Bucharest" As with route finding, the actions correspond 
to trips between adjacent cities. The state space, however, is quite different. Each state 
must include not just the current location but also the set of cities the agent has visited. 
So the initial state would be In  (Bucharest), Visit ed({Bueharest}),  a typical intermedi-
ate state would be fn(Vaslui),  Visqed({Bucharest,  Urziceni  ,  Vaslui}),  and the goal test 
would check whether the agent is in Bucharest and all 20 cities have been visited.  

The traveling salesperson problem (TSP) is a touring problem in which each city 
must be visited exactly once. The aim is to find the shortest tour. The problem is known to 
be NP-hard, but an enormous amount of effort has been expended to improve the capabilities 
of TSP algorithms. In addition to planning trips for traveling salespersons, these algorithms 
have been used for tasks such as planning movements of automatic circuit-board drills and of 
stocking machines on shop floors. 

A VLSI layout problem requires positioning millions of components and connections 
on a chip to minimize area, minimize circuit delays, minimize stray capacitances, and max-
imize manufacturing yield. The layout problem comes after the logical design phase and is 
usually split into two pans: cell layout and channel routing. In cell layout, the primitive 
components of the circuit are grouped into cells, each of which performs some recognized 
function. Each cell has a fixed footprint (size and shape) and requires a certain number of 
connections to each of the other cells. The aim is to place the cells on the chip so that they do 
not overlap and so that there is room for the connecting wires to be placed between the cells. 
Channel routing finds a specific route for each wire through the gaps between the cells. These 
search problems are extremely complex, but definitely worth solving_  later in this chapter, 
we present some algorithms capable of solving them. 

Robot navigation is a generalization of the route-finding problem described earlier. 
Rather than following a discrete set of routes, a robot can move in a continuous space with 
(in principle) an infinite set of possible actions and states. For a circular robot moving on a 
flat surface, the space is essentially two-dimensional. When the robot has arms and legs or 
wheels that must also be controlled, the search space becomes many-dimensional. Advanced 
techniques are required just to make the search space finite. We examine some of these 
methods in Chapter 25. In addition to the complexity of the problem, real robots must also 
deal with errors in their sensor readings and motor controls. 

Automatic assembly sequencing of complex objects by a robot was first demonstrated 
by FREDDY (Michie, 1972). Progress since then has been slow but sure, to the point where 
the assembly of intricate objects such as electric motors is economically feasible. In assembly 
problems, the aim is to find an order in which to assemble the parts of some object. If the 
wrong order is chosen, there will be no way to add some part later in the sequence without 
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undoing some of the work already done. Checking a step in the sequence for feasibility is a 
difficult geometrical search  problem closely related to robot navigation. Thus, the generation 
of legal actions is the expensive part of assembly sequencing. Any practical algorithm must 
avoid exploring all but a tiny fraction of the state space. Another important assembly problem 
is protein design, in which the goal is to find a sequence of amino acids that will fold into a 
three-dimensional protein with the right properties to cure some disease. 

3.3 SEARCHING FOR SOLUTIONS 

Having formulated some problems, we now need to solve them. A solution is an action 
sequence, so search algorithms work by considering various possible action sequences. The 

sEAtica  FREE possible action sequences starting at the initial state form a search tree with the initial state 
NCOE at the root; the branches are actions and the nodes correspond to states in the state space of 

the problem. Figure 3.6 shows the fast few steps in growing the search tree for finding a route 
from Arad to Bucharest. The root node of the tree corresponds to the initial state, In(Arad).  
The first step is to test whether this is a goal state. (Clearly it is not, but it is important to 
check so that we can solve trick problems like "starting in Arad, get to Arad.") Then we 

EXPANDING need to consider taking .various actions. We do this by expanding the current state; that is, 
GENERATING applying each legal action to the current state. thereby generating a new set of states. In 
PARENT NODE this case, we add three branches from the parent node In(Arad) leading to three new child 
CHILD NODE nodes: in(Sibw),  In(Timisaara),  and In(Zerind).  Now we must choose which of these three 

possibilities to consider farther. 
This is the essence of search—following up one option now and putting the others aside 

for later, in case the first choice does not lead to a solution. Suppose we choose Sibiu first. 
We check to see whether it is a goal state (it is not) and then expand it to get In(Arad),  
In(Fagaras), In(Oradea), and In(RimicuVilcea).  We can then choose any of these four or go 

LEAF NODE hack and choose Timisoara or 7erind_  Each of these six nodes is a leaf node, that is, a node 
with no children in the tree. The set of all leaf nodes available for expansion at any given 

EfloNricn point is called the frontier. (Many authors call it the open list, which is both geographically 
OPEN LIST less evocative and less accurate, because other data structures are better suited than a list.) In 

Figure 3.6, the frontier of each tree consists of those nodes with bold outlines. 
The process of expanding nodes on the frontier continues until either a solution is found 

or there are no more states to expand. The general TREE-SEARCH algorithm is shown infor-
mally in Figure 3.7. Search algorithms all share this basic structure; they vary primarily 

SEARCH STRATEGY  according to how they choose which state to expand next—the so-called  search strategy.  
The eagle-eyed reader will notice one peculiar thing about the search tree shown in Fig- 

ure 3.6: it includes the path from Arad to Sibiu and back to Arad again! We say that In(Arad)  
FIE'EATED  STATE is a repeated state in the search tree, generated in this case by a loopy path. Considering 
LOOPY PATH such loopy paths means that the complete search tree for Romania is infinite because there 

is no linnt  to how often one can traverse a loop. On the other  hand, the state space—the 
map shown in Figure 3.2—has only 20 states. As we discuss in Section 3.4, loops can cause 



(a) The initial state 

(b)After expanding Arad 

(c)After expanding Sibiu 

Figure 3.6 Partial search trees for finding a route from Arad to Bucharest. Nodes that 
have been expanded are shaded; nodes that have been generated but not yet expanded are 
outlined in bold; nodes that have not yet been generated are shown in faint dashed lines. 
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certain algorithms to fail, making otherwise solvable problems unsolvable. Fortunately, there 
is no need to consider loopy paths. We can rely on more than intuition for this: because path 
costs are additive and step costs are nonnegative, a loopy path to any given state is never 
better than the same path with the loop removed. 

Loopy paths are a special case of the more general concept of redundant paths, which 
exist whenever there is more than one way to get from one state to another. Consider the paths 
Arad–Sibiu (140 km long) and Arad–Zerind–Oradea–Sibiu  (297 km long). Obviously, the 
second path is redundant—it's just a worse way to get to the same state. If you are concerned 
about reaching the goal, there's never any reason to keep more than one path to any given 
state, because any goal state that is reachable by extending one path is also reachable by 
extending the other. 

In some cases, it is possible to define the problem itself so as to eliminate redundant 
paths. Fur example, if we formulate the 8-queens problem (page 71) so that a queen can be 
placed in any column, then each state with n queens can be reached by 75! different paths; but 
if we reformulate the problem so that each new queen is placed in the leftmost empty column 
then each state can be reached only through one path, 
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function TREE-SEARCH(  problem) returns a solution, or failure 
initialize the frontier using the initial state of problem 
loop do 

if the frontier is empty then return failure 
choose a leaf node and remove it from the frontier 
if the node contains a goal state then return the corresponding solution 
expand the chosen node, adding the resulting nodes to the frontier 

function GRAPH-SEARCH(prohdeml  returns a solution. or failure 
initialize the frontier using the initial stale of problem 
initialize the explored set to be empty 
loop do 

if the frontier is empty then return failure 
choose a leaf node and remove it from the frontier 
if the node contains a goal state then return the corresponding solution 
add the node to the explored set 
expand the chosen nude,  adding the resulting nodes to the frontier 

only if not in the frontier or explored set 

Figure 3.7 An informal description of the general tree-search and graph-search algo- 
rithms. The parts of CRAPE-SEARCH  marked in bold italic are the additions needed to 
handle repeated states. 

In other cases, redundant paths are unavoidable. This includes all problems where 
the actions are reversible, such as route-finding problems and sliding-block puzzles. Route- 

RECTANGULAR GRID  finding on a rectangular grid (like the one used later for Figure 3.9) is a particularly impor-
tant example in computer games. In such a grid, each state has four successors, so a search 
tree of depth d that includes repeated states has 4c1  leaves; but there are only about 2d2  distinct 
states within d steps of any given .state_ For d = 20, this means about a trillion nodes but only 
about 800 distinct states. Thus, following redundant paths can cause a tractable problem to 
become intractable. This is true even for algorithms that know how to avoid infinite loops. 

rfr
As  the saying goes, algorithms that,  oget their history are doomed to repeat it. The 

way to avoid exploring redundant paths is to remember where one has been. To do this, we 
aPLORED  set augment the TREE-SEARCH algorithm with a data structure called the explored set (also 
CLOSED UST known as the closed list), which remembers every expanded node. Newly generated nodes 

that match previously generated nodes—ones in the explored set or the frontier—can be dis-
carded instead of being added to the frontier. The new algorithm, called GRAPH-SEARCH, is 
shown informally in Figure 3.7. The specific algorithms in this chapter draw on this general 
design. 

Clearly, the search tree constructed by the GRAPH-SEARCH algorithm contains at most 
one copy of each state, so we can think of it as growing a tree directly on the state -space graph, 

SEPARATOR 

	

	 as shown in Figure 3.8. The algorithm has another nice property: the frontier separates the 
state-space graph into the explored region and the unexplored region, so that every path from 
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Figure 3.8  A sequence of search trees generated by a graph search on the Romania prob-
lem of Figure 3.2.  At each stage, we have extended each path by one step. Notice that at the 
third stage, the northernmost city (Oradea) has become a dead end: both of its successors are 
already explored via other paths. 

(a) (b) (c) 

 

Figure 3.9  The aeparaLion  properly of GRAPH-SEARCH, ill ustrated on a iectangular-grid  
problem. The frontier (white nodes) always separates the explored region of the state space 
(black nodes) from the unexplored region (gray nodes). In (a), just the root has been ex-
panded. In  (b), one leaf node has been expanded. In (c), the remaining successors of the root 
have been expanded in clockwise order. 

the initial state to an unexplored state has to pass through a state in the frontier. (If this 
seems completely obvious, try Exercise 3.13 now.) This property is illustrated in Figure 3.9. 
As every step moves a state from the frontier into the explored region while moving some 
states from the unexplored region into the frontier, we see that the algorithm is systematically 
examining the states in the state space, one by one, until it finds a solution. 

3.3.1 Infrastructure for search algorithms 
Search algorithms require a data structure to keep track of the search tree that is being con-
structed. For each node 72  of the tree, we have a structure that contains four components: 

■ rt.  STATE: the state in the state space to which the node corresponds; 
• rl.PARENT:  the node in the search tree that generated this node; 
• rt. AcrioN:  the action that was applied to the parent to generate the node; 
• ft.PATH-COST:  the cost, traditionally  denoted by y(ti),  of the path ficm  the initial state 

to the node, as indicated by the parent pointers. 



LI  a 
ENE  

Figure 3.10  Nodes are the data structures from which the search tree is constructed. Each 
has a parent, a state, and various bookkeeping fields_  Arrows point from child to parent. 
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Given the components for a parent node, it is easy to see how to compute the necessary 
components for a child node. The function CHILD-NODE  takes a parent node and an action 
and returns the resulting child node: 

function CHILD-NoDE(pro  Henn ,  parent, action) returns a node 
return a node with 

STATE = probiem.A.ESULT(parent.STATE,  action), 
PARENT = parent, ACTION = action, 
PATH COST = parent,PATH  COST problem.  STEP COST(parent.STATE,  action) 

The node data structure is depicted in Figure  3.10. Notice how the PARENT pointers 
string the nodes together into a tree structure. These pointers also allow the solution path to be 
extracted when a goal node is found; we use the SOLUTION function to return the sequence 
of actions obtained by following parent pointers back to the root. 

Up to now, we have not been very careful to distinguish between nodes and states, but in 
writing detailed algorithms it's important to make that distinction. A node is a bookkeeping 
data structure used to represent the search tree. A state corresponds to a configuration of the 
world. Thus, nodes are on particular paths, as defined by PARENT pointers, whereas states 
are not. Furthermore, two different nodes can contain the same world state if that state is 
generated via two different search paths. 

Now that we have nodes, we need somewhere to put them. The frontier needs to be 
stored in such a way that the search algorithm can easily choose the next node to expand 

QUEUE  according to its preferred strategy. The appropriate data structure for this is a queue. The 
operations on a queue are as follows: 

• EMPTY?(  queue) returns true only if there are no more elements in the queue. 
• P or(queue)  removes the first element of the queue and returns it. 
• INSERT(edemen,t,  queue) inserts an element and returns the resulting queue. 
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Queues are characterized by the order in which they store the inserted nodes. Three common 
TITO  OW  WI variants arc the first-in, first-out or FIFO queue, which pops the oldest element of the queue; 
LIFO °UBE the last-in, first-out or LIFO queue (also known as a stack), which pops the newest element 
PRIDFIRY  QUEUE of the queue; and the priority queue, which pops the element of the queue with the highest 

priority according to some ordering function. 
The explored set can be implemented with a hash table to allow efficient checking for 

repeated states. With a good implementation, insertion and lockup can be done in roughly 
constant time no matter how many states are stored. One must take care to implement the 
hash table with the right notion of equality between states. For example, in the traveling 
salesperson problem (page 74),  the hash table needs to know that the set of visited cities 
{Bucharest,Urziceni,Vaslui } is the same as 1 Urziceni,Vaslui,Bucharest}.  Sometimes this can 
be achieved most easily by insisting that the data structures for states be in some canonical 

UPEONICAL  FORM form; that is, logically equivalent stales should map to the same data structure. In the case 
of states described by sets, for example, a bit-vector representation or a sorted list without 
repetition would be canonical, whereas an unsorted list would not. 

COMPLETENESS 

DPI  I MALI  I Y 
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3.3.2 Measuring problem-solving performance 

Before we get into the design of specific search algorithms, we need to consider the criteria 
that might be used to choose among them. We can evaluate an algorithm's performance in 
four ways: 

■ Completeness: Is the algorithm guaranteed to find a solution when there is one? 
• Optimality: Does the strategy find the optimal solution, as defined on page 68? 
• Time complexity: How long does it take to find a solution? 
• Space complexity: How much memory is needed to perform the search? 

Time and space complexity are always considered with respect to some measure of the prob-
lem difficulty. In theoretical computer science, the typical measure is the size of the state 
space graph, IVY  + IE  , where V is the set of vertices (nodes) of the graph and E is the set 
of edges (links).  This is appropriate when the graph is an explicit data strucnire  that is input 
to the search program. (The map of Romania is an example of this.) In AI, the graph is often 
represented implicitly by the initial state, actions, and transition model and is frequently infi-
nite. For these reasons, complexity is expressed in terms of three quantities: b, the branching 
factor or maximum number of successors of any node; d. the depth of the shallowest goal 
node (i.e., the number of steps along the path from the root); and m, the maximum length of 
any path in the state space. Time is often measured in terms of the number of nodes generated 
during the search, and space in terms of the maximum number of nodes stored in memory. 
For the most part, we describe time and space complexity for search on a tree; for a graph, 
the answer depends on haw "redundant" the paths in the state space are. 

To assess the effectiveness of a search algorithm, we can consider just the search cost— 
which typically depends on the time complexity but can also include a term for memory 
usage—or  we can use the total cost, which combines the search cost and the path cost of the 
solution found. For the problem of finding a route from  Arad  to Bucharest, the search cost 
is the amount of time taken by the search and the solution cost is the total length of the path 

SEARCH COAT 

TOTAL COST 
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in kilometers. Thus, to compute the total cost, we have to add milliseconds and kilometers. 
There is no "official exchange rate" between the two, but it might be reasonable in this case to 
convert kilometers into milliseconds by using an estimate of the car's average speed (because 
time is what the agent cares about). This enables the agent to find an optimal tradeoff point 
at which further computation to find a shorter path becomes counterproductive. The more 
general problem of tradeoffs between different goods is taken up in Chapter 16.  

3.4 UNINFORMED SEARCH STRATEGIES 

This section covers several search strategies that come under the heading of uninformed 
UNINFORMED search (also called blind search). The term means that the strategies have no additional SEARCH 

BLIND SEARCH information about states beyond that provided in the problem definition. All they can do is 
generate successors and distinguish a goal state from a non-goal state. All search strategies 
are distinguished by the order in which nodes are expanded. Strategies that know whether 

INFORMED SEARCH  one non-goal state is "mom promising" than another arc called informed search or heuristic 
HEAR ISM SEARCH  search strategies; they are covered in Section 3.5. 

MEANT-II-El  HST 
SEARCH 

3.4.1  Breadth-first search 

Breadth-first search is a simple strategy in which the root node is expanded first, then all the 
successors of the root node are expanded next, then their successors, and so on. In general, 
all the nodes are expanded at a given depth in the search tree before any nodes at the next 
level are expanded. 

Breadth-first search is an instance of the general graph-search algorithm (Figure 3.7) in 
which the shallowest unexpanded node is chosen for expansion. This is achieved very simply 
by using a FIFO queue for the frontier. Thus, new nodes (which are always deeper than their 
parents) go to the back of the queue, and old nodes, which are shallower than the new nodes, 
get expanded first. There is one slight tweak  on the general graph-search algorithm, which is 
that the goal test is applied to each node when it is generated rather than when it is selected for 
expansion. This decision is explained below, where we discuss time complexity. Note also 
that the algorithm, following the general template for graph search, discards any new path to 
a state already in the frontier or explored set; it is easy to see that any such path must be at 
least as deep as the one already found. Thus, breadth-first search always has the shallowest 
path to every node on the frontier. 

Pseudocode is given in Figure 3.11. Figure 3.12 shows the progress of the search on a 
simple binary tree. 

How does breadth-first search rate according to the four criteria from the previous sec-
tion? We can easily see that it is complete—if the shallowest goal node is at some finite depth 
d, breadth-first search will eventually find it after generating all shallower nodes (provided 
the branching factor b is finite). Note that as soon as a goal node is generated, we know it 
is the shallowest goal nude because all shallower nodes most have been generated already 
and failed the goal test. Now, the shallowest goal node is not necessarily the optimal one; 
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Figure 3.12 Breadth-first search on a simple binary tree. At each stage, the node to be 
expanded next is indicated by a marker. 
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Inaction B READTII-FtnsT-SE  ARCH (problem) returns a solution, or failure 

node <--  a node with STATE = proldemINITIAL -  STATE, PATH-COST =0 
if probiern.GOAL-TEST(  node. STATE) then return SOLUTION(node)  
frontier — a FIFO queue with node as the only element 
explored 4—  an empty set 
loop do 

if EnterY7(pAantier)  then return failure 
node q—  POP(  frontier) f* chooses the shallowest node in frontier *I  
add node.  STATE to  espliffett  
for each action in problem .ACTIONS(n ode. STATE) do 

child t—  CHILD -Noou(probieni,  node , action) 
if child . STATE is not in explored or frontier then 

if problem G  OAL- TEST(child.STATE) then return SOLUTION( child) 
frontier  INSERT( child, frontier) 

Figure 3.11 Breadth-first search on a graph. 

technically, breadth-first search is optimal if the path cost is a nondecreasing function of the 
depth of the node. The most common such scenario is that all actions have the same cost. 

So far, the news about breadth-first search has been good. The news about time and 
space is not so good. Imagine searching a uniform tree where every state has h  successors. 
The root of the search tree generates b nodes at the first level, each of which generates b more 
nodes, for a total of he  at the second level. Each of these generates b more nodes, yielding 6 1  
nodes at the third level, and so on. Now suppose that the solution is at depth el.  In the worst 
case, it is the last node generated at that level. Then the total number of nodes generated is 

b  b2  b3 bd  =  00,i)  

(If the algorithm were to apply the goal test to nodes when selected for expansion, rather than 
when generated, the whole layer of nodes at depth d would be expanded before the goal was  
detected and the time complexity would be 0(bd + 1 ).)  

As for space complexity: for any kind of graph search, which stores every expanded 
node in the explored set, the space complexity is always within a factor of b of the time 
complexity. For breadth-first graph search in particular, every node generated remains in 
memory. There will be 0(bd-1 )  nodes in the explored set and ()(bd)  nodes in the frontier, 



Depth Nodes Time Memory 

2 110 .11 milliseconds 107 kilobytes 
4 11,110  11 milliseconds 10.6 megabytes 
6 106  1.1 seconds 1  gigabyte 
g  108  2 minutes 103 gigabytes 

10 10 1° 3 hours 10 terabytes 
12 10 12  13 days 1 petabyte 
14 10 14  3.5 years 99 petabytes 
16 10 16  350 years 10 exabytes  

Figure 3.13  Time and memory requirements for breadth-first search. The numbers shown 
assume branching factor b  = 10;  1 million nodcs/sccond;  1000  bytes/nodc.  
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so the space complexity is O(bd ),  i.e., it is dominated by the size of the frontier. Switching 
to a tree search would not save much space, and in a state space with many redundant paths, 
switching could cost a great deal of time. 

An exponential complexity bound such as 0(bd )  is scary. Figure 3.13 shows why. It 
lists, for various values of the solution depth d,  the time and memory required for a breadth-
first search with branching factor b = 10. The table assumes that 1  million nodes can be 
generated per second and that a node requires 1000  bytes of storage. Many search problems 
fit roughly within these assumptions (give or take a factor of 100) when run on a modem 
personal computer. 

rfr
Two  lessons can be learned from Figure 3.13. First, the memory'requirements  are a 

bigger problem far breadth first  search than is the executinn  tithe_  One might wait 13 days 
for the solution to an important problem with search depth 12, but no personal computer has 
the petabyte of memory it would take.  Fortunately, other strategies require less memory. 

The second lesson is that time is still a major factor. If your problem has a solution at 
depth 16, then (given our assumptions) it will take about 350 years for breadth-first  search for  
indeed any uninformed search) to find it. In general, exponential-complexity  search pmblems 
cannot be salved by uninformed methods for any but the smallest instances. 

UNIF011M-CCST  
SEARCH 

3.4.2 Uniform-cost search 

When all step costs are equal, breadth-first search is optimal because it always expands the 
shallowest unexpanded node. By a simple extension, we can find an algorithm that is optimal 
with any step-cost function. Instead of expanding the shallowest node, uniform -cost search 
expands the node n  with the lowest path cost y(n).  This is done by storing the frontier as a 
priority queue ordered by q. The algorithm is shown in Figure 3.14. 

In addition to the ordering of the queue by path cost, there are two other significant 
differences from breadth-first search. The first is that the goal test is applied to a node when 
it is selected for expansion  (as in the generic graph-search  algorithm shown in Figure 3.7) 
rather than when it is first generated. The reason is that the first goal node that is generated 
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function UNIFORM- COST-SEA RC (pro blens)  returns a solution, or failure 

node 4— a node with STATE = proMern.INITIAL - STATE,  PATH-COST = 
frontier 4— a priority queue ordered by PATH-COST, with node as the only element 
explored 4— an empty set 
loop do 

if EMPTY?( frontier) then return failure 
node q—  Poet frontier) ftt  chooses the lowest-cost node in frontier e/ 
if pro blen  2.GOAL  - TES T(node.5  TATE) then return SOLUTION(node)  
Edit  nude.  STATE kJ  explured  
for each action in probiem.ACTIONS(node.STATE)  do 

child 44— CHILD -Noon(probiern,  node, action) 
if child . STATE is not in explored or frontier then 

frontier  INSERT( child, frontier) 
else if child.STATE  is in frontier with higher PATH-COST then 

replace that frontier node  with child 

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general 
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition 
of an extra check in case a shorter path to a frontier state is discovered. The data structure for 
frontier needs to support efficient membership testing, so it should combine the capabilities 
of a priority queue and a hash table. 

Bucharest 

Figure 3.15 Part of the Romania state space, selected to illustrate uniform-cost search. 

may be on a suboptimal path. The second difference is that a lest is added in case a better 
path is found to a node currently on the frontier. 

Both of these modifications come into play in the example shown in Figure 3.15, where 
the problem is to get from Sibiu to Bucharest. The successors of Sibiu are Rimnicu  Vilcea and 
Fagaras, with costs 80 and 99, respectively. The least-cost node, Rimnicu Vilcea, is expanded 
next, adding Pitesti with cost 80 + 97 =177. The least-cost node is now Fagaras, so it is 
expanded, adding Bucharest  with cost 99 + 211 = 3111.  Now a goal node has been generated ;  
but uniform-cost search keeps going, choosing Pitesti for expansion and adding a second path 
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to Bucharest with cost 80+97+101=  278. Now the algorithm checks to see if this new path 
is better than the old one: it is, so the old one is discarded. Bucharest, now with g-cost  278, 
is selected for expansion and the solution is returned. 

It is easy to see that uniform-cost search is optimal in general. First, we observe that 
whenever uniform-cost search selects a node n for expansion, the optimal path to that node 
has been found. (Were this not the case, there would have to be another frontier node n'  on 
the optimal path from the start node to n,  by the graph separation property of Figure 3.9;  
by definition, a:  would have lower g-cost  than 71  and would have been selected first.) Then, 
because step costs are nonnegative, paths never get shorter as nodes are added These two 
facts together imply that uniform-cost  search expands nodes in order of their optimal path 
cost. Hence, the first goal node selected for expansion must be the optimal solution. 

Uniform-cost search does not care about the number of steps a path has, but only about 
their total cost. Therefore, it will get stuck in an infinite loop if there is a path with an infinite 
sequence of zero-cost actions—for example, a sequence of NoOp actions. 6  Completeness is 
guaranteed provided the cost of every step exceeds some small positive constant e. 

Uniform-cost search is guided by path costs rather than depths, so its complexity is not 
easily characterized in terms of b  and d. Instead, let C* be the cost of the optimal solution,7  
and assume that every action costs at least e.  Then the algorithm's worst-case time and space 
complexity is 0(1,1 +  ),  which can be much greater than bd .  This is because uniform- 
cost search can explore large trees of small steps before exploring paths involving large and 
perhaps useful steps. When all step costs are equal, bi+LC7E-I  is just bd+I.  When all step 
costs are the same, uniform-cost search is similar to breadth-first search, except that the latter 
stops as soon as it generates a goal, whereas uniform-cost search examines all the nodes at 
the goal's depth to see if one has a lower cost; thus uniform-cost search does strictly more 
work by expanding nodes at depth d unnecessarily. 

3.4.3  Depth-first search 

Depth -first search always expands the deepest node in the current frontier of the search tree. 
The progress of the search is illustrated in Figure 3.16. The. search proceeds immediately 
to the deepest level of the search tree, where the nodes have no successors. As those nodes 
are expanded, they are dropped from the frontier, so then the search "backs up" to the next 
deepest node that still has unexplored successors. 

The depth-first search algorithm is an instance of the graph-search algorithm in Fig- 
ure 3.7; whereas breadth-first-search uses a FIFO queue, depth-first search uses a LIFO queue. 
A LIFO queue means that the most recently generated node is chosen for expansion. This 
must be the deepest unexpanded node because it is one deeper than its parent—which, in turn, 
was the deepest unexpanded node when it was selected_ 

As an alternative to the GRAPH -SEARCH -style implementation, it is common to im-
plement depth-first search with a recursive function that calls itself on each of its children in 
turn. (A recursive depth-first algorithm incorporating a depth limit is shown in Figure 3.17.1  

6  NnUp,  or no operation," is the name of an assembly language instruction that does nothing. 
Here, and throughout the hook, the "star" in C"  means an optimal value for C. 



Figure 3.16  Depth-first search on a binary tree. The unexplored region is shown in light 
gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes 
at depth 3 have no successors and M is the only goal node. 
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The propertiei,  of depth-first search depend strongly on whether the graph-search or 
tree-search version is used. The graph-search version, which avoids repeated states and re-
dundant paths, is complete in finite state spaces because it will eventually expand every node. 
The tree-search version, on the other hand, is not complete—for example, in Figure 3.6 the 
algorithm will follow the Arad—Sibiu—Arad—Sibiu loop forever. Depth-first tree search can be 
modified at no extra memory cost so that it checks new states against those on the path from 
the root to the current node; this avoids infinite loops in finite state spaces but does not avoid 
the proliferation of redundant paths. In infinite state spaces, both versions fail if an infinite 
non-goal path is encountered. For example, in Knuth's 4 problem, depth-first search would 
keep applying the factorial operator forever. 

For similar reasons, both versions are nonoptimal.  For example, in Figure 3.16, depth- 
first search will explore the entire left subtree  even if node C is a goal node. If node .7 were 
also a goal node, then depth-first  search would tetinn  it as a solution instead of C, which 
would be a better solution; hence, depth-first search is not optimal. 
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The time complexity of depth-first graph search is bounded by the size of the state space 
(which may be infinite, of course). A depth-first tree search, on the other hand, may generate 
all of the 0(bm)  nodes in the search tree, where m  is the maximum depth of any node; this 
can be much greater than the size of the state space. Note that sir itself can be much larger 
than d (the depth of the shallowest solution) and is infinite if the tree is unbounded. 

So far, depth-first search seems to have no clear advantage over breadth-first search, 
so why do we include it? The reason is the space complexity. For a graph search, there is 
no advantage, but a depth-first tree search needs to store only a single path from the root 
to a leaf node, along with the remaining unexpanded sibling nodes for each node on the 
path. Once a node has been expanded, it can be removed from memory as soon as all its 
descendants have been fully explored. (See Figure 3_16.)  For a state space with branching 
factor b and maximum depth rri,  depth-first search requires storage of only CY1/4 brn)  nodes. 
Using the same assumptions as for Figure 3.13 and assuming that nodes at the same depth as 
the goal node have no successors, we find that depth-first search would require 156 kilobytes 
instead of 10 exabytes at depth d = 16, a factor of 7 trillion times less space. This has 
led to the adoption of depth-first tree search as the basic workhorse of many areas of AI, 
including constraint satisfaction (Chapter 6), propositional satisfiability (Chapter 7), and logic 
programming (Chapter 9).  For the remainder of this section, we focus primarily on the tree-
search version of depth-first search. 

A variant of depth-first search called backtracking search uses still less memory. (See 
Chapter 6 for more details.) In backtracking, only one successor is generated at a time rather 
than all successors; each partially expanded node remembers which successor to generate 
next. In this way, only 0(m)  memory is needed rather than 0(bm).  Backtracking search 
facilitates yet another memory-saving (and time-saving) trick: the idea of generating a suc-
cessor by modifying the current state description directly rather than copying it first. This 
reduces the memory requirements to just one state description and 0',m.)  actions. For this to 
work, we must be able to undo each modification when we go back to generate the next suc-
cessor. For problems with large state descriptions, such as robotic assembly, these techniques 
are critical to success. 

3.4.4 Depth-limited search 

The embarrassing failure of depth-first search in infinite state spaces can be alleviated by 
supplying depth-first search with a predetermined depth limit P.  That is, nodes at depth E  are 
treated as if they have no successors. This approach is called depth-limited search. The 
depth limit solves the infinite-path problem. Unfortunately, it also introduces an additional 
source of incompleteness if we choose P  < d, that is, the shallowest goal is beyond the depth 
limit. (This is likely when d is unknown.) Depth-limited search will also be nonoptimal if 
we choose Q >  d. Its time complexity is 0  (bi )  and its space complexity is 0(bt).  Depth-first 
search can be viewed as a special case of depth-limited search with e-  oo.  

Sometimes, depth limits can be based on knowledge of the problem. For example, on 
the map of Romania there are 20  cities. Therefore, we know that if there is a solution, iL  must 
be of length 19 at the longest, so t  = 19 is a possible choice. But in fact if we studied the 
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function DEPTII-LIMITED-SEARCII(  pro Hens, limit) returns a solution, or failure/cutoff 
return RECURSIVE-DLS(MAKE-NODE(problern.INIT1AL-STATE),  problem, limit) 

function RECURSIVE-DLS (node , problem, limit) returns a solution, or failure/cutoff 
if prolilena.GOAL-TEST(  node. STATE) then return SourrioN(r,ode)  
else if limit = 0 then return cutoffff 
else 

cutoff _occurred? ■—  false 
for each action in prob/em.AcTioNs(node.STATE)  do 

child  CHILD-NonE(  problem , node, action) 
result  RECURSIVE-DL  S(child, problem, Emit — 1) 
if result = cutoff .  then cutoj  f _ occurred? ■—  true 
else if result 0  failure then return result 

if cutoff _occurred? then return cutoff else return failure 

Figure 3.17 A recursive implementation of depth-limited tree search. 

map carefully, we would discover that any city can be reached from any other city in at most 
9 steps. This number, known as the diameter of the state space, gives us a better depth limit, 
which leads to a more efficient depth-limited search. For most problems, however, we will 
not know a good depth limit until we have solved the problem. 

Depth-limited search can be implemented as a simple modification to the general tree-
or graph-search algorithm. Alternatively, it can be implemented as a simple recursive al-
gonthm as shown in Figure 317. Notice that depth-limited search can terminate with two 
kinds of failure: the standard failure value indicates no solution; the cutoff value indicates 
no solution within the depth limit. 

3.4.5 Iterative deepening depth -first search 

Iterative deepening search (or iterative deepening depth-first search) is a general strategy. 
often used in combination with depth-first tree search, that finds the best depth limit. It does 
this by gradually increasing the limit—first 0, then 1, then 2, and so on—until a goal is found. 
This will occur when the depth limit reaches d, the depth of the shallowest goal node. The 
algorithm is shown in Figure 118. Iterative deepening combines the benefits of depth-first 
and breadth-first search. Like depth-first search, its memory requirements are modest: 00d) 
to be precise. Like breadth-first search, it is complete when the branching factor is finite and 
optimal when the path cost is a nondecreasing function of the depth of the node. Figure 3.19 
shows four iterations of ITERATIVE-DEEPENING-SEARCH  on a binary search tree, where the 
solution is found on the fourth iteration. 

Iterative deepening search may seem wasteful because states are generated multiple 
times. It turns out this is not too costly. The reason is that in a search tree with the same (or 
nearly the same) branching factor at each level, most of the nodes are in the bottom level, 
so it does not matter much that the upper levels are generated multiple times. In an iterative 
deepening search, the nodes on the bottom level (depth d) are generated once, those on the 
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function 1TERATIV  E-DEEPENING-SEARCH(  problem) returns a solution, or failure 
for depth=4toae do  

result i— DEPTH -LIMITED-SEARCH(prob!em,  depth) 
if result #  cutoff then return result 

Figure 3.18 The iterative deepening search algorithm, which repeatedly applies depth- 
limited search with increasing Limits. It terminates when a solution is found or if the depth-
limited search returns failure, meaning that no solution exists. 
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Figure 3.19 Four iterations of  iterative deepening search nn  a binary tree 
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next-to-bottom level are generated twice, and so on, up to the children of the root, which are 
generated d times.  So the total number of nodes generated in the worst case is 

N(IDS)  = (d)b + ( d —  1)b2  + •  +  (1)bd  

which gives a time complexity of 0(bd ) —asymptotically  the same as breadth-first search. 
There is some extra cost fur generating  the upper levels multiple times, but it is riot large. Fur 
example, if b = 10 and d = 5, the numbers are 

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450 
N(BFS) — 10 + 100 +  1, 000 + 10, 000 + 100, 000 — 111, 110 .  

If you are really concerned about repeating the repetition, you can use a hybrid approach 
that runs breadth-first search until almost all the available memory is consumed. and then 
nms  iterative deepening from all the nodes in the frontier_ In general, iterative deepening is 

the preferred uninformed search method when the search space is large and the depth of the 
solution is  not  known. 

Iterative deepening search is analogous to breadth-first search in that it explores a com-
plete layer of new nodes at each iteration before going on to the next layer. It would seem 
worthwhile to develop an iterative analog to uniform-cost search, inheriting the latter algo-
rithm's optimality guarantees while avoiding its memory requirements. The idea is to use 
increasing path-cost limits instead of increasing depth limits The resulting algorithm, called 
iterative lengthening search, is explored in Exercise 3.17. It turns out, unfortunately, that 
iterative lengthening incurs substantial overhead compared to uniform-cost search. 

3.4.6 Bidirectional search 

The idea behind bidirectional search is to run two simultaneous searches—one forward from 
the initial state and the other backward from the goal—hoping that the two searches meet in 
the middle (Figure 3.20). The motivation is that bd/2  bd/2  is much less than bd ,  or in the 
figure, the area of the two small circles is less than the area of one big circle centered on the 
start and reaching to the goal. 

Bidirectional search is implemented by replacing the goal test with a check to see 
whether the frontiers of the two searches intersect; if they do, a solution has been found. 
(It is important to realize that the first such solution found may not be optimal, even if the 
two searches are both breadth-first; some additional search is required to make sure there 
isn't another short-cut across the gap.) The check can be done when each node is generated 
or selected for expansion and, with a hash table, will take constant time. For example, if a 
problem has solution depth d= 6, and each direction runs breadth-first search one node at a 
time, then in the worst case the two searches meet when they have generated all of the nodes 
at depth 3.  For b= 10. this means a total of 2,220 node generations, compared with 1,111,110 
for a standard breadth-first search. Thus, the time complexity of bidirectional search using 
breadth-first searches m both directions is 0(bd/2 ).  The space complexity is also (....)( 0/2 ',.  
We can reduce this by roughly half if one of the two searches is done by iterative deepening, 
but at least one of tile  frontiers must be kept in memory so that the intersection check can be 
done. This space requirement is the most significant weakness of bidirectional search. 



Figure 3.20  A schematic view of a bidirectional search that is about to succeed when a 
branch from the start node meets a branch from the goal node. 
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The reduction in time complexity makes bidirectional search attractive, but how do we 
PREDECESSOR  search backward? This is not as easy as it sounds. Let the predecessors of a state 3.  be all 

those states that have a as a successor. Bidirectional search requires a method for computing 
predecessors. When all the actions in the state space are reversible, the predecessors of x are 
just its successors. Other cases may require substantial ingenuity. 

Consider the question of what we mean by "the goal" in searching "backward from the 
goal." For the 8-puzzle and for finding a route in Romania, there is just one goal state, so the 
backward search is very much like the forward search. If there are several explicitly listed 

goal states—for example, the two dirt-free goal states in Figure 3.3—then we can construct a 
new dummy goal state whose immediate predecessors are all the actual goal states. But if the 
goal is an abstract description, such as the goal that "no queen attacks another queen" in the 
7/-queens  problem, then bidirectional search is difficult to use. 

3.4.7  Comparing uninformed search strategies 

Figure 3.21 compares search strategies in terms of the four evaluation criteria set forth in 
Section 3.3.2. This comparison is for tree-search versions. For graph searches, the main 
differences are that depth-first search is complete for  finite state spaces and that the space and 
time complexities are bounded by the size of the state space. 

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional 
First Cost First Limited Deepening (if applicable) 

Complete? 
Time 
Space 
Optimal? 

Yes' Yes' ,  b No Nu Yes° Yes''  d  

0(0  ) O(bl+  LC * R1  ) O(bm) o(bt) 0(bd ) 0(012 )  
OW ) 0(b 1+  Lc* /'-1  ) o(o,n) o(be) a(bd) O(bd4 )  
Yes' Yes No No Yes' yes.  d  

Figure 3.21 Evaluation of tree -search strategies. I is the branching factor; d is the depth 
of the shallowest solution; m is the maximum depth of the. search tree; 2  is the depth limit 
Superscript caveats are as follows: a  complete if b is finite; b  complete if step costs >  e  for 
positive F- ;  '  optimal if step costs are all identical; d  if both directions use breadth-first search 



92 Chapter 3. Solving Problems by Searching 

3.5 INFORMED (HEURISTIC) SEARCH STRATEGIES 

EUNISI  FC  
FUNCTION 

GREEDY REST-FIRST  
SEARCH 

STRAIGHT-UNE  
DISTANCE 

This section shows how an informed search strategy—one that uses problem-specific knowl-
edge beyond the definition of the problem itself—can find solutions more efficiently than can 
an uninformed strategy. 

The general approach we consider is called best-first search.  Best-first search is an 
instance of the general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is 
selected for expansion based on an evaluation function, f (n) The evaluation function is 
construed as a cost estimate, so the node with the lowest evaluation is expanded first. The 
implementation of best-first graph search is identical to that for uniform-cost search (Fig-
ure 3.14), except for the use of f instead of g to order the priority queue. 

The choice of f determines the search strategy. (For example, as Exercise 3.21 shows,  
best-first tree search includes depth-first search as a special case.) Most best-first algorithms 
include as a component of f a heuristic function, denoted h(n):  

Nu)  = estimated cost of the cheapest path from the state at node n to a goal state 
(Notice that km)  takes a node as input, but, unlike g(n), it depends only en the state at that 
node.) For example, in Romania, one might estimate the cost of the cheapest path from Arad 
to Bucharest via the straight-line distance from Arad to Bucharest. 

Heuristic functions are the most common form in which additional knowledge of the 
problem is imparted to the search algorithm. We study heuristics in more depth in Section 3,6. 
For now, we consider them to be arbitrary, nonnegative,  problem-specific functions, with one 
constraint!  if a is a goal node, then h (n.)  = 0_ The remainder of this section covers two ways 
to use heuristic information to guide search. 

3.5.1 Greedy best -first search 

Greedy best-first search' tries to expand the node that is closest to the goal, on the grounds 
that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the 
heuristic function; that is, f (n) = h(n).  

Let us see how this works for mate-finding  problems in Romania:  we use the straight. 
line distance heuristic, which we will call hSLD.  If the goal is Bucharest, we need to 
know the straight-line distances to Bucharest, which are shown in Figure 3.22. For exam-
ple, hSLD(In(Ared))  = 366. Notice that the values of hsLn  cannot be computed from the 
problem description itself. Moreover. it takes a certain amount of experience to know that 
h.570  is correlated with actual road distances and is, therefore, a useful heuristic. 

Figure 3.23 shows the progress of a greedy best-first search using iisLD  to find a path 
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu because it 
is closer to Bucharest than either Zerind  or Timisoara. The next node to be expanded will 
be Fagaras because it is closest. Fagaras in turn generates Bucharest, which is the goal. For 
this particular problem, greedy best-first  search using  /Inn finds a solution without ever 

Our first edition called this greedy search; other authors have called it best-first search. Our more general 
usage of the latter term follows Pearl (1984).  

INFORMED SEARCH 

REST-FIRST  SEARCH 

EVALUATION 
FUNCTION 



Arad 366 Mehadia  241 
Bucharest 0 Neamt  234 
Craiova 160 Oradea 380 
Drobeta  242 Pitesti 100 
Eforie 161 Rinmicu  Vilma  193 
Fagaras  176 Sibiu 253 
Giurgiu 77 Timisoara 329 
Hirsum  151  Urzieeni  80 
Iasi 226 Vaslui 199 
Lngoj 244 Zerind 374 

Figure 3.22  Values of hsro—straight-line  distances to Bucharest. 
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expanding a node that is not on the solution path; hence, its search cost is minimal. it is 
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer 
than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is called 
"greedy"—at each step it tries to get as close to the goal as it can. 

Greedy best-first tree search is also incomplete even in a finite state space, much like 
depth-first search. Consider the problem of getting from Iasi to Fagaras.  The heuristic sug- 
gests that Neamt be expanded first because it is closest to Fagaras, but it is a dead end. The 
solution is to go first to Vaslui—a step that is actually farther from the goal according to 
the heuristic—and then to continue to Urziceni,  Bucharest, and Fagaras.  The algorithm will 
never find this solution, however, because expanding Neamt puts Iasi back into the frontier, 
Iasi is closer to Fagaras than Vaslui  is, and so Iasi will be expanded again, leading to an infi-
nite loop. (The graph search version is complete in finite spaces, but not in infinite ones.) The 
worst-case time and space complexity for the tree version is 0  (ten), where m  is the maximum 
depth of the search space. With a good heuristic function, however, the complexity can be 
reduced substantially. The amount of the reduction depends on the particular problem and on 
the quality of the heuristic_ 

3.5.2 A* search.  Minimizing the total estimated solution cost 

A*  SEARCH The most widely known form of best-first search is called A* search {pronounced "A-star 
search"). It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost 
to get from the node to the goal: 

(n) = g(n)  + h(n)  . 

Since g(n)  gives the path cost from the start node to node n,  and h(n) is the estimated cost 
of the cheapest path from r. to the goal, we have 

f (n) = estimated cost of the cheapest solution through ail  .  

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the 
node with the lowest value of 9(n) h.(n).  It turns out that this strategy is more than just 
reasonable: provided that the heuristic function h(n) satisfies certain conditions, A* search is 
both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH except 
that A* uses g + h instead of g. 



(a)The initial state 

(b) After expanding Arad 

Sibiu 

253  

(c)After expanding Sibiu 

11>CArad -)  

Figure 3.23 Stages in a greedy best-first tree search for Bucharest with the straight-line 
distance heuristic h,s,LD.  Nodes are labeled with their II-values.  
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Conditions for optimality: Admissibility and consistency 
ADMISSIBLE  
HEURISTIC The first condition we require for optimality is that h(n) be an admissible heuristic. An 

admissible heuristic is one that never overestimates the cost to reach the goal. Because g(n) 
is the actual cost to reach it along the current path, and f (TO=  g(n)  h(n), we have as an 
immediate consequence that f  (n)  never overestimates the true cost of a solution along the 
current path through n. 

Admissible heuristics are by nature optimistic because they think the cost of solving 
the problem is less than it actually is. An obvious example of an admissible heuristic is the 
straight-line distance hsio  that we used in getting to Bucharest. Straight -line distance is 
admissible because the shortest path between any two points is a straight line, so the straight 
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line cannot be an overestimate. In Figure 3.24, we show the progress of an A 5  tree search for 
Bucharest. The values of y arc computed from the step costs in Figure 3.2, and the values of 
hsio  are given in Figure 3.22. Notice in particular that Bucharest first appears on the frontier 
at step (e), but it is not selected for expansion because its f-cost (450) is higher than that of 
Pitesti (417). Another way to say this is that there might be a solution through Pitesti whose 
cost is as low as 417, so the algorithm will not settle for a solution that costs 450. 

CONS€STENCY A second, slightly stronger condition called consistency (or sometimes monotonicity) 
MCNOTONICITY is required only for applications of A* to graph search.9  A heuristic 14n) is consistent if, for 

every node n and every successor n' of n generated by any action rt,  the estimated cost of 
reaching the goal from n is no greater than the step cost of getting to n' plus the estimated 
cost of reaching the goal from re!  

h(n)  <  c(n, a, n') + h(n')  .  

This is a form of the general triangle inequality, which stipulates that each side of a triangle 
cannot be longer than the sum of the other two side& Here, the triangle is formed by n, re,  
and the goal (7,  closest to n. For an admissible heuristic, the inequality makes perfect sense: 
if there were a route from n to G,  via n' that was cheaper than li(n),  that would violate the 
property that h(ti)  is a lower bound on the cost to reach G, . . 

It is fairly easy to show (Exercise 3.29) that every consistent heuristic is also admissible. 
Consistency is therefore a stricter requirement than admissibility, but one has to work quite 
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics 
we discuss in this chapter arc also consistent. Consider, for example, hSLD.  We know that 
the general triangle inequality is satisfied when each side is measured by the straight-line 
distance and that the straight-line distance between n and n' is no greater than c(n, a, n'). 
Hence,  itsLD  is a consistent heuristic. 

Optimality of A* 

rka 
As we mentioned earlier. A'  has the following properties: the tree-search  version of A* is 
optimal if  h(n) is admissible, while the graph-search version is optimal if h(n) is consistent. 

We show the second of these two claims since it is more useful. The argument es-
sentially mirrors the argument for the optimality of uniform-cost search, with g replaced by 
f—just as in the A*  algorithm itself. 

The first step is to establish the following: if  h(n.',  is consistent, then the values of 
f(n)  Wang ary  path are nnntlecreasing_  The proof follows directly from the definition of 

consistency. Suppose is a successor of n; then 9(7i 1 ) =  q(n.) +  c(n,  a,  ti') for some action 
a, and we have 

f (n') = 904  + kri')  = g(n) + c(n.  a.  n i )  + h(n 1 )  > g(n) h(n) = f . 

The next step is to prove that whenever A* selects a node n for expansion, the optimal path 
to that node has been found. Were this not the case, there would have to be another frontier 
node n' on the optimal path from the start node to n, by the graph separation property of 

With au admissible but inconsistent heuristic, A" requires some extra bookkeeping to ensure optimality. 

TRIANGLE 
INECEAUTY  
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(a) The initial stale OC— S7—.)rad   

36G  1_14•3456  

447,1154-129 1 -19-754374  

447*118+329 449.75+374  

(e) After expanding Fagaras  

Sibiu  

41121=111•  107112:11,  41121M  

411MEIN•  4111M. COMP  I>  411211119W  AIBBIMP  

447=118+329 449=75+374  

591.338+253  450,45040  

Figure 3.24 Stages in an A* search for Bucharest Nodes are labeled with f  = g -I. h.  The 
h values are the straight-line distances to Bucharest taken from Figure 3.22. 



Figure 3.25  Map of Romania showing contours at f = 380, f = 400, and f = 420, with 
Arad as the start state. Nodes inside a given contour have f-costs  less than or equal to the 
contour value. 
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Figure 3.9; because f is nondecreasing  along any path, 1-1  would have lower f-cost than n 
and would have been selected first. 

From the two preceding observations, it follows that the sequence of nodes expanded 
by A using GRAPH-SEARCH  is in nondecreasing  order of f (n). Hence, the first goal node 
selected for expansion must be an optimal solution because f is the true cost for goal nodes 
(which have h= 0) and all later goal nodes will be at least as expensive. 

The fact that f  -costs are nondecreasing along any path also means that we can draw 
CONTOUR 
 contours in the state space, just like the contours in a topographic map, Figure 3.25 shows 

an example.  Inside the contour labeled 400, all nodes have f (n) less than or equal to 400, 
and so on. Then, because A*  expands the frontier node of lowest f-cost, we can see that an 
A* search fans out from the start node, adding nodes in concentric bands of increasing f-cost. 

With uniform-cost search (A* search using h(n) = 0), the bands will be "circular" 
around the start state. With more accurate heuristics, the bands will stretch toward the goal 
state and become more narrowly focused around the optimal path. If C* is the cost of the 
optimal solution path, then we can say the following: 

• A* expands all nodes with f (n) < C*.  
■ A*  might then expand some of the nodes right on the "goal contour" (where (n) = C")  

before selecting a goal node. 

Completeness requires that there be only finitely many nodes with cost less than or equal to 
C*,  a condition that is true if all step costs exceed some finite e  and if b is finite. 

Notice that A expands no nudes with f  (n)  > C'—fur  example, Timisoara  is not 
expanded in Figure 3.24 even though it is a child of the root. We say that the subtree below 
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PRUNING 

UPI INIALLY  
EFFICI  ENT 

Timisoara is pruned; because hsLij  is admissible, the algorithm can safely ignore this subtree 
while still guaranteeing optimality. The concept of pruning—eliminating  possibilities from 
consideration without having to examine them—is important for many areas of Al. 

One final observation is that among optimal algorithms of this type—algorithms that 
extend search paths from the root and use the same heuristic information—A*  is optimally 
efficient for any given consistent heuristic. That is, no other optimal algorithm is guaran-
teed to expand fewer nodes than A* (except possibly through tie-breaking among nodes with 
f (11)  =CA ). This is because any algorithm that does nol  expand all nodes with f (n) < C* 
runs the risk of missing the optimal solution. 

That A* search is complete, optimal, and optimally efficient among all such algorithms 
is rather satisfying. Unfortunately, it does not mean that A* is the answer to all our searching 
needs. The catch is that, for most problems, the number of states within the goal contour 
search space is still exponential in the length of the solution. The details of the analysis are 
beyond the scope of this book, but the basic results are as follows. For problems with constant 
step costs, the growth in run time as a function of the optimal solution depth d is analyzed in 
terms of the the absolute error or the relative error of the heuristic. The absolute error is 
defined as A  — h, where h*  is the actual cost of getting from the root to the goal, and 
the relative error is defined as c (11*  —  h)I  h*  

The complexity results depend very strongly on the assumptions made about the state 
space. The simplest model studied is a state space that has a single goal and is essentially a 

tree with reversible actions. (The 8-puzzle satisfies the first and third of these assumptions.) 
In this case, the time complexity of A'  is exponential in the maximum absolute error, that is,  
0(bA ).  For constant step costs, we can write this as 0(0), where d is the solution depth. 
For almost all heuristics in practical use, the absolute error is at least proportional to the path 
cost h*, so c is constant or growing and the time complexity is exponential in 4. We can 
also see the effect of a more accurate heuristic: 19 (b1  = 0 ((be) a )  , so the effective branching 
factor (defined more formally in the next section) is bc.  

When the state space has many goal states—particularly near-optimal goal states the 
search process can he led astray from the optimal path and there is an extra cost proportional 
to the number of goals whose cost is within a factor E of the optimal cost. Finally, in the 
general case of a graph, the situation is even worse. There can be exponentially many states 
with f (n) < C* even if the absolute error is bounded by a constant. For example, consider 
a version of the vacuum world where the agent can clean up any square for unit cost without 
even having to visit it: in that case, squares can be cleaned in any order. With N initially dirty 
squares, there are 2 N-  states where some subset has been cleaned and all of them are on an 
optimal solution path—and hence satisfy f (n) < C*—even  if the heuristic has an error of 1. 

The complexity of A* often makes it impractical to insist on finding an optimal solution. 
One can use variants of A* that find suboptimal solutions quickly, or one can sometimes 
design heuristics that are more accurate but not strictly admissible. In any case, the use of a 
good heuristic still provides enormous savings compared to the use of an uninformed search. 
In Section 3.6, we look at the question of designing good heuristics. 

Computation time is not, however, A*'s  main drawback. Because it keeps all generated 
nodes in memory (as do all GRAPH-SEARCH algorithms), A* usually runs out of space long 

ABSOLUTE ERROR 

RELATIVE ERROR 
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function RECURSIVE-BEST-FIRST-SEARCII(probtcm)  returns a solution, or failure 
return RBFS (problem,  MAKE-NODE{probiern.INITIAL-  STATE), oo)  

function RBFS(problem,  node ,f_limit)  returns a solution, or failure and a new f-cost limit 
if problem.GOAL-TEST(node.STATE)  then return SOLUTION(node)  
successors 4—  11 
for each action in prcHem  AcrioNs(  node. STATE) do 

add CHILD-NODE( problem, node, action) into successors 
if successors is empty then return failure, co  
for each s  in successors do is'  update f with value from previous search, if any *I 

s  .f  4— max( + s  .h,  node .  f  )) 
loop do 

lest 4—  the lowest F-value  node in successors 
if best. f 7 f_hrria  then return failure, best. f 
alternative  the second-lowest f-value among successors 
result, best, f R13  FS (problem, best, min ( f-limit,  alternative)) 
if result 0  failure then return result 

Figure 3.26 The algorithm for recursive best-first search. 

before it runs out of time. For this reason, A  is not practical for many large-scale prob-
lems. There are, however, algorithms that overcome the space problem without sacrificing 
optimality or completeness, at a small cost in execution time. We discuss these next. 

3.5.3 Memory-bounded heuristic search 

The simplest way to reduce memory requirements for A* is to adapt the idea of iterative 
ITERATIVE- 
DEPENING deepening to the heuristic search context, resulting in the iterative-deepening A* (IDA*)  al- 

gorithm. The main difference between IDA  and standard iterative deepening is that the cutoff 
used is the f -cost (0  +  la) rather than the depth; at each iteration, the cutoff value is the small- 
est f-cost of any node that exceeded the cutoff on the previous iteration. IDA'  is practical 
for many problems with unit step costs and avoids the substantial overhead associated with 
keeping a sorted queue of nodes. Unfortunately, it suffers from the same difficulties with real-
valued costs as does the iterative version of uniform-cost search described in Exercise 3.17. 
This section briefly examines two other memory-bounded algorithms, called RBFS and MAX. 

REal  HSIVE  
BEST-HRST  SEARCH Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to 

mimic the operation of standard best-first search, but using only linear space. The algorithm 
is shown in Figure 3.26. Its structure is similar to that of a recursive depth-first search, but 
rather than continuing indefinitely down the current path, it uses the f_lirnit  variable to keep 
track of the f -value of the best alternative path available from any ancestor of the current 
node. If the current node exceeds this limit, the recursion unwinds back to the alternative 
path. As the recursion unwinds, RBFS replaces the f-value of each node along the path 

RACKED-111'  VALUE with a backed-up value—the best f-value of its claildien.  In this way, RBFS remembers the 
f-value of the best leaf in the forgotten subtree and can therefore decide whether it's worth 



(a) After expanding Arad. Sibiu, 
and Rkunieu  Vilcea  

(b) After unwinding back to Sibiu 
and expanding Fagaras 

(c) After switching back to Rimnicu  Vilcea 
and expanding Pitesti  

Figure 3.27 Stages in an RBFS  search for the shortest route to Bucharest. The f-limit 
value for each recursive call is shown on top of each current node, and every node is labeled 
with its f-cost.  (a) The path via Rimnicu  Vilcea is followed until the current best leaf (Pitesti) 
has a value that is worse than the best alternative path (Fagaras).  (b) The recursion unwinds 
and the best leaf value of the forgotten subtree  (417) is backed up to Rirnnicu  Vilcea;  then 
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the 
best leaf value of the forgotten subtree (450) is backed up to Fagaras:  then Rimnicu  Vilcea is 
expanded. This time, because the best alternative path (through Timisoara) casts at least 447, 
the expansion continues to Bucharest. 
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reexpanding the subtree at some later time. Figure 3.27 shows how RBFS  reaches Bucharest. 
REFS  is somewhat more efficient than WA",  but still suffers from excessive node re- 

generation. In the example in Figure 3.27, RBFS follows the path via Rimnicu  Vilcea, then 
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"changes its mind" and tries Fagaras, and then changes its mind back again. These mind 
changes occur because every time the current best path is extended, its f -value is likely to 
increase—h  is usually less optimistic for nodes closer to the goal. When this happens, the 
second-best path might become the best path, so the search has to backtrack to follow it. 
Each mind change corresponds to an iteration of IDA*  and could require many reexpansions 
of forgotten nodes to recreate the best path and extend it one more node. 

Like AS tree search, RBFS is an optimal algorithm if the heuristic function 11(n)  is 
admissible. Its space complexity is linear in the depth of the deepest optimal solution, but 
its time complexity is rather difficult to characterize: it depends both on the accuracy of the 
heuristic function and on how often the best path changes as nodes are expanded. 

IDA* and REFS suffer from using too little memory. Between iterations, IDA* retains 
only a single number: the current f-cost limit. RBFS retains more information in memory, 
but it uses only linear space: even if more memory were available, RBFS has no way to make 
use of it. Because they forget most of what they have done, both algorithms may end up reex-
panding the same states many times over. Furthermore, they suffer the potentially exponential 
increase in complexity associated with redundant paths in graphs (see Section 3.3). 

It seems sensible, therefore, to use all available memory. Two algorithms that do this 
are MA* (memory-bounded Am)  and SMA*  (simplified MA").  SMA*  is—well—simpler, so 
we will describe it. SMA  proceeds just like A*, expanding the best leaf until memory is full. 
At this point, it cannot add a new node to the search tree without dropping an old one. SMA*  
always drops the worst leaf node—the one with the highest f -value. Like RBFS, SMA*  
then backs up the value of the forgotten node to its parent. In this way, the ancestor of a 
forgotten subtree knows the quality of the best path in that subtree. With this information, 
SMA*  regenerates the subtree only when all other paths have been shown to look worse than 
the path it has forgotten. Another way of saying this is that, if all the descendants of a node n  
are forgotten, then we will not know which way to go from 71,  but we will still have an idea 
of how worthwhile it is to go anywhere from n. 

The complete algorithm is too complicated to reproduce here, I°  but there is one subtlety 
worth mentioning_ We said that WA* expands the hest leaf and deletes the worst leaf, What 
if all the leaf nodes have the same f-value? To avoid selecting the same node for deletion 
and expansion, SMA*  expands the newest best leaf and deletes the oldest worst leaf. These 
coincide when there is only one leaf, but in that case, the current search tree must be a single 
path from root to leaf that fills all of memory. If the leaf is not a goal node, then even if it is on 
an optimal solution path, that solution is not reachable with the available memory. Therefore, 
the node can be  discarded exactly as if it had no successors. 

SMA"  is complete if there is any reachable solution—that is, if d, the depth of the 
shallowest goal node, is less than the memory size (expressed in nodes). It is optimal if any 
optimal solution is reachable; otherwise, it returns the best reachable solution. In practical 
terms, SMA*  is a fairly robust choice for finding optimal solutions, particularly when the state 
space is a graph, step costs are not uniform, and node generation is expensive compared to 
the overhead of maintaining the frontier and the explored set. 

A rough sketch appeared in die  first edition of this book. 



102 Chapter 3. Solving Problems by Searching 

THRASHING 

M ETALEVEL  STATE 
SPACE  

OBJECT-LEVEL  STATE 
SPACE 

M EALEVEL  
LEARNING 

On very hard problems, however, it will often be the case that SMA* is forced to switch 
back and forth continually among many candidate solution paths, only a small subset of which 
can fit in memory. (This resembles the problem of thrashing in disk paging systems.) Then 
the extra time required for repeated regeneration of the same nodes means that problems 
that would be practically solvable by A*, given unlimited memory, become intractable for 
SMA*.  That is to say, memory limitations can make a problem intractable ,from  the point 
of new ((computation  time. Although no current theory explains the tradeoff between time 
and memory, it seems that this is an inescapable problem. The only way out is to drop the 
optimality requirement. 

3.5.4 Learning to search better 

We have presented several fixed strategies—breadth-first, greedy best-first, and so on—that 
have been designed by computer scientists. Could an agent learn how to search better? The 
answer is yes, and the method rests on an important concept called the metalevel  state space. 
Each state in a metalevel state space captures the internal (computational) state of a program 
that is searching in an object-level state space such as Romania. For example, the internal 
state of the A* algorithm consists of the current search tree. Each action in the metalevel state 
space is a computation step that alters the internal state; for example, each computation step 
in A* expands a leaf node and adds its successors to the tree. Thus, Figure 3.24, which shows 
a sequence of larger and larger search trees, can be seen as depicting a path in the metalevel  
state space where each state on the path is an object-level search tree. 

Now, the path in Figure 3.24 has five steps, including one step, the expansion of Fagaras, 
that is not especially helpful. For harder problems. there will be many such missteps. and a 
metalevel learning algorithm can learn from these experiences to avoid exploring unpromis-
ing subtrees. The techniques used for this kind of learning are described in Chapter 21. The 
goal of learning is to minimize the total cost of problem solving, trading off computational 
expense and path cost. 

3.6 HEURISTIC FUNCTIONS 

In this section, we look at heuristics for the 8-puzzle, in order to shed light on the nature of 
heuristics in general. 

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Sec-
tion 3.2, the object of the puzzle is to slide the tiles horizontally or vertically into the empty 
space until the configuration matches the goal configuration (Figure 3.28). 

The average solution cost for a randomly generated 8-puzzle instance is about 22 steps. 
The branching factor is about 3. (When the empty tile is in the middle, four moves are 
possible; when it is in a corner, two; and when it is along an edge, three.) This means 
that an exhaustive tree search to depth 22 would look at about 3 22 3.1 x 10 11)  states. 
A graph search would cut this down by a factor of about 170,000 because only 'A/2  = 
181, 440 distinct states are reachable. (See Exercise 3.4.) This is a manageable number, but 
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Figure 3.28 A typical instance of the 8-puzzle. The solution is 26 steps Long. 

the corresponding number for the 1 5-puzzle  is roughly 1 n 13 ,  so the next order of business is 
to find a good heuristic function. If we want to find the shortest solutions by using A*, we 
need a heuristic function that never overestimates the number of steps to the goal. There is a 
long history of such heuristics for the 15-puzzle; here are two commonly used candidates: 

• hi = the number of misplaced tiles. For Figure 3.28, all of the eight tiles are out of 
position, so the start state would have hi  = 8. hi is an  admissible heuristic because it 
is clear that any tile that is out of place must be moved at least once. 

■ h2 = the sum of the distances of the tiles from their goal positions. Because tiles 
cannot move along diagonals, the distance we will count is the sum of the horizontal 
and vertical distances_ This is sometimes called the city block distance or Manhattan 
distance. h2  is also admissible because all any move can do is move one tile one step 
closer to the goal. Tiles 1 to 8 in the start state give a Manhattan distance of 

)L2 =3+1+2+2+2+3+3+2=18.  

As expected, neither of these overestimates the true solution cost, which is 26. 

3.6.1 The effect of heuristic accuracy on performance 

One way to characterize the quality of a heuristic is the effective branching factor b*.  If the 
total number of nodes generated by A' for a particular problem is N and the solution depth is 
d, then b* is the branching factor that a uniform tree of depth d would have to have in order 
to contain N — 1 nodes. Thus, 

N I 1= 1 6* I (V  ) 2 •  • ) d  

For example, if A*  finds a solution at depth 5 using 52 nodes, then the effective branching 
factor is 1.92. The effective branching factor can vary across problem instances, but usually 
it is fairly constant for sufficiently hard problems. (The existence of an effective branching 
factor follows from the result, mentioned earlier, that the number of nodes expanded by A'  
grows exponentially with solution depth.) Therefore, experimental measurements of i)*  on a 
small set of problems can provide a good guide to the heuristic's overall usefulness. A well- 
designed heuristic would have a value of 6* close to 1, allowing fairly  large problems to he 
solved at reasonable computational cost. 
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DOMFNATION  

To test the heuristic functions hi and h2, we generated 1200 random problems with 
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative 
deepening search and with A' tree search using both hi and h2.  Figure 3.29 gives the average 
number of nodes generated by each strategy and the effective branching factor. The results 
suggest that h2 is better than hi, and is far better than using iterative deepening search. Even 
for small problems with d= 12, A* with h2 is 50,000 times more efficient than uninformed 
iterative deepening search. 

Search Cost (nodes generated) Effective Branching Factor 

d IDS A* (hi)  A* (h2)  IDS A*(h i )  k(h2)  

10 6 6 2.45 1.79 

■=1 
N 

 Fq:  

112 13 12 2.87 1.48 
680 20 18 2.73 1.34 

6384 39 25 2.80 1.33 
47127 93 39 2.79 1.38 

3644035 227 73 2,78 1.42 
- 539 113 - 1.44 
- 1301 211 - 1.45 
- 3056 363 - 1.46 
- 7276 676 - 1.47 
- 18094 1219 - 1.48 
- 39135 1641 - 1.48 

Figure 3.29 Comparison of the search costs and effective branching factors for the 
ITERATIVE-DEEPENING-SEARCH  and Pi  algorithms with h i , h..  Data are averaged over 
100 instances of the 8  puzzle for each of various solution lengths d. 

One might ask whether h2  is always better than hi.  The answer is "Essentially, yes." 11  
is easy to see from the definitions of the two heuristics that, for any node n,  h2 (n)  >  hi (n)  
We thus say that h2 dominates h i . Domination translates directly into efficiency: A' using 
h2  will never expand more nodes than A*  using h i  (except possibly for some nodes with 
f (n) = C*).  The argument is simple. Recall the observation on page 97 that every node 
with f (n)  < C.*  will surely he expanded. This is the same as saying that every node with 
h(n)  < C"  — g(n) will surely be expanded. But because h2  is at least as big as hi for all 
nodes, every node that is surely expanded by A" search with h2 will also surely be expanded 
with hi, and hi might cause other nodes to be expanded as well. Hence, it is generally 
better to  use a heuristic function with higher values, provided it is consistent and that the 
computation time for the heuristic is not too long. 

3.6.2 Generating admissible heuristics from relaxed problems 

We have seen that both h i  (misplaced tiles) and h 2  (Manhattan distance) are fairly good 
heuristics for the g-puzzle  and that h2  is better. How might one have come up with h2?  Is it 
possible for a computer to invent such a heuristic mechanically? 

hi and h2  are estimates of the remaining path length fat the 8-puzzle. but they are also 
perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the puzzle 
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were changed so that a tile could move anywhere instead of just to the adjacent empty square, 
then h 1  would give the exact number of steps in the shortest solution Similarly, if a tile could 
move one square in any direction, even onto an occupied square, then h2  would give the exact 
number of steps in the shortest solution. A problem with fewer restrictions on the actions is 
called a relaxed problem. The state-space graph of the relaxed problem is a supergraph of 
the original state space because the removal of restrictions creates added edges in the graph. 

Because the relaxed problem adds edges to the state space. any optimal solution in the 
original problem is, by definition, also a solution in the relaxed problem; but the relaxed 
problem may have better solutions if the added edges provide short cuts. Hence, the cost of 
an optimal solution to a relaxed problem is an admissible heuristic for the original problem. 
Furthermore, because the derived heuristic is an exact cost for the relaxed problem, it must 
obey the triangle inequality and is therefore consistent (see page 95). 

If a problem definition is written down in a formal language, it is possible to  construct 
relaxed problems automatically. L 1  For example, if the 8-puzzle actions are described as 

A tile can move from square A to square B if 
A is horizontally or vertically adjacent to B and B is blank, 

we can generate three relaxed problems by removing one or both of the conditions: 

(a) A tile can move from square A to square B if A is adjacent to B. 
(b) A tile can move from square A to square B if B is blank. 
(c) A tile can move from square A to square B. 

From (a), we can derive 712 (Manhattan distance). The reasoning is that h2 would be the 
proper score if we moved each the in turn to its destination. The heuristic derived from (b) is 
discussed in Exercise 3.31. From (c), we can derive lot (misplaced tiles) because it would be 
the proper score if tiles could move to their intended destination in one step. Notice that it is 
crucial that the relaxed problems generated by this technique can be solved essentially without 
search, because the relaxed rules allow the problem to be decomposed into eight independent 
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding 
heuristic will be expensive to obtain. 12  

A program called ABSOLVER can generate heuristics automatically from problem def-
initions, using the "relaxed problem . '  method and various other techniques (Prieditis,  19931.  
ABSOLVER generated a new heuristic for the 8-puzzle that was better than any preexisting 
heuristic and found the first useful heuristic for the famous Rubik's Cube puzzle 

One problem with generating new heuristic functions is that one often fails to get a 
single "clearly best" heuristic. If a collection of admissible heuristics h ] ...hm  is available 
for a problem and none of them dominates any of the others, which should we choose? As it 
turns out, we need not make a choice. We can have the best of all worlds, by defining 

h (n) =  max-1/4(4 ,h,„(u)}  .  

In Chapters 8 and 10. we describe formal Languages suitable for this task; with formal descriptions that can be 
manipulated, the construction of relaxed problems can he automated. For now, we use English. 
' 2  Note that a perfect heuristic can be obtained simply by allowing h. to run a full breadth-first search "on the 
sly." Thus, there is a tradeoff between accuracy and computation time for heuristic functions. 



* 2 4 

*  

* 3 1  

Start State 

1 2  

4  

* * * 

Goal State 

Figure 3.30  A subproblein  of the 8-puzzle instance given in Figure 3.28 The task is to 
get tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to 
the ether tiles. 
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This composite heuristic uses whichever function is most accurate on the node in question. 
Because the component heuristics are admissible, it is admissible; it is also easy in prove that 
it is consistent. Furthermore. h dominates all of its component heuristics. 

3.6.3 Generating admissible heuristics frnm  subproblems: Pattern databases 

SUBPROBLEM Admissible heuristics can also be derived from the solution cost of a subproblem of a given 
problem. For example, Figure 3.30 shows a subproblem of the 8-puzzle instance in Fig-
ure 3.28.  The subproblem involves getting tiles 1, 2, 3. 4 into their correct positions. Clearly, 
the cost of the optimal solution of this subproblem is a lower bound on the cost of the com-
plete problem. It turns out to be more accurate than Manhattan distance in some cases. 

PATTERN DATABASE 
 The idea behind pattern databases is to store these exact solution costs for every pos-

sible subproblem instance—in  our example, every possible configuration of the four tiles 
and the blank. (The locations of the other four tiles are irrelevant for the purposes of solv-
ing the subproblem, but moves of those tiles do count toward the cost.) Then we compute 
an admissible heuristic hDB  for each complete state encountered during a search simply by 
looking up the corresponding subproblem configuration in the database. The database itself is 
constructed by searching back t3  from the goal and recording the cost of each new pattern en-
countered; the expense of this search is amortized over many subsequent problem instances. 

The choice of 1-2-3-4 is fairly arbitrary; we could also construct databases for 5-6-7-8, 
for 2-4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics can 
be combined, as explained earlier, by taking the maximum value. A combined heuristic of 
this kind is much more accurate than the Manhattan distance; the number of nodes generated 
when solving random 15-puzzles  can be reduced by a factor of 1000. 

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the 
5-6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give 
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem 
and the 5-6-7-8  subproblem for a given state will almost certainly share some moves—it is 

13  By  working backward from the goal. the exact solution cost of every instance encountered is immediately 
available. This is an example of dynamic programming, which we discuss further in Chapter I T  



Section 3.6. Heuristic Functions 107 

DISJOINT PATIERAI  
DA-ABASES  

FEATURE 

unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But 
what if we don't count those moves? That is, we record not the total cost of solving the 1-2- 
3-4 subproblem, but just the number of moves involving 1-2-3-4. Then it is easy to see that 
the sum of the two costs is still a lower bound on the cost of solving the entire problem. This 
is the idea behind disjoint pattern databases. With such databases, it is possible to solve 
random 15-puzzles  in a few milliseconds—the number of nodes generated is reduced by a 
factor of 10,000 compared with the use of Manhattan distance. For 24-puzzles, a speedup of 
roughly a factor of a million can be obtained. 

Disjoint pattern databases work for sliding-tile puzzles because the problem can be 
divided up in such a way that each move affects only one subproblem—because only one tile 
is moved at a time. For a problem such as Rubik's Cube, this kind of subdivision is difficult 
because each move affects 8 or 9 of the 26 cubies. More general ways of defining additive, 
admissible heuristics have been proposed that do apply to Rubik's cube (Yang et al., 2008),  
but they have not yielded a heuristic better than the best nonadditive  heuristic for the problem. 

3.6.4 Learning heuristics from experience 
A heuristic function h(n)  is supposed to estimate the cost of a solution beginning from the 
state at node n. How could an agent construct such a function? One solution was given in 
the preceding sections—namely, to devise relaxed problems for which an optimal solution 
can be found easily. Another solution is to learn from experience. "Experience" here means 
solving lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides 
examples from which h(n)  can be learned. Each example consists of a state from the solu- 
tion path and the actual cost of the solution from that point. From these examples, a learning 
algorithm can be used to construct a function h(n,)  that can (with luck) predict solution costs 
for other states that arise during search. Techniques for doing just this using neural nets, de-
cision trees, and other methods are demonstrated in Chapter 18.  (The reinforcement learning 
methods described in Chapter 21 are also applicable.) 

Inductive learning methods work best when supplied with features of a state that are 
relevant to predicting the state's value, rather than with just the raw state description. For 
example, the feature "number of misplaced tiles" might be helpful in predicting the actual 
distance of a state from the goal. Let's call this feature xi (n). We could take 100 randomly 
generated 8-puzzle configurations and gather statistics on their actual solution costs. We 
might find that when xi (n) is 5, the average solution cost is around 14, and so on. Given 
these data, the value of x i  can be used to predict h(n).  Of course, we can use several features. 
A second feature x2(n)  might be "number of pairs of adjacent tiles that are not adjacent in the 
goal state" How should r1(n)  and T2  (n)  be combined to predict h(n  )9  A common approach 
is to use a linear combination: 

h(n) = eixi(n)  +e2s2(n)  •  

The constants and e2  are adjusted to give the best fit to the actual data on solution costs. 
One expects both c1  and e2  to be positive because misplaced tiles and incorrect adjacent pairs 
make the problem harder to solve. Notice that this heuristic does satisfy the condition that 
h(n)  =  0 for goal states, but it is not necessarily admissible or consistent. 
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3.7 SUMMARY 

This chapter has introduced methods that an agent can use to select actions in environments 
that are deterministic, observable, static, and completely known. In such cases, the agent can 
construct sequences of actions that achieve its goals; this process is called search. 

• Before an agent can start searching for solutions, a goal must be identified and a well-
defined problem must be formulated. 

• A problem consists of five parts: the initial state, a set of actions, a transition model 
describing the results of those actions, a goal test function, and a path cost function. 
The environment of the problem is represented by a state space. A path through the 
state space from the initial state to a goal state is a solution. 

• Search algorithms treat states and actions as atomic: they do not consider any internal 
structure they might possess. 

• A general TREE-SEARCH algorithm considers all possible paths to find a solution, 
whereas a GRAPH-SEARCH algorithm avoids consideration of redundant paths. 

• Search algorithms are judged on the basis of completeness, optimality, time complex. 
ity, and space complexity. Complexity depends on h, the branching factor in the state 
space, and d, the depth of the shallowest solution. 

• Uninformed search methods have access only to the problem definition. The basic 
algorithms are as follows: 

—Breadth-first  search expands the shallowest nodes first; it is complete, optimal 
for unit step costs. but has exponential space complexity. 

—Uniform.cost  search expands the node with lowest path cast, g(n),  and is optimal 
for general step costs. 

—Depth-first search expands the deepest unexpanded node first. It is neither com-
plete nor optimal, but has linear space complexity. Depth limited search adds a 
depth bound. 

—Iterative deepening search calls depth-first search with increasing depth limits 
until a goal is found. It is complete, optimal for -unit step costs, has time complexity 
comparable to breadth-first search, and has linear space complexity. 

—Bidirectional search can enormously reduce time complexity, but it is not always 
applicable and may require too much space. 

• Informed search methods may have access to a heuristic function 12  .r/.)  that estimates 
the cost of a solution from n. 

—The generic best-first search algorithm selects a node for expansion according to 
an evaluation function. 

—Greedy hest-first  search expands nudes with minimal h(n).  It is not optimal but 
is often efficient. 



Bibliographical and Historical Notes 109 

– A* search expands nodes with minimal f (in) = g(n)  +  11(1).  A* is complete and 
optimal, provided that h(n) is admissible (for TREE-SEARCH) or consistent (for 
GRAPH-SEARCH). The space complexity of A* is still prohibitive. 

– IMF'S  (recursive best-first search) and SMA*  (simplified memory-bounded A)  
are robust, optimal search algorithms that use limited amounts of memory; given 
enough time, they can solve problems that A* cannot solve because it runs out of 
memory. 

• The performance of heuristic search algorithms depends on the quality of the heuristic 
function. One can sometimes construct good heuristics by relaxing the problem defi-
nition,  by storing precomputed  solution costs for subproblems in a pattern database, or 
by learning from experience with the problem class. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The topic of state-space search originated in more or less its current form in the early years of  
Al. Newell and Simon's work on the Logic Theorist {1957) and GPS (1961) led to the estab- 
lishment of search algorithms as the primary weapons in the armory of 1960s AI researchers 
and to the establishment of problem solving as the canonical AI task. Work in operations 
research by Richard Bellman  (1957) showed the importance of additive path costs in sim- 
plifying optimization algorithms. The text on Automated Problem Solving by Nils Nilsson 
(1971) established the area on a solid theoretical footing. 

Most of the state-space search problems analyzed in this chapter have a long history 
in the literature and are less trivial than they might seem. The missionaries and cannibals 
problem used in Exercise 3.9 was analyzed in detail by Amarel (1968),  It had been consid-
ered earlier—in AI by Simon and Newell (1961) and in operations research by Bellman and 
Dreyfus (1962). 

The 8-puzzle  is a smaller cousin of the 15-puzzle,  whose history is recounted at length 
by Slocum and Sonneveld (2006). It was widely believed to have been invented by the fa-
mous American game designer Sam Loyd, based on his claims to that effect from 1891 on-
ward (Loyd, 1959). Actually it was invented by Noyes Chapman, a postmaster in Canastota, 
New York, in the mid-1870s.  (Chapman was unable to patent his invention, as a generic 
patent covering sliding blocks with letters, numbers, or pictures was granted to Ernest Kinsey 
in 1878.) It quickly attracted the attention of the public and of mathematicians (Johnson and 
Story, 1879; Tait, 1880). The editors of the American Journal of Mathematics stated, "The 
'15' puzzle for the last few weeks has been prominently before the American public, and may 
safely be said to have engaged the attention of nine out of ten persons of both sexes and all 
ages and conditions of the community." Ratner and Warmth (1986) showed that the general 
ra  x rt  version of the 15-puzzle belongs to the class of NP-complete problems.  

The 8-queens problem was first published anonymously in the German chess maga- 
zine Suituch  in 1848; it was later attributed to one Max Bezzel. It was republished in 1850 
and at that time drew the attention of the eminent mathematician Carl Friedrich Gauss, who 
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attempted to enumerate all possible solutions; initially he found only 72, but eventually he 
found the correct answer of 92, although Nauck published all 92 solutions first, in 1850. 
Netto (1901) generalized the problem to is queens, and Abramson and Yung (1989) found an 
0(n) algorithm. 

Each of the real-world search problems listed in the chapter has been the subject of a 
good deal of research effort. Methods for selecting optimal airline flights remain proprietary 
for the most part. but Carl de Marcken (personal communication) has shown that airline ticket 
pricing and restrictions have become so convoluted that the problem of selecting an optimal 
flight is formally undecidable.  The traveling-salesperson problem is a standard combinato-
rial problem in theoretical computer science (Lawler et al., 1992). Karp (1972) proved the 
TSP to be NP-hard, but effective heuristic approximation methods were developed (Lin and 
Kemighan, 1973). Arora (1998) devised a fully polynomial approximation scheme for Eu-
clidean TSPs. VLSI layout methods are surveyed by Shahoukar  and Mazumder  (1991), and 
many layout optimization papers appear in VLSI journals. Robotic navigation and assembly 
problems are discussed in Chapter 25. 

Uninformed search algorithms for problem solving are a central topic of classical com-
puter science (Horowitz and Sahni, 1978) and operations research (Dreyfus, 1969). Breadth-
first search was formulated for solving mazes by Moore (1959). The method of dynamic 
progranuning (Bellman, 1957; Delimit  and Dreyfus, 1962), which systematically records 
solutions for all subproblems of increasing lengths, can be seen as a form of breadth-first 
search on graphs. The two-point shortest-path algorithm of Dijkstra (1959) is the origin 
of uniform-cost search. These works also introduced the idea of explored and frontier sets 
(closed and open lists). 

A version of iterative deepening designed to make efficient use of the chess clock was 
first used by Slate and Atkin (1977) in the CHEss 4.5 game-playing program. Manelli's  
algorithm B (1977) includes an iterative deepening aspect and also dominates A's worst-case 
performance with admissible but inconsistent heuristics. The iterative deepening technique 
came to the fore in work by Koff (1985a). Bidirectional search, which was introduced by 
Pohl (1971), can also he effective in some cases_  

The use of heuristic information in problem solving appears in an early paper by Simon 
and Newell (1958), but the phrase "heuristic search"  and the use of heuristic functions that 
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965), 
Doran and Michie (1966) conducted extensive experimental studies of heuristic search. Al-
though they analyzed path length and "penetrance"  (the ratio of path length to the total num-
ber of nodes examined so far), they appear to have ignored the information provided by the 
path cost g(n). The A algorithm, incorporating the current path cost into heuristic search, 
was developed by Hart, Nilsson, and Raphael (1968), with some later corrections (Han et aL,  
1972). Dechter and Pearl (1985) demonstrated the optimal efficiency of A".  

The original A* paper introduced the consistency condition on heuristic functions. The 
monotone condition was introduced by Pohl (1977) as a simpler replacement, but Pearl 01984) 
showed that the two were equivalent. 

Pohl (1977) pioneered the study of the relationship between the error in heuristic func-
tions and the time complexity of A*. Basic results were obtained for tree search with unit step 
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costs and a single goal node (Pohl, 1977; Gaschnig, 1979; Huyn  et al., 1980; Pearl, 1984) and 
with multiple goal nodes (Dinh et aL, 2007).  The "effeetivc  branching factor" was proposcd 
by Nilsson (1971) as an empirical measure of the efficiency; it is equivalent to assuming a 
time cost of 0((b*) d ).  For tree search applied to a graph, Korf et al. (2001) argue that the time 
cost is better modeled as 0(bd—k ),  where k depends on the heuristic accuracy; this analysis 
has elicited some controversy, however. For graph search,  Helmert  and Roger (2008) noted 
that several well-known problems contained exponentially many nodes on optimal solution 
paths, implying exponential time complexity for A* even with constant absolute error in h. 

There are many variations on the A*  algorithm. Pohl (1973) proposed the use of dynamic 
weighting, which uses a weighted sum fw (n)=  te5g(n)  w hh(n) of the current path length 
and the heuristic function as an evaluation function, rather than the simple sum f (n) — y(ri)+  
h(n)  used in A*. The weights te,  and tvh  are adjusted dynamically as the search progresses. 
Pohl's algorithm can be shown to be c-admissible—that  is, guaranteed to find solutions within 
a factor 1 + e  of the optimal solution, where c  is a parameter supplied to the algorithm. The 
same property is exhibited by the A:  algorithm (Pearl, 1984), which can select any node from 
the frontier provided its f-cost is within a factor 1 + e  of the lowest-f-cost frontier node. The 
selection can be done so as to minimize search cost. 

Bidirectional versions of A'  have been investigated; a combination of bidirectional A*  
and known landmarks was used to efficiently find driving routes for Microsoft's online map 
service (Goldberg et of , 2006).  After caching a set of paths between landmarks, the algorithm 
can find an optimal path between any pair of points in a 24 million point graph of the United 
States, searching less than 0.1% of the graph. Others approaches to bidirectional search 
include a breadth-first search backward from the goal up to a fixed depth, followed by a 
forward IDA*  search (Dillenburg and Nelson, 1994; Manzini, 1995). 

A" and other state-space search algorithms are closely related to the branch-and-bound 
techniques that are widely used in operations research (Lawler and Wood, 1966).  The 
relationships between state-space search and branch-and-bound have been investigated in 
depth (Kumar and Kanal, 1983; Nau et al., 1984; Kumar et al., 1988).  Martelli and Monta-
nan (1978)  demonstrate a connection between dynamic programming (see Chapter 17) and 
certain types of state-space search. Kumar and Kanal (1988) attempt a "grand unification" of 
heuristic search, dynamic programming, and branch-and-bound techniques under the name 
of CDP—the "composite decision process." 

Because computers in the late 1950s and early 1960s had at most a few thousand words 
of main memory, memory-bounded heuristic search was an early research topic. The Graph 
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an 
operator after searching best-first up to the memory limit. IDA* (Koff. 1985a, 1985b) was the 
first widely used optimal, memory-bounded heuristic search algorithm, and a large number 
of variants have been developed_ An analysis of the efficiency of IDA* and of its difficulties 
with real-valued heuristics appears in Patrick et al. (1992). 

RHFS (Korf, 1993) is actually somewhat more complicated than the algorithm shown 
in Figure 3.26, which is closer to an independently developed algorithm called iterative ex- 
pansion (Russell, 1992).  RBFS uses a lower bound as well as the upper bound; the iwo  al- 
gorithms behave identically with admissible heuristics, but RBFS  expands nodes in best-first 
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order even with an inadmissible heuristic. The idea of keeping track of the best alternative 
path appeared earlier in Bratko's (1986) elegant Prolog implementation of IV  and in the DTA*  
algorithm (Russell and ❑ efald,  1991). The latter work also discusses metalevel state spaces 
and metalevel learning. 

The MA*  algorithm appeared in Chakrabarti et al. (1989). SMA*, or Simplified MA'. 
emerged from an attempt to implement MA* as a comparison algorithm for lE  (Russell, 1992), 
Kaindl and Khorsand (1994) have applied SMAA*  to produce a bidirectional search algorithm 
that is substantially faster than previous algorithms. Korf and Zhang (2000) describe a divide-
and-conquer approach, and Zhou and Hansen (2002) introduce memory-bounded N graph 
search and a strategy for switching to breadth-first search to increase memory-efficiency 
(Zhou and Hansen, 2006). Korf (1995) surveys memory-bounded search techniques. 

The idea that admissible heuristics can be derived by problem relaxation appears in the 
seminal paper by Held and Karp (1970), who used the minimum-spanning-tree  heuristic to 
solve the TSP. (See Exercise 330.) 

The automation of the relaxation process was implemented successfully' by Priedi-
tis  (1993), building on earlier work with Mostow (Mostow and Prieditis, 1989). Holte and 
Hernadvolgyi  (2001) describe more recent steps towards automating the process. The use of 
pattern databases to derive admissible heuristics is due to Gasser (1995) and Culberson and 
Schaeffer (1996, 1998); disjoint pattern databases are described by Korf and Feiner (2002); 
a similar method using symbolic patterns is due to Edelkamp  (2009). Feiner et al. (2007) 
show how to compress pattern databases to save space. The probabilistic interpretation of 
heuristics was investigated in depth by Pearl (1984) and I lansson  and Mayer (1989). 

By far the most comprehensive source on heuristics and heuristic search algorithms 
is Pearl's (1984)  Heuristics  text. This book provides especially good coverage of the wide 
variety of offshoots and variations of A*, including rigorous proofs of their formal properties. 
Kanal and Kumar (1988) present an anthology of important articles on heuristic search, and 
Rayward-Smith et al. (1996) cover approaches from Operations Research. Papers about new 
search algorithms—which, remarkably, continue to be discovered—appear in journals such 
as Artifirial  intelligenrs'e  and Journal qf  the ACM_ 

The topic of parallel search algorithms was not covered in the chapter, partly because 
it requires a lengthy discussion of parallel computer architectures. Parallel search became a 

popular topic in the 1990s in both AI and theoretical computer science (Mahanti and Daniels. 
1993; Grama and Kumar, 1995; Crauser et al., 1998) and is making a comeback in the era 
of new multicore and cluster architectures (Ralphs  et al., 2004; Korf  and Schultze, 2005). 
Also of increasing importance are search algorithms for very large graphs that require disk 
storage (Korf, 2008). 

EXERCISES 

3.1 Explain why problem formulation must follow goal formulation. 

3.2 Your goal is to navigate a robot out of a maze. The robot starts in the center of the maze 
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facing north. You can turn the robot to face north, east, south, or west. You can direct the 
robot to move forward a certain distance, although it will stop before hitting a wall. 

a. Formulate this problem. How large is the state space? 

b.  In navigating a maze, the only place we need to turn is at the intersection of two or 
more corridors. Reformulate this problem using this observation. How large is the state 
space now? 

c.  From each point in the maze, we can move in any of the four directions until we reach a 
turning point, and this is the only action we need to do. Reformulate the problem using 
these actions. Do we need to keep track of the robot's orientation now? 

d_  in our initial description of the problem we already abstracted from the real world, 
restricting actions and removing details_  List three such simplifications we made. 

3.3 Suppose two friends live in different cities on a map, such as the Romania map shown 
in Figure 3.2. On every turn, we can simultaneously move each friend to a neighboring city 
on the map. The amount of time needed to move from city i to neighbor j is equal to the road 
distance d(2,3)  between the cities, but on each turn the friend that arrives first must wait until 
the other one arrives (and calls the first on his/her cell phone) before the next turn can begin. 
We want the two friends to meet as quickly as possible. 

a. Write a detailed formulation for this search problem. (You will find it helpful to define 
some formal notation here.) 

b. Let D(i, j) be the straight-line distance between cities i and j. Which of the following 
heuristic functions are admissible? (i) j); (ii) 2 • D(i.  j); D(i,  j)12.  

e.  Are there completely connected maps for which no solution exists? 

d. Are there maps in which all solutions require one friend to visit the same city twice? 

3.4 Show that the 8-puzzle states are divided into two disjoint sets, such that any state is 
reachable from any other state in the same set, while no state is reachable from any state in 
the other set. (Hint: See Berlekamp et al. (1982).)  Devise a procedure to decide which set a 
given state is in, and explain why this is useful for generating random states. 

3.5 Consider the n-queens problem using the "efficient" incremental formulation given on 
page 72. Explain why the state space has at least i'/W.!  states and estimate the largest n for 
which exhaustive exploration is feasible. (Hint: Derive a lower bound on the branching factor 
by considering the maximum number of squares that a queen can attack in any column.) 

3.6 Give a complete problem formulation for each of the following. Choose a formulation 
that is precise enough to be implemented. 

a. Using only four colors, you have to color a planar map in such a way that no two 
adjacent regions have the same color. 

b. A 3-foot-tall monkey is in a room where some bananas are  suspended from the 8-foot 
ceiling. He would like to get the bananas. The room contains two stackable, movable, 
climbable 3-foot-high crates. 
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Figure 3.31  A scene with polygonal obstacle& S and G are the start and goal states, 
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c. You have a program that outputs the message "illegal input record" when fed a certain 
file of input records.  You know that processing of each record is independent of the 
other records.  You want to discover what record is illegal. 

d. You have three jugs, measuring 12 gallons, 8 gallons, and 3 gallons, and a water faucet. 
You can fill the jugs up or empty them out from one to another or onto the ground_ You 
need to measure out exactly one gallon. 

3.7 Consider the problem of finding the shortest path between two points on a plane that has 
convex polygonal obstacles as shown in Figure 3.31. This is an idealization of the problem 
that a robot has to solve to navigate in a crowded environment. 

a. Suppose the state space consists of all positions (a',1))  in the plane. How many states 
are there? How many paths are there to the goal? 

b. Explain briefly why the shortest path from one polygon vertex to any other in the scene 
must consist of straight-line segments joining some of the vertices of the polygons.  
Define a good state space now. How large is this state space? 

c. Define the necessary functions to implement the search problem, including an ACTIONS 
function that takes a vertex as input and returns a set of vectors, each of which maps the 
current vertex to one of the vertices that can be reached in a straight line. (Do not forget 
the neighbors on the same polygon.) Use the straight-line distance for the heuristic 
function. 

d. Apply one or more of the algorithms in this chapter to solve a range of problems in the 
domain, and comment on their performance. 

3.8 On page 68, we said that we would not consider problems with negative path casts. In 
this exercise, we explore this decision in more depth.  

a. Suppose that actions can have arbitrarily large negative costs; explain why this possi-
bility would force any optimal algorithm to explore the entire state space. 
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b. Does it help if we insist that step costs must be greater than or equal to some negative 
constant e? Consider both trees and graphs. 

e.  Suppose that a set of actions forms a loop in the state space such that executing the set in 
some order results in no net change to the state. If all of these actions have negative cost, 
what does this imply about the optimal behavior for an agent in such an environment? 

d. One can easily imagine actions with high negative cost, even in domains such as route 
finding_ For example, some stretches of road might have such beautiful scenery as to 
far outweigh the normal costs in terms of time and fuel, Explain, in precise terms, 
within the context of state-space search, why humans do not drive around scenic loops 
indefinitely, and explain how to define the state space and actions for route finding so 
that artificial agents can also avoid looping. 

e. Can you think of a real domain in which step costs are such as to cause looping? 

3.9 The missionaries and cannibals problem is usually stated as follows. Three mission-
aries and three cannibals are on one side of a river, along with a boat that can hold one or 
two people. Find a way to get everyone to the other side without ever leaving a group of mis-
sionaries in one place outnumbered by the cannibals in that place. This problem is famous in 
Al because it was the subject of the first paper that approached problem formulation from an 
analytical viewpoint (Amarel,  1968). 

a. Formulate the problem precisely, making only those distinctions necessary to ensure a 
valid solution. Draw a diagram of the complete state space. 

b_ Implement and solve the problem optimally using an appropriate search algorithm. Is it 
a good idea to check for repeated states? 

c. Why do you think people have a hard time solving this puzzle, given that the state space 
is so simple? 

3.10 Define in your own words the following terms: state, state space, search tree, search 
node, goal, action, transition model, and branching factor. 
3.11 What's the difference between a world state, a state description, and a search node? 
Why is this distinction useful? 

3.12 An action such as Go(Sibiu)  really consists of a long sequence of finer-grained actions: 
turn on the car, release the brake, accelerate forward, etc_ Having composite actions of this 
kind reduces the number of steps in a solution sequence, thereby reducing the search time. 
Suppose we take this to the logical extreme, by making super-composite actions out of every 
possible sequence of Go action.s.  Then every problem instance is solved by a single super-
composite action, such as Go(Sibitt)Go(Rimnicu  Vilcea)Go(Pireszi)Co(Bucharest).  Explain 
how search would work in this formulation. Is this a practical approach for speeding up 
problem solving? 
3.13 Prove that GRAPH-SEARCH satisfies the graph separation property illustrated in Fig- 

ure 3.9. ( Hint: Begin by showing that the property holds at the start, then show that if it holds 
before an iteration of the algorithm, it holds afterwards.)  Describe a search algorithm that 
violates the property. 
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Figure 3.32  The track pieces in a wooden railway set; each is labeled with the number of 
copies in the set. Note that curved pieces and "fork" pieces ("switches" or "points") car be 
flipped over so they can curve in either direction_  each curve subtends 45 degrees. 
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3.14 Which of the following are true and which are false? Explain your answers. 

a. Depth-first search always expands at least as many nodes as A* search with an admissi-
ble heuristic. 

b,  1L(n)  = 0  is an admissible heuristic for the 8-puzzle. 
c. A'  is of no use in robotics because percepts. states, and actions are continuous. 
d. Breadth-first search is complete even if zero step costs are allowed.  
e. Assume that a rook can move on a chessboard any number of squares in a straight line, 

vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an 
admissible heuristic for the problem of moving the rook from square A to square B in 
the smallest number of moves. 

3.15 Consider a state space where the start state is number 1 and each state k has two 
successors: numbers 2k and 2k + 1. 

a. Draw the portion of the state space for states I to 15. 
b. Suppose the goal state is 11.  List the order in which nodes will be visited for breadth-

first search, depth-limited search with limit 3, and iterative deepening search. 
c. How well would bidirectional search work on this problem? What is the branching 

factor in each direction of the bidirectional search? 
d. Does the answer to (c) suggest a reformulation of the problem that would allow you to 

solve the problem of getting from state I to a given goal state with almost no search? 
e. Call the action going from k to 2k Left, and the action going to 2k +  1 Right. Can you 

find an algorithm that outputs the solution to this prnhlem  without any search at all')  

3.16  A basic wooden railway set contains the pieces shown in Figure 3.32_  The task is to 
connect these pieces into a railway that has no overlapping tracks and no loose ends where a 
train could run off onto the floor. 

a. Suppose that the pieces fit together exactly with no slack. Give a precise formulation of 
the task as a search problem. 

b. Identify a suitable uninformed search algorithm for this task and explain your choice. 
c. Explain why removing any one of the "fork" pieces makes the problem unsolvable. 
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d. Give an upper bound on the total size of the state space defined by your formulation. 
(Hint: think about the maximum branching factor for the construction process and the 
maximum depth, ignoring the problem of overlapping pieces and loose ends. Begin by 
pretending that every piece is unique.) 

3.17 On page 90, we mentioned iterative lengthening search, an iterative analog of uni-
form cost search. The idea is to use increasing limits on path cost. If a node is generated 
whose path cost exceeds the current limit, it is immediately discarded. For each new itera-
tion, the limit is set to the lowest path cost of any node discarded in the previous iteration. 

a. Show that this algorithm is optimal for general path costs. 
b. Consider a uniform tree with branching factor b, solution depth d, and unit step costs. 

How many iterations will iterative lengthening require? 
c. Now consider step costs drawn from the continuous range [f,  1],  where 0 <  s <  1. How 

many iterations are required in the worst case? 
d. Implement the algorithm and apply it to instances of the R-puzzle and traveling sales-

person problems. Compare the algorithm's performance to that of uniform-cost search, 
and comment on your results. 

3.13  Describe a state space in which iterative deepening search performs much worse than 
depth-first search (for example. 001.2 )  vs. 0(n)).  

3.19 Write a program that will take as input two Web page URLs  and find a path of links 
from one to the other. What is an appropriate search strategy? Is bidirectional search a good 
idea? Could a search engine be used to implement a predecessor function? 

3.20  Consider the vacuum-world problem defined in Figure 2.2. 

a. Which of the algorithms defined in this chapter would be appropriate for this problem? 
Should the algorithm use tree search or graph search? 

h_  Apply your chosen algorithm to compute an optimal sequence of actions for a 3 x 3 
world whose initial state has dirt in the three top squares and the agent in the center. 

c. Construct  a search agent for the vacuum world, and evaluate its performance in a set of 
x 3 worlds with probability 0.2 of dirt in each square. Include the search cost as well 

as path cost in the performance measure, using a reasonable exchange rate. 
d. Compare your best search agent with a simple randomized reflex agent that sucks if 

there is dirt and otherwise moves randomly. 
e. Consider what would happen if the world were enlarged to n  x n. How does the per-

fonnance  of the starch  agent and of the reflex agent vary with n?  

3.21 Prove each of the following statements, or give a counterexample: 

a. Breadth-first search is a special case of uniform-cost search. 
b. Depth-first search is a special case of best-first tree search. 
c. Uniform-cost search is a special case of A* search. 
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3.22 Compare the performance of A* and RBFS on a set of randomly generated problems 
in thc  8-puzzle (with Manhattan distance) and TSP (with MST—acc  Exercise  3.30) domains. 
Discuss your results. What happens to the performance of RBFS  when a small random num-
ber is added to the heuristic values in the 8-puzzle  domain? 

3.23 Trace the operation of A*  search applied to the problem of getting to Bucharest from 
Lugoj using the straight-line distance heuristic. That is, show the sequence of nodes that the 
algorithm will consider and the  f , g, and Ii score fur each node.  

3.24 Devise a state space in which A* using GRAPH-SEARCH returns a suboptimal solution 
with an ii(n)  function that is admissible but inconsistent. 

3.25 The heuristic path algorithm (Pohl, 1977) is a best-first search in which the evalu-
ation function is ,f (n) =  (2 – w)g(n)  + wh(n). For what values of w is this complete? 
For what values is it optimal, assuming that h is admissible? What kind of search does this 
perform for to = 0, to = 1, and to = 2? 

3.26 Consider the unbounded version of the regular 2D grid shown in Figure 39. The start 
state is at the origin, (0,0), and the goal state is at (x,p).  

a. What is the branching factor b in this state space? 
b. How many distinct states are there at depth k (for k > 0)? 
c. What is the maximum number of nodes expanded by breadth-first tree search? 
d. What is the maximum number of nodes expanded by breadth-first graph search? 

= – + In – y an admissible heuristic fur a state at (•, u)? Explain. 
f. How many nodes are expanded by A* graph search using h? 
g. Does h remain admissible if some links are removed? 
h. Does h remain admissible if some links are added between nonadjacent states? 

3.27 n vehicles occupy squares (1, 1) through (n, 1) (i.e.,  the bottom row) of an n  x n grid. 
The vehicles must be moved to the top row but in reverse order; so the vehicle i that starts in 
(i,  1) must end up in (n –  i  + 1, n). On each time step, every one of the 11 vehicles can move 
one square up, down, left, or right, or stay put; but if a vehicle stays put. one other adjacent 
vehicle (but not more than one) can hop over it. Two vehicles cannot occupy the same square. 

a. Calculate the size of the state space as a function of IL  

b. Calculate the branching factor as a function of It.  
c. Suppose that vehicle i is at (xi, yi):  write a nontrivial admissible heuristic h.,  for the 

number of moves it will require to get to its goal location (n – r ±  1, n), assuming no 
other vehicles are on the grid_  

d. Which of the following heuristics are admissible for the problem of moving all n vehi-
cles to their destinations? Explain. 

Ei –  I  h i'  
(ii) max{hi ,  

(iii) min{ h i  , , 

Hal RISPC  51114 
ALEORRHAI  
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3.28 Invent a heuristic function for the 8-puzzle that sometimes overestimates, and show 
how it can lead to a suboptimal solution on a particular problem. (You can use a computer to 
help if you want.) Prove that if h  never overestimates by more than c, A* using h returns a 
solution whose cost exceeds that of the optimal solution by no more than c. 

3.29 Prove that if a heuristic is consistent, it must be admissible_ Construct an admissible 
heuristic that is not consistent. 

3.30 The traveling salesperson problem (TSP) can be solved with the minimum-spanning-
tree (MST) heuristic, which estimates the cost of completing a tour, given that a partial tour 
has already been constructed. The MST cost of a set of cities is the smallest sum of the link 
costs of any tree that connects all the cities_ 

a. Show how this heuristic can be derived from a relaxed version of the TSP. 
h. Show that the MST heuristic dominates straight-line distance. 
c_  Write a problem generator for instances of the TSP where cities are represented by 

random points in the unit square. 
d. Find an efficient algorithm in the literature for constructing the MST, and use it with A 

graph search to solve instances of the TSP. 

3.31 On page 105, we defined the relaxation of the 8-puzzle in which a tile can move from 
square A to square B if B is blank. The exact solution of this problem defines Gaschnig's 
heuristic (Gaschnig, 1979). Explain why Gaschnig's  heuristic is at least as accurate as h i  
(misplaced tiles), and show cases where it is more accurate than both h i  and h2 (Manhattan 
distance). Explain how to calculate Gaschnig's  heuristic efficiently. 

3.32 We gave two simple heuristics for the 8-puzzle: Manhattan distance and misplaced 
tiles. Several heuristics in the Literature purport to improve on this—see, for example. Nils-
son (1971), Mostow and Prieditis (1989), and Hansson et al. (1992). Test these claims by 
implementing the heuristics and comparing the performance of the resulting algorithms. 
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In which we relax the simplifying assumptions of the previous chapter;  thereby 
getting closer to the real world. 

Chapter 3 addressed a single category of problems: observable, deterministic, known envi-
ronments where the solution is a sequence of actions. In this chapter, we look at what happens 
when these assumptions are relaxed. We begin with a fairly simple case: Sections 4.1 and 4.2 
cover algorithms that perform purely local search in the state space, evaluating and modify-
ing one or more current states rather than systematically exploring paths from an initial state. 
These algorithms are suitable for problems in which all that matters is the solution state, not 
the path cost to reach it. The family of local search algorithms includes methods inspired by 
statistical physics (simulated annealing) and evolutionary biology (genetic algorithms). 

Then, in Sections 4.3-4.4, we examine what happens when we relax the assumptions 
of determinism and observability. The key idea is that if an agent cannot predict exactly whit 
percept it will receive, then it will need to consider what to do under each contingency that 
its percepts may reveal. With partial observability, the agent will also need to keep track of 
the states it might be in. 

Finally, Section 4.5 investigates online search, in which the agent is faced with a state 
space that is initially unknown and must be explored. 

4.1 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS 

The search algorithms that we have seen so far are designed to explore search spaces sys-
tematically. This systematicity is achieved by keeping one or more paths in memory and by 
recording which alternatives have been explored at each paint along the path. When a goal is 
found, the path to that goal also constitutes a solution to the problem. In many problems, how-
ever, the path to the goal is irrelevant. For example, in the 8-queens problem (see page 71). 
what matters is the final configuration of queens, not the order in which they are added. The 
same general property holds for many important applications such as integrated-circuit de-
sign, factory-flour  layout, job-shop scheduling, automatic programming, telecommunications 
network optimization, vehicle routing. and portfolio management. 

120 
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If the path to the goal does not matter, we might consider a different class of algo- 
rithms, ones that do not worry about paths at all. Local search algorithms operate using 
a single current node (rather than multiple paths) and generally move only to neighbors 
of that node. Typically, the paths followed by the search are not retained. Although local 
search algorithms are not systematic, they have two key advantages: (1)  they use very little 
memory—usually a constant amount; and (2) they can often find reasonable solutions in large 
or infinite (continuous) state spaces for which systematic algorithms are unsuitable. 

In addition to finding goals, local search algorithms are useful for solving pure op-,  
timization  problems, in which the aim is to find the best state according to an objective 
function. Many optimization problems do not fit the "standard" search model introduced in 
Chapter 3. For example, nature provides an objective function—reproductive fitness—that 
Darwinian evolution could be seen as attempting to optimize, but there is no "goal test" and 
no "path cost" for this problem. 

To understand local search, we find it useful to consider the state-space  landscape (as 

in Figure 4.1). A landscape has both "location" (defined by the state) and "elevation" (defined 
by the value of the heuristic cost function or objective function). If elevation corresponds to 
cost, then the aim is to find the lowest valley—a global minimum; if elevation corresponds 
to an objective function, then the aim is to find the highest peak—a global maximum. {You 
can convert from one to the other just by insetting a minus sign.) Local search algorithms 
explore this landscape. A complete local search algorithm always finds a goal if one exists; 
an optimal algorithm always finds a global minimum/maximum.  

current 
state 

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the 
objective function. The aim is to find the global maximum. Hill-climbing search modifies 
the current state to try to improve it, as shown by the arrow. The various topographic features 
are defined in the text. 
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function HILL-M..1mi];  I NG  ( problem) returns a state that is a local maximum 

current 4— MAKE-Noon(pmbiern.INITIAL-STATE)  
loop do 

neighbor  a highest-valued successor of current 
if neighbor. VALUE < cuirent.VA  LI]  E then return current.S  TATE 
current 4—  neigh bor 

Figure 4.2 The hill climbing search algorithm, which is the most basic local search tech 
nique. At each step the current node is replaced by the best neighbor; in this version, that 
means the neighbor with the highest VALUE, but if a heuristic cost estimate h is used, we 
would find the neighbor with the lowest h. 

4.1.1 Hill-climbing search 

The hill-climbing search algorithm (steepest-ascent version) is shown in Figure 4.2. It is 
simply a loop that continually moves in the direction of increasing value—that is, uphill. 11  
terminates when it reaches a "peak" where no neighbor has a higher value. The algorithm 
does not maintain a search tree, so the data structure for the current node need only record 
the state and the value of the objective function. Hill climbing does not look ahead beyond 
the immediate neighbors of the current state. This resembles trying to find the top of Mount 
Everest in a thick fog while suffering from amnesia 

To illustrate hill climbing, we will use the 8-queens  problem introduced on page 71. 
Local search algorithms typically use a complete-state formulation, where each state has 
S queens on the board, one per column. The successors of a state are all possible states 
generated by moving a single queen to another square in the same column (so each state has 
8 x 7= 56 successors). The heuristic cost function h is the number of pairs of queens that 
are attacking each other, either directly or indirectly. The global minimum of this function 
is zero, which occurs only at perfect solutions. Figure 4.3(a) shows a state with h = 17. The 
figure also shows the values of all its successors, with the best successors having h = 12. 
Hill-climbing algorithms typically choose randomly among the set of best successors if there 
is more than one. 

Hill climbing is sometimes called greedy local search because it grabs a good neighbor 
state without thinking ahead about where to go next. Although greed is considered one of the 
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing 
often makes rapid progress toward a solution because it is usually quite easy to improve a bad 
state. For example, from the state in Figure 4.3(a), it takes just five steps to reach the state 
in Figure 4.3(b), which has h= 1 and is very nearly a solution. Unfortunately, hill climbing 
often gets stuck for the following reasons: 

• Local maxima: a local maximum is a peak that is higher than each of its neighboring 
states but lower than the global maximum. Hill-climbing algorithms that reach the 
vicinity of a local maximum will be drawn upward toward the peak but will then be 
stuck with nowhere else to go. Figure 4.1 illustrates the problem schematically. More 
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Figure 4.3 (a) An 8-queens state with heuristic cost estimate h = 17, showing the value of 
h for each possible successor obtained by moving a queen within its column. The best moves 
are marked. (b) A local minimum in the 8-queens state space; the state has h,  =  1  but every 
successor has a higher cost. 
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SIDEWAYS MOVE 

concretely, the state in Figure 4.3(b) is a local maximum (i.e., a local minimum for the 
cost h); every move of a single queen makes the situation worse. 

• Ridges: a ridge is shown in Figure 4.4. Ridges result in a sequence of local maxima 
that is very difficult for greedy algorithms to navigate 

• Plateaux: a plateau is a flat area of the state-space landscape. It can be a flat local 
maximum, from which no uphill exit exists, or a shoulder, from which progress is 
possible. (See Figure 4.1.) A hill-climbing search might get lost on the plateau. 

In each case, the algorithm reaches a point at which no progress is being made. Starting from 
a randomly generated 8-queens state. steepest-ascent hill climbing gets stuck 86% of the time, 
solving only 14% of problem instances. It works quickly, taking just 4 steps on average when 
it succeeds and 3 when it gets snick—not  bad for a state space with 88  5-=,  tr  million states. 

The algorithm in Figure 4.2 halts if it reaches a plateau where the best successor has 
the same value as the current state. Might it not be a good idea to keep going—to allow a 
sideways move in the hope that the plateau is really a shoulder, as shown in Figure 4.1? The 
answer is usually yes, but we must take care. If we always allow sideways moves when there 
are no uphill moves, an infinite loop will occur whenever the algorithm reaches a flat local 
maximum that is not a shoulder, One common solution is to put a limit on the number of con- 
secutive sideways moves allowed. For example, we could allow up to, say, 100 consecutive 
sideways moves in the 8-queens problem. This raises the percentage of problem instances 
solved by hill climbing from 14% to 94%. Success comes at a cost: the algorithm averages 
roughly 21 steps for each successful instance and 64 for each failure. 

RIDGE 

PLATEAU 

SHOULDER 
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Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states 
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local 
maxima that are not directly connected to each other. Fram  each local maximum, all the 
available actions point downhill. 

Many variants of hill climbing have been invented. Stochastic hill climbing chooses at 
random from among the uphill moves; the probability of selection can vary with the steepness 
of the uphill move. This usually converges more slowly than steepest ascent, but in some 
state landscapes, it rinds better solutions. First-choice hill climbing implements stochastic 
hill climbing by generating successors randomly until one is generated that is better than the 
current state. This is a good strategy when a state has many (e.g., thousands) of successors. 

The hill-climbing algorithms described so far are incomplete—they often fail to find 
a goal when one exists because they can get stuck on local maxima. Random-restart hill 
climbing adopts the well-known  adage, "If at first you don't succeed, try, try again." It con-
ducts a series of hill-climbing searches from randomly generated initial states, t  until a goal 
is found. It is trivially complete with probability approaching 1, because it will eventually 
generate a goal state as the initial state. If each hill-climbing search has a probability p of 
success, then the expected number of restarts required is 1/p. For 8-queens instances with 
no sideways moves allowed, p 0.14, so we need roughly 7 iterations to find a goal (6 fail-
ures and 1 success). The expected number of steps is the cost of one successful iteration plus 
(1— WI)  times the cost of failure, or roughly 22 steps in all. When we allow sideways moves, 
1/0.94..~-zt  1.06 iterations are needed on average and (1 x 21) +  (0.06/0.94) x 64 ti 25  steps. 
For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three mil-
lion queens, the approach can find solutions in under a minute. 2  

Generating a random state from an implicitly specified state space can be a hard problem in itself. 
2  Luby  et at (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular, 
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely. 
Disallowing or limiting the number of sideways moves is an example of this idea. 

STOCHASTIC HILL 
CLIMBING 

FIRST-CHOICE  HILL 
CUIABING  
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The success of hill climbing depends very much on the shape of the state-space land- 
scape: if there arc few local maxima and plateaux, random-restart hill climbing will find a 
good solution very quickly. On the other hand, many real problems have a landscape that 
looks more like a widely scattered family of balding porcupines on a flat floor, with miniature 
porcupines living on the tip of each porcupine needle, ad fnfinintm.  NP-hard problems typi- 
cally have an exponential number of local maxima to get stuck on Despite this, a reasonably 
good local maximum can often be found after a small number of restarts. 

4.1.2 Simulated annealing 

A hill-climbing algorithm that never makes "downhill" moves toward states with lower value 
(or higher cost) is guaranteed to be incomplete, because it can get stuck on a local maxi-
mum. In contrast, a purely random walk—that is, moving to a successor chosen uniformly 
at random from the set of successors—is complete but extremely inefficient. Therefore, it 
seems reasonable to try to combine hill climbing with a random walk in some way that yields 
both efficiency and completeness. Simulated annealing is such an algorithm. In metallurgy, 
annealing is the process used  to temper nr  harden metals and glass by heating them to a 
high temperature and then gradually cooling them, thus allowing the material to reach a low-
energy crystalline state. To explain simulated annealing, we switch our point of view from 
hill climbing to gradient descent (i.e., minimizing cost) and imagine the task of getting a 
ping-pong ball into the deepest crevice in a bumpy surface. If we just let the hall roll, it will 
come to rest at a local minimum. If we shake the surface, we can bounce the ball out of the 
local minimum. The trick is to shake just hard enough to bounce the ball out of local min- 
ima but not hard enough to dislodge it from the global minimum. The simulated-annealing 
solution is to start by shaking hard (i.e.,  at a high temperature) and then gradually reduce the 
intensity of the shaking (i.e., lower the temperature). 

The innermost loop of the simulated-annealing algorithm (Figure 4,5) is quite similar to 
hill climbing. Instead of picking the best move, however, it picks a random move If the move 
improves the situation, it is always accepted. Otherwise, the algorithm accepts the move with 
sonic probability less than 1. The probability decreases exponentially with the "badness" of 
the move—the  amount AE  by which the evaluation is worsened. The probability also de-
creases as the "temperature" T  goes down: "bad" moves are more likely to be allowed at the 
start when T is high, and they become more unlikely as T decreases. If the schedule lowers 
T slowly enough, the algorithm will find a global optimum with probability approaching 1. 

Simulated annealing was first used extensively to solve VLSI layout problems in the 
early 1980s. It has been applied widely to factory scheduling and other large-scale optimiza-
tion tasks In Exercise 44, you are asked to compare its performance to that of random-restart 
hill climbing on the 8-queens puzzle_ 

4.1.3 Local beam search 

Keeping just one node in memory might seem to be an extreme reaction to the problem of 
memory limitations. The local beam search algorithm3  keeps track of k states rather than 
3  Local beam search is an adaptation of beam search, which is a path-based algorithm. 
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function SIMULATED-ANNEALING(  problem,  schedule) returns a solution state 
inputs: problem, a problem 

schedule, a mapping from time to "temperature" 

current 4— MAKE-NODE(pr9b/eni.INITIAL-S  TATE) 
for t = 1 to co do 

T —  schedule(t)  
if T = 0 then return current 
next k—  a randomly selected successor of current 

E 4— next .11  ALUE  — current,VALLIE  
if AE  > 0 then current (—  next 
else current 1—  next only with probability e6E/7  

Figure 4.5  The simulated annealing algorithm, a version of stochastic hill  climbing where 
some downhill moves are allowed. Downhill moves are accepted readily early in the anneal-
ing schedule and then less often as time goes nit.  The schedule input determines the value of 
the temperature T as a function of time. 
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just one. It begins with k randomly generated states. At each step, all the successors of all k 

states are generated. If any one is a goal, the algorithm halts. Otherwise, it selects the k best 
successors from the complete list and repeats. 

At first sight, a local beam search with k states might seem to be nothing more than 
running k random restarts in parallel instead of in sequence. In fact, the two algorithms 
are quite different. In a random-restart search, each search process runs independently of 
the others. In a local beam search, useful information is passed among the parallel search 
threads. In effect, the states that generate the best successors say to the others, "Come over 
here, the grass is greener!"  The algorithm quickly abandons unfruitful searches and moves 
its resources to where the most progress is being made. 

In its simplest form, local beam search can suffer from a lack of diversity among the 
k states—they can quickly become concentrated in a small region of the state space, making 
the search little more than an expensive version of hill climbing A variant called stochastic 
beam search, analogous to stochastic hill climbing, helps alleviate this problem. Instead 
of choosing the best k from the the pool of candidate successors, stochastic beam search 
chooses In successors at random, with the probability of choosing a given successor being 
an increasing function of its value. Stochastic beam search bears some resemblance to the 
process of natural selection, whereby the "successors" (offspring) of a "state" (organism) 
populate the next generation according to its "value" (fitness). 

4.1.4 Genetic algorithms 

A genetic algorithm (or GA) is a variant of stochastic beam search in which successor states 
are generated by combining two parent states rather than by modifying a single state. The 
analogy to natural selection is the same as in stochastic beam search, except that now we arc 

dealing with sexual rather than asexual reproduction. 



Figure 4.6 The genetic algorithm, illustrated for digit strings representing t-queens  states. 
The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for 
mating in (c).  They produce offspring in (4),  which are subject to mutation in (e). 
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Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and 
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the 
unshaded columns are retained. 

Like  beam searches, GAs begin with a set of k randomly generated states, called the 
POPULATION population. Each state, or individual, is represented as a string over a finite alphabet—most 
INDIVIDUAL commonly, a string of Os and Is. For example, an 8-queens state must specify the positions of 

8 queens, each in a column of 8 squares, and so requires 8 x log2  8 = 24 bits. Alternatively, 
the state could be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later 
that the two encodings behave differently.) Figure 4.6(a) shows a population of four 8-digit 
strings representing 8-queens states. 

The production of the next generation of states is shown in Figure 4.6(b)–(e).  In (b), 
FITNESS FUNCTION 

 each state is rated by the objective function, or (in GA terminology) the fitness function. A 
fitness function should return higher values for better states, so, for the 8-queens problem 
we use the number of nonattacking  pairs of queens, which has a value of 28 for a solution. 
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic 
algorithm, the probability of being chosen for reproducing is directly proportional to the 
fitness score, and the percentages are shown next to the raw scores.  

In (c), two pairs are selected at random for reproduction, in accordance with the prob- 
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abilities in (b). Notice that one individual is selected twice and one not at all.4  For each 
pair to be mated, a crossover point is chosen randomly from the positions in the string. In 
Figure 4.6, the crossover points are after the third digit in the first pair and after the fifth digit 
in the second pair. 5  

In (d), the offspring themselves are created by crossing over the parent strings at the 
crossover point. For example, the first child of the first pair gets the first three digits from the 
first parent and the remaining digits from the second parent, whereas the second child gets 
the first three digits from the second parent and the rest from the first parent. The 8-queens  
states involved in this reproduction step are shown in Figure 4.7. The example shows that 
when two parent states are quite different, the crossover operation can produce a state that is 
a long way from either parent state. It is often the case that the population is quite diverse 
early on in the process, so crossover (like simulated annealing) frequently takes large steps in 
the state space early in the search process and smaller steps later on when must individuals 
are quite similar. 

Finally, in (e), each location is subject to random mutation with a small independent 
probability. One digit was mutated in the first, third, and fourth offspring. In the 8-queens 
problem, this corresponds to choosing a queen at random and moving it to a random square 
in its column. Figure 4.8 describes an algorithm that implements all these steps. 

Like stochastic beam search, genetic algorithms combine an uphill tendency with ran- 
dom exploration and exchange of information among parallel search threads. The primary 
advantage, if any, of genetic algorithms comes from the crossover operation. Yet it can he 
shown mathematically that, if the positions of the genetic code are permuted initially in a 
random order, crossover conveys no advantage. Intuitively, the advantage comes from the 
ability of crossover to combine large blocks of letters that have evolved independently to per- 
form  useful functions, thus raising the level of granularity at which the search operates. For 
example, it could be that putting the first three queens in positions 2, 4, and 6 (where they do 
not attack each other) constitutes a useful block that can be combined with other blocks to 
construct a solution. 

The theory of genetic algorithms explains how this works using the idea of a schema. 
which is a substring  in which some of the positions can be left unspecified. For example,  
the schema 246***** describes all 8-queens states in which the first three queens are in 
positions 2, 4, and 6, respectively. Strings that match the schema (such as 24613578) are 
called instances of the schema. It can be shown that if the average fitness of the instances of 
a schema is above the mean, then the number of instances of the schema within the population 
will grow over time. Clearly, this effect is unlikely to be significant if adjacent bits are totally 
unrelated to each other, because then there will be few contiguous blocks that provide a 
consistent benefit. Genetic algorithms work best when schemata correspond to meaningful 
components of a solution. For example, if the string is a representation of an antenna, then the 
schemata may represent components of the antenna, such as reflectors and deflectors. A good 

There are many variants of this selection rule. The method of caning, in which all individuals below a given 
threshold are discarded, can he shown to converge faster than the random version (Baum et at, 1995). 
s  Il  is here that the encoding matters. If a 24-bit encoding is used instead of it digits, then the crossover point 
has a 2/3 chance of being in the middle of a digit, which results in an essentially arbitrary mutation  of that digit. 
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function GENETIC-ALGORITHM(  population, FiTNEss-FN)  returns an individual 
inputs: population, a set of individuals 

FITNESS FN,  a function that measures the fitness of an individual 

repeat 
new_population 4— empty set 
for a; = 1  to SIZE(popuitition)  do 

x  RANDOM-SELECTION(populatio%FITNIESS-FN)  
y  RANDOM-SELECTION(popuLtion,  FITNEss -FN)  
child 4-  REPRODUCE(x,  y) 
if (small random probability) then child 4— MUTATE( child) 
add child to new_population  

population 4— new_populatior  
until some individual is fit enough, or enough time has elapsed 
return the best individual in population, according to FITNESS-FM 

function REPRODUCE(x,  y)  returns an individual 
inputs: x,y,  parent individuals 

n LENCTII(x);  c ■—  random number from I  to n 
return APPEND(SUBSTRING(x,  1 ,  c),SUBSTRING(y,  c + 1, n)) 

Figure 4.S  A genetic algorithm. The algorithm is the same as the one diagrammed in 
Figure 4.6,  with one variation: in this more popular version, each mating of two parents 
produces only one offspring, not two. 

component is likely to be good in a variety of different designs. This suggests that successful 
use of genetic algorithms requires careful engineering of the representation. 

In practice, genetic algorithms have had a widespread impact on optimization problems, 
such as circuit layout and job-shop scheduling. At present, it is not clear whether the appeal 
of genetic algorithms arises from their performance or from their aesthetically  pleasing origins 
in the theory of evolution. Much work remains to be done to identify the conditions under 
which genetic algorithms perform well. 

4.2 LOCAL SEARCH IN CONTINUOUS SPACES 

In Chapter 2, we explained the distinction between discrete and continuous environments, 
pointing out that most real-world environments are continuous, Yet none of the algorithms 
we have described (except for first-choice hill climbing and simulated annealing) can handle 
continuous state and action spaces, because they have infinite branching factors. This section 
provides a very brief introduction to sonic. local search techniques for finding optimal solu- 
tions in continuous spaces. The literature on this topic is vast; many of the basic techniques 
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EVOLUTION AND SEARCH 

The theory of evolution was developed in Charles Darwin's On the Origin of 
Species by Means of Natural Selection (1859) and independently by Alfred Russel 
Wallace (1858). The central idea is simple: variations occur in reproduction and 
will be preserved in successive generations approximately in proportion to their 
effect on reproductive fitness. 

Darwin's theory was developed with no knowledge of how the traits of organ-
isms can be inherited and modified. The probabilistic laws governing these pro-
cesses were first identified by Gregor Mendel (1866), a monk who experimented 
with sweet peas. Much later, Watson and Crick (1953) identified the structure of the 
DNA molecule and its alphabet, AGTC (adenine, guanine, thymine, cytosine). In 
the standard model, variation occurs both by point mutations in the letter sequence 
and by "crossover" (in which the DNA of an offspring is generated by combining 
long sections of DNA from each parent). 

The analogy to local search algorithms has already been described; the princi-
pal difference between stochastic beam search and evolution is the use of sexual re-
production, wherein successors are generated from multiple organisms rather than 
just one. The actual mechanisms of evolution are, however, far richer than most 
genetic algorithms allow. For example, mutations can involve reversals, duplica-
tions, and movement of large chunks of DNA; some viruses borrow DNA from one 
organism and insert it in another; and there are transposable genes that do nothing 
but copy themselves many thousands of times within the genome. There are even 
genes that poison cells from potential mates that do not carry the gene, thereby in-
creasing their own chances of replication. Most important is the fact that the genes 
themselves encode the mechanisms whereby the genome is reproduced and trans-
lated into an organism. In genetic algorithms, those mechanisms are a separate 
program that is not represented within the strings being manipulated. 

Darwinian evolution may appear inefficient, having generated blindly some 
1045  or so organisms without improving its search heuristics one iota. Fifty 
years before Darwin, however, the otherwise great French naturalist Jean Lamarck 
(1809) proposed a theory of evolution whereby traits acquired by adaptation dur-
ing an organism's lifetime would be passed on to its offspring. Such a process 
would be effective but does not seem to occur in nature. Much later, James Bald-
win (1896) proposed a superficially similar theory: that behavior learned during an 
organism's lifetime could accelerate the rate of evolution_ ike 1.am  arc k 's,  Bo  d-
w in's theory is entirely consistent with Darwinian evolution because it relies on se-
lection pressures operating on individuals that have found local optima among the 
set of possible behaviors allowed by their genetic makeup. Computer simulations 
confirm that the "Baldwin effect" is real, once "ordinary" evolution has created 
organisms whose internal performance  measure correlates with actual fitness. 
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originated in the 17th century, after the development of calculus by Newton and Leibniz. 6  We 
find uses for these techniques at several places in the book, including the chapters on learning, 
vision, and robotics. 

We begin with an example. Suppose we want to place three new airports anywhere 
in Romania, such that the sum of squared distances from each city on the map (Figure 3.2) 
to its nearest airport is minimized. The state space is then defined by the coordinates of 
the airports: (xi ,  y  ),  (x2, 0),  and (x3, ym).  This is a six-dimensional space; we also say 

VARIABLE 
 that states are defined by six variables. (In general, states are defined by an n-dimensional 

vector of variables, x.) Moving around in this space corresponds to moving one or more of 
the airports on the map. The objective function f (x t ,  yi,  T2T  Y2, X3,  j) is relatively easy to 
compute for any particular state once we compute the closest cities. Let C,  be the set of 
cities whose closest airport (in the current state) is airport i. Then, in the neighborhood of the 
current state, where the Cs  remain constant, we have 

it 

DIECREI1ZA1ON  

GRADIENT 

f  (xi, yi,  X2,1/2, X3, Y3)  =  E E -x.)
2 _  w) 2  

i  

 

= 1 cEe,  

This expression is correct locally, but  not globally because the sets Ci  are (discontinuous) 
functions of the state. 

One way to avoid continuous problems is simply to discretize the neighborhood of each 
state. For example, we can move only one airport at a time in either the x or y direction by 
a fixed amount +J.  With 6 variables, this gives 12 possible successors for each state. We 
can then apply any of the local search algorithms described previously. We could also ap- 
ply stochastic hill climbing and simulated annealing directly, without discretizing the space. 
These algorithms choose successors randomly, which can be done by generating random vec-
tors of length 8. 

Many methods attempt to use the gradient of the landscape to find a maximum. The 
gradient of the objective function is a vector V ./  that gives the magnitude and direction of the 
steepest slope. For our problem, we have 

f Ox t ayi'  aX2 '  9y2  ax3  

Of  Of Of  Of Of  Of 

In some cases, we can find a maximum by solving the equation V f = O.  (This could be done, 
for example, if we were placing just one airport; the solution is the arithmetic mean of all the 
cities' coordinates.) In many cases, however, this equation cannot be solved in closed form. 
For example, with three airports, the expression for the gradient depends on what cities are 
closest to each airport in the current state This means we can compute the gradient locally 
(but not globally); for example, 

f  = 2 E  (.,  .,)  . (4.2) 
61 1  c-ECI  

Given a locally correct expression for the gradient, we can perform steepest-ascent hill climb- 

6  A basic knowledge of multivariate calculis  and vector arithmetic is useful for reading this section. 

(4.1) 



132 Chapter 4. Beyond Classical Search 

ing by updating the current state according to the formula 
x  x aVf  (x)  , 

where a is a small constant often called the step size. In other cases, the objective function 
might not be available in a differentiable form at all—for example, the value of a particular set 
of airport locations might be determined by running some large-scale economic simulation 
package. In those cases, we can calculate a so-called empirical gradient by evaluating the 
response to small increments and decrements in each coordinate. Empirical gradient search 
is the same as steepest-ascent hill climbing in a discretized version of the state space. 

Hidden beneath the phrase "a is a small constant" lies a huge variety of methods for 
adjusting a. The basic problem is that, if a is too small, too many steps are needed; if a 
is too large, the search could overshoot the maximum. The technique of line search tries to 
overcome this dilemma by extending the current gradient direction—usually by repeatedly 
doubling a—until f starts to decrease again. The point at which this occurs becomes the new 
current state. There are several schools of thought about how the new direction should be 
chosen at this point. 

For  many problems, the most effective algorithm  is the venerable Newton—Raphson  
method. This is a general technique for finding roots of functions—that is, solving equations 
of the form g{x)  =O.  It works by computing a new estimate for the root x according to 
Newton's formula 

x x — g(x)/9 1 (x)  .  

To rind a maximum or minimum of f, we need to find x such that the gradient  is zem  (i.e..  
Vf(x)  = 0). Thus, g(x) in Newton's formula becomes V f (x), and the update equation can 
be written in matrix-vector form as 

x  x - H-1 (x)Vf  (x) I  

where Hi  (x) is the Hessian matrix of second derivatives, whose elements Hii  are given 
by 62  f  /axiaxj  .  For our airport example, we can see from Equation (4.2) that Hy (x) is 
particularly simple: the off-diagonal elements are zero and the diagonal elements for airport 
i are just twice the number of cities in C.1.  A moment's calculation shows that one step of 
the update moves airport directly to the centroid  of  which is the minimum of the local 
expression for f from Equation (4.1). 7  For high-dimensional problems, however, computing 
the .n2  entries of the Hessian and inverting it may be expensive, so many approximate versions 
of the Newton-Raphson method have been developed. 

Local search methods suffer from local maxima, ridges, and plateaux in continuous 
state spaces just as much as in discrete spaces. Random restarts and simulated annealing can 
be used and are often helpful. High-dimensional continuous spaces are, however, big places 
in which it is easy to get lost. 

A final topic with which a passing acquaintance is useful is constrained optimization. 
An optimization problem is constrained if solutions must satisfy some hard constraints on the 
values of the variables. For example, in our airport-siting problem, we might constrain sites 
7  In general, the Newton—Raphson  update can be seen as fitting a quadratic surface to f at x and then moving 
directly to the minimum of that surface—which is also the minimum of f if f  is quadratic. 
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LINEAR  
PROGRAMMING  

CONVEX  SE 

CONVEX 
OPTHAIZATICN  

to be inside Romania and on dry land (rather than in the middle of lakes). The difficulty of 
constrained optimization problems depends on the nature of the constraints and the objective 
function. The best-known category is that of linear programming  problems, in which con- 
straints must be linear inequalities forming a convex set

s 
 and the objective function is also 

linear. The time complexity of linear programming is polynomial in the number of variables. 
Linear programming is probably the most widely studied and broadly useful class of 

optimization problems. It is a special case of the more general problem of convex opti- 
mization,  which allows the constraint region to be any convex region and the objective to 
be any function that is convex within the constraint region. Under certain conditions, convex 
optimization problems are also polynomially  solvable and may be feasible in practice with 
thousands of variables. Several important problems in machine learning and control theory 
can be formulated as convex optimization problems (see Chapter 20). 

4.3 SEARCHING WITH NONDETERMINISTIC  ACTIONS 

CCNT1NGEN:Y  PLAN 

STRATEGY 

In Chapter 3, we assumed that the environment is fully observable and deterministic and that 
the agent knows what the effects of each action are.  Therefore, the agent can calculate exactly 
which state results from any sequence of actions and always knows which state it is in. Its 
percepts provide no new information after each action, although of course they tell the agent 
the initial state. 

When the environment is either partially observable or nondeterministic  (Cr  both), per- 
cepts become useful. In a partially observable environment, every percept helps narrow down 
the set of possible states the agent might be in, thus making it easier for the agent to achieve 
its goals. When the environment is nondeterministic, percepts tell the agent which of the pos- 
sible outcomes of its actions has actually occurred. In both cases, the future percepts cannot 
be determined in advance and the agent's future actions will depend on those future percepts. 
So the solution to a problem is not a sequence but a contingency plan (also known as a strat- 
egy)  that specifies what to do depending on what percepts are received. In this section, we 
examine the case of nondeterminism,  deferring partial observability to Section 4.4. 

4.3.1 The erratic vacuum world 

 

As an example, we use the vacuum world, first introduced in Chapter 2 and defined as a 
search problem in Section 3.2.1. Recall that the state space has eight states, as shown in 
Figure 4.9. There are three actions—Left,  Right, and Suck— and the goal is to clean up all 
the dirt (states 7 and 8). If the environment is observable, deterministic,  and completely 
known, then the problem is trivially solvable by any of the algorithms in Chapter 3 and the 
solution is an action sequence. For example, if the initial state is 1, then the action sequence 
Furk,Right,Slirld  will reach a goal state, R.  

 

8  A set of points S is convex if the tine joining any two points in S is also contained in S. A convex function is 
one for which the space "above" it forms a convex set; by definition, convex functions have no local (as opposed 
to global) minima. 
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Figure 4.9 The eight possible states of the vacuum world; states 7 and 8  are goal states. 
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ERRATIC  VACUUM 
WORLD 

Now suppose that we introduce nondeterminism  in the form of a powerful but erratic 
vacuum cleaner. In the erratic vacuum world, the Suck action works as follows: 

■ When applied to a dirty square the action cleans the square and sometimes cleans up 
dirt in an adjacent square. too. 

• When applied to a clean square the action sometimes deposits dirt on the carpet 9  

To provide a precise formulation of this problem, we need to generalize the notion of a tran-
sition model from Chapter 3. Instead of defining the transition model by a RESULT function 
that returns a single state, we use a RESULTS function that returns a set of possible outcome 
states. For example, in the erratic vacuum world, the Suck action in state 1 leads to a state in 
the set {5,  7}—the  dirt in the right-hand square may or may not be vacuumed up. 

We also need to generalize the notion of a solution to the problem. For example, if we 
start in state 1, there is no single sequence of actions that solves the problem. Instead, we 
need a contingency plan such as the following: 

[Stick, if State = 5 then [Right, Suck] else . (4.3) 

Thus, solutions for nondeterministic  problems can contain nested if—then—else statements; 
this means that they are trees  rather than sequences_ This allows the selection of actions 
based on contingencies arising during execution. Many problems in the real, physical world 
are contingency problems because exact prediction is impossible. For this reason, many 
people keep their eyes open while walking around or driving. 

g  We assume that most readers face similar problems and can sympathize with our agent. We apologize to 
owners of modem, efficient home appliance.,  who cannot take advantage of this pedagogical device. 
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4.3.2 AND—OR search trees 

The next question is how to find contingent solutions to nondeterministic  problems. As in 
Chapter 3, we begin by constructing search trees, but here the trees have a different character. 

In a deterministic environment, the only branching is introduced by the agent's own choices 
in each state. We call these nodes OR nodes. In the vacuum world, for example, at an OR 
node the agent chooses Left or Right or Suck. In a nondeterministic environment, branching 
is also introduced by the envimninent's  choice of outcome for each action. We call these 
nodes AND nodes. For example, the Suck action in state l leads to a state in the set {5, 7},  
so the agent would need to find a plan for state 5 and for state 7. These two kinds of nodes 
alternate, leading to an AND—OR  tree as illustrated in Figure 4.10. 

A solution for an AND—OR  search problem is a suhtree  that (1) has a goal node at every 
leaf, (2) specifies one action at each of its OR nodes, and (3) includes every outcome branch 
at each of its AND nodes. The solution is shown in bold lines in the figure; it corresponds 
to the plan given  in Equation (4.3). (The plan uses if—then—else notation 10 handle the AND 

branches, but when there are more than two branches at a node, it might be better to use a case 

Figure 4.10 The first two levels of the search tree for the erratic vacuum world. State 
nodes are OR nodes where some action must be chosen. At the AND nodes, shown as circles, 
every outcome must be handled, as indicated by the arc linking the outgoing branches_ The 
solution found is shown in bold lines. 
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INTMLEAVING  

function AND-OR-GRAM-SEARCI1(probiem)  returns a conditional plan, or failure  
OR- SEARCH(problem.INITIAL -STATE,  problem, [  ]) 

function OR -SEARcu(state,  problem,path)  returns a conditional plan., or failure 
if problem.GoAL -TEsT(state)  then return the empty plan 
if state is on path. then return failure 
for each action in problem.ACTIONS(state)  do 

plan t—  AND- SEARCH(RESDLTS(state,  action), problem, [state path]) 
if plan #  failure then return [action [  plan] 

return failure 

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure 
for each a, in states do 

plan,  — OR-SEARCH(s„  problem, path) 
if plan ;  = failure then return failure 

return [if .9 1  then plan., else if s2  then plan,  else ...  if sr,_ 1  then plan,,_,  else plan,]  

Figure 4.11 An algorithm for searching AND—OR graphs generated by nondetenninistic  
environments. It returns a conditional plan that reaches a goal state in all circumstances. (The 
notation [3.  1  1] refers to the list formed by adding object x to the front of list L) 

construct) Modifying the basic problem-solving agent shown in Figure 3.1 to execute con-
tingent solutions of this kind is straightforward. One may also consider a somewhat different 
agent design, in which the agent can act before it has found a guaranteed plan and deals with 
some contingencies only as they arise during execution. This type of interleaving of search 
and execution is also useful for exploration problems (see Section 4.5)  and for game playing 
(see Chapter 5). 

Figure 4.11 gives a recursive, depth-first algorithm for AND—OR graph search. One 
key aspect of the algorithm is the way in which it deals with cycles, which nften  arise in 
nondeterministic  problems (e.g., if an action sometimes has no effect or if an unintended 
effect can be corrected). If the current state is identical to a state on the path from the root ;  
then it returns with failure. This doesn't mean that there is no solution from the current state; 
it simply means that if there is a noncyclic  solution, it must be reachable from the earlier 
incarnation of the current state, so the new incarnation can be discarded. With this check, we 
ensure that the algorithm terminates in every finite state space, because every path must reach 
a goal, a dead end, or a repeated state. Notice that the algorithm does not check whether the 
current state is a repetition of a state on some other path from the root, which is important for 
efficiency. Exercise 4.5 investigates this issue. 

AND—OR graphs can also be explored by breadth-first or best-first methods. The concept 
of a heuristic function must be modified to estimate the cost of a contingent solution rather 

than a sequence, but the notion of admissibility carries over and there is an analog of the A*  
algorithm for finding optimal solutions. Pointers are given in the bibliographical notes at the 
end of the chapter. 



Figure 4.12  Part of the search graph for the slippery vacuum world, where we Ewe shown 
(some) cycles explicitly. All solutions for this problem are cyclic plans because there is no 
way to move reliably. 
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CYCLE SUITEN:IN  

LABEL 

4.3.3 Try, try again 

Consider the slippery vacuum world, which is identical to the ordinary (non -erratic) vac- 
uum world except that movement actions sometimes fail, leaving the agent in the same loca-
tion. For example, moving Right in state 1 leads to the state set {1, 2}. Figure 4.12 shows 
part of the search graph; clearly, there are no longer any acyclic solutions from state I, and 
AND -OR -GRAPH -SEARCH would return with failure. There is, however, a cyclic solution, 
which is to keep trying Right until it works_  We cart express this solution by adding a label to 
denote some portion of the plan and using that label later instead of repeating the plan itself. 
Thus, our cyclic solution is 

[Suck, Ll :  Right, if Stat.?.  = 5 then Li  else Suck] .  

(A better syntax for the looping part of this plan would be "while State = 5 do &ltd.")  
In general a cyclic plan may be considered a solution provided that every leaf is a goal 
state and that a leaf is reachable from every point in the plan. The modifications needed 
to AND -OR - GRAPH - SEARCH are covered in Exercise 4.6. The key realization is that a loop 
in the state space back to a state L translates to a loop in the plan back to the point where the 
subplan for state L is executed. 

Given the definition of a cyclic solution, an agent executing such a solution will eventu-
ally reach the goal provided that each outcome of a nondetenninistic  action eventually occurs. 
Is this condition reasonable? It depends on the reason for the nondeterminism.  If the action 
rolls a die, then it's reasonable to suppose that eventually a six will be rolled. If the action is 
to insert a hotel card key into the door lock, but it doesn't work the first time, then perhaps it 
will eventually work, or perhaps one has the wrong key (or the wrong room!). After seven or 
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eight tries, most people will assume the problem is with the key and will go back to the front 
desk to get a new one. One way to understand this decision is to say that the initial problem 
formulation (observable, nondeterministic) is abandoned in favor of a different formulation 
(partially observable, deterministic) where the failure is attributed to an unobservable prop- 
erty of the key. We have more to say on this issue in Chapter 13. 

4.4 SEARCHING WITH PARTIAL OBSERVATIONS 

BELIEF STATE 

SEMSORLESS  

CONFORMANT  

COERCION 

We now turn to the problem of partial observability, where the agent's percepts do not suf-
fice to pin down the exact state. As noted at the beginning of the previous section, if the 
agent is in one of several possible states, then an action may lead to one of several possible 
outcomes—even if the environment is deterministic. The key concept required for solving 
partially observable problems is the belief state. representing the agent's current belief about 
the possible physical states it might be in, given the sequence of actions and percepts up to 
that point. We begin with the simplest scenario for studying belief states, which is when the 
agent has no sensors at all; then we add in partial sensing as well as nondeterministic actions. 

4.4.1 Searching with na  observation 

When the agent's percepts provide no information at all, we have what is called a sensor. 
less problem or sometimes a confonnant  problem. At first, one might think the sensorless 
agent has no hope of solving a problem if it has no idea what state it's in; in fact, sensorless 
problems are quite often solvable. Moreover, sensorless agents can be surprisingly useful, 
primarily because they don't rely on sensors working properly. In manufacturing systems. 
for example, many ingenious methods have been developed for orienting parts correctly from 
an unknown initial position by using a sequence of actions with no sensing at all. The high 
cost of sensing is another reason to avoid it: for example, doctors often prescribe a broad-
spectrum antibiotic rather than using the contingent plan of doing an expensive blood test. 
then waiting for the results to come back, and then prescribing a more specific antibiotic and 
perhaps hospitalization because the infection has progressed too far. 

We can make a sensorless version of the vacuum world. Assume that the agent knows 
the geography of its world, but doesn't know its location or the distribution of dirt. In that 
case, its initial state could be any element of the set { 1, 2, 3, 4, 5,6, 7, 8}.  Now, consider what 
happens if it tiles  the action Right. This will cause it to be in one of the states {2, 4, 6, 8}—the  
agent now has more information! Furthermore, the action sequence [Right,Suck]  will always 
end up in one of the states {4, 8},  Finally, the sequence [Right,Suck,Lef  1,Suck]  is guaranteed 
to reach the goal state 7 no matter what the start state. We say that the agent can coerce the 
world into state 7. 

To solve sensorless problems, we search in the space of belief states rather than physical 
states. 1 °  Notice that in belief-state space, the problem is fully observable because the agent 
I°  In a fully observable environment, each belief state contains one physical state. Thus, we can view the algo-
rithms in Chapter 3 as searching in a belief-state space of singleton belief states. 
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PREDICTION 

always knows its own belief state. Furthermore, the solution (if any) is always a sequence of 
actions. This is because, as in the ordinary problems of Chapter 3, the percepts received after 
each action are completely predictable—they're always empty! So there are no contingencies 
to plan for. This is true even if the environment is nondetemfinstic.  

It is instructive to see how the belief-state search problem is constructed. Suppose 
the underlying physical problem P is defined by ACTIONSp,  RESULTp,  GOAL-TESTp,  and 
STEP-COST p. Then we can define the corresponding sensorless problem as follows: 

• Belief states: The entire belief-state space contains every possible set of physical states. 
If P has N states, then the sensorless problem has up to 2N states, although many may 
be unreachable from the initial state. 

• Initial state: Typically the set of all states in P, although in some cases the agent will 
have more knowledge than this. 

• Actions: This is slightly tricky. Suppose the agent is in belief state b= {si,  s2}, but 
ACTIONSp  (si)  ACTIONSp(s2);  then the agent is unsure of which actions are legal. 
If we assume that illegal actions have no effect on the environment, then it is safe to 
take the anion of all the actions in any of the physical states in the current belief state b: 

ACTIONS(b) = U ACT[ONS  p(s)  . 

SE6  

On the other hand, if an illegal action might be the end of the world, it is safer to allow 
only the intersection, that is, the set of actions legal in all the states. For the vacuum 
world, every state has the same legal actions, so both methods give the same result. 

• Transition model: The agent doesn't know which state in the belief state is the right 
one; so as far as it knows, it might get to any of the states resulting from applying the 
action to one of the physical states in the belief state. For deterministic actions, the set 
of states that might be reached is 

= REsuLT(b,  a) = : .s r  = RESULT p(S,  (1)  and s E b} . (4.4) 
With deterministic actions, b' is never larger than b. With nondeterminism,  we have 

= RESULT(b,  a) = :  E RESULTSp(s.  a) and s E b} 

= U RESULTSp(s,  a) ,  
set.  

which may be larger than b, as shown in Figure 4.13. The process of generating 
the new belief state after the action is called the prediction step; the notation II  = 
PREDICTp(b,  a) will come in handy. 

• Goal test: The agent wants a plan that is sure to work, which means that a belief state 
satisfies the goal only if all the physical states in it satisfy GCAL-TESTp. The agent 
may accidentally achieve the goal earlier, but it won't know that it has done so. 

• Path cost: This is also tricky. If the same action can have different costs in different 
states, then the cost of taking an action in a given belief state could be one of several 
values. (This gives rise to a new class of problems, which we explore in Exercise 4.9.) 
For now we assume that the cost of an action is the same in all states and so can be 
transferred directly from the underlying physical problem. 



(a) tbl  

Figure 4.13 (a) Predicting the next relief state for the sensorless vacuum world with a 
deterministic action, Right. (h)  Prediction for the same belief state and action in the slippery 
version of the sensorless vacuum world. 
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Figure 4.14 shows the reachable belief-state space for the deterministic, sensorless vacuum 
world. There are only 12 reachable belief states out of 28  = 256 possible belief states. 

The preceding definitions enable the automatic construction of the belief-state problem 
formulation from the definition of the underlying physical problem. Once this is done, we 
can apply any of the search algorithms of Chapter 3.  In fact, we can do a little bit more 

than that. In "ordinary" graph search, newly generated states are tested to see if they are 
identical to existing states. This works for belief states, too; for example, in Figure 4.14,  the 
action sequence [Suck,Left,Suck]  starting at the initial state reaches the same belief state as 
[Right,Left,Suck),  namely, {5,  7}.  Now, consider the belief state reached by [Left],  namely. 
it,  3. 5,  71.  Obviously, this is not identical to {5,  7},  but it is a superset. It is easy to prove 
(Exercise 4.8)  that if an action sequence is a solution for a belief state h,  it is also a solution for 
any subset of b. Hence, we can discard a path reaching { 1, 3, 5, 7}  if {5, 7}  has already been 
generated. Conversely, if {1,  3,  5, 7}  has already been generated and found to be solvable, 
then any suhrer,  such as 15,  71,  is guaranteed to he solvable, This  extra level of pnlning  may 
dramatically improve the efficiency of sensorless problem solving. 

Even with this improvement, however, sensorless problem-solving as we have described 
it is seldom feasible in practice. The difficulty is not so much the vastness of the belief-state 
space—even though it is exponentially larger than the underlying physical state space; in 
most cases the branching factor and solution length in the belief-state space and physical 
state space are not so different. The real difficulty lies with the size of each belief state. For 
example, the initial belief state for the 10 x 10 vacuum world contains 100 x 21a°  or around 
1032  physical states—far too many if we use the atomic representation, which is an explicit 
List of states. 

One solution is to represent the belief state by some more compact description. In 
English, we could say the agent knows 'Nothing"  in the initial state; after moving Left, we 

could say, "Not in the rightmost column," and so on. Chapter 7 explains how to do this in a 
formal representation scheme. Another approach is to avoid the standard search algorithms, 
which treat belief states as black boxes just like any other problem state. Instead, we can look 
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INCREMENTAL  
BELIEF-STATE 
SEARCH 

Figure 4.14 The reachable portion of the belief-state space for the deterministic, sensor- 
less vacuum world. Each shaded bax  corresponds to a single belief stale. At any given point, 
the agent is in a particular belief state but does not know which physical state it is in. The 
initial belief state (complete 'ignorance)  is the top center box. Actions are represented by 
labeled links. Self-loops are omitted for clarity. 

inside the belief states and develop incremental belief.state  search algorithms that build up 
the solution one physical state at a time. For example, in the sensorless vacuum world, the 
initial belief state is {1,2,3,4,5.6,7.8}, and we have to find an action sequence that works 
in all 8 states. We can do this by first finding a solution that works for state I; then we check 
if it works for state 2; if not, go back and find a different solution for state 1, and so on. Just 
as an AND–OR search has to find a solution for every branch at an Alen node, this algorithm 
has to find a solution for every state in the belief state; the difference is that AND–OR search 
can find a different solution for each branch, whereas an incremental belief-state search has 
to find one solution that works for all the states. 

The main advantage of the incremental approach is that it is typically able to detect 
failure quickly—when a belief state is unsolvable, it is usually the case that a small subset of 
the belief state, consisting of the first few states examined, is also unsolvable. In some cases, 
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this leads to a speedup proportional to the size of the belief states, which may themselves be 
as large as the physical state space itself. 

Even the most efficient solution algorithm is not of much use when no solutions exist. 
Many things just cannot be done without sensing. For example, the sensorless 8-puzzle  is 
impossible. On the other hand, a little bit of sensing can go a long way. For example, every 
8-puzzle instance is solvable if just one square is visible—the solution involves moving each 
tile in turn into the visible square and then keeping track of its location. 

4.4.2 Searching with observations 

Fora general partially observable problem. we have to specify how the environment generates 
percepts for the agent. For example, we might define the local-sensing vacuum world to be 
one in which the agent has a position sensor and a local dirt sensor but has no sensor capable 
of detecting dirt in other squares. The formal problem specification includes a PERCEPTS) 
function that returns the percept received in a given state. (If sensing is nondeterministie,  
then we use a PERCEPTS function that returns a set of possible percepts.) For example. in the 
local -sensing vacuum world, the PERCEPT in state 1 is [A, Dirty]. Fully observable problems 
are a special case in which PERCEPT(s)  = s  for every state s, while sensorless problems are 
a special case in which PERCEPT (  s)  = mitt. 

When observations are partial, it will usually be the ease that several states could have 
produced any given percept. For example, the percept [A, Dirty] is produced by state 3 as 
well as by state 1.  Hence, given this as the initial percept, the initial belief state for the 
local-sensing vacuum world will be 1, 31.  The ACTIONS, STEP-COST, and GOAL-TEST 
are constructed from the underlying physical problem just as for sensorless problems, but the 
transition model is a bit more complicated. We can think of transitions from one belief state 
to the next for a particular action as occurring in three stages, as shown in Figure 4.15: 

• The prediction stage is the same as for sensorless problems: given the action a in belief 
state b, the predicted belief state is b=  PREDICT(b,  a), I  

• The observation prediction stage determines the set of percepts o  that could be ob-
served in the predicted belief state: 

POSSIBLE -PERCEPTS(b)  = 19:  0=  PERcEPT(s)  and s  E  . 

■ The update stage determines, for each possible percept, the belief state that would 
result from the percept. The new belief state b„  is just the set of states in b that could 
have produced the percept: 

b,,  = UPDATE(b,o  = {s:  o=PERCEPT(s) and s E 61  . 

Notice that each updated belief stale bo  can be no larger than the predicted belief stale b :  

observations can only help reduce uncertainty compared to the sensorless case. More-
over, for deterministic sensing, the belief states for the different possible percepts will 
be disjoint, forming a partition of the original predicted belief state. 

11  Here, and throughout the book, the "hat" in b means an estimated or predicted value for 5. 
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4 

Figure 4.15  Two example of transitions in local-sensing vacuum worlds. (a) In the de-
terministic world, Right is applied in the initial belief state, resulting in a new belief state 
with two possible physical states; for those states, the possible percepts are [13. Dirty] and 
[B, Clean leading to two belief states, each of winch is a singleton. (b) In the slippery 
world, Right is applied in the initial belief state, giving a new belief state with four physi-
cal states; for those states, the possible percepts are IA, Dirty], [B, Dirty], and [B, Clean], 
leading to three belief states as shown. 

Putting these three stages together, we nhtain  the possible belief states resulting from a given 
action and the subsequent possible percepts: 

RESULTS (b,  = 4[ 1:10  :  bo  = UPDATE(PREDICT (b, a.), o)  and 

o E POSSIBLE-PERCEPTS ( PREDICT(b,  a))1 (4.5) 

Again, the nondeterminism  in the partially observable problem comes from the inability 
to predict exactly which percept will be received after acting; underlying nondeterminism  in 
the physical environment may contribute to this inability by enlarging the belief state at the 
prediction stage, leading to more percepts at the observation stage. 

4.4.3 Solving partially observable problems 

The preceding section showed how to derive the RESULTS function for a nondeteiministio  
belief-state problem from an underlying physical problem and the PERCEPT function. Given 



Figure 4.16  The first level of the AND—OR search tree for a problem in the local-sensing 
vacuum world; Suck is the first step of the solution. 
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such a formulation, the AND—OR search algorithm of Figure 4.11 can be applied directly to 
derive a solution. Figure 4.16 shows part of the search tree for the local-sensing vacuum 
world, assuming an initial percept [A ; Dirty]. The solution is the conditional plan 

[Suck, Right, if Estate  = {6} then Suck else []1  .  

Notice that, because we supplied a belief-state problem to the AND—OR search algorithm, it 
returned a conditional plan that tests the belief state rather than the actual state. This is as it 
should be: in a partially observable environment the agent won't be able to execute a solution 
that requires testing the actual state. 

As in the case of standard search algorithms applied to sensorless problems, the AND— 
OR search algorithm treats belief states as black boxes, just like any other states. One can 
improve on this by checking for previously generated belief states that are subsets or supersets 
of the current state, just as for sensorless  problems. One can also derive incremental search 
algorithms, analogous to those described for sensorless  problems, that provide substantial 
speedups over the black-box approach. 

4.4.4 An agent for partially observable environments 

The design of a problem-solving agent for partially observable environments is quite similar 
to the simple problem-solving agent in Figure 3.1: the agent formulates a problem, calls a 
search algorithm (such as AND-OR -GRAPH-SEARCH) to solve it, and executes the solution. 
There are two main differences. First, the solution to a problem will be a conditional plan 
rather than a sequence; if the first step is an if—then—else expression, the agent will need to 
test the condition in the if-part and execute the then-part or the else-part accordingly. Second, 
the agent will need to maintain its belief state as it performs actions and receives percepts. 
This process resembles the prediction—observation—update  process in Equation (4.5) but is 
actually simpler because the percept is given by the environment rather than calculated by the 



Figure 4.17 Two prediction–update cycles of belief- state maintenance in the kindergarten 
vacuum world with local sensing. 
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agent. Given an initial belief state b,  an action a, and a percept a, the new belief state is: 

br  = UPDATE(PREDICT(b.ci).  o) . (4.6) 

Figure 4.17 shows the belief state being maintained in the kindergarten vacuum world with 
local sensing, wherein any square may become dirty  at any lime unless the agent is actively 
cleaning it at that moment. I2  

In partially observable environments—which include the vast majority of real-world 
environments—maintaining one's belief state is a core function of any intelligent system. 
This function goes under various names, including monitoring, filtering  and state estima-
tion. Equation (4.6) is called a recursive state estimator because it computes the new belief 
state from the previous one rather than by examining the entire percept sequence. If the agent 
is not to "fall behind," the computation has to happen as fast as percepts are coming in. As 
the environment becomes more complex, the exact update computation becomes infeasible 
and the agent will have to compute an approximate belief state, perhaps focusing on the im-
plications of the percept for the aspects of the environment that are of current interest. Most 
work on this problem has been done for stochastic, continuous-state environments with the 
tools of probability theory, as explained in Chapter 15. Here we will show an example in a 
discrete environment with detrministic  sensors and nondeterministic actions. 

The example concerns a robot with the task of localization: working out where it is, 
given a map of the world and a sequence of percepts and actions. Our robot is placed in the 
mare-like environment of Figure 4_18_  The robot is equipped with four sonar sensors that 
tell whether there is an obstacle—the outer wall or a black square in the figure—in  each of 
the four compass directions. We assume that the sensors give perfectly correct data, and that 
the robot has a correct map of the enviomment. But unfortunately the robot's navigational 
system is broken, so when it executes a Move action, it moves randomly to one of the adjacent 
squares. The robot's task is to determine its current location. 

Suppose the robot has just been switched on, so it does not know where it is. Thus its 
initial belief state b  consists of the set of all locations. The the robot receives the percept 

12  The usual apologies to those who are unfamiliar with the effect of small children on the environment. 



146 Chapter 4. Beyond Classical Search 

COD  0 0 0 0 0 0 c, (  •  )  
..__.,  0 0 0 

0  0 o c  

0 o  o  0  e  ..,  0 

°  0 0 0 

.0.  , 0 0  0 ❑  

(a) Possible locations  of robot after El = N SW 

o 0  C 0  c  o cc 0  0 c C (...  0 0 

0  0  C 0  -",  0  

0  0  0 0 G  b  t,  0 C.  

0  0 0  0  U  0 0  0 C.  0 0  n  

r'  ■ft  

(b) Possible locations of robot After E1 = NSW, E 2 = N S 

Figure 4.18 Possible positions of the robot, 0, (a) after one observation El  =  NSW and 
(b) after a second observation E2  =  NS. When sensors are noiseless and the transition model 
is accurate, there are no other possible locations for the robot consistent with this sequence 
of two observations. 

NSW, meaning there are obstacles to the north, west, and south, and does an update using the 
equation bp  = UPDATE( b), yielding the 4 locations shown in Figure 4.18(a). You can inspect 
the maze to see that those are the only four locations that yield the percept NWS .  

Next the robot executes a Move action, but the result is nondeterministic. The new be-
lief state, be  = PREDICT{ bo ,  Move), contains all the locations that are one step away from the 
locations in h0 . When the second percept, NS, arrives, the robot does UPDATE(b a  , NS) and 
finds that the belief state has collapsed down to the single location shown in Figure 4.18(b). 
That's the only location that could be the result of 

UPDATE(PREDICT(UPDATE(b,  NSW), Move'),  NS) 

With nondetermnistic actions the PREDICT step grows the belief state, but the UPDATE step 
shrinks it back down—as long as the percepts provide some useful identifying information. 
Sometimes the percepts don't help much for localization: If there were one or more long 
cast-west corridors, then a robot could receive a long sequence of NS percepts, but never 
know where in the corridor(s)  it was. 
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4.5 ONLINE SEARCH AGENTS AND UNKNOWN ENVIRONMENTS 

°FUME SEARCH So far we have concentrated on agents that use offline search algorithms. They compute 
a complete solution before setting foot in the real world and then execute the solution.  In 

ONLINE SEARCH  contrast, an online search 13  agent interleaves computation and action: first it takes an action, 
then it observes the environment and computes the next action. Online search is a good idea 
in dynamic or semidynamic domains—domains where there is a penalty for sitting around 
and computing too long. Online search is also helpful in nondeterministic domains because 
it allows the agent to focus its computational efforts on the contingencies that actually arise 
rather than those that might happen but probably won't. Of course, there is a tradeoff: the 
more an agent plans ahead, the less often it will find itself up the creek without a paddle. 

Online search is a necessary idea for unknown environments, where the agent does not 
know what states exist or what its actions do. In this state of ignorance, the agent faces an 

EXPLORATEN  
PROBLEM exploration problem and must use its actions as experiments in order to learn enough to 

make deliberation worthwhile. 
The canonical example of online search is a robot that is placed in a new building and 

must explore it to build a map that it can use for getting from A to B. Methods for escaping 
from labyrinths—required knowledge for aspiring heroes of antiquity—are also examples of 
online search algorithms.  Spatial exploration is not the only form of exploration, however. 
Consider a newborn baby: it has many possible actions but knows the outcomes of none of 
them, and it has experienced only a few of the possible states that it can reach. The baby's 
gradual discovery of how the world works is, in part, an online search process. 

4.5.1 Online search problems 

An online search problem must be solved by an agent executing actions, rather than by pure 
computation. We assume a deterministic and fully observable environment (Chapter 17 re-
laxes these assumptions), but we stipulate that the agent knows only the following: 

• ACTIONS(s),  which returns a list of actions allowed in state s; 

• The step-cost function c(s, a, s')—note  that this cannot be used until the agent knows 
that s'  is the outcome; and 

• GOAL-TEsT(s).  

Note in particular that the agent cannot determine REsurr(s,  a) except by actually being 
in s  and doing a. For example, in the maze problem shown in Figure 4.19, the agent does 
not know that going Up from (1,1) leads to (1,2); nor, having done that, does it know that 
going Down will take it back to (1,1). This degree of ignorance can be reduced in some 
applications—for example, a robot explorer might know how its movement actions work and 
be ignorant only of the locations of obstacles. 

13  The term "online" is commonly used in computer science to refer to algorithms that must process input data 
as they are received rather than waiting for the entire input data set to become available. 
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Figure 4.19  A simple maze problem. The agent starts at S and must reach a but knows 
nothing of the environment. 
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Figure 4.20 (a) Two state spaces that might lead an online search agent into a dead end. 
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment 
that can cause an online search agent to follow an arbitrarily inefficient route to the goal. 
Whichever choice the agent makes, the adversary blocks that route with another long, thin 
wall, so that the path followed is much longer than the best possible path. 

Finally, the agent might have access to an admissible heuristic function h(s)  that es- 
timates the distance from the current state to a goal state. For example, in Figure 4.19, the 
agent might know the location of the goal and be able to use the Manhattan-distance heuristic. 

Typically, the agent's objective is to reach a goal state while minimizing cost. (Another 
possible objective is simply to explore the entire environment.) The cost is the total path cost 
of the path that the agent actually travels.  It is common to compare this cost with the path 
cost of the path the agent would follow if it knew the search space in advance—that is, the 
actual shortest path (or shortest complete exploration). In the language of online algorithms,  
this is called the competitive ratio; we would like it to be as small as possible. 
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Although this sounds like a reasonable request, it is easy to see that the best achievable 
competitive ratio is infinite in some eases. For example, if some actions arc irreversible-
i.e., they lead to a state from which no action leads back to the previous state—the online 
search might accidentally reach a dead-end state from which no goal state is reachable. Per- 
haps the term "accidentally" is unconvincing—after all, there might be an algorithm that 
happens not to take the dead-end path as it explores_ Our claim, to be more precise, is that no 
algorithm can avoid dead ends in al! state spaces. Consider the two dead-end state spaces in 
Figure 4.20(a). To an online search algorithm that has visited states S and A, the two state 
spaces look identical, so it must make the same decision in both. Therefore, it will fail in 
one of them. This is an example of an adversary argument—we can imagine an adversary 
constructing the state space while the agent explores it and putting the goals and dead ends 
wherever it chooses. 

Dead ends are a real difficulty for robot exploration—staircases.  ramps, cliffs, unc-way  
streets, and all kinds of natural terrain present opportunities for irreversible actions. To make 

SAFELY IXPLORABLE 
 progress, we simply assume that the state space is safely explorable—that is, some goal state 

is reachable from every reachable state. State spaces with reversible actions, such as mazes 
and 8-puzzles, can be viewed as undirected graphs and are clearly safely explorable. 

Even in safely explorable environments, no bounded competitive ratio can be guaran-
teed if there are paths of unbounded cost. This is easy to show in environments with irre- 
versible actions, but in fact it remains true for the reversible case as well, as Figure 4.20(h) 
shows. For this reason, it is common to describe the performance of online search algorithms 
in terms of the size of the entire state space rather than just the depth of the shallowest goal. 

4.5.2 Online search agents 

After each action, an online agent receives a percept telling it what state it has reached; from 
this information, it can augment its map of the environment. The current map is used to 
decide where to go next. This interleaving of planning and action means that online search 
algorithms are quite different from the offline search algorithms we have seen previously. For 
example, offline algorithms such as A5  can expand a node in one part of the space and then 
immediately expand a node in another part of the space, because node expansion involves 
simulated rather than real actions. An online algorithm, on the other hand, can discover 
successors only for a node that it physically occupies. To avoid traveling all the way across 
the tree to expand the next node, it seems better to expand nodes in a Inca!  order. Depth-first 
search has exactly this property because (except when backtracking) the next node expanded 
is a child of the previous node expanded. 

An online depth-first search agent is shown in Figure 4.21. This agent stores its map 
in a table, RESULT[.s,  a], that records the state resulting from executing action a in state a. 
Whenever an action from the current state has not been explored, the agent tries that action. 
The difficulty comes when the agent has tried all the actions in a state. In offline depth-first 
search, the state is simply dropped from the queue; in an online search, the agent has to 
backtrack physically. In depth-first search, this means going back to the state from which the 
agent most recently entered the current state. To achieve that, the algorithm keeps a table that 
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function ONLINE-DFS-AGENT(et)  returns an action 
inputs: s',  a percept that identifies the current state 
persistent: result, a table indexed by state and action, initially empty 

untried, a table that lists, for each state, the actions not yet tried 
unbacktracked,  a table that lists, for each state, the backtracks not yet tried 
s,  a, the previous state and action, initially null 

if GOAL-TEST(s')  then return stop 
if a' is a new state (not in untried) then antrifd[sl  Acnotsts(s 1)  
if s is not null then 

results,  a] <—  .s'  
add s  to the front of unbacktracked[s']  

if ontried[.s']  is empty then 
if unbacktracked[s'  ] is empty then return stop 
else a 4— an action b such that result's'  b]  =P0P(unbacktrackedts'')  

else a <—  PoP(traried[s1)  
s  <—  
return a 

Figure 4.21 An online search agent that uses depth-first exploration. The agent is appli- 
cable only in stale spaces in which every action can be "undone" by some other action. 

lists, for each state, the predecessor states to which the agent has not yet backtracked. If the 
agent has run out of states to which it can backtrack, then its search is complete. 

We recommend that the reader trace through the progress of 0  NUNE-DFS-AGENT  

when applied to the maze given in Figure 4.19. It is fairly easy to see that the agent will, in 
the worst case, end up traversing every link in the state space exactly twice. For exploration, 
this is optimal; for finding a goal, on the other hand, the agent's competitive ratio could be 
arbitrarily bad if it goes off on a long excursion when there is a goal right next to the initial 
state. An online variant of iterative deepening solves this problem; for an environment that is 
a uniform tree, the competitive ratio of such an agent is a small constant. 

Because of its method of backtracking, ONLINE-DFS -AGENT works only in state 
spaces where the actions are reversible. There are slightly more complex algorithms that 
work in general state spaces, but no such algorithm has a bounded competitive ratio. 

RARDOM  WALK 

4.5.3 Online local search 

Like depth-first search, hill -climbing search has the property of locality in its node expan- 
sions. In fact, because it keeps just one current state in memory, hill-climbing search is 
already an online search algorithm! Unfortunately, it is not very useful in its simplest form 
because it leaves the agent sitting at local maxima with nowhere to go. Moreover, random 
restarts cannot be used, because the agent cannot transport itself to a new state. 

Instead of random restarts,  one might consider using a random walk to explore the 
environment. A random walk simply selects at random one of the available actions from the 
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Figure 4.22  An environment in which a random walk will take exponentially many steps 
to find the goal. 

current state; preference cars be given to  actions that have nut yet been tried. It is easy to 

prove that a random walk will eventually find a goal or complete its exploration, provided 
that the space is finite." On the other hand, the process can be very stow. Figure 4.22  shows 
an environment in which a random walk will take exponentially many steps to find the goal 
because, at each step, backward progress is twice as likely as forward progress. The example 
is contrived, of course, but there are many real-world state spaces whose topology causes 
these kinds of "traps" for random walks. 

Augmenting hill climbing with memory rather than randomness turns out to be a more 
effective approach. The basic idea is to store a "current best estimate" H(s)  of the cost to 
reach the goal from each state that has been visited. H(s)  starts out being just the heuristic 
estimate h(s)  and is updated as the agent gains experience in the state space. Figure 4.23 
shows a simple example in a one-dimensional state space. In (a), the agent seems to be 
stuck in a flat local minimum at the shaded state. Rather than staying where it is, the agent 
should follow what seems to be the best path to the goal given the current cost estimates for 
its neighbors. The estimated cost to reach the goal through a neighbor a' is the cost to get 
to s'  plus the estimated cost to get to a goal from there—that is, c(s,  a , s')  +  H(s').  In the 
example, there are two actions, with estimated costs 1 + 9 and 1 +  2, so it seems best to move 
right. Now, it is clear that the cost estimate of 2 for the shaded state was overly optimistic. 
Since the best move cost 1 and led to a state that is at least 2 steps from a goal, the shaded 
state must be at least 3 steps from a goal, so its H should be updated accordingly, as shown 
in Figure 4.23(b).  Continuing this process, the agent will move back and forth twice more, 
updating H each time and "flattening out" the local minimum until it escapes to the right. 

An agent implementing this scheme, which is called learning real-time A (LRTA*),  is 
shown in Figure 4.24. Like ONLINE-DFS  -AGENT, it builds a map of the environment in 
the result table. It updates the cost estimate for the state it has just left and then chooses the 
"apparently best" move according to its current cost estimates. One important detail is that 
actions that have not yet been tried in a state a are always assumed to lead immediately to the 
goal with the least possible cost, namely h(s).  This optimism under uncertainty encourages 
the agent to explore new, possibly promising paths. 

An LRTA  agent is guaranteed to find a goal in any finite, safely explorable  environnieriL.  
Unlike A,  however, it is not complete for infinite state spaces—there are cases where it can be 
led infinitely astray. It can explore an environment of rt  states in 0(n 2 )  steps in the worst case, 

"  Random walks am complete on infinite cne-dimensional  nensional  and two-dimensional grids. Oa a three-dimensional 
grid, the piobabiIity  that the walk ever returns to the starting point is only about 0.3905  (Hughes, 1995). 



Figure 4.23  Five iterations of LRTA  on a one-dimensional state space. Each state is 
labeled with H(s),  the current cost estimate to reach a goal, and each link is labeled with its 
step cost. The shaded state marks the location of the agent, and the updated cost estimates at 
each iteration are circled. 

function LRTA'-AGENT(s')  returns an action 
inputs: .s', a percept that identifies the current state 
persistent: result, a table, indexed by state and action, initially empty 

H, a table of cost estimates indexed by state, initially empty 
a, a, the previous state and action, initially null 

if GOAL-TEST(d)  then return stop 
if s' is a new state (not in H) then 1114  //(s')  
if s is not null 

result[s  , a] 4— a '  

rain  LRTA* - COST(s,  b,resulas  ,  H) 
EAcrioNs(s)  

a I—  an action b in ACTIONS(s)  that minimizes LRTA* -CosT(s l ,  b, result's', b], H) 
A—  8 t  

return a 

function LRTA* - COST(s,  a, s', H) returns a cost estimate 
if s' is undefined then return h (s) 
else return c(s,  a, .s') H[s`]  

Figure 4.24  LRTA*-AGENT  selects an action according to the values of neighboring 
states, which are updated as the agent moves about the state space. 
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but often does much better. The LRTA* agent is just one of a large family of online agents that 
one can define by spccifying the action selection rule and the update rule in different ways_ 
We discuss this family, developed originally for stochastic environments, in Chapter 21. 

4.5.4 Learning in online search 

The initial ignorance of online search agents provides several opportunities for learning. First, 
the agents learn a "map" of the environment—more  precisely, the outcome of each action in 

each state—simply by recording each of their experiences. (Notice that the assumption of 
deterministic environments means that one experience is enough for each action.) Second, 
the local search agents acquire more accurate estimates of the cost of each state by using local 
updating rules, as in LRTA.  In Chapter 21, we show that these updates eventually converge 
to exact values for every state. provided that the agent explores the state space in the right 
way_  Once exact values are known, optimal decisions can be taken simply by moving to the 
lowest-cost successor—that is, pure hill climbing is then an optimal strategy. 

If you followed our suggestion to trace the behavior of ONLINE-DFS-AGENT  in the 
environment of Figure 4.19, you will have noticed that the agent is not very bright. For 
example, after it has seen that the Up action goes from (1,1) to (1,2), the agent still has no 
idea that the Down action goes back to (1,1) or that the Up action also goes from (2,1) to 
(2,2), from (2,2) to (2,3), and so on. In general, we would like the agent to learn that Up 

increase:,  the y-coordinate unless there is a wall in the way, that Dawn reduces it, and so on. 
For this to happen, we need two things. First, we need a formal and explicitly manipulable 
representation for these kinds of general rules; so far,  we have hidden the information inside 
the black box called the RESULT function. Part III is devoted to this issue. Second, we need 
algorithms that can construct suitable general rules from the specific observations made by 
the agent. These are covered in Chapter 18. 

4.6 SUMMARY 

This chapter has examined search algorithms for problems beyond the "classical" case of 
finding the shortest path to a goal in an observable, deterministic, discrete environment 

• Local  search methods such as hill climbing operate on complete-state formulations, 
keeping only a small number of nodes in memory. Several stochastic algorithms have 
been developed, including simulated annealing, which returns  optimal solutions when 

given an appropriate cooling schedule.  
• Many local search methods apply also to problems in continuous spaces. Linear pro. 

granuning  and convex optimization problem; obey certain restrictions on the shape 
of the state space and the nature of the objective function, and admit polynomial-time 
algorithms that are often extremely efficient in practice_ 

• A genetic algorithm is a stochastic hill-climbing search in which a large population of 
states is maintained. New states are generated by mutation and by crossover, which 
combines pairs of states from the population. 
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■ In nondeterministic environments, agents can apply AND—OR  search to generate Con-
tingent plans that reach the goal regardless of which outcomcs occur during execution_ 

• When the environment is partially observable, the belief state represents the set of 
possible states that the agent might be in. 

• Standard search algorithms can be applied directly to belief-state space to solve sensor-
less problems, and belief-state AND—OR  search can solve general partially observable 
problems. Incremental algorithms that construct solutions state -by-state within a belief 
state are often more efficient. 

• Exploration problems arise when the agent has no idea about the states and actions of 
its environment. For safely explorable environments, online search agents can build a 
map and find a goal if one exists. Updating heuristic estimates from experience provides 
an effective method to escape from local minima. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

TABU sunai  

HEAVY-TAILED 
ISTRIEAIT1CA  

Local search techniques have a long history in mathematics and computer science. Indeed. 
the Newton—Raphson  method (Newton, 1671; Raphson,  1690) can be seen as a very effi- 
cient local search method for continuous spaces in which gradient information is available. 
Brent (1973) is a classic reference for optimization algorithms that do not require such in-
formation. Beam search, which we have presented as a local search algorithm, originated 
as a bounded-width variant of dynamic programming for speech recognition in the HARPY 
system (Lowerre, 1976). A related algorithm is analyzed in depth by Pearl (1984, Ch. 5). 

The topic of local search was reinvigorated in the early 1990s by surprisingly good re-
sults for large constraint-satisfaction problems such as n-queens (Minton et al., 1992) and 
logical reasoning (Selman et al., 1992) and by the incorporation of randomness, multiple 
simultaneous searches, and other improvements. This renaissance of what Christos Papadim-
itriou  has called "New Age" algorithms also sparked increased interest among theoretical 
computer scientists (Koutsoupias and Papadimitriou, 1992; Aldous and Vazirani, 1994). In 
the field of operations research, a variant of hill climbing called tabu search has gained popu- 
larity (Glover and Laguna, 1997). This algorithm maintains a tabu list of k previously visited 
states that cannot be revisited; as well as improving efficiency when searching graphs, this list 
can allow the algorithm to escape from some local minima. Another useful improvement on 
hill climbing is the STAGE algorithm (Boyan and Moore, 1998). The idea is to use the local 
maxima found by random-restart hill climbing to get an idea of the overall shape of the land-
scape. The algorithm fits a smooth surface to the set of local maxima and then calculates the 
global maximum of that surface analytically. This becomes the new restart point. The algo-
rithm has been shown to work in practice on hard problems. Games et al. (1998) showed that 
the run times of systematic backtracking algorithms often have a heavy -tailed distribution. 
which means that the probability of a very long run time is more than would be predicted if 
the run limes were exponentially distributed. When the run time distribution is heavy-tailed, 
random restarts find a solution faster, on average, than a single run to completion. 
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Simulated annealing was first described by Kirkpatrick et al. (1983), who borrowed 
directly from the Metropolis algorithm (which is used to simulate complex systems in 
physics (Metropolis et al., 1953) and was supposedly invented at a Los Alamos dinner party). 
Simulated annealing is now a field in itself, with hundreds of papers published every year. 

Finding optimal solutions in continuous spaces is the subject matter of several fields, 
including optimization theory, optimal control theory, and the calculus of variations. The 
basic techniques are explained well by Bishop (1995); Press et aL  (2007) cover a wide range 
of algorithms and provide working software. 

As Andrew Moore points out, researchers have taken inspiration for search and opti-
mization algorithms from a wide variety of fields of study: metallurgy (simulated annealing), 
biology (genetic algorithms), economics (market-based algorithms), entomology (ant colony 
optimization), neurology (neural networks), animal behavior (reinforcement learning), moun-
taineering (hill climbing), and others. 

Linear programming (LP) was first studied systematically by the Russian mathemati-
cian Leonid Kantorovich (1939). It was one of the first applications of computers; the sim-
plex  algorithm (Dantzig, 1949) is still used despite worst-case exponential complexity. Kar-
markar  (1984) developed the far more efficient family of interior-point methods, which was 
shown to have polynomial complexity for the more general class of convex optimization prob-
lems by Nesterov and Nemirovski (1994). Excellent introductions to convex optimization are 
provided by Ben-Tal  and Nemirovski (2001) and Boyd and Vandenberghe (2004). 

Work by Sewall Wright (1931) on the concept of a fitness landscape was an impor-
tant precursor to the development of genetic algorithms. In the 1950s, several statisticians, 
including Box (1957) and Friedman (1959), used evolutionary techniques for optimization 

EVOLUTION  
STRATEGY problems, but it wasn't until Rechenberg (1965) introduced evolution strategies to solve op- 

timization problems for airfoils that the approach gained popularity. In the 1960s and 1970s, 
John Holland (1975) championed genetic algorithms, both as a useful tool and as a method 
to expand our understanding of adaptation, biological or otherwise (Holland, 1995). The ar- 

ARTIFICIAL  LIFE  tificial life movement (Langton, 1995) takes this idea one step further, viewing the products 
of genetic algorithms as organisms  rather than solutions to problems_ Work in this field by 
Hinton and Nowlan (1987) and Ackley and Littman (1991) has done much to clarify the im-
plications of the Baldwin effect. For general background on evolution, we recommend Smith 
and Szathmary  (1999), Ridley (2004), and Carroll (2007). 

Most comparisons of genetic algorithms to other approaches (especially stochastic hill 
climbing) have found that the genetic algorithms are slower to converge (O'Reilly and Op-
pacher, 1994; Mitchell et al., 1996; Juels and Wattenberg, 1996; Baluja, 1997). Such findings 
are not universally popular within the GA community, but recent attempts within that com-
munity to understand population-based search as an approximate form of Bayesian learning 
(see Chapter 20) might help close the gap between the field and its critics (Pelikan et al., 
1999). The theory of quadratic dynamical systems may also explain the performance of 
GAs (Rabani et al., 1998). See Lohn  et al. (2001) for an example of GAs applied to antenna 
design, and Renner and Ekart  (2003) for an application to computer-aided design. 

PROGRAMMING 

	

	 The field of genetic programming is closely related to genetic algorithms The princi- 
pal difference is that the representations that are mutated and combined are programs rather 
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than bit strings. The programs are represented in the form of expression trees; the expressions 
can be in a standard language such as Lisp or can be specially designed to represent circuits, 
robot controllers, and so on. Crossover involves splicing together subtrees rather than sub-
strings. This form of mutation guarantees that the offspring are well-formed expressions, 
which would not be the case if programs were manipulated as strings. 

Interest in genetic programming was spurred by John Koza's work (Koza, 1992, 1994). 
but it goes back at least to early experiments with machine code by Friedberg (1958) and 
with finite-state automata by Fogel et al. (1966). As with genetic algorithms, there is debate 
about the effectiveness of the technique. Koza et al. (1999) describe experiments in the use 
of genetic programming to design circuit devices. 

The journals Evolutionary Computation and IEEE Transactions on Evolutionary Com-

putation cover genetic algorithms and genetic programming; articles are also found in Com-
plex Systems, Adaptive Behavior, and Artificial Life. The main conference is the Genetic 
and Evolutionary Computation Conference (GECCO). Good overview texts on genetic algo-
rithms are given by Mitchell (1996), Fogel (2000), and Langdon  and Poli (2002), and by the 
free online book by Poli et al. (2008).  

The unpredictability and partial observability of real environments were recognized 
early on in robotics projects that used planning techniques, including Shakey (Fikes et al., 
1972) and FREDDY (Michie, 1974). The problems received more attention after the publica-
tion of McDermott's (1978a) influential article, Planning and Acting. 

The first work to make explicit use of AND–OR trees seems to have been Slagle's SAINT 
program for symbolic integration, mentioned in Chapter 1.  Amarel  (1967) applied the idea 
to propositional theorem proving, a topic discussed in Chapter 7, and introduced a search 
algorithm similar to AND-OR-GRAPH-SEARCH.  The algorithm was further developed and 
formalized by Nilsson (1971), who also described AO*—which,  as its name suggests, finds 
optimal solutions given an admissible heuristic. AO* was analyzed and improved by Martelli  
and Montanan (1973). AO* is a top-down algorithm; a bottom-up generalization of A* is 
A*LD,  for A* Lightest Derivation (Felzenszwalh  and McAllester, 2007).  Interest in AND–OR 
search has undergone a revival in recent years, with new algorithms for finding cyclic solu-
tions (Jimenez and Torras, 2000; Hansen and Zilberstein, 2001) and new techniques inspired 
by dynamic programming (Bonet and Geffner, 2005) 

The idea of transforming partially observable problems into belief-state problems orig-
inated with Astrom (1965)  for the much more complex case of probabilistic uncertainty (see 
Chapter 17). Erdmann and Mason (1988) studied the problem of robotic manipulation with-
out sensors, using a continuous form of belief-state search. They showed that it was possible 
to orient a part on a table from an arbitrary initial position by a well-designed sequence of tilt-
ing actions. More practical methods, based on a series of precisely oriented diagonal barriers 
across a conveyor belt, use the same algorithmic insights (Wiegley et al., 1996). 

The belief-state approach was reinvented in the context of sensorless and partially ob- 
servable search problems by Genesereth and Nourbakhsh (1993). Additional work was done 
on sensorless problems in the logic-based planning community (Goldman and Buddy, 1996; 
Smith and Weld, 1998). This work has emphasized concise representations for belief states, 
as explained in Chapter 11. Bonet and Geffner (2000) introduced the first effective heuristics 
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for belief-state search; these were refined by Bryce et al. (2006). The incremental approach 
to belief-state  search, in which solutions arc constructed incrementally for subsets of states 
within each belief state, was studied in the planning literature by Kurien et al. (2002); several 
new incremental algorithms were introduced for nondeterministic,  partially observable prob-
lems by Russell and Wolfe (2005). Additional references for planning in stochastic, partially 
observable environments appear in Chapter 17. 

Algorithms for exploring unknown state spaces have been of interest for many centuries. 
Depth-first search in a maze can be implemented by keeping one's left hand on the wall; loops 
can be avoided by marking each junction. Depth-first search fails with irreversible actions; 

ELLERIAN  GRAPH  the more general problem of exploring Eulerian  graphs (i.e.,  graphs in which each node has 
equal numbers of incoming and outgoing edges) was solved by an algorithm due to 1-lierholzer  
(1873). The first thorough algorithmic study of the exploration problem for arbitrary graphs 
was carried out by Deng and Papadimitriou  (1990), who developed a completely general 
algorithm but showed that no bounded competitive ratio is possible for exploring a general 
graph. Papadimitriou and Yannakakis  (1991) examined the question of finding paths to a goal 
in geometric path-planning environments (where all actions are reversible). They showed that 
a small competitive ratio is achievable with square obstacles, but with general rectangular 
obstacles no bounded ratio can be achieved. (See Figure 4.20.) 

The LRTA* algorithm was developed by Korf (1990) as part of an investigation into 
REAL-TIME SEARCH  real-time search for environments in which the agent must act after searching for only a 

fixed amount of time (a common situation in two-player games). LRTA* is in fact a special 
case of reinforcement learning algorithms for stochastic environments (Bano  et al., 1995). Its 
policy of optimism under uncertainty—always head for the closest unvisited state—can result 
in an exploration pattern that is less efficient in the uninformed case than simple depth-first 
search (Koenig, 2000). Dasgupta et al. (1994) show that online iterative deepening search is 
optimally efficient for finding a goal in a uniform tree with no heuristic information. Sev-
eral informed variants on the LRTA*  theme have been developed with different methods for 
searching and updating within the known portion of the graph (Pemberton and Korf, 1992). 
As yet, there is  no good understanding of how to find goals with optimal efficiency when 
using heuristic information. 

EXERCISES 

4.1 Give the name of the algorithm that results from each of the following special cases: 

a. Local beam search with k = 1 

b. Local beam search with one initial state and no limit on the number of states retained. 
c. Simulated annealing with T = 0 at all times (and omitting the termination test). 
d_ Simulated annealing with T = c.3  at all times_ 
e. Genetic algorithm with population size N = 1. 
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lwirA  

4.2 Exercise 3.16 considers the problem of building railway tracks under the assumption 
that picccs  fit exactly with no slack. Now consider the real problem, in which picccs  don't 
fit exactly but allow for up to 10 degrees of rotation to either side of the "proper" alignment. 
Explain how to formulate the problem so it could be solved by simulated annealing. 

4.3 In this exercise, we explore the use of local search methods to solve TSPs of the type 
defined in Exercise 3.30. 

a. Implement and test a hill-climbing method to solve TSPs. Compare the results with op-
timal solutions obtained from the A* algorithm with the MST heuristic (Exercise 3.30). 

b. Repeat part (a) using a genetic algorithm instead of hill climbing. You may want to 
consult Larranaga  e!  al. (1999)  for some suggestions for representations. 

4.4 Generate a large number of 8-puzzle and 8-queens instances and solve them (where pos-
sible) by hill climbing (steepest-ascent and first-choice variants), hill climbing with random 
restart, and simulated annealing. Measure the search cost and percentage of solved problems 
and graph these against the optimal solution cost. Comment on your results. 
4.5 The AND-OR-GRAPH-SEARCH algorithm in Figure 4.11 checks for repeated states 
only on the path from the root to the current state. Suppose that, in addition, the algorithm 
were to store every visited state and check against that list. (See BREADTH-FIRST-SEARCH 
in Figure 3.11 for an example ) Determine the information that should be stored and how the 
algorithm should use that information when a repeated state is found. (Hint: You will need to 
distinguish at least between states for which a successful subplan was constructed previously  
and states for which no subplan could be found.) Explain how to use labels, as defined in 
Section 4.3.3, to avoid having multiple copies of subplans. 

4.6  Explain precisely how to modify the AND-OR -GRAPH - SEARCH  algorithm to generate 
a cyclic plan if no acyclic plan exists. You will need to deal with three issues labeling the plan 
steps so that a cyclic plan can point back to an earlier part of the plan, modifying OR-SEARCH 
so that it continues to look for acyclic plans after finding a cyclic plan, and augmenting the 
plan representation to indicate whether a plan is cyclic. Show how your algorithm works on 
(a) the slippery vacuum world, and (b)  the slippery, erratic vacuum world. You might wish to 
use a computer implementation to check your results. 

4.7 In Section 4.4.1 we introduced belief states to solve sensorless search problems. A 
sequence of actions solves a sensorless problem if it maps every physical state in the initial 
belief state b to a goal state. Suppose the agent knows h* (s),  the true optimal cost of solving 
the physical state .s  in the fully observable problem, for every state a in b. Find an admissible 
heuristic h(b)  for the sensorless  problem in terms of these costs, and prove its admissibilty. 
Comment on the accuracy of this heuristic on the sensorless  vacuum problem of Figure 4.14.  
How well does A perform? 

4.8 This exercise explores subset—superset relations between belief states in sensorless  or 
partially observable environments. 

a. Prove that if an action sequence is a solution for a belief state b, it is also a solution fat 
any subset of b.  Can anything be said about supersets of b.?  

lw 
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b. Explain in detail how to modify graph search for sensorless problems to take advantage 
of your answers in ta).  

e.  Explain in detail how to modify AND—OR search for partially observable problems, 
beyond the modifications you describe in (b). 

4.9 On page 139 it was assumed that a given action would have the same cost when ex- 
ecuted in any physical state  within a given belief state_ (This leads to a belief -state search 
problem with well-defined step costs.) Now consider what happens when the assumption 
does not hold. Does the notion of optimality still make sense in this context, or does it require 
modification? Consider also various possible definitions of the "cost" of executing an action 
in a belief slate; fur example, we could use the minimum of the physical costs; or the maxi-
mum; or a cost interval with the lower bound being the minimum cost and the upper bound 
being the maximum; or just keep the set of all possible costs for that action. For each of these, 
explore whether A'  (with modifications if necessary) can return optimal solutions. 

4.10 Consider the sensorless version of the erratic vacuum world. Draw the belief-state 
space reachable from the initial belief state { 1, 2,  3, 4, 5, fi ,  7 , 8},  and explain why the problem 
is unsolvable. 

4.11 We can turn the navigation problem in Exercise 3.7 into an environment as follows: 

• The percept will be a list of the positions, relative to the agent, of the visible vertices. 
The percept does not include the position of the robot! The robot must learn its own po-
sition from the map; for now, you can assume that each location has a different 'view." 

• Each action will be a vector describing a straight-fine path to follow. If the path is 
unobstructed, the action succeeds; otherwise, the robot stops at the point where its  
path first intersects an obstacle. If the agent returns a zero motion vector and is at the 
goal (which is fixed and known), then the environment teleports the agent to a random 
location (not inside an obstacle). 

• The performance measure charges the agent l point for each unit of distance traversed 
and awards 1000 points each time the goal is reached. 

a. Implement this environment and a problem-solving  agent for it. After each teleporta- 
tion, the agent will need to formulate a new problem, which will involve discovering its 
current location. 

b. Document your agent's perfornumce  (by having the agent generate suitable commentary 
as it moves around) and report its performance over 100 episodes. 

c. Modify the environment so that 30% of the time the agent ends up at an unintended 
destination (chosen randomly from the other visible vertices if any: otherwise, no move 
at all). This is a crude model of the motion errors of a real robot. Modify the agent 
so that when such an error is detected, it finds out where it is and then constructs a 
plan to get back to where it was and resume the old plan. Remember that sometimes 
getting back to where it was might also fail! Show an example of the agent successfully 
overcoming two successive motion errors and still reaching the goal. 
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d. Now try two different recovery schemes after an error: (I) head for the closest vertex on 
the original route; and (2) replan a route to the goal from the new location. Compare the 
performance of the three recovery schemes. Would the inclusion of search costs affect 
the comparison? 

e. Now suppose that there are locations from which the view is identical. (For example. 
suppose the world is a grid with square obstacles.) What kind of problem does the agent 
now face? What do solutions look like? 

4.12 Suppose that an agent is in a 3 x 3 maze environment like the one shown in Fig-
ure 4.19. The agent knows that its initial location is (1,1), that the goal is at (3,3), and that the 
actions Up. Down, Left, Right have their usual effects unless blocked by a wall.  The agent 
does not  know where the internal walls are. In any given state, the agent perceives the set of 
legal actions; it can also tell whether the state is one it has visited before. 

a. Explain how this online search problem can be viewed as an offline search in belief-state 
space, where the initial belief state includes all possible environment configurations. 
How large is the initial belief state? How large is the space of belief slates? 

b. How many distinct percepts are possible in the initial state? 
c. Describe the first few branches of a contingency plan for this problem. How large 

(roughly) is the complete plan? 
Notice that this contingency plan is a solution for even)  possible envimmuent  fitting the given 
description. Therefore, interleaving of search and execution is not strictly necessary even in 
unknown environments. 

4.13 In this exercise, we examine hill climbing in the context of robot navigation, using the 
environment in Figure 3.31 as an example. 

a. Repeat Exercise 4.11 using hill climbing. Does your agent ever get stuck in a local 
minimum? Is it possible for it to get stuck with convex obstacles? 

b. Construct a nonconvex polygonal environment in which the agent gets stuck. 
c. Modify the hill-climbing algorithm so that, instead of doing a depth-1 search to decide 

where to go next, it does a depth- k search. It should find the best k-step  path and do 
one step along it, and then repeat the process. 

d. Is there some k for which the new algorithm is guaranteed to escape from local minima? 
e. Explain how LRTA* enables the agent to escape from local minima in this case. 

4.14 Like DFS, online DFS is incomplete for reversible state spaces with infinite paths. For 
example, suppose that states are points on the infinite two-dimensional grid and actions are 
unit vectors (1. 0),  (0,  1). (-1.0), (O. —1), tried in that order. Show that online DFS starting 
at (0,0) will not reach (1, —1). Suppose the agent can observe, in addition to its current 
state, all successor states and the actions that would lead to them. Write an algorithm that 
is complete even for bidirected  state spaces with infinite paths. What states does it visit in 
reaching (1, —1)? 



ADVERSARIAL SEARCH 

In which we examine the problems that awe when we try to plan ahead in a world 
where other agents are planning against es. 

5.1 GAMES 

Chapter 2 introduced multiagent environments, in which each agent needs to consider the 
actions of other agents and haw they affect its own welfare. The unpredictability of these 
other agents can introduce contingencies into the agent's problem-solving process, as dis-
cussed in Chapter 4. In this chapter we cover competitive environments, in which the agents' 

GAME goals are in conflict, giving rise to adversarial search problems—often known as games. 
Mathematical game theory, a branch of economics, views any multiagent  environment 

as a game, provided that the impact of each agent on the others is "significant7  regardless 
of whether the agents arc cooperative or competitive. 1  In AI, the mast common games are 
of a rather specialized kind—what game theorists call deterministic, turn-taking, two-player, 

ZERO SLIM GAMES zero-sum games of perfect information (such as chess). In our terminology. this means 

PERORMATIM
FECT deterministic, fully observable environments in which two agents act alternately and in which INF   

the utility values at the end of the game are always equal and opposite. For example, if one 
player wins a game of chess, the other player necessarily loses. It is this opposition between 
the agents' utility functions that makes the situation adversarial. 

Games have engaged the intellectual faculties of humans—sometimes to an alarming 
degree—for as long as civilization has existed. For Al researchers, the abstract nature of 
games makes them an appealing subject for study. The state of a game is easy to represent, 
and agents are usually restricted to a small number of actions whose outcomes are defined by 
precise rules. Physical games, such as croquet and ice hockey, have much more complicated 
descriptions, a much larger range of possible actions, and rather imprecise rules defining 
the legality of actions. With the exception of robot soccer, these physical games have not 
attracted much interest in the AI community. 

Environments with very many agents are often viewed as economies rather than games. 

161 
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Games, unlike most of the toy problems studied in Chapter 3, are interesting because 
they arc too hard to solve. For example, chess has an average branching factor of about 35, 
and games often go to 50 moves by each player, so the search tree has about 35 100  or 10 151  
nodes (although the search graph has "only" about 1040  distinct nodes). Games, like the real 
world, therefore require the ability to make some decision even when calculating the optima' 
decision is infeasible. Gaines also penalize inefficiency severely. Whereas an implementation 
of A' search that is half as efficient will simply take twice as long to run to completion, a chess 
program that is half as efficient in using its available time probably will be beaten into the 
ground, other things being equal. Game-playing research has therefore spawned a number of 
interesting ideas on how to make the best possible use of time. 

We begin with a definition of the optimal move and an algorithm for finding it. We 
PRUNING then look at techniques for choosing a good move when time is limited. Pruning allows us 

to ignore portions of the search tree that make no difference to the final choice, and heuristic 
evaluation functions allow us to approximate the true utility of a state without doing a com- 
plete search. Section 5.5 discusses games such as backgammon that include an element of 

IMPERFECT  
INFORMATION chance; we also discuss bridge, which includes elements of imperfect information because 

not all cards are visible to each player. Finally, we look at how state-of-the-art game-playing 
programs fare against human opposition and at directions for future developments. 

We first consider games with two players, whom we call MAX and MIN for reasons that 
will soon become obvious. MAX moves first, and then they take turns moving until the game 
is over. At the end of the game, points are awarded to the winning player and penalties are 
given to the loser. A game can be formally defined as a kind of search problem with the 
following elements: 

• So : The initial state, which specifies how the game is set up at the start. 
■ PLAYERI,$):  Defines which player has the move in a state. 
• ACTIONS(s):  Retums the set of legal moves in a state. 
■ REsuur(s,  a): The transition model, which defines the result of a move. 

TERMINAL TEST • TERMINAL-TEST  H:  A terminal test, which is true when the game is over and false 
TERMINAL STATES otherwise. States where the game has ended are called terminal states. 

• UTILITY (s  p): A utility function (also called an objective function or payoff function), 
defines the final numeric value for a game that ends in terminal state s  for a player p. In 
chess, the outcome is a win, loss, or draw, with values +1, 0, or ,121 .  Some games have 
wider variety of possible outcomes; the payoffs in backgammon range from 0 to +192. 
A zero-sum  game is (confusingly) defined as one where the total payoff to all players 
is the same for every instance of the game. Chess is zero-sum because every game has 
payoff of either 0 + 1, 1  + 0 or z+  -Constant-sum"  would have been a better term. 
but zero-sum is traditional and makes sense if you imagine each player is charged an 
entry fee of 2.  

GAME TREE The initial state, ACTIONS function, and RESULT function define the game tree for the 
game—a tree where the nodes are game states and the edges are moves. Figure 5.1 shows 
part  of the game tree for tic-tac-toe (noughts and crosses). From the initial state, MAX has 
nine possible moves. Play alternates between MAX 's  placing an X and MIN's  placing an 0 



MAX (x) 

MIN  MIN  SEM  MEM  Ell  MIN (0) MEM  MEIN  ■■■  NM  
MEM  MEM  ENE ME 

MOM  M■D  ME■  
MAX (x) ■■■  MU  OEM ■IM  ■■■ ■E■  

MIN (0) 

TERMINAL 
x 0 x x sax  
0 x 0 
a x x 

Utility (1 +1 

Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial 
state, and MAX moves first, placing an x in an empty square. We show part of the tree, giving 
alternating moves by MIN (0) and MAX (X), until we eventually reach terminal states, which 
can be assigned utilities according to the rules of the game 
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until we reach leaf nodes corresponding to terminal states such that one player has three in 
a row or all the squares arc filled. The number on each leaf node indicates the utility value 
of the terminal state from the point of view of MAX; high values are assumed to be good for 
MAX and bad for MIN (which is how the players get their names),  

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362, 880 terminal 
nodes. But for chess there are over 10 40  nodes, so the game tree is best thought of as a 
theoretical construct that we cannot realize in the physical world. But regardless of the size 

SEARCH TREE  of the game tree, it is MAX's job to search for a good move. We use the term search tree for a 
tree that is superimposed on the full game tree, and examines enough nodes to allow a player 
to determine what move to make. 

5.2 OPTIMAL DECISIONS IN GAMES 

In a normal search problem, the optimal solution would be a sequence of actions leading to 
a goal state—a terminal state that is a win. In adversarial search, MIN has something to say 

SEKAILOY about it. MAX therefore must find a contingent strategy, which specifies MAX's move in 

the initial state, then MAX's  moves in the states resulting from every possible response by 



MAX 

MIN 

14  

Figure 5.2 A two-ply game. tree_  The Lx nodes are "MAX nodes,-  in which it is MAX's  
turn to move, and the V nodes are "MIN nodes." The terminal nodes show the utility values 
for MAX; the other nodes are labeled with their minimax  values. MA X's  hest move at the root 
is a l ,  because it leads to the state with the highest minimax value, and AIN  's best reply is b1,  
because it leads to  the state with the lowest minimax value. 
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MIN, then MAX'S  moves in the states resulting from every possible response by MIN to those 
moves, and so on. This is exactly analogous to the AND—OR  search algorithm (Figure 4.11) 
with MAX playing the role of OR and MIN equivalent to AND. Roughly speaking, an optimal 
strategy leads to outcomes at least as good as any other strategy when one is playing an 
infallible opponent. We begin by showing how to find this optimal strategy. 

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree 
on one page, so we will switch to the trivial game in Figure 5,2. The possible moves for MAX 

at the root node are labeled al,  a2,  and u3.  The possible replies to al  for MIN are bi,  N,  
b3,  and so on. This particular game ends after one move each by MAX and MIN. (In game 
parlance, we say that this tree is one move deep, consisting of two half-moves, each of which 

PLY is called a ply.) The utilities of the terminal states in this game range from 2 to 14. 
MINIMAX VALJE  Given a game tree, the optimal strategy can be determined from the minimax value 

of each node, which we write as MiNimAx(n).  The minimax value of a node is the utility 
(for MAX) of being in the corresponding state, assuming that both players play optimally 
from there to the end of the game. Obviously, the minimax value of a terminal state is just 
its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum value, 
whereas MIN prefers a state of minimum value. So we have the following: 

MINIMAX(S)  = 

1  UTILITY (s)  

xaE  Acrions(s)  

millaEActions(5) 

if TERMINAL-TEST(s)  
ma MINIMAX  ( RESULT(s,  a)) if PLAYER (s)  — MAX 

MINIMAX(RESULT(s,  a ))  if PLAYER(s)  = MIN 

Let us apply these definitions to the game tree in Figure 5.2. The terminal nodes on the bottom 
level get their utility values from the game's UTILITY function. The first MIN node, labeled 
B, has three successor states with values 3, 12, and 3,  so its minimax value is 3. Similarly, 
the other two MIN nodes have minimax  value 2. The loot node is a MAX node; its successor 
states have minimax values 3, 2, and 2; so it has a minimax value of 3. We can also identify 
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MINIMAX  DECISION 

MINIMAX  ALGORITHM 

the minimax decision at the root: action al  is the optimal choice for MAX because it leads to 
the state with the highest minimax value. 

This definition of optimal play for MAX assumes that MIN also plays optimally—it 
maximizes the worst-case  outcome for MAX.  What if mt  N does not play optimally? Then it is 
easy to show (Exercise 5.7) that MAX will do even better. Other strategies against suboptimal 
opponents may do better than the minimax strategy, but these strategies necessarily do worse 
against optimal opponents. 

5.2.1 The minimax algorithm 

The minimax algorithm (Figure 5.3) computes the minimax decision from the current state. 
It uses a simple recursive computation of the minimax values of each successor state, directly 
implementing the defining equations. The recursion proceeds all the way down to the leaves 
of the tree, and then the minimax values are backed up through the tree as the recursion 
unwinds. For example, in Figure 51,  the algorithm first recurses  down to the three bottom- 
left nodes and uses the UTILITY function on them to discover that their values are 3, 12, and 
8, respectively. Then it takes the minimum of these values, 3, and returns it as the backed-
up value of node B. A similar process gives the backed-up values of 2 for C and 2 for D. 
Finally, we take the maximum of 3, 2, and 2 to get the backed-up value of 3 for the root node. 

The minimax algorithm performs a complete depth-first exploration of the game tree. 
If the maximum depth of the tree is m and there are b legal moves at each point, then the 
time complexity of the minimax algorithm is 0(bm).  The space complexity is 0(bm.)  for an 
algorithm that generates all actions at once, or 0(m) for an algorithm that generates actions 
one at a time (see page 87). For real games, of course, the time cost is totally impractical, 
but this algorithm serves as the basis for the mathematical analysis of games and for more 
practical algorithms. 

5.2.2 Optimal decisions in multiplayer games 

Many popular games allow more than two players. I.er  us examine how to extend the minimax 
idea to multiplayer games. This is straightforward from the technical viewpoint, but raises 
some interesting new conceptual issues. 

First, we need to replace the single value for each node with a vector of values. For 
example, in a three-player game with players A, B, and C, a vector (VA, vB,  vc)  is associated 
with each node. For terminal states, this vector gives the utility of the state from each player's 
viewpoint. (In two-player, zero-sum games, the two-element vector can be reduced to a single 
value because the values are always opposite.) The simplest way to implement this is to have 
the UTILITY function return a vector of utilities. 

Now we have to consider nonterminal states. Consider the node marked X in the game 
tree shown in Figure 5.4. In that state, player C chooses what to do. The two choices lead 
to terminal states with utility vectors (9)A  —1, UB  —  2, pc;  — 6) and (a — 4, q)B  —2, vc — 
Since 6 is bigger than 3, C should choose the first move. This means that if state X is reached, 
subsequent play will lead to a terminal state with utilities (vA  = 1, vi3  = 2, vc  =0. Hence, 
the backed-up value of X is this vector. The backed-up value of a node n is always the utility 



Figure 5..4 The first three plies of a game tree with three players ( A, R, C) Each node is 
labeled with values from the viewpoint of each player. The best move is marked at the root. 
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function MINImAx-DEcIslox(state)  returns an action 
return arg il'.  E  ACTIONS(s)  MIN-VAL UE{  R ESULT(stat  e,  a)) 

function MAX-VALUE(state) returns a .utility  value 
if TERMINAL-TEST(state)  then return UTIL ITY(state)  
v  4—  —

'De  
for each a in AcTioNs  (state) do 

v  — MAX(v, MIN-VALUE(RESULT(s,  a))) 
return v  

function MIN-VALUE(state)  returns a utility value 
if TERMINAL-TEST(state)  then return UTIL ITY(state)  
v  4—  x  
for each a in ACTIONS(state)  do 

a 4— MIN(v,  MAX-VALUE(IESULT(s,  a))) 
return v  

Figure 5.3 An algorithm for calculating minimax decisions. it returns the action corre- 
sponding to the best possible move, that is, the move that leads to the outcome with the 
best utility, under the assumption that the opponent plays to minimize utility. The functions 
MAX-VALUE  and MIN-VALUE go through the whole game tree, all the way to the leaves, 
to determine the backed-up value of a state. The notation argmaic  Es  f (a) computes the 
element a of set S  that has the maximum value of f(a.).  

vector of the successor state with the highest value for the player choosing at rt.  Anyone 
who plays multiplayer games, such as Diplomacy, quickly becomes aware that much more 

ALLIANCE is going on than in two-player games. Multiplayer games usually involve alliances, whether 

formal or informal, among the players. Alliances are made and broken as the game proceeds. 
How are we to understand such behavior? Are alliances a natal al consequence  of optimal 

strategies for each player in a multiplayer  game? It turns out that they can be. For example. 
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suppose A and B are in weak positions and C is in a stronger position. Then it is often 
optimal for both A and B to attack C rather than each other, lest C destroy each of them 
individually. In this way, collaboration emerges from purely selfish behavior. Of course, 
as soon as C weakens under the joint onslaught, the alliance loses its value, and either A 
or B could violate the agreement. In some cases, explicit alliances merely make concrete 
what would have happened anyway, In other cases, a social stigma attaches to breaking an 
affiance, so players must balance the immediate advantage of breaking an alliance against the 
long-term disadvantage of being perceived as untrustworthy. See Section 17.5 for more on 
these complications. 

If the game is not zero-sum, then collaboration can also occur with just two players. 
Suppose. for example, that there is a terminal state with utilities (vA  — 1000, tr./3  — 1000) and 
that 1000 is the highest possible utility for each player. Then the optimal strategy is for both 
players to do everything possible to reach this slate—that  is, the players will automatically 
cooperate to achieve a mutually desirable goal. 

5.3 ALPHA—BETA PRUNING 

ALPHA-BETA  
PRI  SING 

The problem with minimax search is that the number of game states it has to examine is 
exponential in the depth of the tree. Unfortunately, we can't eliminate the exponent, but it 
turns out we can effectively cut it in half. The trick is that it is possible to compute the correct 
minimax decision without looking at every node in the game tree. That is, we can borrow the 
idea of pruning from Chapter 3 to eliminate large parts of the tree from consideration. The 
particular technique we examine is called alpha—beta pruning. When applied to a standard 
minimax tree, it returns the same move as minimax would, but prunes away branches that 
cannot possibly influence the final decision. 

Consider again the two-ply game tree from Figure 5.2. Let's go through the calculation 
of the optimal decision once more, this time paying careful attention to what we know at 
each point in the process. The steps are explained in Figure 5.5. The outcome is that we can 
identify the minimax decision without ever evaluating two of the leaf nodes. 

Another way to look at this is as a simplification of the formula for MINIMAX. Let the 
two unevaluated successors of node C in Figure 5.5 have values x and y. Then the value of 
the root node is given by 

MINIMAX(root)  = max(min(3,  12, 8), min(2,  x, y), min(14,  5, 2)) 

= max(3, rain(2,  y), 2) 
= max(3,  z, 2) where z = min(2,  x, y;  < 2 

3. 

In other words, the value of the root and hence the minimax decision are independent of the 
values of the pruned leaves x and y. 

Alpha—beta pruning can be applied to trees of any  depth, and it is often possible to 
prune entire subtrees rather than just leaves. The general principle is this: consider a node n 



(d)  

tin 

2  14 2 

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2. 
At each point, we show the range of possihle  values for  each node.  (a) The  first leaf he low 
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf 
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3. 
(c) The third leaf below B has a value of 8; we have seen all B's successor states, so the 
value of B is exactly 3. Now, we can infer that the value of the root is at  least 3, because 
MAX has a choice worth 3 at the root. id) The first leaf below C has the value 2. Hence, 
C, which is a MIN node, has a value of at most  2. But we know that B is worth 3, so mAx  
would never choose C. Therefore, there is no point in looking at the other successor states 
of C. This is an example of alpha—beta pruning. (e) The first leaf below D has the value 14, 
so B is worth at most 14. This is still higher than MAX's  best alternative (i.e..  3), so we need 
to keep exploring D's successor states. Notice also that we now have bounds on all of the 
successors of the root, so the root's value is also at most 14. (f) The second successor of D  
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is 
worth exactly 2. mAx's  decision at the root is to move to B, giving a value of 3. 
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somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node. 
If Player has a better choice in, either at the parent node of n  or at any choice point further up. 
then .n  will never be reached in actual play. So once we have found out enough about ri  (by 
examining some of its descendants) to reach this conclusion, we can prune it. 

Remember that minimax search is depth -first, so at any one time we just have to con- 
sider the nodes along a single path in the tree. Alpha —beta pruning gets its name from the 
following two parameters that describe bounds on the backed -up values that appear any-where  
along the path: 
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Figure 5.6 The general case for alpha–beta pruning. If 771  is better than n for Player, we 
will never get to n in play. 

rx  = the value of the best (i.e., highest-value) choice we have found so far at any choice point 
along the path for MAX. 

= the value of the best (i.e., lowest-value) choice we have found so far at any choice point 
along the path for MIN. 

Alpha–beta search updates the values of a and ,t3  as it goes along and prunes the remaining 
branches at a node (i.e., terminates the recursive call) as soon as the value of the current 
node is known to be worse than the current a  or 3  value for MAX or MIN, respectively. The 
complete algorithm is given in Figure 5.7. We encourage you to trace its behavior when 
applied to the tree in Figure 5.5. 

5.3.1 Move ordering 

The effectiveness of alpha–beta pruning is highly dependent on the order in which the states 
are examined. For example, in Figure 5.5(e) and (f), we could not prune any successors of D 
at all because the worst successors from the point of view of M1N)  were generated first. If 
the third successor of D had been generated first, we would have been able to prune the other 
two. This suggests that it might he worthwhile to try to examine first the successors that are 
likely to be best. 

If this can be done,2  then it turns out that alpha–beta needs to examine only 0(137n/ 2 )  
nodes to pick the best move, instead of 0(bn")  for minimax. This means that the effective 
branching factor becomes VT/  instead of b—fur chess, about 6 instead of 35. Put another 
way, alpha–beta can solve a tree roughly twice as deep as minimax in the same amount of 
time. If successors are examined in random order rather than best-first,  the total number of 
nodes examined will be roughly 0(63"44 ,  for moderate b. For chess, a fairly simple ordering 
function (such as trying captures first, then threats, then forward moves, and then backward 
moves) gets you to within about a factor of 2 of the best-case O(bm/2)  result. 
2  Obviously,  it cannot be done perfectly; otherwise, the ordering function could be used to play a perfect game!  
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KILLER  MOVES 

TRANSPOSrT  DN 

TRA  NSP  SIT ON 
TAME 

function ALPHA-SETA-SLARCI1(  state) returns an action 
v MAX-VALIE(state,  —co,  +oo)  
return the action in ACTIONS(state)  with value v 

function MAX-VALuE(state,  a„  3)  returns a utility value 
if TERMINAL-TEST(state)  then return UTILITY(stete)  
t“—  —9c  
for each a in ACTIONS(s/ate)  do 

v  4— MAX(v,  MIN-VALLTE(RESULT(s,a),ct. • ))  
if u  > 3 then return a 
a— MAX(a,  v)  

return a 

function MIN-VALUE(state,  a, .3)  returns a utility value 
if TERMINAL-TEST(state)  then return UTILITY(state)  
v  .i—  +no 
for each a in ACTIGNS(state)  do 

a 4— MIN(v, MAX-VALUE(RESULT(3,a)  ,rt,,8))  
if n  < a then return xi  

/3  — MIN(/3,  v) 
return a 

Figure 5.7 The alpha beta search algorithm. Notice that these routines are the same as 
the MINIMAX functions in Figure 5.3, except for the two lines in each of MIN -VALUE and 
MAX-VALUE that maintain a and /3  (and the bookkeeping to pass these parameters along). 

Adding dynamic move-ordering schemes, such as trying first the moves that were found 
to be best in the past, brings us quite close to the theoretical limit. The past could be the 
previous move—often the same threats remain—or it could come from previous exploration 
of the current move, One way to gain information from the current move is with iterative 
deepening search. First, search 1 ply deep and record the best path of moves. Then search 
1 ply deeper. but use the recorded path to inform move ordering. As we saw in Chapter 3, 
iterative deepening on an exponential game tree adds only a constant fraction to the total 
search time, which can be more than made up from better move ordering. The best moves are 
often called killer moves and to try them first is called the killer move heuristic. 

In Chapter 3, we noted that repeated states in the search tree can cause an exponential 
increase in search cost. In many games, repeated states occur frequently because of transpo-
sitions—different permutations of the move sequence that end up in the same position. For 
example, if White has one move, a l ,  that can be answered by Black with b i  and an unre-
lated move a2  on the other side of the board that can be answered by b 2 , then the sequences 
[al;  b1,  a 2 ,  b2 ]  and [a2 ,  b2 ,  a1 ,  NI both end up in the same position. It is worthwhile to store 
the evaluation of the resulting position in a hash table the first time it is encountered so that 
we don't have to recompute it on subsequent occuireaces.  The hash table of previously seen 
positions is traditionally called a transposition table; it is essentially identical to the explored 
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list in GRAPH-SEARCH (Section 3.3). Using a transposition table can have a dramatic effect, 
sometimes as much as doubling thc  reachable search depth in chess. On thc  other hand, if we 
are evaluating a million nodes per second, at some point it is not practical to keep all of them 
in the transposition table. Various strategies have been used to choose which nodes to keep 
and which to discard. 

5.4 IMPERFECT REAL-TIME DECISIONS 

EVALUATION 
FUNCTION 

CUTOFF TES- 

The  minimax algorithm generates the entire game search space, whereas the alpha-beta algo-
rithm allows us to prune large parts of it. However, alpha-beta still has to search all the way 
to terminal states for at least a portion of the search space. This depth is usually not practical, 
because moves must be made in a reasonable amount of time—typically a few minutes at 
most. Claude Shannon's paper Programming a Computer for Playing Chess (1950) proposed 
instead that programs should cut off the search earlier and apply a heuristic evaluation func-
tion to states in the search, effectively turning nonterminal  nodes into terminal leaves. In 
other words, the suggestion is to alter minimax or alpha-beta in two ways: replace the utility 
function by a heuristic evaluation function EVAL, which estimates the position's utility, and 
replace the terminal test by a cutoff test that decides when to apply EVAL. That gives us the 
following for heuristic minimax for state s and maximum depth d: 

H -1■41Nim  Ax(R,  d) =  

EVAL (  a ) {  if CUTOFF-TEST (8  d) 
IllaxaeActions(s)  H -MIN IM AX (RESIl  LT 1(  s , a), d +  1) 

,   
if PLAYER (9) = MAX 

min,z, E A,tio., i ,)  H-MINIMAX  (RESULT(2,  a), d + 1) if PLAYER (.3)  = MIN. 

5.4.1 Evaluation functions 

An evaluation function returns an estimate of the expected utility of the game from a given 
position, just as the heuristic functions of Chapter 3 return an estimate of the distance to 
the goal. The idea of an estimator was not new when Shannon proposed it. For centuries, 
chess players (and aficionados of other games) have developed ways of judging the value of 
a position because humans are even more limited in the amount of search they can do than 
are computer programs. It should be clear that the performance of a game-playing program 
depends strongly on the quality of its evaluation function. An inaccurate evaluation function 
will guide an agent toward positions that turn out to be lost. How exactly do we design good 
evaluation functions? 

First, the evaluation function should order the terminal states in the same way as the 
true utility function: states that are wins must evaluate better than draws, which in turn must 
be better than losses. Otherwise, an agent using the evaluation function might err even if it 

can see ahead all the way to the end of the game. Second, the computation must not take 
too long! (The whole point is to search faster.) Third, for nonterminal  states, the evaluation 
function should be strongly correlated with the actual chances of winning. 
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One might well wonder about the phrase "chances  of winning." After all, chess is not a 
game of chance: we know the current state with certainty, and no dice arc involved. But if the 
search must be cut off at nonterminal states, then the algorithm will necessarily be uncertain 
about the final outcomes of those states. This type of uncertainty is induced by computational, 
rather than informational, limitations. Given the limited amount of computation that the 
evaluation function is allowed to do for a given state, the best it can do is make a guess about 
the final outcome. 

Let us make this idea more concrete. Most evaluation functions work by calculating 
various features of the state—for example, in chess, we would have features for the number 
of white pawns, black pawns, white queens, black queens, and so on. The features, taken 
together, define various categories or equivalence classes of states: the states in each category 
have the same values for all the features. For example, one category contains all two-pawn  
vs. one-pawn endgames. Any given category, generally speaking, will contain some states 
that lead to wins, some that lead to draws, and some that lead to losses.  The evaluation 
function cannot know which states are which, but it can return a single value that reflects the 
proportion of states with each outcome. For example suppose our experience suggests that 
72% of the states encountered in the two-pawns vs. one-pawn category lead to a win (utility 
+1); 20% to a loss (0), and 8% to a draw (1/2).  Then a reasonable evaluation for states in 

EKPECTED  VALLTE  the category is the expected value: (7.72  x +1) + (0.20 x 0) -F  (0.08  x  1/2)  = 0.76.  In 
principle, the expected value can be determined for each category, resulting in an evaluation 
function that works for any state. As with terminal states, the evaluation function need not 
return actual expected values as long as the ordering of the states is the same. 

In practice, this kind of analysis requires too many categories and hence too much 
experience to estimate all the probabilities of winning. Instead, most evaluation functions 
compute separate numerical contributions from each feature and then combine them to find 

MATERIAL VALUE  the total value. For example, introductory chess books give an approximate material value 
for each piece: each pawn is worth I.  a knight or bishop is worth 3, a rook 5, and the queen 9. 
Other features such as "good pawn structure" and "king safety" might be worth half a pawn, 
say. These feature values are then simply added up to obtain the evaluation of the position_ 

A secure advantage equivalent to a pawn gives a substantial likelihood of winning, and 
a secure advantage equivalent to three pawns should give almost certain victory, as illustrated 
in Figure 5.8(a). Mathematically, this kind of evaluation function is called a weighted linear 

'AUGURED  LINEAR 
FUNGPON function because it can be expressed as 

E VAL( = tiji  h.  (5)  + w2f2(s)  + •  + wr,f„  (s)  = 
2=1  

where each wi  is a weight and each f,  is a feature of the position. For chess, the fi  could be 
the numbers of each kind of piece on the board. and the wi  could be the values of the pieces 
(1 for pawn, 3 for bishop, etc.). 

Adding up the values of features seems like a reasonable thing to do, but in fact it 
involves a strong assumption: that the contribution of each feature is independent of the 
values of the other features. For example, assigning the value 3 to a bishop ignores the fact 
that bishops are more powerful in the endgame, when they have a lot of space to maneuver. 
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Figure 5.8 Two chess positions that differ only in the position of the rook at lower right. 
In (a), Black has an advantage of a knight and two pawns, which should be enough to win 
the  game. In (b), White will capture the queen, giving it an  advantage  that should be strung 
enough to win. 
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For this reason. current programs for chess and other games also use nonlinear combinations 
of features. For example, a pair of bishops might be worth slightly more than twice the value 
of a single bishop, and a bishop is worth more in the endgame (that is, when the move number   
feature is high or the number of remaining pieces feature is low). 

The astute reader will have noticed that the features and weights are not part of the rules 
of chess! They come from centuries of human chess-playing experience. In games where this 
kind of experience is not available, the weights of the evaluation function can be estimated 
by the machine learning techniques of Chapter 18. Reassuringly, applying these techniques 
to chess has confirmed that a bishop is indeed worth about three pawns. 

5.9.2 Cutting off search 

The next step is to modify ALPHA-BETA-SEARCH  so that it will call the heuristic EVAL  
function when it is appropriate to cut off the search. We replace the two lines in Figure 5.7 
that mention TERMINAL-TEST with the following line: 

if CUTOFF-TEST(state,  depth) then return EVAL(state)  

We also must arrange for some bookkeeping so that the current depth is incremented on each 
recursive call. The most straightforward approach to controlling the amount of search is to set 
a fixed depth limit so that Cu  TOFF-TEST(state,  depth) returns true for all depth greater than 
some fixed depth d. (It must also return true for all terminal states, just as TERMINAL-TEST 
did.) The depth d is chosen so that a move is selected within the allocated time. A more 
robust approach is to apply iterative deepening. (See Chapter 3.) When time runs out, the 
program returns the  move selected by die  deepest completed search. As a bonus, iterative 
deepening also helps with move ordering. 
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These simple approaches can lead to errors due to the approximate nature of the eval-
uation function. Consider again the simple evaluation function for chess based on material 
advantage. Suppose the program searches to the depth limit, reaching the position in Fig- 
ure 5.8(13),  where Black is ahead by a knight and two pawns. It would report this as the 
heuristic value of the state, thereby declaring that the state is a probable win by Black. But 
White's next move captures Black's queen with no compensation. Hence, the position is 
really won for White, but this can be seen only by looking ahead one more ply. 

Obviously, a more sophisticated cutoff test is needed. The evaluation function should be 
applied only to positions that are quiescent—that is, unlikely to exhibit wild swings in value 
in the near future. In chess, for example, positions in which favorable captures can be made 
are not quiescent for an evaluation function that just counts material. Nonquiescent positions 
can be expanded further until quiescent positions are reached. This extra search is called a 
quiescence search; sometimes it is restricted to consider only certain types of moves, such 
as capture moves, that will quickly resolve the uncertainties in the position. 

The horizon effect is more difficult to eliminate. It arises when the program is facing 
an opponent's move that causes serious damage and is ultimately unavoidable, but can be 
temporarily avoided by delaying tactics. Consider the chess game in Figure 5.9. It is clear 
that there is no way for the black bishop to escape. For example, the white rook can capture 
it by moving to h I, then al, then a2; a capture at depth 6 ply. But Black does have a sequence 
of moves that pushes the capture of the bishop "over the horizon." Suppose Black searches 
to depth 8 ply. Most moves by Black will lead to the eventual capture of the bishop, and thus 
will be marked as "bad" moves. But Black will consider checking the white king with the 
pawn at e4. This will lead to the king capturing the pawn. Now Black will consider checking 
again, with the pawn at f5, leading to another pawn capture. That takes up 4 ply, and from 
there the remaining 4 ply is not enough to capture the bishop. Black thinks that the line of 
play has saved the bishop at the price of two pawns, when actually all it has done is push the 
inevitable capture of the bishop beyond the horizon that Black can see. 

One strategy to mitigate the horizon effect is the singular extension, a move that is 
"clearly heifer" than all other moves in a given position_ Once discovered anywhere in the 
tree in the course of a search, this singular move is remembered. When the search reaches the 
normal depth limit, the algorithm checks to see if the singular extension is a legal move; if it 
is, the algorithm allows the move to he considered. This makes the tree deeper, but because 
there will be few singular extensions, it does not add many total nodes to the tree. 

FORWARD P  %NINO  

BUM SEARCH  

5.4.3 Forward pruning 

So far, we have talked about cutting off search at a certain level and about doing alpha-
bets pruning that provably has no effect on the result (at least with respect to the heuristic 
evaluation values). It is also possible to do forward pruning, meaning that some moves at 
a given node are pruned immediately without further consideration. Clearly, most humans 
playing chess consider only a few moves from each position (at least consciously). One 
approach to forward pruning is beam search: on each ply, consider only a "beam" of the a 
best moves (according to the evaluation function) rather than considering all possible moves. 
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Figure S. The horizon effect. With Black to move, the black bishop is surely doomed, 
But Black can forestall that event by checking the white king with its pawns, forcing the king 
to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and thus 
the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones. 
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Unfortunately, this approach is rather dangerous because there is no guarantee that the best 
move will not be pruned away. 

The PROBCUT,  or probabilistic cut, algorithm (Duro,  1995) is a forward-pruning ver- 
sion of alpha—beta search that uses statistics gained from prior experience to lessen the chance 
that the best move will be pruned. Alpha—beta search prunes any node that is provably out-
side the current (a, /3) window. PROBCUT also prunes nodes that are probably outside the 
window. It computes this probability by doing a shallow search to compute the backed-up 
value v of a node and then using past experience to estimate how likely it is that a score of e 
at depth d in the tree would be outside (or, .3).  Buro  applied this technique to his Othello pro-
gram, I .0(ITSTF.1.1  0, and found that a version of his program with PRURCI  IT heat the regular 
version 64% of the time, even when the regular version was given twice as much time. 

Combining all the techniques described here results in a program that can play cred-
itable chess (or other games). Let us assume we have implemented an evaluation function for 
chess, a reasonable cutoff test with a quiescence search, and a large transposition table. Let 
us also assume that, after months of tedious bit-bashing, we can generate and evaluate around 
a million nodes per second on the latest PC, allowing us to search roughly 200 million nodes 
per move under standard time controls (three minutes per move). The branching factor for 
chess is about 35, on average, and 35 5  is about 50 million, so if we used minimax search, 
we could look ahead only about five plies. Though not incompetent. such a program can be 
fooled easily by an average human chess player, who can occasionally plan six or eight plies 
ahead. With alpha—beta search we get to about 10 plies, which results in an expert level of 
play. Section 5.8 describes additional pruning techniques that can extend the effective search 
devil  to roughly 14 plies.  To reach grandmaster status we would need an extensively tuned 
evaluation function and a large database of optimal opening and endgame moves. 
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5.4.4 Search versus lookup 

Somehow it seems like overkill for a chess program to start a game by considering a tree of a 
billion game states, only to conclude that it will move its pawn to e4. Books describing good 
play in the opening and endgame in chess have been available for about a century (Tattersall, 
1911). It is not surprising, therefore, that many game-playing programs use table lookup 
rather than search for the opening and ending of games. 

For the openings, the computer is mostly relying on the expertise of humans. The best 
advice of human experts on how to play each opening is copied from books and entered into 
tables for the computer's use. However, computers can also gather statistics from a database 
of previously played games to see which opening sequences most often lead to a win. In 
the early moves there are few choices, and thus much expert commentary and past games on 
which to draw. Usually after ten moves we end up in a rarely seen position, and the program 
must switch from table lookup to search. 

Near the end of the game there are again fewer possible positions, and thus more chance 
to do lookup. But here it is the computer that has the expertise: computer analysis of 
endgames goes far beyond anything achieved by humans. A human can tell you the gen-
eral strategy for playing a king-and-rook-versus-king  (KRK) endgame: reduce the opposing 
king's mobility by squeezing it toward one edge of the board, using your king to prevent the 
opponent from escaping the squeeze. Other endings, such as king, bishop, and knight versus 
king (KBNK),  are difficult to master and have no succinct strategy description. A computer, 

POLICY on the other hand,  can completely solve the endgame by producing a policy, which is a map- 
ping from every possible state to the best move in that state. Then we can just look up the best 
move rather than recompute it anew. How big will the KBNK lookup table be? It turns out 
there are 462 ways that two kings can be placed on the board without being adjacent. After 
the kings are placed, there are 62 empty squares for the bishop, 61 for the knight, and two 
possible players to move next, so there are just 462 x 62 x 61 x 2 = 3, 494, 568 possible 

RETROGRADE   positions. Some of these are checkmates; mark them as such in a table. Then do a retrograde 
minimax search: reverse the rules of chess to do unmoves  rather than moves_  Any move by 
White that, no matter what move Black responds with, ends up in a position marked as a win. 
must also be a win. Continue this search until all 3494,568 positions are resolved as win, 
loss, or draw, and you have an infallible lookup table for all KBNK endgames. 

Using this technique and a tour de force of optimization tricks, Ken Thompson t  1986, 
1996) and Lewis Stiller (1992, 1996) solved all chess endgames with up to five pieces and 
some with six pieces, making them available on the Internet. Stiller discovered one case 
where a forced mate existed but required 262 moves; this caused some consternation because 
the ndes  of chess require a capture or pawn move to occur within 50 moves. Later work by 
Marc Bourzutschky and Yakov Konoval  (Bourzutschky, 2006) solved all pawnless six-piece 
and some seven-piece endgames; there is a KQNKRBN endgame that with best play requires 
517 moves until a capture, which then leads to a mate. 

If we could extend the chess endgame tables from 6 pieces to 32, then White would 
know on the opening  move whether it would be a win, loss, or draw. This has not happened 
so far for chess, but it has happened for checkers, as explained in the historical notes section. 



Figure 5.10  A typical backgammon position. The goal of the game is to move all one's 
pieces off the board. White moves clockwise toward 25, and Black moves counterclockwise 
toward 0. A piece can move lo  any position unless multiple opponent pieces are there; if there 
is one opponent, it is captured and must start over. In the position shown,  White has rolled 
6-5 and must choose among four legal moves: (5-10,5-11),  (5-11,19-24),  (5-10,10-16),  
and (5-11,11-16), where the notation (5-11,11-16) means move one piece from position 5 
to 11, and then move a piece from 11 to 16_  
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5.5 STOCHASTIC GAMES 

In real life, many unpredictable external events can put us into unforeseen situations. Many 
games mirror this unpredictability by including a random element, such as the throwing of 

STOCHASTIC GAMES 
 dice. We call these stochastic games. Backgammon is a typical game that combines luck 

and skill. Dice are rolled at the heginning  of a player's rum  to determine the legal moves_ In 
the backgammon position of Figure 5.10, for example, White has rolled a 6-5  and has four 
possible moves_ 

Although White knows what his or her own legal moves are, White does not know what 
Black is going to roll and thus does not know what Black's legal moves will be. That means 
White cannot construct a standard game tree of the sort we saw in chess and tic-tac-toe. A 

CHANCE HOES 

	

	game tree in backgammon must include chance nodes in addition to MAX and MIN nodes. 
Chance nodes are shown as circles in Figure 5.11. The branches leading from each chance 
node denote the possible dice rolls; each branch is labeled with the roll and its probability. 
There are 36 ways to roll two dice, each equally likely; but because a 6 -5 is the same as a 5-6, 
there ate only 21 distinct rolls. The six doubles (1 -1 through 6-6) each have a probability of 
1/35,  so we say P(1-1)  = 06.  The other 15 distinct rolls each have a 1/18 probability. 
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Figure 5.11 Schematic game tree for a backgammon position .  

The next step is to understand how to make correct decisions. Obviously, we still want 
to pick the move that leads to the best position. However, positions do not have definite 
minimax values. instead, we can only calculate the expected value of a position: the average 
over all possible outcomes of the chance nodes. 

This leads us to generalize the minimax value for deterministic games to an expecti.  
minimax value for games with chance nodes. Terminal nodes and MAX and MIN nodes (for 
which the dice roll is known) work exactly the same way as before. For chance nodes we 
compute the expected value, which is the sum of the value over all outcomes, weighted by 
the probability of each chance action: 

EXPECTIMINIMAX(s)  — 
UTILITY (s)  ) if TERMINAL-TEST (s))  
max,„  EXPECTIMINIMAX RESULT( s,  a); if PLAYER(s)  = MAX 
mina,  EXPECTIMINIMAX(RESULT(s,  a)) if PLAYER(s)  = MIN 
Er  PMEXPECTIMINIMAX  (RESULT(s,  T.))  if PLAYER(s)  = CHANCE 

where r represents a possible dice roll (or other chance event) and RESULT (8,  r) is the same 
state as s, with the additional fact that the result of the dice roll is r. 

5.5.1 Evaluation functions for games of chance 
As with minimax, the obvious approximation to make with expectirninimax  is to cut the 
search off at some point and apply an evaluation function to each leaf. One might think that 
evaluation functions for games such as backgammon should be just like evaluation functions 
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Figure 5.12  An order-preserving transformation an leaf values changes the best move. 
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for chess—they just need to give higher scores to better positions. But in fact, the presence of 
chance nodes means that one has to be more careful about what the evaluation values mean. 
Figure 5.12 shows what happens: with an evaluation function that assigns the values [1, 2, 
3, 4] to the leaves, move Cl  is best; with values [1, 20, 30, 400], move a2  is best. Hence, 
the program behaves totally differently if we make a change in the scale of some evaluation 
values! It turns out that to avoid this sensitivity, the evaluation function must be a positive 
linear transformation of the probability of winning from a position (or, more generally. of the 
expected utility of the position). This is an important and general property of situations in 
which uncertainty is involved, and we discuss it further in Chapter 16. 

If the program knew in advance all the dice rolls that would occur for the rest of the 
game, solving a game with dice would be just like solving a game without dice, which mini-
max does in 0 (bm)  time, where b is the branching factor and rh  is the maximum depth of the 
game tree. Because expectiminimax is also considering all the possible dice-roll sequences, 
it will take Q(bninm),  where o  is the number of distinct rolls. 

Even if the search depth is limited to some small depth d, the extra cost compared with 
that of minimax makes it unrealistic to consider looking ahead very far in most games of 
chance. In backgammon n is 21 and b is usually around 20, but in some situations can be as 
high as 4000 for dice rolls that are doubles. Three plies is probably all we could manage. 

Another way to think about the problem is this: the advantage of alpha–beta is that 
it ignores future developments that just are not going to happen, given best play. Thus, it 
concentrates on likely occurrences. In games with dice. there are no likely sequences of 
moves, because for those moves to take place, the dice would first have to come out the right 
way to make them legal. This is a general problem whenever uncertainty enters the picture: 
the possibilities are multiplied enormously, and forming detailed plans of action becomes 
pointless because the world probably will not play along. 

It may have occurred to you that something like alpha–beta pruning could be applied 
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MONTE  CARLO 
SIMJLATION  

ROLLOUT  

to game trees with chance nodes. It turns out that it can. The analysis for MIN and MAX 
nodes is unchanged, but we can also prune chance nodes, using a bit of ingenuity. Consider 
the chance node C in Figure 5.11 and what happens to its value as we examine and evaluate 
its children. Is it possible to find an upper bound on the value of C before we have looked 
at all its children? (Recall that this is what alpha—beta needs in order to prune a node and its 
subtree.) At first sight, it might seem impossible because the value of C is the average of its 
children's values, and in order to compute the average of a set of numbers, we must look at 
all the numbers. But if we put bounds on the possible values of the utility function, then we 
can arrive at bounds for the average without looking at every number. For example, say that 
all utility values are between —2 and +2; then the value of leaf nodes is bounded, and in turn 
we can place an upper bound on the value of a chance node without looking at all its children. 

An alternative is to do Monte Carlo simulation to evaluate a position. Start with 
an alpha—beta  (or other) search algorithm. From a start position, have the algorithm play 
thousands of games against itself, using random dice rolls. In the case of backgammon, the 
resulting win percentage has been shown to be a good approximation of the value of the 
position, even if the algorithm has an imperfect heuristic and is searching only a few plies 
(Tesauro, 1995). For games with dice, this type of simulation is called a rollout. 

5.6 PARTIALLY OBSERVABLE GAMES 

Chess has often been described as war in miniature, but it lacks at least one major charac- 
teristic of real wars, namely, partial observability. In the "fog of war." the existence and 
disposition of enemy units is often unknown until revealed by direct contact. As a result, 
warfare includes the use of scouts and spies to gather information and the use of concealment 
and bluff to confuse the enemy. Partially observable games share these characteristics and 
are thus qualitatively different from due  games described in the preceding sections. 

5.6.1 Kriegspiel: Partially observable chess 

In deterministic partially observable games, uncertainty about the state of the board arises en-
tirely from lack of access to the choices made by the opponent. This class includes children's 
games such as Battleships (where each player's ships are placed in locations hidden from the 
opponent but do not move) and Stratego (where piece locations are known but piece types are 

KRIEGSPIE_ 

	

	 hidden). We will examine the game of Kriegspiel, a partially observable variant of chess in 
which pieces can move but are completely invisible to the opponent. 

The rules of Kriegspiel are as follows: White and Black each see a board containing 
only their own pieces. A referee, who can see all the pieces, adjudicates the game and period-
ically makes announcements that are heard by both players. On his turn, White proposes to 
the referee any move that would be legal if there were no black pieces. If the move is in fact 
not legal (because of the black pieces), the referee announces 'illegal." In this case, White 
may keep proposing moves until a legal one is found—and learns more about the location of 
Black's pieces in the process. Dnce  a legal move is proposed, the referee announces one or 
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GUARANTEED  
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PROBABILLSDC  
CHECKMATE 

more of the following: "Capture on square X" if there is a capture, and "Check by D" if the 
black king is in chock,  where D is the direction of the check, and can be one of "Knight,"  
"Rank," Tile,"  "Long diagonal," or "Short diagonal." (In case of discovered check, the ref-
eree may make two "Check" announcements.) If Black is checkmated or stalemated, the 
referee says so; otherwise, it is Black's turn to move. 

Kriegspiel may seem terrifyingly impossible, but humans manage it quite well and com-
puter programs are beginning to catch up. It  helps to recall the notion of a belief state as 
defined in Section 4.4 and illustrated in Figure 4.14—the set of all logically possible board 
states given the complete history of percepts to date. Initially, White's belief state is a sin-
gleton because Black's pieces haven't moved yet. After White makes a move and Black re-
sponds,  White's belief state contains 20 positions because Black has 20 replies to any White 
move. Keeping track of the belief state as the game progresses is exactly the problem of state 
estimatiun,  for which the update step is given in Equation (4.6). We can map Kriegspiel 
state estimation directly onto the partially observable, nondeterministic  framework of Sec-
tion 4.4 if we consider the opponent as the source of nondeterminism; that is, the RESULTS 
of White's move are composed from the (predictable) outcome of White's own move and the 
unpredictable outcome given by Black's reply. 3  

Given a current belief state, White may ask, "Can I win the game?" For a partially 
observable game, the notion of a strategy is altered; instead of specifying a move to make 
for each possible move the opponent might make, we need a move for every possible percept 
sequence that might be received. For Kriegspiel, a winning strategy, or guaranteed check-
mate, is one that, for each possible percept sequence, leads to an actual checkmate for every 
possible board state in the current belief state, regardless of how the opponent moves. With 
this definition, the opponent's belief state is irrelevant—the strategy has to work even if the 
opponent can see all the pieces. This greatly simplifies the computation. Figure 5.13 shows 
part of a guaranteed checkmate for the KRK (king and rook against king) endgame. In this 
case, Black has just one piece (the king), so a belief state for White can be shown in a single 
board by marking each possible position of the Black king. 

The general AND-OR search algorithm can he applied to the belief-state space to find 
guaranteed checkmates, just as in Section 4.4. The incremental belief-state algorithm men-
tioned in that section often finds midgame checkmates up to depth 9—probably well beyond 
the abilities of human players. 

In addition to guaranteed checkmates, Kriegspiel admits an entirely new concept that 
makes no sense in fully observable games: probabilistic checkmate. Such checkmates are 
still required to work in every board state in the belief state; they are probabilistic with respect 
to randomization of the winning player's moves. To get the basic idea, consider the problem 
of finding a lone black king using just the white king. Simply by moving randomly, the 
white king will eventually bump into the black king even if the latter tries to avoid this fate. 
since Black cannot keep guessing the right evasive moves indefinitely. In the terminology of 
probability theory, detection occurs with probability 1. The KBNK endgame—king,  bishop 

3  Sometimes, the belief state will become too large to represent just as a list of board states, but we will ignore 
this issue for now; Chapters 7 and 8 suggest methods for compactly representing very large belief states. 
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ACCIDENTAL 
CHECKMATE 

Figure 5.13  Part of a guaranteed checkmate in the KRK endgame, shown on a reduced 
board. In the initial belief state, Black's king is in one of three possible locations. By a 
combination of probing moves, the strategy narrows this down to one. Completion of the 
checkmate is left as an exercise. 

and knight against king—is wen in this sense: White presents Black with an infinite random 
sequence of choices, for one of which B lack will guess incorrectly and reveal his position ;  
leading to checkmate.  The KBBK endgame, on the other hand, is won with probability 1 — E.  

White can force a win only by leaving one of his bishops unprotected for one move. If 
Black happens to be in the right place and captures the bishop (a move that would lose if the 
bishops are protected), the game is drawn. White can choose to make the risky move at some 
randomly chosen point in the middle of  a very long sequence, thus reducing e  to an arbitrarily 
small constant, but cannot reduce a to zero. 

It is quite rare that a guaranteed or probabilistic checkmate can be found within any 
reasonable depth, except in the endgame. Sometimes a checkmate strategy works for some of 
the board states in the current belief state but not others. Trying such a strategy may succeed. 
leading to an accidental checkmate—accidental in the sense that White could not know that 
it would be checkmate—if Black's pieces happen to be in the right places. (Most checkmates 
in games between humans are of this accidental nature.) This idea leads naturally to the 
question of how likely it is that a given  strategy will win, which leads in turn to the question 
of how likely it is that each board state in the current belief state is the true board state. 
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rr  
One's first inclination might be to propose that all board states in the current belief state 

arc equally likely—but this can't be right. Consider, for example, White's belief statc after 
Black's first move of the game. By definition (assuming that Black plays optimally), Black 
must have played an optimal move, so all board states resulting from suboptimal moves ought 
to be assigned zero probability. This argument is not quite right either, because each player's  
goal is not just to move pieces to the right squares  but also to minimize the information that 
the opponent has about their location. Playing any predictable "optimal" strategy provides 
the opponent with infomiation  Hence, optimal play in partially observable games requires 
a willingness to play somewhat randomly. (This is why restaurant hygiene inspectors do 
random inspection visits.) This means occasionally selecting moves that may seem "intrinsi- 
cally" weak—but they gain strength from their very unpredictability, because the opponent is 
unlikely to have prepared any defense against them. 

From these considerations, it seems that the probabilities associated with the board 
states in the current belief state can only be calculated given an optimal randomized strat-
egy; in tarn,  computing that strategy seems to require knowing the probabilities of the var-
ious states the board might be in. This conundrum can be resolved by adopting the game-
theoretic notion of an equilibrium solution, which we pursue further in Chapter 17. An 
equilibrium specifies an optimal randomized strategy for each player. Computing equilib-
ria is prohibitively expensive, however, even for small games, and is out of the question for 
Kriegspiel.  At present, the design of effective algorithms for general Kriegspiel play is an 
open research topic. Most systems perform bounded-depth lookahead in their own belief-
state space, ignoring the opponent's belief state. Evaluation functions resemble those for the 
observable game but include a component for the size of the belief state—smaller is better! 

5.6.2 Card games 
Card games provide many examples of stochastic partial observability, where the missing 
information is generated randomly. For example in many games, cards arc dealt randomly at 
the beginning of the game, with each player receiving a hand that is not visible to the other 
players. Such games include bridge, whist, hearts, and some forms of poker. 

At first sight, it might seem that these card games are just like dice games: the cards are 
dealt randomly and determine the moves available to each player, but all the "dice" are rolled 
at the beginning! Even though this analogy turns out to be incorrect, it suggests an effective 
algorithm: consider all possible deals of the invisible cards; solve each one as if it were a 
fully observable game; and then choose the move that has the best outcome averaged over all 
the deals. Suppose that each deal s  occurs with probability P(s);  then the move we want is 

argmax P (s)  MINIMAX(RESULT  (s,a))  . (5.1) 

Here, we run exact MINIMAX if computationally feasible; otherwise, we run H-MINIMAX.  
Now, in most card games, the number of possible deals is rather large. For example, 

in bridge play, each player sees just two of the four hands; there are two unseen hands of 13 
cards each, so the number of deals is (4)  = 10,  400, 601 Solving even one  deal is quite 
difficult, so solving ten million is out of the question. Instead, we resort to a Monte Carlo 
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BLUFF  

approximation: instead of adding up all the deals, we take a random sample of N deals. 
where the probability of deal a appearing in the sample is proportional to P(s):  

thr  
ar gm ax 

1  
—  E MINIMAX (RESULT(s i  ,  a)) . (5.2)  

a  N

i=  

(Notice that P(s)  does not appear explicitly in the summation, because the samples are al- 
ready drawn according to P(s).)  As N grows large, the sum over the random sample tends 

to the exact value, but even for fairly small N—say, 100 to 1,000—the method gives a good 
approximation. It can also be applied to deterministic games such as Kriegspiel, given some 
reasonable estimate of P(s).  

For games like whist and hearts, where there is no bidding or betting phase before play 
commences, each deal will be equally likely and so the values of P(s)  are all equal. For 
bridge, play is preceded by a bidding phase in which each team indicates how many tricks it 
expects to win_  Since players bid based on the cards they hold, the other players learn more 
about the probability of each deal. Taking this into account in deciding how to play the hand 
is tricky, for the reasons mentioned in our description of Kriegspiel:  ['layers  may hid in such 
a way as to minimize the information conveyed to their opponents. Even so, the approach is 
quite effective for bridge, as we show in Section 5.7. 

The strategy described in Equations 5.1 and 5.2 is sometimes called averaging over 
clairvoyance because it assumes that the game will become observable to both players im- 
mediately after the first move. Despite its intuitive appeal, the strategy  can  lead one astray. 
Consider the following story: 

Day 1: Road A leads to a heap of gold; Road B leads to a fork. Take the left fork and 
you'll find a bigger heap of gold, but take the right fork and you'll be run over by a bus. 
Day 2: Road A leads to a heap of gold; Road B leads to a fork. Take the right fork and 
you'll find a bigger heap of gold, but take the left fork and you'll be run over by a bus. 
Day 3: Road A leads to a heap of gold; Road B leads to a fork. One branch of the 
fork leads to a bigger heap of gold, but take the wrong fork and you'll be hit by a bus. 

Infra-innately  you don't know which fork is which. 

Averaging over clairvoyance leads to the following reasoning: on Day 1, B is the right choice; 
on Day 2, B is the right choice; on Day 3, the situation is the same as either Day 1 or Day 2. 
so B must still be the right choice. 

Now we can see how averaging over clairvoyance fails: it does not consider the belief  
state that the agent will be in after acting. A belief state of total ignorance is not desirable, es-
pecially when one possibility is certain death. Because it assumes that every future state will 
automatically be one of perfect knowledge, the approach never selects actions that gather in-
formation (like the first move in Figure 5A 3); nor will it choose actions that hide information 
from the opponent or provide information to a partner because it assumes that they already 
know the information; and it will never bluff in poker,4  because it assumes the opponent can 
see its cards. In Chapter 17, we show how to construct algorithms that do all these things by 
virtue of solving the true partially observable decision problem. 

Bluffing—betting  as if one's hand is good, even when it's not—is a core part of poker strategy. 
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5.7 STATE-OF-THE-ART GAME PROGRAMS 

CHESS 

NULL MOVE 

FUTILITY PRIMING  

In 1965, the Russian mathematician Alexander Kronrod called chess "the Drosophila of ar- 
tificial intelligence." John McCarthy disagrees: whereas geneticists use fruit flies to make 
discoveries that apply to biology more broadly, AI has used chess to do the equivalent of 
breeding very fast fruit flies. Perhaps a better analogy is that chess is to Al as Grand Prix 

motor racing is to the car industry: state-of-the-art game programs are blindingly fast, highly 
optimized machines that incorporate the latest engineering advances, but they aren't much 
use for doing the shopping or driving off-road. Nonetheless, racing and game-playing gen- 
erate excitement and a steady stream of innovations that have been adopted by the wider 
community. In this section we look at what it takes to come out on top in various games. 

Chess: IBM's DEEP BLUE chess program, now retired, is well known for defeating world 
champion Garry Kasparov in a widely publicized exhibition match. Deep Blue ran on a par-
allel computer with 30 IBM RS/6000 processors doing alpha—beta search. The unique part 
was a configuration of 480 custom VLSI chess processors that performed move generation 
and move ordering for the last few levels of the tree, and evaluated the leaf nodes. Deep Blue 
searched up to 30 billion positions per move, reaching depth 14 routinely. The key to its 
success seems to have been its ability to generate singular extensions beyond the depth limit 
for sufficiently interesting lines of forcing/forced moves. In some cases the search reached a 
depth of 40 plies. The evaluation function had over 8000 features, many of them describing 
highly specific patterns of pieces. An "opening book" of about 4000 positions was used, as 
well as a database of 700,000 grandmaster games from which consensus recommendations 
could be extracted. The system also used a large endgame database of solved positions con-
taining all positions with five pieces and many with six pieces. This database had the effect 
of substantially extending the effective search depth, allowing Deep Blue to play perfectly in 
some cases even when it was many moves away from checkmate. 

The success of DFFP  RUFF.  reinforced the widely held belief that progress in computer 
game-playing has come primarily from ever-more-powerful hardware—a view encouraged 
by IBM. But algorithmic improvements have allowed programs running on standard PCs 
to win World Computer Chess Championships. A variety of pruning heuristics are used to 
reduce the effective branching factor to less than 3 (compared with the actual branching factor 
of about 35). The most important of these is the null move heuristic, which generates a good 
lower hound on the value of a position, using a shallow search in which the opponent gets 
to move twice at the beginning. This lower bound often allows alpha—beta pruning without 
the expense of a full-depth search. Also important is futility pruning, which helps decide in 
advance which moves will cause a beta cutoff in the successor nodes. 

HYDRA can be seen as the successor to DEEP BLUE. HYDRA runs on a 64-processor 
cluster with 1 gigabyte per processor and with custom hardware in the form  of FPGA (Field 
Programmable Gate Array) chips. HYDRA reaches 200 million evaluations per second, about 
the same as Deep Blue, but HYDRA reaches 18 plies deep rather than just 14 because of 
aggressive use of the null move heuristic and forward pruning. 
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CHECKERS 

OTHELLO  

BAIKGAMUCH  

GO 

COMBINATORIAL  
GAME THEORY 

1:11-11JCL  

RYBKA,  winner of the 2008 and 2009 World Computer Chess Championships, is con-
sidered the strongest current computer player. It uses an off-the-shelf  8 -corc 3.2  GHz Intel 
Xeon processor, but little is known about the design of the program. RYBKA's  main ad-
vantage appears to be its evaluation function, which has been tuned by its main developer, 
International Master Vasik Rajlich, and at least three other grandmasters. 

The most recent matches suggest that the top computer chess programs have pulled 
ahead of all human contenders. (See the historical notes for details.) 
Checkers: Jonathan Schaeffer and colleagues developed CHINOOK, which runs on regular 
PCs and uses alpha—beta search. Chinook defeated the long-running human champion in an 
abbreviated match in 1990, and since 2007 CHINOOK has been able to play perfectly by using 
alpha—beta  search combined with a database of 39 trillion endgame positions. 
Othello, also called Reversi, is probably more popular as a computer game than as a board 
game.  It has a smaller search space than chess, usually 5 to 15 legal moves, but evaluation 
expertise had to be developed from scratch. In 1997, the LOGISTELLO program (Buro,  2002) 
defeated the human world champion, Takeshi Murakami, by six games to none. It is generally 
acknowledged that humans are no match for computers at Othello. 
Backgammon: Section 5.5 explained why the inclusion of uncertainty from dice rolls makes 
deep search an expensive luxury. Most work on backgammon has gone into improving the 
evaluation function. Gerry Tesauro (1992) combined reinforcement learning with neural 
networks to develop a remarkably accurate evaluator that is used with a search to depth 2 
or 3. After playing more than a million training games against itself, Tesauro's program, 
TD-GAmmon,  is competitive with top human players. The program's opinions on the open-
ing moves of the game have in some cases radically altered the received wisdom. 
Go is the most popular board game in Asia. Because the board is 19 x 19 and moves are 
allowed into (almost) every empty square, the branching factor starts at 361, which is too 
daunting for regular alpha—beta search methods. In addition, it is difficult to write an eval-
uation function because control of territory is often very unpredictable until the endgame. 
Therefore the top programs, such as MoGo, avoid alpha—beta search and instead use Monte 
Carlo rollouts. The trick is to decide what moves to make in the course of the rollout. There is 
no aggressive pruning; all moves are possible_ The UCT  (upper confidence hounds or trees) 
method works by making random moves in the first few iterations, and over time guiding 
the sampling process to prefer moves that have led to wins in previous samples. Some tricks 
are added, including knowledge-based rules that suggest particular moves whenever a given 
pattern is detected arid limited local search to decide tactical questions. Some programs also 
include special techniques from combinatorial game theory to analyze endgames. These 
techniques decompose a position into sub-positions that can be analyzed separately and then 
combined (Berlekamp and Wolfe, 1994; Muller, 2003). The optimal solutions obtained in 
this way have surprised many professional Go players, who thought they had been playing 
optimally all along. Current Go programs play at the master level on a reduced 9 x 9 board. 
but are still at advanced amateur level on a full board. 

Bridge is a card game of imperfect information: a player's cards are hidden from the other 
players. Bridge is also a multfplayer  game with four players instead of two, although the 
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EXPlANATICN- 
BASED GIB 's lead. GIB 's major innovation is using explanation-based generalization to compute 
GENERALIZATION 

and cache general rules for optimal play in various standard classes of situations rather than 
evaluating each situation individually. For example, in a situation where one player has the 
cards A-K-Q-J-4-3-2 of one suit and another player has 10-9-8-7-6-5, there are 7 x 6 = 42 
ways that the first player can lead from that suit and the second player can follow. But GIB 
treats these situations as just two: the first player can lead either a high card or a low card; 
the exact cards played don't matter. With this optimization (and a few others), GIB can solve 
a 52-card, fully observable deal exactly in about a second. GIB 's tactical accuracy makes up 
for its inability to reason about information. It finished 12th in a field of 35 in the par contest 
(involving just play of the hand, not bidding) at the 1998 human world championship, far 
exceeding the expectations of many human experts. 

There are several reasons why GIB plays at expert level with Monte Carlo simulation, 
whereas Kriegspiel programs do riot. First, GIB 's evaluation of the fully observable version 
of the game is exact, searching the full game tree, while Kriegspiel programs rely on inexact 
heuristics. But far more important is the fact that in bridge, most of the uncertainty in the 
partially observable information comes from the randomness of the deal, not from the adver-
sarial play of the opponent. Monte Carlo simulation handles randomness well, but does not 
always handle strategy well, especially when the strategy involves the value of information. 
Scrabble: Most people think the hard part about Scrabble is coming up with good words, but 
given the official dictionary, it turns out to be rather easy to program a move generator to  find 
the highest-scoring move (Gordon, 1994). That doesn't mean the game is solved, however: 
merely taking the top-scoring move each turn results in a good but not expert player. The 
problem is that Scrabble is both partially observable and stochastic: you don't know what 
letters the other player has or what letters you will draw next. So playing Scrabble well 
combines the difficulties of backgammon and bridge. Nevertheless, in 2006, the QUACKLE 

program defeated the former world champion, David Boys, 3-2. 

5.8  ALTERNATIVE APPROACHES 

players are paired into two teams. As in Section 5.6, optimal play in partially observable 
games like bridge can include elements of information gathering, communication, and careful 
weighing of probabilities. Many of these techniques are used in the Bridge Baron program 
(Smith et ❑ l.,  1998), which won the 1997 computer bridge championship. While it does 
not play optimally, Bridge Baron is one of the few successful game-playing systems to use 
complex, hierarchical plans (see Chapter 11) involving high-level ideas, such as finessing and 
squeezing, that are familiar to bridge players. 

The GIB program (Ginsberg, 1999) won the 2000 computer bridge championship quite 
decisively using the Monte Carlo method. Since then, other winning programs have followed 

SGIABITLE  

Because calculating optimal decisions in games is intractable in most cases, all algorithms 
must make some assumptions and approximations.  The standard approach, based on mini- 
max, evaluation functions, and alpha—beta, is just one way to do this. Probably because it has 
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Figure 5.14  A two-ply game tree for which heuristic minimax may make an error. 

been worked on for so long, the standard approach dominates other methods in tournament  
play. Some believe that this has caused game playing to become divorced from the main-
stream of Al research: the standard approach no longer provides much room for  new insight 
into general questions of decision making. In this section, we look at the alternatives. 

First, let us consider heuristic minimax.  It selects an optimal move in a given search 
tree pmvided that the leaf node evaluations are exactly correct. In reality, evaluations are 
usually crude estimates of the value of a position and can be considered to have large errors 
associated with them. Figure 5.14 shows a two -ply game tree for which minimax suggests 
taking the right-hand branch because 100 > 99. That is the correct move if the evaluations 
are all correct. But of course the evaluation function is only approximate. Suppose that 
the evaluation of each node has an error that is independent of other nodes and is randomly 
distributed with mean zero and standard deviation of a. Then when a = 5, the left-hand 
branch is actually better 71% of the time, and 58% of the time when a = 2. The intuition 
behind this is that the right-hand branch has four nodes that are close to 99; if an error in 
the evaluation of any one of the four makes the right-hand branch slip below 99, then the 
left-hand branch is better. 

In reality, circumstances are actually worse than this because the error in the evaluation 
function is not independent. If we get one node wrong, the chances are high that nearby nodes 
in the tree will also be wrong. The fact that the node labeled 99 has siblings labeled 1000 
suggests that in fact it might have a higher true value.  We can use an evaluation function 
that returns a probability distribution over possible values, but it is difficult to combine these 
distributions properly, because we won't have a good model of the very strong dependencies 
that exist between the values of sibling nodes 

Next, we consider the search algorithm that generates the tree. The aim of an algorithm 
designer is to specify a computation that runs quickly and yields a good move. The alpha—beta 
algorithm is designed not just to select a good move but also to calculate bounds on the values 
of all the legal moves. To see why this extra information is unnecessary, consider a position 
in which there is only one legal move. Alpha—beta search still will generate and evaluate a 

large search tree, telling us that the only move is the best move and assigning it a value. But 
since we have to make the move anyway, knowing the move's value is useless. Similarly, if 
there is one obviously good move and several moves that are legal but lead to a quick loss, we 
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would not want alpha—beta to waste time determining a precise value for the lone good move. 
Better to just make the move quickly and save the time for later. This leads to the idca of the 
utility of a node expansion. A good search algorithm should select node expansions of high 
utility—that  is, ones that are likely to lead to the discovery of a significantly better move. If 
there are no node expansions whose utility is higher than their cost (in terms of time), then 
the algorithm should stop searching and make a move. Notice that this works not only for 
clear-favorite situations but also for the case of symmetrical moves, for which no amount of 
search will show that one move is better than another. 

This kind of reasoning about what computations to do is called metareasoning (rea-
soning about reasoning). It applies not just to game playing but to any kind of reasoning 
at all. All computations are done in the service of trying to reach better decisions, all have 
costs, and all have some likelihood of resulting in a certain improvement in decision quality.  
Alpha—beta  incorporates the simplest kind of menueasoning,  namely, a theorem to the effect 
that certain branches of the tree can be ignored without loss. It is possible to do much better. 
In Chapter 16, we see how these ideas can be made precise and implementable. 

Finally, let us reexamine the nature of search itself. Algorithms for heuristic search 
and for game playing generate sequences of concrete states, starting from the initial state 
and then applying an evaluation function. Clearly, this is not how humans play games. In 
chess, one often has a particular goal in mind—for  example, trapping the opponent's queen— 
and can use this goal to selectively generate plausible plans for achieving it. This kind of 
goal-directed reasoning or planning sometimes eliminates combinatorial search altogether. 
David Wilkins' (1980) PARADISE is the only program to have used goal-directed reasoning 
successfully in chess: it was capable of solving some chess problems requiring an 18-move 
combination. As yet there is no good understanding of how to combine the two kinds of 
algorithms into a robust and efficient system, although Bridge Baron might be a step in the 
right direction A fully integrated system would be a significant achievement not just for 
game-playing research but also for AI research in general, because it would be a good basis 
for a general intelligent agent. 

5.9 SUMMARY 

We have looked at a variety of games to understand what optimal play means and to under-
stand how to play well in practice. The most important ideas are as follows: 

• A game can be defined by the initial state (how the board is set up), the legal actions 
in each state, the result of each action, a terminal test  (which says when the game is 
over), and a utility function that applies to terminal states. 

• In two-player zero-sum games with perfect information, the minimax algorithm can 
select optimal moves by a depth-first enumeration of the game tree. 

• The alpha—beta search algorithm computes the same optimal move as minimax, but 
achieves much greater efficiency by eliminating subtrees  that are provably irrelevant. 

• Usually, it is not feasible to consider the whole game tree (even with alpha—beta), so we 
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need to cut the search off at some point and apply a heuristic evaluation function that 
estimates the utility of a state. 

■ Many game programs precompute tables of best moves in the opening and endgame so 
that they can look up a move rather than search. 

• Games of chance can be handled by an extension to the minimax algorithm that eval-
uates a chance node by taking the average utility of all its children, weighted by the 
probability of each child. 

• Optimal play in games of imperfect information, such as Kriegspiel and bridge, re-
quires reasoning about the current and future belief states of each player. A simple 
approximation can be obtained by averaging the value of an action over each possible 
configuration of missing information. 

• Programs have bested even champion human players at games such as chess, checkers,  
and Othello. Humans retain the edge in several games of imperfect information, such 
as poker, bridge, and Kriegspiel, and in games with very large branching factors and 
little good heuristic knowledge, such as Go. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The early history of mechanical game playing was marred by numerous frauds. The most 
notorious of these was Baron Wolfgang von Kempelen's (1734-1804) "The Turk," a supposed 
chess-playing automaton that defeated Napoleon before being exposed as a magician's trick 
cabinet housing a human chess expert (see Levitt, 2000). It played from 1769 to 1854. In 
1846, Charles Babbage (who had been fascinated by the Turk) appears to have contributed 
the first serious discussion of the feasibility of computer chess and checkers (Morrison and 
Morrison, 196  He did not understand the exponential complexity of search trees, claiming 
"the combinations involved in the Analytical Engine enormously surpassed any required, 
even by the game of chess." Babbage also designed, but did not build, a special-purpose 
machine for playing tic-tac-toe, The first true game-playing machine was built around 1890 
by the Spanish engineer Leonardo Torres y Quevedo. It specialized in the L`KILK"  (king and 
rook vs. king) chess endgame, guaranteeing a win with king and rook from any position. 

The minimax algorithm is traced to a 1912 paper by Ernst Zermelo,  the developer of 
modem set theory. The paper unfortunately contained several errors and did not describe min-
imax correctly. On the other hand, it did lay out the ideas of retrograde analysis and proposed 
(but did not prove) what became known as Zermelo's  theorem: that chess is determined—
White can force a win or Black can or it is a draw; we just don't know which. Zermelo says 
that should we eventually know, "Chess would of course lose the character of a game at all." 
A solid foundation for game theory was developed in the seminal work Theory of Games 

and Economic Behavior (von Neumann and Morgenstern, 1944), which included an analysis 
showing that some games legiaire  strategies that are randomized (or otherwise unpredictable).  

See Chapter 17 for more information. 
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John McCarthy conceived the idea of alpha—beta search in 1956, although he did not 
publish it. The NSS chess program (Newell et al., 1958) used a simplified version of alpha— 
beta; it was the first chess program to do so. Alpha—beta pruning was described by Hart and 
Edwards (1961) and Hart et al. (1972). Alpha—beta was used by the "Kotok—McCarthy"  chess 
program written by a student of John McCarthy (Kotok, 1962). Knuth and Moore (1975) 
proved the correctness of alpha—beta and analysed its time complexity. Pearl (1982b) shows 
alpha—beta to be asymptotically optimal among all fixed-depth game-tree search algorithms. 

Several attempts have been made to overcome the problems with the "standard ap- 
proach" that were outlined in Section 5.8. The first nonexhaustive heuristic search algorithm 
with some theoretical grounding was probably B* (Berliner, 1979), which attempts to main- 
tain interval bounds on the possible value of a node in the game tree rather than giving it 
a single point-valued estimate. Leaf nodes are selected for expansion in an attempt to re- 
fine the top-level bounds until one move is "clearly best." Palay (1985) extends the B* idea 
using probability distributions on values in place of intervals. David McAllester's (1988) 
conspiracy number search expands leaf nodes that, by changing their values, could cause 
the program to prefer a new move at the root. MGSS* (Russell and Wefald, 1989) uses the 
decision-theoretic techniques of Chapter 16 to estimate the value of expanding each leaf in 
terms of the expected improvement in decision quality at the root. It outplayed an alpha— 
beta algorithm at Othello despite searching an order of magnitude fewer nodes. The MGSS*  
approach is, in principle, applicable to the control of any form of deliberation. 

Alpha—beta search is in many ways the two-player analog of depth-first branch-and-
bound, which is dominated by A  in the single-agent case. The SSS"  algorithm (Stockman, 
1979) can be viewed as a two-player A* and never expands more nodes than alpha—beta to 
reach the same decision. The memory requirements and computational overhead of the queue 
make SSS* in its original form impractical, but a linear-space version has been developed 
from the REFS  algorithm (Korf and Chickering, 1996). Plaat et al. (1996) developed a new 
view of SSS*  as a combination of alpha—beta and transposition tables, showing how to over-
come the drawbacks of the original algorithm and developing a new variant called MTD(f) 
that has been adopted by a number of top programs_ 

D. F. Beal (1980) and Dana Nau  (1980, 1983) studied the weaknesses of minimax ap-
plied to approximate evaluations. They showed that under certain assumptions about the dis-
tribution of leaf values in the tree, minimaxing  can yield values at the root that are actually less 
reliable than the direct use of the evaluation function itself. Pearl's book Heuristics (1984) 
partially explains this apparent paradox and analyzes many game-playing algorithms. Baum 
and Smith (1997) propose a probability-based replacement for minimax, showing that it re-
sults in better choices in certain games. The expectiminimax algorithm was proposed by 
Donald Michie (1966). Bruce Ballard (1983) extended alpha—beta pruning to cover trees 
with chance nodes and Hauk (2004) reexamines this work and provides empirical results. 

Koller and Pfeffer (1997) describe a system for completely solving partially observ-
able games. The system is quite general, handling games whose optimal strategy requires 
randomized moves and games that are more complex than those handled by any previous 
system. Still, it can't handle games as complex as poker, bridge, and Kriegspiel. Frank 
et al. (1998) describe several variants of Monte Carlo search, including one where MIN has 
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complete information but MAX does not. Among deterministic, partially observable games. 
Kriegspiel  has received the most attention.  Ferguson demonstrated hand-derived  random-
ized strategies for winning Kriegspiel with a bishop and knight (1992) or two bishops (1995) 
against a king. The first Kriegspiel programs concentrated on finding endgame checkmates 
and performed AND–OR search in belief-state space (Sakuta and Iida,  2002; Bolognesi and 
Ciancarini, 2003).  Incremental belief-state algorithms enabled much more complex midgame 
checkmates to be found (Russell and Wolfe, 2005; Wolfe and Russell, 2007), but efficient 
state estimation remains the primary obstacle to effective general play (Parker et al., 2005). 

Chess was one of the first tasks undertaken in AI, with early efforts by many of the pio-
neers of computing, including Konrad Zuse in 1945, Norbert Wiener in his book Cybernetics 
(1948), and Alan Turing in 1950 (see Turing et al., 1953). But it was Claude Shannon's 
article Programming a Computer,  for Playing Chess (1950) that had the most complete set 
of ideas, describing a representation for board positions, an evaluation function, quiescence 
search, and some ideas for selective (nonexhaustive) game-tree search. Slater (1950) and the 
commentators on his article also explored the possibilities for computer chess play. 

D.  G. Prinz (1952) completed a program that solved chess endgame problems but did 
not play a full game. Stan Ulam and a group at the Los Alamos National Lab produced a 
program that played chess on a 6 x 6 board with no bishops (Kister  et al., 1957).  It could 
search 4 plies deep in about 12 minutes. Alex Bernstein wrote the first documented program 
to play a full game of standard chess (Bernstein and Roberts, 1958). 5  

The first computer chess match featured the Kotok–McCarthy  program from MIT (Ko-
tole,  1962) and the ITEP program written in the mid-1960s  at Moscow's Institute of Theo-
retical and Experimental Physics (Adelson-Velsky  et al., 1970). This intercontinental match 
was played by telegraph. It ended with a 3-1 victory for the ITEP program in 1967. The first 
chess program to compete successfully with humans was MIT's MAC I-IAuK-6  (Greenblatt 
et al., 1967).  Its Elo rating of approximately 1400 was well above the novice level of 1000. 

The Fredkin Prize, established in 1980, offered awards for progressive milestones in 
chess play. The $5,000 prize for the first program to achieve a master rating went to BELLE 
(Condon and Thompson, 1952),  which achieved a rating of 2250. The $10,000 prize for the 
first program to achieve a USCF  (United States Chess Federation) rating of 2500 (near the 
grandmaster level) was awarded to DEEP TitouGHT  (Hsu et ad., 1990) in 1989,  The grand 
prize, $100,000. went to DEEP BLUE (Campbell et al., 2002; Hsu, 2004) for its landmark 
victory over world champion Garry Kasparov in a 1997 exhibition match. Kasparov wrote: 

The decisive game of the match was Game  2. which left a scar in my memory ... we saw 
something that went well beyond our wildest expectations of how well a computer would 
be able to foresee the long-term positional consequences of its decisions. The machine 
refused to move to a position that had a decisive short-term advantage—showing a very 
human sense of danger. (Kasparov, 1997) 

Probably the most complete description of a modem chess program is provided by Ernst 
Heinz (2000), whose DARKTHOUGHT  program was the highest-ranked noncommercial PC 
program at the 1999 world championships. 

A Russian program, BESM may have predated Bemstein's  program. 
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Figure 5.15  Pioneers in computer chess: (a) Herbert Simon and Allen Newell, developers 
of the PISS program (1958); (b) John McCarthy and the Kotok—McCarthy program on an 
IBM 7090 (1967). 

In recent years, chess programs are pulling ahead of even the world's best humans. 
In 2004-2005 HYDRA defeated grand master Evgeny  Vladimirov  3.5-0.5, world champion 
Ruslan Ponomariov 2-0, and seventh-ranked Michael Adams 5.5-0.5. In 2006, DEEP FRITZ 

beat world champion Vladimir Kramnik 4-2, and in 2007 RYBKA defeated several grand 
masters in games in which it gave odds (such as a pawn) to the human players. As of 2009, 
the highest Elo rating ever recorded was Kasparov's  2851. HYDRA (Donninger  and Lorenz, 
2004) is rated somewhere between 2850 and 3000, based mostly on its trouncing of Michael 
Adams,  The RYBKA program is rated between 2900 and 31011  but this is based on a small 
number of games and is not considered reliable. Ross (2004) shows how human players have 
learned to exploit some of the weaknesses of the computer programs. 

Checkers was the first of the classic games filly played by a computer. Christopher 
Strachey (1952) wrote the first working program for checkers. Beginning in 1952, Arthur 
Samuel of IBM, working in his spare time, developed a checkers program that learned its 
own evaluation function by playing itself thousands of times (Samuel, 1959, 1967). We 
describe this idea in more detail in Chapter 21. Samuel's program began as a novice but 
after only a few days' self-play had improved itself beyond Samuel's own level. In 1962 it 
defeated Robert Nealy, a champion at "blind checkers," through an error on his part. When 
one considers that Samuel's computing equipment (an IBM 704) had 10,000 words of main 
memory, magnetic tape for long-term storage, and a .000001 GHz  processor, the win remains 
a great accomplishment. 

The challenge started by Samuel was taken up by Jonathan Schaeffer of the University 
of Alberta. His CHINOOK program came in second in the 1990 U.S.  Open and earned the 
right to challenge for the world championship It then ran up against a problem, in the form 
of Marion Tinsley. Dr. Tinsley had been world champion fur over 40 years, losing only 
three games in all that time. in the first match against CHINOOK, Tinsley suffered his fourth 
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and fifth losses, but won the match 20.5-18.5. A rematch at the 1994 world championship 
ended prematurely when Tinsley had to withdraw for health reasons. CHINOOK became the 
official world champion. Schaeffer kept on building on his database of endgames, and in 
2007 "solved" checkers (Schaeffer et al., 2007; Schaeffer, 2008). This had been predicted by 
Richard Bellman (1965). In the paper that introduced the dynamic programming approach 
to retrograde analysis, he wrote, "In checkers, the number of possible moves in any given 
situation is so small that we can confidently expect a complete digital computer solution to 
the problem of optimal play in this game." Bellman  did not, however, fully appreciate the 
size of the checkers game tree. There are about 500 quadrillion positions. After 18 years 
of computation on a cluster of 50  or more machines, Jonathan Schaeffer's team completed 
an endgame table for all checkers positions with 10 or fewer pieces! over 39 trillion entries. 
From there, they were able to do forward alpha—beta search to derive a policy that proves 
dial checkers is in fact a draw with best play by both sides. Note that this is an application 
of bidirectional search (Section 3.4.6). Building an endgame table for all of checkers would 
be impractical: it would require a billion gigabytes of storage. Searching without any table 
would also be impractical: the search tree has about 847  positions, and would take thousands 
of years to search with today's technology. Only a combination of clever search, endgame 
data, and a drop in the price of processors and memory could solve checkers. Thus, checkers 
joins Qubic (Patashnik,  1980), Connect Four (Allis, 1988), and Nine-Men's Morris (Gasser,  
1998) as games that have been solved by computer analysis. 

Backgammon, a game of chance, was analyzed mathematically by Gerolamo  Cardano 
(1653),  but only taken up for computer play in the late 1970s, first with the BKG pro-
gram (Berliner, 1980b);  it used a complex, manually constructed evaluation function and 
searched only to depth 1. It was the first program to defeat a human world champion at a ma-
jor classic game (Berliner, 1980a). Berliner readily acknowledged that BKG was very lucky 
with the dice. Gerry Tesauro's (1995) TD-GAMMON  played consistently at world champion 
level. The BGBLITz  program was the winner of the 2008 Computer Olympiad. 

Go is a deterministic game, but the large branching factor makes it challeging. The key 
issues and early I iteramre  in computer Go are summarized by Boozy and Cazenave (2001) and 
Muller (2002). Up to 1997 there were no competent Go programs. Now the best programs 
play most of their moves at the master level; the only problem is that over the course of a 
game they usually make at least one serious blunder that allows a strong opponent to win, 
Whereas alpha—beta search reigns in most games, many recent Go programs have adopted 
Monte Carlo methods based on the UCT  (upper confidence bounds on trees) scheme (Kocsis 
and Szepesvari, 2006). The strongest Go program as of 2009 is Golly and Silver's MoGo  
(Wang and Golly, 2007; Gelly and Silver, 2008). In August 2008, MoGo scored a surprising 
win against top professional Myungwan Kim, albeit with MoGo receiving a handicap of 
nine stones (about the equivalent of a queen handicap in chess). Kim estimated MOGO's  
strength at 2-3 dan, the low end of advanced amateur. For this match, MoGo was run on 
an 800-processor  15 terailop  supercomputer (1000 limes Deep Blue). A few weeks later, 
MoGo, with only a five-stone handicap, won against a 6-dan professional. In the 9 x 9 form 
of Go, MoGo  is at approximately the 1-dmi  professional level. Rapid advances are likely 
as experimentation continues with new forms of Monte Carlo search. The Computer Go 
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Newsletter, published by the Computer Go Association, describes current developments. 
Bridge: Smith et of (1998) report on how their planning-based  program won the 1998 

computer bridge championship, and (Ginsberg, 2001) describes how his GIB program, based 
on Monte Carlo simulation, won the following computer championship and did surprisingly 
well against human players and standard book problem sets. From 2001-2007, the computer 
bridge championship was won five times by JACK and twice by WBRIDGE5.  Neither has 
had academic articles explaining their structure. but both are rumored to use the Monte Carlo 
technique, which was first proposed for bridge by Levy (1989). 

Scrabble: A good description of a top program, MAVEN, is given by its creator, Brian 
Sheppard (2002). Generating the highest-scoring move is described by Gordon (1994), and 
modeling opponents is covered by Richards and Amir (2007). 

Soccer (Kitano et aL,  1997b; Visser et aL,  2008) and billiards (Lam and Greenspan, 
2008; Archibald el  aL,  2009) and other stochastic games with a continuous space of actions 
are beginning to attract attention in AI, both in simulation and with physical robot players. 

Computer game competitions occur annually, and papers appear in a variety of venues. 
The rather misleadingly named conference proceedings Heuristic Programming in Artificial 
Intelligence report on the Computer Olympiads, which include a wide variety of games. The 
General Game Competition (Love et al., 2006) tests programs that must learn to play an un- 
known game given only a logical description of the rules of the game. There are also several 
edited collections of important papers on game-playing research (Levy, 1988a, 1988h; Mars- 
land and Schaeffer, 1990). The International Computer Chess Association (ICCA), founded 
in 1977, publishes the ICGA Journal (formerly the ICCA  Journal). Important papers have 
been published in the serial anthology Advances in Computer Chess, starting with Clarke 
(1977). Volume 134 of the journal Arttflcial  Intelligence (2002) contains descriptions of 
state-of-the-art programs for chess, Othello, Hex, shogi, Go, backgammon, poker, Scrabble, 
and other games. Since 1998, a biennial Computers and Games conference has been held. 

EXERCISES 

5.1 Suppose you have an oracle, °MO),  that correctly predicts the opponent's move in 
any state Using this, formulate the definition of a game as a (single-agent) search problem  
Describe an algorithm for finding the optimal move. 

5.2 Consider the problem of solving two 8-puzzles. 

a. Give a complete problem formulation in the style of Chapter 3. 
b. How large is the reachable state space? Give an exact numerical expression. 

c. Suppose we make the problem adversarial as follows: the two players take turns mov-
ing; a coin is flipped to detemnne  the puzzle on which to make a move in that turn; and 
the winner is the first to solve one puzzle. Which algorithm can be used to choose a 
move in this setting? 

d. Give an informal proof that someone will eventually win if both play perfectly. 
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Figure 5.16 (a) A map where the cost of every edge is 1. Initially the pursuer P is at node 
b and the evader E is at node d,  (b)  A partial game tree for this map. Each node is labeled 
with the P,  E positions. P moves first. Branches marked "7"  have yet to be explored. 
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PURSUIT-EVASION  

5.3 Imagine that, in Exercise 3 3, one of the friends wants to avoid the other The problem 
then becomes a two-player pursuit—evasion game. We assume now that the players take 
turns moving, The game ends only when the players are on the same node; the terminal 
payoff to the pursuer is minus the total time taken. (The evader "wins" by never losing.) An 
example is shown in Figure 5,16.  

a. Copy the game tree and mark the values of the tenninal  nodes. 
b. Next to each internal node, write the strongest fact you can infer about its value (a 

number, one or more inequalities such as "?  14", or a "?").  
c. Beneath each question mark, write the name of the node reached by that branch. 
it Explain how a bound on the value of the nodes in (c) can be derived from consideration 

of shortest-path lengths on the map, and derive such bounds for these nodes. Remember 
the cost to get to each leaf as well as the cost to solve it. 

e. Nnw  suppose that the tree as given, with the leaf bounds from (d), is evaluated from left 
to right. Circle those "?"  nodes that would not need to be expanded further, given the 
bounds from part (d), and cross out those that need not be considered at all. 

f. Can you prove anything in general about who wins the game on a map that is a tree? 
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Figure 5.17  The starting positicn  of a simple game. Player A moves first. The two players 
take turns moving, and each player mus1  move his token to an open adjacent space in either 
direction. If the opponent occupies an adjacent space, then a player may jump over the 
opponent to the next open space if any. (For example, if A is on 3 and B is on 2, then A may 
move back to 1.1  The game ends when one player reaches the opposite end of the board. If 
player A teaches  space 4 first, then the value of the game to A is +1; if player .3 reaches 
space 1 first, then the value of the game to A is -1. 
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5.4 Describe and implement state descriptions, move generators, terminal tests, utility func- 
tions, and evaluation functions for one or more of the following stochastic games: Monopoly, 
Scrabble, bridge play with a given contract, or Texas hold'em poker. 

5.5 Describe and implement a real-time, multiplayer  game-playing environment, where 
time is part of the environment state and players are given fixed time allocations. 

5_6  Discuss how well the standard approach to game playing would apply to games such as 
tennis, pool, and croquet, which take place in a continuous physical state space. 

5.7 Prove the following assertion: For every game tree, the utility obtained by MAX using 
minimax decisions against a suboptimal MIN will be never be lower than the utility obtained 
playing against an optimal MIN. Can you come up with a game tree in which MAX can do 
still better using a suboptimal strategy against a suboptimal MIN? 

5.8 Consider the two-player game described in Figure 5.17. 

a. Draw the complete game tree, using the following conventions: 
• Write each state as (sA,  se), where sA  and .5 .8  denote the token locations.  
• Put each terminal state in a square box and write its game value in a circle. 
• Put loop states (states that already appear on the path to the root) in double square 

boxes. Since their value is unclear, annotate each with a "?" in a circle. 

b. Now mark each node with its backed-up minimax value (also in a circle). Explain how 
you handled the "?"  values and why. 

c. Explain why the standard minimax algorithm would fail on this game tree and briefly 
sketch how you might fix it, drawing on your answer to (b). Does your modified algo-
rithm give optimal decisions for all games with loops? 

d. This 4-square game can be generalized to n. squares for any n > 2. Prove that A wins 
if n is even and loscs if it is odd. 

5.9 This problem exercises the basic concepts of game playing, using tic-tac-toe (noughts 
and crosses) as an example. We define X„ as the number of rows, columns, or diagonals 
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with exactly n  X's and no O's.  Similarly. Or,  is the number of rows, columns, or diagonals 
with just n,  O's.  The utility function assigns -F1  to any position with Xa  = 1 and —1  to any 
position with 03  = 1. All other terminal positions have utility 0. For nonterminal  positions, 
we use a linear evaluation function defined as Eval(s)  = 3 X2 (S) -EXI  (a) —  302  (s)±01  (a ). 

a. Approximately how many possible games of tic-tac-toe are there? 
b. Show the whole game tree starting from an empty board down to depth 2 (i.e., one X 

and one 0  on the board), taking symmetry into account. 

c. Mark on your tree the evaluations of all the positions at depth 2. 
d. Using the minimax algorithm, mark on your tree the backed-up values for the positions 

at depths 1 and 0, and use those values to choose the best starting move. 
c.  Circle the nodes at depth 2 that would not be evaluated if alpha—beta pruning were 

applied, assuming the nodes are generated in the optimal order for alpha—beta pruning. 

5.10 Consider the family of generalized tic-tac-roc  games, defined as follows. Each partic-
ular game is specified by a set S  of squares and a collection IV of winning positions. Each 
winning position is a subset of S. For example, in standard tic-tac-toe,  S is a set of 9 squares 
and VV  is a collection of 8  subsets of W:  the three rows, the three columns, and the two diag-
onals. In other respects, the game is identical to standard tic-tac-toe. Starting from an empty 
board, players alternate placing their marks on an empty square. A player who marks every 
square in a winning position wins the game. It is a tie if all squares are marked and neither 
player has won. 

a. Let N = SI,  the number of squares. Give an upper bound on the number of nodes in 
the complete game tree for generalized tic-tac-toe as a function of N.  

b. Give a lower bound on the size of the game tree for the worst case, where VV  = 1.  
c. Propose a plausible evaluation function that can be used for any instance of generalized 

tic-tac-toe. The function may depend on S and W.  
d. Assume that it is possible to generate a new board and check whether it is a winning 

position in 100N machine instructions and assume a 2 gigahertz  processor. Ignore 
memory limitations. Using your estimate in (a), roughly how large a game tree can be 
completely solved by alpha—beta in a second of CPU time? a minute? an hour? 

5.11 Develop a general game-playing program, capable of playing a variety of games. 
a. Implement  move generators and evaluation functions for one or more of the following 

games: Kalah, Othello, checkers, and chess. 
b. Construct a general alpha—beta game-playing agent 
c. Compare the effect of increasing search depth, improving move ordering, and improv-

ing the evaluation function. How close does your effective branching factor come to the 
ideal case of perfect move ordering? 

d. Implement a selective search algorithm, such as B*  (Berliner, 1979), conspiracy number 
search (McAllestei,  1988), or MOSS*  (Russell and Wefald,  1989) and compare its 
performance to A*. 



Figure 5.18  Situation when considering whether to prune node n,.  
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5.12 Describe how the minimax  and alpha—beta algorithms change for two-player, non-
zero-sum games in which each player has a distinct utility function and both utility functions 
are known to both players. If there are no constraints on the two terminal utilities, is it possible 
for any node to be pruned by alpha—beta? What if the player's utility functions on any state 
differ by at most a constant k, making the game almost cooperative? 

5.13 Develop a formal proof of correctness for alpha—beta pruning_ To do this, consider the 
situation shown in Figure 5.18. The question is whether to prune node nj,  which is a max-
node and a descendant of node nt.  The basic idea is to prune it if and only if the minimax 
value of at can be shown to be independent of the value of nj.  

a. Mode tit  takes on the minimum value among its children: ni  = min(212,  rt2i,  • • • , net )•  
Find a similar expression for rt2  and hence an expression for n i  in terms of nj .  

b. Let li be the minimum (or maximum) value of the nodes to the 10 of node n,  at depth 
whose minimax value is already known_  Similarly, let r,  be the minimum (or maximum) 
value of the unexplored nodes to the right of n,  at depth i. Rewrite your expression for 
rti  in terms of the 1, and ri  values. 

le_  Now reformulate the expression to shnw that in order to affect nL  rti  mast not exceed 

a certain bound derived from the /i  values. 
d. Repeal the  process for the case whew ni  is a min-nude. 

5.14 Prove that alpha—beta pruning takes time 0 (2m/ 2 ) with optimal move ordering, where 
rrt  is the maximum depth of the game tree. 

5.15 Suppose you have a chess program that can evaluate ID million nodes per second. 
Decide on a compact representation of a game state for storage in a transposition table. About 

how many entries can you fit in a 2-gigabyte in-memory table? Will that be enough for the 



Figure 5.19 The complete game see for a trivial game with chance nodes 
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three minutes of search allocated for one move? How many table lookups can you do in the 
time it would take to do one evaluation? Now suppose the transposition table is stored on 
disk_ About how many evaluations could you  du in the time it takes to do one disk seek with 

standard disk hardware? 

5.16 This question considers pruning in games with chance nodes. Figure 5.19 shows the 
complete game tree for a trivial game.  Assume that the leaf nodes are to be evaluated in left- 
to-right order, and that before a leaf node is evaluated, we know nothing about its value—the 
range of possible values is — cc to no. 

a. Copy the figure, mark the value of all the internal nodes, and indicate the best move at 
the root with an arrow. 

b. Given the values of the first six leaves, do we need to evaluate the seventh and eighth 
leaves? Given the values of the first seven leaves, do we need to evaluate the eighth 
leaf? Explain your answers. 

c. Suppose the leaf node values are known to lie between —2 and 2 inclusive. After the 
first two leaves are evaluated, what is the value range for the left-hand chance node? 

d. Circle all the leaves that need not be evaluated under the assumption in (c). 

5.17 Implement the expectiminimax algorithm and the *-alpha—beta  algorithm, which is 
described by Ballard (1983), for pruning game trees with chance nodes. Try them on a game 
such as backgammon and measure the pruning effectiveness of '-alpha—heta  

5.18  Prove that with a positive linear transformation of leaf values (Le., transforming a 
value cc to ax -F  b where a > 0),  the choice of move remains unchanged in a game tree, even 
when there are chance nodes.  

5.19 Consider the following procedure for choosing moves in games with chance nodes: 
■ Generate some dice-roll sequences (say, 50) down to a suitable depth (say, 8). 
• With known dice rolls, the game nee  becomes deterministic. For each dice -roll  se- 

quence, solve the resulting deterministic game tree using alpha—beta. 
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• Use the results to estimate the value of each move and to choose the best. 
Will this procedure work well? Why (or why not)? 

5.20  In the following, a "max" tree consists only of max nodes, whereas an "expectimax"  
tree consists of a max node at the root with alternating layers of chance and max nodes. At 
chance nodes, all outcome probabilities are nonzero. The goal is to find the value of the rapt 
with a bounded-depth search. For each of (a)–(f),  either give an example or explain why this 
is impossible. 

a_ Assuming that leaf valises are finite but unbounded, is pruning (as in alpha–beta)  ever 
possible in a max tree? 

b. Is paining  ever possible in an expectimax  tree under the same conditions? 
c. If leaf values are all nonnegative,  is pruning ever possible us a max tree? Give an 

example, or explain why not. 
d. If leaf values are all nonnegative, is pruning ever possible in an expectimax  tree? Give 

an example, or explain why not. 
e. If Icaf values arc all in the range [0,1], is pruning ever possible in a max ace? Givc  an 

example, or explain why not. 
f. 11  leaf values are all in the range [0, 1], is pruning ever possible in an expectimax  tree'? 
g. Consider the outcomes of a chance node in an expectimax tree. Which of the following 

evaluation orders is most likely to yield pruning opportunities? 
(i) Lowest probability first 

(ii) Highest probability first 
(iii) Doesn't make any difference 

5.21 Which of the following are true and which are false? Give brief explanations. 
a. In a fully observable, turn-taking, zero-sum game between two perfectly rational play-

ers, it does not help the first player to know what strategy the second player is using—
that is, what move the second player will make, given the first player's move. 

b. In a partially observable, turn-taking, zero-sum game between two perfectly rational 
players, it does not help the first player to know what move the second player will 
make, given the first player's move. 

c. A perfectly rational backgammon agent never loses. 

5.22 Consider carefully the interplay of chance events and partial information in each of the 
games in Exercise 5.4. 

a. For which is the standard expectiminimax model appropriate? Implement the algorithm 
and run it in your game-playing agent, with appropriate modifications to the game-
playing environment. 

b. For which would the scheme described in Exercise 5.19 be appropriate? 
c. Discuss how you might deal with the fact that in some of the games, the players do not 

have the same knowledge of the current state. 



6  CONSTRAINT 
SATISFACTION PROBLEMS 

In which we see how treating states as more than just little black boxes leads to the 
invention of a range of powerful new search methods and a deeper understanding 
of problem structure and complexity. 

GOKSTRAINT  
SATISFACTIG4  
PROBLEM 

Chapters 3 and 4 explored the idea that problems can be solved by searching in a space of 
states. These states can be evaluated by domain-specific  heuristics and tested to see whether 
they are goal states. From the point of view of the search algorithm, however, each state is 
atomic, or indivisible—a black box with no internal structure. 

This chapter describes a way to solve a wide variety of problems more efficiently. We 
use a factored representation for each state: a set of variables, each of which has a value. 
A problem is solved when each variable has a value that satisfies all the constraints on the 
variable. A problem described this way is called a constraint satisfaction problem, or CSP,  

CSP search algorithms take advantage of the structure of states and use general purpose  
rather than problem-specific heuristics to enable the solution of complex problems. The main 
idea is to eliminate large portions of the search space all at once by identifying variable/value 
combinations that violate the constraints. 

6,1  DEFINING CONSTRAINT SATISFACTION PROBLEMS 

A constraint satisfaction problem consists of three components, X, D, and C: 
X is a set of variables, {Xi, .  , XT,}.  
D is a set of domains, {Di, , Dn.},  one for each variable. 
C is a set of constraints that specify allowable combinations of values. 

Each domain Di  consists of a set of allowable values, CtPi ., , for variable X.  Each 
constraint Ci  consists of a pair scope rely, where scope is a tuple of variables that participate 
in the constraint and rat is a relation that defines the values that those variables can take on. A 

relation can be represented as an explicit list of all tuples of values that satisfy the constraint, 
or as au abstract relation that supports two operations: testing if a tuple is a member of the 
relation and enumerating the members of the relation. For example, if Xi and X2 both have 

202 
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the domain {A,B},  then the constraint saying the two variables must have different values 
can be written as ((XL , X2 ), [(A, B), (B, A)] or as ((X1 .  X2 ),  X1 # X4. 

To solve a CSP, we need to define a state space and the notion of a solution. Each 
state in a CSP is defined by an  assignment of values to some or all of the variables, {X i  =  
vi,  = v3 , .  .}.  An assignment that does not violate any constraints is called a consistent 
or legal assignment. A complete assignment is one in which every variable is assigned, and 
a solution to a CSP is a consistent, complete assignment. A partial assignment is one that 
assigns values to only some of the variables. 

6.1.1 Example problem: Map coloring 

Suppose that, having tired of Romania, we are looking at a map of Australia showing each 
of its states and territories (Figure 6.1(a)).  We are given the task of coloring each region 
either red, green, or blue in such a way that no neighboring regions have the same color. To 
formulate this as a CSP, we define the variables to be the regions 

X = {WA, NT ,Q, NSW ,V,SA,T} . 

The domain of each variable is the set Di  = {red, green, blue} . The constraints require 
neighboring regions to have distinct colors. Since there are nine places where regions border, 
there are nine constraints: 

C = {SA -1-  WA, SA NT , SA  2,  SA NSW ,  SA V, 
WA NT ,  NT  ,Q NSW , NSW V} . 

Here we arc using abbreviations: SA WA is a shortcut for ((SA, WA), SA  WA), where 
SA WA can be fully enumerated in turn as 

{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)} 

There are many possible solutions to this problem, such as 

{ WA = red NT = green, Q = red NSW = green, V = red,  SA= blue,  T = rerl  }.  

CONSTRAINT GRAPH  It can be helpful to visualize a CSP as a constraint graph, as shown in Figure 6_1(h). The 
nodes of the graph correspond to variables of the problem, and a link connects any two vari-
ables that participate in a constraint. 

Why formulate a problem as a CSP?  One reason is that the CSPs yield a natural rep-
resentation for a wide variety of problems; if you already have a CSP-solving  system, it is 
often easier to solve a problem using it than to design a custom solution using another search 
technique. In addition, CSP solvers can be faster than state-space searchers because the CSP 
solver can quickly eliminate large swatches of the search space. For example, once we have 
chosen {SA = blue} in the Australia problem, we can conclude that none of the five neighbor-
ing variables can take on the value blue. Without taking advantage of constraint propagation, 
a search procedure would have to consider 35 = 243 assignments for the five neighboring 
variables; with constraint propagation we never have to consider blue as a value, so we have 

only 25  = 32 assignments to look at, a reduction of 87%. 
In regular state-space search we can only ask: is this specific state a goal? No? What 

about this one? With CSPs, once we find out that a partial assignment is not a solution, we can 



2(14 Chapter 6. Constraint Satisfaction Problems 

PRECEDENCE 
CONSTRAINTS 

Tasmania 

(a) (b) 

Figure 6.1 (a) The principal states and  territories of Australia. Coloring this map can 
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each 
region so that no neighboring regions have the same color. (b) The map-coloring problem 
represented as a constraint graph. 

immediately discard further refinements of the partial assignment. Furthermore, we can see  
why the assignment is not a solution—we see which variables violate a constraint—so we can 
focus attention on the variables that matter.  As a result, many problems that are intractable 
for regular state-space search can be solved quickly when formulated as a CSP. 

6.1.2 Example problem: Job -shop scheduling 

Factories have the problem of scheduling a day's worth of jobs, subject to various constraints. 
In practice, many of these problems are solved with CSP techniques. Consider the problem of 
scheduling the assembly of a car.  The whole job is composed of tasks, and we can  model each 
task as a variable, where the value of each variable is the time that the task starts, expressed 
as an integer number of minutes. Constraints can assert that one task must occur before 
another—for example, a wheel must be installed before the hubcap is put on—and that only 
so many tasks can go on at once. Constraints can also specify that a task takes a certain 
amount of time to complete. 

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front 
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel. 
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15  variables: 

X = AzieF  AzieB ,  Wheel RF, Wheel LF  Wheel m  3,  Wheel LB, Nuts  RF  
1VutsLF,  Nuts  RE, NittS  LB, (ALPPF ,  CapLF,  UttPRB,  CaP  LE,  inspt:c11  . 

The value of each variable is the time that the task starts. Next we represent precedence 
constraints between individual tasks. Whenever a task Ti  must occur before task T2, and 
task Ti  takes duration di  to complete, we add an arithmetic constraint of the form 

TI +d1CT2.  
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In our example, the axles have to be in place before the wheels are put on, and it takes 10 
minutes to install an axle, so we write 

Axle F + 10 <  147!LeelRF;  Axle F  +  10 <  WheelLF;  
Axles + 10 <  Wheel RB;  Axles +  10 <  WheelLB  

Next we say that, for each wheel, we must affix the wheel (which takes 1  minute), then tighten 
the nuts (2 minutes), and finally attach the hubcap (1 minute, but not represented yet): 

Wheel RF ‹.  Mitts RE; 

Wheel LF ±  1 <  Nuts LF; 
Wheel Rs +  1 C  Nuts RB;  
Wheel LB + 1 < Nuts LE; 

NutsRF  + 2 <-  CuP  
Nuts  LF + 2 <  CaP  LF;  
Nutsss  + 2 <  Cap Ea ; 
Nuts Ls  +  2 <  Cap LB  . 

DISJUNCTIVE 
CONSTRAINT  

Suppose we have four workers to install wheels, but they have to share one tool that helps put 
the axle in place_  We need a disjunctive constraint to say that Axle s-  and Axle s  must not 
overlap in time; either one comes first or the other does: 

(Axle F  +10 <  Axle s )  or (Axle s  + 10 <  Axle F )  

This looks like a more complicated constraint, combining arithmetic and logic. But it still 
reduces to a set of pairs of values that A AeF  and Axle F can take on. 

We also need to assert that the inspection comes last and takes 3 minutes. For every 
variable except Inspect  we add a constraint of the form X+  dx  <  Inspect. Finally, suppose 
there is a requirement to get the whole assembly dune in 30 minutes. We can achieve that by 
limiting the domain of all variables!  

D,  = {1,  2.3, , 27} .  
This particular problem is trivial to solve. but CSPs have been applied to job-shop schedul-
ing problems like this with thousands of variables. In some cases, there are complicated 
constraints that are difficult to specify in the CSP formalism, and more advanced planning 
techniques are used, as discussed in Chapter 11. 

6.1.3 Variations on the CSP formalism 

DISCREFE  DOMAIN The simplest kind of CSP involves variables that have discrete, finite domains. Map- 
FINITE DOMAIN coloring problems and scheduling with time limits are both of this kind. The 8-queens prob- 

lem described in Chapter 3 can also be viewed as a finite-domain CSP, where the variables 
Qt.  •  •  .  ,  Qs  are the positions of each queen in columns 1, ,  8  and each variable has the 
domain Di = 2,  3, 4,5, 6, 7, S  

INFINITE A discrete domain can be infinite, such as the set of integers or strings. (If we didn't put 
a deadline on the job-scheduling problem, there would be an infinite number of start times 
for each variable.) With infinite domains, it is no longer possible to describe constraints by 

CONSTRAINT 
LANGUAGE enumerating all allowed combinations of values. Instead, a constraint language must be 

used that understands constraints such as T1  + di  <  T2 directly, without enumerating the 
set of pairs of allowable values for (Ti ,  T2 ). Special solution algorithms (which we do not 

discuss here) exist for linear constraints on integer variables—that is, constraints, such as LINEAR 
CONSTRAINTS 

the one just given, in which each variable appears only in linear form. It can be shown that 
NONLINEAR no algorithm exists for solving general nonlinear constraints on integer variables. CONSTRAINTS 
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Constraint satisfaction problems with continuous domains are common in the real 
world and arc widely studied in the field of operations research. For example, the scheduling 
of experiments on the Hubble Space Telescope requires very precise timing of observations; 
the start and finish of each observation and maneuver are continuous-valued variables that 
must obey a variety of astronomical, precedence, and power constraints. The best-known 
category of continuous-domain CSPs is that of linear programming problems, where con-
straints must be linear equalities or inequalities. Linear programming  problems can be solved 
in time polynomial in the number of variables. Problems with different types of constraints 
and objective functions have also been studied—quadratic programming, second-order conic 
programming, and so on. 

In addition to examining the types of variables that can appear in CSPs, it is useful to 
look at the types of constraints. The simplest type is the unary constraint, which restricts 
the value of a single variable. For example, in die  map-coloring problem it could be the case 
that South Australians won't tolerate the color green; we can express that with the unary 
constraint ((SA), SA  green 

A binary constraint relates two variables. For example, SA NSW is a binary 
constraint. A binary CSP is one with only binary constraints; it can be represented as a 
constraint graph, as in Figure 6.1(b). 

We can also describe higher-order constraints, such as asserting that the value of Y is 
between X and 2, with the ternary constraint Between(X,Y,  2). 

GLOBAL A constraint involving an arbitrary number of variables is called a global constraint. CONSTRAINT 

(The name is traditional but confusing because it need not involve all the variables in a prob- 
lem). One of the most common global constraints is Alldiff,  , which says that all of the 
variables involved in the constraint must have different values. hi Sudoku problems (see 
Section 6.2.6), all variables in a row or column must satisfy an Alldiff  constraint. An-

C FrPTAMTIVERC  other example is provided by cryptarithmetic  puzzles. (See Figure 6.2(a).) Each letter in a 
cryptarithmetic puzzle represents a different digit. For the case in Figure 6.2(a), this would 
be represented as the global constraint ATIdiff  ( F. T, U, W R, 0). The addition constraints 
on the four columns of the puzzle can he written as the following n-ary  constraints!  

0 +  0 = R -F  10 •  Cio  
CID  W W ±  10 •  CM0  
Clilo  +T+T =0+10• CHU)  
C1500  = F ,  

where Cio,  Ciao, and Cum are  auxiliary variables representing the digit carried over into the 
tens, hundreds, or thousands column. These constraints can be represented in a constraint 
hypergraph, such as the one shown in Figure 6.2(b). A hypergraph consists of ordinary nodes 
(the circles in the figure) and hypemodes (the squares), which represent n-ary constraints. 

Alternatively, as Exercise 6.6 asks you to prove, every finite-domain constraint can be 
reduced to a set of binary constraints if enough auxiliary variables are introduced, so we could 
transform any CSP into one with only binary constraints; this makes the algorithms simpler. 
Another way to convert an n-ary  CSP to a binary one is the dual graph transformation: create 
a new graph in which there will be one variable for each constraint in the original graph, and 

CONTINUOUS 
DOMAINS 

UNARY CONSTRAINT 

BINARY CONSTRAINT 

CONSTRAINT 
HYPERGRAPH  

LIAL  LiHAY1-1  



TWO 
+ T W O 

FOUR 

 

(a) (b) 

Figure 6.2 (a) A cryptarithmetic  problem. Each letter stands for a distinct digit; the aim is 
to find a substitution of digits for letters such that the resulting sum is arithmetically correct, 
with the added restriction that no leading zeroes are allowed. (to The constraint hvpergraph  
for the cryptaritlunetic  problem, showing the Alldiff  constraint (square box at the top)  as 
well as the column addition constraints (four square boxes in the middle). The variables C1, 
C2, and Cs  represent the carry digits for the three columns. 
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CONSTRAINT 
UVIIMILA1  EN 
PROBLEM 

one binary constraint for each pair of constraints in the original graph that share variables. For 
example, if the original graph has variables X, Y, Z1 and constraints ((X, Y, Z), C1 ) and 
((X, Y ), C2) then the dual graph would have variables { C1, C2 } with the binary constraint 
((X, Y), R1  where (X, Y) are the shared variables and RI  is a new relation that defines the 
constraint between the shared variables, as specified by the original C1 and C2. 

There are however two reasons why we might prefer a global constraint such as ,4//diff  
rather than a set of binary constraints. First, it is easier and less error-prone to write the 
problem description using Allchff  .  Second, it is possible to design special-purpose inference 
algorithms for global constraints that are not available for a set of more primitive constraints_ 
We describe these inference algorithms in Section 6.2.5. 

The constraints we have described so far have all been absolute constraints, violation of 
which rules out a potential solution. Many real-world CSPs include preference constraints 
indicating which solutions are preferred. For example, in a university class-scheduling prob-
lem there are absolute constraints that no professor can teach two classes at the same time. 
But we also may allow preference constraints: Prof. R might prefer teaching in the morning, 
whereas Prof. N prefers teaching in the afternoon. A schedule that has Prof. R teaching at 
2 p.m. would still be an allowable solution (unless Prof. R happens to be the department chair) 
but would not be an optimal one. Preference constraints can often be encoded as costs on in-
dividual variable assignments—for example, assigning an afternoon slot for Prof. R costs 
2 points against the overall objective function, whereas a morning slot costs 1. With this 
formulation, CSPs with preferences can be solved with optimization search methods. either 
path-based or local. We call such a problem a constraint optimization problem, or COP. 
Linear programming problems do this kind of optimization. 
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6.2 CONSTRAINT PROPAGATION: INFERENCE IN CSPs  

INFERENCE 

CONSTRAINT 
PROPAGATION 

LOCAL 
CONSISTENCY 

NODE CONSISTENCY 

In regular state-space search, an algorithm can do only one thing: search. In CSPs there is a 
choice: an algorithm can search (choose a new variable assignment from several possibilities) 
or do a specific type of inference called constraint propagation: using the constraints to 
reduce the number of legal values for a variable, which in turn can reduce the legal values 
for another variable, and so on. Constraint propagation may be intertwined with search, or it 
may he done as a preprocessing step, before search starts_ Sometimes this preprocessing can 
solve the whole problem, so no search is required at all. 

The key idea is local consistency. If we treat each variable as a node in a graph (sec 
Figure 6.1(b))  and each binary constraint as an arc, then the process of enforcing local con-
sistency in each pan of the graph causes inconsistent values to be eliminated throughout the 
graph. There are different types of local consistency, which we now cover in turn. 

6.2.1 Node consistency 

A single variable (corresponding to a node in the CSP network) is node-consistent if all 
the values in the variable's domain satisfy the variable's unary constraints Fur example, 
in the variant of the Australia map-coloring problem (Figure 6.1) where South Australians 
dislike green, the variable SA starts with domain {red,  green , blue },  and we can make it 
node consistent by eliminating green, leaving SA with the reduced domain {red, blue}. We 
say that a network is node-consistent if every variable in the network is node -consistent. 

It is always possible to eliminate all the unary constraints in a CSP by running node 
consistency. It is also possible to transform all n-ary  constraints into binary ones (see Ex-
ercise 6.6). Because of this, it is common to define CSP solvers that work with only binary 
constraints; we make that assumption for the rest of this chapter, except where noted. 

6.2.2 Arc consistency 

AFC CONSISTENCY A variable in a CSP is arc -consistent if every value in its domain satisfies the variable's 
binary constraints_ More formally, Xi  is arc-consistent with respect to another variable Xi  if 
for every value in the current domain D,  there is some value in the domain Di that satisfies 
the binary constraint on the arc (X i , X,  ). A network is arc-consistent if every variable is arc 
consistent with every other variable. For example, consider the constraint Y = X 2  where the 
domain of both X and Y is the set of digits. We can write this constraint explicitly as 

((X, Y), {(0,  0), (1,1), (2, 4), (3, 9))})  .  
To make X arc-consistent with respect to Y, we reduce X's domain to {0, 1, 2, 3}.  If we 
also make Y arc-consistent with respect to X, then Y's  domain becomes {0, 1, 4, 9}  and the 
whole CSP is arc-consistent. 

On the other hand, arc consistency can do nothing for the Australia map-coloring prob-
lem. Consider the following inequality constraint on (SA, WA): 

{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green} .  
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function AC-3( rap) returns false if an inconsistency is found and true otherwise 
inputs: csp,  a binary CSP with components (X, D, C) 
local variables: queue, a queue of arcs, initially all the arcs in cep 

while queue is not empty do 
( X i , _KA  4— REMOVE-FIRST(queue)  
if REvisE(  esp, X,)  then 

if size of Di = 0 then return false 
for each Xk  in Xi.NEIGHBORS  - }  do 

add (Xk, X,)  to queue 
return true 

function REVISE( cap, Xi, X3 )  returns true iff we revise the domain of X,.  
revised 4— false 
for each x in D, do 

if no value y in D,  allows (r , y) to satisfy the constraint between X and X3  then 
delete x from D, 
revised (—  true 

return revised 

Figure 6.3  The arc-consistency algorithm AC-3.  After applying AC-3, either every arc 
is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be 
solved. The name "AC-3" was used by the algorithm's inventor (Mackworth, 1977) because 
it's the third version developed in the paper. 

No matter what value you choose for SA (or for WA), there is a valid value for the other 
variable. So applying arc consistency has no effect on the domains of either variable. 

The most popular algorithm for arc consistency is called AC-3 (see Figure 6.3). To 
make every variable arc-consistent, the AC-3 algorithm maintains a queue of arcs to consider. 
(Aerially, the nrder of consideration is not important, sn  the data stnicture  is really a set, but 
tradition calls it a queue.) Initially, the queue contains all the arcs in the CSP.  AC-3 then pops 
off an arbitrary arc (X„  ) from the queue and makes X, arc-consistent with respect to X,.  
If this leaves Di unchanged, the algorithm just moves on to the next arc. But if this revises 
Di (makes the domain smaller), then we add to the queue all arcs (Xk, X„)  where Xk  is a 
neighbor of X,. We need to do that because the change in Di might enable further reductions 
in the domains of Dk, even if we have previously considered Xk. If Di is revised down to 
nothing, then we know the whole CSP has no consistent solution, and AC-3 can immediately 
return failure. Otherwise, we keep checking, trying to remove values from the domains of 
variables until no more arcs are in the queue. At that point, we are left with a CSP that is 
equivalent to the original CSP—they both have the same solutions—but the arc-consistent 
CSP will in most cases be faster to search because its variables have smaller domains, 

The complexity of AC -3 can be analyzed as follows. Assume a CSP with .n variables, 
each with domain size at most d, and with c binary constraints (arcs). Each arc (Xk,  Xi) can 
be inserted in the queue only d times because Xi has at most d values to delete. Checking 



210 Chapter 6. Constraint Satisfaction Problems 

GENERALIZE. ARC 
CM.  STEW 

PATH CONSISTENCY 

consistency of an are can be done in 0(d2 )  time, so we get 0(cd3 )  total worst-case time. 1  
It is possible to extend the notion of arc consistency to handle n-ary rather than just 

binary constraints; this is called generalized arc consistency or sometimes hyperarc consis-
tency, depending on the author. A variable Xi  is generalized arc consistent with respect to 
an n-ary constraint if for every value v  in the domain of X,  there exists a tuple of values that 
is a member of the constraint, has all its values taken from the domains of the corresponding 
variables, and has its Xi  component equal to v.  For example, if all variables have the do-
main 10,1,  2, 3},  then to make the variable X consistent with the constraint X < Y < Z, 
we would have to eliminate 2 and 3 from the domain of X because the constraint cannot be 
satisfied when X is 2 or 3.  

6.2.3 Path consistency 

Arc consistency can go a long way toward reducing the domains of variables, sometimes 
finding a solution (by reducing every domain to size 1)  and sometimes finding that the CSP 
cannot be solved (by reducing some domain to size 0). But for other networks, arc consistency 
fails to make enough inferences. Consider the map-coloring problem on Australia, but with 
only two colors allowed, red and blue. Arc consistency can do nothing because every variable 
is already arc consistent: each can be red with blue at the other end of the arc (or vice versa). 
But clearly there is no solution to the problem: because Western Australia, Northern Territory 
and South Australia all touch each other, we need at least three colors for them alone. 

Arc consistency tightens down the domains (unary constraints) using the arcs (binary 
constraints)_ To make progress on problems like map coloring, we need a stronger notion of 
consistency. Path consistency tightens the binary constraints by using implicit constraints 
that are inferred by looking at triples of variables. 

A two-variable set {Xi, Xi} is path-consistent with respect to a third variable if, 
for every assignment { XE  = a, X i  = 5}  consistent with the constraints on {X i , Xi },  there is 
an assignment to X. r.,„  that satisfies the constraints on { Xi ,  X,„}  and {X„,„  Xi }. This is called 
path consistency because one can think of it as looking at a path from Xi to Xi with  in 
the middle. 

Let's see how path consistency fares in coloring the Australia map with two colors. We 
will make the set { WA, SA} path consistent with respect to NT. We start by enumerating the 
consistent assignments to the set. In this case, there are only two: { WA = red, SA = blue} 
and { WA = blue, SA = red}.  We can see that with both of these assignments NT can be 
neither red nor blue (because it would conflict with either WA or SA). Because there is no 
valid choice for NT, we eliminate both assignments, and we end up with no valid assignments 
for { WA, SA}. Therefore, we know that there can be no solution to this problem. The PC-2 
algorithm (Mackworth, 1977) achieves path consistency in much the same way that AC-3 
achieves arc consistency. Because it is so similar, we do not show it here. 

The AC-4 algorithm (Mohr and Henderson. 1986) runs in 0(cd2 )  worst-case time but can be slower than AC-3  
on average cases. See Exercise 6.13. 
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6.2.4 IC-consistency  

Stronger forms of propagation can be defined with the notion of k-consistency.  A CSP is 
k-consistent if, for any set of k — 1 variables and for any consistent assignment to those 
variables, a consistent value can always be assigned to any kth variable. 1-consistency says 
that, given the empty set, we can make any set of one variable consistent: this is what we 
called node consistency. 2-consistency is the same as arc consistency. For binary constraint 
networks, 3-consistency  is the same as path consistency.  

A CSP is strongly k-consistent if it is k-consistent and is also (k — 1)-consistent, 
(k — 2)-consistent, ... all the way down to 1-consistent. Now suppose we have a CSP with 
n nodes and make it strongly n-consistent (i.e., strongly k-consistent for k = n). We can 
then solve the problem as follows: First, we choose a consistent value for X 1 . We are then 
guaranteed to be able to choose a value for X0 because the graph is 2-consistent, for X3 
because it is 3-consistent, and so on. For each variable X i , we need only search through the d 
values in the domain to find a value consistent with X1, We are guaranteed to find 
a solution in time 0(n2d).  Of course, there is no free lunch: any algorithm for establishing 
n-consistency must take time exponential in n in the worst case. Worse, n-consistency also 
requires space that is exponential in n. The memory issue is even more severe than the time. 
In practice, determining the appropriate level of consistency checking is mostly an empirical 
science. It can be said practitioners commonly compute 2-consistency and less commonly 
3 -c ons istenc y. 

6.2.5 Global constraints 

Remember that a global constraint is one involving an arbitrary number of variables (but not 
necessarily all variables). Global constraints occur frequently in real problems and can be 
handled by special-purpose algorithms that are more efficient than the general-purpose meth-
ods described so far. For example, the Alldiff  constraint says that all the variables involved 
must have distinct values (as in the cryptarithmetic  problem above and Sudoku  puzzles be-
low)_  One simple form of inconsistency detection for Aildiff  constraints works as follows: 
if in  variables are involved in the constraint, and if they have n possible distinct values alto-
gether, and rn  > n, then the constraint cannot be satisfied. 

This leads to the following simple algorithm: First, remove any variable in the con-
straint that has a singleton domain, and delete that variable's value from the domains of the 
remaining variables. Repeat as long as there are singleton variables. If at any point an empty 
domain is produced or there are more variables than domain values left, then an inconsistency 
has been detected. 

This method can detect the inconsistency in the assignment { WA = red, NSW = red} 
for Figure 6.1. Notice that the variables BA, NT, and Q are effectively connected by an 
Alldiff  constraint because each pair must have two different colors, After applying AC-3 
with the partial assignment, the domain of each variable is reduced to -( green ,  blue }.  Thai 
is, we have three variables and only two colors, so the Aildiff constraint is violated. Thus, 
a simple consistency procedure fur a higher-order constraint  is sometimes more effective 
than applying arc consistency to an equivalent set of binary constraints. There are more 
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complex inference algorithms for Andiff  (see van Hoeve and Katriel, 2006) that propagate 
more constraints but arc more computationally expensive to run. 

Another important higher-order constraint is the resource constraint, sometimes called 
the atenost  constraint. For example, in a scheduling problem, let Pi,  Et  denote the 
numbers of personnel assigned to each of four tasks. The constraint that no more than 10 
personnel are assigned in total is written as Airnost(10,  Pi,  P2, P3  , P4). We can detect an 
inconsistency simply by checking the sum of the minimum values of the current domains; 
for example, if each variable has the domain -1 3,  4 5, 6},  the Atmost constraint cannot be 
satisfied. We can also enforce consistency by deleting the maximum value of any domain if it 
is not consistent with the minimum values of the other domains. Thus, if each variable in our 
example has the domain {2,  3, 4,  5, 6},  the values 5 and 6 can be deleted from each domain. 

For large resource-limited problems with integer values—such as logistical problems 
involving moving thousands of people in hundreds of vehicles—it is usually not possible to  
represent the domain of each variable as a large set of integers and gradually reduce that set by 
consistency-checking methods. Instead, domains are represented by upper and lower bounds 
and are managed by bounds propagation. For example, in an airline-scheduling problem, 
let's suppose there are two flights, Fj  j  and F2, for which the planes have capacities 165 and 
385, respectively. The initial domains for the numbers of passengers on each flight are then 

D i  = [0,165]  and D2  = [0,385]  .  

Now suppose we have the additional constraint that the two flights together must carry 420 
people: Ft  +  F2 = 420. Propagating bounds constraints, we reduce the domains to 

D i  = [35, 165] and D2 = [255,385]  .  

We say that a CSP is bounds consistent if for every variable X, and for both the lower-
bound and upper-bound values of X, there exists some value of Y that satisfies the constraint 
between X and Y for every variable Y. This kind of bounds propagation is widely used in 
practical constraint problems. 

6.2.6 Sudoku example 

The popular Sudoku  puzzle has introduced millions of people to constraint satisfaction prob-
lems, although they may not recognize it. A Sudoku board consists of 81 squares, some of 
which are initially filled with digits from 1  to 9. The puzzle is to fill in all the remaining 
squares such that no digit appears twice in any row, column, or 3 x 3 box (see Figure 6.4). A 
row, column, or box is called a unit. 

The Sudoku puzzles that are printed in newspapers and puzzle hooks have the property 
that there is exactly one solution. Although some can be tricky to solve by hand, taking tens 
of minutes, even the hardest Sudoku problems yield to a CSP solver in less than 0.1 second. 

A Sudoku puzzle can be considered a CSP with 81 variables, one for each square. We 
use the variable names Al through A9 for the top row (left to right), down to 11  through 19  
for the bottom row. The empty squares have the domain {1, 2,3,  4, tr,  6, 7,  8, 9} and the pie  
filled squares have a domain consisting of a single value. In addition, there are 27 different 
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Figure 6.4 (a) A Sudoku puzzle and (b)  its solution. 
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Alidiff  constraints: one for each row, column, and box of 9 squares. 

Alldiff  (Al, A2, A3, A4, A5, A6, A7, A8, A9) 
Alldiff  ( B1, B2, B3, B4, B5, 86, B7, B8, 89) 

Alldiff  ( Al. Bl,  Cl, D1, E1, F1, Gi,  Hi, /1) 
Alldiff  ( A2, 82,02, D2, E2, F2, G2, H2, 12) 

Alldiff  (Al, A2, A3, B1,B2,B3, Cl,  C2, C3) 
Aiidiff  (A4, A5, A6, B4, B5,B6,  04, C5,06) 
•  •  •  

Let us see how far arc consistency can take us. Assume that the Alldiff  constraints have been 
expanded into binary constraints (such as A l  A2) so that we can apply the AC-3 algorithm 
directly. Consider variable E6 from Figure 6.4(a)-the  empty square between the 2 and the 
8 in the middle box. From the constraints in the box, we can remove not only 2 and 8 but also 
1 and 7 from E6's  domain. From the constraints in its column. we can eliminate 5, 6, 2, 8, 
9, and 3. That leaves E6 with a domain of {41;  in other words, we know the answer for E6. 
Now consider variable 16-the square in the bottom middle box surrounded by 1, 3, and 3. 
Applying arc consistency in its column, we eliminate 5, 6, 2, 4 (since we now know EG  must 
be 4), 8, 9, and 3. We eliminate 1 by arc consistency with 15, and we are left with only the 
value 7 in the domain of 16. Now there are 8 known values in column 6, so arc consistency 
can infer that A 6  must be I. Inference continues along these lines, and eventually, AC-3 can 

solve the entire puzzle-all the variables have their domains reduced to a single value, as 
shown in Figure 6.4(b). 

Of course, Sudoku would soon lose its appeal if every puzzle could be solved by a 
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mechanical application of AC-3, and indeed AC-3 works only for the easiest Sudoku puzzles. 
Slightly harder ones can be solved by PC-2, but at a greater computational cost: there are 
255,960 different path constraints to consider in a Sudoku puzzle. To solve the hardest puzzles 
and to make efficient progress, we will have to be more clever. 

Indeed, the appeal of Sudoku puzzles for the human solver is the need to be resourceful 
in applying more complex inference strategies. Aficionados give them colorful names, such 
as "naked triples." That strategy works as follows: in any unit (row, column or box), find 
three squares that each have a domain that contains the same three numbers or a subset of 
those numbers. For example, the three domains might be {1,  8},  {3, 8},  and {1,  3, 8}.  From 
that we don't know which square contains 1, 3, or 8,  but we do know that the three numbers 
must be distributed among the three squares. Therefore we can remove 1, 3, and 8  from the 
domains of every other square in the unit. 

It is interesting to note how far we can go without saying much that is specific to Su-
doku.  We do of course have to say that there are 81  variables, that their domains are the digits 
1  to 9, and that there are 27 Al!diff  constraints. But beyond that, all the strategies—arc  con-
sistency, path consistency, etc.—apply generally to all CSPs, not just to Sudoku problems. 
Even naked triples is really a strategy for enforcing consistency of Alldiff constraints and 
has nothing to do with Sudoku per se. This is the power of the CSP formalism: for each new 
problem area, we only need to define the problem in terms of constraints; then the general 
constraint-solving mechanisms can take over. 

6.3 BACKTRACKING SEARCH FOR CSPs  

COMMUTATMTY  

Sudoku problems are designed to be solved by inference over constraints. But many other 
CSPs cannot be solved by inference alone; there comes a time when we must search for a 
solution. In this section we look at backtracking search algorithms that work on partial as-
signments; in the next section we look at local search algorithms over complete assignments_ 

We could apply a standard depth-limited search (from Chapter 3). A state would be a 
partial assignment, and an action would be adding ver  = valuc  to the assignment. But for a 
CSP with n variables of domain size d,  we quickly notice something terrible: the branching 
factor at the top level is rtd  because any of d  values can be assigned to any of n  variables. At 
the next level, the branching factor is (rt  — 1)d, and so on for it  levels. We generate a tree 
with ri!  dm  leaves, even though there are only do  possible complete assignments! 

Our seemingly reasonable but naive formulation ignores crucial property common to 
all CSPs: commutativity. A problem is commutative if the order of application of any given 
set of actions has no effect on the outcome. CSPs are commutative because when assigning 
values to variables, we reach the same partial assignment regardless of order. Therefore, we 
need only consider a single variable at each node in the search tree. For example, at the root 
node of a search tree for coloring the map of Australia, we might make a choice between 
SA= red, SA= green, and SA = blue, but we would never  choose between SA = red and 
WA = blue. With this restriction, the number of leaves is dn,  as we would hope. 
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RAINTRACKINCI  SEARCH  

function BACKTRACKING-SEARcit(es.p)  returns a solution, or failure 
return BACKTRACK({ csp) 

function BACKTRACK( assignment, cap) returns a solution, or failure 
if assignment is complete then return assignment  
var — SELECT- UNASSIGNED-VARIABLE(  csp)  
for each value in ORDER-DOMAIN-VALuEs(tar,  assignment, csp)  do 

if value is consistent with assignment then 
add { var = value} to assignment 
inferences t—  INFERENcE(csp,  var, value) 
if inferences 0 failure then 

add inferences to assignment 
result +—  BACKTRACK( assignment, csp)  
if result 0 failure then 

return result 
remove {var = value} and inferences from assignment 

return failure 

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The al- 
gorithm is modeled on the recursive depth-first search of Chapter 3. By varying the functions 
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the 
general-purpose heuristics discussed in the text. The function INFERENCE can optionally be 
used to impose arc-, path-, or k-consistency,  as desired. If a value choice leads to failure 
(noticed either by INFERENCE or by BACKTRACK), then value assignments (including those 
made by INFERENCE) are removed from the current assignment and a new value is tried. 

The term backtracking search is used for a depth-first search that chooses values for 
one variable at a time and backtracks when a variable has no legal values left to assign. The 
algorithm is shown in Figure 6.5. It repeatedly chooses an unassigned variable, and then tries 
all values in the domain of that variable in turn, trying to find a solution. If an inconsistency is 
detected, then BACKTRACK returns failure, causing the previous call to try another value. Part 
of the search tree for the Australia problem is shown in Figure 6.6, where we have assigned 
variables in the order WA, NT,Q,....  Because the representation of CSPs is standardized, 
there is no need to supply BACKTRACKING-SEARCH with a domain-specific initial state, 
action function, transition model, or goal test. 

Notice that BACKTRACKING-SEARCH keeps only a single representation of a state and 
alters that representation rather than creating new ones, as described on page 87. 

In Chapter 3 we improved the poor performance of uninformed search algorithms by 
supplying them with domain-specific heuristic functions derived from our knowledge of the 
problem. It turns out that we can solve CSPs efficiently without such domain-specific knowl-
edge. Instead, we can add some sophistication to the unspecified functions in Figure 6.5, 
using them to address the following questions! 

1. Which variable should be assigned next (SELECT-UNASSIGNED-VARIABLE), and in 
what order should its values be tried (ORDER-DOMAIN-VALUES)? 
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Figure 6.6 Part of the search tree for the map-coloring problem in Figure 6.1 
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2. What inferences should be performed at each step in the search (INFERENCE)? 
3. When the search arrives at an assignment that violates a constraint, can the search avoid 

repeating this failure? 

The subsections that follow answer each of these questions in turn. 

M 
EMAINI  NG-VALUES  

DEGREE HEI,RISTIC  

6.3.1 Variable and value ordering 

The backtracking algorithm contains the line 

vat'  SELECT-UNASSiGNED-VA.RIABLE(esp)  .  

The simplest strategy for SELECT-UNASSIGNED-VARIABLE is to choose the next unassigned 
variable in order, {Xi, X2, ...I. This static variable ordering seldom results in the most effi-
cient  search. For example, after the assignments for WA = red and NT = green in Figure 6.6. 
there is only one possible value for SA, so it makes sense to assign SA= blue next rather than 
assigning Q. In fact, after SA is assigned, the choices for Q, NSW, and V are all forced. This 
intuitive idea—choosing the variable with the fewest "legal" values—is called the minimum- 
remaining-values (MRV)  heuristic_  It also has been called the "most constrained variable" or 
"fail-first" heuristic, the latter because it picks a variable that is most likely to cause a failure 
soon, thereby pruning the search tree. If some variable X has no legal values left, the MRV 
heuristic will select X and failure will be detected immediately—avoiding pointless searches 
through other variables. The MRV heuristic usually performs better than a random or static 
ordering, sometimes by a factor of 1,000 or more, although the results vary widely depending 
on the problem. 

The MRV heuristic doesn't help at all in choosing the first region to color in Australia, 
because initially every region has three legal colors. In this case, the degree heuristic comes 
in handy. It attempts to reduce the branching factor on future choices by selecting the vari-
able that is involved in the largest number of constraints on other unassigned variables. In 
Figure 6.1, SA is the variable with highest degree, 5; the other variables have degree 2 or 3. 
except for  T, which has degree O.  In fact, once SA is chosen, applying the degree heuris- 
tic solves the problem without any false steps—you can choose any consistent color at each 
choice point and still arrive at a solution with no backtracking. The minimum-remaining- 
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LEAST- 
CONSTRAINNG examine its values. For this, the least constraining-value  heuristic can be effective in some 
VALUE 

cases. It prefers the value that rules out the fewest choices for the neighboring variables in 
the constraint graph. For example, suppose that in Figure 6.1 we have generated the partial 
assignment with WA= red and NT = green and that our next choice is for Q. Blue would 
be a bad choice because it eliminates the last legal value left for Q's neighbor, SA. The 
least-constraining-value heuristic therefore prefers red to blue. In general, the heuristic is 
trying to leave the maximum flexibility for subsequent variable assignments. Of course, if we 
are trying to find all the solutions to a problem, not just the first one, then the ordering does 
not matter because we have to consider every value anyway. The same holds if there are no 
solutions to the problem. 

Why should variable selection be fail-first, but value selection be fail-last? It turns out 
that, for a wide variety of problems, a variable ordering that chooses a variable with the 
minimum number of remaining values helps minimize the number of nodes in the search tree 
by pruning larger parts of the tree earlier. For value ordering, the trick is that we only need 
one solution; therefore it makes sense to look for the most likely values first. If we wanted to 
enumerate all solutions rather than just find one, then value ordering would be irrelevant. 

6.3.2 Interleaving search and inference 

So far we have seen how AC-3 and other algorithms can infer reductions in the domain of 
variables before we begin the search. But inference can be even more powerful in the course 
of a search: every time we make a choice of a value for a variable, we have a brand-new 
opportunity to infer new domain reductions on the neighboring variables. 

One of the simplest forms of inference is called forward checking. Whenever a vari-
able X is assigned, the forward-checking process establishes arc consistency for it: for each 
unassigned variable V that is connected to X by a constraint, delete from V's domain any 
value that is inconsistent with the value chosen for X. Because forward checking only does 
arc consistency inferences, there is no reason to do forward checking if we have already done 
arc consistency as a preprocessing step. 

Figure 6.7 shows the progress of backtracking search on the Australia CSP with for-
ward checking. There are two important points to notice about this example. First, notice 
that after WA= red and Q = green are assigned, the domains of NT and SA are reduced 
to a single value; we have eliminated branching on these variables altogether by propagat-
ing information from WA and Q. A second point to notice is that after V = blue, the do-
main of SA is empty. Hence, forward checking has detected that the partial assignment 
{ WA  = red, Q = green, V = blue}  is inconsistent with the constraints of the problem, and 
the algorithm will therefore backtrack immediately. 

For many problems the search will be more effective if we combine the MRV heuris-
tic with forward checking. Consider Figure 6.7  after assigning {  WA= red}. Intuitively, it 
seems that that assignment constrains its neighbors, NT and SA, so we should handle those 

values heuristic is usually a more powerful guide, but the degree heuristic can be useful as a 
tic-breaker.  

Once a variable has been selected, the algorithm must decide on the order in which to 

FORWARD 
CHFC.  KING 
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Figure 6.7  The progress of a map-coloring  search with forward checking. WA = red 
is assigned first; then forward checking deletes red from the domains of the neighboring 
variables NT and SA. After Q = green is assigned, ymerc  is deleted from ilie  domains of 
NT, SA, and NSW. After V = blue is assigned, blue is deleted from the domains of NSW 
and SA, leaving SA with no legal values. 
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MANTAINI  NG  ARC 
CONSISTENCY (MAC) 

CHRONOLOGICAL 
BACA-MACKIia  

variables next, and then all the other variables will fall into place. That's exactly what hap-
pens with MRV: NT and SA have two values, so one of them is chosen first, then the other, 
then Q, NSW, and V in order. Finally T still has three values, and any one of them works. 
We can view forward checking as an efficient way to incrementally compute the information 
that the MRV heuristic needs to do its job. 

Although forward checking detects many inconsistencies, it does not detect all of them. 
The problem is that it makes the current variable arc-consistent, but doesn't look ahead and 
make all the other variables arc-consistent. For example, consider the third row of Figure 6.7. 
It shows that when WA is red and Q is green, both NT and SA are forced to be blue. Forward 
checking does riot look far enough ahead to notice that this is an inconsistency: NT and SA 
are adjacent and so cannot have the same value 

The algorithm called MAC (for Maintaining Arc Consistency (MAC)) detects this 
inconsistency. After a variable X,  is assigned a value, the INFERENCE procedure calls AC-3,  
but instead of a queue of all arcs in the CSP, we start with only the arcs (Xi, Xi) for all 
Xi that are unassigned variables that are neighbors of Xi . From there, AC-3 does constraint 
propagation in the usual way, and if any variable has its domain reduced to the empty set, the 
call to AC-3 fails and we know to backtrack immediately. We can see that MAC is strictly 
more powerful than forward checking because forward checking does the same thing as MAC 
on the initial arcs in MAC's queue; but unlike MAC, forward checking does not recursively 
propagate constraints when changes are made to the domains of variables. 

6_3.3  Intelligent backtracking: Looking backward 

The BACKTRACKING-SEARCH algorithm in Figure 6.5 has a very simple policy for what to 
do when a branch of the search fails: back up to the preceding variable and try a different 
value for it. This is called chronological backtracking because the most recent decision 
point is revisited. In this subsection, we consider better possibilities. 

Consider what happens when we apply simple backtracking in Figure 6.1 with a fixed 
variable ordering Q, NSW, V, T, SA, WA, NT. Suppose we have generated the partial 
assignment {Q = red, NSW = green. V = blue, T = md}.  When we try the next variable, 
SA, we see that every value violates a constraint. We back up to T and try a new color for 
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Tasmania? Obviously this is silly—recoloring Tasmania cannot possibly resolve the problem 
with South Australia. 

A more intelligent approach to backtracking is to backtrack to a variable that might fix 
the problem—a variable that was responsible for making one of the possible values of SA 
impossible. To do this, we will keep track of a set of assignments that are in conflict with 
some value for SA. The set (in this case {Q = red, NSW = green, V = blue, I),  is called the 
conflict set for SA. The backjumping method backtracks to the most recent assignment in 
the conflict set; in this case, backjumping would jump over Tasmania and try a new value 
for V. This method is easily implemented by a modification to BACKTRACK such that it 
accumulates the conflict set while checking for a legal value to assign. If no legal value is 
found, the algorithm should return the most recent element of the conflict set along with the 
failure indicator. 

The sharp-eyed reader will have noticed that forward checking can supply the conflict 
set with no extra work: whenever forward checking based on an assignment X = r deletes a 
value from Y 's domain, it should add X = x to Y 's conflict set. If the last value is deleted 
from Y's domain, then the assignments in the conflict set of Y are added to the conflict set 
of X. Then, when we get to Y, we know immediately where to backtrack if needed. 

The eagle-eyed reader will have noticed something odd: backjumping occurs when 
every value in a domain is in conflict with the current assignment; but forward checking 
detects this event and prevents the search from ever reaching such a node? In fact, it can be 
shown that every branch pruned by backjumping  is also pruned by forward checking. Hence, 
simple backjumping is redundant in a forward-checking search or, indeed, in a search that 
uses stronger consistency checking, such as MAC. 

Despite the observations of the preceding paragraph, the idea behind backjumping re-
mains a good one: to backtrack based on the reasons for failure. Backjumping notices failure 
when a variable's domain becomes empty. but in many cases a branch is doomed long before 
this occurs. Consider again the partial assignment { WA = red, NSW = red} (which, from 
our earlier discussion, is inconsistent). Suppose we try T = red next and then assign 14T, Q, 
V, SA. We know that no assignment can work for these last four variables, sn  eventually we 
run out of values to try  at NT. Now, the question is, where to backtrack? Backjumping  cannot 
work, because NT does have values consistent with the preceding assigned variables—NT 
doesn't have a complete conflict set of preceding variables that caused it to fail. We know, 
however, that the four variables NT. Q, V, and SA, taken together, failed because of a set of 
preceding variables. which must be those variables that directly conflict with the four, This 
leads to a deeper notion of the conflict set for a variable such as NT: it is that set of preced-
ing variables that caused NT, together with any subsequent variables, to have no consistent 
solution. hi this case, the set is WA and NSW, so the algorithm should backtrack to NSW 
and skip over Tasmania. A backjumping algorithm that uses conflict sets defined in this way 
is called conflict-directed backjumping. 

We must now explain how these new conflict sets are computed. The method is in 
fact quite simple. The "terminal" failure of a branch of the search always occurs because a 
variable's domain becomes envy; that variable has a standard conflict set. In our exarnple,  
SA fails, and its conflict set is (say) { WA, NT ,Q}. We backjump to Q, and Q absorbs 

CDIFUCT  SET 

BACKJULIPII1G  

CONFLICT-DIRECTED  
BAGIUMPING  
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CONSTRAINT 
LEARNING 

NO-GOOD 

the conflict set from SA (minus Q itself, of course) into its own direct conflict set, which is 
{NT, NS W };  the new conflict set is { WA, NT, NSW }  .  That is, there is no solution from 
Q onward, given the preceding assignment to WA, NT, NSW }. Therefore, we backtrack 
to NT, the most recent of these. NT absorbs { WA, NT, NSW} —  {NT} into its own 
direct conflict set { WA}, giving { WA, NSW } (as stated in the previous paragraph). Now 
the algorithm backjumps to NSW, as we would hope. To summarize: let Xj  be the current 
variable, and let conf  ( X;)  be its conflict set. If every possible value for .X.;  fails, backjump 
to the most recent variable X,  in cog  ( X j),  and set 

conf (Xi} conf PCOU  conj.  {)(;)  — }  .  

When we reach a contradiction, backjumping  can tell us how far to back up, so we don't 
waste time changing variables that won't fix the problem. But we would also like to avoid 
mnning  into the same problem again_ When the search arrives at a contradiction, we know 
that some subset of the conflict set is responsible for the problem. Constraint learning is the 
idea of finding a minimum set of variables from the conflict set that causes the problem. This 
set of variables, along with their corresponding values, is called a no-good. We then record 
the no-good, either by adding a new constraint to the CSP or by keeping a separate cache of 
no-goods. 

For example, consider the state { WA = red, NT = green, Q = blue} in the bottom 
row of Figure 6.6. Forward checking can tell us this state is a no-good because there is no 
valid assignment to SA. In this particular case, recording the no-good would not help, because 
once we prune this branch from the search tree, we will never encounter this combination 
again. But suppose that the search tree in Figure 6.6  were actually part of a larger search tree 
that started by first assigning values for V and T. Then it would be worthwhile to record 
{ WA = red, NT = green, Q = blue} as a no-good because we are going to run into the 
same problem again for each possible set of assignments to V and T. 

No-goods can be effectively used by forward checking or by backjumping. Constraint 
learning is one of the most important techniques used by modem CSP solvers to achieve 
efficiency on complex problems. 

6.4 LOCAL SEARCH FOR CSPs  

M IN-CCM/MEM  

Local search algorithms (see Section 4.1) turn  out to be effective in solving many CSPs. They 
use a complete-state formulation: the initial state assigns a value to every variable, and the 
search changes the value of one variable at a time. For example, in the 8-queens problem (see 
Figure 4.3), the initial state might be a random configuration of 8 queens in 8 columns, and 
each step moves a single queen to a new position in its column. Typically, the initial guess 
violates several constraints. The point of local search is to eliminate the violated constraints 2 

 

In choosing anew value for a variable, the most obvious heuristic is to select the value 
that results in the minimum number of conflicts with other variables—the min-conflicts  

 

2  Local search can easily be extended to constraint optimization problems (COP s). In that case,  all the techniques 
for hill climbing and simulated annealing can be applied to optimize the objective function. 
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function MlN-CONFLICTS(csp,  m,a,7  _steps)  returns a solution or failure 
inputs: csp  a constraint satisfaction problem 

rran.x_steps  the number of steps allowed before giving up 

cur rent — an  initial  complete  assignment  for cap 
for i = 1 to  ina.2;_steps  du  

if current  is  a  solution  for  csp  then return current 
var  f—  a  randomly  chosen  conflicted  variable from cap.  VARIABLES 
value ,—  the value u  for vex  that minimizes Comnturs(var,  u,  current, cap) 
set var  =  vrauc  in  current  

return failure 

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial 
state may be chosen randomly or by a greedy assignment process that chooses a minimal- 
confl ict  value for each variable in turn. The CONFLICT% functinn  counts the number of 
constraints violated by a particular value, given the rest of the current assignment. 
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Figure 6.9 A two-step solution using min-conflicts  for an 8-queens  problem. At each 
stage, a queen is chosen for reassignment in its column. The number of conflicts (in this 
case, the number of attacking queens) is shown in each square. The algorithm moves the 
queen to the min-conflicts  square, breaking ties randomly. 

heuristic. The algorithm is shown in Figure 6.8 and its application to an 8-queens problem is 
diagrammed in Figure 6.9. 

Min-conflicts  is surprisingly effective for many CSPs. Amazingly, on the n-queens 
problem, if you don't count the initial placement of queens, the run time of min-conflicts  is 
roughly independent of problem size. It solves even the million-queens problem in an aver-
age of 50 steps (after the initial assignment). This remarkable observation was the stimulus 
leading to a great deal of research in the 1990s on local search and the distinction between 
easy and hard problems, which we take up in Chapter 7. Roughly speaking, n-queens is 
easy for local search because solutions are densely distributed throughout the state space. 
Min-conflicts  also works well for hard problems. For example, it has been used to schedule 
observations for the Hubble Space Telescope, reducing the time taken to schedule a week of 

observations from three weeks (!)  to around 10 minutes. 
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All the local search techniques from Section 4.1 are candidates for application to CSPs, 
and some of those have proved especially effective. The landscape of a CSP under the min-
conflicts heuristic usually has a series of plateaux. There may be millions of variable as-
signments that are only one conflict away from a solution. Plateau search—allowing side-
ways moves to another state with the same score—can help local search find its way off this 
plateau. This wandering on the plateau can be directed with tabu search, keeping a small 
list of recently visited states and forbidding the algorithm to return to those states. Simulated 
annealing can also be used to escape from plateaux. 

Another technique, called constraint weighting, can help concentrate the search on the 
important constraints. Each constraint is given a numeric weight, Wi ,  initially all 1. At each 
step of the search, the algorithm chooses a variable/value pair to change that will result in the 
lowest total weight of all violated constraints. The weights are then adjusted by incrementing 
the weight of each constraint that is violated by the current assignment. This has two benefits: 
it adds topography to plateaux, making sure that it is possible to improve from the current 
state, and it also, over time, adds weight to the constraints that are proving difficult to solve. 

Another advantage of local search is that it can be used in an online setting when the 
problem changes. This is particularly important in scheduling problems. A week's airline 
schedule may involve thousands of flights and tens of thousands of personnel assignments. 
but bad weather at one airport can render the schedule infeasible. We would like to repair the 
schedule with a minimum number of changes. This can be easily done with a local search 
algorithm starting from the current schedule. A backtracking search with the new set of 
constraints usually requires much more time and might find a solution with many changes 
from the current schedule. 

6.5 THE STRUCTURE OF PROBLEMS 

INDEPENDENT 
SUBPROBLEMS 

CCVNECTED  
COMPONENT 

In this section, we examine ways in which the structure of the problem, as represented by 
the constraint graph, can be used to find solutions quickly. Most of the approaches here also 
apply to other problems besides CSPs, such as probabilistic reasoning. After all, the only way 
we can possibly hope to deal with the real world is to decompose it into many subproblems. 
Looking again at the constraint graph for Australia (Figure 6.1(b),  repeated as Figure 6.12(a)), 
one fact stands out: Tasmania is not connected to the mainland.3  Intuitively, it is obvious that 
coloring Tasmania and coloring the mainland are independent subproblems—any solution 
for the mainland combined with any solution for Tasmania yields a solution for the whole 
map. Independence can be ascertained simply by aiding connected comptments  of the 
constraint graph. Each component corresponds to a subproblem CST,. If assignment Si is 
a solution of CSPi,  then J ti  S,  is a solution of ji  C51-'i.  Why is this important? Consider 
the following: suppose each CSP i  has c variables from the total of rz  variables, where c  is 
a constant. Then there are nIc  subproblems, each of which takes at most d6  work to solve. 

 

3  A careful cartographer or patriotic Tasmanian might object that Tasmania should not be colored the same as 
its nearest mainland neighbor, to avoid the impression that it might be part of that state. 



Figure 6.10  (a) The constraint graph of a tree-structured CSP.  (b) A Linear ordering of the 
variables consistent with the tree with A as the root. This is known as a topological sort of 
the variables. 
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where d is the size of the domain. Hence, the total work is 0(enlc),  which is linear in n; 
without the decomposition, the total work is O(&V),  which is exponential in n. Let's make 
this more concrete: dividing a Boolean CSP with 80 variables into four subproblems reduces 
the worst-case solution time from the lifetime of the universe down to less than a second. 

Completely independent subproblems are delicious, then, but rare. Fortunately, some 
other graph structures are also easy to solve. For example. a constraint graph is a tree when 
any two variables are connected by only one path. We show that any tree-structured CSP can 
be ,vnlved  in time linear in the number of variahles.4  The key is a new notion of consistency, 
called directed arc consistency or DAC. A CSP is defined to be directed arc-consistent under 
an ordering of variables X 1 , X2: ...  ,  X„ if and only if every X i  is arc-consistent with each 
Xi for j > i.  

To solve a tree-structured CSP, first pick any variable to be the root of the tree, and 
choose an ordering of the variables such that each variable appears after its parent in the [rec.  
Such an ordering is called a topological sort. Figure 6.10(a) shows a sample tree and (b) 
shows one possible ordering. Any tree with n nodes has n —1 arcs, so we can make this graph 
directed arc-consistent in 0(n) steps, each of which must compare up to d possible domain 
values for two variables, for a total time of 0(nd2 ).  Once we have a directed arc-consistent 
graph, we can just march down the list of variables and choose any remaining value. Since 
each link from a parent to its child is arc consistent, we know that for any value we choose for 
the parent, there will be a valid value left to choose for the child. That means we won't have 
to backtrack; we can move linearly through the variables. The complete algorithm is shown 
in Figure 6.11. 

Now that we have an efficient algorithm for trees, we can consider whether more general 
constraint graphs can be reduced to trees somehow. There are two primary ways to do this, 
one based on removing nodes and one based on collapsing nodes together. 

The first approach involves assigning values to some variables so that the remaining 
variables form a tree. Consider the constraint graph for Australia, shown again in Fig-
ure 6.12(a). If we could delete South Australia, the graph would become a tree, as in (b). 
Fortunately, we can do this (in the graph, not the continent) by fixing a value for SA and 

Sadly, very few regions of the world have tree-structured  maps, although Sulawesi  comes close. 



224 Chapter 6. Constraint Satisfaction Problems 

function TREE-CSP-SOLVER(  cap) returns a solution, or failure 
inputs: csp,  a CSP with components X, D, C 

n number of variables in X 
assignment 4— an empty assignment 
root 4-  any variable in X 
X TOPOLOGICALSORT(X, root) 
for j = n down to 2 do 

MAKE-ARC-CoNsisTENT(PARENT(Xj ),  Xj )  
if it cannot be made consistent then return failure 

for = 1 to n do 
assignmentiXij  4— any consistent value from Di  
if there is no consistent value then return failure 

return assignment 

Figure 6.11  The TREE-CSP-SOLVER  algorithm for solving tree-structured CSPs. If the 
CSP has a solution, we will find it in linear time; if not, we will detect a contradiction. 

 

(a) (b) 

 

Figure 6.12 (a) The original constraint graph from Figure 6.1. (b) The constraint graph 
after the removal of SA. 

deleting from the domains of the other variables any values that are inconsistent with the 
value chosen for SA. 

Now, any solution for the CSP after SA and its constraints are removed will be con-
sistent with the value chosen for SA, (This works for binary CSPs; the situation is more 
complicated with higher-order constraints.) Therefore, we can solve the remaining tree with 

the algorithm given above and thus solve the whole problem. Of course, in the general case 
(as opposed to map coloring), the value chosen for 34  could be the wrong one, so we would 
need to try each possible value. The general algorithm is as follows: 
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CYCLE CUT9ET  

TREE WIDTH 

1. Choose a subset S of the CSP's variables such that the constraint graph becomes a tree 
after removal of S. S is called a cycle cutset.  

2. For each possible assignment to the variables in S that satisfies all constraints on S,  
(a) remove from the domains of the remaining variables any values that are inconsis-

tent with the assignment for S,  and 
(b) If the remaining CSP has a solution, return it together with the assignment for S. 

If the cycle outset  has  size c, then the total  run time is 0(d°  - ( 4,  —  c)cl):  we have to try each 

of the el'  combinations of values for the variables in S,  and for each combination we must 
solve a tree problem of size n — c. If the graph is "nearly a tree," then c will be small and the 
savings over straight backtracking will be huge. In the worst case, however, c can be as large 
as In  — 2). Finding the smallest  cycle cutset is NP-hard, but several efficient approximation 
algorithms are known. The overall algorithmic approach is called cutset  conditioning; it 
comes up again in Chapter 14, where it is used for reasoning about probabilities. 

The second approach is based on constructing a tree decomposition of the constraint 
graph into a set of connected subproblems. Each subproblem is solved independently, and the 
resulting solutions are then combined. Like mast divide-and-conquer algorithms, this works 
well if no subproblem is too large. Figure 6.13 shows a tree decomposition of the map-
coloring problem into five subproblems. A tree decomposition must satisfy the following 
three requirements: 

• Every variable in the original problem appears in at least one of the subproblems. 
• If two variables are connected by a constraint in the original problem, they must appear 

together (along with the constraint) in at least one of the subproblems. 
• If a variable appears in two subproblems in the tree, it must appear in every subproblem 

along the path connecting those subproblems. 
The first two conditions ensure that all the variables and constraints are represented in the 
decomposition. The third condition seems rather technical, but simply reflects the constraint 
that any given variable must have the same value in every subproblem in which it appears; 
the links joining subproblems in the tree enforce this constraint. For example, S.4 appears in 
all four of the connected subproblems in Figure 6.13. You can verify from Figure 6.12 that 
this decomposition makes sense. 

We solve each subproblem independently; if any one has no solution, we know the en-
tire problem has no solution. If we can solve all the subproblems, then we attempt to construct 
a global solution as follows. First, we view each subproblem as a "mega-variable" whose do-
main is the set of all solutions for the subproblem. For example, the leftmost subproblem in 
Figure 6.13 is a map-coloring problem with three variables and hence has six solutions—one 
is {  WA = red, SA = blue, NT = green} . Then, we salve the constraints connecting the 
subproblems, using the efficient algorithm for trees given earlier. The constraints between 
subproblems simply insist that the subproblem solutions agree on their shared variables. For 
example ;  given the solution { WA — red, SA — blue. NT — green} for the first subproblem, 

the only consistent solution for the next subproblem is {  SA = blue, NT = green, Q = red }.  
A given constraint graph admits many tree decompositions; in choosing a decompo- 

sition, the aim is to make the subproblems as small as possible. The tree width of a tree 

CUESET  
CriNDITFONINC;  

TREE 
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VALUE SYMMETRY SYMIETRY  
SYMMETRY-
BREAKING 
CONSTRAINT 

Figure 6.13 A tree decomposition of the constraint graph in Figure 6.12(a). 

decomposition of a graph is one less than the size of the largest subproblem; the tree width 
of the graph itself is defined to be the minimum tree width among all its tree decompositions. 
If a graph has tree width w and we are given the corresponding tree decomposition, then the 
problem can he solved  in 0(nel.'+ 1

)  time_  T-lence,  CST'.s  with can  straint  graphs of haundpar  
five width are salvable in polynomial time. Unfortunately, finding the decomposition with 
minimal tree width is NP-hard, but there are heuristic methods that work well in practice. 

So far, we have looked at the structure of the constraint graph. There can he important 
structure in the values of variables as well. Consider the map-coloring  problem with n colors. 
For every consistent solution, there is actually a set of 11 1  solutions formed by permuting the 
color names. For example, on the Australia map we know that WA, NT, and SA must all have 
different colors, but there arc 3? = 6 ways to assign the three colors to those three regions. 
This is called value symmetry. We would like to reduce the search space by a factor of 
is! by breaking the symmetry. We do this by introducing a symmetry-breaking constraint. 
For our example, we might impose an arbitrary ordering constraint, NT <  SA <  WA, that 
requires the three values to be in alphabetical order. This constraint ensures that only one of 
the rd.  solutions is possible: {  NT = blue.  SA = green,  WA = red}. 

For map coloring, it was easy to find a constraint that eliminates the symmetry, and 
in general it is possible to find constraints that eliminate all but one symmetric solution in 
polynomial time, but it is NP-hard to eliminate all symmetry among intermediate sets of 
values during search. In practice, breaking value symmetry has proved to be important and 
effective on a wide range of problems. 
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6.6 SUMMARY 

• Constraint satisfaction problems (CSPs)  represent a state with a set of variabletvalue  
pairs and represent the conditions for a solution by a set of constraints on the variables. 
Many important real-world problems can be described as CSPs. 

• A number of inference techniques use the constraints to infer winch  variable/value pairs 
are consistent and which are not. These include node, arc, path, and k-consistency. 

• Backtracking search, a form of depth-first search, is commonly used for solving CSPs. 
Inference can be interwoven with search. 

• The minimtun-remaining.values  and degree heuristics are domain-independent meth-
ods for deciding which variable to choose next in a backtracking search. The least-
constraining-value  heuristic helps in deciding which value to try first for a given 
variable. Backtracking occurs when no legal assignment can be found for a variable. 
Conflict-directed backjumping  backtracks directly to the source of the problem. 

• Local search using the min-conflicts  heuristic has also been applied to constraint satis-
faction problems with great success. 

• The complexity of solving a CSP is strongly related to the structure of its constraint 
graph. Tree-structured problems can be solved in linear time. Cutset conditioning can 
reduce a general CSP to a tree-structured one and is quite efficient if a small cutset can 
be found. Tree decomposition techniques transform the CSP into a tree of subproblems 
and are efficient if the tree width of the constraint graph is small. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The earliest work related to constraint satisfaction dealt largely with numerical constraints. 
Equational constraints with integer domains were studied by the Indian mathematician Rrah-
magupta  in the seventh century; they are often called Diophantine  equations, after the Greek 
mathematician Diophantus  (c. 200-284), who actually considered the domain of positive ra-
tionals. Systematic methods for solving linear equations by variable elimination were studied 
by Gauss (1829); the solution of linear inequality constraints goes back to Fourier (1827). 

Finite-domain constraint satisfaction problems also have a long history. For example, 
graph coloring (of which map coloring is a special case) is an old problem in mathematics. 
The four-color conjecture (that every planar graph can be colored with four or fewer colors) 
was first made by Francis Guthrie, a student of De Morgan, in 1852. It resisted solution—
despite several published claims to the contrary—until a proof was devised by Appel and 
Haken (1977) (see the book Four Colors Suffice (Wilson, 2004)). Purists were disappointed 
that part of the proof relied on a computer, so Georges Gonthier 2008), using the COQ 

theorem prover, derived a formal proof that Appel and Haken's  proof was correct. 
Specific classes of constraint satisfaction problems occur throughout the history of 

computer science. One of the most influential early examples was the SKETCHPAD sys- 

DIOPHANTINE  
ECJAPONS  

GRAPH COLORING  
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tem (Sutherland, 1963), which solved geometric constraints in diagrams and was the fore-
runner of modem drawing programs and CAD tools. The identification of CSPs as a general  
class is due to Ugo Montanan (1974). The reduction of higher-order CSPs to purely binary 
CSPs with auxiliary variables (see Exercise 6.6) is due originally to the 19th-century logician 
Charles Sanders Peirce. It was introduced into the CSP literature by Dechter (1990b)  and 
was elaborated by Bacchus and van Beek (1998). CSPs with preferences among solutions are 
studied widely in the optimization literature; see Bistarelli et at  (1997) for a generalization 
of the CSP framework to allow for preferences. The bucket-elimination algorithm (Dechter,  
1999) can also be applied to optimization problems. 

Constraint propagation methods were popularized by Waltz's (1975) success on poly-
hedral line-labeling problems for computer vision. Waltz showed that, in many problems, 
propagation completely eliminates the need for backtracking. Montanari  (1974) introduced 
the notion of constraint networks and propagation by path consistency. Alan MackworLh  
(1977) proposed the AC-3 algorithm for enforcing arc consistency as well as the general idea 
of combining backtracking with some degree of consistency enforcement. AC-4, a more 
efficient arc-consistency algorithm, was developed by Mohr and Henderson (1986).  Soon af-
ter Mackworth's paper appeared, researchers began experimenting with the tradeoff between 
the cost of consistency enforcement and the benefits in terms of search reduction. Haralick 
and Elliot (1980) favored the minimal forward-checking algorithm described by McGregor 
(1979), whereas Gaschnig (1979) suggested full arc-consistency checking after each vari-
able assignment—an algorithm later called MAC by Sabin and Freuder (1994). The latter 
paper provides somewhat convincing evidence that. on harder CSPs, full arc-consistency 
checking pays off. Freuder (1978, 1982) investigated the notion of k-consistency and its 
relationship to the complexity of solving CSPs. Apt (1999)  describes a generic algorithmic 
framework within which consistency propagation algorithms can be analyzed, and Bessiere  
(2006)  presents a current survey, 

Special methods for handling higher-order or global constraints were developed first 
within the context of constraint logic  programming. Marriott and Stuckey (1998) provide 
excellent coverage of  research in this area The AIMiff constraint was studied by Regin 
(1994), Stergiou and Walsh (1999), and van Hoeve (2001). Bounds constraints were incorpo-
rated into constraint logic programming by Van Hentenryck et al. (1998). A survey of global 
constraints is provided by van Hoeve and Katriel  (2006). 

Sudoku has become the most widely known CSP and was described as such by Simonis  
(2095).  Agerbeck and Hansen (2008) describe some of the strategies and show that Sudoku 
on an n2  x n2  board is in the class of NP-hard problems. Reeson et at (2007) show an 
interactive solver based on CSP techniques. 

The idea of backtracking search goes back to Golomb and Baumert (1965), and its 
application to constraint satisfaction is due to Bitner and Reingold (1975), although they trace 
the basic algorithm back to the 19th century. Bitner and Reingold also introduced the MRV 
heuristic, which they called the most-constrained-variable  heuristic. Brelaz  (1979) used the 

degree heuristic as a tiebreaker after applying the MRV heuristic. The resulting algorithm, 
despite its simplicity, is still the best method fur lc-coloring  arbitrary graphs. Haralick and 
Elliot (1980) proposed the least-constraining-value heuristic. 
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DPENDENCY- 
DIRECTED Sussman (1977). Their technique of dependency-directed backtracking led to the develop- 
BACKTRACKING 

meat of truth maintenance systems (Doyle, 1979), which we discuss in Section 12.6.2. The 
connection between the two areas is analyzed by de Kleer (1989). 

The work of Stallman and Sussman also introduced the idea of constraint learning, 
in which partial results obtained by search can be saved and reused later in the search. The 

EACKMARKING  idea was formalized Dechter (1990a). Backmarking (Gaschnig, 1979) is a particularly sim-
ple method in which consistent and inconsistent pairwise assignments are saved and used 
to avoid rechecking constraints. Backmarking  can be combined with conflict-directed back-
jumping; Kundrak and van Beek (1997) present a hybrid algorithm that provably subsumes 

DYNAMIC  
BACKTRACKING either method taken separately. The method of dynamic !backtracking  (Ginsberg, 1993) re- 

tains successful partial assignments from later subsets of variables when backtracking over 
an earlier choice that does not invalidate the later success. 

Empirical studies of several randomized backtracking methods were done by Gomes  
et al. (2000) and Gomes and Selman (2001). Van Beek (2006) surveys backtracking. 

Local search in constraint satisfaction problems was popularized by the work of Kirk- 
patrick el al. (1983) on simulated annealing (see Chapter 4), which is widely used for schedul- 
ing problems. The min-conflicts heuristic was first proposed by Gu (1989) and was developed 
independently by Minton et al. (1992).  Susie  and Cu (1994) showed how it could be applied 
to solve the 3,000,000 queens problem in less than a minute. The astounding success of 
local search using min-conflicts on the n-queens problem led to a reappraisal of the nature 
and prevalence of "easy" and "hard" problems. Peter Cheeseman et al. (1991) explored the 
difficulty of randomly generated CSPs and discovered that almost all such problems either 
are trivially easy or have no solutions. Only if the parameters of the problem generator are 
set in a certain narrow range, within which roughly half of the problems are solvable, do we 
find "hard" problem instances_  We discuss this phenomenon further in Chapter 7. Koricilige  
(1994) showed that local search is inferior to backtracking search on problems with a certain 
degree of local structure; this led to work that combined local search and inference, such as 
that by Pinkas  and Dechter (1995). Boos  and Tsang (2006) survey local search techniques. 

Work relating the structure and complexity of CSPs originates with Freuder (1985), who 
showed that search on arc consistent trees works without any backtracking. A similar result, 
with extensions to acyclic hypergraphs, was developed in the database community (Beeri  
et al., 1983). Bayardo and Miranker (1994) present an algorithm for tree-structured CSPs 
that runs in linear time without any preprocessing. 

Since those papers were published, there has been a great deal of progress in developing 
more general results relating the complexity of solving a CS P to the structure of its constraint 
graph. The notion of tree width was introduced by the graph theorists Robertson and Seymour 
(1986). Dechter and Pearl (1987, 1989), building on the work of Freuder, applied a related 
notion (which they called induced width) to constraint  satisfaction problems and developed 
the tree decomposition approach sketched in Section 6.5. Drawing on this work and on results 

The basic backjumping  method is due to John Gaschnig (1977, 1979). Kondrak and 
van Bock  (1997) showed that this algorithm is essentially subsumed by forward checking. 
Conflict-directed backjumping was devised by Prosser (1993). The most general and pow- 
erful form of intelligent backtracking was actually developed very early on by Stallman and 
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D  ISTRI  BUTED  
CONSTRAINT 
SANS FAGTIO  

from database theory, Gottlob et al. (1999a, 1999b)  developed a notion, hypertree width, that 
is based on thc  characterization of thc  CSP as a hypergraph.  In addition to showing that any 
CSP with hypertree width w  can be solved in time 0(nw+ 1  log n), they also showed that 
hypertree  width subsumes all previously defined measures of "width" in the sense that there 
are cases where the hypertree  width is bounded and the other measures are unbounded. 

Interest in look-back approaches to backtracking was rekindled by the work of Bayard()  
and Schrag (1997), whose RELSAT algorithm combined constraint learning and backjumping 
and was shown to outperform many other algorithms of the time. This led to AND/OR 
search algorithms applicable to both CSPs and probabilistic reasoning (Dechter and Ma-
teescu,  2007). Brown et al. (1988)  introduce the idea of symmetry breaking in CSPs, and 
Gent et al. (2006) give a recent survey. 

The field of distributed constraint satisfaction looks at solving CSPs when there is a 
collection of agents, each of which controls a subset of the constraint variables. There have 
been annual workshops on this problem since 2000, and good coverage elsewhere (Collin  
et al., 1999; Pearce et al., 2008;  Shoham and Leyton-Brown, 2009). 

Comparing CSP algorithms is mostly an empirical science: few theoretical results show 
that one algorithm dominates another on all problems; instead, we need to run experiments 
to see which algorithms perform better on typical instances of problems. As Hooker (1995) 
points out, we need to be careful to distinguish between competitive testing—as occurs in 
competitions among algorithms based on run time—and scientific testing, whose goal is to 
identify the properties of an algorithm that determine its efficacy on a class of problems. 

The recent textbooks by Apt (2003)  and Dechter (2003), and the collection by Rossi 
et al. (2006) are excellent resources on constraint processing. There are several good earlier 
surveys, including those by Kumar (1992),  Dechter and Frost (2002), and Bartak (2001); and 
the encyclopedia articles by Dechter (1992) and Mackworth (1992). Pearson and leavons  
(1997) survey tractable classes of CSPs, covering both structural decomposition methods 
and methods that rely on properties of the domains or constraints themselves. Kondrak and 
van Beek (1997) give an analytical survey of backtracking search algorithms, and Bacchus 
and van Run (1995) give a more empirical survey_ Constraint programming is covered in the 
books by Apt (2003) and Fruhwirth and Abdennadher  (2003). Several interesting applications 
are described in the collection edited by Freuder and Mackworth (1994).  Papers on constraint 
satisfaction appear regularly in Artificial Intelligence and in the specialist journal Constraints. 
The primary conference venue is the International Conference on Principles and Practice of 
Constraint Programming, often called CP. 

EXERCISES 

6.1 How many solutions are there for the map-coloring problem in Figure 6.1? How many 
solutions if four colors are allowed? Two colors? 

6.2 Consider the problem of placing k knights on an is x as chessboard such that no two 
knights are attacking each other, where k is given and k <  rd.  
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a. Choose a CSP formulation. In your formulation, what are the variables? 
b. What are the possible values of each variable? 
c. What sets of variables are constrained, and how? 
d. Now consider the problem of putting as many knights as possible on the board with-

out any attacks. Explain how to solve this with local search by defining appropriate 
ACTIONS and RESULT functions and a sensible objective function. 

63 Consider the problem of constructing (not solving) crossword puzzles• 5  fitting words 
into a rectangular grid. The grid, which is given as part of the problem, specifies which 
squares are blank and which are shaded. Assume that a list of words (i.e., a dictionary) 
is provided and that the task is to fill in the blank squares by using any subset of the list. 
Formulate this problem precisely in two ways: 

a. As a general search problem. Choose an appropriate search algorithm and specify a 
heuristic function. Is it better to fill in blanks one letter at a time or one word at a time? 

b. As a constraint satisfaction problem. Should the variables be words or letters? 
Which formulation do you think will be better? Why? 

6.4 Give precise formulations for each of the following as constraint satisfaction problems: 

a. Rectilinear floor-planning: find non-overlapping places in a large rectangle for a number 
of smaller rectangles. 

b. Class scheduling: There  is a fixed number of professors and classrooms, a list of classes 
to be offered, and a list of possible time slots for classes. Each professor has a set of 
classes that he or she can teach. 

c. Hamiltonian tour: given a network of cities connected by roads, choose an order to visit 
all cities in a country without repeating any. 

63 Solve the cryptarithmetic problem in Figure 6.2 by hand, using the strategy of back-
tracking with forward checking and the MRV and least-constraining-value heuristics. 

6.6 Show how a single ternary constraint such as "A +  B = C" can be turned into three 
binary constraints by using an auxiliary variable. You may assume finite domains. (Hint• 
Consider a new variable that takes on values that are pairs of other values, and consider 
constraints such as "X is the first element of the pair Y.") Next, show how constraints with 
more than three variables can be treated similarly. Finally, show how unary constraints can be 
eliminated by altering the domains of variables. This completes the demonstration that any 
CSP can be transformed into a CSP with only binary constraints. 

6.7 Consider the following logic puzzle: In five  houses, each with a different color, live five 
persons of different nationalities, each of whom prefers a different brand of candy, a different 
drink, and a different pet. Given the following facts, the questions to answer are 'Where does 
the zebra live, and in which house do they drink water?" 

Ginsberg it al. (1990) discuss several methods for constructing crossword puzzles. Littman it at (1999) tackle 
the harder problem of solving them. 
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The Englishman lives in the red house. 
The Spaniard owns the dog. 
The Norwegian lives in the first house on the left. 
The green house is immediately to the right of the ivory house. 
The man who eats Hershey bars lives in the house next to the man with the fox. 
Kit Kats are eaten in the yellow house. 
The Norwegian lives next to the blue house. 
The Smarties eater owns snails. 
The Snickers eater drinks orange juice. 
The Ukrainian drinks tea. 
The Japanese eats Milky Ways. 
Kit Kats are eaten in a house next to the house where the horse is kept. 
Coffee is drunk in the green house. 
Milk is drunk in the middle house. 

Discuss different representations of this problem as a CSP. Why would one prefer one repre-
sentation over another? 

6.8 Consider the graph with 8  nodes AI,  A2, Al, A4, H,  T, Fr , F2.  A is connected to 
A,+i  for all  each A i  is connected to H, H is connected to T, and T is connected to each 
F,.  Find a 3-coloring of this graph by hand using the following strategy: backtracking with 
conflict-directed backjurnping,  the variable order AL, H, A4, Fl ,  A2, F2, A3, T, and the 
value order R.,G,  B. 

6.9 Explain why it is a good heuristic to choose the variable that is most constrained but the 
value that is least constraining in a CSP search. 

6.10 Generate random instances of map-coloring problems as follows: scatter n points on 
the unit square; select a point X at random, connect X by a straight line to the nearest point 
Y such that X is not already connected to Y and the line crosses no other line; repeat the 
previous step until no more connections are possible. The points represent regions nn  the 
map and the lines connect neighbors. Now try to find k-colorings of each map, for both 
k = 3 and k =4, using min-conflicts, backtracking, backtracking with forward checking, and 
backtracking with MAC. Construct a table of average run times for each algorithm for values 
of n up to the largest you can manage Comment on your results. 

6.11 Use the AC-3 algorithm to show that arc consistency can detect the inconsistency of 
the partial assignment { WA = green, V  = red} for the problem shown in Figure 6.1. 

6.12  What is  the worst-case complexity of running AC-3 on a tree-structured CSP? 

6.13 AC-3 puts back on the queue every arc (Xk , Xi ) whenever any value is deleted from 
the domain of X,,  even if each value of Xk is consistent with several remaining values of X,.  
Suppose that, for every arc (Xk ,  X i ). we keep track of the number of remaining values of X,  
that ate consistent with each value of Xk .  Explain how to update these numbers  efficiently 
and hence show that arc consistency can be enforced in total time D(n2d2),  
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6.14 The TREE-CSP-SOLVER  (Figure 6.10) makes arcs consistent starting at the leaves and 
working backwards towards the root. Why does it do that What would happen if it went in 
the opposite direction'? 

6.15 We introduced Sudoku as a CSP to be solved by search over partial assignments be- 
cause that is the way people generally undertake solving Sudoku problems_ It is also possible, 
of course, to attack these problems with local search over complete assignments. How well 
would a local solver using the min-conllieLs  hcurisLic do on Sudoku  problems? 

6.16 Define in your own words the terms constraint, backtracking search, arc consistency, 
backjumping, min-conflicts, and cycle cutset. 

6.17 Suppose that a graph is known to have a cycle cutset of no more than l nodes. Describe 
a simple algorithm for finding a minimal cycle cutset whose run time is not much more than 
0 (a'  ) for a CSP with n variables. Search the literature for methods for finding approximately 
minimal cycle cutsets in time that is polynomial in the size of the cutset.  Does the existence 
of such algorithms make the cycle cutset method practical? 



In which we design agents that can form representations ofa complex world, use a 
process of inference to derive new representations about the world, and use these 
new representations to deduce what to do. 
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KNOWLEDGE-BASED  
AGENTS 
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Humans, it seems, know things; and what they know helps them do things. These are 
not empty statements. They make strong claims about how the intelligence of humans is 
achieved—not by purely reflex mechanisms but by processes of reasoning that operate on 
internal representations of knowledge.  In AI, this approach to intelligence is embodied in 
knowledge-based agents. 

The problem-solving agents of Chapters 3 and 4 know things, but only in a very limited. 
inflexible sense. For example, the transition model for the 8-puzzle—knowledge of what the 
actions do—is hidden inside the domain-specific code of the RESULT function. It can be 
used to predict the outcome of actions but not to deduce that two tiles cannot occupy the 
same space or that states with odd parity cannot be reached from states with even parity. The 
atomic representations used by problem-solving agents are also very limiting. In a partially 
observable environment, an agent's only choice for representing what it knows about the 
current state is to list all possihle  concrete states—a hopeless prospect in large environments_ 

Chapter 6 introduced the idea of representing states as assignments of values to vari- 
ables; this is a step in the right direction, enabling some parts of the agent to work in a 
domain-independent way and allowing for more efficient algorithms. In this chapter and 
those that follow, we take this step to its logical conclusion, so to speak—we develop logic 
as a general class of representations to support knowledge-based agents. Such agents can 
combine and recombine information to suit myriad purposes. Often, this process can be quite 
far removed from the needs of the moment—as when a mathematician proves a theorem or 
an astronomer calculates the earth's life expectancy. Knowledge-based agents can accept new 
tasks in the form of explicitly described goals; they can achieve competence quickly by being 
told or learning new knowledge about the environment; and they can adapt to changes in the 
environment by updating the relevant knowledge. 

We begin in Section 7.1 with the overall agent design. Section 7.2 introduces a sim-
ple new environment, the wumpus world, and illustrates the operation of a knowledge-based 
agent without going into any technical detail. Then we explain the general principles of logic 

234 
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in Section 7.3 and the specifics of propositional logic in Section 7.4. While less expressive 
than first-order logic (Chapter 8), propositional logic illustrates all the basic concepts of 
logic; it also comes with well-developed inference technologies, which we describe in sec- 
tions 7.5  and 7.6. Finally .  Section 7.7 combines the concept of knowledge-based agents with 
the technology of propositional logic to build some simple agents for the wumpus world. 

7. 1  KNOWLEDGE-BASED AGENTS 

KNOWLEDGE BASE 

SENTENCE 

KNOWLEDGE 
RE'RESENTATION  
LANGUAGE 
AXIOM 

INFERENCE 

BACKGROUND 
KNOWLEDGE 

The central component of a knowledge-based agent is its knowledge base, or KB. A knowl 
edge base is a set of sentences. (Here "sentence" is used as a technical term. It is related 
but not identical to the sentences of English and other natural languages.) Each sentence is 
expressed in a language called a knowledge representation language and represents some 
assertion about the world, Sometimes we dignify a sentence with the name axiom, when the 
sentence is taken as given without being derived from other sentences. 

There must be a way to add new sentences to the knowledge base and a way to query 
what is known. The standard names for these operations are TELL and ASK, respectively.  
Both operations may involve inference—that is, deriving new sentences from old. Inference 
must obey the requirement that when one A SKs a question of the knowledge base, the answer 
should follow from what has been told (or TELLed) to the knowledge base previously. Later 
in this chapter, we will be more precise about the crucial word "follow." For now, take it to 
mean that the inference process should not make things up as it goes along. 

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our agents, 
it takes a percept as input and returns an action. The agent maintains a knowledge base, KB, 
which may initially contain some background knowledge. 

Each time the agent program is called, it does three things. First, it TELLS the knowl-
edge base what it perceives. Second, it ASKS the knowledge base what action it should 
perform_  In the process of answering this query, extensive reasoning may he done about 
the current state of the world, about the outcomes of possible action sequences, and so on. 
Third, the agent program TELLS the knowledge base which action was chosen, and the agent 
executes the action. 

The details of the representation language are hidden inside three functions that imple-
ment the interface between the sensors and actuators on one side and the core representation 
and reasoning system on the other. MAKE-PERCEPT- SENTENCE constructs a sentence as-
serting that the agent perceived the given percept at the given  time. MAKE - ACTION -QUERY 
constructs a sentence that asks what action should be done at the current time. Finally, 
MAKE -ACTION - SENTENCE constructs a sentence asserting that the chosen action was ex-
ecuted. The details of the inference mechanisms are hidden inside TELL and ASK. Later 
sections will reveal these details. 

The agent in Figure 7.1 appears quite similar to the agents with internal state described 
in Chapter 2. Because of the definitions of TELL and ASK, however, the knowledge-based 
agent is not an arbitrary program for calculating actions. It is amenable to a description at 



26 Chapter 7. Logical Agents 

function KE-AGENT(percept)  returns an action 
persistent: KB,  a knowledge base 

t, a counter, initially 0, indicating time 

TELL(KB, MAKE-PERCEPT-SENTENCE( percept,  t)) 
action  — ASK(KB,MAKE-ACTION- QUERY(  )) 

TELL(KB, MAKE-ACTION-SENTENCE(aclion, t))  
t —t+1  
return action 

Figure 7.1  A generic knowledge-based agent Given a percept, the agent adds the percept 
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge 
base that it has in fact taken that action. 

KNOWLEOGELEVEL  the knowledge level, where we need specify only  what the agent knows and what its goals 
are, in order to fix its behavior. For example, an automated taxi might have the goal of 
taking a passenger from San Francisco to Mann County and might know that the Golden 
Gate Bridge is the only link between the two locations. Then we can expect it to cross the 
Golden Gate Bridge because  it knows that that will achieve  its goal. Notice that this analysis 

LnEL6AFNrAr"'"  is independent  of how the taxi works at the unplementation  level. It doesn't matter whether  
its geographical knowledge is implemented as linked lists or pixel maps, or whether it reasons 
by manipulating  strings  of symhols  stored in registers or by pmpagating noisy signals in a.  
network of neurons. 

A knowledge-based agent can be  built simply by TELLing it what it needs to know.  
Starting with an empty knowledge base, the agent designer can TELL sentences one by one 

aitiasanvi  until the agent knows how to operate in its environment. This is called the declarative ap-
proach to system building_  In contrast,  the procedural approach encodes desired  behaviors 
directly as program code. In the 1970s and I9$Os,  advocates of the two approaches engaged 
in heated  debates. We now understand that a successful agent often combines  both declarative 
and procedural elements in its design, and that declarative knowledge can often be compiled 
into more efficient  procedural code. 

We can also provide a knowledge-based agent with mechanisms that allow it to learn 
for itself. These mechanisms, which are discussed in Chapter 18, create general knowledge 
about the environment from a series of percepts. A learning agent can be fully autonomous. 

7.2 THE WUMPUS WORLD 

In this section we describe an environment in which knowledge-based agents can show then 
WLIUPUS  WORLD 
 worth. The wumpus world is a cave consisting of rooms connected by passageways. Lurking 

somewhere in the cave is the terrible  wmnpus, a beast that eats anyone who entei-s  its room. 
The wumpus can be shot by an agent, but the agent has only one arrow.  Some rooms contain 
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bottomless pits that will trap anyone who wanders into these rooms (except for the wumpus, 
which is too big to fall in). The only mitigating feature of this bleak environment is the 
possibility of finding a heap of gold. Although the wumpus world is rather tame by modem 
computer game standards, it illustrates some important points about intelligence. 

A sample wumpus world is shown in Figure 7.2. The precise definition of the task 
environment is given, as suggested in Section 2.3, by the PEAS description: 

• Performance measure: +1000  for climbing out of the cave with the gold, – 1000  for 
falling into a pit or being eaten by the wumpus, –1 for each action taken and –10 for 
using up the arrow. The game ends either when the agent dies or when the agent climbs 
out of the cave. 

• Environment: A 9  x 4 grid of rooms. The agent always starts in the square labeled 
[1,1],  facing to the right. The locations of the gold and the wumpus are chosen ran-
domly, with a uniform distribution, from the squares other than the start square. In 
addition, each square other than the start can he a pit, with probability 0.2.  

• Actuators: The agent can move Forward, TurnLeft by 90°,  or Turnftight  by 90°.  The 
agent dies a miserable death if it enters a square containing a pit or a live wumpus. (it 
is safe, albeit smelly, to enter a square with a dead wumpus.)  If an agent tries to move 
forward and bumps into a wall, then the agent does not move. The action Grab can be 
used to pick up the gold if it is in the same square as the agent. The action Shoot can 
be used to fire an arrow in a straight line in the direction the agent is facing. The arrow 
continues until it either hits (and hence kills) the wumpus or hits a wall. The agent has 
only one arrow, so only the first Shoot action has any effect. Finally_  the action Climb 
can be used to climb out of the cave, but only from square [1,1]. 

• Sensors: The agent has five sensors. each of which gives a single bit of information: 
– In the square containing the wumpus and in the directly (not diagonally) adjacent 

squares, the agent will perceive a Stench. 
– In the squares directly adjacent to a pit, the agent will perceive a Breeze. 
– In the square where the gold is, the agent will perceive a Glitter. 

– When an agent walks into a wall, it will perceive a Bump.  
– When the wumpus  is killed, it emits a woeful Scream that can be perceived any-

where in the cave. 
The percepts will be given to the agent program in the form of a list of five symbols; 
for example, if there is a stench and a breeze, but no glitter, bump, or scream, the agent 
program will get [Stench,  Breeze, None, None, None]. 

We can characterize the wumpus environment along the various dimensions given in Chap-
ter 2.  Clearly, it is discrete, static, and single-agent. (The wumpus doesn't move, fortunately.) 
It is sequential, because rewards may come only after many actions are taken. It is partially 
observable, because some aspects of the state are not directly perceivable: the agent's lo-
cation, the wumpus's state of health, and the availability of an arrow. As for the locations 
of the pits and the wumpus:  we could treat them as unobserved parts of the state that hap-
pen to be immutable—in which case, the transition model for the environment is completely 
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known; or we could say that the transition model itself is unknown because the agent doesn't 
know which Forward actions are fatal—in which case, discovering the locations of pits and 
wumpus completes the agent's knowledge of the transition model. 

For an agent in the environment, the main challenge is its initial ignorance of the con- 
figuration of the environment; overcoming this ignorance seems to require logical reasoning. 
In most instances of the wumpus world, it is possible for the agent to retrieve the gold safely. 
Occasionally, the agent must choose between going home empty-handed and risking death to 
find the gold. About 21%  of the environments are utterly unfair, because the gold is in a pit 
or surrounded by pits. 

Let us watch a knowledge-based wumpus agent exploring the environment shown in 
Figure 7.2. We use an informal knowledge representation language consisting of writing 
down symbols in a grid (as in Figures 7.3 and 7.4). 

The agent's initial knowledge base contains the piles of the environment, as described 
previously; in particular, it knows that it is in [1,1] and that [1,1] is a safe square; we denote 
that with an "A" and "OK," respectively, in square [1,1]. 

The first percept is :None,  None, None, None, None], from which the agent can con-
clude that its neighboring squares, [1,2] and [2,1], are free of dangers—they are OK. Fig-
ure 7.3(a) shows the agent's state of knowledge at this point. 

A cautious agent will move only into a square that it knows to be OK. Let us suppose 
the agent decides to move forward to [2,1].  The agent perceives a breeze (denoted by "B") in 
[2,1], so there must be a pit in a neighboring square. The pit cannot be in [1,1], by the rules of 
the game, so there must be a pit in [2,2] or [3,1] or both. The notation "PT' in Figure 7.3(b) 
indicates a possible pit in those squares. At this point, there is only one known square that is 
OK and that has not yet been visited. So the prudent agent will turn around, go back to [1,1], 

and then proceed to [1,2]. 
The agent perceives a stench in [1,2], resulting in the state of knowledge shown in 

Figure 7.4(a). The stench in [1,2] means that there must be a wumpus nearby. But the 
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Figure 7.3 The first step taken by the agent in the wurnpus  world. (a) The initial sit- 
uation, after percept [None, None, None, None, None]. (b)  After one move, with percept 
[None, Breeze, None, None, None]. 
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Figure 7.4 Two later stages in the progress of the agent. (a) After the third move, 
with percept [Stench, None, None, None, None]. (b)  After the fifth move, with percept 
[Stench, Breeze, Glitter, None, None]. 
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wumpus cannot be in [IA, by the rules of the game, and it cannot be in [2,2] (or the agent 
would have detected a stench when it was in [2,1]). Therefore, the agent can infer that the 
wumpus  is in [1,3]. The notation W!  indicates this inference. Moreover, the lack of a breeze 
in [1,2]  implies that there is no pit in [2,2]. Yet the agent has already inferred that there must 

be a pit in either [2,2] or [3,1], so this means it must be in [3,1]. This is a fairly difficult 
inference, because it combines knowledge gained at different times in different places and 

relies on the lack of a percept to make one crucial step. 
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The agent has now proved to itself that there is neither a pit nor a wurnpus  in [2,2), so it 
is OK to move there. We do not show the agent's state  of knowledge at [2,2];  we just assume 
that the agent turns and moves to [2,3], giving us Figure 7.4(b). In [2,3], the agent detects a 
glitter, so it should grab the gold and then return home. 

Note that in each case for which the agent draws a conclusion from the available in-
formation, that conclusion is guaranteed to be correct if the available information is correct 
This is a fundamental property of logical reasoning In the rest of this chapter, we describe 
how to build logical agents that can represent information and draw conclusions such as those 
described in the preceding paragraphs. 

7.3 LOGIC 

SYNTAX 

SEMANTICS  

TRUTH 

POSSIBLE WORLD 

MODEL 

SATISFACTION 

ENTAILMENT 

This section summarizes the fundamental concepts of logical representation and reasoning. 
These beautiful ideas are independent of any of logic's particular forms. We therefore post-
pone the technical details of those forms until the next section, using instead the familiar 
example of ordinary arithmetic. 

In Section 7.1, we said that knowledge bases consist of sentences. These sentences 
are expressed according to the syntax of the representation language, which specifies all the 
sentences that are well formed. The notion of syntax is clear enough in ordinary arithmetic: 
"x y = 4" is a well-formed sentence, whereas "x4y-P  =" is not. 

A logic must also define the semantics or meaning of sentences. The semantics defines 
the truth of each sentence with respect to each possible world. For example, the semantics 
for arithmetic specifies that the sentence "x y = 4" is true in a world where x is 2 and 
is 2, but false in a world where x is 1 and y is 1. In standard logics, every sentence must be 
either true or false in each possible world—there is no "in between." 1  

When we need to be precise, we use the term model in place of ''possible  world." 
Whereas possible worlds might be thought of as (potentially) real environments that the agent 
might or might not be in, models are mathematical abstractions, each of which simply fixes 
the truth or falsehood of every relevant sentence. Informally, we may think of a possible world 
as, for example, having  x men and y women sitting at a table playing bridge, and the sentence 
x + y — 1 is true when there are four people in total. Formally, the possible models are just 
all possible assignments of real numbers to the variables x and y. Each such assignment fixes 
the truth of any sentence of arithmetic whose variables are  x and y. If a sentence a is true in 
model m, we say that m satisfies a or sometimes m is a model of a. We use the notation 
M(a) to mean the set of all models of a. 

Now that we have a notion of truth, we are ready to talk about logical reasoning. This 
involves the relation of logical entailment between sentences—the idea that a sentence fol-
lows logically from another sentence. In mathematical notation, we write 

Fuzzy logic, discussed in Chapter 14, allows for degrees of trial.  
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Figure 7.5 Possible models for the presence of pits in squares [1,2], 12,2], and [3,1]. The 
KB corresponding to the observations of nothing in [1,1]  and a breeze in [2,1] is shown by 
the solid line. (a) Dotted line shows models of at (no pit in [1,2]).  (6)  Dotted line shows 
models of cai  (no pit in [2,2]).  
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to mean that the sentence a entails the sentence 0.  The formal definition of entailment is this: 
a H „3  if and only if, in every model in which to is true, 0  is also true. Using the notation just 
introduced, we can write 

H  %  if and only if M(a)  C  M(,)  . 

(Note the direction of the C  here!  if a 
if 

 ,(3,  then a is a srmnger assertion than /3!  it rules out 
more possible worlds.) The relation of entailment is familiar from arithmetic; we are happy 
with the idea that the sentence x  = O entails the sentence xy  = O.  Obviously, in any model 
where x is zero, it is the case that xy  is zero (regardless of the value of y). 

We can apply the same kind of analysis to the wumpus-world reasoning example given 
in the preceding section. Consider the situation in Figure 7.3(b): the agent has detected 
nothing in [1,1] and a breeze in [2,1].  These percepts, combined with the agent's knowledge 
of the rules of the wumpus world, constitute the KB. The agent is interested (among other 
things) in whether the adjacent squares [1,2], [2,2], and [3,1] contain pits. Each of the three 
squares might or might not contain a pit, so (for the purposes of this example) there are 2 3  = 8  
possible models. These eight models are shown in Figure 7.5. 2  

The KB can be thought of as a set of sentences or as a single sentence that asserts all 
the individual sentences. The KB is false in models that contradict what the agent knows— 
for example, the KB is false in any model in which [1,2] contains a pit, because there is 
no breeze in [1,1].  There are in fact just three models in which the KB is true, and these are 

2  Although the figure shows the models as partial wumpus worlds, they are really nothing more than assignments 
of true and false to the sentences "there is a pit in 11.21"  etc. Models, in the mathematical sense, do not need to 
have 'orrible  'airy wumpuses in them. 
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COMPLETENESS 

shown surrounded by a solid line in Figure 7.5. Now let us consider two possible conclusions: 
at = "There is  no pit in [1,21.-  
ct2  = "There is no pit in [2,2] " 

We have surrounded the models of a l  and or2  with dotted lines in Figures 7.5(a) and 7.5(h). 
respectively_  By inspection, we see the following: 

in every model in which KB is true, a l  is also true. 
Hence, KB at  : there is no pit in [1,2]. We can also see that 

in sonic models in which KB is true, a2 is false. 
Hence, KB or2..  the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclude 
that there is a pit in [2,2].) 

The preceding example not only illustrates entailment but also shows how the definition 
of entailment can be applied to derive conclusions—that is, to carry out logical inference. 
The inference algorithm illustrated in Figure 7.5 is called model checking, because it enu- 
merates all possible models to check that a is true in all models in which KB is true, that is. 
that 111(K13)  C (a)_  

In understanding entailment and inference, it might help to think of the set of all conse-
quences of KB as a haystack and of o as a needle. Entailment is like the needle being in the 
haystack; inference is like finding it. This distinction is embodied in some formal notation: if 
an inference algorithm i can derive cr  from KB, we write 

KB 1-i  , 

which is pronounced "cr  is derived from KB by i" or "i derives a from KB." 
An inference algorithm that derives only entailed sentences is called sound or truth. 

preserving. Soundness is a highly desirable property. An unsound inference procedure es-
sentially makes things up as it goes along—it announces the discovery of nonexistent needles. 
It is easy to see that model checking, when it is applicable,4  is a sound procedure_ 

The property of completeness is also desirable: an inference algorithm is complete if 
it can derive any sentence that is entailed. For real haystacks, which arc finite in extent, 
it seems obvious that a systematic examination can always decide whether the needle is in 
the haystack. For many knowledge bases, however, the haystack of consequences is infinite. 
and completeness becomes an important issue. 5  Fortunately, there are complete inference 
procedures for logics that are sufficiently expressive to handle many knowledge bases. 

We have described a reasoning process whose conclusions are guaranteed to be true 
in any world in which the premises are true; in particular, if KB is true in the real world, 
then any sentence cr  derived from KB by a sound inference procedure is also true in the real 
world. So, while an inference process operates on "syntax"—intemal  physical configurations 
such as bits in registers or patterns  of electrical blips in brains—the process corresponds 

3  The agent can calculate the probability that there  is a pit in [2,2]; Chapter 13 shows how. 
4  Model checking works if the space of models is finite—for example, in wumpus  worlds of fixed size, For 
arithmetic, on the other hand, the space of models is infinite: even if we restrict ourselves to the integers, there 
are infinitely many pairs of values for x  and y  in the sentence :71  y = 4. 
5  Compare with the case of infinite search spaces in Chapter 3, where depth-first search is not complete. 
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Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process 
of constructing new physical configurations from old ones. Logical reasoning should en-
sure that the new configurations represent aspects of the world that actually follov,  from the 
aspects that the old configurations represent. 
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to the real-world relationship whereby some aspect of the real world is the cases  by virtue 
of other aspects of the real world being the case. This correspondence between world and 
representation is illustrated in Figure 7.6. 

GROUNDING The final issue to consider is grounding—the connection between logical reasoning 

Ft' 
processes and the real environment in which the agent exists. In particular. how do we know 
that KB is true in the real world? (After all, KB is just "syntax" inside the agent's head.) 
This is a philosophical question about which many, many books have been written. (See 
Chapter 26.)  A simple answer is that the agent's sensors create the connection. For example, 
our wumpus-world  agent has a smell sensor. The agent program creates a suitable sentence 
whenever there is a smell. Then, whenever that sentence is in the knowledge base, it is 
true in the real world. Thus, the meaning and truth of percept sentences are defined by the 
processes of sensing and sentence construction that produce them. What about the rest of the 
agent's knowledge, such as its belief that wumpuses cause smells in adjacent squares?  This 
is not a direct representation of a single percept, but a general rule—derived, perhaps. from 
perceptual experience but not identical to a statement of that experience. General rules like 
this are produced by a sentence construction process called learning, which is the subject 
of Part V. Learning is fallible. It could be the case that wumpuses cause smells except on 
February 29 in leap years, which is when they take their baths. Thus, KB may not be true in 
the real world, but with good learning procedures, there is reason for optimism. 

7.4 PROPOSITIONAL LOGIC: A VERY SIMPLE LOGIC 

PROPOSITIONAL 
LOGIC  We now present a simple but powerful logic called propositional logic. We cover the syntax 

of propositional logic and its semantics—the way in which the truth of sentences is deter-
mined. Then we look at entailment—the relation between a sentence and another sentence 
that follows from it—and see how this leads to a simple algorithm for logical inference. Ev-
erything takes place, of course, in the wumpus  world_ 

 

6  As Wittgenstein (1922) put it in his famous Trartatus:"The  world is everything that is the case." 
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7.4.1 Syntax 

The syntax of propositional logic defines the allowable sentences. The atomic sentences 
consist of a single proposition symbol. Each such symbol stands for a proposition that can 
be true or false. We use symbols that start with an uppercase letter and may contain other 
letters  or subscripts ;  for example: P, Q, R, H71,3 and North. The names are arbitrary but 
are often chosen to have some mnemonic value—we use W1 , 3 to stand for the proposition 
that the wumpus  is in [1,3). (Remember that symbols such as W3,3  are atomic., i.e., W, 1, 
and 3 are not meaningful parts of the symbol.) There are two proposition symbols with fixed 
meanings: True is the always-true proposition and False is the always-false proposition. 
Complex sentences are constructed from simpler sentences, using parentheses and logical 
connectives. There are five connectives in common use: 

(not). A sentence such as —W1,3 is called the negation of W1 , 3. A literal is either an 
atomic sentence (a positive literal) or a negated atomic sentence (a negative literal). 

A (and). A sentence whose main connective is A, such as W1 ,3  A P3 , 1 ,  is called a con-
junction; its parts are the conjuncts. (The A looks like an "A" for "And.")  

V (or). A sentence using V, such as ( Wi,a  A 133,1)V W2,2, is a disjunction of the disjuncts 
( W1,3 A P31) and W22. (Historically, the V comes from the Latin "vet,"  which means 
"or" For most people, it is easier to remember V as an upside-down A.) 
(implies). A sentence such as (14I1,3  A P3,1) —W2,2 is called an  implication (or con- 
ditional). Its premise or antecedent is (W1,3 A P3,1), and its conclusion or consequent 
is —W22. Implications are also known as rules or if—then statement& The implication 
symbol is sometimes written in other books as i or 

<=>  (if and only if The sentence W1,3  er —W2,2 is a biconditional.  Some other books 
write this as 
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Figure 7 7 gives a formal grammar of propositional logic; see page 1060 if you are not 
familiar with the BNF  notation. The BNF  grammar by itself is ambiguous; a sentence with 
several operators can be parsed by the grammar in multiple ways. To eliminate the ambiguity 
we define a precedence for each operator. The "not" operator (–)  has the highest precedence, 
which means that in the sentence –.A A B the  binds most tightly, giving us the equivalent 
of (–.A)  ,A B rather than (A A B). (The notation for ordinary arithmetic is the same: –2 +  4 
is 2, not –6.) When in doubt, use parentheses to make sure of the right interpretation. Square 
brackets mean the same thing as parentheses; the choice of square brackets or parentheses is 
solely to make it easier for a human to read a sentence. 

7.4.2 Semantics 

Having specified the syntax of propositional logic, we now specify its semantics. The se- 
mantics defines the rules for determining the truth of a sentence with respect to a particular 

TRUTH VALLE  model. In propositional logic, a model simply fixes the truth value—true  or .  false—for  ev-
ery proposition symbol. For example, if the sentences in the knowledge base make use of the 
proposition symbols P1 ,2,  P2,2,  and P.3.1,  then one possible model is 

m t  = { 131.2  = false, P22 =,faL9f2 7  P31  = true} .  

TRUTH TALIL  

With three proposition symbols, there are 23  = 8 possible models—exactly those depicted 
in Figure 7_5_  Notice, however, that the models are purely mathematical objects with no 
necessary connection to wumpus  worlds. P1 ,2 is just a symbol; it might mean "there is a pit 
in [1,2i"  or "I'm in Paris today and tomorrow." 

The semantics for propositional logic must specify how to compute the truth value of 
any sentence, given a model. This is done recursively. All sentences are constructed from 
atomic sentences and the five connectives; therefore, we need to specify how to compute the 
truth of atomic sentences and how to compute the truth of sentences formed with each of the 
five connectives. Atomic sentences are easy: 

• True is true in every model and False is false in every model. 
• The truth value of every other proposition symbol must be specified directly in the 

model. For example, in the model nil given earlier, P1 , 2 is false. 
For complex sentences, we have five rules, which hold for any subsentences P and Q in any 
model sri  (here "iff"  means "if and only if"): 

• –P is true iff  P is false in M.  

• P A Q  is true iff both P and Q  are true in m. 
• P V  (2  is true iff  either P or Q is true in m. 
• P =r Q is true unless P is true and Q is false in m.  
• P iz Q is true iff  P and Q are both true or both false in rn.  

The rules can also be expressed with truth tables that specify the truth value of a complex 
sentence for each possible assignment of truth values to its components. Truth tables for the 
five connectives are given in Figure 7.8. From these tables, the truth value of any sentence a 
can be computed with respect to any model m by a simple recursive evaluation. For example, 
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P Q ,P  _F.  A Q P V Q P=Q  P=Q 

false 
false 
true 
true 

false 
true 
false 
true 

true 
true 
false 
false 

false 
false 
false 
true 

false 
true 
true 
true 

true 
true 
false 
true 

true 
false 
false 
true 

Figure 7.S Truth tables for the five logical connectives. To use the table to compute, for 
example, the value of P V Q when P is true and Q is false, first look on the left for the row 
where P is true and Q is false (the third row). Then look in that row under the PV Q column 
to see the result: true. 

the sentence - P1,2 A (P2,2 V P3,1),  evaluated in mi,  gives true A (false V true) = true A 
true = true. Exercise 7.3 asks you to write the algorithm PL-TRUE?(s,  m), which computes 
the truth value of a propositional logic sentence s in a model m. 

The truth tables for "and." "or," and "not" are in close accord with our intuitions about 
the English words. The main point of possible confusion is that P V Q is true when P is true 
or Q is true or both. A different connective, called "exclusive or" ("xor"  for short), yields 
false when both disjuncts are true.?  There is no consensus on the symbol for exclusive or; 
some choices are C./  or  or ED. 

The truth table for may not quite fit one's intuitive understanding of "P implies Q" 
or "if  P then Q." For one thing, propositional logic does not require any relation of causation 
or televaace  between F and Q. The sentence "5 is odd implies Tokyo is the capital of Japan" 
is a true sentence of propositional logic (under the normal interpretation), even though it is 
a decidedly odd sentence of English. Another point of confusion is that any implication is 
true whenever its antecedent is false. For example, "5 is even implies Sam is smart" is true,  
regardless of whether Sam is smart. This seems bizarre, but it makes sense if you think of 
"P = Q" as saying, "If P is true, then I am claiming that Q is true. Otherwise I am making 
no claim." The only way for this sentence to be false is if P is true but Q is false. 

The biconditional, P <=>  Q, is true whenever both P Q and Q  P are true_ In 
English, this is often written as "P if and only if Q." Many of the rules of the wumpus world 
arc best written using . For example, a square is breezy if  a neighboring square has a pit, 
and a square is breezy only if  a neighboring square has a pit. So we need a biconditional, 

B1,1 •#.  (P1,2 V P2,1) , 

where lil  1 means that there is a breeze in [1,1J. 

7.4.3 A simple knowledge base 

Now that we have defined the semantics for propositional logic, we can construct a knowledge 
base for the wumpus world. We focus first on the immutable aspects of the wumpus world, 
leaving the mutable aspects for a later section. For now, we need the following symbols for 
each [x, y] location: 

7  Latin has a separate word, nut, for exclusive  or. 
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Px.y  is true if there is a pit in [x, Y]•  
Wz,y  is true if there is a wumpus in [x, y],  dead or alive. 
By y  is true if the agent perceives a breeze in [x, y].  
Sx,y  is true if the agent perceives a stench in [x,://]-  

The sentences we write will suffice to derive -,P1.2  (there is no pit in [1,2]), as was done 
informally in Section 7.3, We label each sentence R,  so that we can refer to them: 

• There is no pit in [1,  1]:  
Ra  : 

• A square is breezy if and only if there is a pit in a neighboring square. This has to be 
stated for each square; for now, we include just the relevant squares: 

R2 : B1,1 ( P1,2 V .P2,1) . 

R.3  ". B2,1 tZ (Pit_ V .P2,2 V P3,1) - 
• The preceding sentences are true in all wumpus  worlds. Now we include the breeze 

percepts for the first two squares visited in the specific world the agent is in, leading up 
to the situation in Figure 7.3(bi.  

R4 : —4311  .  
R5 : B2,1 • 

7.4.4 A simple inference procedure 

Our goal now is to decide whether KB I— a for some sentence ck.  For example, is .P12  
entailed by our KB? Our first algorithm for inference is a model-checking approach  that is a 
direct implementation of the definition of entailment: enumerate the models, and check that 
a is true in every model in which KB is true. Models are assignments of true or ,False to 
every proposition symbol. Returning to our wumpus-world  example, the relevant proposi-
tion symbols are 131,1,  B2.1,  -P11,  P1,2, P2,1 ,  P2.2,  and Pki.  With seven symbols, there are 
2 7 =  128 possible models; in three of these, KB is true (Figure 7.9). In those three models, 

P1,2  is true, hence there is no pit in [1,2]_  On the nther hand, P2,2  is true  in two of the three 
models and false in one, so we cannot yet tell whether there is a pit in [2,2]-  

Figure 7.9 reproduces in a more precise form the reasoning illustrated in Figure 7.5. A 
general algorithm for deciding entailment in propositional logic is shown in Figure 7,10.  Like 
the BACKTRACKING-SEARCH  algorithm on page 215, TT-ENTAILS?  performs a recursive 
enumeration of a finite space of assignments to symbols. The algorithm is sound because it 
implements directly the definition of entailment, and complete because it works for any KB 
and a and always terminates—there are only finitely many models to examine. 

Of course, "finitely many" is not always the same as "few." If KB and a contain ri  
symbols in all, then there are 2n  models. Thus, the time complexity of the algorithm is 
0(2").  (The space complexity is only O N because the enumeration is depth-first.) Later in 
this chapter we show algorithms that are much more efficient in many cases. Unfortunately, 
propositional entailment is co-NP-complete (i.e., probably no easier than NP-complete—see 
Appendix A), so every known inference algorithm for propositional logic has a worst-case  

complexity that is exponential in the size of the input. 
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B1,1 B2,1 P1,1 P1,2  P2,1 P2,2 P3,1  R1 R2 R3  R4 R5 KB 

false 
false 

.  .  
false 

false 
false 

true 

false 
false 

.  
false 

false 
false 

.  
false 

false 
false 

false 

false 
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false 
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false 
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false 
false 

false 
true 
true 

true 
false 
true 

true 
true 
true 

`ei  

true 
true 
true 

false 
-  .  .  

true 

true 
.  .  .  

true 

false 
-  .  .  

true 

false 

true 
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false 
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true 

true 
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false 
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true 

false 
•  .  .  

true 

true 
-  .  .  

false 

true 
•  .  .  

true 

false 
-  .  .  

false 

Figure 7.9 A truth table constructed for the knowledge base given in the text KB is true 
if RI  through R5 are true, which occurs in just 3 of the 128 rows the ones underlined in the 
right-hand column). In all 3 rows, P1,2 is false, so there is no pit in [1,21. On the other hand, 
there might (or might not) be a pit in [2,21. 

function TT-ENTAlLS?(KB,  a) returns true or false 
inputs: KB, the knowledge base, a sentence in propositional logic 

a, the query, a sentence in propositional logic 

symbols  a list of the proposition symbols in KB and a 
return TT-CHECK-ALL( KB , a, symbols, {}) 

function  TT-CHECK-ALL(KB,  a, symbols, model) returns true or false 
if EMPTY?(symbols)  then 

if PL -TRUE?(KB,  model) then return PL -TRUE?(ct,  model) 
else return true //  when KB is false, always return true 

else do 
P Fats -r(symbols)  
rest 4— REST(symbols)  
return (TT-CHECK-ALL(KB,  0,  rest, model U {P = true}) 

and 
TT-CHECK-M..(KB,  , rest, model U {P = false })) 

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. 
(TT stands for truth table.) PL-TRUE?  returns true if a sentence holds within a model. The 
variable model represents a partial model—an assignment to some of the symbols. The key- 
word "and" is used here as a logical operation on its two arguments, returning true or false. 
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(a A /3) (,0  A a) commutativity  of A 
(a V /3) (0  V a) commutativity of V 

((a A ,(3)  A 7) (a A (B  A 7))  associativity of A 
((a V 0) V 7) (a V (0  V 7))  associativity of V 

a double-negation elimination 
(a 4  /3) (–/3  4  –, a)  contraposition 
(a /3) (–a V 0)  implication elimination 

<=>. ((a = 0)  A (/3 a)) hiconditional elimination 
–.(a  A 0) (–a V –,,(3)  De Morgan 
–.( aV  13)  =  (–a ll –,f3)  De Morgan 

(a A (0  V 7)) ((a A 3) V (a A 7))  distributivity  of A over V 
(a V (0  A 7)) ((a V  0)  A (a V 7))  distributivity of V over A 

Figure 7.11 Standard logical equivalences. The symbols a, 13,  and -y  stand for arbitrary 
sentences of propositional logic. 

7.5 PROPOSITIONAL THEOREM PROVING 

THEOREM PROVING 

LOSECAL  
FC.JIVAL  EMT  

VALIDITY 

TAUTOLOGY 

DIDLIGTIDN  
THEOREM 

So far, we have shown how to determine entailment by model checking: enumerating models 
and showing that the sentence must hold in all models. In this section, we show how entail-
ment can be done by theorem proving—applying rules of inference directly to the sentences 
in our knowledge base to construct a proof of the desired sentence without consulting models. 
If the number of models is large but the  length of the proof is short, then theorem proving can 
be more efficient than model checking. 

Before we plunge into the details of theorem-proving algorithms, we will need some 
additional concepts related to entailment. The first concept is logical equivalence: two sen-
tences a and 0  are logically equivalent if they are true in the same set of models. We write 
this as a 11.  For example, we can easily show (using tnith  tables) that P A and Q A P 
are logically equivalent; other equivalences are shown in Figure 7.11. These equivalences 
play much the same role in logic as arithmetic identities do in ordinary mathematics. An 
alternative definition of equivalence is as follows: any two sentences a and 0  are equivalent 
only if each of them entails the other: 

if and only if Et  H  0  and fi  if  . 

The second concept we will need is validity. A sentence is valid if it is true in all models. For 
example, the sentence P V .P  is valid. Valid sentences are  also known as tautologies—they 
are necessarill ,  true. Because the sentence True is true in all models, every valid sentence 
is logically equivalent to True What good are valid sentences? From our definition of 
entailment, we can derive the deduction theorem, which was known to the ancient Greeks: 

For any sentences a and = /3  if and only if the sentence (a fi  ) is valid. 

(Exercise 7.5 asks for a proof.) Hence, we can decide if a /3  by checking that (a 0)  is 
true in every model—which is essentially what the inference algorithm in Figure 7.10 does- 
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or by proving that (or 3) is equivalent to True. Conversely, the deduction theorem states 
that every valid implication sentence describes a legitimate inference. 

SADSRABILRY The final concept we will need is satisfiability. A sentence is satisfiable if it is true 
in, or satisfied by, some model. For example, the knowledge base given earlier, (RI A /12  A 
RI  A R4 A R5), is satisfiable because there are three models in which it is true, as shown 
in Figure 7.9. Satisfiability can be checked by enumerating the possible models until one is 
found that satisfies the sentence. The problem of determining the satisfiability  of sentences 

SAT  in propositional logic—the SAT problem—was the first problem proved to be NP-complete.  
Many problems in computer science are really satisfiability  problems. For example all the 
constraint satisfaction problems in Chapter 6 ask whether the constraints are satisfiable by 
sonic assignment. 

Validity and satisfiability  are of course connected: a is valid iff –,cr  is unsatisfiable; 
contrapositively,  cr  is satisfiable iff is not valid. We also have the following useful result: 

11  if and  only if the sentence (a A 73)  is unsatisfiable  

Proving 3  from a by checking the unsatisfiability  of (a A nO)  corresponds exactly to the 
standard mathematical proof technique of reductio ad absurd um (literally, "reduction to an 
absurd thing"), It is also called proof by refutation or proof by contradiction. One assumes a 
sentence 3 to be false and shows that this leads to a contradiction with known axioms a. This 
contradiction is exactly what is meant by saying that the sentence (a A –0) is unsatisfiable. 

7.5.1 Inference and proofs 

INFERENCE RULES This section covers inference rules that can be applied to derive a proof—a chain of conclu- 
PROOF sions that leads to the desired goal. The best-known rule is called Modus Amiens (Latin for 
MODUS PONENS mode that affirms) and is written 

)3, a 

AND-EL IMINATION  

The notation means that, whenever any sentences of the form a /3 and a are given, then 
the sentence 3 can be inferred. For example, if (  WumpusAhead  A WumpusAlim) Shoot. 
and ( WumpusAhend  A WurnpusAlive)  are given, then Shoot can be inferred. 

Another useful inference rule is And-Elimination, which says that, from a conjunction, 
any of the conjuncts can be inferred: 

a A .3  
cr  

For example, from ( WurnpusAhead  A WumpusAlive),  WumpusAlive  can be inferred. 
By considering the possible truth values of a and 0,  one can show easily that Modus 

Ponens  and And-Elimination are sound once and for all. These rules can then be used in 
any particular instances where they apply, generating sound inferences without the need for 
enumerating models. 

All of the logical equivalences in Figure 7.11 can be used as inference rules. For exam-
ple,  the equivalence for biconditional elimination yields the two inference rules 

EDUCTO  AD 
ABSURDUM  
R ERITATION  

CONTRADICION  

a <=>  
and 

(a = 0)  A C3 
4=>-  (cY 13 ) A (13  te ")  
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Not all inference rules work in both directions like this. For example, we cannot run Modus 
Poncns  in the opposite direction to obtain a• = fl  and oi  from /3.  

Let us see how these inference rules and equivalences can be used in the wumpus world. 
We start with the knowledge base containing Ri through R5  and show how to prove 
that is, there is no pit in [1,2]. First, we apply biconditional elimination to R2 to obtain 

R.6  : ( B1,1  = (.131,2V  P2,1))  A (('1,2  V P2,1) = 131,1)  •  
Then we apply And-Elimination to 116  to obtain 

R7 :  O( P1,2  V P24)  = Bi,i)  •  

Logical equivalence for contrapositives gives 

R8  : —1( Pi t 2  V P2 , 0)  . 

Now we can apply Modus Pollens  with Rs  and the percept RA  (i.e.,  —43 1 , 1 ),  to obtain 

R9  : —.(131,2  V P2,1) • 

Finally, we apply De Morgan's rule, giving the conclusion 

Rao  :  —P1,2 A —'P2.1  - 
That is, neither [1,2]  nor [2,1] contains a pit. 

We found this proof by hand, but we can apply any of the search algorithms in Chapter 3 
to find a sequence of steps that constitutes a proof. We just need to define a proof problem as 
follows: 

MCNOTONICITY  

• INITIAL STATE: the initial knowledge base. 

• ACTIONS: the set of actions consists of all the inference rules applied to all the sen-
tences that match the top half of the inference rule. 

• RESULT: the result of an action is to add the sentence in the bottom half of the inference 
rule. 

• GOAL: the goal is a state that contains the sentence we are trying to prove. 
Thus, searching for proofs is an alternative to enumerating models. In many practical cases 
finding a proof can he more efficient because the proof can ignore irrelevant propositions, no 
matter how many of them there are. For example, the proof given earlier leading to —4312  A 
—T2 , 1  does not mention the propositions B2 , 1,  P1i ,  P22, or Pu.  They can be ignored 
because the goal proposition, P1,2,  1,2,  appears only in sentence R2; the other propositions in R2 
appear only in R4 and /12;  so R I ,  Ra,  and )7,5  have nn  hearing nn  the proof The same would 

hold even if we added a million more sentences to the knowledge base; the simple truth-table 
algorithm, on the other hand, would be overwhelmed by the exponential explosion of models. 

One final property of logical systems is monotonicity, which says that the set of en-
tailed sentences can only increase as information is added to the knowledge base For any 
sentences ce  and 

if  KB a then KB A a . 

  

NOIIMOnOtOnie  logics. which violate the monotonicity  property, capture a common property of human rea-
soning: changing one's mind. They are discussed in Section 12.6.  
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For example, suppose the knowledge base contains the additional assertion .3  stating that there 
arc exactly eight pits in the world. This knowledge might help the agcnt draw additional con-
clusions, but it cannot invalidate any conclusion a already inferred—such as the conclusion 
that there is no pit in [1,2]. Monotonicity  means that inference rules can be applied whenever 
suitable premises are found in the knowledge base—the conclusion of the rule must follow 
regardless of what else is in the knowledge base.  

7.5.2 Proof by resolution 

We have argued that the inference rules covered so far are sound, but we have not discussed 
the question of completeness for the inference algorithms that use them. Search algorithms 
such as iterative deepening search (page 89) are complete in the sense that they will find 
any reachable goal, but if the available inference rules are inadequate, then the goal is not 
reachable—no proof exists that uses only those inference rules. For example, if we removed 
the biconditional elimination rule, the proof in the preceding section would not go through. 
The current section introduces a single inference rule, resolution, that yields a complete 
inference algorithm when coupled with any complete search algorithm. 

We begin by using a simple version of the resolution rule in the wumpus world. Let us 
consider the steps leading up to Figure 7.1(a): the agent returns from [2,1] to [1,1] and then 
goes to [1,2], where it perceives a stench, but no breeze. We add the following facts to the 
knowledge base: 

: – B1,2 •  
R12 :  B1,2 (P1,1 V P2,2 V P1,3) •  

By the same process that led to R io  earlier, we can now derive the absence of pits in [2,2] 
and [1,3] (remember that [1,1] is already known to be pitless): 

R13 : •  
R14 - 

We can also apply biconditional elimination to R3 , followed by Modus Ponens with R5, to 
obtain the fact that there is a pit in [1,1], [2,2], or [3,1]:  

R15 : P1,1 V P2,2 V P1,1 • 

Now comes the first application of the resolution rule: the literal –.P2,2  in R13 resolves with 
RESOLVENT the literal P2 ,2 in R13  to give the resolvent 

R16 :  P1,1 V P3 , 1 

hi English; if there's a pit in one of [1,1], [2,2], and [3,1] and it's not in [2,2], then it's in [1,1] 
or [3,1]. Similarly, the literal –P1,1 in Ri  resolves with the literal P1,1 in R16 to give 

R17:  : P3,1 

UNfT  RESOLUTION 

CUIPLEMENTAFIY  LITERALS 

In English: if there's a pit in [1,1] or [3,11 and it's not in [1,1]. then it's in [3,1]. These last 
two inference steps are examples of the unit resolution inference rule, 

V •  Vek,  

-EL  V • V 4_1 V 4+1 V •  •  V4 
where each t'  is a literal and e,  and m are complementary literals (i.e., one is the negation 
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CLAUSE of the other). Thus, the unit resolution rule takes a clause—a disjunction of literals—and a 
literal and produces  a new clause. Note that a single literal can be viewed as a disjunction of 

UNIT CLAUSE one literal, also known as a unit clause. 
NH01_11[1014 The unit resolution rule can be generalized to the full resolution rule, 

V •  .  V Pk., mi  V •  •  •  V nin  
fi V  •  V V Pi+ i  V..-Vek  V  7121  V •  •  •  V 711i  _1  V 77Li  +1  V •  •  V mr,  

where and mi  are complementary literals. This says that resolution takes two clauses and 
produces a new clause containing all the literals of the two original clauses except the two 
complementary Literals. For example, we have 

P1 , 1  V P.3,1, —P1,1 V —P2,2  

FACTORING 

P3,1 V —P2,2 

There is one more technical aspect of the resolution rule: the resulting clause should contain 
only one copy of each literal.9  The removal of multiple copies of literals is called factoring.  
For example, if we resolve (A V  B) with t,  A V  –.13),  we obtain (A V A), which is reduced to 
just A. 

The soundness of the resolution rule can be seen easily by considering the literal e,  that 
is complementary to literal ns in the other clause. If Yi  is true. then Tri.j  is false, and hence 
rral  v  • • •  V  rrtj_i  V rnj+1  V •  • •  V  mi,  must be true, because mi  v  • • • V  m„  is given. If ti  is 
false, then ti  V • •  • V  V e i_ i  V • • •  V fk  must be true because fi  •  V ek  is given. Now 
ti  is either true or false, so one or other of these conclusions holds—exactly as the resolution 
rule states_  

What is more surprising about the resolution rule is that it forms the basis for a family 
of on/alp/op  inference procedures. A resolution-based  theorem  prover con. for any rentenres  
a and 0  in propositional logic, decide whether a  0.  The next two subsections explain 
how resolution accomplishes this. 

&VE  
NDLIMAL  FOR M 

 

Conjunctive normal form 

The resolution rule applies only to clauses (that is, disjunctions of literals), so it would seem 
to be relevant only to knowledge bases and queries consisting of clauses. How, then, can 
it lead to a complete inference procedure for all of propositional logic? The answer is that 
every sentence of propositional logic is logically equivalent to a conjunction of clauses. A 
sentence expressed as a conjunction of clauses is said to be in conjunctive normal form or 
CNF (see Figure 7.14). We now describe a procedure for converting to CNF. We illustrate 
the procedure by converting the sentence B1,1  <4  (P1,2 V  p2 , 1 )  into CNF.  The steps are as 
follows: 

1. Eliminate 4#,  replacing a (4.  (I  with (a 0)  A (8  = c) -  

( B1,1 (Pi,2V  P2,1))  A ((Pi.,2  V P2,1)  = Bi,i)  •  
2. Eliminate replacing a (I  with V fi:  

( .B11  v  P1,2 V P2,1) A ( –, ( P1 , 2  V P2,1)  V Bi , i)  . 

  

9  If a clause is -viewed as a set of literals, then this restriction is automatically respected. Using set notation for 
clauses makes the resolution rule much cleaner, at the cost of introducing additional notation. 
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3. CNF requires to appear only in literals, so we "move inwards" by repeated appli-
cation of the following equivalences from Figure 7.11: 

a (double-negation  elimination) 
-, (a  A 0)  (-, a  V - .3)  (De Morgan) 

(-,a  A - ,3)  (De Morgan) 

In the example, we require just one application of the last rule: 

(-B1,1.  V -P1,2 V P2,1)  A (( -,-P1,2  A -1 P2,1)  V B1,t)  -  

4. Now we have a sentence containing nested A and V operators applied to literals. We 
apply the distributivity  law from Figure 7.11, distributing V over A wherever possible. 

(- B1,1  V P1,2 V P2,1) A ( - P1,2  V B1,1) A (-. P2,1  V Bia)  •  

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to 
read, but it can be used as input to a resolution procedure. 

A resolution algorithm 

Inference procedures based on resolution work by using the principle of proof by contradic-
tion introduced on page 250. That is. to show that KB a, we show that (KB A -.a) is 
unsatisfiable.  We do this by proving a contradiction. 

A resolution algorithm is shown in Figure 7.12. First, (KB A -,a)  is converted into 
CNF.  Then, the resolution rule is applied to the resulting clauses. Each pair that contains 
complementary literals is resolved to produce a new clause, which is added to the set if it is 
not already present. The process continues until one of two things happens: 

■ there are no new clauses that can be added, in which case KB does not entail a; or, 
■ two clauses resolve to yield the empty clause, in which case KB entails a. 

The empty clause—a disjunction of no disjuncts—is equivalent to False because a disjunction 
is true  only if at least one of its disjuncts is true. Another way to see that an empty clause 
represents a contradiction is to observe that it arises only from resolving two complementary 
unit clauses such as P and 

We can apply the resolution procedure to a very simple inference in the wumpus world, 
When the agent is in [1,1], there is no breeze, so there can be no pits in neighboring squares. 
The relevant knowledge base is 

KB = R2 A R4 = (Bo (P1,2 V P2,1)) A -,B1,1  
and we wish to prove a which is, say, -,P1,2.  When we convert ( KB A -,a)  into CNF, we 
obtain the clauses shown at the top of Figure 7.13. The second row of the figure shows 
clauses obtained by resolving pairs in the first row. Then, when P1 , 2 is resolved with 
we obtain the empty clause, shown as a small square. Inspection of Figure 7.13 reveals that 
many resolution steps are pointless. For example, the clause B 1 , 1  V -1131,1  V P1 , 2 is equivalent 
to True V P1 , 2 which is equivalent to True. Deducing that True is true is not very helpful. 
Therefore, any clause in which two complementary literals appear can be discarded. 
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function PL-REsoLuTioN(KB,  a) returns true or false 
inputs: KB. the knowledge base, a sentence in propositional logic 

a:, the query, a sentence in propositional logic 

clauses 4— the set of clauses in the CNF representation of KB A -, cr  
new i  }  
loop do 

for each pair of clauses C„ C,  in clauses do 
resolvents  — PL-RESOLVE(Ci,Ci)  
if resolvents  contains the empty clause then return true 
new — new U resolvents  

if new C clauses then return false 
clauses 4— clauses U new 

Figure 7_12 A simple resolution  algorithm for propositional logic. The function 

FL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs. 

-P2.1  v 13 1.1 -44,,i  v Pi.:  v  P2.1 -.P 12  vB i.i -0,  . 1 Piz   
Allibb ipier illaft'Ar-

p -F.,  - illigillIMMIErAdlik  
-43„,  v  p  i ,  V B,„ p„,  v  P,,,  NI  -PI, -43, 1  v  P% ,  v  B,, p,  v  p,  ,  v,p,, , , --.p,„  

•  

Figure 7.13 Partial application of FL-RESOLUTION to a simple inference   in the wumpus 
world.  -,P1 , 2  is shown to follow front the first four clauses in the top row. 

Completeness of resolution 

To conclude our discussion of resolution, we now show why PL-RESOLUTION  is complete.  
RESOLUTION 
CLOSURE To do this, we introduce the resolution closure BC(S)  of a set of clauses S', which is the set 

of all clauses derivable by repeated application of the resolution rule to clauses in S or their 
derivatives. The resolution closure is what PL-REsoLurrioN  computes as the final value of 
the variable clauses. It is easy to see that RC (5)  must be finite, because there are only finitely 
many distinct clauses that can be constructed out of the symbols P1,  , Pk  that appear in S. 
(Notice that this would not be true without the factoring step that removes multiple copies of 
literals.) Hence, PL-RESOLUTION  always terminates_  

The completeness theorem for resolution in propositional logic is called the ground 
GROUND  
RHOLUTION resolution theorem: 
THEOREM 

If a set of clauses is unsatisfiable, then the resolution closure of those clauses 
contains the empty clause. 

This theorem is proved by demonstrating its contrapositive:  if the closure RC(S)  does rent  
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contain the empty clause, then S is satisfiable. In fact, we can construct  a model for 5  with 
suitable truth values for Pi , , Pk. The construction procedure is as follows: 

For i fmm  1  to k, 

– If a clause in RC(S) contains the literal and all its other literals are false under 
the assignment chosen for Pi, ,  .P,_1,  then assign false to Pi. 

– Otherwise, assign true to P,.  

This assignment to Pr, .  , Pk is a model of S. To see this, assume the opposite—that, al 
some stage i in the sequence, assigning symbol Pi causes some clause C to become false. 
For this to happen, it must be the case that all the other literals in C must already have been 
falsified by assignments to  , Thus, C must now look like either (false V  false V  
• • •  falseV  Pi ) or like (falseV  falseV  • • • falseV  –Pi ). If just one of these two is in RC(S), then 
the algorithm will assign the appropriate truth value to PQ to make C true, so C can only be 
falsified if both of these clauses are in RC(S). Now, since RC(S)  is closed under resolution, 
it will contain the resolvent of these two clauses, and that resolvent will have all of its literals 
already falsified by the assignments to Pi,  ,  This contradicts our assumption that 
the first falsified clause appears at stage i. Hence, we have proved that the construction never 
falsifies a clause in RC(S);  that is, it produces a model of RC(S)  and thus a model of S 
itself (since S  is contained in BC(S)).  

DEFINITE CLAUSE 

HORN CLAUSE 

GOAL CLAUSES  

7.5.3 Horn clauses and definite clauses 

The completeness of resolution makes it a very important inference method. In many practical 
situations, however, the full power of resolution is not needed. Some real-world knowledge 
bases satisfy certain restrictions on the form of sentences they contain, which enables them 
to use a more restricted and efficient inference algorithm. 

One such restricted form is the definite clause, which is a disjunction of literals of 
which exactly one is positive. For example, the clause  V –,Breeze  V Bi,i)  is a definite 
clause, whereas (-4311  V -P12  V P21) is not. 

Slightly more general is the Horn clause, which is a disjunction of literals of which at 
most one is positive. So all definite clauses are Horn clauses, as are clauses with no positive 
literals; these are called gun]  clauses Horn clauses are closed under resolution. if you resolve 
two Horn clauses, you get back a Horn clause. 

Knowledge bases containing only definite clauses are interesting for three reasons: 

1.  Every definite clause can be written as an implication whose premise is a conjunction 
of positive literals and whose conclusion is a single positive literal. (See Exercise 7.13.) 
For example, the definite clause (-1 1 , 1  V –,Breeze  V B i ,i )  can be written as the im-
plication (L 1 , 1  A Breeze)  B i , i .  In the implication form, the sentence is easier to 
understand: it says that if the agent is in [1,1]  and there is a breeze, then [1,1] is breezy. 
In Horn form, the premise is called the body and the conclusion is called the head. A 
sentence consisting of a single positive literal, such as L1,1 ,  is called a fact. It too can 
be written in implication form as True  L1,1.  but it is simpler to write just L1,1.  

BODY 

HEAD 

FACT 
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CNFSentence.  

- 

Clan.ce  1  A •  .  - A Clause„  

Clause  

- 

Literal ].  V •  •  V Lit era!,,,  

Literal  

- 

Symbol –'Symbol  

Symbol — .  

1-fornClause  Parra.  

- 

DefiniteelouseRwm  GnalClauseForrn  

DefiniteClauseForm  

- 

(Symbol ].  A •  •  •  A Symbol) #.  Symbol 

GoalClauseForm  

- 

(Symbol A Symbol ' ) False. 

Figure 7.14  A grammar for conjunctive normal form, Horn clauses, and definite clauses. 
A clause such as A A B  C is still a definite clause when it is written as Th4V –LBV  C, 
but only the former is considered the canonical form for definite clauses. One more class is 
the 1-CNF  sentence, which is a CNF sentence where each clause has at most k literals. 

FOWJARD-CHAIN  LNG  

BACKWARD-
CHALNING  

2. Inference with Horn clauses can be done through the forward-chaining and backward-
chaining algorithms, which we explain next. Both of these algorithms are natural, 
in that the inference steps are obvious and easy for humans to follow. This type of 
inference is the basis for logic programming, which is discussed in Chapter 9. 

I Deciding entailment with Ilom  clauses can be done in time that is linear in the size of 
the knowledge base—a pleasant surprise. 

7.5.4 Forward and backward chaining 

The forward-chaining algorithm PL-FC-ENTAiLs?(KB,q)  determines if a single proposi-
lion  symbol q—the query—is  entailed by a knowledge base of definite clauses. It begins 
from known facts (positive literals) in the knowledge base. if all the premises of an implica-
tion are known, then its conclusion is added to the set of known facts. For example, if L 1 , 1  
and Breeze are known and (L 1 , 1  A Breeze)  B1 , 1  is in the knowledge base, then B11 can 
be added. This process continues until the query q is added or until no further inferences can 
be made. The detailed algorithm is shown in Figure 7.15; the main point to remember is that 
it runs in linear time. 

The best way to understand the algorithm is through an example and a picture. Fig-
ure 7.16(a) shows a simple knowledge base of Horn clauses with A and B as known facts. 
Figure 7.16(b) shows the same knowledge base drawn as an AND–OR graph (see Chap-
ter 4). In AND–OR graphs, multiple links joined by an arc indicate a conjunction—every 
link must be proved—while multiple links without an arc indicate a disjunction—any link 
can be proved. It is easy to see how forward chaining works in the graph. The known leaves 
(here, A and B) are set, and inference propagates up the graph as far as possible. Wher- 
ever a conjunction appears, the propagation waits until all the conjuncts are known before 
proceeding. The reader is encouraged to work through the example in detail. 
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FIXED POINT 

DAIS-DRIVEN  

function PL-FC-ENTAILs7(KB,  q) returns true or false 
inputs: KB, the knowledge base, a set of propositional definite clauses 

q, the query, a proposition symbol 
count 4—  a table, where count(  e]  is the number of symbols in c's  premise 
inferred 4—  a table, where inferred[s]  is initially false for all symbols 
agenda. 4-  a queue of symbols, initially symbols known to be true in KB 

while agenda is not empty do 
p 4—  PoP(agenda)  
if p = g  then return true 
if inferredipl=  false then 

inferred[p]1—  true 
for each clause c in KB where p is in r.FREMISE  do. 

decrement count t  cl  
if count[c]  = 0  then add c.CONCLUSIGN  to agenda 

return false 

Figure 7.15  The forward-chaining algorithm for propositional logic. The agenda keeps 
track of symbols known to be true but not yet "processed:' The count table keeps track of 
how many premises of each implication are as vet unknown. Whenever a new symbol p from 
the agenda is processed, the count  is reduced by one for each implication in whose premise 
p appears (easily identified in constant time with appropriate indexing.) If a count reaches 
zero, all the premises of the implication are known. so  its conclusion can be added to the 
agenda. Finally, we need to keep track of which symbols have been processed; a symbol that 
is already in the set of inferred symbols need not be added to the agenda again. This avoids 
redundant work and prevents loops caused by implications such as P Q and Q = P. 

It is easy to see that forward chaining is sound: every inference is essentially an appli-
cation of Modus Ponens. Forward chaining is also complete: every entailed atomic sentence 
will he derived. The easiest way to see this is to consider the final state of the inferred  table 
(after the algorithm reaches a fixed point where no new inferences are passible).  The table 
contains true for each symbol inferred during the process, and false for all other symbols. 
We can view the table as a logical model; moreover, every definite clause in the original KB is 
true in this model. To see this, assume the opposite, namely that some clause at A... ft Ok  It 
is false in the model. Then a l  A ... A at;  must be true in the model and b must be false in 
the model. But this contradicts our assumption that the algorithm has reached a fixed point! 
We can conclude, therefore, that the set of atomic sentences inferred at the fixed point defines 
a model of the original KB. Furthermore, any atomic sentence q that is entailed by the KB 
must be true in all its models and in this model in particular. Hence, every entailed atomic 
sentence 47  must be inferred by the algorithm. 

Forward chaining is an example of the general concept of data-driven reasoning—that 
is, reasoning in which the focus of attention starts with the known data. It can be used within 
an agent to derive conclusions from incoming percepts, often without a specific query in 
mind. For example, the wumpus agent might TELL its percepts to the knowledge base using 
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Figure 7.16 (a) A set of Horn clauses. (b) The corresponding AND OR graph. 
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GoAt-DIGeorto  
REASONING 

an incremental forward-chaining algorithm in which new facts can be added to the agenda to 
initiate new inferences. In humans, a certain amount of data-driven reasoning occurs as new 
information arrives. For example, if I am indoors and hear rain starting to fall, it might occur 
to rue that the picnic will be canceled. Yet it will probably not occur to me  that the seventeenth 
petal on the largest rose in my neighbor's garden will get wet; humans keep forward chaining 
under careful control, lest they he swamped with irrelevant consequences_ 

The backward-chaining algorithm, as its name suggests, works backward from the 
query. If the query q is known to be true, then no work is needed. Otherwise, the algorithm 
finds those implications in the knowledge base whose conclusion is 1.1.  If all the premises of 
one of those implications can be proved true (by backward chaining), then q is true. When 
applied to the query Q in Figure 7_16,  it works back down the graph until it reaches a set of 
known facts, A and B, that forms the basis for a proof. The algorithm is essentially identical 
to the AND-OR-GRAPH-SEARCH algorithm in Figure 4A I.  As with forward chaining, an 
efficient implementation runs in linear time. 

Backward chaining is a form of goal-directed reasoning. It is useful for answering 
specific questions such as "What shall I do now?" and "Where are my keys?" Often, the cost 
of backward chaining is much less than linear in the size of the knowledge base, because the 
process touches only relevant facts. 

7.6 EFFECTIVE PROPOSITIONAL MODEL CHECKING 

In this section, we describe two families of efficient algorithms for general propositional 
inference based on model checking: One approach based on backtracking search, and one 
on local hill-climbing search. These algorithms are part of the "technology" of propositional 
logic. This section can be skimmed on a first reading of the chapter. 
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DAVIS-PUTNAM  
ALCOITTHM  

PURE SYMBOL 

The algorithms we describe are for checking satisfiability:  the SAT problem. (As noted 
earlier, testing entailment, is  H (3,  can be done by testing unsatisfiability of a  A –0.)  We 
have already noted the connection between finding a satisfying model for a logical sentence 
and finding a solution for a constraint satisfaction problem, so it is perhaps not surprising that 
the two families of algorithms closely resemble the backtracking algorithms of Section 6.3 
and the local search algorithms of Section 6A.  They are, however, extremely important in 
their own right because so many combinatorial problems in computer science can be reduced 
to checking the satisfiability of a propositional sentence. Any improvement in satisfiability 
algorithms has huge consequences for our ability to handle complexity in general. 

7.6.1 A complete backtracking algorithm 

The first algorithm we consider is often called the Davis–Putnam algorithm, after the sem-
inal paper by Martin Davis and Hilary Putnam (1960), The algorithm is in fact the version 
described by Davis, Logemann, and Loveland (1962), so we will call it DPLL after the ini-
tials of all four authors. DPLL takes as input a sentence in conjunctive normal form—a set 
of clauses Like RACK TR  Aric  1  NM-SF  AR CM and TT-ENTAtT  s9,  it is essentially a recursive,  
depth-first enumeration of possible models. It embodies three improvements over the simple 
scheme of TT-ENTAILS?:  

■ Early termination: The algorithm detects whether the sentence must be true or false, 
even with a partially completed model. A clause is true if any literal is true, even if 
the other literals do not yet have truth values; hence, the sentence as a whole could be 
judged true even before the model is complete, For example, the sentence (A V B) 
(A V C) is true if A is true, regardless of the values of B and C. Similarly, a sentence 
is false if any clause is false, which occurs when each of its literals is false. Again, this 
can occur long before the model is complete. Early termination avoids examination of 
entire subtrees in the search space. 

• Pure symbol heuristic: A pure symbol is a symbol that always appears with the same 
"sign" in all clauses. For example, in the three clauses (A V –TB),  (– B  V –C), and 
(C V A), the symbol A is pure because only the positive literal appears, B is pure 
because only the negative literal appears, and C is impure. It is easy to see that if 
a sentence has a model, then it has a model with the pure symbols assigned so as to 
make thcir literals true, because doing so can never make a clause false. Note that, in 
determining the purity of a symbol, the algorithm can ignore clauses that are already 
known to be true in the model constructed so far. For example, if the model contains 
B = false, then the clause ( –B  V –C) is already true, and in the remaining clauses C 
appears only as a positive literal: therefore C becomes pure. 

■ Unit clause heuristic: A unit clause was defined earlier as a clause with just one lit-
eral. In the context of DPLL,  it also means clauses in which all literals but one are 
already assigned false by the model. For example, if the model contains B – true. 
then (-43  V –,C)  simplifies to –C,  which is a unit clause. Obviously, for this clause 
to be true, C must be set to ft.:iv-J.  The unit clause heuristic assigns all such symbols 
before branching on the remainder. One important consequence of the heuristic is that 
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UNIT PROPAGATION  

function DPLL-SATIsnIABLV(s)  returns true or false 
inputs: .s, a sentence in propositional logic 

clauses 1—  the set of clauses in the CNF representation of 
symbols  a list of the proposition symbols in s 
return DPLL(elaus  es , symbols, { }) 

function DPLL( clauses. symbols, model) returns true or false 

if every clause in clauses is tme  in model then return true 
if some clause in clauses is false in model then return false 
P, value  FIND-PURE-SYMB  oL(symbols,  clauses, model) 
if P is non-null then return DPLL(clauses,  symbols — P, model U{P=ratue})  
P, value  FIND-U NIT-CLAUSE( clauses, model) 
if P is non-null then return DPLL(clats  es , symbols — P, model U {P=value})  
P FiRsT(symbois);  rest 4— REST(symbols)  
return DPLL( clauses, rest, model U {P=true})  or 

D PLL( clauses, rest, model U {P=false}))  

Figure 7.17 The DPLL  algorithm for checking satisfiability  of a sentence in propositional 
logic. The ideas behind FIND-PURE-SYMBOL and FINE-UNIT-CLAUSE are described in 
the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like 
TT-ENTAILS?,  DPLL operates over partial models. 

any attempt to prove (by refutation) a literal that is already in the knowledge base will 
succeed immediately (Exercise 7.23). Notice also that assigning one unit clause can 
create another unit clause—for example, when C is set to false, (C V A) becomes a 
unit clause, causing true to be assigned to A. This "cascade" of forced assignments 
is called unit propagation. It resembles the process of forward chaining with definite 
clauses, and indeed, if the CNF expression contains only definite clauses then DPLL 
essentially replicates forward chaining. (See Exercise 7.24.) 

The DPLL algorithm is shown in Figure 7.17, which gives the the essential skeleton of the 
search process. 

What Figure 7.17 does not show are the tricks that enable SAT solvers to scale up to 
large problems. It is interesting that most of these tricks are in fact rather general, and we 
have seen them before in other guises: 

1. Component analysis (as seen with Tasmania in CSPs): As DPLL assigns truth values 
to variables, the set of clauses may become separated into disjoint subsets, called com-
ponents,  that share no unassigned variables. Given an efficient way to detect when this 
occurs, a solver can gain considerable speed by working on each component separately. 

2. Variable and value ordering (as seen in Section 6.3.1 for CSPs): Our simple imple-
mentation of DPLL uses an arbitrary variable ordering and always tries the value true 
before false. The degree heuristic (see page 216) suggests choosing the variable that 
appears most frequently over all remaining clauses. 
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3. Intelligent backtracking (as seen in Section 6.3 for CSPs): Many problems that can-
not be solved in hours of run time with chronological backtracking can be solved in 
seconds with intelligent backtracking that backs up all the way to the relevant point of 
conflict. All SAT solvers that do intelligent backtracking use some form of conflict 
clause learning to record conflicts so that they won't be repeated later in the search. 
Usually a limited-size set of conflicts is kept, and rarely used ones are dropped. 

4. Random restarts (as seen on page 124 for hill-climbing): Sometimes a run appears not 
to be making progress. In this case, we can start over from the top of the search tree, 
rather than trying to continue. After restarting, different random choices (in variable 
and value selection) are made. Clauses that are learned in the first run are retained after 
the restart and can help prune the search space. Restarting does not guarantee  that a 
solution will be found faster, but it does reduce the variance on the time to solution. 

5. Clever indexing (as seen in many algorithms): The speedup methods used in DPLL 
itself, as well as the tricks used in modern solvers, require fast indexing of such things 
as "the set of clauses in which variable Xi  appears as a positive literal." This task is 
complicated by the fact that the algorithms are interested only in the clauses that have 
not yet been satisfied by previous assignments to variables, so the indexing structures 
must be updated dynamically as the computation proceeds. 

With these enhancements, modern  solvers can handle problems with tens of millions of vari-
ables. They have revolutionized areas such as hardware verification and security protocol 
verification, which previously required laborious, hand-guided proofs. 

7.6.2 Local search algorithms 

We have seen several local search algorithms so far in this book, including HILL-CLIMBING 
(page 122) and SIMULATED-ANNEALING (page 126). These algorithms can be applied di-
rectly to satisfiability  problems, provided that we choose the right evaluation function. Be-
cause the goal is to find an assignment that satisfies every clause, an evaluation function that 
counts the numher  of unsatisfied clauses will do the job_  in fact, this is exactly the measure 
used by the MIN-CONFLICTS algorithm for CSPs (page 221). All these algorithms take steps 
in the space of complete assignments, flipping the truth value of one symbol at a time. The 
space usually contains many local minima, to escape from which various forms of random-
ness are required. In recent years, there has been a great deal of experimentation to find a 
good balance between greediness and randomness. 

One of the simplest and most effective algorithms to emerge from all this work is called 
WALKSAT (Figure 7.18). On every iteration, the algorithm picks an unsatisfied clause and 
picks a symbol in the clause to flip. It chooses randomly between two ways to pick which 
symbol to flip: (1) a "min-conflicts" step that minimizes the number of unsatisfied clauses in 
the new state and (2) a "random walk" step that picks the symbol randomly, 

When WALKSAT returns a model, the input sentence is indeed satisfiable, but when 
it returns failure, there are two possible causes: either the sentence is unsatisfiable or we 
need to give the algorithm more time.  If we set max_flips=  DU  and p > 0, WALK SAT will 
eventually return a model (if one exists), because the random-walk steps will eventually hit 
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function WAL KSAT(cia  uses , p moo; _flips) returns a satisfying model cr  failure 
inputs: clauses, a set of clauses in propositional logic 

p,  the probability of choosing to do a "random walk" move, typically around 0.5 
max _flips , number of flips allowed before giving up 

model 0—  a random assignment of truel  false to the symbols in clauses 
for a,  =  1 to ma r  _flips do 

if model satisfies clauses then return model 
clause — a randomly selected clause from clauses that is false in model 
with probability p flip the value in model of a randomly selected symbol from clause 
else flip whichever symbol in clause maximizes the number of satisfied clauses 

return failure 

Figure 7.18  The WALKSAT algorithm for checking satisfiability by randomly flipping 
the values of variables. Many versions of the algorithm exist 

upon the solution. Alas, if maz_flips  is infinity and the sentence is unsatisfiable, then the 
algorithm never terminates! 

For this reason, WALKSAT is most useful when we expect a solution to exist—for ex-
ample, the problems discussed in Chapters i and 6 usually have solutions. On the other hand, 
WALKSAT cannot always detect unsatisfiability,  which is required for deciding entailment. 
For example, an agent cannot reliably use WALKS AT to prove that a square is safe in the 
wumpus world. Instead, it can say, "[  thought about it for an hour and couldn't come up with 
a possible world in which the square isn't safe" This may be a good empirical indicator that 
the square is safe, but it's certainly not a proof. 

7.6.3 The landscape of random SAT problems 

Some SAT problems are harder than others. Easy problems can be solved by any old algo-
rithm, but because we kHuw  that SAT is NP-complete, at least some problem instances must 
require exponential run time. In Chapter 6, we saw some surprising discoveries about certain 
kinds of problems. For example. the n-queens problem—thought to be quite tricky for back-
tracking search algorithms—turned out to be trivially easy for local search methods, such as 
min-conflicts. This is because solutions are very densely distributed in the space of assign-
ments, and any initial assignment is guaranteed to have a solution nearby.  Thus, n-queens is 

LINDE  MOW-RAINED  easy because it is under-constrained. 
When we look at satisfiability  problems in conjunctive normal form, an nndercon-

strained  problem is one with relatively few clauses constraining the variables_ For example, 
here is a randomly generated 3-CNF sentence with five symbols and five clauses: 

(— D v v C) (B V -A v  -C)  ( —C v  —
431i  E) 

A(EV-DVB) A (BVEV—C).  

Sixteen of the 32 possible assignrnents  are models of this sentence, so, on average, it would 
take just two random guesses to find a model. This is an easy satisfiability  problem, as are 
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SATISF1ABILFTY  
THRESHOLD 
COILLECTURE  

most such underconstrained  problems. On the other hand, an overcianstrained  problem has 
many clauses relative to the number of variables and is likely to have no solutions. 

To go beyond these basic intuitions, we must define exactly how random sentences 
are generated.  The notation CNFk(ni,n)  denotes a k-CNF sentence with rn  clauses and n 
symbols, where the clauses are chosen uniformly, independently, and without replacement 
from among all clauses with k different literals, which are positive or negative at random. (A 
symbol may not appear twice in a clause, nor may a clause appear twice in a sentence.) 

Given a source of random sentences, we can measure the probability of satisfiability,  
Figure 7.19(a) plots the probability for CNF3 (rn,  50), that is, sentences with 50 variables 
and 3 literals per clause, as a function of the clause/symbol ratio, min.  As we expect, for 
small min  the probability of satisfiability is close to 1, and at large rrt/n  the probability 
is close to 0. The probability drops fairly sharply around mln=  4.3. Empirically, we find 
that the '`cliff"  stays in roughly the same place (fur k = 3) and gels sharper and sharper as n 
increases. Theoretically, the satisfiability  threshold conjecture says that for every k > 3, 
there is a threshold ratio r k  such that, as n goes to infinity, the probability that CA/  F (n, rn) 
is satisfiable becomes 1 for all values of r below the threshold, and 0 for all values above. 
The conjecture remains unproven. 

Figure 7.19  (a) Graph showing the probability that a random 3-CNF sentence with It  =  50  
symbols is satisfiable, as a function of the clause/symbol  ratio In/rt.  OD)  Graph of the median 
run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF 
sentences. The most difficult problems have a clause/symbol ratio of about 4.3. 

Now that we have a good idea where the satisfiable and unsatisfiable problems are, the 
next question is, where are the hard problems? It turns out that they are also often at the 
threshold value. Figure 7.19(b) shows that 50-symbol problems at the threshold value of 4.3 
are about 20 times more difficult to solve than those at a ratio of  3.3. The underconstrained  
problems are easiest to solve (because it is so easy to guess a solution); the overconstrained  
problems are not as easy as the underconstrained,  but still are much easier  than the ones right 

at the threshold. 
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7.7 AGENTS BASED ON PROPOSITIONAL LOGIC 

In this section, we bring together what we have learned so far in order to construct wumpus  
world agents that use propositional logic. The first step is to enable the agent to deduce, to the 
extent possible, the state of the world given its percept history. This requires writing down a 
complete logical model of the effects of actions_ We also show how the a gent can keep track of 
the world efficiently without going back into the percept history for each inference. Finally, 
we show how the agent can use logical inference to construct plans that are guaranteed to 
achieve its goals. 

7.7.1 The current state of the world 

As stated at the beginning of the chapter, a logical agent operates by deducing what to do 
from a knowledge base of sentences about the world. The knowledge base is composed of 
axioms—general knowledge about how the world works—and percept sentences obtained 
from the agent's experience in a particular world. In this section, we focus on the problem of 
deducing the current state of the wumpus world—where am I, is that square safe, and so on. 

We began collecting axioms in Section 7.4.3. The agent knows that the starting square 
contains no pit (–LPL')  and no wumpus  (–MLA.).  Furthermore, for each square, it knows that 
the square is breezy if and only if a neighboring square has a pit; and a square is smelly if and 
only if a neighboring square has a wumpus. Thus, we include a large collection of sentences 
of the following form: 

St 1 -;=>  (P1.2 V P2,1) 
S14 ( W1,2 V W24)  

The agent also knows that there is exactly one wumpus. This is expressed in two parts. First, 
we have to say that there is at least one wumpus: 

Ii71,1  V W1,2  V •  "  V W4,3  V W4,4 •  

Then, we have to say that there is at most one wumpus. For each pair of locations, we add a 
sentence saying that at least one of them must be wumpus-free: 

▪ V –,W12  
W 1,1  V –.1411,.3  

–4114,3  V –,W4,4  •  
So far, so good. Now let's consider the agent's percepts. If there is currently a stench, one 
might suppose that a proposition Stench should be added to the knowledge base. This is not 
quite right, however: if there was no stench at the previous time step, then –Stench would al- 

ready be asserted, and the new assertion would simply result in a contradiction. The problem 
is solved when we realize that a percept asserts something only about the current rime. Thus, 
if the time step (as supplied to MAKE-PERCEPT-SENTENCE in Figure 7.1) is 4, then we add 
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Stench 4  to the knowledge base, rather than Stench—neatly avoiding any contradiction with 
—,Stenr,h 3 .  The same goes for thc  breeze, bump, glitter, and scream percepts. 

The idea of associating propositions with time steps extends to any aspect of the world 
that changes over time. For example, the initial knowledge base includes L7  1 —the agent is in 
square [1,  1] at time 0—as well as FacingEast° ,  HaveArrow ° , and WumpusAlive °  . We use 
the word fluent (from the Latin fluent, flowing) to refer an aspect of the world that changes. 
"Fluent" is a synonym for "state variable," in the sense described in the discussion of factored 
representations in Section 2.4.7 on page 57. Symbols associated with permanent aspects of 
the world do not need a time superscript and are sometimes called atemporal  variables_ 

We can connect stench and breeze percepts directly to the properties of the squares 
where they arc experienced through thc  location fluent as follows. 1 °  For any time step  t,  and 
any square [ar,  y], we assert 

L 'x,y =  (Breeze' <=>  Bx, y )  
L s y (Stench t Si, v )  -  

Now, of course, we need axioms that allow the agent to keep track of fluents such as .qz .  
These fluents change as the result of actions taken by the agent, so, in the terminology of 
Chapter 3, we need to write down the transition model of the wumpus world as a set of 
logical sentences. 

First, we need proposition symbols for the occurrences of actions. As with percepts, 
these symbols are indexed by time; thus, Forward°  means that the agent executes the Forward 
action at time O.  By convention, the percept for a given time step happens first, followed by 
the action for that time step, followed by a transition to the next time step. 

To describe how the world changes, we can try writing effect axioms that specify the 
outcome of an action at the next time step. For example, if the agent is at location [1,1]  facing 
east at time 0 and goes Forward, the result is that the agent is in square [2.1]  and no longer 
is in [1, 1]:  

A FacingEastn  A Forward°  = (L.1
2,1  A • (7.1) 

We would need one such sentence for each possible time step, for each of the 16 squares, 
and each of the four orientations. We would also need similar sentences for the other actions: 
Grab, Shoot, Climb, TurnLeft,  and TurnRight. 

Let us suppose that the agent does decide to move Forward at time 0 and asserts this 
fact into its knowledge base. Given the effect axiom in Equation (7,1), combined with the 
initial assertions about the state at time 0, the agent can now deduce that it is in [2, 1]. That  
is, AsK(KB , 14 1 ) =  true. So far, so good. Unfortunately, the news elsewhere is less good: 
if we As K(KB , HaveArrow l '„  the answer is false, that is, the agent cannot prove it still 
has the arrow; nor can it prove it doesn't have it! The information has been lost because the 
effect axiom fails to state what remains unchanged as the result of an action_ The need to do 
this gives rise to the frame problem  One possible solution to the frame problem would 
in  Section 7.4.3 conveniently glossed over this requirement. 
II  The name "frame problem' .  comes from "frame of reference" in physics—the assumed stationary background 
with respect to which motion is measured. It also has an analogy to the frames of a movie. in which normally  
most of the background slays constant while changes occur in the foreground. 

FLLENT 

ATEMPORAL 
VARIABLE 

EFFECT AXIOM  

FRAME PROELEM  
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FRAME AXIOM 

REPRESENTATIONAL  
FRAME PROBLEM 

SUCCESSOR-STATE 
AMR  

be to add frame axioms explicitly asserting all the propositions that remain the same. For 
example ;  for each time t we would have 

Forwardt  = ( HaveArrow t  t= IlaveArrow l+1 )  
Forward' = ( WumpusAlive'  tr WurnpusAlive t+1 )  
•  •  

where we explicitly mention every proposition that stays unchanged from time t to time 
t -F  1 under the action Porward.  Although the agent now knows that it still has the arrow 
after moving forward and that the wumpus hasn't died or come back to life, the proliferation 
of frame axioms seems remarkably inefficient. In a world with M. different actions and n 
fluents, the set of frame axioms will be of size O(mn).  This specific manifestation of the 
frame problem is sometimes called the representational frame problem. Historically, the 
problem was a significant one for Al researchers; we explore it further in the notes at the end 
of the chapter. 

The representational frame problem is significant because the real world has very many 
fluents, to put it mildly. Fortunately for us humans, each action typically changes no more 
than some small number k of those fluents—the world exhibits locality. Solving the repre-
sentational frame problem requires defining the transition model with a set of axioms of size 
O(tnk)  rather than size 0(rnn).  There is also an inferential frame problem: the problem 
of projecting forward the results of a t step plan of action in time O(kt)  rather than O(rit).  

The solution to the problem involves changing one's focus from writing axioms about 
or:inns  to writing axioms about fhopnts,  Thus, for each fluent F, we will have an axiom that 
defines the truth value of Ft+ 1  in terms of fluents (including F itself) at time t  and the actions 
that may have occurred at time L Now, the truth value of 11 +1  can be set in one of two ways: 
either the action at time t causes F to be true at t +  1, or F was already true at time t and the 
action at time t  does not cause it to be false. An axiom of this form is called a successor-state 
axiom and has this schema: 

Ft+ 1 ActionCausegF t  V (Ft  A –,ActionCausesNotF t )  .  

One of the simplest successor-state axioms is the one for HaveArrow. Because there is no 
action for reloading, the ActionCwasesF'  part goes away and we are left with 

HaveArrow l+1 ( HaveArrow t  A –, Shoot t )  . (7.2) 
For the agent's location, the successor-state axioms are more elaborate. For example, L1^1

is  true if either (a) the agent moved Forward from [1, 2] when facing south, or from [2;1] 
when facing west; or (b) L1 ,1  was already true and the action did not cause movement (either 
because the action was not Forward or because the action bumped into a wall). Written out 
in propositional logic, this becomes 

r.t+ <4.  (L1 .1  A { —.Farward"  V Bump t+1 ))  

V (L1 ,2  A (South' A Forward')) (7.3) 
V (14,1  A ( West t  A Forward1 ))  .  

Exercise 7.26 asks you to write out axioms for the remaining wumpus world fluents. 

LOCALITY  

INFERENTIAL FRAME 
PROBLEM 
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QUALIFICATION 
PROBLEM  

HYBRID AGENT 

Given a complete set of successor-state axioms and the other axioms listed at the begin-
ning of this section, the agent will be able to ASK and answer any answerable question about 
the current state of the world. For example, in Section 7.2 the initial sequence of percepts and 
actions is 

-,Stench °  A -,Breeze °  n  -,Glitter°  A -,Bump°  A -Scream s"  :  Forward")  

-Stencli l  A Breeze s  A -, Glitters  A -'Bump s  A -Scream s  :  TurnRight l  
-'Stench 2  A Breeze' A -, Glitter2  A -'Bump2  A -'Scream 2  :  TurnRight 2  

-'Stench 3  A Breeze 3  A -, Glitter3  A -, Bump 3  A -'Scream 3  Forward3  

-Stench." A -, Breeze"  A -'Glitter" A -.Bump" A -Scream"  TurnRight" 

-'Stench 5  A -Breeze ]  A -,Glitter5  A -,13ump5  A -Semen -1 3  :  Forward" 

Renee A -,Breeze'  A -,Glitter6  A -,Bump h  A -Scream 6  

At this point, we have AsK(KB,  q 2 ) =  true, so the agent knows where it is. Moreover, 
ASK ( KB , W1 ,3 )  = true  and A SIC ( K.  f3,  P34 ) =  true, so the agent has found the wumpus and 
one of the pits. The most important question for the agent is whether a square is OK to move 
into, that is, the square contains no pit nor live wumpus. It's convenient to add axioms for 
this, having the form  

01C4  ,;=;>  -P„,  A Wx,,  A WurnpusAlive t )  .  

Finally, AsK(KB,  OK2 2)  = true, so the square [2, 2] is OK to move into. In fact, given a 
sound and complete inference algorithm such as DPLL,  the agent can answer any answerable 
question about which squares are OK—and can do so in just a few milliseconds for small-to-
medium wumpus worlds. 

Solving the representational and inferential frame problems is a big step forward, but 
a pernicious problem remains: we need to confirm that all the necessary preconditions of an 
action hold for it to have its intended effect. We said that the Forward, action moves the agent 
ahead unless there is a wall in the way, but there are many other unusual exceptions that could 
cause the action to fail: the agent might trip and fall, be stricken with a heart attack, be carried 
away by giant bats, etc. Specifying all these exceptions is called the qualification problem. 
There is no complete solution within logic; system designers have to use good judgment in 
deciding how detailed they want to be in specifying their model, and what details they want 
to leave out. We will see in Chapter l  3 that probability theory allows us to summarize all the 
exceptions without explicitly naming them. 

7.7.2 A hybrid agent 

The ability to deduce various aspects of the state of the world can be combined fairly straight-
forwardly with condition-action rules and with problem-solving algorithms from Chapters 3 
and 4 to produce a hybrid agent for the wumpus world. Figure 7.20 shows one possible way 
to do this. The agent program maintains and updates a knowledge base as well as a current 
plan. The initial knowledge base contains the atemporal axioms—those that don't depend 
on 1 ,  such as the axiom relating the breeziness of squares to the presence of pits. At each 
time step, the new percept sentence is added along with all the axioms that depend on t,  such 
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as the successor-state axioms. (The next section explains why the agent doesn't need axioms 
for future time steps.) Then, the agent uses logical inference, by AsKing  questions of the 
knowledge base, to work out which squares are safe and which have yet to be visited. 

The main body of the agent program constructs a plan based on a decreasing priority of 
goals. First, if there is a glitter, the program constructs a plan to grab the gold, follow a route 
back to the initial location, and climb out of the cave. Otherwise, if there is no current plan, 
the program plans a route to the closest safe square that it has not visited yet, making sure 
the route goes through only safe squares. Route planning is done with A*  search, not with 
ASK. If there are no safe squares to explore, the next step—if the agent still has an arrow—is 
to try to make a safe square by shooting at one of the possible wumpus locations.  These are 
determined by asking where Asx(KB,  –,14T v )  is false—that is, where it is not known  that 
there is not a wumpus. The function PLAN-SHOT (not shown) uses PLAN-ROUTE to plan a 
sequence of actions that will line up this shot. If this fails, the program looks fur a square to 
explore that is not provably unsafe—that is, a square for which A SK (KB,  Olf y )  returns 
false. If there is no such square, then the mission is impossible and the agent retreats to [1, 1] 
and climbs out of the cave. 

7.7.3 Logical state estimation 

The agent program in Figure 7.20 works quite well, but it has one major weakness: as time 
goes by, the computational expense involved in the calls to ASK goes up and up. This happens 
mainly because the required inferences have to go back further and further in time and involve 
more and more pmposition symbols_ Obviously, this is unsustainable—we cannot have an 
agent whose time to process each percept grows in proportion to the length of its life! What 
we really need is a constant update time—that is, independent of t.  The obvious answer is to 

CACHING 
 save, or cache, the results of inference, so that the inference process at the next time step can 

build on the results of earlier steps instead of having to start again from scratch. 
As we saw in Section 4_4,  the past history of percepts and all their ramifications can 

be replaced by the belief state—that  is, some representation of the set of all possible current 
states of the world. 12  The process of updating the belief state as new percepts arrive is called 
state estimation. Whereas in Section 4.4 the belief state was an explicit list of states, here 
we can use a logical sentence involving the proposition symbols associated with the current 
time step, as well as the atemporal symbols. For example, the logical sentence 

WumpusAlive l  A _4 1  A B2,1  A (.171t  V P2,2) (7A) 

represents the set of all states at time 1 in which the wumpus  is alive, the agent is at [2, 1], 
that square is breezy, and there is a pit in [3, 1]  or [2,2] or both. 

Maintaining an exact belief state as a logical formula turns out not to be easy. if  there 
are n fluent symbols for time t, then there are 2" possible states—that is, assignments of truth 
values to those symbols. Now, the set of belief states is the powerset (set of all subsets) of the 
set of physical states. There are 2' physical states, hence 2 2" belief states. Even if we used 
the most compact possible encoding of logical formulas, with each belief state represented 

12  We can think of the percept history itself as a representation of the belief state, but one that makes inference 
increasingly expensive as the history gets longer. 
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function 1-1YnniD -WumPus - AGENT(percepr)  returns an action 
inputs: percept, a list, [stench,breeze,glitter,bump,scream]  
persistent: KB, a knowledge base, initially the atemporal  "wumpus physics" 

t, a counter, initially 0, indicating time 
plan, an action sequence, initially empty 

TELL(KB,  MAKE-PERCEPT-SENTENCE(  percept , t)) 
TELL the KB the temporal "physics" sentences for time t 
safe (—  {[x, y] :  ASK ( KB,  OK u)  = true} 
if ASK(KB,  Glitter') = true then 

plan  [Grab] + PLAN-ROUTE( current, {IL II},  safe) + [Climb]  
if plan is empty then 

unvisited {[x, y] :  ASK(KB, = false for all t' <  t} 
plan  PLAN -ROUTE(clirrent,  unvisited fl  safe, safe) 

if plan is empty and ASK(KB, HaveArrow .')  = true then 
possible_wunipus , ASK(KB,  W„,)  = false} 
plan i—  PLAN-SHOT(current,  possible _wumpus,  safe) 

if plan is empty then 1,1  no choice but to take a risk 
net_unsafe : ASK(KB, OK 4 = false} 
plan i—  PLAN -ROUTE(current,  unvisited11  not _imsafe,  safe) 

if plan is empty then 
plan  PLAN -RouTE(current,{j,  1]}, safe) + [Climb] 

action  POP(pfan)  
TELL(KB,  MAKE-ACTION -SENTENCE(uc  ULM,  I)) 
t +  I  
return action 

function PLAN -ROUTE( current,goals  ,allowed) returns an action sequence 
inputs: current, the agent's current position 

goals, a set of squares; try to plan a route to one of them 
allowed, a set of squares that can form part of the mute 

problem ROUTE-PROBLEM( current, goals ,allowed )  
return A*-GRAPH-SEARCII(probiem)  

Figure 7.211  A hybrid agent program for the wumpus world. It uses a propositional knowl-
edge base to infer the state of the world. and a combination of problem-solving search and 
domain-specific code to decide what actions to take. 

by a unique binary number, we would need numbers with 1og 2 (22'  ) = 2" bits to label the 
current belief state. That is, exact state estimation may require logical formulas whose size is 
exponential in the number of symbols. 

One very common and natural scheme for approximate state estimation is to represent 

belief states as conjunctions of literals, that is, 1 -CNF  formulas. To do this, the agent program 
simply tries to prove X t  and 'Xt  for each symbol Xt  (as well as each atemporal symbol 

whose truth value is not yet known), given the belief state at t — 1. The conjunction of 
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Figure 7.21 Depiction of a 1-CNF  belief state (bold outline) as a situp y representable. 
conservative approximation to the exact (wiggly) belief state (shaded region with dashed 
outline). Each possible world is shown as a circle; the shaded ones are consistent with all the 
percepts. 

provable literals becomes the new belief state, and the previous belief state is discarded. 
It is important to understand that this scheme may lose some information as time goes 

along. For example, if the sentence in Equation (7.4) were the true belief state, then neither 
P31  nor P2,2 would be provable individually and neither would appear in the 1-CNF  belief 
state. (Exercise 7.27 explores one possible solution to this problem.) On the other hand, 
because every literal in the 1-CNF  belief state is proved from the previous belief state, and 
the initial belief state is a true assertion, we know that entire 1-CNF  belief state must be 
true. Thus, the set of possible states represented by the 1-CNF  belief state includes all states 
that are in fact possible given the full percept history As illustrated in Figure 7.21,  the 1- 
CNF belief state acts as a simple outer envelope, or conservative approximation, around the 
exact belief state. We sec this idea of conservative approximations to complicated acts as a 
recurring theme in many areas of AL 

7.7.4 Making plans by propositional inference 

The agent in Figure 7.20 uses logical inference to determine which squares are safe, but uses 
A  search to make plans_ In this section, we show how to make plans by logical inference_ 
The basic idea is very simple: 

I. Construct a sentence that includes 

(a) [nit° , a collection of assertions about the initial state; 
(h)  Transition l , Purtsition t ,  the successor-state axioms for all possible actions 

at each time up to some maximum time t; 
(c) the assertion that the goal is achieved at time t: Have Goid2  A Clitn,bedOue.  
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2. Present the whole sentence to a SAT solver. If the solver finds a satisfying model, then 
the goal is achievable; if the sentence is unsatisfiable,  then the planning problem is 
impossible. 

3. Assuming a model is found, extract from the model those variables that represent ac-
tions and are assigned true. Together they represent a plan to achieve the goals. 

A propositional planning procedure, SATPLAN, is shown in Figure 7.22. It implements the 
basic idea just given, with one twist. Because the agent does not know how many steps it 

will take to reach the goal, the algorithm tries each possible number of steps t, up to some 
maximum conceivable plan length T,.„.  In this way, it is guaranteed to find the shortest plan 
if one exists. Because of the way SATPLAN searches for a solution, this approach cannot 
be used in a partially observable environment; SATPLAN would just set the unobservable 
variables to the values it needs to create a solution. 

function SATPLAN( init,  transition, goal,T.„)  returns solution or failure 
inputs: in it, transition, goal, constitute a description of the problem 

T„,,  an upper limit for plan length 

for t -0 to T  ,a do  
enf  —TRANsLATE-To-SAT(init,  transition, goal, t) 
model  S AT- Soi.vmt(enf)  
if model is not null then 

return F.XTR  ACT- SOT  IrTiON(moripi)  
return failure 

Figure 7.22  The SATPLAN algorithm. The planning problem is translated into a CNF 
sentence in which the goal is asserted to hold at a fixed time step t and axioms are included 
for each time step up to t. If the satisfiability algorithm finds a model, then a plan is extracted 
by looking at those proposition symbols that refer to actions and are assigned true in the 
model. If no model exists, then the process is repeated with the goal moved one step later. 

The key step in using S ATPLA  is the constniction  of the knowledge base. It might 
seem, on casual inspection, that the wumpus world axioms in Section 7.7.1 suffice for steps 
1(a) and 1(b) above. There is, however, a significant difference between the requirements for 
entailment (as tested by ASK) and those for satisfiability.  Consider, for example, the agent's 
location, initially [1, 1], and suppose the agent's unambitious goal is to be in [2,1] at  dine 1. 
The initial knowledge base contains 4 1  and the goal is 4 1 .  Using ASK, we can  prove 14 1  
if Forward°  is asserted, and, reassuringly, we cannot prove _q 1  if, say, Shoot')  is asserted 
instead. Now, SATPLAN will find the plan IForward°1;  so far, so good. Unfortunately, 
SATPLAN also finds the plan [Shoot il ].  How could this be? To find out, we inspect the model 
that SATPLAN  constructs: it includes the assignment L2  1 ,  that is, the agent can be in [2, 1] 
at time 1 by being there at time 0 and shooting. One might ask, "Didn't we say the agent is in 
[1, 1] at time 0?" Yes, we did, but we didn't tell the agent that it can't be in two places at once! 
For entailment, 4 .1  is unknown and cannot, therefore, be used in a proof; for satisfiability, 
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on the other hand, L(
2
)

1  is unknown and can, therefore, be set to whatever value helps to 
make the goal true. For this reason, S ATPLAti  is a good debugging tool for knowledge bases 
because it reveals places where knowledge is missing. In this particular case, we can fix the 
knowledge base by asserting that, at each time step, the agent is in exactly one location, using 
a collection of sentences similar to those used to assert the existence of exactly one wumpus.  
Alternatively, we can assert  for  all locations other than [1,1];  the successor-state axiom 
for location takes care of subsequent time steps. The same fixes also work to make sure the 
agent has only one orientation. 

SATPLAN has more surprises in store, however. The first is that it finds models with 
impossible actions, such as shooting with no arrow. To understand why, we need to look more 
carefully at what the successor-state axioms (such as Equation (7.3)) say about actions whose 
preconditions are not satisfied. The axioms do predict correctly that nothing will happen when 
such an action is executed (see Exercise 10.14), but they do not say that the action cannot he 
executed! To avoid generating plans with illegal actions, we must add precondition axioms 
stating that an action occurrence requires the preconditions to be satisfied. 13  For example, we 
need to say, for each time t, that 

Shoot t  = Ilaveitrrow  

This ensures that if a plan selects the Shoot action at any time, it must be the case that the 
agent has an arrow at that time. 

SATPLAN's  second surprise is the creation of plans with multiple simultaneous actions. 
For example, it may come up with a model in which both Forward °  and Shoot °  are true, 
which is not allowed. To eliminate this problem, we introduce action exclusion axioms: for 
every pair of actions Al  and .11'i  we add the axiom 

v 
It might he pointed out that walking forward and shooting at the same time is not so hard to 
do, whereas, say, shooting and grabbing at the same time is rather impractical. By imposing 
action exclusion axioms only on pairs of actions that really do interfere with each other, we 
can allow for plans that include multiple simultaneous actions—and because SATPLAN finds 
the shortest legal plan, we can be sure that it will take advantage of this capability. 

To summarize, SATPLAN  finds models for a sentence containing the initial state, the 
goal, the successor-state axioms, the precondition axioms, and the action exclusion axioms. 
It can be shown that this collection of axioms is sufficient, in the sense that there are no 
longer any spurious "solutions.' Any model satisfying the propositional sentence will be a 
valid plan for the original problem. Modern SAT-solving technology makes the approach 
quite practical. For example, a DPLL-style solver has no difficulty in generating the 11-step 
solution for the wumpus world instance shown in Figure 7.2. 

This section has described a declarative approach to agent construction: the agent works 
by a combination of asserting sentences in the knowledge base and performing logical infer-
ence. This approach has some weaknesses hidden in phrases such as "for each time t" and 

"  Notice that the addition of precondition axioms means that we need not include  preconditions for actions in 
the successor-state axioms. 

PRECONDITION 
AXIOMS 

ACTION EXCLUSION 
AXIOM 
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"for each square [x. y]." For any practical agent, these phrases have to be implemented by 
code that generates instances of the general sentence schema automatically for insertion into 
the knowledge base. For a wumpus world of reasonable size—one comparable to a smallish 
computer game—we might need a 100 x 100 board and 1000 time steps, leading to knowl-
edge bases with tens or hundreds of millions of sentences. Not only does this become rather 
impractical, but it also illustrates a deeper problem: we know something about the wum-
pus  world—namely,  that the "physics" works the same way across all squares and all time 
steps—that we cannot express directly in the language of propositional logic. To solve this 
problem, we need a more expressive language, one in which phrases like "for each time t" 
and "for each square [1r,  y]" can be written in a natural way. First-order logic, described in 
Chapter 8, is such a language; in first-order logic a wumpus world of any size and duration 
can be described in about ten sentences rather than ten million or ten trillion.  

7.8 SUMMARY 

We have introduced knowledge-based agents and have shown how to define a logic with 
which such agents can reason about the world. The main points are as follows: 

■ Intelligent agents need knowledge about the world in order to reach good decisions. 
• Knowledge is contained in agents in the form of sentences in a knowledge represen-

tation language that are stored in a knowledge base. 
• A knowledge-based agent is composed of a knowledge base and an inference mecha-

nism_ It operates by storing sentences about the world in its knowledge base, using the 
inference mechanism to infer new sentences, and using these sentences to decide what 
action to take.  

• A representation language is defined by its syntax, which specifies the structure of 
sentences, and its semantics, which defines the truth of each sentence in each possible 
world or model. 

• The relationship of entailment between sentences is crucial to our understanding of 
reasoning. A sentence rx  entails another sentence $  if 3 is true in all worlds where 
is is true. Equivalent definitions include the validity of the sentence cr  = 0  and the 
unsatisfiability  of the sentence it  A -./3.  

• Inference is the process of deriving new sentences from old ones. Sound inference algo-
rithms derive only sentences that are entailed; complete algorithms derive all sentences 
that are entailed. 

• Propositional logic is a simple language consisting of proposition symbols and logical 
connectives. It can handle propositions that are known true, known false, or completely 
unknown. 

■ The set of possible models, given a fixed propositional vocabulary, is finite, so en-
tailment can be checked by enumerating models. Efficient model-checking inference 
algorithms for propositional logic include backtracking and local search methods and 
can often solve large problems quickly. 
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• Inference rules are patterns of sound inference that can be used to find proofs. The 
resolution rule yields a complete inference algorithm for knowledge bases that arc 
expressed in conjunctive normal form. Forward chaining and backward chaining 
are very natural reasoning algorithms for knowledge bases in Horn form. 

• Local search methods such as WALKSAT can be used to find solutions. Such algo-
rithms are sound but not complete. 

• Logical state estimation involves maintaining a logical sentence that describes the set  
of possible states consistent with the observation history. Each update step requires 
inference using the transition model of the environment, which is built from successor-
state axioms that specify how each fluent changes. 

• Decisions within a logical agent can be made by SAT solving: finding possible models 
specifying future action sequences that reach the goal. This approach works only for 
fully observable or sensorless environments. 

• Propositional logic does not scale to environments of unbounded size because it lacks 
the expressive power to deal concisely with time, space, and universal patterns of rela-
tionships among objects. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

John McCarthy's paper 'Programs  with Common Sense" (McCarthy, 1958,  1968) promul-
gated the notion of agents that use logical reasoning to mediate between percepts and actions. 
It also raised the flag of declarativism, pointing out that telling an agent what it needs to know 
is an elegant way to build software. Allen Newell's (1982) article "The Knowledge Level" 
makes the case that rational agents can be described and analyzed at an abstract level defined 
by the knowledge they possess rather than the programs they run. The declarative and proce-
dural  approaches to Al are analyzed in depth by Boden (1977). The debate was revived by, 
among others, Brooks (1991) and Nilsson (1991), and continues to this day (Shaparati  et al, 
2008).  Meanwhile, the declarative approach has spread into other areas of computer science 
such as networking (Lao et al., 2006). 

Logic itself had its origins in ancient Greek philosophy and mathematics. Various log-
ical principles—principles connecting the syntactic stmaure  of sentences with their truth 
and falsity, with their meaning, or with the validity of arguments in which they figure—are 
scattered in the works of Plato. The first known systematic study of logic was carried out 
by Aristotle, whose work was assembled by his students after his death in 322 B.C. as a 

SYLLOGISM 
 treatise called the Organon. Aristotle's syllogisms were what we would now call inference 

rules. Although the syllogisms included elements of both propositional and first-order logic, 
the system as a whole lacked the compositional properties required to handle sentences of 
arbitrary complexity. 

The closely related Megarian and Stoic schools (originating in the fifth century B.C. 

and continuing for several centuries thereafter) began the systematic study of the basic logical 
connectives. The use of truth tables for defining connectives is due to Philo of Megara. The 
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Stoics took five basic inference rules as valid without proof, including the rule we now call 
Modus Ponens.  They derived a number of other rules from these five, using, among other 
principles, the deduction theorem (page 249) and were much clearer about the notion of 
proof than was Aristotle. A good account of the history of Megarian and Stoic logic is given 
by Benson Mates (1953). 

The idea of reducing logical inference to a purely mechanical process applied to a for-
mal language is due to Wilhelm Leibniz (1646-1716), although he had limited success in im-
plementing the ideas. George Boole (1847) introduced the first comprehensive and workable 
system of formal logic in his book The Mathematical Analysis of Logic. Boole's logic was 
closely modeled on the ordinary algebra of real numbers and used substitution of logically 
equivalent expressions as its primary inference method. Although Boole's  system still fell 
short of full propositional logic, it was close enough that other mathematicians could quickly 
fill in the gaps. Schrtider  (1877) described conjunctive normal form, while Horn form was 
introduced much later by Alfred Horn (1951).  The first comprehensive exposition of modern 
propositional logic (and first-order logic) is found in Gottlob Frege's (1879) Begriffschrifi  
("Concept Writing" or "Conceptual Notation"). 

The first mechanical device to carry out logical inferences was constructed by the third 
Earl of Stanhope (1753-1816). The Stanhope Demonstrator could handle syllogisms and 
certain inferences in the theory of probability. William Stanley Jevons, one of those who 
improved upon and extended Boole's work, constructed his "logical piano" in 1869 to per-
form inferences in Boolean logic. An entertaining and instructive history of these and other 
early mechanical devices for reasoning is given by Martin Gardner (1968). The first pub-
lished computer program for logical inference was the Logic Theorist of Newell, Shaw, 
and Simon (1957). This program was intended to model human thought processes. Mar-
tin Davis (1957) had actually designed a program that came up with a proof in 1954, but the 
Logic Theorist's results were published slightly earlier. 

Truth tables as a method of testing validity or unsatisfiability in propositional logic were 
introduced independently by Emil Post (1921) and Ludwig Wittgenstein (1922). In the 1930s, 
a great deal of progress was made on inference methods for first-order logic_  in particular, 
Giidel  (1930) showed that a complete procedure for inference in first-order logic could be 
obtained via a reduction to propositional logic, using Herbrand's  theorem (Herbrand, 1930). 
We take up this history again in Chapter 9; the important point here is that the development 
of efficient propositional algorithms in the 1960s was motivated largely by the interest of 
mathematicians in an effective theorem prover for first-order logic. The Davis—Putnam algo-
rithm (Davis and Putnam, 1960) was the first effective algorithm for propositional resolution 
but was in most cases much less efficient than the DPLL backtracking algorithm introduced 
two years later (1962). The full resolution rule and a proof of its completeness appeared in a 
seminal paper by J. A. Robinson (1965), which also showed how to do first-order reasoning 
without resort to propositional techniques. 

Stephen Cook (1971) showed that deciding satisfiability of a sentence in propositional 
logic (the SAT problem) is NP-complete. Since deciding entailment is equivalent to decid-
ing unsatisfiability, it is co-NP-complete. Many subsets of propositional logic arc known for 
which the satisfiability problem is polynomially solvable; Horn clauses are one such subset. 
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The linear-time forward-chaining algorithm for Horn clauses is due to Dowling and Gallier 
(1984), who describe their algorithm as a dataflow process similar to the propagation of sig-
nals in a circuit. 

Early theoretical investigations showed that DPLL has polynomial average-case com- 
plexity for certain natural distributions of problems. This potentially exciting fact became 
less exciting when Franco and Paull (1983) showed that the same problems could be solved 
in constant time simply by guessing random assignments. The random-generation method 
described in the chapter produces much harder problems. Motivated by the empirical success 
of local search on these problems, Koutsoupias and Papadimitriou (1992) showed that a sim-
ple hill-climbing algorithm can solve almost all satisfiability  problem instances very quickly, 
suggesting that hard problems are rare. Moreover, Schiining  (1999) exhibited a randomized 
hill-climbing algorithm whose worst-case  expected run time on 3-SAT problems (that is, sat-
isfiability  of 3-CNF sentences) is q1.333n)—still  exponential, but substantially faster than 
previous worst-case bounds. The current record is 0(1.324n)  (lwama  and Tamaki, 2004). 
Achlioptas et al. (2004) and Alekhnovich  et al. (2005) exhibit families of 3-SAT instances 
for which all known DPLL-like algorithms require exponential running time.  

On the practical side, efficiency gains in propositional solvers have been marked. Given 
ten minutes of computing time, the original DPLL algorithm in 1962 could only solve prob-
lems with no more than 10 or 15 variables. By 1995 the SATZ solver (Li and Anbulagan, 
1997)  could handle 1,000 variables, thanks to optimized data structures for indexing van-
ables. Two crucial contributions were the watched literal indexing technique of Zhang  and 
Stickel (1996), which makes unit propagation very efficient, and the introduction of clause 
(i.e., constraint) learning techniques from the CSP community by Bayardo and Schrag (1997). 
Using these ideas, and spurred by the prospect of solving industrial-scale circuit verification 
problems, Moskewicz et al. (2001) developed the CHAFF solver, which could handle prob-
lems with millions of variables. Beginning in 2002, SAT competitions have been held reg-
ularly; most of the winning entries have either been descendants of CHAFF or have used the 
same general approach. RSAT (Pipatsrisawat and Darwiche, 2007), the 2007 winner, falls in 
the latter category_ Also noteworthy is Mir  IS  AT (Fen and Siirensson,  2003), an open-source 
implementation available at http :  / /mini s at . se that is designed to be easily modified 
and improved. The current landscape of solvers is surveyed by Gomes et al. (2008). 

Local search algorithms for satisfiability were tried by various authors throughout the 
1980s; all of the algorithms were based on the idea of minimizing the number of unsatisfied 
clauses (Hansen and laurnard,  1990). A particularly effective algorithm was developed by 
Gu  (1989) and independently by Selman et al. (1992), who called it GSAT and showed that 
it was capable of solving a wide range of very hard problems very quickly. The WALKS AT 
algorithm described in the chapter is due to Selman et al.  (1996). 

The "phase transition" in satisfiability  of random k-SAT problems was first observed 
by Simon and Dubois (1989) and has given rise to a great deal of theoretical and empirical 
research—due, in part, to the obvious connection to phase transition phenomena in statistical 
physics. Cheeseman et al. (1991) observed phase transitions in several CSPs and conjecture 
thaL  all NP-hard problems have a phase transition. Crawford and Autun  (1993) located the 
3 -SAT transition at a clause/variable ratio of around 4.26, noting that this coincides with a 
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SATISF1ABILETY  
THRESHOLD The satisfiability threshold conjecture states that, for each k, there is a sharp satisfiability 
COOJECTURE  

threshold rk,  such that as the number of variables n —>  oc, ,  instances below the threshold are 
satisfiable with probability I, while those above the threshold are unsatisliable  with proba-
bility 1. The conjecture was not quite proved by Friedgut (1999): a sharp threshold exists but 
its location might depend on n even as n —r  no. Despite significant progress in asymptotic 
analysis of the threshold location for large k (Achlioptas and Peres, 2004; Achlioptas et al., 
2007), all that can be proved for k = 3 is that it lies in the range [3.52,4.51]. Current theory 
suggests that a peak in the run time of a SAT solver is not necessarily related to the satisfia- 
bility threshold, but instead to a phase transition in the solution distribution and structure of 
SAT instances. Empirical results due to Coarfa et al. (2003) suppuri  this view. In fact, al- 

PROPAGATION  gonthms such as survey propagation (Parisi and Zecchina, 2002; Maneva et al., 2007) take 
advantage of special properties of random SAT instances near the satistiability threshold and 
greatly outperform general SAT solvers on such instances.  

The best sources for information on satisfiability,  both theoretical and practical, are the 
Handbook of Satisfiabilitv  (Biere et al., 2009) and the regular International Conferences on 
Theory and Applications of Satisfiability Testing, known as SAT. 

The idea of building agents with propositional logic can be traced back to the seminal 
paper of McCulloch and Pins (1943), which initiated the field of neural networks. Con-
trary to popular supposition, the paper was concerned with the implementation of a Boolean 
circuit-based agent design in the brain. Circuit-based agents, which perform computation by 
propagating signals in hardware circuits rather than running algorithms in general-purpose 
computers, have received little attention in AI, however. The most notable exception is the 
work of Stan Rosenschein (Rosenschein, 1985; Kaelbling and Rosenschein,  1990), who de-
veloped ways to compile circuit-based agents from declarative descriptions of the task envi-
ronment. (Rosenschein's approach is described at some length in the second edition of this 
honk)  The work of Rod Brooks (1986, 1989) demonstrates the effectiveness of circuit-based  
designs for controlling robots—a topic we take up in Chapter 25. Brooks (1991) argues 
that circuit-based designs are all that is needed for Al—that  representation and reasoning 
are cumbersome, expensive, and unnecessary. In our view, neither approach is sufficient by 
itself. Williams et al. (2003) show how a hybrid agent design not too different from our 
wumpus agent has been used to control NASA spacecraft, planning sequences of actions and 
diagnosing and recovering from faults. 

The general problem of keeping track of a partially observable environment was intro-
duced for state-based representations in Chapter 4. Its instantiation for propositional repre-
sentations was studied by Amir and Russell (2003), who identified several classes of envi-
ronments that admit efficient state-estimation algorithms and showed that for several other 

TEMP - classes the problem is intractable. The temporal-projection problem, which involves deter- ORAL  
PROJECTION  

mining what propositions hold true after an action sequence is executed, can be seen as a 
special case of state estimation with empty percepts_  Many authors have studied this problem 
because of its importance in planning; sonic important hardness results were established by 

sharp peak in the run time of their SAT solver. Cook and Mitchell (1997) provide an excellent 
summary of the early Literature on the problem. 

The current state of theoretical understanding is summarized by Achlioptas (2009). 
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Liberatore (1997). The idea of representing a belief state with propositions can be traced to 
Wittgenstein (1922). 

Logical state estimation, of course, requires a logical representation of the effects of 
actions—a key problem in AI since the late 1950s. The dominant proposal has been the sit-
uation calculus formalism (McCarthy, 1963), which is couched within first-order logic. We 
discuss situation calculus, and various extensions and alternatives, in Chapters 10 and 12. The 
approach taken in this chapter—using temporal indices on propositional variables—is more 
restrictive but has the benefit of simplicity. The general approach embodied in the SATPLAM  
algorithm was proposed by Kautz and Selman (1992). Later generations of SATPLAN  were 
able to take advantage of the advances in SAT solvers, described earlier, and remain among 
the most effective ways of solving difficult problems (Kautz, 2006). 

The frame problem was first recognized by McCarthy and Hayes (1969).  Many re-
searchers considered the problem unsolvable within first-order logic, and it spurred a great 
deal of research into nonmonotonic logics. Philosophers from Dreyfus (1972) to Crockett 
(1994) have cited the frame problem as one symptom of the inevitable failure of the entire 
Al enterprise. The solution of the frame problem with successor-state axioms is due to Ray 
Reiter (1991). Thielscher (1999) identifies the inferential frame problem as a separate idea 
and provides a solution. In retrospect, one can see that Rosenschein's (1985) agents were 
using circuits that implemented successor-state axioms, but Rosenschein did not notice that 
the frame problem was thereby largely solved. Foo (2001) explains why the discrete-event 
control theory models typically used by engineers do not have to explicitly deal with the 
frame problem: because they are dealing with prediction and control, not with explanation 
and reasoning about counterfactual situations. 

Modem propositional solvers have wide applicability in industrial applications. The ap-
plication of propositional inference in the synthesis of computer hardware is now a standard 
technique having many large-scale deployments (Nowick et al., 1993). The SATMC satisfi-
ability  checker was used to detect a previously unknown vulnerability in a Web browser user 
sign-on protocol (Armando el ai.,  2008). 

The wumpus  world was invented by Gregory Yoh (1975).  Ironically, Yoh developed it 
because he was bored with games played on a rectangular grid: the topology of his original 
wumpus world was a dodecahedron, and we put it back in the boring old grid. Michael 
Genesereth was the first to suggest that the wumpus world be used as an agent testbed. 

EXERCISES 

7.1 Suppose the agent has progressed to the point shown in Figure 7.4(a), page 239, having 
perceived nothing in [1,1], a breeze in [2,1],  and a stench in [1,2], and is now concerned with 

the contents of [1,3], [2,2], and [3,1].  Each of these can contain a pit, and at most one can 
contain a wumpus. Following the example of Figure 7.5,  consnuct  the set of possible worlds_ 
(You should find 32 of them.) Mark the worlds in which the KB is true and those in which 
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each of the following sentences is true: 
cr2  = "There is no pit in [2,2]." 
oz3  = "There is a wumpus in [1.3]." 

Hence show that KB if c..1 2  and KB if 

7.2 (Adapted from Barwise and Etchemendy (1993).) Given the following, can you prove 
that the unicorn is mythical? How about magical? Horned? 

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a 
mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. 
The unicorn is magical if it is homed. 

7.3 Consider the problem of deciding whether a propositional logic sentence is true in a 
given model. 

a. Write a recursive algorithm PL-TRuE?(s,  m) that returns true if and only if the sen-
tence s is true in the model m (where sit assigns a truth value for every symbol in s). 
The algorithm should run in time linear in the size of the sentence. (Alternatively, use a 
version of this function from the online code repository.) 

b. Give three examples of sentences that can be determined to be true or false in a partial  
model that does not specify a truth value for some of the symbols. 

c. Show that the truth value (if any) of a sentence in a partial model cannot be determined 
efficiently in general. 

d. Modify your PL-TRUE?  algorithm so that it can sometimes judge truth from partial 
models, while retaining its recursive structure and linear run time. Give three examples 
of sentences whose truth in a partial model is not detected by your algorithm. 

e. Investigate whether the modified algorithm makes TT-ENTAILs? more efficient. 

7.4 Which of the following are correct? 
a. False =  True. 

b. True 
if 

 False. 

c. ( A A B) i  (A .#>  B). 
d. A 

e. A B —.AV B. 

f. (A A 13) C (A C) v (B C). 
g (C V (—,A A —113))  = ((A C) A (B C)),  
h. (AvB)A(—CV—DvE)pylvB).  
i. (Av  B) ( —,C;  V — D V E)  ;A B) A ( —d)  V E). 
j. ( AV B) A —.(A  = B) is satisfiable. 
k. (A <=>  B) A ( —A v B) is satisfiable. 

1.  (A S B) C has the same number of models as (A <4.  B) for any fixed set of 
proposition symbols that includes A, B, C. 
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7.5 Prove each of the following assertions: 
a. a is valid if and only if True a. 
b. For any a, False  a. 
c. a $  if and only if the sentence (a = 8)  is valid. 
d. cs  13  if and only if the sentence (a  -<4.  3)  is valid. 
e. a 0  if and only if the sentence (a A —.0)  is unsatisfiable. 

7.6 Prove, or find a counterexample to, each of the following assertions: 
a. If a or 8 -7  (or both) then (cy  A ()  
b. If a if (8  A ^y)  then a  0  and cr -y.  
c. If a (8 V ^i)  then a 8  or or (or both). 

7.7 Consider a vocabulary with only four propositions, A, B, C, and D. How many models 
are there for the following sentences? 

a. B V C. 
b. A V —.13  V —IC  V —1).  
c. (A = B) A A A —1.13  A C A D. 

7.8 We have defined four binary logical connectives. 
a. Are there any others that might be useful? 
b. How many binary connectives can there be? 
c. Why are some of them not very useful? 

7.9 Using a method of your choice, verify each of the equivalences in Figure 7.11 (page 249). 

7.19 Decide whether each of the following sentences is valid, unsatisfiable,  or  neither. Ver- 
ify your decisions using truth tables or the equivalence rules of Figure 7.11 (page 249). 

a. Smoke = Smoke 

b. Smoke = Fire 
c. (Smoke Fire) = (—Smoke 
d. Smoke V  Fire V  'Fire  
e. ((Smoke A Heat) = Fire) ((Smoke = Fire) V (Heat = Fire)) 

f. (Smoke. Fire) ((Smoke A Heat', Fire) 
g. Big V Dumb V (Big Dumb) 

7.11 Any propositional logic sentence is logically equivalent to the assertion that each pos-
sible world in which it would be false is not the case. From this observation, prove that any 
sentence can be written in CNF.  

7.12 Use resolution to prove the sentence —B  from the clauses in Exercise 7.20. 

7.13 This exercise looks into the relationship between clauses and implication sentences. 



282 Chapter 7. Logical Agents 

IMPLICATIVE 
NORMAL FORM 

a. Show that the clause (—Ti  V V —,P7-n,  V Q) is logically equivalent to the implication 
sentence (P1  A -  - A Q.  

b. Show that every clause (regardless of the number of positive literals) can be written in 
the form (P1  A • • A P„,) (Q 1  V V Qri  ),  where the Ps and Qs are proposition 
symbols. A knowledge base consisting of such sentences is in implicative normal 
form or Kowalski form (Kowalski, 1979). 

c. Write down the full resolution rule  for sentences in implicative normal form. 

7.14 According to some political pundits, a person who is radical (R) is electable (E) if 

he/she is conservative (C), but otherwise is not electable. 

a. Which of the following are correct representations of this assertion? 
(i) (R n E) C 
(ii) R = (E  C) 

(iii) R = ((C = E) v 

b. Which of the sentences in (a) can be expressed in Ham form? 

7.15  This question considers representing satisfiability  (SAT) problems as CSPs. 

a. Draw the constraint graph corresponding to the SAT problem 

( —X1 V X2) A ( — X2 V Xs) /1  . A (-1..)Cp._i  X7i )  

for the particular case n —  5. 
b. How many solutions are there for this general SAT problem as a function of n? 
c. Suppose we apply BACKTRACKING-SEARCH (page 215) to find all solutions to a SAT 

CSP of the type given in (a). (To find all solutions to a CSP, we simply modify the 
basic algorithm so it continues searching after each solution is found.) Assume that 
variables are ordered X1, ........, X„  and false is ordered before true. How much time 
will the algorithm take to terminate? (Write an 0•  expression as a function of n.) 

d. We know that SAT problems in Horn form can be solved in linear time by forward 
chaining (unit propagation). We also know that every tree-stnicnired  binary CSP with 
discrete, finite domains can be solved in time linear in the number of variables (Sec-
tion 6.5). Arc these two facts connected? Discuss. 

7.16 Explain why every nonempty  propositional clause, by itself, is satisfiable. Prove rig-
orously that every set of Eve 3-SAT clauses is satisfiable, provided that each clause mentions 
exactly three distinct variables. What is the smallest set of such clauses that is unsatisnable?  
Construct such a set. 

7.17 A propositional 2-CNF expression is a conjunction of clauses, each containing exactly 
2 literals, e.g., 

(AV B) A (—AV C) (-0  V D) (—,C  V G) (—,D V G)  . 

a. Prove using resolution that the above sentence entails G. 
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b. Two clauses are semantically distinct if they are not logically equivalent. How many 
semantically distinct 2-CNF clauses can be constructed from n proposition symbols? 

c. Using your answer to (b),  prove that propositional resolution always terminates in time 
polynomial in n given a 2-CNF sentence containing no more than n  distinct symbols. 

d. Explain why your argument in (c) does not apply to 3-CNF. 

DIJUNCTIVE  
mnRini  FORM 

7.1R Consider the following sentence: 

[(Food = Party)  V  ( Drink..? Party)] [( Food A Drinks) = Party] .  

a. Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), 
or unsatisfi able ,  

b. Convert the left-hand and right-hand sides of the main implication into CNF, showing 
each step, and explain how the  results confirm your answer to (a). 

c. Prove your answer to (a) using resolution. 

7.19 A sentence is in disjunctive normal form (DNF)  if it is the disjunction of conjunctions 
of literals. For example, the sentence (A A B A —,C)  V (—,A  A C) V (B A —, C)  is in DNF. 

a. Any propositional logic sentence is logically equivalent to the assertion that some pos-
sible world in which it would be true is in fact the case. From this observation,  prove 
that any sentence can be written in DNF. 

b. Construct an algorithm that converts any sentence in propositional logic into DNF. 
(Hint: The algorithm is similar to the algorithm for conversion to CNF given in Sec-
tion 7_5  2) 

c. Construct a simple algorithm that takes as input a sentence in DNF and returns a satis-
fying assigmnent  if one exists, or reports fiat no satisfying assignment exists, 

d.  Apply the algorithms in (b) and (c) to the following set of sentences: 
A = B 
B = C  
C . 

e. Since the algorithm in (b)  is very similar to the algorithm for conversion to CNF, and 
since the algorithm in (c) is much simpler than any algorithm for solving a set of sen-
tences in CNF, why is this technique not used in automated reasoning? 

7.20  Convert the following set of sentences to clausal farm.  

S 1: A tr  (B v  
S2: E 
S3: C A F 
S4: E B. 
55: B F. 
56: B C 

Give  a trace of the execution  of DPLL on the conjunction of these clauses. 
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7.21 Is a randomly generated 4-CNF sentence with n symbols and m. clauses more or less 
likely to be solvable than a randomly generated 3-CNF  sentence with n symbols and an  
clauses? Explain. 

7.22 Minesweeper, the well-known computer game. is closely related to the wumpus world. 
A minesweeper world is a rectangular grid of N squares with M invisible mines scattered 
among them. Any square may be probed by the agent; instant death follows if a mine is 
probed. Minesweeper indicates the presence of  mines by revealing, in each probed square, 

the number of mines that are directly or diagonally adjacent. The goal is to probe every 
unmined square.  

9.  Let X i  j  he true iff square contains a mine_ Write down the assertion that exactly 
two mines are adjacent to [1,1] as a sentence involving some logical combination of 
X,,,3  propositions. 

b. Generalize your assertion from (a) by explaining how to construct a CNF sentence 
asserting that k of neighbors contain mines. 

c. Explain precisely how an agent can use DPLL to prove that a given square does (or 
does not) contain a mine, ignoring the global constraint that there are exactly M mines 
in all, 

d. Suppose that the global constraint is constructed from your method from part (b). How 
does the number of clauses depend on Al  and N? Suggest a way to modify DELL so 
that the global constraint does not need to be represented explicitly. 

e. Are  any conclusions derived by the method in part (c) invalidated when the global 
constraint is taken into account? 

f. Give examples of configurations of probe values that induce long-range dependencies 
such that the contents of a given unprobed square would give information about the 
contents of a far-distant  square. (filet: consider an P1  x 1 board.) 

7.23 How long does it take to prove KB = or  using DPLL when a  is a literal already 
contained in KB? Explain. 

7.24 Trace the behavior of DPLL  on the knowledge base in Figure 7.16 when trying to 
prove Q, and compare this behavior with that of the forward-chaining algorithm. 

7.25 Write a successor-state axiom for the Locked predicate, which applies to doors, as- 
suming the only actions available are Lock and Unlock. 

7.26 Section 7.7.1 provides some of the successor-state axioms required for the wumpus 
world. Write down axioms for all remaining fluent symbols. 

7.27 Modify the 1-IYBRID-WumPu5-AGENT  to use the 1-CNF  logical state estimation 
method described on  page 271. We noted on that page that such an agent will not be able 
to acquire, maintain, and use more complex beliefs such as the disjunction P3,1 V P25. Sug- 
gest a method for overcoming this problem by defining additional proposition symbols, and 
try it out in the wumpus world. Does it improve the performance of the agent? 



FIRST-ORDER LOGIC 

In which we notice that the world is blessed with many objects, some of which are 
related to other objects, and in which we endeavor to reason about them. 

In Chapter 7, we showed how a knowledge-based agent could represent the world in which it 
operates and deduce what actions to take. We used propositional logic as our representation 
language because it sufficed to illustrate the basic concepts of logic and knowledge-based 
agents. Unfortunately, propositional logic is too puny a language to represent knowledge 

EIPST-OFIDER  LOGIC  of complex environments in a concise way. In this chapter, we examine first-order logic,' 
which is sufficiently expressive to represent a good deal of our commonsense knowledge. 
It also either subsumes or forms the foundation of many other representation languages and 
has been studied intensively for many decades. We begin in Section 8.1 with a discussion of 
representation languages in general; Section 8.2 covers the syntax and semantics of first-order 
logic; Sections 8.3  and 8.4 illustrate the use of first-order logic for simple representations. 

8.1 REPRESENTATION REVISITED 

In this section, we discuss the nature of representation languages. Our discussion motivates 
the development of first-order logic, a much more expressive language than the propositional 
logic introduced in Chapter 7. We look at propositional logic and at other kinds of languages 
to understand what works and what fails. Our discussion will be cursory, compressing cen-
turies of thought, trial, and error into a few paragraphs. 

Programming languages (such as C++ or Java or Lisp) are by far the largest class of 
formal languages in common use. Programs themselves represent, in a direct sense, only 
computational processes. Data structures within programs can represent facts; for example, 
a program could use a 4 x 4 array to represent the contents of the wumpus world. Thus, the 
programming language statement World [2,2]  Pit  is a fairly natural way to assert that there 
is a pit in square [2,2]. (Such representations might be considered ad hoc; database systems 
were developed precisely to provide a more general, domain-independent way to store and 

I  Also called first-order predicate calculus, sometimes abbreviated as FOL or FOPC. 
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COMPOSMONALFFY  

retrieve facts.) What programming languages lack is any general mechanism for deriving 
facts from other facts; each update to a data structure is done by a domain-specific  procedure 
whose details are derived by the programmer from his or her own knowledge of the domain. 
This procedural approach can be contrasted with the declarative nature of propositional logic, 
in which knowledge and inference are separate, and inference is entirely domain independent. 

A second drawback of data structures in programs (and of databases, for that matter) 
is the lack of any easy way to say, for example, "There is a pit in [2,2] or (3,11"  or "If the 
wumpus  is in [1,1] then he is not in [2,2]." Programs can store a single value for each variable, 
and some systems allow the value to be "unknown," but they lack the expressiveness required 
to handle partial information. 

Propositional logic is a declarative language because its semantics is based on a truth 
relation between sentences and possible worlds. It also has sufficient expressive power to 
deal with partial information, using disjunction and negation. Propositional logic has a third 
property that is desirable in representation languages, namely, compositionality.  In a com-
positional language, the meaning of a sentence is a function of the meaning of its parts. For 
example, the meaning of "51,4,  A S1 , 2" is related to the meanings of "S14"  and "51,2." It 
would be very strange if "51,4" meant that there is a stench in square [1,4] and "51 .2" meant 
that there is a stench in square [1,2], but "S i  ,s  A SI  :2"  meant that France and Poland drew 1-1 
in last week's ice hockey qualifying match. Clearly, noncompositionality makes life much 
more difficult for the reasoning system. 

As we saw in Chapter 7. however, propositional logic lacks the expressive power to 
conciseh describe an environment with many objects. For example, we were forced to write 
a separate rule about breezes and pits for each square, such as 

B 1 , 1  <=>  (P1 ,2  V P21 ) . 

In English, on the other hand, it seems easy enough in  say, once and for all, "Squares adjacent 
to pits are breezy." The syntax and semantics of English somehow make it possible to describe 
the environment concisely. 

8.1.1 The language of thought 

Natural languages (such as English or Spanish) are very expressive indeed. We managed to 
write almost this whole book in natural language, with only occasional lapses into other lan-
guages (including logic, mathematics. and the language of diagrams). There is a long tradi-
tion in linguistics and the philosophy of language that views natural language as a declarative 
knowledge representation language. If we could uncover the rules for natural language, we 
could use it in representation and reasoning systems and gain the benefit of the billions of 
pages that have been written in natural language. 

The modem view of natural language is that it serves a as a medium for communication 
rather than pure representation. When a speaker points and says, "Look!" the listener comes 
to know that, say, Superman has finally appeared over the rooftops. Yet we would not want 
to say that the sentence "Look!" represents that fact. Rather, the meaning of the sentence 
depends both on the sentence itself and on  the context in which the sentence was spoken, 
Clearly, one could not store a sentence such as "Look!" in a knowledge base and expect to 



Section 8.1. Representation Revisited 287 

recover its meaning without also storing a representation of the context—which raises the 
question of how the context itself can be represented. Natural languages also suffer from 

AIMIGU  ITY ambiguity, a problem for a representation language. As Pinker (1995) puts it: "When people 
think about spring, surely they are not confused as to whether they are thinking about a season 
or something that goes Laing—and  if one word can correspond to two thoughts, thoughts 
can't be words." 

The famous Sapir–Whorf  hypothesis claims that our understanding of the world is 
strongly influenced by the language we speak. Whorf (1956) wrote "We cut nature up, orga- 
nize it into concepts, and ascribe significances as we do, largely because we are parties to an 
agreement to organize it this way—an agreement that holds throughout our speech commu-
nity and is codified in the patterns of our language,"  It is certainly true that different speech 
communities divide up the world differently. The French have two words "chaise" and "fau-
teuil," for a concept that English speakers cover with one: "chair." But English speakers 
can easily recognize the category fauteuil and give it a name—roughly "open-arm chair"—so  
does language really make a difference? Whorf relied mainly on intuition and speculation, 
but in the intervening years we actually have real data from anthropological,  psychological 
and neurological studies. 

For example, can you remember which of the following two phrases formed the opening 
of Section 8,1?  

"In this section, we discuss the nature of representation languages ..."  

"This section covers the topic of knowledge representation languages ..."  

Wanner (1974)  did a similar experiment and found that subjects made the right choice at 
chance level—about 50%  of the time—but remembered the content of what they read with 
better than 90% accuracy, This suggests that people process the words to form some kind of 
nonverbal representation. 

More interesting is the case in which a concept is completely absent in a language. 
Speakers of the Australian aboriginal language Camp Yimithirr  have no words for relative 
directions, such as front, back, right, or left Instead they use absolute directions, saying, 
for example, the equivalent of "1 have a pain in my north arm." This difference in language 
makes a difference in behavior: Guugu Yimithirr speakers are better at navigating in open 
terrain, while English speakers are better at placing the fork to the right of the plate. 

Language also seems to influence thought through seemingly arbitrary grammatical 
features such as the gender of nouns. For example, "bridge" is masculine in Spanish and 
feminine in German. Boroditsky (2003) asked subjects to choose English adjectives to de-
scribe a photograph of a particular bridge. Spanish speakers chose big, dangemus, strong, 
and lowering, whereas German speakers chose beautiful, elegant, fragile. and slender. Words 
can serve as anchor points that affect how we perceive the world. Loftus and Palmer (1974) 
showed experimental subjects a movie of an auto accident. Subjects who were asked "How 
fast were the cars going when they contacted each other?" reported an average of 32 mph, 
while subjects who were asked th e  question with the word "smashed" instead of "contacted" 
reported 41mph for the same cars in the same movie. 
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In a first-order logic reasoning system that uses CNF,  we can see that the linguistic form 
"—,(A V B)" and "—kA  A —.B"  arc the same because we can look inside the system and sec 
that the two sentences are stored as the same canonical CNF form. Can we do that with the 
human brain? Until recently the answer was "no," but now it is "maybe" Mitchell er al. 
(2008) put subjects in an fMRI (functional magnetic resonance imaging) machine, showed 
them words such as "celery," and imaged their brains. The researchers were then able to train 
a computer program to predict, from a brain image, what word the subject had been presented 
with. Given two choices (e.g., "celery" or "airplane"), the system predicts correctly '77% of 
the time. The system can even predict at above-chance levels for words it has never seen 
an fMRI  image of before (by considering the images of related words) and for people it has 
never seen before (proving that fMRI reveals some level of common representation across 
people). This type of work is still in its infancy, but fMRI (and other imaging technology 
such as intraentnial  electrophysiulugy  (Sahin et al., 2009)) promises to give us much more  
concrete ideas of what human knowledge representations are like. 

From the viewpoint of formal logic, representing the same knowledge in two different 
ways makes absolutely no difference; the same facts will be derivable from either represen-
tation. In practice, however, one  representation might require fewer steps to derive a conclu-
sion, meaning that a reasoner with limited resources could get to the conclusion using one 
representation but not the other. For nondeductive  tasks such as learning from experience, 
outcomes are necessarily dependent on the form of the representations used. We show in 
Chapter 18 that when a learning program considers two possible theories of the world, both 
of which are consistent with all the data, the most common way of breaking the tie is to choose 
the most succinct theory—and that depends on the language used to represent theories. Thus, 
the influence of language on thought is unavoidable for any agent that does learning. 

8.1.2 Combining the best of formal and natural languages 

We can adopt the foundation of propositional logic—a declarative, compositional semantics 
that is context-independent and unambiguous—and build a more expressive logic on that 
foundation, borrowing representational ideas from natural language while avoiding its draw-
backs. When we look at the syntax of natural language, the most obvious elements are nouns 

DEVECT and noun phrases that refer to objects (squares, pits, wumpuses) and verbs and verb phrases 
RELATION that refer to relations among objects (is breezy, is adjacent to, shoots). Some of these rela- 
RINGRON tions are functions—relations in which there is only one "value" for a given "input." It is 

easy to start listing examples of objects, relations, and functions 
■ Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games. 

wars, centuries ...  
PROPERTY • Relations: these can be unary relations or properties such as red, round, bogus, prime, 

multistoried ...,  or more general n-ary relations such as brother of, bigger than, inside, 
part of, has color, occurred after, owns, comes between, ...  

• Functions: father of, best friend, third inning of, one more than, beginning of ... 
Indeed, almost any assertion can  be thought of as referring to objects and properties or rela-
tions. Some examples follow: 
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• "One plus two equals three." 
Objects: one, two, three, one plus two; Relation: equals; Function: plus. ("One plus 
two" is a name for the object that is obtained by applying the function 'plus" to the 
objects "one" and "two." "Three" is another name for this object.) 

• "Squares neighboring the wumpus are smelly." 
Objects: wumpus, squares; Property: smelly; Relation: neighboring. 

• "Evil King John ruled England in 1200." 
Objects: John, England, 1200; Relation: ruled; Properties: evil, king. 

The language of first-order logic, whose syntax and semantics we define in the next section, 
is built around objects and relations. It has been so important to mathematics, philosophy, and 
artificial intelligence precisely because those fields—and indeed, much of everyday human 
existence—can be usefully thought of as dealing with objects and the relations among them-
First-order  logic can also express facts about same or all of the objects in the universe. This 
enables one to  represent general laws or rules, such as the statement "Squares neighboring 
the wumpus are smelly." 

The primary difference between propositional and first-order logic lies in the ontologi-
cal  commitment made by each language—that  is, what it assumes about the nature of reality. 
Mathematically, this commitment is expressed through the nature of the formal models with 
respect to which the truth of sentences is defined. For example, propositional logic assumes 
that there are facts that either hold or do not hold in the world.  Each fact can be in one 
of two states: true or false, and each model assigns true or false to each proposition sym-
bol (see Section 7.4.2).2  First-order logic assumes more; namely, that the world consists of 
objects with certain relations among them that do or do not hold. The formal models are 
correspondingly more complicated than those for propositional logic. Special-purpose logics 
make still further ontological commitments; for example, temporal logic assumes that facts 
hold at particular times and that those times (which may be points or intervals) arc ordered.  
Thus, special-purpose logics give certain kinds of objects and the axioms about them) "first 
class" status within the logic, rather than simply defining them within the knowledge base. 
Higher-order logic views the relations and functions referred to by first-order logic as ob-
jects in themselves. This allows one to make assertions about all relations—for example, one 
could wish to define what it means for a relation to be transitive. Unlike most special-purpose 
logics, higher-order logic is strictly more expressive than first-order logic, in the sense that 
some sentences of higher-order logic cannot be expressed by any finite number of first-order 
logic sentences. 

A logic can also be characterized by its epistemological commitments—the possible 
states of knowledge that it allows with respect to each fact. In both propositional and first-
order logic, a sentence represents a fact and the agent either believes the sentence to be true, 
believes it to be false, or has no opinion. These logics therefore have three possible states 
of knowledge regarding any sentence. Systems using probability theory, on the other hand, 

2  In contrast, facts in fuzzy logic have a degree of truth between 0 and I. For example, the sentence "Kenna is  
a large city" might be true in our world only to degree 0.6 in fuzzy logic. 
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can have any degree of belief, ranging from 0 (total disbelief) to 1 (total belief). 3  For ex- 
ample, a probabilistic wumpus-world  agent might believe that the wumpus  is in [1,3] with 
probability 0.75. The ontological and epistemological commitments of five different logics 
are summarized in Figure 8.1. 

Language Ontological Commitment 
(What exists in the world) 

Epistemological Commitment 
(What an agent believes about facts) 

Propositional logic 
First-order logic 
Temporal logic 
Probability theory 
Fuzzy logic 

facts 
facts, objects, relations 
facts, objects, relations, times 
facts 
facts with degree of truth E [0, 1] 

true/false/unknown  
true/false/unknown  
true/false/unknown  
degree of belief E [0, 1] 
known interval value 

Figure 8.1 Formal languages and their ontological and epistemological commitments. 

In the next section, we will launch into the details of first-order logic. Just as a student of 
physics requires some familiarity with mathematics, a student of AI must develop a talent for 
working with logical notation. On the other hand, it is also important not to get too concerned 
with the specifics of logical natation—after  all, there are dozens of different versions. The 
main things to keep hold of are how the language facilitates concise representations and how 
its semantics leads to sound reasoning procedures. 

8.2  SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC 

We begin this section by specifying more precisely the way in which the possible worlds 
of first-order logic reflect the ontological commitment to objects and relations. Then we 
introduce the various elements of the language, explaining their semantics as we go along. 

0011515 

DOMAIN ELEMENTS 

8.2.1 Models for first-order logic 

Recall from Chapter 7 that the models of a logical language are the formal structures that 
constitute the possible worlds under consideration. Each model links the vocabulary of the 
logical sentences to elements of the possible world, so that the truth of any sentence can 
be determined. Thus, models for propositional logic link proposition symbols to predefined 
truth values. Models for first-order logic are much more interesting. First, they have objects 
in them! The domain of a model is the set of objects or domain elements it contains. The do-
main is required to he nanemph=—every  possible world must contain at least one object. (See 
Exercise 8.7 for a discussion of empty worlds.) Mathematically speaking, it doesn't matter 
what these objects are—all that matters is how many there are in each particular model—but 
for pedagogical purposes we'll use a concrete example. Figure 8.2 shows a model with five 

 

3  II  is important not to confuse the degree of belief in probability theory with the degree of truth in fuzzy logic. 
Indeed, some fuzzy systems allow uncertainty (degree of belief) about degrees of tru-1.  



Figure 8.2 A model containing five objects, two binary relations, three unary relations 
(indicated by labels on the objects), and one unary function, left -leg. 
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objects: Richard the Lionheart, King of England from 1189 to 1199; his younger brother, the 
evil King John, who ruled from 1199 to 1215; the left legs of Richard and John; and a crown. 

The objects in the model may be related in various ways. In the figure, Richard and 
TUPLE  John are brothers. Formally speaking, a relation is just the set of topics  of objects that are 

related. (A tuple is a collection of objects arranged in a fixed order and is written with angle 
brackets surrounding the objects.) Thus, the brotherhood relation in this model is the set 

Richard the Lionheart, King John),  (King John, Richard the Lionheart) (8.1) 

(Here we have named the objects in English, but you may, if you wish, mentally substitute the 
pictures for the names.) The crown is on King John's head, so the "on head" relation contains 
just one tuple. ithe  crown, King John.  The "brother" and "on head" relations are binary 
relations—that is, they relate pairs of objects. The model also contains unary relations, or 
properties: the "person" property is true of both Richard and John: the "king" property is true 
only of John (presumably because Richard is dead at this point); and the "crown' property is 
true only of the crown. 

Certain kinds of relationships are best considered as functions, in that a given object 
must be related to exactly one object in this way. For example, each person has one left leg, 
so the model has a unary "left leg" function that includes the following mappings: 

Richard  the Lionhear0 Richard's left leg 
Xing John) John's left leg . 

TOTAL FUNCTIONS Strictly speaking, models in first-order logic require total functions, that is, there must be a 
value for every input tuple. Thus, the crown must have a left leg and so must each of the left 
legs. There is a technical solution to this awkward problem involving an additional "invisible" 

(8.2) 
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object that is the left leg of everything that has no left leg, including itself. Fortunately, as 
long as one makes no assertions about the left legs of things that have no left legs, these 
technicalities are of no import. 

So far, we have described the elements that populate models for first-order logic. The 
other essential part of a model is the link between those elements and the vocabulary of the 
logical sentences, which we explain next. 

8.2.2 Symbols and interpretations 

We turn now to the syntax of first-order logic. The impatient reader can obtain a complete 
description from the formal grammar in Figure 8.3.  

The basic syntactic elements of first-order logic are the symbols that stand for objects, 
CONSTANT SYMBOL  relations, and functions. The symbols, therefore, come in three kinds: constant symbols. 
PREDICATE SYMBOL  which stand for objects; predicate symbols, which stand for relations; and function sym- 
FUNCTFDN  SYMBOL  hots,  which stand for functions. We adopt the convention that these symbols will begin with 

uppercase letters. For example, we might use the constant symbols Richard and John; the 
predicate symbols Brother, OnHead,  Person, King, and Crown; and the function symbol 
LeftLeg.  As with proposition symbols, the choice of names is entirely up to the user. Each 

ARP( predicate and function symbol comes with an arity that fixes the number of arguments. 
As in propositional logic, every model must provide the information required to deter-

mine if any given sentence is true or false. Thus, in addition to its objects, relations, and 
INERPFIETATION  functions, each model includes an interpretation that specifies exactly which objects, rela-

tions and functions are referred to by the constant, predicate, and function symbols. One 
possible interpretation for our example—which a logician would call the intended interpre- 

INTENDED tation—is as follows: INTI4PRETATION  

• Richard refers to Richard the Lionheart and John refers to the evil King John. 
■ BzWiter  refers to the brotherhood relation, that is, the set of tuples  of objects given in 

Equation (8.1); OnHead  refers to the "on head" relation that holds between the crown 
and King John; Person, King, and Crown refer to the sets of objects that are persons, 
kings, and crowns. 

■ Lefthey  refers to the "left leg" function, that is, the mapping given in Equation (8.2).  

There are many other possible interpretations, of course. For example, one interpretation 
maps Richard to the crown and John to King John's left leg. There are five objects in 
the model, so there are 25 possible interpretations just for the constant symbols Richard 
and John. Notice that not all the objects need have a name—for example, the intended 
interpretation does not name the crown or the legs. It is also possible for an object to have 
several names; there is an interpretation under which both Richard and John refer to the 
crown.4  If you find this possibility confusing, remember that, in propositional logic, it is 
perfectly possible to have a model in which Cloudy  and Sunny are both true; it is the job of 
the knowledge base to rule out models that are inconsistent with our knowledge. 

Later, in Section 8.2.8, we examine a semantics in which every object has exactly one name. 
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Sentence —o  Atomic-Sentence r  ComplexSentence 

_AtomicSentence _Predicate  Predieate(Term  ,  ..) I  Term = Term 

CoinplezSentence (  Sentence ) f  Sentence I  
Sentence 

gentpnee  A Sent.mr.o.  

Sentence V Sentence 

I  Sentence  Sentence 

Sentence #  Sentence 
Quantifier Variable, . Sentence 

Term —0  Function( Tenn, . . .) 

Constant. 

Variable  

Quantifier —o  IV  I 

Constant -P  A X1  John I •  -  

Variable  —o  e.  xl -••  

Predicate 
—o  True  False After Loves I Raining • •  • 

Function —o  Mother I LeftLeg •  

OPERATOR PRECEDENCE : =,  A, V,  ••  

Figure 8.3 The syntax of first-order logic with equality, specified in Backus—Maur  form 
(see page 1060 if you are not familiar with this notation). Operator precedences are specified, 
from highest to lowest. The precedence of quantifiers is such that a quantifier holds over 
everything to the right of it. 

•  •  •  

Figure SA  Some members of the set of all models for a language with two constant sym-
bols.  R and , and one binary relation symbol. The interpretation of each constant symbol is 
shown by a gray arrow. Within each model, the related objects arc connected by arrows. 
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In summary, a model in first-order logic consists of a set of objects and an interpretation 
that maps constant symbols to objects, predicate symbols to relations on those objects, and 
function symbols to functions on those objects. Just as with prepositional logic, entailment, 
validity, and so on are defined in terms of all possible models. To get an idea of what the 
set of all possible models looks like, see Figure 8.4. It shows that models vary in how many 
objects they contain—from one up to infinity—and in the way the constant symbols map 
to objects. If there are two constant symbols and one object, then both symbols must refer 
to the same object; but this can still happen even with more objects. When there are more 
objects than constant symbols, some of the objects will have no names. Because the number 
of possible models is unbounded, checking entailment by the enumeration of all possible 
models is not feasible for first-order logic (unlike propositional logic). Even if the number of 
objects is restricted, the number of combinations can be very large. (See Exercise 8.5.) For 
the example in Figure 8.4, there are 137,506,194,466 models with six or fewer objects. 

8.2.3 Terms 

TERM A term is a logical expression that refers to an object Constant symbols are therefore terms, 
but it is not always convenient to have a distinct symbol to name every object. For example, 
in English we might use the expression "King John's left leg" rather than giving a name 
to his leg. This is what function symbols are for: instead of using a constant symbol, we 
use LeftLeg(John).  In the general case, a complex term is formed by a function symbol 
followed by a parenthesized list of terms as arguments to the function symbol. It is important 
to remember that a complex term is just a complicated kind of name. It is not a "subroutine 
call" that "returns a value." There is no LeftLeg subroutine that takes a person as input and 
returns a leg. We can reason about left legs (e.g., stating the general rule that everyone has one 
and then deducing that John must have one) without ever providing a definition of LeftLeg.  
This is something that cannot be done with subroutines in programming languages. 5  

The formal semantics of terms is straightforward. Consider a term  The 
function symbol f refers to some function in the model (call it F); the argument terms refer 
to objects in the domain (call them d1, ,  , dm ),  and the term as a whole refers to the object 
that is the value of the function F applied to d L ,  dn .  For example, suppose the LeftLeg  
function symbol refers to the function shown in Equation (8.2) and John refers to King John, 
then LeftLeg(John)  refers to King John's left leg. In this way, the interpretation fixes the 
referent of every term. 

8.2.4  Atomic sentences 

Now that we have both terms for referring to objects and predicate symbols for referring to 
relations, we can put them together to make atomic sentences that state facts. An atomic 

5  A-expressions provide a useful notation in which new function symbols are constructed "on the fly." For 
example, the function that squares its argument can be written as (Aat  x x xl  and can be  applied to arguments 
just like any other function symbol. A A -expression can also be defined and used as a predicate symbol. (See 
Chapter 22.) The lambda operator in Lisp plays exactly the same role. Notice that the use of A in  this way does 
not increase the formal expressive power of first-order logic, because any sentence that includes a A-expression 
can be rewritten by ''plugging  in" its arguments to yield an equivalent sentence. 
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sentence (or atom for short) is formed from a predicate symbol optionally followed by a 
parenthesized list of terms, such as 

Brother (Richard „John). 

This states, under the intended interpretation given earlier, that Richard the Lionheart is the 
brother of King John. 6  Atomic sentences can have complex terms as arguments. Thus, 

Married( Father (Richard), Mother  ( John)) 

states that Richard the Lionheart's father is married to King John's mother (again, under a 
suitable interpretation). 

An atomic sentence is true in a given model if the relation referred to by the predicate 
symbol holds among the objects referred to by the arguments. 

8.2.5 Complex sentences 

We can use logical connectives to construct more complex sentences, with the same syntax 
and semantics as in propositional calculus. Here are four sentences that are true in the model 
of Figure 8.2 under our intended interpretation: 

–,Brother(LeftLeg(Richard).  John) 
Brother(Richard.  John) A Brother (John, Richard) 
King (Richard) V King(John)  
–.King(Richard)  = King(John)  

8.2.6 Quantifiers 

Once we have a logic that allows objects, it is only natural to want to express properties of 
entire collections of objects, instead of enumerating the objects by name. Quantifiers let us 
do this First-order logic contains two standard quantifiers, called universal and existential.  

Universal quantification (V)  

Recall the difficulty we had in Chapter 7 with the expression of general rules in proposi-
tional logic. Rules such as "Squares neighboring the wumpus are smelly" and "All kings 
arc persons" are the bread and butter of first-order logic. We deal with the first of these in 
Section 8.3. The second rule, "All kings are persons," is written in first-order logic as 

Vx  King(x) = Person(x)  

V is usually pronounced "For all ...".  (Remember that the upside-down A stands for "all.") 
Thus, the sentence says, "For all x, if x is a king, then x is a person." The symbol x is called 
a variable.  By convention, variables are lowercase letters, A variable is a term all by itself, 
and as such can also serve as the argument of a function—for  example, LeftLey(x).  A term 
with no variables is called a ground term. 

Intuitively, the sentence Vx P, where P is any logical expression, says that P is true 
for every object x.  More precisely, \Ix  P is true in a given model if P is true in all possible 
extended interpretations constructed from the interpretation given in the model. where each 

We usually follow [he argument-ordering  convention that P(E,  y)  is read as "x  is a P of y." 

VAHIAPLE  

GROUND TERM 
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extended interpretation specifies a domain element to which x refers. 
This sounds complicated, but it is really just a careful way of stating the intuitive mean-

ing of universal quantification. Consider the model shown in Figure 8.2 and the intended 
interpretation that goes with it. We can extend the interpretation in five ways: 

x Richard the Lionheart, 
x  King John, 
x Richard's left kg, 
x John's left leg, 
x —r  the crown. 

The universally quantified sentence V r King(z) Person (x) is true in the original model 
if the sentence King(x) Person(x)  is true under each of the five extended interpreta- 
tions. That is, the universally quantified sentence is equivalent to asserting the following five 
sentences: 

Richard the Lionheart is a king = Richard the Lionheart is a person. 
King John is a king King John is a person. 
Richard's left leg is a king Richard's left leg is a person. 
John's left leg is a king = John's left leg is a person. 
The crown is a king the crown is a person.  

Let us look carefully at this set of assertions. Since, in our model, King John is the only 
king, the second sentence asserts that he is a person, as we would hope. But what about 
the other four sentences, which appear to make claims about legs and crowns? Is that pan 
of the meaning of "All  kings are persons"? In fact, the Whet  four assertions arc true in  the 
model, but make no claim whatsoever about the personhood qualifications of legs, crowns. 
or indeed Richard. This is because none of these objects is a king. Looking at the truth table 
for = (Figure 7.8 on page 246), we see that the implication is true whenever its premise is 
false—regardless of the truth of the conclusion. Thus, by asserting the universally quantified 
sentence, which is equivalent to asserting a whole list of individual implications, we end 
up asserting the conclusion of the rule just for those objects for whom the premise is true 
and saying nothing at all about those individuals for whom the premise is false. Thus, the 
truth-table definition of = turns out to he perfect for writing general rules with universal 
quantifiei  s. 

A common mistake. made frequently even by diligent readers who have read this para- 
graph several times, is to use conjunction instead of implication. The sentence 

V or  King (r) A Person(x)  

would be equivalent to asserting 

Richard the Lionheart is a king A Richard the Lionheart is a person, 
King John is a king A King John is a person, 
Richard's left leg is a king A Richard's left leg is a person. 

and so on. Obviously, this does not capture what we want. 
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Existential quantification 0)  

Universal quantification makes statements about every object. Similarly, we can make a state-
ment about some object in the universe without naming it, by using an existential quantifier. 
To say, for example, that King John has a crown on his head, we write 

3  a:  Crown(x)  A OnHeurg.r,  John)  .  

Jx  is pronounced "There exists an x  such that ..." or "For some x ..".  
Intuitively, the sentence l x P says that P is true for at least one object x.  More 

precisely, r P is true in a given model if P is true in at least one extended interpretation 
that assigns x  to a domain element. That is, at least one of the following is true: 

Richard the Lionheart  is a crown A Richard the Lionheart  is on John's head; 
King John is a crown A King John is on John's head; 
Richard's left leg is a crown A Richard's left leg is on John's head; 
John's left leg is a crown A John's left leg is on John's head; 
The crown is a crown A the crown is on John's head. 

The fifth assertion is true in the model, so the original existentially quantified sentence is 
true in the model. Notice that, by our definition, the sentence would also be true in a model 
in which King John was wearing two crowns. This is entirely consistent with the original 
sentence "King John has a crown on his head." 7  

Just as = appears to be the natural connective to use with V, A is the natural connective 
to use with J.  Using A as the main connective with V  led to an overly strong statement in 
the example in the previous section; using = with usually leads to a very weak statement, 
indeed. Consider the following sentence: 

Crovm(x) OnHead(x, John) . 

On the surface, this might look like a reasonable rendition of our sentence. Applying the 
semantics, we see that the sentence says that at least one of the following assertions is true: 

Richard the Lionheart is a crown Richard the Lionheart is on John's head; 
King John is a crown King John is on John's head; 
Richard's left leg is a crown Richard's left leg is on John's head; 

and so on. Now an implication is true if both premise and conclusion are true, or if its premise 
is false. So if Richard the Lionheart is not a crown, then the first assertion is true and the 
existential is satisfied. So, an existentially quantified implication sentence is true whenever 
any object fails to satisfy the premise; hence such sentences really do not say much at all. 

Nested quantifiers 

We will often want to express more complex sentences using multiple quantifiers. The sim- 
plest case is where the quantifiers are of the same type. For example, "Brothers are siblings" 
can be written as 

Vx  V  y Brotlaer(x,y)  = Sibling(z,y)  .  

7  There is a variant of the existential quantifier, usually written  3 1  or ]!,  that means "There exists exactly one." 
The same meaning can be expressed using equality statements. 
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Consecutive quantifiers of the same type can be written as one quantifier with several vari-
ables. For example, to say that siblinghood is a symmetric relationship, we can write 

V x, y Sibling (x , y) ,<=>-  Sibling(y.x)  .  

In other cases we will have mixtures. "Everybody loves somebody" means that for every 
person, them is someone that person loves: 

Vx  y Loves(x, y) . 

On the other hand, to say "There is someone who is loved by everyone," we write 
Vx Loves(x,  y) .  

The order of quantification is therefore very important. It becomes clearer if we insert paren-
theses. V x (A  y Lotes(x,y))  says that everyone has a particular property, namely, the prop-
erty that they love someone_ On the other hand, 7 y (V T TAM*:  17,  says that gnmonne  in 
the world has a particular property, namely the property of being loved by everybody. 

Some confusion can arise when two quantifiers arc used with the same variable name. 
Consider the sentence 

V x ( Crown(x)  V (a  x Brot&r(Richard  x)))  . 

Here the x in BrothEr(Richard,  x) is existentially  quantified. The rule is that the variable 
belongs to the innermost quantifier that mentions it; then it will not be subject to any other 
quantification. Another way to think of it is this:  x Brother(Richard,x)  is a sentence 
about Richard (that he has a brother), not about x; so putting a V x outside it has no effect. It 
could equally well have been written d z Brother (ffichard  , z). Because this can be a source 
of confusion, we will always use different variable names with nested quantifiers. 

Connections between V and 

The two quantifiers are actually intimately connected with each other, through negation. As-
serting that everyone dislikes parsnips is the same as asserting there does not exist someone 
who likes them, and vice versa: 

V x -, Likes(x,  Parsnips) is equivalent to -a  x Likes(x,  Parsnips) . 

We can go one step further: "Everyone likes ice cream" means that there is no one who does 
not like ice cream: 

V x Likes(x,  IceCream)  is equivalent to -a x IcearEatn)  . 

Because V is really a conjunction over the universe of objects and A is a disjunction, it should 
not be surprising that they obey De Morgan's rules. The De Morgan rules for quantified and 
unquantified  sentences are as follows: 

V x P -, (P  V Q) -,1-)  A -, (.2  
P -, (P  A Q) V -IQ 

Vx P x 13  A Q -(-,P  V -Q) 
x P P V Q A .  

Thus, we do not really need both V and A, just as we do nut really need both A and V. Still, 
readability is more important than parsimony, so we will keep both of the quantifiers. 
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8.2.7 Equality 

First-order logic includes one more way to make atomic sentences, other than using a predi-
EOJALITY  SYMBOL cate and terms as described earlier. We can use the equality symbol to signify that two terms 

refer to the same object. For example, 
Father (John) = Henry 

says that the object referred to by Father( John) and the object referred to by Henry are the 
same. Because an interpretation fixes the referent of any term, determining the truth of an 
equality sentence is simply a matter of seeing that the referents of the two terms are the same 
object. 

The equality symbol can be used to state facts about a given function, as we just did for 
the Father symbol. It can also be used with negation to insist that two terms are not the same 
object. To say that Richard has at least two brothers, we would write 

x,  y Brother(x  ,  Richard) A Brother(y,  Richard) A = y) .  
The sentence 

y Brother (x Richard) A Brother(y, Richard) 
does not have the intended meaning. In particular, it is true in the model of Figure 8.2, where 
Richard has only one brother. To see this, consider the extended interpretation in which both 
x and y are assigned to King John. The addition of –.(x=  y)  rules out such models. The 
notation x y  is sometimes used as an abbreviation for –1(x = y). 

8.2.8 An alternative semantics? 

UNIQUE-NAMES  
ASSUMPTION 
CLOSED-WORD  
ASSUMPTION 

Continuing the example from the previous section, suppose that we believe that Richard has 
two brothers, John and Geoffrey. 8  Can we capture this state of affairs by asserting 

Brother(John, Richard) A Brother (  Gcoffrey  Richard) ? (8.3) 
Not quite. First, this assertion is true in a model where Richard has only one brother—
we need to add John  Geoffrey. Second, the sentence doesn't rule out models in which 
Richard has  many more brothers besides John and Geoffrey. Thus, the correct translation of 
"Richard's brothers are John and Geoffrey" is as follows: 

Brother(John,  Richard) A Brother (Geoffrey , Richard) A John Geoffrey 
AV x Brother(x,  Richard) = (x = John V x  = Geoffrey) . 

For many purposes, this seems much more cumbersome than the corresponding natural- 
language expression. As a consequence, humans may make mistakes in translating their 
knowledge into first-order logic, resulting in unintuitive behaviors from logical reasoning 
systems that use the knowledge. Can we devise a semantics that allows a more stra4htfur- 
ward  logical expression?  

One proposal that is very popular in database systems works as follows. First, we insist 
that every constant symbol refer to a distinct object—the so-called unique-names assump-
tion. Second, we assume that atomic sentences not known to be true are in fact false—the 
dosed-world  assumption. Finally, we invoke domain closure, meaning that each model 

OILMAN CLOSURE 
Actually he had four, the others being William and Henry. 
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Figure 8.5  Some members  of the set of all models for a language with two constant sym-
bols, R and J, and one binary relation symbol, under database semantics_ The interpretation 

of the constant symbols is fixed, and there is a distinct object for each constant symbol. 

DATABASE 
SEMANTICS 

contains no more domain elements than those named by the constant symbols. Under the 
resulting semantics, which we call database semantics to distinguish it from the standard 
semantics of first-order logic, the sentence Equation (8.3) does indeed state that Richard's 
two brothers are John and Geoffrey. Database semantics is also used in logic programming 
systems, as explained in Section 9A.5.  

It is instructive to consider the set of all possible models under database semantics for 
the same case as shown in Figure 84 Figure 8.5  shows some of the models, ranging from 
the model with no tuples satisfying the relation to the model with all tucks  satisfying the 
relation. With two objects, there are four possible two-element tuples, so there are 2 4  = 16 
different subsets of tuples that can satisfy the relation. Thus, there are 16 possible models in 
all—a lot fewer than the infinitely many models for thc  standard first-order semantics. On thc  
other hand, the database semantics requires definite knowledge of what the world contains. 

This example brings up an important point: there is no one "correct" semantics for 
logic. The usefulness of any proposed semantics depends on how concise and intuitive it 
makes the expression of the kinds of knowledge we want to write down, and on how easy 
and natural it is to develop the corresponding rules of inference. Database semantics is most 
useful when we are certain about the identity of all the objects described in the knowledge 
base and when we have all the facts at hand; in other cases, it is quite awkward. For the rest 
of this chapter, we assume the standard semantics while noting instances in which this choice 
leads to cumbersome expressions. 

8.3 USING FIRST-ORDER  LOGIC 

Now that we have defined an expressive logical language, it is time to Team  how to use it. The 
best way to do this is through examples. We have seen some simple sentences illustrating the 
various aspects of logical syntax; in this section, we provide more systematic representations 

DOMAIN 

	

	 of some simple domains. In knowledge representation, a domain is just some part of the 
world about which we wish to express some knowledge. 

We begin with a brief description of the TELL/ASK  interface for first-order  knowledge 
bases. Then we look at the domains of family relationships, numbers, sets, and lists, and at 
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ASSERTION 

SIBSTIRITION  

INA  DING LIST 

the wumpus world. The next section contains a more substantial example (electronic circuits) 
and Chapter 12 covers everything in the universe. 

8.3.1 Assertions and queries in first-order logic 

Sentences are added to a knowledge base using TELL. exactly as in propositional logic. Such 
sentences are called assertions. For example, we can assert that John is a king, Richard is a 
person, and all kings are persons: 

TELL(KB, King(John)) . 
TELL(KB, Person(Richard))  .  
TELL(KB, x  King(a) Person(x)) . 

We can ask questions of the knowledge base using ASK. For example, 

AsK(KB,  King(John)) 

returns true. Questions asked with ASK are called queries or goals. Generally speaking, any 

query that is logically entailed by the knowledge base should be answered affirmatively. For 
example ;  given the two preceding assertions, the query 

AsK(KB,  Persan(John))  

should also return true. We can ask quantified queries, such as 

AsK(KB,  dx Person(x))  . 

The answer is true, but this is perhaps not as helpful as we would like. It is rather like 
answering "Can you tell me the time?" with ' Tes."  If we want to know what value of x  
makes the sentence true, we will need a different function, ASKVARS, which we call with 

ASK VAR S(  KB, Person(x))  

and which yields a stream of answers. hi this case there will be two answers: {xl  John} and 
{xi  Richard}.  Such an answer is called a substitution or binding list. ASK VARS is usually 
reserved for knowledge bases consisting solely of Horn clauses, because in such knowledge 
bases every way of making the query true will bind the variables to specific values. That is 
not the case with first-order  logic; if KB has been told King(John) V King(Richard),  then 
there is no binding to e for the query x King(x), even though the query is true. 

8.3.2 The kinship domain 

The first example we consider is the domain of family relationships, or kinship. This domain 
includes facts such as "Elizabeth is the mother of Charles" and "Charles is the father of 
William" and rules such as "One's grandmother is the mother of one's parent." 

Clearly, the objects in our domain are people. We have two unary predicates, Male and 
Female. Kinship relations—parenthood, brotherhood, marriage, and so on—are represented 
by binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, Soon,  Spouse, 
Wife, Husband, Grandparent, Grandchild, Cousin, Aunt, and Uncle. We use functions 
for Mother and Father ;  because every person has exactly one of each of these (at least 
according to nature's design). 

[IER,/  

GOAL 
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We can go through each function and predicate, writing down what we know in terms 
of the other symbols. For example, one's mother is one's female parent: 

V rra, c  AI  other (e)  = m t=  Female (m) ll Parent (m, e) .  

One's husband is one's male spouse: 

'dw ,  h flusband(h,w) Male(h) A Spouse (h, tv)  . 

Male and female are disjoint categories: 

V x Male(s) -,Female(x)  

Parent and child are inverse relations: 

Vp,  c Parent(p, c) <4. Child(e,p;  .  

A grandparent is a parent of one's parent: 

Vg, e Grandparent (g, e)  <4. 4 Parent(g,p) A Parent(p,  e)  . 

A sibling is another child of one's parents: 

V a .  y Sibling (x  , y) <4,  a'  ri  A Ap  Parent (p, x) A Parent Cy  ,  y) 

We could go on for several more pages like this, and Exercise 8.14 asks you to do just that. 
Each of these sentences can be viewed as an axiom of the kinship domain, as explained 

in Section 7A. Axioms are commonly associated with purely mathematical domains—we 
will see some axioms for numbers shortly—but they are needed in all domains. They provide 
the basic factual information from which useful conclusions can be derived. Our kinship 

DEFINITRYI 
 axioms are also definitions; they have the form V x, y P (x , y) ,=> . . .. The axioms define 

the Mother function and the Husband, Male, Parent, Grandparent, and Sibling predicates 
in terms of other predicates. Our definitions "bottom out" at a basic set of predicates (Child .  

Spouse, and Female) in terms of which the others are ultimately defined. This is a natural 
way in which to build up the representation of a domain, and it is analogous to the way in 
which software packages are built up by successive definitions of subroutines from primitive 
library functions. Notice that there is not necessarily a unique set of primitive predicates; 
we could equally well have used Parent, Spouse, and Male. In some domains, as we show, 
there is no clearly identifiable basic set. 

THEOREM Not all logical sentences about a domain are axioms. Some are theorems—that is, they 
are entailed by the axioms. For example, consider the assertion that siblinghood is symmetric: 

Vac,  y Sibling , y) Sibling (y. .r)  .  

Is this an axiom or a theorem? In fact, it is a theorem that follows logically from the axiom 
that defines siblinghood. If we ASK the knowledge base this sentence, it should return true. 

From a purely logical point of view, a knowledge base need contain only axioms and 
no theorems, because the theorems do not increase the set of conclusions that follow from 
the knowledge base.  From a practical point of view, theorems are essential to reduce the 
computational cost of deriving new sentences. Without them, a reasoning system has to start 
from first principles every time,  rather  like a physicist having Lo  rederive the rules of calculus 
for every new problem. 
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INFIX 

Not all axioms are definitions. Some provide more general information about certain 
predicates without constituting a definition, Indeed,  some predicates have no complete defi- 
nition because we do not know enough to characterize them fully. For example, there is no 
obvious definitive way to complete the sentence 

V  x Person(x)  
Fottunately,  first-order logic allows us to make use of the Person predicate without corn- 
pleiely  defining it. Instead, we can write partial specifications of properties that every person 

has and properties that make something a person: 
V  x Person(x) .  .  .  
V  a.  ... Person(z)  
Axioms can also be "just plain facts," such as Male(Jim)  and Spouse(Jim, Laura 

Such facts form the descriptions of specific problem instances, enabling specific questions 
to be answered. The answers to these questions will then be theorems that follow from 
the axioms. Often, one finds that the expected answers are not forthcoming—for example, 
from Spouse (Jim, Laura) one expects (under the laws of many countries) to be able to infer 
+Spouse(George.  Laura); but this does not follow from the axioms given earlier—even after 
we add Jim George as suggested in Section 8.2.8. This is a sign that an axiom is missing. 
Exercise 8.8 asks the reader to supply it. 

8.3.3 Numbers, sets, and lists 

Numbers are perhaps the most vivid example of how a large theory can be built up from 
a tiny kernel of axioms. We describe here the theory of natural numbers or non-negative 
integers. We need a predicate NotNum  that will be true of natural numbers; we need one 
constant symbol, 0; and we need one function symbol, S (successor). The Nano axioms 
define natural numbers and addition.9  Natural numbers are defined recursively: 

Nat.Nuni.(0)  .  
V  21  NatNum(n)  = NatNarn(S(n))  . 

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n)  is 
a natural number. So the natural numbers are 0, S(D),  S(S(0)),  and so on. (After reading 
Section 8.2.8, you will notice that these axioms allow for other natural numbers besides the 
usual ones; see Exercise 8.12.) We also need axioms to constrain the successor function: 

n  0 S(n)  . 
Vm,n S(ni)  S(n)  

Now we can define addition in terms of the successor function: 
H ot NatNum(m) + (0, m)  = m 
Vin,n  NatNum(m)  A NatNum(n) = + (S(m),n)  = S(+(m,n))  . 

The first of these axioms says that adding 0 to any natural number m gives m itself. Notice 
the use of the binary function symbol "+"  in the term +  (rn,  0); in ordinary mathematics, the 
term would be written m + 0 using infix notation. (The notation we have used for first-order 

The Peano axioms also include the principle of induction, which is a sentence of second-order logic rather 
than of first-order logic. The importance of this distinction is explained in Chapter 9. 

NATURAL NLMBERS 

FUND AXIOMS  
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PREFIX 

SYRTAGTO  SUGAR 

5E1  

logic is called prefix.) To make our sentences about numbers easier to read, we allow the use 
of infix notation. We can also write S(n)  as n +  1, so the second axiom becomes 

m, n Nat.Nurn(m)  A NatATurn(n)  = (2-n — 1)  n = (tit  n) 1 . 
This axiom reduces addition to repeated application of the successor function. 

The use of infix notation is an example of syntactic sugar, that is, an extension to or 
abbreviation of the standard syntax that does not change the semantics. Any sentence that 
uses sugar care  be "tlesugared"  to produce an equivalent sentence in ordinary first-order logic. 

Once we have addition, it is straightforward to define multiplication as repeated addi- 
tion, exponentiation as repeated multiplication, integer division and remainders, prime num 
bers, and so on. Thus, the whole of number theory (including cryptography) can be built up 
from one constant, one function, one predicate and four axioms. 

The domain of sets is also fundamental to mathematics as well as to commonsense 
reasoning. (In fact, it is possible to define number theory in terms of set theory.) We want to 
be able to represent individual sets, including the empty set We need a way to build up sets 
by adding an element to a set or taking the union or intersection of two sets. We will want 
to know whether an element is a member of a set and we will want to distinguish sets from 
objects that are not sets. 

We will use the normal vocabulary of set theory as syntactic sugar. The empty set is a 
constant written as }.  There is one unary predicate, Set, which is true of sets. The binary 
predicates are a E s (a is a member of set s) and si  .92  (set si  is a subset, not necessarily 
proper, of set 52). The binary functions are si 1-15  (the intersection of two sets), Si U s2 
(the union of two sets), and {ads}  (the set resulting from adjoining element a to set 8).  One 
possible set of axioms is as follows: 

1. The only sets are the empty set and those made by adjoining something to a set: 
Set(8) (8  = {})  (E  x , 82  Set(82 ) = ix1.82 1)  .  

2. The empty set has no elements adjoined into it In other words, there is no way to 
decompose { } into a smaller set and an element: 

{x  s}={}. 
3. Adjoining an element already in the set has no effect: 

Vx,5  a E5  fr> 5= fx151  .  

4. The only members of a set are the elements that were adjoined into it. We express 
this recursively, saying that a is a member of s if and only if s is equal to some set 82 

adjoined with some element y, where either y is the same as a or x is a member of .s2: 

V X, E `* lit 8 2 (S  = {Y1 82}  A (X=V  V XE.82)).  

A set is a subset of another set if and only if all of the first set's members are members 
of the second set: 

s2  s i  C.92 (Va  xE  si x Es2)  
6. Two sets are equal if and only if each is a subset of the other: 

V 81 7 52  (51 = 52) 4.  (81 C 82 A sa 0  5 1) -  
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7. An object is in the intersection of two sets if and only if it is a member of both sets: 
Vx,si,s2  xE  (sr ns2) (.T Esi  A TEs2)  

S.  An object is in the union of two sets if and only if it is a member of either set: 
Vx,si,s2  sE(BiLl.s2)  <#.  (xEsi  V xE  82)  

LIST Lists are similar to sets. The differences are that lists are ordered and the same element can 
appear more than once in a list. We can use the vocabulary of Lisp for lists: Nil is the constant 
list with no elements; Cons, Append, First, and Rest are functions; and Find is the pred-
icate that does for lists what Member does for sets. List7  is a predicate that is true only of 
lists. As with sets, it is common to use syntactic sugar in logical sentences involving lists. The 
empty list is [].  The term Cons,x,y),  where y is a nonempty  list, is written [xly].  The term 
Cons (x  , Nil) (i.e., the list containing the element x) is written as [x].  A list of several ele-
ments, such as [A, B, C],  corresponds to the nested term Cons (A, Cons ( B,  Cons (C,',  Nit))). 
Exercise 8.16 asks you to write out the axioms for lists. 

8.3.4 The wumpus world 

Some propositional logic axioms for the wumpus  world were given in Chapter 7. The first-
order axioms in this section are much more concise, capturing in a natural way exactly what 
we want to say. 

Recall that the wumpus  agent receives a percept vector with five elements_ The corre-
sponding first-order sentence stored in the knowledge base must include both the percept and 
the time at which it occurred; otherwise, the agent will get confused about when it saw what. 
We use integers for time steps. A typical percept sentence would be 

Percept([Stench,  Breeze, Glitter, None, None], 5)  .  
Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. The 
actions in the wumpus  world can be represented by logical terms: 

Turn(Right), Turn(Left),  Forward, Shoot, Grab, Climb . 

To determine which is best, the agent program executes the query 
AsKVArts(bi,  BestAetion(6,5))  ,  

which returns a binding list such as {al  Grab} . The agent program can then return Grab as 
the action to take. The raw percept data implies certain facts about the current state. For 
example: 

V t,  g,  m,  Percept([3,  Breeze, 9 n,  c],t) Breeze(t)  
V t, s ,  b, m. ,  c  Percept([s,  b, Glitter, M., t )  = Glitter(t) ,  

and so on. These rules exhibit a trivial form of the reasoning process called perception, which 
we study in depth in Chapter 24. Notice the quantification over time t,  In propositional logic, 
we would need copies of each sentence for each time step. 

Simple "reflex" behavior can also be implemented by quantified implication sentences. 
For example, we have 

V t Glitter(t) BestAction(Grab  ,t)  . 
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Given the percept and rules from the preceding paragraphs, this would yield the desired con-
clusion BestActiort(  Grab, 5)—that is, Grab is the right thing to do. 

We have represented the agent's inputs and outputs; now it is time to represent the 
environment itself. Let us begin with objects. Obvious candidates are squares, pits, and the 
wumpus. We could name each square—Squarei,2  and so on—but  then the fact that Square 1,2 
and Squarei,3  are adjacent would have to be an "extra" fact, and we would need one such 
fact for each pair of squares. It is better to use a complex term in which the row and column 
appear as integers; for example, we can simply use the list term [1.  2]. Adjacency of any two 
squares can be defined as 

V x,y  ,a,b  AdjacentUx,y],[a,b])  <>  
(x=aA(y=b—lvy=b—  1))v (y = bA{x  =a— 1 vx=a-h  1)). 

We could name each pit, but this would be inappropriate for a different reason: there is no 
reason to distinguish among pits. 1°  It is simpler to use a unary predicate Pit that is true of 
squares containing pits_ Finally, since there is exactly one wumpus,  a constant Wra  npns  is 
just as good as a unary predicate (and perhaps more dignified from the wumpus's  viewpoint). 

The agent's location changes over time, so we write At(Ag(2nt,  s, t) to mean that the 
agent is at square s at time t. We can fix the wumpus's  location with Vt  At{ Wumpus,  [2, 2], t). 
We can then say that objects can only be at one location at a time: 

Vol', 81,22,  t At(x..si  , t) A At ( ..r,  82,t)  = Si = s2 .  
Given its current location, the agent can infer properties of the square from properties of its 
current percept. For example, if the agent is at a square and perceives a breeze, then that 
square is breezy: 

V s, t At(Agent,.s,t) A Breeze(t)  = Breezb(.$)  .  

It is useful to know that a square is breezy because we know that the pits cannot move about. 
Notice that Breezy has no time argument. 

Having discovered which places are breezy (or smelly) and, very important, not breezy 
(or not smelly), the agent can deduce where the pits are (and where the wumpus is). Whereas 
propositional logic necessitates a separate axiom for each square (see R2 and R3 on page 247) 
and would need a different set of axioms for each geographical layout of the world, first-order 
logic just needs one axiom: 

V s Breezy(s) <=>  9 r Acljacent(r,  s) A Ptt  (r) (8.4) 

Similarly, in first-order logic we can quantify over time, so we need just one successor-state 
axiom for each predicate, rather than a different copy for each time step,  For example, the 
axiom for the arrow (Equation (7.2) on page 267) becomes 

V t flateArrow(t  ±  1) -;=>  (HaveArrow(t)  A —.Action(Shoo.t,  t)) .  

From these two example sentences, we can see that the first-order logic formulation is no 
less concise than the original English-language description given in Chapter 7. The reader 

Similarly, mos: of us do not name each bird that flies overhead as it migrates to warmer regions in winter. An 
ornithologist wishing to study migration  patterns, survival rates, and so on does name each bird, by means of a 
ring on its leg , because individual birds must be tracked. 
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is invited to construct analogous axioms for the agent's location and orientation; in these 
cases, the axioms quantify over both space and time. As in the case of propositional state 
estimation, an agent can use logical inference with axioms of this kind to keep track of aspects 
of the world that are not directly observed. Chapter 10 goes into more depth on the subject of 
first-order successor-state axioms and their uses for constructing plans. 

8.4 KNOWLEDGE ENGINEERING IN FIRST-ORDER LOGIC 

KNOWLEDGE 
1:14:11NECRING  

KNOWLEDGE 
ACQUISITION 

The preceding section illustrated the use of first-order logic to represent knowledge in three 
simple domains. This section describes the general process of knowledge-base construction—
a process called knowledge engineering. A knowledge engineer is someone who investigates 
a particular domain, learns what concepts are important in that domain, and creates a formal 
representation of the objects and relations in the domain. We illustrate the knowledge engi-
neering process in an electronic circuit domain that should already be fairly familiar, so that 
we can concentrate un the representational issues involved. The approach we take is suitable 
for developing special-purpose knowledge bases whose domain is carefully circumscribed 
and whose range of queries is known in advance. General-purpose knowledge bases, which 
cover a broad range of human knowledge and are intended to support tasks such as natural 
language understanding, are discussed in Chapter 12. 

8.4.1 The knowledge-engineering process 

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such 
projects include the following steps: 

I. Identify the task. The knowledge engineer must delineate the range of questions that 
the knowledge base will support and the kinds of facts that will be available for each 
specific problem instance. For example does the wumpus  knowledge base need to be 
able to choose actions or is it required to answer questions only about the contents 
of the environment? Will the sensor facts include the current location? The task will 
determine what knowledge must be represented in order to connect problem instances to 
answers. This step is analogous to the PEAS process for designing agents in Chapter 2. 

2. Assemble the relevant knowledge. The knowledge engineer might already be an expert 
in the domain, or might need to work with real experts to extract what they know—a 
process called knowledge acquisition. At this stage, the knowledge is not represented 
formally. The idea is to understand the scope of the knowledge base, as determined by 
the task, and to understand how the domain actually works. 

For the wumpus world, which is defined by an artificial set of rules, the relevant 
knowledge is easy to identify. (Notice, however, that the definition of adjacency was 
not supplied explicitly in the wumpus-world rules.) For real domains, the issue of 
relevance can he quite difficult—for  example, a system for simulating VLSI designs 
might or might not need to take into account stray capacitances and skin effects. 
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3. Decide on a vocabulary of predicates, functions, and constants. That is, translate the 
important domain-level concepts into logic-level names. This involves many questions 
of knowledge-engineering style. Like programming style, this can have a significant 
impact on the eventual success of the project For example, should pits be represented 
by objects or by a unary predicate on squares? Should the agent's orientation be a 
function or a predicate? Should the wumpuses  location depend on time? Once the 

ON-OLOGY 
 choices have been made. the result is a vocabulary that is known as the ontology of 

the domain. The word ontology means a particular theory of the nature of being or 
existence. The ontology determines what kinds of things exist, but does not determine 
their specific properties and interrelationships, 

4. Encode general knowledge about  the domain. The knowledge engineer writes down 
the axioms for all the vocabulary terms. This pins down (to the extent possible) the 
meaning of the terms, enabling the expert to check the content. Often, this step reveals 
misconceptions or gaps in the vocabulary that must be fixed by returning to step 3 and 
iterating through the process. 

5. Encode a description of the specific problem instance. If the ontology is well thought 
out, this step will be easy. It will involve writing simple atomic sentences about in-
stances of concepts that are already part of the ontology. For a logical agent, problem 
instances are supplied by the sensors, whereas a "disembodied" knowledge base is sup-
plied with additional sentences in the same way that traditional programs are supplied 
with input data. 

6. Pose queries to the inference procedure and get answers. This is where the reward is: 
we can let the inference procedure operate on the axioms and problem -specific facts to 
derive the facts we are interested in knowing. Thus, we avoid the need for writing an 
application-specific  solution algorithm. 

7. Debug the knowledge base. Alas, the answers to queries will seldom be correct on 
the first try. More precisely, the answers will be correct for the knowledge base as 
written, assuming that the inference procedure is sound, but they will not be the ones 
that the user is expecting. For example, if an axiom is missing, some queries will not be 
answerable from the knowledge base. A considerable debugging process could ensue. 
Missing axioms or axioms that are too weak can be easily identified by noticing places 
where the chain of reasoning stops unexpectedly. Fur example, if the knowledge base 
includes a diagnostic rule (see Exercise 8.13)  for finding the wumpus, 

s Smelly(6) Adjacent( Home(Wumpus),  a) , 

instead of the biconditional,  then the agent will never be able to prove the absence of 
wumpuses. Incorrect axioms can be identified because they are false statements about 
the world. For example, the sentence 

V.  NurnOfLegs(a,4) 114-amTral(x)  

is false for reptiles, amphibians, and, more importantly, tables. The falsehood of this 
sentence can be determined independently of the rest of the knowledge base. In contrast. 
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a typical error in a program looks like this: 
offset = position + 1. 

It is impossible to tell whether this statement is correct without looking at the rest of the 
program to see whether, for example, offset is used to refer to the current position, 
or  to one beyond the current position, or whether the value of position is changed 
by another statement and so offset should also be changed again. 

To understand this seven-step process better, we now apply it to an extended example—the 
domain of electronic circuits_ 

8.4.2 The electronic circuits domain 

We will develop an ontology and knowledge base that allow us to reason about digital circuits 
of the kind shown in Figure 8.6. We follow the seven-step process for knowledge engineering. 

Identify the task 

There are many reasoning tasks associated with digital circuits.  At the highest level, one 
analyzes the circuit's functionality. For example, does the circuit in Figure 8.6 actually add 
properly? If all the inputs are high, what is the output of gate A2? Questions about the 
circuit's structure are  also interesting. For example, what are all the gates connected to the 
first input terminal? Does the circuit contain feedback loops? These will be our tasks in this 
section. There are more detailed levels of analysis, including those related to timing delays, 
circuit area, power consumption, production cost, and so on. Each of these levels would 
require additional knowledge. 

Assemble the relevant knowledge 

What do we know about digital circuits? For our purposes, they are composed of wises and 
gates. Signals flow along wires to the input terminals of gates, and each gate produces a 

i•  
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Figure 8.6 A digital circuit Cl,  purporting to be a one-hit  full adder. The first two inputs 
are the two bits to be added, and the third input is a carry bit. The first output is the sum, and 
the second output is a carry hit for the next adder. The circuit contains two XOR gates, two 
AND gates, and one OR gate. 
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signal on the output terminal that flows along another wire. To determine what these signals 
will be, we need to know how the gates transform their input signals. There arc four types 
of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one. All 
gates have one output terminal. Circuits, like gates, have input and output terminals. 

To reason about functionality and connectivity, we do not need to talk about the wires 
themselves, the paths they take, or the junctions where they come together. All that matters 
is the connections between terminals—we can say that one output terminal is connected to 
another input terminal without having to say what actually connects them. Other factors such 
as the size, shape, color, or cost of the various components are irrelevant to our analysis. 

If our purpose were something other than verifying designs at the gate level, the ontol- 
ogy would be different. For example, if we were interested in debugging faulty circuits, then 
it would probably be a good idea to include the wires in the ontology, because a faulty wire 
can corrupt the signal flowing along it. Fur resolving timing faults, we would need to include 
gate delays. If we were interested in designing a product that would be profitable, then the 
cost of the circuit and its speed relative to other products on the market would be important. 

Decide on a vocabulary 

We now know that we want to talk about circuits, terminals, signals, and gates. The next step 
is to choose functions, predicates, and constants to represent them. First, we need to be able 
to distinguish gates from each other and from other objects. Each gate is represented as an 
abject named by a constant, about which we assert that it is a gate with, say, Gate (Xi). The 
behavior of each gate is determined  by its type: one of the constants AND, OR, XOR, or 
NOT. Because a gate has exactly one type, a function is appropriate: Type(Xi)  =X01. 
Circuits, like gates, are identified by a predicate: Circuit(Ci).  

Next we consider terminals, which are identified by the predicate Terminal(x).  A gate 
or circuit can have one or more input terminals and one or more output terminals, We use the 
function In(1,  Xi )  to denote the first input terminal for gate X 1 . A similar function Out is 
used for output terminals. The function Arity(c,  i, j) says that circuit c has i input and j out-
put terminals. The connectivity between gates can be represented by a predicate, Connected, 
which takes two terminals as arguments, as in Connected(Out(1,  X1), /n{1, X2)).  

Finally, we need to know whether a signal is on or off. One possibility is to use a unary 
predicate, 00), which is true when the signal at a terminal is on. This makes it a little 
difficult, however, to pose questions such as "What are all the possible values of the signals 
at the output terminals of circuit C1 ?"  We therefore introduce as objects two signal values, 1 
and 0, and a function Signal (t) that denotes the signal value for the terminal t. 

Encode general knowledge of the domain 

One sign that we have a good ontology is that we require only a few general rules, which can 
be stated clearly and concisely. These are all the axioms we will need: 

1. If two terminals are connected, then they have the same signal: 
Vti,  t2 Terrninal(ti)  A Terfair,al(12.)  A Connected(ti,  t2) 

Signal(ti)  = Signal(t2)  
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2. The signal at every terminal is either 1  or 0: 
V t  Terminal (t) =•-  Signal (t)  = 1 v  Signal (t) = 0 

3. Connected is commutative: 
V t1 ,  t2  Cannected(ti,  t2)  44.  Connected(t2,  ti)  •  

4. There are four types of gates: 
V 9 Gate(g)  A k = Type(g) = k = AND V k =  V  k = XOR V k = 1VOT  

5. An AND gate's output is 0  if and only if any of its inputs is 0: 
V g  Gate (g)  A Type (9)  = AND 

Signal(Out(1,  9))  =0 En StignakTn(n,  g)) =0. 
6. An OR gate's output is 1 if and only if any of its inputs is I:  

V g Gate (9)  A Type (9)  = OR 
Signal; Out(1,  g)) = 1 <=>  E  n Signal(In(n.  g)) = 1 . 

7. An XOR gate's output is 1 if and only if its inputs are different: 
V g  Gate (9)  A Type (9)  = XOR  

Signall,Out(1,  g))  = 1 Signai(In(1,  9))  74  Signal(In(2,  g)) .  
8. A NOT gate's output is different from its input: 

V g  Gate (9)  A Type(g)=  NOT) 
SignalOut(1,  9))  # Signal(In(1,  9))  . 

9. The gates (except for NOT) have two inputs and one output. 
V 9  Gate(g) A Type(9)  = NOT Arity(g  , 1, 1) •  
V g  Gate(g)  A k = Type (9)  A (k =  AND v  k = OR v  k = XOR)   

Arity (9  , 2, 1) 
10. A circuit has terminals, up to its input and output arity,  and nothing beyond its arity: 

V c,  i, j Circuit(c)  A Arity(c,  
Vn  (n i Thrminal(in(c,  T)))  A (n >  i In(e,  n) = Nothing) A 

ri  (n  <  j Tea-tnnal  ( Out (c,  n))) A (n  > j Out(e  , n) = Nothing) 
11. Gates, terminals, signals, gate types ;  and Nothing are all distinct. 

Vg, t Gate(g)  A Terminal(t)  
9 t 1741) OR  AND7XOR74  NOT Nothing . 

12. Gates are circuits. 
V g G ate (9) Cireuit(g) 

Encode the specific problem instance 

The circuit shown in Figure 8.6 is encoded as circuit CI  with the following description. First, 
we categorize the circuit and its component gates: 

Circuit (Ci)  A Arity(C1,  3, 2) 
Gate (Xi ) A Type(X  1)  = XOR 
Gate (X2) A Type(X2)=  XOR 
Gate(Ai)  A Type(Ai)  = AND 
Gate (A2) A Type(A2)=  AND 
Gate WO A Type(01)  = OR . 
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Then, we show the connections between them: 
Connected (Out(1, M(1, X2)) 
Cannected(Out(1,  Xi), in  (2, A2)) 
Connected(Ont(1,  A2), In(1,01))  
Connected(Out(1,  A1),In.(2,01))  
Connected(Out(1,  X2), aut(1 , C1))  
Connected(Out(1,  0110,  Ci))  

Connected (171(1,C1)  , In (1, X1))  
Connected(In(1,C1),  In(1, Ai)) 
Connected(ln,(2,C 1 ),  In{ 2, X1 )) 
Conneeted(In(2,C  , In (2, Ai.))  
Connected (In,(3,C 1 ),In(2,  X2)) 
Connected(In(3,C1),  IT(1,  A2)) . 

CIRCUIT  
V ER IFI  C ATIDN  

Pose queries to the inference procedure 

What combinations of inputs would cause the first output of C1 (the sum bit) to be 0 and the 
second output of C1  (the carry bit) to be 1? 

3 a l ,  i2 , i3 SiDal(In(1,  CO) = A Signal(In(2,  CO) = Signal(In(3,C1))=7%  
A Signai(Out(1.  CI )) = 0 A Signal (Out (2, Cr ))  = 1 . 

The answers are substitutions for the variables 81 , i2, and  such that the resulting sentence 
is entailed by the knowledge base. ASKVARS will give us three such substitutions: 

12/1,  23/0} {tj(1,  /2/0,  83/11  {11/0,  /2/1,  i3/1} .  
What are the possible sets of values of all the terminals for the adder circuit? 

31 1 ,  i2 ,  i3 , a1,  a2  Signal(In(1,  CO) = i t  A Signal(In(2,  Ci))  = i2 
A Signal  ( In (3, Ci))  = is  A Sigvai(Out(1,  CO) =01  A Signa/(Out(2,C1))  = 02  •  

This final query will return a complete input-output table for the device, which can be used 
to check that it does in fact add its inputs correctly This is a simple example of circuit 
verification. We can also use the definition of the circuit to build larger digital systems, for 
which the same kind of verification procedure can be carried out. (See Exercise 8.26.)  Many 
domains are amenable to the same kind of structured knowledge-base development, in which 
more complex concepts are defined on top of simpler concepts. 

Debug the knowledge base 

We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors 
emerge. For example, suppose we fail to read Section 8.2.8 and hence forget to assert that 
1 # 0. Suddenly, the system will be unable to prove any outputs for the circuit, except for 
the input cases 000 and 110. We can pinpoint the problem by asking for the outputs of each 
gate. For example, we can ask 

I  i t , i2, o Signal (In(1,  CO) =2r A Signal(In(2,  Ct))  =i2  A Signal(Out(1,  Xi)) ,  

which reveals that no outputs are known at X1 for the input cases 10 and 01. Then, we look 
at the axiom for XOR gates, as applied to X 1 : 

Signal(Out(1,  X i )) - 1 <-;.  gignal(In(1,  X i )) 7L  Signel(In(2,  X i )) .  

If the inputs are known to be, say, 1 and 0, then this reduces to 
Sign(21(Out(1,  Xi)) =1 e= 1 y 0 . 

Now the problem is apparent: the system is unable to infer that Signal(Out(1,  Xi))  = 1, so 
we need to tell it that 1 0. 
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8.5 SUMMARY 

This chapter has introduced first-order  logic, a representation language that is far more pow-
erful than propositional logic. The important points are as follows: 

• Knowledge representation languages should be declarative, compositional, expressive, 
context independent, and unambiguous. 

• Logics differ in their ontological commitments and epistemological commitments. 
While propositional logic commits only to the existence of facts, firsi -order  logic com- 

mits to the existence of objects and relations and thereby gains expressive power. 
• The syntax of first-order logic builds on that of propositional logic. It adds terms to 

represent objects, and has universal and existential quantifiers to construct assertions 
about all or some of the possible values of the quantified variables. 

• A possible world, or model, for first-order logic includes a set of objects and an inter- 
pretation that maps constant symbols to objects, predicate symbols to relations among 
objects, and function symbols to functions on objects. 

• An atomic sentence is true just when the relation named by the predicate holds between 
the objects named by the terms. Extended interpretations, which map quantifier vari-
ables to objects in the model, define the truth of quantified sentences. 

• Developing a knowledge base in first-order logic requires a careful process of analyzing 
the domain, choosing a vocabulary, and encoding the axioms required to support the 
desired inferences. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Although Aristotle's logic deals with generalizations over objects, it fell far short of the ex-
pressive power of first-order logic. A major barrier to its further development was its concen-
tration on one-place predicates to the exclusion of many-place relational predicates. The first 
systematic treatment of relations was given by Augustus De Morgan (1864), who cited the 
following example to show the sorts of inferences that Aristotle's logic could not handle: "All 
horses are animals; therefore, the head of a horse is the head of an animal." This inference 
is inaccessible to Aristotle because any valid rule that can support this inference must first 
analyze the sentence using the two-place predicate "x is the head of  The logic of relations 
was studied in depth by Charles Sanders Peirce (1870, 20(4).  

True first-order logic dates from the introduction of quantifiers in Gottlob Frege's  (1879) 
Beg nffschrift  (`Concept  Writing" or "Conceptual Notation"). Peirce (1883) also developed 
first-order logic independently of Frege, although slightly later, Frege's ability to nest quan- 
tifiers was a big step forward, but he used an awkward notation. The present notation for 

first-order logic is due substantially to Giuseppe Peano  (1889), but the semantics is virtually 
identical to Frege's. Oddly enough, Peano's axioms were due in large measure to Grossmann 

(1861)  and Dedekind (1838).  
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Leopold Lowenheim  (1915) gave a systematic treatment of model theory for first-order 
logic, including the first proper treatment of the equality symbol. Lowenheim's  results were 
further extended by Thoralf  Skolem (1920). Alfred Tarski (1935, 1956) gave an explicit 
definition of truth and model-theoretic satisfaction in first-order logic, using set theory. 

McCarthy (1958) was primarily responsible for the introduction of first-order logic as a 
tool for building AI systems. The prospects for logic-based Al were advanced significantly by 
Robinson's (1965) development of resolution, a complete procedure for first-order inference 
described in Chapter 9. The logicist approach took root at Stanford University. Cordell Green 
(1959a,  1969b) developed a first-order reasoning system, QA3,  leading to the first attempts to 
build a logical robot at SRI (Fikes and Nilsson, 1971).  First-order logic was applied by Zohar  
Manna and Richard Waldinger (1971) for reasoning about programs and later by Michael 
Genesereth (1984) for reasoning about circuits. In Europe, logic programming (a restricted 
form of first-order  reasoning) was developed for linguistic analysis (Colmentuer  et al., 1973) 
and for general declarative systems (Kowalski, 1974). Computational logic was also well 
entrenched at Edinburgh through the LCF  (Logic for Computable Functions) project (Gordon 
et al., 1979).  These developments are chronicled further in Chapters 9 and 12.  

Practical applications built with first-order logic include a system for evaluating the 
manufacturing requirements for electronic products (Mannion 2002). a system for reasoning 
about policies for file access and digital rights management (Halpern and Weissman, 2008), 
and a system for the automated composition of Web services (Mcllraith  and Zeng, 2001). 

Reactions to the Wharf hypothesis (Wharf, 1956) and the problem of language and 
thought in general, appear in several recent books (Gumpetz  and Levinson, 1996; Bowerman 
and Levinson, 2001; Pinker, 2003; Gentner and Goldin-Meadow, 2003). The "theory" theory 
(Gopnik and Glymour, 2002; Tenenbaum et al., 2007) views children's learning about the 
world as analogous to the construction of scientific theories. Just as the predictions of a 
machine learning algorithm depend strongly on the vocabulary supplied to it, so will the 
child's formulation of theories depend on the linguistic environment in which learning occurs. 

There are a number of good introductory texts on first-order logic, including some by 
leading figures in the history of logic: Alfred Tarski (1941), Alonzo Church (1956),  and 

Quine (1982) (which is one of the most readable). Enderton (1972) gives a more math-
ematically oriented perspective. A highly formal treatment of first-order logic, along with 
many mere advanced topics in logic, is provided by Bell and Machover (1977). Manna and 
Waldinger (1985) give a readable introduction to logic from a computer science perspec- 
tive, as do Huth and Ryan (2004), who concentrate on program verification. Barwise  and 
Etchemendy (2002) take an approach similar to the one used here. Smullyan (1995) presents 
results concisely, using the tableau format. Gallier (1986) provides an extremely rigorous 
mathematical exposition of first-order logic, along with a great deal of material on its use in 
automated reasoning. Logical Foundations a fArtificial  Intelligence (Genesereth and Nilsson. 
1987) is both a solid introduction to logic and the first systematic treatment of logical agents 
with percepts and actions, and there are two good handbooks: van Bentham and ter Meulen 
(1997) and Robinson and Voronkov (2001). The journal of record for the field of pure math- 
ematical logic is the Journal of Symbolic Logic, whereas the Journal of Applied Logic deals 
with concerns closer to those of artificial intelligence. 
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EXERCISES 

8.1 A logical knowledge base represents the world using a set of sentences with no explicit 
structure. An analogical representation, on the other hand, has physical structure that corre- 
sponds directly to the structure of the thing represented. Consider a road map of your country 
as an analogical representation of facts about the country—it represents facts with a map lan- 

guage. The two-dimensional structure of the map corresponds to the two-dimensional surface 
of the area. 

a. Give five examples of symbols in the map language. 
b. An explicit sentence is a sentence that the creator of the representation actually writes 

down. An implicit sentence is a sentence that results from explicit sentences because 
of properties of the analogical representation. Give three examples each of implicit and 
explicit sentences in the map language. 

c. Give three examples of facts about the physical structure of your country that cannot be 
represented in the map language. 

d. Give two examples of facts that are much easier to express in the map language than in 
first-order logic. 

e. Give two other examples of useful analogical representations. What are the advantages 
and disadvantages of each of these languages? 

8.2 Consider a knowledge base containing just two sentences: P(a) and P(b).  Does this 
knowledge base entail V r P(x)?  Explain your answer in terms of models. 

8.3 Is the sentence 9 T a: =tl valid? Explain _ 

8.4 Write down a logical sentence such that every world in which it is true contains exactly 
one object. 

8.5 Consider a symbol vocabulary that contains c constant symbols, p k  predicate symbols 
of each arity  k, and fk  function symbols of each arity  k, where 1 <  k <  A. Let the domain 
size be fixed at D. For any given model, each predicate or function symbol is mapped onto a 
relation or function, respectively, of the same arity. You may assume that the functions in the 
model allow some input tuples to have no value for the function (i.e.,  the value is the invisible 
object). Derive a formula for the number of possible models for a domain with D elements. 
Don't worry about eliminating redundant combinations. 

8.6 Which of the following are valid (necessarily true) sentences? 
a. (Ax  x =x) = (V y 9z = 2). 

b. Vx  _P(x)  V —P(r).  

c. V r Smart(x) V (a.  = s).  

8.7 Consider a version of the semantics for first-order logic in which models with empty 
domains are allowed. Give at least two examples of sentences that are valid according to the 
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standard semantics but not according to the new semantics. Discuss which outcome makes 
morc intuitive sense for your examples. 

8.8 Does the fact Spouse( G  earge,  Laura) follow from the facts Jim George and 
Spouse(Jim, Laura)? If so, give a proof; if not, supply additional axioms as needed. What 
happens if we use Spouse as a unary function symbol instead of a binary predicate? 

8.9 This exercise uses the function Map Color and predicates In(T,  y),  Borders (x ,y), and 
Country(x),  whose arguments are geographical regions, along with constant symbols for 
various regions. In each of the following we give an English sentence and a number of can-
didate logical expressions. For each of the logical expressions, state whether it (1) correctly 
expresses the English sentence; (2) is syntactically invalid and therefore meaningless; or (3) 
is syntactically valid but does not express the meaning of the English sentence. 

a. Paris and Marseilles are both in France. 
(i) In(Paris A Marseilles, France).  

(ii) In(Paris, France) A In( Marseilles, France). 
(iii) In(Paris,  France) v In(2)4Urseilles,  France). 

b. There is a country that borders both Iraq and Pakistan. 
(i)  l e Country(c)  A Border(c,  Iraq) A Border(c, Pakistan). 

(if)  1c Country(c)  = [Border(c,  Iraq) A Border(c, Pakistan)]. 

(iii) [d  c Gountry(c)] [Border(e, Iraq) A Border(e,  Pakistan)]. 
(iv) I c  Border ( Country(c),  Iraq A Pakistan). 

s. All countries that border Ecuador are in South America. 
(b Vc Country(c) A Border(c, Ecuador) = In(c, SouthAmerica). 

(ii) V c Country(c) [Border(c,  Ecuador) In(c. SouthAmerica)].  
(iii) Vc [ Country(c)  = Border(c,  Ecuador)] In(c,  SouthAmerica).  
(iv) V c Country(c)  A Border(c, Ecuador) A In(c, SouthAmerica). 

d. No region in South America borders any region in Europe. 
(i) -[3 c, d In(c,  SouthAmerica)  A In(d,  Europe) A Borders (c, 

(ii) V c, d [In(c, SouthAmerica) A In(d, Europe)] =,  -,Borders(c,d)].  
(iii) -A/  c In(c,  Soulitkracrica)  =rid Ia(d,  Europe)  A -, Borders(r,  d). 
(iv) V c In(c, SouthAmerical V d In(d, Europe) -,Borders(c,d).  

e. No two adjacent countries have the same map color. 
(i) V x,y -. Country(x)  V -. Country(y)  V -,Borriers(x,y)  V 

-,(MapColor(r)  = MapColor(y)).  
(ii) Vx, y   Country(x)  A Country (y) A Borders(x,  y) A = y)) 

-,( MapColor(x)  = MapColor(y)).  
(iii) V x,y  Country (x) Country(y)  A Borders(x,  y) A 

-,( MapColor(x)  = IvIapColor(y)).  
(iv) Vx,y (Country (x) A Country(y)  A Borders(x,  y)) MapColor(x  y). 
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DIAGNOSTIC RULE 

CAUSAL RULE 

8.10 Consider a vocabulary with the following symbols: 
Occupatton(p,  o): Predicate. Person p has occupation o. 
Customer (pl, p2): Predicate. Person p1  is a customer of person p2. 
Boss (pl, p2): Predicate. Person p1  is a boss of person p2. 
Doctor, Surgeon, Larryor,  Actor: Constants denoting occupations. 
Emily,  The: Constants denoting people. 

Use these symbols to write the following assertions in first-order logic: 

a. Emily is either a surgeon or a lawyer. 
b. Joe is an actor, but he also holds another job, 
c. All surgeons are doctors. 
d. Joe does not have a lawyer (i.e.,  is not a customer of any lawyer). 
e. Emily has a boss who is a lawyer. 
f. There exists a lawyer all of whose customers are doctors. 
g. Every surgeon has a lawyer. 

8.11 Complete the following exercises about logical sentences: 
a. Translate into good, natural English (no xs or ysl):  

V  x, y,  I SpeaksLanguage(x  , 1) A SpeaksLanguage(y,l)  
Understands  y) A Understands (y ,  x),  

h. Explain why this sentence is entailed by the sentence 
V f  y 1 SpeaksLanguage  (x  1)  A SpeaksLanguage(y  ,  1) 

Understands (x ,y). 
c. Translate into first-order logic the following sentences: 

(i) Understanding leads to friendship. 
(ii) Friendship is transitive. 

Remember to define all predicates, functions, and constants you use 

8.12 Rewrite the first two Peano  axioms in Section 8.3.3 as a single axiom that defines 
NatNurn(z)  so as to exclude the possibility of natural numbers except for those generated by 
the successor function. 

8.13 Equation (8.4) on page 306 defines the conditions under which a square is breezy. Here 
we consider two other ways to describe this aspect of the wumpus  world. 

a. We can write diagnostic rules leading from observed effects to hidden causes. For find-
ing pits, the obvious diagnostic rules say that if a square is breezy, some adjacent square 
must contain a pit; and if a square is not breezy, then no adjacent square contains a pit. 
Write these two rules in first-order logic and show that their conjunction is logically 
equivalent to Equation (8,4  

b. We can write causal rules leading from cause to effect. One obvious causal rule is that 
a pit causes all adjacent squares to be breezy. Write this rule in first-order  logic, explain 
why it is incomplete compared to Equation (8.4), and supply the missing axiom. 
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8.14 Write axioms describing the predicates Grandchild, Great grandparent, Ancestor, 
Brother, Sister, Daughter, Sort, FrrstCousin,  BrotherInLaw,  SisterMa•.  Aunt, and 
Uncle_ Find out the proper definition of rnth cousin n  times removed, and write the def-
inition in first-order logic. Now write down the basic facts depicted in the family tree in 
Figure 8.7. Using a suitable logical reasoning system, TELL it all the sentences you have 
written down, and ASK it who are Elizabeth's grandchildren, Diana's brothers-in-law, Zara's 
great-grandparents, and Eugenie's ancestors. 

8.15 Explain what is wrong with the following proposed definition of the set membership 
predicate E : 

Vx.s  xE{x  s} 
Vx,a  xca xE  ( dal . 

fi  I ising  the set axinms ac examples, write axioms for the list domain , including all the 
constants, functions, and predicates mentioned in the chapter. 

8.17 Explain what is wrong with the following proposed definition of adjacent squares in 
the wumpus world: 

V  a', y  Adja,cent(lx,  y], +  1, yl)  A Adjacent(1a7  yl,  ,  y +  1])  .  

8.18 Write out the axioms required for reasoning about the wumpus 's location, using a 
constant symbol WUTI7p11.9  and a binary predicate Ai( Wmirtis,  Location).  Remember that 
there is only one wumpus. 

8.19 Assuming predicates Parent(p, q) and Female(p)  and constants Joan. and Kevin, 
with the obvious meanings, express each of the following sentences in first-order logic. (You 
may use the abbreviation I  to mean "there exists exactly one.") 

a. Joan has a daughter (possibly more than one, and possibly sons as well).  
b. Joan has exactly one daughter (but  may have sons as well). 
c. Joan has exactly one child, a daughter. 
d. Joan and Kevin have exactly one child together. 
e. Joan has at least one child with Kevin, and no children with anyone else. 
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8.20 Arithmetic assertions can be written in first-order logic with the predicate symbol <, 
the function symbols +  and x, and the constant symbols 0 and I. Additional predicates can 
also be defined with biconditionals. 

a. Represent the property "xis an even number." 
b. Represent the property "xis  prime." 
c. Goldbach's conjecture is the conjecture (unproven as yet) that every even number is 

equal to the sum of two primes. Represent this conjecture as a logical sentence. 

8.21 In Chapter 6, we used equality to indicate the relation between a variable and its value. 
For instance, we wrote WA = red to mean that Western Australia is colored red. Repre-
senting this in first-order logic, we must write more verbosely ColorOf (WA)= red. What 
incorrect inference could be drawn if we wrote sentences such as WA = red directly as logical 
assertions? 

8.22 Write in first-order logic the assertion that every key and at least one of every pair of 
socks will eventually be lost forever, using only the following vocabulary: Key(x),  x is a key; 
Sock(x),  x is a sock; Pair(x, y), r and y are a pair; Now, the current time; Before(ti,t2),  
time ti comes before time t2; Lost(x,  t), object x is lost at time t. 

8.23 For each of the following sentences in English, decide if the accompanying first-order 
logic sentence is a good translation. 1f not, explain why not and correct it. (Some sentences 
may have more than one error!) 

a. No two people have the same social security number, 

x, y, n Person(r)  A Person(y) = [HasSSII(x,  n) A HasSSi(y,n)].  

b. John's social security number is the same as Mary's. 

n HasSS#(John,  n) A HasSS#(Mary,n).  

c. Everyone's social security number has nine digits. 

V x, n Person(r) IllasSS#(x,n)  A Digits(n,9)].  

d. Rewrite each of the above (uncorrected) sentences using a function symbol S.5#  instead 
of the predicate HasSS#. 

8.24 Represent the following sentences in first-order logic, using a consistent vocabulary 
(which you must define); 

a. Some students took French in spring 2001. 
b. Every student who takes French passes it. 
c. Only one student took Greek in spring 2001. 
d. The best score in Greek is always higher than the best score in French. 
e. Every person who buys a policy is smart. 
f. No person buys an expensive policy. 
g. There is an agent who sells policies only to people who are not insured. 
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Figure 8.8 A four-bit adder. Each At  t  is a one-bit adder, as in Figure 8.6  on page 309. 

h. There is a barber who shaves all men in town who do not shave themselves. 
i. A person born in the UK, each of whose parents is a UK citizen or a UK resident, is a 

UK citizen by birth. 
j. A person born outside the UK, one of whose parents is a UK citizen by birth, is a UK 

citizen by descent. 
k. Politicians can fool some of the people all of the time, and they can fool all of the people 

some of the time, but they can't fool all of the people all of the time. 
1.  All Greeks speak the same language. (Use Speaks(3,,  I) to mean that person:r  speaks 

language I.) 

8.25  Write a general set of facts and axioms to represent the assertion "Wellington heard 
about Napoleon's death" and to correctly answer the question "Did Napoleon hear about 
Wellington's death?" 
8.26 Extend the vocabulary from Section 8.4 to define addition for n-bit binary numbers. 
Then encode the description of the four-bit adder in Figure 8.8, and pose the queries needed 
to verify that it is in fact correct. 
8.27  Obtain a passport application for your country, identify the rules determining eligi-
bility for a passport, and translate them into first-order logic, following the steps outlined in 
Section 8.4. 

8.28  Consider a first-order  logical knowledge base that describes worlds containing people, 
songs, albums (e.g., "Meet the Beatles") and disks (i e , particular physical instances of CDs), 
The vocabulary contains the following symbols: 

CopyOf  (d,  a): Predicate. Disk d is a copy of album a. 
awns(p,  d): Predicate. Person p owns disk d. 
Siags(p,  s,  a): Album a includes a recording of song .s  sung by person p. 
Wrote (p,  s): Person p wrote song s .  

McCartney, Gersharin,  B  Holiday , Joe., EleanorRigby,  TheMannove,  Revolver: 
Constants with the obvious meanings. 



Exercises 321 

Express the following statements in first-order logic: 
a. Gershwin wrote "The Man I Love."  
b. Gershwin did not write "Eleanor Rigby." 
c. Either Gershwin  or McCartney wrote "The Man I Love." 
d. Joe has written at least one song. 
e. Joe owns a copy of Revolver. 
f. Every song that McCartney sings on Revolver was written by McCartney. 
g. Gershwin did not write any of the songs on Revolver. 
h. Every song that Gershwin wrote has been recorded on some album. (Possibly different 

songs are recorded on different albums.) 
i. There is a single album that contains every song that Joe has written. 
j. Joe owns a copy of an album that has Billie Holiday singing "The Man I Love." 
L  Joe owns a copy of every album that has a song sung by McCartney. (Of course, each 

different album is instantiated in a different physical CD.) 
1. Joe owns a copy of every album on which all the songs are sung by Billie Holiday_ 



INFERENCE IN 
FIRST-ORDER LOGIC 

In which we define effective pmcedures  for answering questions posed in first-
order logic. 

Chapter 7 showed how sound and complete inference can be achieved for propositional logic. 
In this chapter, we extend those results to obtain algorithms that can answer any answer-
able question stated in first-order logic. Section 9.1 introduces inference rules for quantifiers 
and shows how to reduce first-order inference to propositional inference, albeit at potentially 
great expense_ Section 9/ describes the idea of unification, showing how it can be used 
to construct inference rules that work directly with first-order sentences. We then discuss 
three major families of first-order inference algorithms. Forward chaining and its applica-
tions to deductive databases and production systems are covered in Section 9.3; backward 
chaining and logic programming systems are developed in Section 9.4. Forward and back-
ward chaining can be very efficient, but are applicable only to knowledge bases that can 
be expressed as sets of Horn clauses. General first-order sentences require resolution-based 
theorem proving, which is described in Section 9.5. 

9.1 PROPOSITIONAL VS. FIRST-ORDER INFERENCE 

This section and the next introduce the ideas underlying modem logical inference systems. 
We begin with some simple inference rules that can be applied to sentences with quantifiers 
to obtain sentences without quantifiers. These rules lead naturally to the idea that first-order  
inference can be done by converting the knowledge base to propositional logic and using 
pmpositional  inference, which we already know how to do The next section points out an 
obvious shortcut, leading to inference methods that manipulate first-order sentences directly_ 

9.1.1 Inference rules for quantifiers 

Let us begin with universal quantifiers. Suppose our knowledge base contains the standard 
folkloric axiom stating that all greedy kings are evil: 

dx  King(x)  A Greedy(x) Evd(x)  . 

322 
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UNIVERSAL 
INSTANTIATION 
GROUND TERM 

Then it seems quite permissible to infer any of the following sentences: 
King (John) A Greedy(John) = Evil(John)  
King(Richard)  A Greedy(Richard) Evil(Rir.hard)  
Kmg(Father(John))  A Grcedy(FatherJohn)) Evil(Father(John))  . 

The rule of Universal Instantiation (UI for short) says that we can infer any sentence ob-
tained by substituting a ground term (a term without variables) for the variable.' To write 
out the inference rule formally, we use the notion of substitutions introduced in Section 8.3.  
Let SUBST(0,  a) denote the result of applying the substitution 0  to the sentence a. Then the 
rule is written 

V v a 

E70LSTENT1AL  
INETANTLATION  

SunsT({v/g},  a) 
for any variable v and ground term g.  For example, the three sentences given earlier are 
obtained with the substitutions {:r/Joiol},  {x/Richard  )-,  and {x/Father  (John)}. 

In the rule for Existential Instantiation, the variable is replaced by a single new con-
stant symbol. The formal statement is as follows: for any sentence a, variable v, and constant 
symbol k  that does not appear elsewhere in the knowledge base ;  

SUBST({tl/k},  Cle)  

For example, from the sentence 
x Crown (x)  A Untlearl(x  ,  John) 

we can infer the sentence 
Crown(Ci)  A OnHead(Ci,  John) 

as long as Ci does not appear elsewhere in the knowledge base. Basically, the existential 
sentence says there is some object satisfying a condition, and applying the existential instan-
tiation rule just gives a name to that object. Of course, that name must not already belong 
to another object. Mathematics provides a nice example: suppose we discover that there is a 
number that is a little bigger than 2.71828  and that satisfies the equation d(x3 )1dy  = e  for x.  
We can give this number a name, such as c,  but it would be a mistake to give it the name of 

SNOLEM  CONSTANT  an existing object, such as 7.  In logic, the new name is called a Skolem constant. Existen-
tial Instantiation is a special case of a more general process called skolemization, which we 
cover in Section 9.5. 

Whereas Universal Instantiation can be applied many times to produce many different 
consequences, Existential Instantiation can be applied once, and then the existentially quan-
tified sentence can be discarded. For example, we no longer need  Victim once 
we have added the sentence Kilf(Murdcrer,  , Victim). Strictly speaking, the new knowledge 

INFERENTIAL  
MJIVALENCE base is not logically equivalent to the old, but it can be shown to be inferentially equivalent 

in the sense that it is satisfiable exactly when the original knowledge base is satisfiable. 

I  Do not confuse these substitutions with the extended interpretations  used to define the semantics of quantifiers. 
The substitution replaces a variable with a term (a piece of syntax) to produce a new sentence, whereas an 
interpretation maps a variable to an object in the domain. 
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9.1.2 Reduction to propositional inference 
Once we have rules for inferring nonquantified sentences from quantified sentences, it be-
comes possible to reduce first-order inference to propositional inference. In this section we 
give the main ideas; the details are given in Section 9.5. 

The first idea is that, just as an existentially quantified sentence can be replaced by 
one instantiation, a universally quantified sentence can be replaced by the set of all possible 
instantiations. Fur example, suppose our knowledge base contains just the sentences 

V x King(a)  A Greedy( x)  = Evil(x)  
King(John)  
Greedy(John) 
Brother(Richard. John) .  

Then we apply UI  to the first sentence using all possible ground-term substitutions from the 
vocabulary of the knowledge base—in this case, Ix I Jahn} and ix  1 Richard } .  We obtain 

King(John) A Greedy(John, Evil(John)  
King(Richard)  A Greedy (Richard) = Evil(Richard)  , 

and we discard the universally quantified sentence. Now, the knowledge base is essentially 
propositional if we view the ground atomic sentences—King (John), Greedy( John), and 
so on—as proposition symbols.  Therefore, we can apply any of the complete propositional 
algorithms in Chapter 7 to obtain conclusions such as Evil(John).  

This technique of propositionalization can be made completely general, as we show 
in Section 9.5; that is, every first-order knowledge base and query can be propositionalized 
in such a way that entailment is preserved. Thus, we have a complete decision procedure 
for entailment ... or perhaps not. There is a problem: when the knowledge base includes 
a function symbol, the set of possible ground-term substitutions is infinite! For example, if 
the knowledge base mentions the Father symbol, then infinitely many nested terms such as 
Father(Father  ( Father (John))) can be constructed. Our propositional algorithms will have 
difficulty with an infinitely large set of sentences. 

Fortunately, there is a famous theorem due to Jacques Herbrand (1930) to the effect 
that if a sentence is entailed by the original, first-order knowledge base, then there is a proof 
involving just a, finite subset of the propositionalized knowledge base. Since any such subset 
has a maximum depth of nesting among its ground terms, we can find the subset by first 
generating all the instantiations with constant symbols ( Richard and John), then all terms of 
depth 1 (Father (Richard) and Fether(John)),  then all terms of depth 2, and so on, until we 
are able to construct a propositional proof of the entailed sentence. 

We have sketched an approach to first-order inference via propositionalization that is 
complete—that is. any entailed sentence can be proved.  This is a major achievement, given 
that the space of possible models is infinite. On the other hand, we do not know until the 
proof is done that the sentence is entailed! What happens when the sentence is not  entailed? 
Can we tell? Well, for first-order logic, it turns out that we cannot. Our proof procedure can 
go on and on, generating more and more deeply nested terms, but we will not know whether 
it is stuck in a hopeless loop or whether the proof is just about to pop out. This is very much 

(9.1) 
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like the halting problem for Turing machines. Alan Turing (1936) and Alonzo Church (1936) 
both proved, in rather different ways, the inevitability of this state of affairs. The question of 
entaihnent  for first-order  logic is semidecidable—that is, algorithms exist that say yes to every 
entailed sentence, but no algorithm exists that also says liD  to every nonentailed  sentence. 

9.2 UNIFICATION AND LIFTING 

The preceding section described the understanding of first-order inference that existed up 
to the early 1960s.  The sharp-eyed reader (and certainly the computational logicians of the 
early 1960s) will have noticed that the propositionalization  approach is rather inefficient. For 
example. given the query Egiu(x)  and the knowledge base in Equation (9.1), it seems per-
verse to generate sentences such as King(Richard)  A Greedy(Ftichard)  Evil(Richard).  
Indeed, the inference of Evil(John) from the sentences 

Vs King(x)  A Greedy(x) Evil(s)  
King( John) 
Greedy(John)  

seems completely obvious to a human being_ We now show how to make it completely 
obvious  to a computer. 

GENERALIZED 
MMUS  POI  \  ENS 

9.2.1 A first -order inference rule 

The inference that John is evil—that is, that {:r  /  John} solves the query Etril(x)—works  like 
this: to use the rule that greedy kings are evil, find some x  such that x is a king and x  is 
greedy, and then infer that this x  is evil. More generally, if there is some substitution 9  that 
makes each of the conjuncts of the premise of the implication identical to sentences already 
in the knowledge base, then we can assert the conclusion of the implication, after applying O.  
In this case, the substitution 9 ={:c!John}  achieves that aim. 

We can actually make the inference step do even more work. Suppose that instead of 
knowing Greedy(John), we know that everyone is greedy: 

V y Greedy(y)  . (9.2)  

Then we would still like to be able to conclude that Evil(John),  because we know that 
John is a king (given) and John is greedy (because everyone is greedy), What we need for 
this to work is to find a substitution both for the variables in the implication sentence and 
for the variables in the sentences that are in the knowledge base. In this case, applying the 
substitution {.11,1ohn,  y I John} to the implication premises King(x)  and Greedy (x)  and the 
knowledge-base sentences King(John)  and Greedy(y)  will make them identical. Thus, we 
can infer the conclusion of the implication. 

This inference process can be captured as a single inference rule that we call Gene',  
ali.aed  Modus Ponens:2  For atomic sentences pi, pi / ,  and q, where !here is a substitution El 
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such that SuBsT(0, = SuBsT(0,p 2.),  for all i, 
P2'•  •  •  ,  1) 71 '  (13 1  A p2 A ... A pm  = q) 

SuBsT  (0  q) 

There are n+ 1 premises to this rule: the n atomic sentences pi f  and the one implication. The 
conclusion is the result of applying the substitution 0 to the consequent q. For our example: 

pi' is King(John) p i  is King (x  )  
M f  is Greedy  ;y) 112  is greedy (s)  
6  is {x1John,  y I John} q is Evil(x) 
SuBsT  ( 0 q) is Evil( John) .  

It is easy to show that Generalized Modus Ponens is a sound inference rule. First, we observe 
that, for any sentence p (whose variables are assumed to be universally quantified) and for 
any substitution 0, 

p SuBsT(0,p)  
holds by Universal Instantiation. It holds in particular for a 0 that satisfies the conditions of 
the Generalized Modus Ponens rule. Thus, from pi`, , p„'  we can infer 

SUBST(0,p1 1 )  A ...  A SUBSTO,p„')  
and from the implication p1 A ...  A p,, q we can infer 

SUBST(0,p1)  A A SUBST(e,  pn ;  = SuBsT  (6 ,  q) . 

Now, E in Generalized Modus Ponens  is defined so that SUBST(0,  pa')  = nsr(0,  pi), for 
all i;  therefore the first of these two sentences matches the premise of the second exactly, 
Hence, SUB sT(9,  q) follows by Modus Ponens.  

LIF1NG Generalized Modus Ponens is a lifted version of Modus Ponens—it raises Modus Pa- 
nens from ground (variable-free) propositional logic to first-order logic. We will see in the 
rest of this chapter that we can develop lifted versions of the forward chaining, backward 
chaining, and resolution algorithms introduced in Chapter 7. The key advantage of lifted 
inference rules over propositionalization  is that they make only those substitutions that are 
required to allow particular inferences to proceed. 

 

9.2.2 Unification 

 

UNIFICATION  

UNIFIER 

Lified inference rules require finding substitutions that make different logical expressions 
look identical. This process is called unification and is a key component of all first-order 
inference algorithms. The UNIFY algorithm takes two sentences and returns a unifier for 
them if one exists.  

 

UNIFY (p , q)= 0 where SunsT(0,p)=  SuBsT(0,  q) . 

Let us look at some examples of how UNIFY should behave. Suppose we have a query 
Askilars(Kn  ows  (  John , x)): whom does John know? Answers to this query can be found 

 

2  Generalized Modus Ponens is more general than Modus Ponens (page 249) in the sense that the known facts 
and the premise of the implication need match only up to a substitution, rather than exactly. On the other hand. 
Modus Pollens  allows any sentence o as the premise, rather than just a conjunction of atomic sentences. 
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STANDARDIZING 
APART 

MOST GENEIAL 
UNIFIER 

OCCUR CHECK 

by finding all sentences in the knowledge base that unify with Knows( John, x). Here are the 
results of unification with four different sentences that might be in the knowledge base: 

UNIFY (Knows (John x).  Knows (John, Jane)) = Ix I Jane} 
UNIFY (Knows (John , x).  Knows (1)  ,  Bill)) = {x I Bill, y I John} 
UNIFY (Knows( John ,  x),  Knows (11  , Mother (v)))  = {g,r,  John x I Illother  ( John)} 
UNIFY ( Knows(John,  x).  Knows (x  , El2zabeth))  = fail. 

The last unification fails because x cannot take on the values John. and Elizabeth at the 
same time. Now, remember that Knows(x, Elizabeth)  means "Everyone knows Elizabeth," 
so we should be able to infer that John knows Elizabeth. The problem arises only because 
the two sentences happen to use the same variable name, x. The problem can be avoided 
by standardizing apart one of the two sentences being unified, which means renaming its 
variables to avoid name clashes. For example, we can rename ,r  in Knows(a-  , Elizabeth) to 
x17  (a new variable name) without changing its meaning. Now the unification will work: 

UNIFv(Knows(  John, x). Knows (x17,  Elizabeth)) =  I Elizabeth , x17  John} .  

Exercise 9.12  delves further into the need for standardizing apart.  
There is one more complication: we said that UNIFY should return a substitution 

that makes the two arguments look the same. But there could be more than one such uni-
fier, For example, UNIFY ( Knows (John x), Knows (y  z)) could return {  y  I John, x /  2} or 
{yjJohn,  x  I John,  ,z  I John} . The first unifier gives Knows ( J ohn , 2) as the result of unifi-
cation, whereas the second gives Knows (John, John). The second result could be obtained 
from the first by an additional substitution  /  Johnl;  we say that the first unifier is more 
general than the second, hecause  it places fewer restrictions on the values of the variables_ It 
turns out that, for every unifiable pair of expressions, there is a single most general unifier (or 
MGU) that is unique up to renaming and substitution of variables. (For example, ix I John} 
and {y  I John} are considered equivalent, as are {x  /  John, y /  John} and {a .1  John, y x}.)  In 
this case it is ty/John,  x/z 1.  

An algorithm for computing most general unifiers is shown in Figure 9.1. The process 
is simple: recursively explore the two expressions simultaneously "side by side," building up 
a unifier along the way, but failing if two corresponding points in the structures do not match. 
There is one expensive step: when matching a variable against a complex term, one must 
check whether the variable itself occurs inside the term; if it does, the match fails because no 
consistent unifier can be constructed. For example, S(x)  can't unify with S(S(x)).  This so-
called occur check makes the complexity of the entire algorithm quadratic in the size of the 
expressions being unified. Some systems, including all logic programming systems, simply 
omit the occur check and sometimes make unsound inferences as a result; other systems use 
more complex algorithms with linear-time  complexity. 

9.2.3 Storage and retrieval 

Underlying the TELL and ASK functions used to inform and interrogate a knowledge base 
are the more primitive STORE and FETCH functions. STORE(s)  stores a sentence a into the 
knowledge base and FETCH(q)  returns all unifiers such that the query q unifies with some 
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function UNIFY(x,  y, 9) returns a substitution to make a and y identical 
inputs: a, a variable, constant, list, or compound expression 

y, a variable, constant, list, or compound expression 
9, the substitution built up so far (optional, defaults to empty) 

if 0 = failure then return failure 
else if a = y then return 0  
else if VARIABLE?(x) then return UNIFY-VAR(x, y, 8) 
else if VARIABLE?(y) then return UNIFY-VAR(y,  8) 
else if COMPOUND?(x)  and COMPOUND?(y)  then 

return UNIFY(T.ARGS,  y.ARGS,  UNIFY(T.OP,  y.OP,  8)) 
else if LIST?(T)  and LIST?(y)  then 

return UNIFY(x.REST, y.R.EST,UNIFY(x.FIRST,  y.FIRST,  9)) 
else return failure 

function UNIFY-VAR( , 2 , 0) returns a substitution 

if {nor/ring}  F 0  then return I iNITY( ,  ,  8) 
else if {x1 vat} E 0  then return UNIFY(var,  vai,  0) 
else if OCCUR-CHECK?(var.  a) then return failure 
else return add varial  to 8 

Figure 9.1  The unification algorithm, The algorithm works ty  comparing the structures 
of the inputs, element by element. The substitution 0  that is the argument to UNIFY is built 
up along the way and is used to make sure that later comparisons are consistent with bindings 
that were established earlier. In it  compound expression such as F(A, B), the OP field picks 
out the function symbol F and the ARCS field picks out the argument list (A B). 

sentence in the knowledge base. The problem we used to illustrate unification—finding all 
facts that unify with KTUNI1R(Joh.n.,  a.)—is  an instance of FETCHing.  

The simplest way to implement STORE and FETCH is to keep all the facts in one long 
list and unify each query against every element of the list. Such a process is inefficient, but 
it works, and it's all you need to understand the rest of the chapter. The remainder of this 
section outlines ways to make retrieval more efficient; it can be skipped on first reading. 

We can make FETCH more efficient by ensuring that unifications are attempted only 
with sentences that have some chance of unifying. For example, there is no point in trying 
to unify Knows (J ohn , x) with Brother (  Richard , John). We can avoid such unifications by 
indexing the facts in the knowledge base. A simple scheme called predicate indexing puts 
all the Knows facts in one bucket and all the Brother facts in another. The buckets can be 
stored in a hash table for efficient access. 

Predicate indexing is useful when there are many predicate symbols but only a few 

clauses for each symbol. Sometimes, however, a predicate has many clauses. For example, 
suppose that the tax authorities want to keep track of who employs whom, using a predi- 
cate  Employ.s(x,  y) This would be a very large bucket with perhaps millions of employers 

INDEXING 

PREDICATE 
INDO<INC  



Employs(  x.y)  

Employs(x.Richard) Emplovs(IBM,y)  

Emproys(IBM,Richard)  

(a) 

Epuplovs(xJohn) Employs(x.x) Emplovs(lohn,y) 

Empioys(John,lohn)  

(b)  

Figure 9.2 (a) The subsumption  lattice whose lowest node is Employs (IBM , Richard). 
(b) The subsumption  lattice for the sentence Employs (John, John). 
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and tens of millions of employees. Answering a query such as Employs(x,  Richard) with 
predicate indexing would require scanning the entire bucket. 

For this particular query, it would help if facts were indexed both by predicate and by 
second argument, perhaps using a combined hash table key. Then we could simply construct 
the key from the query and retrieve exactly those facts that unify with the query. For other 
queries, such as Employs(IBM  , y),  we would need to have indexed the facts by combining 
the predicate with the first argument. Therefore, facts can be stored under multiple index 
keys, rendering them instantly accessible to various queries that they might unify with 

Given a sentence to be stored, it is possible to construct indices for all possible queries 
that unify with it. For the fact Employs (IBM, Richard), the queries are 

Employs (IBM Richard) Does IBM employ Richard? 
Employs (a:, Richard) Who employs Richard? 
Employs (IBM y) Whom does IBM employ? 
Employs(x, y) Who employs whom? 

SU3SUMPTION  
LATTICE These queries form a subsumption lattice, as shown in Figure 9.2(a). The lattice has some 

interesting properties. For example, the child of any node in the lattice is obtained from its 
parent by a single substitution; and the "highest" common descendant of any two nodes is 
the result of applying their most general unifier_  The portion of the lattice above  any ground 
fact can be constructed systematically (Exercise 9.5). A sentence with repeated constants has 
a slightly different lattice, as shown in Figure 9.2(b). Function symbols and variables in the 
sentences to be stored introduce still more interesting lattice structures. 

The scheme we have described works very well whenever the lattice contains a small 
number of nodes. For a predicate with to arguments, however, the lattice contains 0(2") 
nodes. If function symbols are allowed, the number of nodes is also exponential in the size 
of the terms in the sentence to be stored. This can lead to a huge number of indices. At some 
point, the benefits of indexing are outweighed by the costs of storing and maintaining all 
the indices. We can respond by adopting a fixed policy, such as maintaining indices only on 
keys composed of a predicate plus each argument, or by using an adaptive policy that creates 
indices to meet the demands of the kinds of queries being asked. For most AI systems, the 
number of facts to be stored is small enough that efficient indexing is considered a solved 
problem. Fur commercial databases, where facts number in die billions, the problem has 
been the subject of intensive study and technology development.. 
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9.3 FORWARD CHAINING 

A forward-chaining algorithm for propositional definite clauses was given in Section 7.5. 
The idea is simple: start with the atomic sentences in the knowledge base and apply Modus 
Ponens  in the forward direction, adding new atomic sentences, until no further inferences 
can be made. Here, we explain how the algorithm is applied to first-order definite clauses. 
Definite clauses such as Situation = Response are especially useful for systems that make 
inferences in response to newly arrived information_ Many systems can he defined this way, 
and forward chaining can be implemented very efficiently. 

9.3.1 First -order definite clauses 
First-order definite clauses closely resemble propositional definite clauses (page 256): they 
are disjunctions of literals of which exactly one is positive. A definite clause either is atomic 
or is an implication whose antecedent is a conjunction of positive literals and whose conse- 
quent is a single positive literal_ The following are first-order  definite clauses?  

King(x) A Greedy(x) Evil(x)  . 
King(John) . 
Greedy OA 

Unlike propositional literals, first-order literals can include variables, in which case those 
variables are assumed to be universally quantified_ (Typically, we omit universal quantifiers 
when writing definite clauses.) Not every knowledge base can be converted into a set of 
definite clauses because of the single-positive-literal  restriction, but many can. Consider the 
following problem: 

The law says that it is a crime for an American to sell weapons to hostile nations. The 
country Nano,  an enemy of America, has some missiles, and all of its missiles were sold 
to it by Colonel West, who is American. 

We will prove that West is a criminal, First, we will represent these facts as first-order definite 
clauses. The next section shows how the forward-chaining algorithm solves the problem. 

..  it is a crime for an American to sell weapons to hostile nations": 
A 'ACT-Lan  (X) A Weapon(y)  A Se,!1.s(a... v,  z) A Hostile(z)  a Crimimul(x)  . (9.3)  

"Novo .  has some missiles." The sentence 3x Owns(Nono,x)AMissile(x)  is transformed 
into two definite clauses by Existential Instantiation, introducing a new constant M1 : 

Owns(Nono,1411)  (9.4) 
Missile(M 1 )  (9.5) 

"All of its missiles were sold to it by Colonel West": 
iMssile(x)  A Owns (IV  ono, x) = 5' West, x N ono) (9.6) 

We will also need to know that missiles are weapons 

Missile(x) Weapon(x)  (9.7) 
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and we must know that an enemy of America counts as "hostile: 
Enern&,  America) = Hostile(x) (9.8) 

"West, who is American .  .":  

American(West)  . (9.9) 
"The country None, an enemy of America ...  

Enernyr,1  s  ono , America) . (9.10) 
This knowledge base contains no function symbols and is therefore an instance of the class 

DA-ALOG of Datalog knowledge bases. Datalog is a language that is restricted to first-order definite 
clauses with no function symbols. Datalog  gets its name because it can represent the type of 
statements typically made in relational databases. We will see that the absence of function 
symbols makes inference much easier. 

9.3.2 A simple forward-chaining algorithm 

The first forward-chaining algorithm we consider is a simple one, shown in Figure 9.3. Start-
ing from the known facts, it triggers all the rules whose premises are satisfied, adding their 
conclusions to the known facts. The process repeats until the query is answered (assuming 
that just one answer is required) or no new facts are added. Notice that a fact is not "new" 

RENAMING 

	

	 if it is just a renaming of a known fact. One sentence is a renaming of another if they 
are identical except for the names of the variables. For example, Likes(x,  Ice Cream) and 
LikrA(y,  TrpOnearn)  are renarnings  of each other because they differ only in the choice of 
or y; their meanings are identical: everyone likes ice cream. 

We use our crime problem to illustrate how FOL-FC-A SK works. The implication 
sentences are (9.3), (9.6), (9.7), and (9.8). Two iterations are required: 

• On the first iteration, rule (9.3) has unsatisfied premises. 
Rule (9.6) is satisfied with {x/Mi},  and Sells ( West, M1, Nano) is added. 
Rule (9.7) is satisfied with {x/Ml  }, and Weapon(Mi) is added. 
Rule (9.8) is satisfied with {x/Nono  1, and Hostile(Nono) is added. 

• On the second iteration, rule (9.3) is satisfied with {a/ West, y/Mi  ,  zlArono},  and 
Criminal(West)  is added. 

Figure 9.4 shows the proof tree that is generated. Notice that no new inferences are possible 
at this point because every sentence that could be concluded by forward chaining is already 
contained explicitly in the KB. Such a knowledge base is called a fixed point of the inference 
process. Fixed points reached by forward chaining with first-order definite clauses are similar 
to those for propositional forward chaining (page 258); the principal difference is that a first-
order fixed point can include universally quantified atomic sentences. 

FOL-FC-AsK is easy to analyze. First, it is sound, because every inference is just an 
application of Generalized Modus Ponens, which is sound. Second, it is complete for definite 
clause knowledge bases; that is, it answers every query whose answers are entailed by any 
knowledge base of definile  clauses. Fur Datalug  knowledge bases, which contain no function 
symbols, the proof of completeness is fairly easy. We begin by counting the number of 
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function FOL-FC-ASK(KB,  ci)  returns a substitution or false 
inputs: KB, the knowledge base, a set of first-order definite clauses 

a, the query, an atomic sentence 
local variables: new, the new sentences inferred on each iteration 

repeat until new is empty 
new ■—  { } 
for each rule in KB do 

(pi A ... A pr, q) — STANDARDIZE - VARIABLES(rtde)  
for each 0  such that SUBST(d,  pi  A ... A p„)  = SUBSTCO,A  A ,  .. A K).  

for some A,  .  . . , p„'  in KB 
q'  -<—  SUBST(0,  q) 
if q'  does not unify with some sentence already in KB or new then 

add q' to new 
(5 UNIFY( q`,  (r)  
if 9  is not fail then return 0  

add new to KB 
return false 

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algo- 
rithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one 
step from the implication sentences and the atomic sentences already in KB. The function 
STANDARDIZE-VARIABLES  replaces all variables in its arguments with new ones that have 
not been used before. 

Criminal(West)  

.49-4011M.-  

Weapon(M,) Sells(West.N1,,Nono) Hostile Nona) 

AI  

Am e rican(We  st) Miss'"?  e(M  1 ) Owns(Nona.Mi) I Erre  iny(Norin  Anierirel  

Figure 9.4 The  proof tree generated by forward chaining on the crime example. 'fire  initial 
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and 
facts inferred on the second iteration at the top level. 

possible facts that can be added, which determines the maximum number of iterations. Let k 
be the maximum arity  (number of arguments) of any predicate, p be the number of predicates, 

and n be the number of constant symbols. Clearly, there can be no more than pilk  distinct 
ground facts, so after this many iterations the algorithm mu st  have reached a fixed point. Then 

we can make an argument very similar to the proof of completeness for propositional forward 
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PATTERN MATCH ING  

CONJUNCT 
ORDERING 

chaining. (See page 258.) The details of how to make the transition from propositional to 
first-order  completeness arc given for the resolution algorithm in Section 9.5. 

For general definite clauses with function symbols, FOL-FC-Asx  can generate in-
finitely many new facts, so we need to be more careful. For the case in which an answer to 
the query sentence q is entailed, we must appeal to Herbrand's  theorem to establish that the 
algorithm will find a proof. (See Section 9.5 for the resolution case.) If the query has no 
answer, the algorithm could fail to terminate in some cases. For example, if the knowledge 
base includes the Peano axioms 

NatNum  (0) 
do NatNum(n) NatNurn(S  (n)) 

then forward chaining adds NeatNum(S  (0)),  NatNum  ( S (5  (0))),  NatNurn(S(S(S(0)))),  
and so on. This problem is unavoidable in general. As with general first-order logic, entail-
ment with definite clauses is semidecidable. 

93.3 Efficient forward chaining 

The forward-chaining algorithm in Figure 9.3 is designed for ease of understanding rather 
than for efficiency of operation. There are three possible sources of inefficiency. First, the 
"inner loop" of the algorithm involves finding all possible unifiers such that the premise of 
a rule unifies with a suitable set of facts in the knowledge base. This is often called pattern 

matching and can be very expensive. Second, the algorithm rechecks every rule on every 
iteration to see whether its premises are satisfied, even if very few additions are made to the 
knowledge base on each iteration. Finally, the algorithm might generate many facts that are 
irrelevant to the goal. We address each of these issues in turn. 

Matching rules against known facts 

The problem of matching the premise of a rule against the facts in the knowledge base might 
seem simple enough. For example, suppose we want to apply the rule 

Missile(x) Weapon(x)  .  

Then we need to find all the facts that unify with Missile(x);  in a suitably indexed knowledge 
base, this can be done in constant time per fact. Now consider a rule such as 

Missile(x)  A Otens(N  ono , Sells( West,  at , None) .  

Again, we can find all the objects owned by Nono in constant time per object; then, for each 
object, we could check whether it is a missile. If the knowledge base contains many objects 
owned by Nono and very few missiles, however, it would be better to find all the missiles first 
and then check whether they are owned by Nano. This is the conjunct ordering problem: 
find an ordering to solve the conjuncts of the rule premise so that the total cost is minimized. 
It turns out that finding the optimal ordering is NP-hard,  but good heuristics are available. 

For example, the minimum-remaining-values (MRV) heuristic used for CSPs in Chapter 6  
would suggest ordering the conjuncts to look for missiles first if fewer missiles than objects 
are owned by Nono. 



Diff  ( wa,  nit) A DVS (via,  so) A 

Diff  (nt,  q) A Dijr(nt,  so) A 

Diff  (q, nsw) A Diff  (q, six)  A 

Diff  (nsw,  v)  A Diff  (nsw so) A 

(v ,  an) Colorable() 

Diff  ( Bed  , Blue) Diff (lied Green) 
Dill'  ( Green, Red) Diff (Green, Blue) 

Diff  ( Blue, Red) Diff (Blue, Green) 

(a) (b) 

Figure 9.5 (a) Constraint graph for coloring the map of Australia. Ib)  The map-coloring 
CSP expressed as a single definite clause_ Each map region is represented as a variable whose 
value can be one of the constants Rid, Green or Bine.  
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OATS COMPLEXITY 

The connection between pattern matching and constraint satisfaction is actually very 
close. We can view each conjunct as a constraint on the variables that it contains—for ex-
ample, MissiL  (x)  is a unary constraint on x. Extending this idea, we can express every 
finite-domain CSP as a single definite clause togethe•  with some associated ground facts. 
Consider the map-coloring problem from Figure 6.1, shown again in Figure 9.5(a). An equiv-
alent formulation as a single definite clause is given in Figure 9.5(b). Clearly, the conclusion 
Colorable() can be inferred only if the CSP has a solution. Because CSPs in general include 
3-SAT problems as special cases, we can conclude that matching a definite clause against a 
set of facts is NP-hard. 

It might seem rather depressing that forward chaining has an NP-hard matching problem 
in its inner loop. There are three ways to cheer ourselves up: 

• We can remind ourselves that most rules in real-world knowledge bases are small and 
simple (like the rules in our crime example) rather than large and complex (like the 
CSP formulation in Figure 9.5). It is common in the database world to assume that 
both the sizes of rules and the arities  of predicates are bounded by a constant and to 
worry only about data complexity—that is, the complexity of inference as a function 
of the number of ground facts in the knowledge base. It is easy to show that the data 
complexity of forward chaining is polynomial. 

■ We can consider subclasses of rules for which matching is efficient. Essentially every 
Datalog  clause can be viewed as defining a CSP, so matching will be tractable just 
when the corresponding CSP is tractable. Chapter 6 describes several tractable families 
of CSPs. For example, if the constraint graph (the graph whose nodes are variables 
and whose links are constraints) forms a tree, then the CSP can be solved in linear 
time. Exactly the same result holds for rule matching. For instance, if we remove South 
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Australia from the map in Figure 9.5, the resulting clause is 
M iff  ( wa,  nt)  A Dili  (rd.  q) A Difor  (q, nsw)  Diff  (nsw,v) Colorable() 

which corresponds to the reduced CSP shown in Figure 6.12 on page 224. Algorithms 
for solving tree-structured CSPs can be applied directly to the problem of rule matching. 

• We can try to to eliminate redundant rule-matching attempts in the forward-chaining 
algorithm, as described next. 

Incremental forward chaining 

When we showed how forward chaining works on the crime example, we cheated; in partic-
ular, we omitted some of the rule matching done by the algorithm shown in Figure 9.3. For 
example, on the second iteration, the rule 

Missile(x) Weapon(x)  

matches against Missile(Mi)  (again), and of course the conclusion Weapon(Mi) is already 
known so nothing happens. Such redundant rule matching can be avoided if we make the 
following observation: Every new fact inferred on iteration t mast be derived from at least 
one new fact inferred on iteration t — 1.  This is true because any inference that does not 
require a new fact from iteration t  — 1 could have been done at iteration t  — 1 already. 

This observation leads naturally to an incremental forward-chaining algorithm where, 
at iteration I, we check a rule only if its premise includes a conjunct pi  that unifies with a fact 
pi,  newly inferred at iteration t —  1. The rule-matching step then fixes pi  to match with p`„  but 
allows the other conjuncts of the rule to match with facts from any previous iteration. This 
algorithm generates exactly the same facts at each iteration as the algorithm in Figure 9.3, but 
is much more efficient. 

With suitable indexing, it is easy to identify all the rules that can be triggered by any 
given fact, and indeed many real systems operate in an "update" mode wherein forward chain-
ing occurs in response to each new fact that is TELLed to the system. Inferences cascade 
through the set of rules until the fixed point is reached, and then the process begins again for 
the next new fact. 

Typically, only a small fraction of the rules in the knowledge base are actually triggered 
by the addition of a given fact This means that a great deal of redundant work is done in 
repeatedly constructing partial matches that have some unsatisfied premises. Our crime ex-
ample is rather too small to show this effectively, but notice that a partial match is constructed 
on the first iteration between the rule 

Americcn(x)  t  Weapon(y1  A Sells (z  , y. z) A Hostile (z) Criminal(x)  

and the fact A7nerican{  West). This partial match is then discarded and rebuilt on the second 
iteration (when the rule succeeds). It would be better to retain and gradually complete the 
partial matches as new facts arrive, rather than discarding them. 

REE The rete algorithm 3  was the first to address this problem. The algorithm preprocesses 
the set of rules in the knowledge base to construct a sort of dataflow network in which each 

Rete  is Latin for net. The English pronunciation  rhymes with treaty. 
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node is a literal from a rule premise. Variable bindings flow through the network and are 
filtered out when thcy fail to match a literal. if two Literals in a rule share a variable—for  
example, Sells(x, y, 2) A Hastile(2)  in the crime example—then the bindings from each 
literal are filtered through an equality node. A variable binding reaching a node for an n- 
ary  literal such as Beits(x,  y, .z)  might have to wait for bindings for the other variables to be 
established before the process can continue. At any given point, the state of a rete network 
captures all the partial matches of the rules, avoiding a great deal of recomputation. 

Rae networks, and various improvements thereon, have been a key component of so-
called production systems, which were among the earliest forward-chaining systems in 
widespread use.4  The XCON  system (originally called RI; McDermott, 1982) was built 
with a production-system architecture. XCON  contained several thousand rules for designing 
configurations of computer components far customers of the Digital Equipment Corporation. 
It was one  of the first clear commercial successes  in the emerging field of expert systems. 
Many other similar systems have been built with the same underlying technology, which has 
been implemented in the general-purpose language CPS-5.  

Production systems are also popular in cognitive architectures—that  is, models of hu-
man reasoning—such as ACT (Anderson, 1983) and SOAR (Laird et al., 1987). In such sys-
tems, the "working memory" of the system models human short-term memory, and the pro-
ductions are part of long-term memory. On each cycle of operation, productions are matched 
against the working memory of facts. A. production whose conditions are satisfied can add or 

delete facts in working memory. In contrast to the typical situation in databases, production 
systems often have many rules and relatively few facts. With suitably optimized matching 
technology, some modem systems can operate in real time with tens of millions of rules. 

Irrelevant facts 

The final source of inefficiency in forward chaining appears to be intrinsic to the approach 
and also arises in the propositional context. Forward chaining makes all allowable inferences 
based on the known facts, even if  they are irrelevant to the goal at hand. In our crime example, 
there were no rules capable of drawing irrelevant conclusions, so the lack of directedness  was 
not a problem. In other cases (e.g., if many rules describe the eating habits of Americans and 
the prices of missiles), FOL-FC-AsK  will generate many irrelevant conclusions. 

One way to avoid drawing irrelevant conclusions is to use backward chaining, as de-
scribed in Section 9.4. Another solution is to restrict forward chaining to a selected subset of 
rules, as in PL-FC-ENTAILs?  (page 258). A third approach has emerged in the field of de-
ductive databases, which are large-scale databases, like relational databases, but which use 
forward chaining as the standard inference tool rather than SQI  .  queries_ The idea is to rewrite 
the rule set, using information from the goal, so that only relevant variable bindings—those 
belonging to a so-called magic set—arc considered during forward inference. For example, if 
the goal is Criminal(West),  the rule that concludes Criminal(x)  will be rewritten to include 
an extra conjunct that constrains the value of x: 

Maqic(x) A American(x)  A Weapon(y)  A Sells(x,  y,  A Hostile(z) Criminal(x)  .  

A The word production in production systems denotes a condition-action rule. 

PROD-IC-ROD  
SYETIM  

COGNITIVE  
ARCHITECTURES 

DEDUCTIVE 
DATABASES 

mAnFc  SET 
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The fact Magic( West) is also added to the KB. In this way, even if the knowledge base 
contains facts about millions of Americans, only Colonel West will be considered during the 
forward inference process. The complete process for defining magic sets and rewriting the 
knowledge base is too complex to go into here, but the basic idea is to perform a sort of 
"generic" backward inference from the goal in order to work out which variable bindings 
need to be constrained. The magic sets approach can therefore be thought of as a kind of 
hybrid between forward inference and backward preprocessing. 

9.4 BACKWARD CHAINING 

GENERATOR 

The second major family of logical inference algorithms uses the backward chaining ap-
proach introduced in Section 7.5  for definite clauses. These algorithms work backward from 
the goal, chaining through rules to find known facts that support the proof We describe 
the basic algorithm, and then we describe how it is used in logic programming, which is the 
most widely used form of automated reasoning. We also sec that backward chaining has some 
disadvantages compared with forward chaining, and we look at ways to overcome them. Fi-
nally, we look at the close connection between logic programming and constraint satisfaction 
problems. 

9.4.1 A backward -chaining algorithm 

Figure 9.6 shows a backward-chaining algorithm for definite clauses. FOL-BC-Asx(KB,  
goal) will be proved if the knowledge base contains a clause of the form lhs  = goal, where 
Ns (left-hand side) is a list of conjuncts. An atomic fact like American( West) is considered 
as a clause whose lhs  is the empty list. Now a query that contains variables might be proved 
in multiple ways. For example, the query Person(x)  could be proved with the substitution 

/  John} as well as with {  x/Richard}.  So we implement FOL-BC-ASK  as a generator—
a function that returns multiple times, each time giving one possible result. 

Backward chaining is a kind of AND/OR search—the OR part because the goal query 
can be proved by any rule in the knowledge base, and the AND part because all the conjuncts 
in the Ms of a clause must be proved. FOL-BC -OR works by fetching all clauses that might 
unify with the goal, standardizing the variables in the clause to be brand-new variables, and 
then, if the rhs of the clause does indeed unify with the goal, proving every conjunct in the 
lhs,  using FOL-B C-AN D. That function in turn works by proving each of the conjuncts in 
turn, keeping track of the accumulated substitution as we go. Figure 9.7 is the proof tree for 
deriving Criminal(West)  from sentences (9.3)  through (9.10). 

Backward chaining, as we have written it, is clearly a depth-first search algorithm_  
This means that its space requirements are linear in the size of the proof (neglecting, for 
now, the space required to accumulate the solutions). It also means that backward chaining 

(unlike forward chaining) suffers from problems with repeated states and incompleteness. We 
will  discuss these problems and some potential solutions, but first we show how backward 
chaining is used in logic programming systems. 
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1.  1  

Missilery) 

iry/Mj}  
Missile (M1) Owns(Nono  1) Enemy(Nona  America) 

()  

function FOL-BC-Asx(KB,  query) returns a generator of substitutions 
return FOL-B  C-OR  ( KB, query, F)  

generator FOL -13C -Ort(KB,  goal, 0) yields a substitution 
for each rule (//is rhs) in FETCH-RULES-FOR-GoAL(KB,  goal) do 

(lhs,  rise) A—  STANDARDIZE VARIABLES((lhw,  rhe))  
for each 0' in FOL-BC-AND(KB,  the, UNIFY(rhs,  goad,  0)) do 

yield 9' 

generator FOL-BC-AND(KB,  goals, 9) yields a substitution 
if 0 = failure then return 
else if LENGTH(goals)  = 0 then yield 0 
else do 

first,rest FIRST(goaLs).  REST(goals)  
for each 0' in FOL-BC-OR(KB,  ScasT(0,  first), 0) do 

fur each 0" in FOL-BC-AND(KB, rest, 0') do 
yield 8" 

Figure 9.6  A simple backward-chaining algorithm for first order knowledge bases, 

American(West)1 Weaporay)  

{  

•riminal(Wect)  

Ad■  

Selis(West  1 ,z) 

AZ/Nano}  
Hostile(Nong)I  

Figure 9.7  Proof tree constructed by backward chaining to prove that West is a criminal. 
The tree should be read depth first, left to right. To prove Cr-writ/a/  ( West), we have to prove 
the four conjuncts below it. Some of these are in the knowledge base, and others require 
further backward chaining. Bindings for each successful unification are shown next to the 
corresponding subgoal.  Note that once one subgoal in a conjunction succeeds, its substitution 
is applied to subsequent subgoals. Thus, by the time FOL- BC- ASK gets to the last conjunct, 
originally Hostile(z),  z is already bound to Nano. 
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9.4.2 Logic programming 

Logic programming is a technology that comes fairly close to embodying the declarative 
ideal described in Chapter 7: that systems should be constructed by expressing knowledge in 
a formal language and that problems should be solved by running inference processes on that 
knowledge. The ideal is summed up in Robert Kowalski's equation, 

Algorithm = Logic ± Control .  

PROLOG Prolog is the most widely used logic programming language. It is used primarily as a rapid- 
prototyping language and for symbol -manipulation tasks such as writing compilers (Van Roy, 
1990) and parsing natural language (Pereira and Warren, 1980). Many expert systems have 
been written in Prolog for legal, medical, financial, and other domains. 

Prolog programs are sets of definite clauses written in a notation somewhat different 
from standard first-order  logic. Prolog uses uppercase letters for variables and lowercase for 
constants—the opposite of our convention for logic. Commas separate conjuncts in a clause, 
and the clause is written "backwards" from what we are used to; instead of A AB = C in 
Prolog we have C : - A, B. Here is a typical example: 

criminal(X) american0q,  weapon(Y), sells(X,Y,Z), hostile(Z). 

The notation [E IL] denotes a list whose first element is E and whose rest is L. Here is a 
Prolog program for append (  X, Y, Z ) , which succeeds if list Z is the result of appending 
lists X and Y: 

append([1,Y,Y).  
append([AIX],Y,[20]) append(X,Y,Z).  

In English, we can read these clauses as (1) appending an empty list with a list Y  produces 
the same list Y and (2) [A I Z ] is the result of appending [A X] onto Y, provided that Z is 
the result of appending X onto Y. In most high-level languages we can write a similar recur-
sive function that describes how to append two lists. The Prolog definition is actually much 
more powerful, however, because it describes a relation that holds among three arguments, 
rather than a junction computed from two arguments. For example, we can ask the query 
append (  X ,  Y , [ 1 ,  2 ] ):  what two lists can be appended to give [ 1,  2 ]?  We get back the 
solutions 

X-[]  Y-[1,2];  
X=[1]  Y=[2];  
X=[1,2] Y=[] 

The execution of Prolog programs is done through depth-first backward chaining, where 
clauses are tried in the order in which they are written in the knowledge base. Some aspects 
of Prolog fall outside standard logical inference; 

• Prolog uses the database semantics of Section 8.2.8 rather than first-order semantics, 
and this is apparent in its treatment of equality and negation (see Section 9.4.5). 

• There is a set of built-in functions for arithmetic.  Literals using these finiction  symbols 
are "proved" by executing code rather than doing further inference. For example, the 
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goal "X i s 4+3" succeeds with X bound to 7. On the other hand, the goal "5 i s X+Y" 
fails, because the built-in functions do not do arbitrary equation solving. 5  

■ There are built-in predicates that have side effects when executed. These include input–
output predicates and the as sert/retract predicates for modifying the knowledge 
base. Such predicates have no counterpart in logic and can produce confusing results—
for example, if facts are asserted in a branch of the proof tree that eventually fails. 

■ The occur  check is omitted from Prolog's unification algorithm. This means that some 

unsound inferences can be made; these are almost never a problem in practice. 
• Prolog uses depth-first backward-chaining search with no checks for infinite recursion. 

This makes it very fast when given the right set of axioms, but incomplete when given 
the wrong ones. 

CHOICE  POINT 

TRLII  

Prolog's design represents a compromise between declarativeness and execution efficiency—
inasmuch as efficiency was understood at the time Prolog was designed. 

9.4.3 Efficient implementation of logic programs 

The execution of a Prolog program can happen in two modes: interpreted and compiled. 
Interpretation essentially amounts to running the FOL-B C-AsK  algorithm from Figure 9.6, 
with the program as the knowledge base. We say "essentially" because Prolog interpreters 
contain a variety of improvements designed to maximize speed. Here we consider only two. 

First, our implementation had to explicitly manage the iteration over possible results 
generated by each of the subfunctioas.  Prolog interpreters have a global data structure, 
a stack of choice points, to keep track of the multiple possibilities that we considered in 
FOL-BC-OR. This global stack is more efficient, and it makes debugging easier, because 
the debugger can move up and down the stack. 

Second, our simple implementation of FOL-B C-ASK  spends a good deal of time gener-
ating substitutions. Instead of explicitly constructing substitutions, Prolog has logic variables 
that remember their current binding. At any point in time, every variable in the program ei-
ther is unbound or is bound to some value. Together, these variables and values implicitly 
define the substitution for the current branch of the proof. Extending the path can only add 
new variable bindings, because an attempt to add a different binding for an already bound 
variable results in a failure of unification. When a path in the search fails, Prolog will back 
up to a previous choice point, and then it might have to unbind some variables. This is done 
by keeping track of all the variables that have been bound in a stack called the trail_ As each 
new variable is bound by UNIFY- VAR, the variable is pushed onto the trail. When a goal fails 
and it is time to back up to a previous choice point, each of the variables is unbound as it is 
removed from the trail. 

Even the most efficient Prolog interpreters require several thousand machine instruc-
tions per inference step because of the cost of index lookup, unification, and building the 
recursive call stack. In effect, the interpreter always behaves as if it has never seen the pro-
gram before; for example, it has to ,find clauses that match the goal. A compiled Prolog 

 

Note that if the Peanu axioms are provided, such goals can  be solved by inference within a Prolog program. 
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procedure APPEND(aT,  y,  az,  continuation) 

trait  GLOBAL-TRAIL-POINTER() 
if ax  = I]  and UNIFY(),  az) then CALL(continuatien)  
RESET-TRAIL(trad)  
a, x , z  NEW-VARIABLE(),  NEW-VARIABLE(),  NEW- VARIABLE() 
if UN1FY(itz,  [a x])  and UNIF  Y  (  az, [a a]) then APPEND(x,  y, z,  continuation) 

Figure 9.8  Pseudocode representing the result of compiling the Append predicate. The 
function NEW-VARIABLE returns a new variable, distinct from all other variables used so far. 
The procedure CALL(continuation)  continues execution with the specified continuation. 

program, on the other hand, is an inference procedure for a specific set of clauses, so it knows 
what clauses match the goal. Prolog basically generates a miniature theorem prover for each 
different predicate, thereby eliminating much of the overhead of interpretation. It is also pos- 

np,m-ennp sible to open-rode the unification routine for each different call, thereby avoiding explicit 
analysis of tenn structure. (For details of open-coded unification, see Warren et al. (1977).) 

The instruction scts  of today's computers give a poor match with Prolog's semantics, 
so most Prolog compilers compile into an intermediate language rather than directly into ma-
chine language. The most popular intermediate language is the Warren Abstract Machine, 
or WAM,  named after David H. D.  Warren, one of the implementers of the first Prolog com-
piler. The WAM is an abstract instruction set that is suitable for Prolog and can be either 
interpreted or translated into machine language. Other compilers translate Prolog into a high-
level language such as Lisp or C and then use that language's compiler to translate to machine 
language. For example, the definition of the Append predicate can be compiled into the code 
shown in Figure 9.8.  Several points are worth mentioning: 

• Rather than having to search the knowledge base for Append clauses, the clauses be- 
come a procedure and the inferences are carried out simply by calling the procedure. 

• As described earlier, the current variable bindings are kept on a trail. The first step of the 
procedure saves the current state of the trail, so that it can be restored by RESET-TRAIL 

if the first clause fails. This will undo any bindings generated by the first call to UNIFY. 
CONTINUATION 
 • The trickiest part is the use of continuations to implement choice points. You can think 

of a continuation as packaging up a procedure and a list of arguments that together 
define what should be done next whenever the current goal succeeds. It would not 
do just to return from a procedure like APPEND when the goal succeeds, because it 
could succeed in several ways. and each of them has to be explored. The continuation 
argument solves this problem because it can be called each time the goal succeeds. In 
the APPEND code, if the first argument is empty and the second argument unifies with 
the third, then the APPEND predicate has succeeded. We then CALL the continuation, 

with the appropriate bindings on the trail, to do whatever should be done next. For 
example, if the call to APPEND were at the top level, the continuation would print the 
bindings of the variables. 
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OR-PARALLELISM  

AND-PARALLEUSM  

DYNAMIC 
PROGRAMMING 

Before Warren's work on the compilation of inference in Prolog, logic programming was 
too slow for general use. Compilers by Warren and others allowed Prolog code to achieve 
speeds that are competitive with C on a variety of standard benchmarks (Van Roy, 1990). 
Of course, the fact that one can write a planner or natural language parser in a few dozen 
lines of Prolog makes it somewhat more desirable than C for prototyping most small-scale Al 
research projects. 

Parallelization can also provide substantial speedup. There are two principal sources of 
parallelism. The first, called OR-parallelism, comes from the possibility of a goal unifying 
with many different clauses in the knowledge base. Each gives rise to an independent branch 
in the search space that can lead to a potential solution, and all such branches can be solved 
in parallel. The second, called AND-parallelism, comes from the possibility of solving 
each conjunct in the body of an implication in parallel. AND-parallelism is more difficult to 
achieve, because solutions fur the whole :unjuriction  require consistent bindings fur all the 
variables. Each conjunctive branch must communicate with the other branches to ensure a 
global solution. 

9.4.4 Redundant inference and infinite loops 

We now turn to the Achilles heel of Prolog: the mismatch between depth-first search and 
search trees that include repeated states and infinite paths. Consider the following logic pro-
gram that decides if a path exists between two points on a directed graph: 

path(X,Z) link(X,Z). 
path(X,Z) path(X,Y), link(Y,Z). 

A simple three-node graph, described by the facts link ( a, b) and link  ( b ,  c ) , is shown 
in Figure 9.9(a). With this program, the query path (a, ) generates the proof tree shown 
in Figure 9.10(a). On the other hand, if we put the two clauses in the order 

path(X,Z) path(X,Y),  link(Y,Z). 
path(X,Z) link(X,Z).  

then Prolog follows the infinite path shown in Figure 9.10(b). Prolog is therefore incomplete 
as a theorem prover for definite clauses—even for Datalog programs, as this example shows—
because, for some knowledge bases, it fails to prove sentences that are entailed.  Notice that 
forward chaining does not suffer from this problem: once path ( a., b) , path ( b c) , and 
path ( a, c) are inferred, forward chaining halts. 

Depth-first backward chaining also has problems with redundant computations. For 
example, when finding a path from A t  to Ja in Figure 9.9(b), Prolog performs 1377  inferences, 
most of which involve finding all possible paths to nodes from which the goal is unreachable. 
This is similar to the repeated-state problem discussed in Chapter 3.  The total amount of 
inference can be exponential in the number of ground facts that are generated. If we apply 
forward chaining instead, at most 7-12  path ( X, ) facts can be generated linking n nodes. 
For the problem in Figure 9.9(b), only 62 inferences are needed. 

Forward chaining WI  graph search problems is an example of dynamic programming. 
in which the solutions to subproblems are constructed incrementally from those of smaller 
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Figure 9.9 (a) Finding a path from A to C can lead Prolog into an infinite loop. (b) A 
giapli  iu which each  nude is LOIlllel:led  if/  Lwu  faill.10I11NUCCUSSUllt  ill the  lient  layer. finding 
path from A t  to .T4  requires 877  inferences. 

Figure 9.10 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated 
when the clauses are in the -wrong" order. 
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subproblems and are cached to avoid recomputation. We can obtain a similar effect in a 
backward chaining system using memoization—that is, caching solutions to subgoals as 
they are found and then reusing those solutions when the subgoal recurs, rather than repeat-
ing the previous computation. This is the approach taken by tabled logic programming  sys-
tems, which use efficient storage and retrieval mechanisms to perform memoization. Tabled 
logic programming combines the goal-directedness of backward chaining with the dynamic-
programming efficiency of forward chaining. It is also complete for Datalog knowledge 
bases, which means that the programmer need worry less about infinite loops. (It is still pos-
sible to get an infinite loop with predicates like father (  X.  Y) that refer to a potentially 
unbounded number of objects. ) 

9.4.5 Database semantics of Prolog 

Prolog uses database semantics, as discussed in Section 8.2.8. The unique names assumption 
says that every Prolog constant and every ground term refers to a distinct object, and the 
closed world assumption says that the only sentences that are true are those that are entailed 
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by the knowledge base. There is no way to assert that a sentence is false in Prolog. This makes 
Prolog less expressive than first- order  logic, but it is part of what makcs Prolog more efficient 
and more concise. Consider the following Prolog assertions about some course offerings: 

Course ( C  S  , 101) , C  °lase(  CS, 102), Course(CS  , 106),  Caurse(EE  , 101) . (9.11) 

Under the unique names assumption, CS' and EE are different (as are 101, 102, and 106), 
so this means that there are four distinct courses. Under the closed -world assumption there 
are no other courses, so there are exactly four courses. But if these were assertions in FOL 
rather than in Prolog, then all we could say is that there are somewhere between one and 
infinity courses. That's because the assertions (in FOL) do not deny the possibility that other 
unmentioned courses are also offered, nor do they say that the courses mentioned are different 
from each other. If we wanted to translate Equation (9.11) into FOL, we would get this: 

Cour6e(d,  n) (cl  = CS A n = 101) V (d=  CS A n  = 102) 
V (d= CS A n = 106) V (d—EE  A tt  =101,  . (9.12) 

MAPLETON This is called the completion of Equation (9.11).  It expresses in FOL the idea that there are 
at most four courses. To express in FOL the idea that there are at least four courses, we need 
to write the completion of the equality predicate: 

x = y -44  (r = GS A y  = CS)V (x = EE A = EE)V(x= 101  A = 101) 
V (x = 102 A = 102) V (x = 106 A I)  = 106) .  

The completion is useful for understanding database semantics, but for practical purposes, if 
your problem can be described with database semantics, it is more efficient to reason with 
Prolog or some other database semantics system, rather than translating into FOL and rea-
soning with a full FOL theorem prover. 

9.4.6 Constraint logic programming 

In our discussion of forward chaining (Section 9.3), we showed how constraint satisfaction 
problems (CSPs) can be encoded as definite clauses. Standard Prolog solves such problems 
in exactly the same way as the backtracking algorithm given in Figure 6.5. 

Because backtracking enumerates the domains of the variables, it works only for finite-
domain CSPs. In Prolog terms, there must be a finite number of solutions for any goal 
with unbound variables. (For example, the goal dif f (  Q , SA) , which says that Queensland 
and South Australia must be different colors, has six solutions if three colors are allowed.) 
Infinite-domain CSPs—for example, with integer or real-valued variables—require quite dif-
ferent algorithms, such as bounds propagation or linear programming. 

Consider the following example. We define triangle (  X ,  Y,  Z) as a predicate that 
holds if the three arguments are numbers that satisfy the triangle inequality: 

triangle(X,Y,Z) 2 — 

X>0,  Y>0,  Z>0,  X-1-Y>=Z,  Y+Z>=X,  X+Z>=Y.  

If we ask Prolog the query triangle (3, 4, 5 ),  it succeeds. On the other hand, if we 
ask triangle ( 3 , 4 , Z)  , nu solution will be found, because the subsoil]  Z>=0  cannot be 
handled by Prolog; we can't compare an unbound value to O. 
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CONSTRAINT  LOGIC 
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METARULE  

Constraint logic programming (CLP) allows variables to be constrained rather than 
bound.  A CLP solution is the most specific set of constraints on the query variables that can 
be derived from the knowledge base. For example, the solution to the triangle ( 3 ,  4 , Z ) 
query is the constraint 7 >= Z 1. Standard logic programs are just a special case of 

CLP in which the solution constraints must be equality constraints—that is, bindings. 
CLP systems incorporate various constraint-solving algorithms for the constraints al-

lowed in the language. For example, a system that allows linear inequalities on real-valued 
variables might include a linear programming algorithm for solving those constraints. CLP 
systems also adopt a much more flexible approach to solving standard logic programming 
queries.  For example, instead of depth-first, left-to-right backtracking, they might use any of 
the more efficient algorithms discussed in Chapter 6. including heuristic conjunct ordering, 
backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of 
constraint satisfaction algorithms, logic programming, and deductive databases. 

Several systems that allow the programmer more control over the search order for in-
ference have been defined. The MRS language (Genesereth and Smith, 191;l;  Russell. 1985)  
allows the programmer to write metarulus  to determine which conjuncts are  tried first. The 
user could write a rule saying that the goal with the fewest variables should be tried first or 
could write domain-specific rules for particular predicates.  

9.5 RESOLUTION 

The last of our three families of logical systems is based on resolution. We saw on page 250 
that propositional resolution using refutation is a complete inference procedure for proposi- 
tional logic. In this section, we describe how to extend resolution to first-order logic. 

9.5.1 Conjunctive normal form for first-order  logic 

As in the propositional case, first-order resolution requires that sentences he in conjunctive 
normal form (CNF)—that is, a conjunction of clauses, where each clause is a disjunction of 
literals. 6  Literals can contain variables, which are assumed to be universally quantified. For 
example, the sentence 

V3.!  Arnerican(x)  A Weapon(y)  A Sells(s  y, z) A Hostile(z) Criminal(r)  

becomes, in CNF,  

- , American(r)  V Weapon(y)  V -,Selis(T,  z) V -Hostile(z)  V Crimmal(x)  .  

Every sentence of first-order logic can be converted into an inferentially equivalent CNF 
sentence. In particular, the CNF sentence will be unsatisfiable  just when the original sentence 
is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences- 

6 
 A clause can also be represented as an implication with a conjunction of atoms in the premise and  a disjunction 

of atoms in the conclusion (Exercise 7.13). This is called implicative normal form or Kowalski form (especially 
when written with a right-to-left implication symbol (Kowalski, 1979)) and is often much easier to read. 
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The procedure for conversion to CNF is similar to the propositional case, which we saw 
on page 253.  The principal difference arises from the need to eliminate existential quantifiers. 
We illustrate the procedure by translating the sentence "Everyone who loves all animals is 
loved by someone,"  or 

V 3.  [V y Areimal(y)  = Loves(s  , y Loves(y,x)]  .  
The steps are as follows: 

■ Eliminate implications: 
Vs [—IV Animal(y)  V Loves(x  , 0]  V [J  y Loves(y,x)] .  

■ Move inwards: In addition to the usual rules for negated connectives, we need rules 
for negated quantifiers. Thus, we have 

▪ p becomes A  x —p 
▪ p becomes V x  

Our sentence goes through the following transformations: 
Vs [A ti  —.(—,Artimai(y)  V L9ves  (x  y))] V [3y  Love,s(y,  x)]  .  
Vs [A 9  —,—Anima/(y)  A —Lovesx,  y)I  V  [Ay Loves(y,  x)]  .  
Vs [A y Anima/(y)  A —,Loves(x,y)]  V  LE  y  Laves(y,  x)]  .  

Notice how a universal quantifier (V y)  in the premise of the implication has become 
an existential quantifier. The sentence now reads "Either there is some animal that a 
doesn't love, or (if this is not the case) someone loves x." Clearly, the meaning of the 
original sentence has been preserved. 

• Standardize variables: For sentences like ( P(x))  V Q(r)) which use the same 
variable name twice, change the name of one of the variables. This avoids confusion 
later when we drop the quantifiers_ Thus, we have 

Vs Pp Animal(y)  A —.Loves(x,y)]  V [E  z Loves(z, x)] 
SKOLEMIZATION • Skolemize: Skolemization is the process of removing existential quantifiers by elimi- 

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1: 
translate A x P(x) into P(A),  where A is a new constant. However, we can't apply Ex-
istential Instantiation to our sentence above because it doesn't match the pattern d  e  cr  
only parts of the sentence match the pattern. If we blindly apply the rule to the two 
matching parts we get 

V x  [Anintal(A)  A —,Love.s(a.,  A)I  V Laves(B,  x)  
which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence 
allows each person to fail to love a different animal or to be loved by a different person. 
Thus, we want the Skolem  entities to depend on x  and z: 

Vs [Anirrtal(F(x))  A —,Lovs(x,  F  (x))1  V Loves (G(z),  s)  .  
SKOLENA  FUNCTION Here F and C are Skolem functions. The general rule is that the arguments of the 

Skolem function are all the universally quantified variables in whose scope the exis- 
tential quantifier appears. As with Existential Instantiation, the Skolernized  sentence is 
satisfiable exactly when the original sentence is satisfiable. 
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• Drop universal quantifiers: At this point, all remaining variables must be universally 
quantified. Moreover, the sentence is equivalent to one in which all the universal quan- 
tifiers have been moved to the left. We can therefore drop the universal quantifiers: 

[Aniinal(F(x))  A —.Loves (x F (x))]  V Loves(G(z), .  

• Distribute V over A: 

[Animal(t(x  )) v Loves(G(z),  x)] A [—Loves(x,F(x))  V Loves(G(z),  x)] .  

This step may also require flattening out nested conjunctions and disjunctions. 

The sentence is now in CNF and consists of two clauses. It is quite unreadable. (It may 
help to explain that the Skolem function F(x)  refers to the animal potentially unloved by z, 
whereas G(2) refers to someone who might love x.)  Fortunately, humans seldom need look 
at CNF sentences—the translation process is easily automated_ 

 

9.5.2 The resolution inference rule 

 

 

The resolution rule for first-order clauses is simply a lifted version of the propositional reso 
lution rule given on page 253. Two clauses, which arc assumed to be standardized apart so 
that they share no variables, can be resolved if they contain complementary Literals. Propo- 
sitional literals are complementary if one is the negation of the other; first-order Literals are 
complementary if one unifies with the negation of the other. Thus, we have 

V •  •  •  V fk, mi  V•  • V 

BINARY RESQLUTIDN  

suBsT(60,.e 1  v  •  •  •  v  4_,  v  e,+,  v  -  •  -  v.ek  V Mt V ..  V m,_  V rt37 +1  V •  - •  V mn)  

where UNIFY(e,,  —an)=  8.  For example, we can resolve the two clauses 

1,4nima/(F(x))  V Loves(G(x),  x)]  and [—,Loves(u,v)  V —,Kills(u,  

by eliminating the complementary literals Loves(G(x), x) and —Loves(ii,v),  with unifier 
6  = {u/G(x),  ulx},  to produce the resolvent clause 

[Anirnal(F(r)) x)] .  

This rule is called the binary resolution rule because it resolves exactly two literals. The 
binary resolution rule by itself does not yield a complete inference procedure. The full reso-
lution rule resolves subsets of literals in each clause that are unifiable. An alternative approach 
is to extend factoring—the removal of redundant literals—to the first-order case. Proposi- 
tional factoring reduces two literals to one if they are identical; first-order factoring reduces 
two literals to one if they are wy:fiahle.  The unifier must be applied to the entire clause.  The 
combination of binary resolution and factoring is complete. 

9.5.3 Example proofs 

Resolution proves that KB a by proving KB A ors uusatisfiable, that is, by deriving the 
empty clause. The algorithmic approach is identical to the propositional case, described in 
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Figure 9.11 A resolution proof that West is a criminal. At each step, the literals that unify 
are in bold. 
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Figure 7.12, so we need not repeat it here. Instead, we give two example proofs. The first is 
the crime example from Section 9.3. The sentences in CNF are 

— , Amencan(x)  V — , Weapon(y)  V — , Sells(x  , y, z) V —Hostile(z)  V Criminal(x)  
—1 Missile(x)  V Owns (  Non o ,  V Sells( West , x , None) 
—Eneray(x  , Amenca)  V Host2le(x)  
—Missile(x)  V Weapon (x)  
Owns(Nono  , Mis  side (Ma ) 
American ( West) En e  my ( Ncno  ,  America) .  

We also include the negated geal  Criminal( West). The resolution proof is shown in Fig- 
ure 9.11. Notice the structure: single "spine" beginning with the goal clause, resolving against 
clauses from the knowledge base until the empty clause is generated. This is characteristic 
of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine 
correspond exactly to the consecutive values of the goals variable in the backward-chaining 
algorithm of Figure 9.6. This is because we always choose to resolve with a clause whose 
positive literal unified with the leftmost literal of the "current" clause on the spine; this is 
exactly what happens in backward chaining. Thus, backward chaining is just a special case 
of resolution with a particular control strategy to decide which resolution to perform next. 

Our second example makes use of Skolemization and involves clauses that are not def-
inite clauses. This results in a somewhat more complex proof structure. In English, the 
prohlem is as follows: 

Everyone who loves all animals is loved by someone. 
Anyone who kills an animal is loved by no one. 
Jack loves all animals. 
Either Jack or Curiosity killed the cat, who is named Tuna. 
Did Curiosity kill the cat? 



4 e ineul(N(u)  )  fi1,3  ,Le  Kent, pi)pur  MB*,  Trrnap  ninmelkle,k0AuLe,uec(Je.  

rennin.*  -Cal(,),OnArtined(r)  Kills(Jer  kutuna  Wafts{  Curinsiey,  Tune)  

nimai(Teno)  Kiik(iark.rune)  -Lore*  ,F(x))01.Leres(64),A)  

Tem)  

Loves (.0  (.1ack),Jack)  

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring 
in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the 
unification of Loves (x, F(x))  and Loves(Jack,  r)  can only succeed after the variables have 
been standardized apart. 
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First, we express the original sentences, some background knowledge, and the negated goal 
G in first-order logic! 

A. [Vy  Anintab:y)  = Laves(x,y)] y Laves(y,  x)] 

B. Vx  [Thz  Anirnal(z)  A Kidis(x,z)] [Vy —,Laues(y,  ,  x)] 

C. dx  Anirnal(x) Loves(J•ck,,$)  

D. Kills(Jack,  Tuna) V Kills( Curiosity .  Tuna) 
E. Cat(Tuna)  

F. V r Cat(r)  = Animal(x)  
—G. —Jfills(Curiosity,  , Tuna) 

Now we apply the conversion procedure to convert each sentence to CNF: 
Al.  Anirnal(F(x))  V Loves (G(x),  r)  

A2. —.Loves(x,F(x))  V Loves(C(x),  x) 

B. ,Loves(y,r)  V -,Animal(x)  V — , z) 

C. -,Animal(x)  V Loves(Jack  r)  

D. Kills( Tack, Tuna) V 10118 Curaosity,  Tuna) 
E. Cat( Tuna) 

F. -Cat(x)  V Animal(x)  

—G. ,Ifilis(Ouriasity,  Tuna) 

The resolution proof that Curiosity killed the cat is given in Figure 9.12.  In English, the proof 
could be paraphrased as follows: 

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus 
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because 
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the 
other hand, Jack loves all animals, so someone loves him; so we have a contradiction. 
Therefore, Curiosity killed the cat. 
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NONCONSTRUCTIVE  
PROOF  

ANSWER LITERAL 

REFUTATION 
COMPLETENESS 

The proof answers the question "Did Curiosity kill the cat?" but often we want to pose more 
general questions, such as "Who killed the cat?" Resolution can do this,  but it rakes a little 
more work to obtain the answer. The goal is li w Kills(*, Tuna), which, when negated. 
becomes –ticills(w ;  Tuna) in CNF.  Repeating the proof in Figure 9.12 with the new negated 
goal, we obtain a similar proof tree, but with the substitution {w/  Cariosity in one of the 
steps. So, in this case, finding out who killed the cat is just a matter of keeping track of the 
bindings for the query variables in the proof. 

Unfortunately, resolution can produce nonconstructive proofs for existential goals. 
For example, –Kills(w,  Tuna)  resolves with Kills(.Mck  •  Tuna) V Kills(Curiosity.  Tuna) 
to give Kills(Jack, Tuna), which resolves again with –,Kills(w,  Tuna) to yield the empty 
clause. Notice that w has two different bindings in this proof; resolution is telling us that. 
yes, someone killed Tuna—either Jack or Curiosity. This is no great surprise! One so-
lution is to restrict the allowed resolution steps so that the query variables can be bound 
only once in a given proof; then we need to be able to backtrack over the possible bind-
ings. Another solution is to add a special answer literal to the negated goal, which be-
comes –Kills`,w,  Tuna) V Answer(w).  Now, the resolution process generates an answer 
whenever a clause is generated containing just a single answer literal. For the proof in Fig-
ure 9.12, this is Answer( Curiosity). The nonconstructive proof would generate the clause 
Answer (Curiosity) V Answer(Jack.),  which does not constitute an answer. 

9.5.4 Completeness of resolution 

This section gives a completeness proof of resolution. It can be safely skipped by those who 
are willing to take it on faith. 

We show that resolution is refutation -complete, which means that if a set of sentences 
is unsatisfiable, then resolution will always be able to derive a contradiction. Resolution 
cannot be used to generate all logical consequences of a set of sentences, but it can be used 
to establish that a given sentence is entailed by the set of sentences. Hence, it can be used to 
find all answers to a given question, Q(x),  by proving that KB A –,(2`,T)  is unsatisfiable. 

We take it as given that any sentence in first-order logic (without equality) can be rewrit-
ten as a set of clauses in CNF.  This can be proved by induction on the form of the sentence, 
using atomic sentences as the base case (Davis and Putnam, 1960). Our goal therefore is to 
prove the following: if  S is an unsatisfiable set of clauses, then the application of a finite 
number of resolution steps to S will yield a contradiction. 

Our proof sketch follows Robinson's original proof with some simplifications from 
Genesereth and Nilsson (1987), The basic structure of the proof (Figure 9.13) is as follows: 

1. First, we observe that if 5' is unsatisfiable, then there exists a particular set of ground 
instances of the clauses of S such that this set is also unsatisfiable (Herbrand's  theorem). 

2. We then appeal to the ground resolution theorem given in Chapter 7, which states that 
propositional resolution is complete for ground sentences. 

3. We then use a lifting lemma to show that, for any propositional resolution proof using 
the set of ground sentences, there is a conesponding  fast-finder  resolution proof using 
the first-order sentences from which the ground sentences were obtained. 



1p
Any  set of sentences S is re resentahle  in clausal form 

Assume S is unsatisfiable,  and in clean/  form 

  

Herbrand's  theorem 

Ground resolution 
theorem 

LiftinE:  lemma 

Some set S'  of ground instances is unsausfiable  

Resolution can find a contradiction in S'  

  

There is a resolution proof for the contradiction in S'  

Figure 9.13 Structure of a completeness proof for resolution. 
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To carry out the first step, we need three new concepts: 
• Herbrand  universe: If S is a set of clauses, then Irs,  the Herbrand  universe of S, is 

the set of all ground terms constructable from the following: 
a. The function symbols in S,  if any. 
b. The constant symbols in S,  if any; if none, then the constant symbol A. 

For example, if S contains just the clause -,P(x,  F(a.,  A)) V c,  A) V R(27,  B then 
Hs is the following infinite set of ground terms: 

(A, B, F(A, A), F(A, B), F(B,  A), F(B,  B), F(A, F (A , A)), ...]  .  
• Saturation: If S is a set of clauses and P is a set of ground terms, then P(S),  the 

saturation of S with respect to P,  is the set of all ground clauses obtained by applying 
all possible consistent substitutions of ground terms in P with variables in S. 

• Herbrand  base: The saturation of a set S of clauses with respect to its Herbrand uni-
verse is called the Herbrand  base of S,  written as Hs (S).  For example, if S contains 
solely the clause just given, then H5(S)  is the infinite set of clauses 

{ -,P(A,F(A,  A)) V  -,Q(A,  A) V  IAA,  B),  
F(B,  A)) V -,Q(B  ,  A) V  R(B , B), 

-P(F(A,  A), F(F(A, A), A)) V -.Q(F(A,  A), A) V R(F(A, A), B), 
-P(F(A,  B),F(F(A,B),  A)) V -IQ  (F (A, B), A) V R(F(A, B), B),  } 

These definitions allow us to state a form of Herbrand's  theorem (Herbrand,  1930): 
If a set S of clauses is unsatisfiable, then there exists a finite subset of Hs (S)  that 
is also unsatisfiable. 

Let S'  be this finite subset of ground sentences. Now, we can appeal to the ground resolution 
theorem (page 255) to show that the resolution closure RC (S')  contains the empty clause. 

That is, running propositional resolution to completion on S'  will derive a contradiction. 
Now that we have established that there is always a resolution proof involving  some 

finite subset of the Herbrand base of S,  the next step is to show that there is a resolution 

HEIBRAND  
LINIVERSE  

SATURATION 

HERBRAND  BASE 

HEIRRANDIS  
THEOREM 
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GODEL'S INCOMPLETENESS THEOREM 

 

By slightly extending the language of first-order logic to allow for the mathemat- 
ical induction schema in arithmetic, Kurt Godel  was able to show, in his incom- 
pleteness theorem, that there are true arithmetic sentences that cannot be proved. 

The proof of the incompleteness theorem is somewhat beyond the scope of 
this book, occupying, as it does. at least 30 pages, but we can give a hint here. We 

begin with the logical theory of numbers. In this theory, there is a single constant, 
0, and a single function, S (thc successor function). In the intended model, S(0)  
denotes 1, S(S(0))  denotes 2, and so on; the language therefore has names for all 
the natural numbers_ The vocabulary also includes the function symbols  x  ,  and 
Expt  (exponentiation) and the usual set of logical connectives and quantifiers. The 
first step is to notice that the set of sentences that we can write in this language can 
be enumerated. (Imagine defining an alphabetical order on the symbols and then 
arranging, in alphabetical order, each of the sets of sentences of length 1,  2, and 
so nri_)  We can then number each sentence rt  with a unique natural number #r?  
(the Giidel  number). This is crucial: number theory contains a name for each of 
its own sentences. Similarly, we can number each possible proof P with a Godel  

number G(P), because a proof is simply a finite sequence of sentences. 
Now suppose we have a recursively enumerable set A of sentences that are 

true statements about the natural numbers. Recalling that A can be named by a 
given set of integers, we can imagine writing in our language a sentence cx(j,  A) of 
the following sort: 

V i i is not the Gbdel number of a proof of the sentence whose GOdel  
number is j, where the proof uses only premises in A. 

Then let a-  be the sentence oc(#cr,  A), that is, a sentence that states its own unprov-
ability from A. (That this sentence always exists is true but not entirely obvious.) 

Now we make the following ingenious argument: Suppose that cr  is provable 
from A; then a is false (because a says it cannot be proved). But then we have a 
false sentence that is provable from A, so A cannot consist of only true sentences—
a violation of our premise. Therefore, cr is not provable from A. But this is exactly 
what o-  itself claims; hence o-  is a true sentence. 

So, we have shown (barring 291  pages) that for any set of true sentences of 
number theory, and in particular any set of basic axioms, there are other true sen-
tences that cannot be proved from those axioms. This establishes, among other 
things, that we can never prove all the theorems of mathematics within any given 
system of axioms. Clearly, this was an important discovery for mathematics. Its 
significance for AI has been widely debated, beginning with speculations by GOdel 
himself. We take up the debate in Chapter 26. 
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proof using the clauses of S itself, which are not necessarily ground clauses. We start by 
considering a single application of the resolution rule_  Robinson stated this lemma! 

Let C1  and C2  be two clauses with no shared variables, and let Cl and C2 be 
ground instances of C1 and C2. If Cis a resolvent of CI  and q,  then there exists 
a clause C such that (1) C is a resolvent of Ci  and C2 and (2) C' is a ground 
instance of C. 

LIFTING LEAR.%  This is called a lifting lemma, because it lifts a proof step from ground clauses up to general 
first-order clauses In order to prove his basic lifting lemma, Robinson had to invent unifi-
cation and derive all of the properties of most general unifiers Rather than repeat the proof 
here, we simply illustrate the lemma: 

Cl  = 

▪ 

(z,  F(x,  A)) V —Q(x,  A) V R.(x,  B) 

C2 = -N(G(y),  z) V P(11 -  (y),  z) 

Cl  =  

▪ 

( H (B), ( B), A)) V —42(11(B),  A) V R(H(B),  B) 

= (C(R),  F(H(R),  A)) V P(11(13),  F(1-1  (13) ,  A)) 

C'  = —,IV(G(B),F(H(B),  A)) Ni  —,Q(H(B),  A) V R(H(B), B) 

C = -N  ( 0 (y), F (H (v),  A)) 1/  —42(H  ( y), A) V R(H(y),  B) . 

We see that indeed C' is a ground instance of C. In general, for Cl  and C2 to have any 
resolvents, they must be constructed by first applying to Cl  and C2 the most general unifier 
of a pair of complementary literals in C1  and C2. From the lifting lemma, it is easy to derive 
a similar statement about any sequence of applications of the resolution rule: 

For any clause C' in the resolution closure of S' there is a clause C in the resolu-
tion closure of S such that C' is a ground instance of C and the derivation of C is 
the same length as the derivation of C'. 

From this fact, it follows that if the empty clause appears in the resolution closure of 5 1 , it 
must also appear in the resolution closure of S. This is because the empty clause cannot be a 
ground instance of any other clause. To recap: we have shown that if S is unsatisfiable, then 
there is a finite derivation of the empty clause using the resolution rule. 

The lifting of theorem proving from ground clauses to first-order clauses provides a vast 
increase in power. This increase comes from the fact that the first-order proof need instantiate 
variables only as far as necessary for the proof, whereas the ground-clause methods were 
required to examine a huge number of arbitrary instantiations. 

9.5_5 Equality 

None of the inference methods described so far in this chapter handle an assertion of the form 
x — y. Three distinct approaches can be taken. The first approach is to axiomatize equality— 

to write down sentences about the equality relation in the knowledge base. We need to say that 
equality is reflexive. symmetric, and transitive, and we also have to  say that we can substitute 

equals for equals in any predicate or function. So we need three basic axioms, and then one 
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for each predicate and function: 
dx  X=X  

Vx,y  x=y y=x  
Vae,y,2  x=y  A y=z = x=z  

Vx,Y  x = y = ( P1(x)  <=  FM) 
V a, y :17  my —6,  ( P2 (x) PAO)  

Vw,s,y,z  w =y A x=2  

V w,  y,  z  =y  A x.=.z  = ( F2*  x) = F2(y.  z))  

Given these sentences, a standard inference procedure such as resolution can perform tasks 
requiring equality reasoning, such as solving mathematical equations. However, these axioms 
will generate a lot of conclusions, most of them not helpful to a proof. So there has been a 
search for more efficient ways of handling equality. One alternative is to add inference rules 
rather than axioms. The simplest rule, demodulation, takes a unit clause x = y and some 
clause a that contains the term x, and yields a new clause formed by substituting y  for x  
within or.  It works if the term within a unifies with x; it need not be exactly equal to x. 
Note that demodulation is directional; given x  = y, the x always gets replaced with y, never 
vice versa. That means that demodulation can be used for simplifying expressions using 
demodulators such as x +  0  =x  or x i  = x.  As another example, given 

Father (Father (x))  = aternalGrandfather  (x) 
Birthdate (Father (Father (Bella)), 1926) 

we can conclude by demodulation 
Birthdate(PaternalGrandfath,er  (Bella), 1926) .  

More formally, we have 
0  EMODULAT ■ Demodulation: For any terms x, y, and z, where 2 appears somewhere in literal 7 -n, 

and where UNIFY (X, z)  = 0,  

X=  y, rni  V •  V ran  

SUB (SUBST(0,  x)  ,  SuBsT  (0 v  •  •  v  rrt,,)  

where SUBST  is the usual substitution of a binding list, and Sun  (x,  y, TO means to 
replace x  with y everywhere that x  occurs within in. 

The rule can also be extended to handle non-unit clauses in which an equality literal appears: 
R4FAMODUAll  ON ■ Paramodulation: For any terms x, y, and z, where z appears somewhere in literal 7n,, 

and where UtstIFY(x,  z)  = 0,  

V•••VikVX=  y, mi  V •  V m„  
SuB(SuBsT(O,  x),  SuBsr  (0,  y),  SuBsTif),  4  V • • • V ik  V mi.  V • • • V rn,0  

For example, from 
P(F(x,B),x)  V  Q(x) and F (A, y)  = y V R(y)  
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UNIFICATION 

we have 0 = UNIFY (F (A, p), F(x,  B)) = { x/A,  031,  and we can conclude by paramodu-
lation  the sentence 

P(B,  A) V Q(A) V R(B) 

Paramodulation yields a complete inference procedure for first-order logic with equality. 
A third approach handles equality reasoning entirely within an extended unification 

algorithm. That is, terms are unifiable if they are provably equal under some substitution, 
where "provably" allows for equality reasoning. For example_  the terms 1 +  2 and 2 + 1 
normally are not unifiable, but a unification algorithm that knows that x  = y  x.  could 
unify them with the empty substitution_  Equational unification of this kind can be done with 
efficient algorithms designed for the particular axioms used (commutativity, associativity, and 
so on) rather than through explicit inference with those axioms. Theorem provers using this 
technique am closely related to the CLP systems described in Section 9.4_ 

9.5.6 Resolution strategies 

We know that repeated applications of the resolution inference rule will eventually find a 
proof if one exists. In this subsection, we examine strategies that help find proofs efficiently. 

UNIT PREFERENCE Unit preference: This strategy prefers to do resolutions where one of the sentences is a single 
literal (also known as a unit clause). The idea behind the strategy is that we are trying to 
produce an empty clause, so it might be a good idea to prefer inferences that produce shorter 
clauses_  Resolving a unit sentence (such as P) with any other sentence (such as —PV —Q V R) 
always yields a clause (in this case,  V R) that is shorter than die other clause. When 
the unit preference strategy was first tried for propositional inference in 1964, it led to a 
dramatic speedup, making it feasible to prove theorems that could not be handled without the 
preference. Unit resolution is a restricted form of resolution in which every resolution step 
must involve a unit clause. Unit resolution is incomplete in general, but complete for Horn 
clauses.  Unit resolution proofs on Horn clauses resemble forward chaining. 

The OTTER theorem prover (Organized Techniques for Theorem-proving and Effective 
Research, McCune, 1992), uses a form of best-first search. Its heuristic function measures 
the "weight" of each clause, where lighter clauses are preferred. The exact choice of heuristic 
is up to the user, but generally, the weight of a clause should be correlated with its size or 
difficulty. Unit clauses are treated as light the search can thus be seen as a generalization of 
the unit preference strategy. 

SET OF SUPPORT Set of support: Preferences that try certain resolutions first are helpful, but in general it is 
more effective to try to eliminate some potential resolutions altogether. For example, we can 
insist that every resolution step involve at least one element of a special set of clauses—the 
set of support. The resolvent is then added into the set of support. If the set of support is 
small relative to the whole knowledge base, the search space will be reduced dramatically. 

We have to be careful with this approach because a bad choice for the set of support 

will make the algorithm incomplete. However, if we choose the set of support S so that the 
remainder of the sentences are jointly satisfiable, then set-of-support  resolution is complete,  
For example, one can use the negated query as the set of support, on the assumption that the 
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original knowledge base is consistent. (After all, if it is not consistent, then the fact that the 
query follows from it is vacuous.) The set-of-support  strategy has the additional advantage of 
generating goal-directed proof trees that are often easy for humans to understand. 

INPJT  RESOLUTION  Input resolution: In this strategy, every resolution combines one of the input sentences (from 
the KB or the query) with some other sentence. The proof in Figure 9.11 on page 348 uses 
only input resolutions and has the characteristic shape of a single "spine" with single sen- 
tences combining onto the spine. Clearly, the space of proof trees of this shape is smaller 
than the space of all proof graphs. In Horn knowledge bases, Modus Pollens  is a kind of 
input resolution strategy, because it combines an implication from the original KB with some 
other sentences. Thus, it is no surprise that input resolution is complete for knowledge bases 

LINEAR RESOLUTION  that are in Horn form, but incomplete in the general case. The linear resolution strategy is a 
slight generalization that allows P and Q to he resolved together either if P is in the original 
KB or if P  is an ancestor of Q in the proof tree. Linear resolution is complete. 

SUBSUMPTICN Suhsumption: The subsumption  method eliminates all sentences that are subsumed by (that 
is, more specific than) an existing sentence in the KB. For example, if P(x) is in the KB, then 
there is no sense in adding P(A)  and even less sense in adding P(A) V  Q(B).  Subsumption 
helps keep the KB small and thus helps keep the search space small. 

SRN S 

VERIFICATION 

ID  EDUCTIVE 
SYPITBESS  

Practical uses of resolution theorem provers 

Theorem provers can be applied to the problems involved in the synthesis and verification 
of both hardware and software. Thus, theorem-proving  research is carried out in the fields of 
hardware design, programming languages. and software engineering—not Just in Al. 

In the case of hardware, the axioms describe the interactions between signals and cir-
cuit elements. (See Section 8.4.2  on page 309 for an example.) Logical reasoners designed 
specially for verification have been able to verify entire CPUs, including their timing prop-
erties (Srivas  and Bickford, 1990). The AURA theorem prover has been applied to design 
circuits that are more compact than any previous design (Wnjciechowski  and Wojcik, 1983),  

In the case of software, reasoning about programs is quite similar to reasoning about 
actions, as in Chapter 7: axioms describe the preconditions and effects of each statement. 
The formal synthesis of algorithms was one of the first uses of theorem provers, as outlined 
by Cordell Green (1969a), who built on earlier ideas by Herbert Simon (1963). The idea 
is to constructively prove a theorem to the effect that "there exists a program p satisfying a 
certain specification." Although fully automated deductive synthesis, as it is called, has not 
yet become feasible for general-purpose programming, hand-guided deductive synthesis has 
been successful in designing several novel and sophisticated algorithms. Synthesis of special-
purpose programs, such as scientific computing code. is also an active area of research. 

Similar techniques are now being applied to software verification by systems such as the 
SPIN model checker (I-lolzmann,  1997).  For example, the Remote Agent spacecraft control 
program was verified before and after flight (Havelund et al., 2000). The RSA public key 
encryption algorithm and the Buyer–Moore  string-snatching algorithm have been verified this 
way (Boyer and Moore, 1984). 
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9.6 SUMMARY 

We have presented an analysis of logical inference in first-order logic and a number of algo-
rithms for doing it.  

• A first approach uses inference rules (universal instantiation and existential instan- 
tiation) to propositionalize  the inference problem. Typically, this approach is slow, 
unless the domain is small. 

• The use of unification to identify appropriate substitutions for variables eliminates the 
instantiation step in first-order proofs, making the process more efficient in many cases. 

• A lifted version of Modus Ponens uses unification to provide a natural and powerful 
inference nile,  generalized Moth's  Ponens.  The forward-chaining  and backward-
chaining algorithms apply this rule to sets of definite clauses. 

• Genem'iced  Modus Ponens  is complete for definite clauses, although the entailment 
problem is semidecidable.  For Datalog knowledge bases consisting of function-free 
definite clauses, entailment is decidable. 

• Forward chaining is used in deductive databases, where it can be combined with re-
lational database operations. It is also used in production systems, which perform 
efficient updates with very large rule sets_ Forward chaining is complete for Datalog 
and runs in polynomial time. 

• Backward chaining is used in logic programming systems, which employ sophisti-
cated compiler technology to provide very fast inference. Backward chaining suffers 
from redundant inferences and infinite loops; these can be alleviated by memoization. 

• Prolog, unlike first-order logic, uses a closed world with the unique names assumption 
and negation as failure. These make Prolog a more practical programming language, 
but bring it further from pure logic.  

• The generalized resolution inference rule provides a complete proof system for first-
order logic, using knowledge bases in conjunctive normal form. 

• Several strategies exist for reducing the search space of a resolution system without 
compromising completeness. One of the most important issues is dealing with equality; 
we showed how demodulation and paramodulation can be used. 

• Efficient resolution-based theorem provers have been used to prove interesting mathe-
matical theorems and to verify and synthesize software and hardware. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Gottlob Prege,  who developed full first-order logic in 1879,  based his system of inference 
on a collection of valid schemas plus a single inference rule, Modus Ponens. Whitehead 
and Russell (1910) expounded the so-called rules  of passage (the actual term is from Her- 
brand (1930)) that are used to move quantifiers to the front of formulas. Skolem constants 
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and Skolem functions were introduced, appropriately enough, by Thoralf  Skolem (1920). 
Oddly enough, it was Skolem  who introduced the Herbrand  universe (Skolcm,  1928). 

Herbrand's theorem (Herbrand, 1930) has played a vital role in the development of 
automated reasoning. Herbrand is also the inventor of unification. Godel  (1930) built on 
the ideas of Skolem  and Herbrand to show that first-order logic has a complete proof pro-
cedure. Alan Turing (1936) and Alonzo Church (1936) simultaneously showed, using very 
different proofs, that validity in first-order logic was not decidable. The excellent text by 
Enderton (1972) explains all of these results in a rigorous yet understandable fashion. 

Abraham Robinson proposed that an automated reasoner could be built using proposi-
tionalization  and Herbrand's theorem, and Paul Gilmore (1960) wrote the first program. Davis 
and Putnam (1960) introduced the propositionalization  method of Section 9.1.  Prawitz (1960) 
developed the key idea of letting the quest for propositional inconsistency drive the search, 
and generating terms from the Herbrand  universe only when they were necessary to estab-
lish propositional inconsistency. After further development by other researchers, this idea led 
J.  A. Robinson (no relation) to develop resolution (Robinson, 1965). 

In Al, resolution was adopted for question-answering systems by Cordell Green and 
Bertram Raphael (1968). Early AI implementations put a good deal of effort into data struc-
tures that would allow efficient retrieval of facts; this work is covered in AI programming 
texts (Charniak  et al., 1987; Norvig, 1992; Forbus and de Kleer, 1993). By the early 1970s.  
forward chaining was well established in AI as an easily understandable alternative to res-
olution. Al applications typically involved large numbers of rules, so it was important to 
develop efficient rule-matching technology, particularly for incremental updates. The tech-
nology for production systems was developed to support such applications. The production 
system language OPS-5  (Forgy, 1981; Brownston et al., 19851, incorporating the efficient 

BETE 
 rete match process (Forgy, 1982), was used for applications such as the R I expert system for 

minicomputer configuration (McDermott, 1982).  
The SOAR cognitive architecture (Laird et al., 1987; Laird, 2008) was designed to han-

dle very large rule sets—up to a million rules (Doorenbos, 1994). Example applications of 
SOAR include controlling simulated fighter aircraft (Jones et al_, 1998), airspace manage-
ment (Taylor et al., 2007), Al characters for computer games (Wintemmte  et al., 2007), and 
training tools for soldiers (Wray and Jones, 2005). 

The field of deductive databases began with a workshop in Toulouse in 1977 that 
brought together experts in logical inference and database systems (Gallaire and Minker,  
1978). Influential work by Chandra and Harel  (1980) and Ullman (1985) led to lhe  adoption 
of Datalog as a standard language for deductive databases. The development of the magic sets 
technique for rule rewriting by Bancilhon et al. (1986) allowed forward chaining to borrow 
the advantage of goal-directedness  from backward chaining. Current work includes the idea 
of integrating multiple databases into a consistent dataspace (Halevy, 2007). 

Backward chaining for logical inference appeared first in Hewitt's PLANNER lan-
guage (1969). Meanwhile, in 1972, Main Colmerauer  had developed and implemented Pro-
log for the purpose of parsing natural language—Prolog's  clauses were intended initially 
as context-free  grammar rules (Roussel, 1975; Colmerauer  et al., 1973). Much of the the-
oretical background for logic programming was developed by Robert Kowalski, working 
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with Colmerauer;  see Kowalski (1988) and Colmerauer and Roussel (1993) for a historical 
overview. Efficient Prolog compilers arc generally based on the Warren Abstract Machine 
(WAM) model of computation developed by David H. D. Warren (1983). Van Roy (1990) 
showed that Prolog programs can be competitive with C programs in terms of speed. 

Methods for avoiding unnecessary looping in recursive logic programs were developed 
independently by Smith et al. (1986) and Tamaki  and Sato (1986). The latter paper also 
included memoization for logic programs, a method developed extensively as tabled logic 
programming by David S. Warren. Swift and Warren (1994) show how to extend the WAM 
to handle tabling, enabling Datalog programs to execute an order of magnitude faster than 
forward-chaining deductive database systems. 

Early work on constraint logic programming was done by Jaffar and Lassez (1987). 
Jaffar et al. (1992) developed the CLP(R) system for handling real-valued constraints. There 
are now commercial products fur solving large-scale configuration and optimization problems 
with constraint programming; one of the best known is ILOG (Milker,  2003). Answer set 
programming (Gelfond, 2008) extends Prolog, allowing disjunction and negation. 

Texts on logic programming and Prolog, including Shoham (1994), Bratko (2001), 
Clocksin  (2003), and Clocksin and Mellish (2003). Prior to 2000, the Journal of Logic Pro-
gramming  was the journal of record; it has now been replaced by Theory and Practice of 
Logic Programming. Logic programming conferences include the International Conference 
on Logic Programming (ICLP)  and the International Logic Programming Symposium (ILPS).  

Research into mathematical theorem proving began even before the first complete 
first-order systems were developed. Ilerbert  Gelernter's  Geometry Theorem Prover (Gelern-
ter,  1959) used heuristic search methods combined with diagrams for pruning false subgoals 
and was able to prove some quite intricate results in Euclidean geometry. The demodula-
tion and paramodulation rules for equality reasoning were introduced by Wos et al. (1967)  
and Wos and Robinson (1968), respectively. These rules were also developed independently 
in the context of term-rewriting systems (Knuth and Bendix, 1970). The incorporation of 
equality reasoning into the unification algorithm is due to Gordon Plotkin (1972). Jouannaud 
and Kirchner (1991) survey equational unification from a term-rewriting perspective. An 
overview of unification is given by Baader and Snyder (2001). 

A number of control strategies have been proposed for resolution, beginning with the 
unit preference strategy (Wos at al., 1964). The set-of-support strategy was proposed by Was  
et al. (1965) to provide a degree of goal-directedness  in resolution. Linear resolution first 
appeared in Loveland (1970). Genesereth and Nilsson (1987, Chapter 5) provide a short but 
thorough analysis of a wide variety of control strategies. 

A Computational Logic (Boyer and Moore, 1979) is the basic reference on the Boyer-
Moore theorem prover. Stickel (1992) covers the Prolog Technology Theorem Prover (PTTP), 
which combines the advantages of Prolog compilation with the completeness of model elimi-
nation. SETHED  (Letz at al., 1992) is another widely used theorem prover based on this ap-
proach. LEANTAP (Beckert  and Posegga,  1995) is an efficient theorem prover implemented 
in only 25 lines of Prolog. Weidenbach (2001) describes SEASS,  one of the strongest current 
theorem provers. The must successful theorem prover in recent annual competitions has been 
VAMPIRE (Riazanov and Voronkov,  2002). The COQ system (Bertot at al., 2004) and the E 
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equational solver (Schulz, 2004) have also proven to be valuable tools for proving correct-
ness. Theorem provers have been used to automatically synthesize and verify software for 
controlling spacecraft (Denney et aL,  2006), including NASA's new Orion capsule (Lowry. 
2008). The design of the FM9001 32-bit microprocessor was proved correct by the NQ -rfint  
system (Hunt and Brock, 1992). The Conference on Automated Deduction (CADE) tuns an 
annual contest for automated theorem provers.  From 2002  through 2008, the most successful 
system has been VAMPIRE (Riazanov  and Voronkov,  2002). Wiedijk (2003) compares the 
strength of 15 mathematical provers. TPTP (Thousands of Problems for Theorem Provers) 
is a library of theorem-proving problems, useful for comparing the performance of systems 
(Sutcliffe and Suttner, 1998; Sutcliffe et al., 2006). 

Theorem provers have come up with novel mathematical results that eluded human 
mathematicians for decades, as detailed in the book Automated Reasoning and the Discov-
ery of Missing Elegant Proofs (Wos  and Pieper, 2003). The SAM (Semi-Automated Math-
ematics) program was the first, proving a lemma in lattice theory (Guard et aL,  1969). The 
AURA program has also answered open questions in several areas of mathematics (Wos and 
Winker, 1983). The Boyer–Moore theorem prover (Boyer and Moore, 1979) was used by 
Natarajan  Shankar to give the first fully rigorous formal proof of Coders Incompleteness 
Theorem (Shankar,  1986).  The NUPRL system proved Girard's paradox (Howe, 1987) and 
Higman's Lemma (Murthy and Russell, 1990). In 1933, Herbert Robbins proposed a simple 

ROBBIMS  ALGEBRA  set of axioms—the Robbins algebra—that appeared to define Boolean algebra, but no proof 
could be found (despite serious work by Alfred Tatski  and others). On October 10, 1996, 
after eight days of computation, EQP (a version of OTTER) found a proof (McCune, 1997). 

Many early papers in mathematical logic are to be found in From Frege  to Giidel:  
A Source Book in Mathematical Logic (van Heijenoort, 1967).  Textbooks geared toward 
automated deduction include the classic Symbolic Logic and Mechanical Theorem Prov-
ing (Chang and Lee, 1973), as well as more recent works by Duffy (1991), Wos et al. (1992). 
libel (1993), and Kaufmann et al. (2000). The principal journal for theorem proving is the 
Journal of Automated Reasoning; the main conferences are the annual Conference on Auto-
mated Deduction (CAIN)  and the international Joint Conference on Automated Reauming  
(IJCAR).  The Handbook of Automated Reasoning (Robinson and Voronkov,  2001)  collects 
papers in the field. MacKenzie's Mechanizing Proof (2004) covers the history and technology 
of theorem praying  for the popular audience.  

EXERCISES 

IXISTENTIAL  
INTRODUCTION 

9.1 Prove that Universal Instantiation is sound and that Existential Instantiation produces 
an inferentially equivalent knowledge base. 

9.2 From Likes(' erry, IceCream)  it seems reasonable to infer E  x  Likes(x, IceCream,.  
Write down a general inference ode,  Existential Introduction, that sanctions this inference. 
State carefully the conditions that must be satisfied by the variables and terms involved. 
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9.3 Suppose a knowledge base contains just one sentence, 3 x AsHighAs(x, Everest). 
Which of the following arc legitimate results of applying Existential Instantiation? 

a. AsHighAs(Everest,  Everest). 

b. AsHighAs(Kilimanjaro,  Everest). 

c. AsHighAs(Kilintanjaro,  Everest) A AsHighAs(BenNevis, Everest) 
(after two applications). 

9.4 For each pair of atomic sentences, give the most general unifier if it exists: 

a. P(A,B,13),  P(x,y,z). 

b. Ci(y,G(A,  B)), C2(0(x,  x), y). 

c_ Older (Father (y)  ,  y), Older(Fother(r),  John). 

d. Knows(Father(y),y),  Knows (x x). 

9.5 Consider the subsumption lattices shown in Figure 9.2 (page 329). 

a. Construct the lattice for the sentence Ernploys  (Mothe T  (John), Father (Richard)). 

b. Construct the lattice for the sentence Ernploys(1.13.11+1,  y) ("Everyone works for IBM"). 
Remember to include every kind of query that unifies with the sentence. 

c. Assume that STORE indexes each sentence under every node in its subsumption lattice. 
Explain how FETCH should work when some of these sentences contain variables; use 
as examples the sentences in (a) and (b) and the query Employs(x,  Father (x)). 

9.6 Write down logical representations for the following sentences, suitable for use with 
Generalized Modus Ponens: 

a. Horses, cows, and pigs are mammals. 
b. An offspring of a horse is a horse. 
c. Bluebeard is a horse. 
d. Bluebeard is Charlie's parent. 
e. Offspring and parent are inverse relations. 
f. Every mammal has a parent. 

9.7 These questions concern concern issues with substitution and Skolemization. 

a. Given the premise Va: P(x ,  y), it is not valid to conclude that 3 q P(q,  q), Give 
an example of a predicate P where the first is true but the second is false. 

b. Suppose that an inference engine is incorrectly written with the occurs check omitted, 
so that it allows a literal like P{x,  Fr(x),'  to be unified with P(q, q).  (As mentioned, 

most standard implementations of Prolog actually do allow this.) Show that such an 
inference engine will allow the conclusion y P(q,  q) to be infeired  from the premise 

Vx  3y P (x ,y). 
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c. Suppose that a procedure that converts first-order logic to clausal form incorrectly 
Skolcmizcs Vx Ay  P(x, y) to P(x, Sk0)—that  is, it replaces y by a Skolcm  con-
stant rather than by a Skolem function of x. Show that an inference engine that uses 
such a procedure will likewise allow q  P(q, q) to be inferred from [he premise 
V x y P(x,y).  

d. A common error among students is to suppose that, in unification, one is allowed to 
substitute a term for a Skolem constant instead of for a variable_ For instance, they will 
say that the formulas P(Sk l)  and _n  A) can be unified under the substitution {Skl/A},  
Give an example where this leads to an invalid inference. 

9.8 Explain how to write any given 3-SAT problem of arbitrary size using a single first-order 
definite clause and no more than 30 ground facts. 

9.9 Suppose you are given the following axioms: 
I. 0  <  3. 
2. 7 <  9. 
3. V x x <  x. 
4 \Ix  x<x+0  
5.Vx  x+0 <x. 
6.Vx,y  x±y<y+x.  
7.Vw,x t y,z  w Cy Ax<z w-Fx<y±z.  
8.Vx,y,z  x<ynyCz  = x<z 

a. Give a backward-chaining proof of the sentence 7 <  3 + 9. (Be sure. of course, to use 
only the axioms given here, not anything else you may know about arithmetic.) Show 
only the steps that leads to success, not the irrelevant steps. 

b. Give a forward-chaining proof of the sentence 7 <  3 H-  9. Again, show only the steps 
that lead to success. 

9.10 A popular children's riddle is `13rothers  and sisters have I none, but that man's father 
is my father's son." Use the rules of the family domain (Section 8.3.2 on page 301) to show 
who that man is. You may apply any of the inference methods described in this chapter. Why 
do you think that this riddle is difficult? 

9.11 Suppose we put into a logical knowledge base a segment of the U.S. census data list-
ing the age, city of residence, date of birth, and mother of every person, using social se-
curity numbers as identifying constants for each person Thus, George's age is given by 
Age(443-65-1282,56),  Which of the following indexing schemes S I–S5  enable an efficient 
solution for which of the queries Q I–Q4  (assuming normal backward chaining)? 

■ an index for each atom in each position. 
• S2: an index for each first argument. 
■ S3: an index for each predicate atom. 
■ 54: an index for each combinagon  of predicate and first argument. 
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• S5: an index for each combination of predicate and second argument and an index for 
each first argument. 

• Q1: Ag(443-44-4321,x)  
• Q2: RenclesIn(x,  Houston) 

• Q3: Mother(r,  

• Q4: Age(x,  34) A Residesln(x,  TtinyToitmUSA)  

9.12 One might suppose that we can avoid the problem of variable conflict in unification 
during backward chaining by standardizing apart all of the sentences in the knowledge base 
once and for all_ Show that, for some sentences, this approach  cannot work. ( Hint!  Consider 
a sentence in which one part unifies with another.) 

9.13 In this exercise, use the sentences you wrote in Exercise 9.6 to answer a question by 
using a backward-chaining algorithm. 

a. Draw the proof tree generated by an exhaustive backward-chaining algorithm for the 
query h. Horse(h),  where clauses are matched in the order given. 

b. What do you notice about this domain? 
c  How many solutions for h  actually follow from your sentences? 
d. Can you think of a way to find all of them? (Hint: See Smith et al. (1986).)  

9.14 Trace the execution of the backward-chaining algorithm in Figure 9.6 (page 338) when 
it is applied to solve the crime problem (page 330).  Show the sequence of values taken on by 
the goals  variable, and arrange them into a tree. 

9.15 The following Prolog code defines a predicate P. (Remember that uppercase terms are 
variables, not constants, in Prolog.) 

P(X,  [X Y]  )  . 
P (X, [Y Z]) P(X,Z).  

a_ Show proof trees and solutions for the queries P (A, [ 2 , 1, 3 ] ) and P ( 2 ,  [1,A, 3 ] ) 

b.  What standard list operation does P represent? 

9.16 This exercise looks at sorting in Prolog. 
a. Write Prolog clauses that define the predicate sorted ( L ) , which is true if and only if 

list L is sorted in ascending order. 
b. Write a Prolog definition for the predicate perm ( L M) , which is true if and only if L 

is a permutation of M. 
c. Define sort ( L M) (M  is a sorted version of L) using perm and sorted. 
d. Run sort on longer and longer lists until you lose patience. What is the time complex-

ity of your program? 
e. Write a faster sorting algorithm, such as insertion son  or quicksort, in Prolog. 
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9.17 This exercise looks at the recursive application of rewrite rules, using logic program-
ming. A rewrite rule (or demodulator in OTTER terminology) is an equation with a specified 
direction. For example, the rewrite rule x  + 0  x suggests replacing any expression that 
matches r -F0  with the expression x.  Rewrite rules are a key component of equational reason-
ing systems. Lase  the predicate rewrite ( X , Y) to represent rewrite rules. For example, the 
earlier rewrite rule is written as rewrite ( X+0  , X) .  Some terms are primitive and cannot 
be further simplified; thus, we write primitive ( 0 )  to say that 0 is a primitive term. 

a. Write a definition of a predicate simplify ( X Y) , that is true when Y is a simplified 
version of X—that  is, when no further rewrite rules apply to any subexpression of Y. 

b. Write a collection of rules for the simplification of expressions involving arithmetic 
operators, and apply your simplification algorithm to some sample expressions. 

c. Write a collection of rewrite rules for symbolic differentiation, and use them along with 
your simplification rules to differentiate and simplify expressions involving arithmetic 
expressions, including exponentiation. 

9.18 This exercise considers the implementation of search algorithms in Prolog. Suppose 
that successor (X, Y)  is true when state Y is a successor of state X; and that goal ( X ) 
is true when Xis a goal state. Write a definition for solve ( X,P  ) ,  which means that P is a 

path (list of states) beginning with X, ending in a goal state, and consisting of a sequence of 
legal steps as defined by successor. You will find that depth-first search is the easiest way 
to do this. How easy would it he to add heuristic search control? 

9,19 Suppose a knowledge base contains just the following first-order Horn clauses: 
Ancestor(Mother(x),x)  
Ancestor(r,  y) A Ancestor (y z) Ancestor(x  z) 

Consider a forward chaining algorithm that, on the jth iteration, terminates if the KB contains 
a sentence that unifies with the query, else adds to the KB every atomic sentence that can be 
inferred from the sentences already in the KB after iteration j  - 1. 

a. For each of the following queries, say whether the algorithm will (1) give an answer (if 
so, write down that answer); or (2) ierminate  with no answer, or (3) never terminate. 

(i) Ancestor(Mather(y),  John) 
(ii) Ancestor(Mother(Mothe.r(p)),  John) 

(di) Ancestor(Mother(Mother(Mather(y))),  Mother(y)) 
(iv) Ancestor(114-athe.r(John),  Moth.er(A1  other(' ohn))) 

b. Can a resolution algorithm prove the sentence-Ancestor(  John, John) from the orig-
inal knowledge base? Explain how, or why not. 

c.  Suppose we add the assertion that -, ( Mother(x)=  x) and augment the resolution al-
gorithm with inference rules for equality.  Now what is the answer to (b)? 

9.20 Let C be the firs)-urtler  language with a single predicate S(p,  q).  meaning "p shaves q."  

Assume a domain of people. 
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a. Consider the sentence "There exists a person P who shaves every one who  does not 
shave themselves, and only people that do not shave themselves." Express this in 

b. Convert the sentence in (a) to clausal form. 
c. Construct a resolution proof to show that the clauses in (b) are inherently inconsistent. 

(Note: you do not need any additional axioms.) 

9.21 How can resolution be used to show that a sentence is valid? Unsatisfiable?  

9.22 Construct an example of two clauses that can be resolved together in two different 
ways giving two different outcomes. 

9.23 From "Horses are animals," it follows that "The head of a horse is the head of an 
animal." Demonstrate that this inference is valid by carrying out the following steps: 

a. Translate the premise and the conclusion into the language of first-order logic. Use three 
predicates: fl  &IAN  (h, or)  (meaning "h is the head of x"), Horse (x), and Animal(x).  

b. Negate the conclusion, and convert the premise and the negated conclusion into con-
junctive normal form. 

c. Use resolution to show that the conclusion follows from the premise. 

9.24 Here are two sentences in the language of first-order logic: 

(A) V x 3 y (x >  //)  
(B) J'y  Vx  (x >  

a. Assume that the variables range over all the natural numbers 0, 1, 2, ... ,  co  and that the 
">"  predicate means "is greater than or equal to" Under this interpretation, translate 
(A) and (B) into English. 

h.  Is (A) true under this interpretation? 

c. Is (B) true under this interpretation? 
d.  Does (A) logically entail (B)? 
e. Does (B) logically entail (4)?  
f. Using resolution, try to prove that (A) follows from (B). Do this even if you think that 

(B) dues not logically entail (A); continue until the proof breaks down and you cannot 
proceed (if it does break down). Show the unifying substitution for each resolution step. 
If the proof fails, explain exactly where, how, and why it breaks down. 

g.  Now try to prove that (B) follows from (A). 

9.25 Resolution can produce nonconstructive proofs for queries with variables, so we had 
to introduce special mechanisms to extract definite answers. Explain why this issue does not 
arise with knowledge bases containing only definite clauses. 

9,26  We said in this chapter that resolution cannot be used to generate all logical conse-
quences of a set of sentences. Can any algorithm do this? 



1 0 CLASSICAL PLANNING 

In which we see how an agent can take advantage of the structure of a pmblem 
construct complex plans of action. 

We have defined AI as the study of rational action, which means that planning—devising a 
plan of action to achieve one's goals—is a critical part of AI. We have seen two examples 
of planning agents so far: the search-based problem-solving agent of Chapter 3 and the hy-
brid logical agent of Chapter 7. In this chapter we introduce a representation for planning 
problems that scales up to problems that could not be handled by those earlier approaches. 

Section 10.1 develops an expressive yet carefully constrained language for representing 
planning problems. Section 10.2 shows how forward and backward search algorithms can 
take advantage of this representation, primarily through accurate heuristics that can be derived 
automatically from the structure of the representation. (This is analogous to the way in which 
effective domain-independent heuristics were constructed for constraint satisfaction problems 
in Chapter 6.) Section 10.3 shows how a data structure called the planning graph can make the 
search for a plan more efficient We then describe a few of the other approaches to planning, 
and conclude by comparing the various approaches. 

This chapter covers fully observable, deterministic, static environments with single 
agents. Chapters 11 and 17 cover partially observable, stochastic, dynamic environments 
with multiple agents. 

1 0. 1  DEFINITION OF CLASSICAL PLANNING 

The problem-solving agent of Chapter 3 can find sequences of actions that result in a goal 
state. But it deals with atomic representations of states and thus needs good domain-specific 
heuristics to perform well. The hybrid propositional logic al agent of Chapter 7 can find plans 
without domain-specific heuristics because it uses domain-independent heuristics based on 
the logical structure of the problem. But it relies on ground (variable-free) propositional 
inference, which means that it may be swamped when there are many actions and states. For 
example, in the wumpus  world, the simple action of moving a step forward had to be repeated 
for all four agent orientations, T time steps, and n 2  current locations. 

366 
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PD)L  

SET SEMANTICS 

ACTION SCFEMA  

In response to this, planning researchers have settled on a factored representation— 
one in which a state of the world is represented by a collection of variables. We use a language 
called PDDL, the Planning Domain Definition Language, that allows us to express all 4Tn 2  
actions with one action schema. There have been several versions of PDDL; we select a 
simple version and alter its syntax to be consistent with the rest of the book. 1  We now show 
how PDDL describes the four things we need to define a search problem: the initial state, the 
actions that are available in a state, the result of applying an action, and the goal test. 

Each state is represented as a conjunction of fluents that are ground, functionless atoms. 
For example, Poor A Unknown. might represent the state of a hapless agent, and a state 
in a package delivery problem might be At ( Truck ' ,  Melbourne) A At( T'ruck 2 ,  Sydney). 
Database semantics is used: the closed-world assumption means that any fluents that are not 
mentioned are false, and the unique names assumption means that Truelci  and Track2  are 
distinct. The following fluents  are not allowed in a state; A t(x  ,y)  (because it is non-ground),  
—Poor  (because it is a negation), and At (Father (Fred), Sydney) (because it uses a function 
symbol). The representation of states is carefully designed so that a state can be treated 
either as a conjunction of fluents, which can be manipulated by logical inference, or as a set 
of fluents, which can be manipulated with set operations. The set semantics is sometimes 
easier to deal with. 

Actions are described by a set of action schemas that implicitly define the ACTIONS 
and RESULT ( functions needed to do a problem -solving search. We saw in Chapter 7 that 

any system for action description needs to solve the frame problem—to say what changes and 
what stays the same as the result of the action. Classical planning concentrates on problems 
where most actions leave most things unchanged. Think of a world consisting of a bunch of 
objects on a flat surface. The action of nudging an object causes that object to change its lo-
cation by a vector A. A concise description of the action should mention only A; it shouldn't 
have to mention all the objects that stay in place. PDDL does that by specifying the result of 
an action in terms of what changes; everything that stays the same is left unmentioned. 

A set of ground (variable-free) actions can be represented by a single action schema. 
The schema is a lifted representation—it lifts the level of reasoning from propositional logic 
to a restricted subset of first-order logic. For example, here is an action schema for flying a 
plane from one location to another: 

Aetton(Fly(p,  from, to), 
PRECOND:  At(p,  from) A Plane (p) A Airport(from)  A Airport(to) 
EFFECT: -At(p,  front) A At(p, to)) 

PRECONDITION 

EFFECT 

The schema consists of the action name, a list of all the variables used in the schema, a 
precondition and an effect. Although we haven't said yet how the action schema converts 
into logical sentences, think of the variables as being universally quantified. We are free to 
choose whatever values we want to instantiate the variables. For example, here is one ground 

 

PDDL was derived from the original STRIPS panning  language(Fikes  and Nilsson, 1971). which is slightly 
more restricted than PDDL: STRIPS preconditions and goals cannot contain negative literals. 
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action that results from substituting values for all the variables: 
Actuyn(Fly(Pi,  SFO,  JFK), 

PRECOND:At(Pi,  SFO)  A Plane(Pj )  A itirport(SFO)  A Airport(JFK) 
EFFECT: —At(P1,  SFO)  A At (Pi JFK)) 

The precondition and effect of an action are each conjunctions of literals (positive or negated 
atomic sentences). The precondition defines the states in which the action can be executed, 
and the effect defines the result of executing the action. An action a can be executed in state 
a if a entails the precondition of a. Entailment can also be expressed with the set semantics: 

q iff  every positive literal in q is in a and every negated literal in q is not. In formal 
notation we say 

(a E ACTIONS(a)) s = PRECOND(a) , 
where any variables in a are universally quantified. For example, 

V p, from, to ( Fly(y,  from.. to) E ACT1ONS(s))  t=>  
(At(p, from) A Plane(p)  t, Airport(from)  A Airport(to)) 

PF'PILCAISLE We say that action a is applicable in state a if the preconditions are satisfied by s. When 
an action schema a contains variables, it may have multiple applicable instantiations. For 
example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as 

SFO  JFK) or as Fly(P2 ,  JFK, SFO),  both of which are applicable in the initial 
state. If an action a has v variables, then, in a domain with k unique names of objects, it takes 
OW) time in the worst case to find the applicable ground actions. 

PROPOSITIOMIZE Sometimes we want to propositionalize  a PDDL problem—replace each action schema 
with a set of ground actions and then use a propositional solver such as SATPLAN to find a 

solution. However, this is impractical when v and k are large. 
The result of executing action a in stale a is defined as a state s' which is represented 

by the set of fluents formed by starting with s, removing the fluents that appear as negative 
D  BITE  LIST literals in the action's effects (what we call the delete list or DEL(a)),  and adding, the fluent 
ADD LIST that are positive literals in the action's effects (what we call the add list or ADD(a)): 

RESULT(s,  a) = (a — DEL(a))1J  ADD(a)  . (10.1) 

For example, with the action Fly(Pi,  SFO,  JFK), we would remove A t(Pi  , SFO)  and add 
At(P1,  JFK). It is a requirement of action schemas that any variable in the effect must also 
appear in the precondition. That way, when the precondition is matched against the state a, 
all the variables will be bound, and RESULT (a, a) will therefore have only ground atoms. In 
other words, ground states are closed under the RESULT operation. 

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There 
we needed superscripts for time, and successor -state axioms of the form 

ActionCausesF t  V (Ft  A —ActionCatiseaNatF t )  .  
In PDDL the times and states are implicit in the action schemas: the precondition always 
refers to time I and the effect to time t +  I. 

A eel of action scheauts  serves as a definition of a planning domain. A specific problem 

within the domain is defined with the addition of an initial state and a goal. The initial 



Section 10.1. Definition of Classical Planning 369 

Init(At(Ci,  SFO)  A At(C2 ,  JFK) A At(P1,  SFO)  A At(P2 ,  JFK)  
A Cargo(Ci )  A Cargo(C2) A Plane(Pi ) A Pdane(P2)  
A Airport(JFK) A AirportSFO))  

Goal(At(C1 ,  JFK) A At(C2 ,  SFO))  
Actiart(Load(c,  p,  a), 

PRECOND: At(c,  a) A At(p, a) A Cargo(c)  A Plane(p)  A Airport(a)  
EFFECT:  —  A t(c,  a) n in  Ic,  p)) 

Action(Umload(c,  p, a), 
PRECOND: In(c,  p) A At(p,  a) A Cargo(c)  A Plane(p)  A Airport (a) 
EFFECT:  At(c, a) A —  In(c,  p)) 

Action(Fly(p,  from, to), 
PRECOND: At(p, from) A Plane(p)  A Airport(from)  A Airport(to) 
EFFECT.  At(p,  from) A At(p.  to)) 

Figure 10.1  A PDDL  description of an air cargo transportation planning problem. 

state is a conjunction of ground atoms. (As with all states, the closed-world assumption is 
used, which means that any atoms that are not mentioned are false.) The goal is just like a 
precondition: a conjunction of literals (positive or negative) that may contain variables, such 
as At (p,SFO)  A Play.e(p).  Any variables are treated as existentially quantified, so this goal 
is to have any plane at SFO.  The problem is solved when we can find a sequence of actions 
that end in a state g  that entails the goal. For example, the state Rich A Famous A Miserable  
entails the goal Rich A Famous, and the state Plane (Plane 1)  A At(Plane  SF0)  entails 
the goal At(p, SFO)  A .Plane(p).  

Now we have defined planning as a search problem: we have an initial state, an ACTIONS 
function, a RESULT function, and a goal test. We'll look at some example problems before 
investigating efficient search algorithms. 

10.1.1 Example: Air cargo transport 

Figure 10.1 shows an air cargo transport problem involving loading and unloading cargo and 
flying it from place to place. The problem can be defined with three actions: Load, Unload, 
and Fly. The actions affect two predicates: In(c,  p) means that cargo c is inside plane p, and 
At(;x,  a) means that object x (either plane or cargo) is at airport a. Note that some care must 
be taken to make sure the At predicates are maintained properly. When a plane flies from 
one airport to another, all the cargo inside the plane goes with it. In first-order logic it would 
be easy to quantify over all objects that are inside the plane. But basic PDDL does not have 
a universal quantifier, so we need a different solution. The approach we use is to say that a 
piece of cargo ceases to be At anywhere when it is In a plane; the cargo only becomes At the 
new airport when it is unloaded. So At really means "available for use at a given location." 
The following plan is a solution to the problem: 

[Load (C 1,  Pt , SF0), SFO,  JFK), JFK), 
Load (C2, P2,  ,JFK)  , Fdy(P2,  JFK S FO),  Unload (C2,  P2,  SF 0)]  . 

INITIAL STATE  

COAL 
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Finally, there is the problem of spurious actions such as Fly(Pi„IFK  , JFK), which should 
be a no-op, but which has contradictory effects (according to the definition, the effect would 
include At(Pi,  .IFK  ) A —,At(Pi,  JFK)). It is common to ignore such problems, because 
they seldom cause incorrect plans to be produced. The correct approach is to add inequality 
preconditions saying that the from and to airports must be different; see another example of 
this in Figure 10.3. 

10.1.2 Example: The spare tire problem 

Consider the problem of changing a flat  tire (Figure 10.2). The goal is to have a good spare 
tire properly mounted onto the car's axle, where the initial state has a flat tire on the axle and 
a good spare tire in the trunk_  To keep it simple, our version of the problem is an abstract 
one, with no sticky lug nuts or other complications. There are just four actions: removing the 
spare from the trunk, removing the flat tire from the axle, putting the spare on the axle, and 
leaving the car unattended overnight. We assume that the car is parked in a particularly bad 
neighborhood, so that the effect of leaving it overnight is that the tires disappear. A solution 
to the problem is [Remove (Flat , Axle), Remove (Spare , Trunk), PutOri(Spare,  Axle)]. 

Init(Tire(Flat)  A Tire(Spare)  A At(Flat,  Axle) A At(Spare,  Trunk)) 
Goal(At(Spare,  Axle)) 
Action(Rentove(obj  , lac), 

Pra..comr):  A t(nlo  , bor.)  
EFFECT: At(obj , Lc)  A At(ohj,  Ground)) 

Actio(PutOn(t.  Axle), 
PRECOND:  Tire(t) A At(t, Ground) A —1  At(Flat,  Axle) 
EFFECT: At(t,  Ground) A At(t, Axle)) 

Action(LeaceOvernight  , 
PRECOND;  
EFFECT: At(Spare,  Ground) A — At(Spare,  Axle) A —  At(Spare,  Trunk) 

A —1 At(Flat,  Ground) A -,  At(Flat,  Axle) A At(Flat,  Trunk)) 

Figure 10.2  The simple spare tire problem. 

10.1.3 Example: The blocks world 

EILOCKE  wcao  One of the most famous planning domains is known as the blocks world. This domain 
consists of a set of cube-shaped blocks sitting on a table. 2  The blocks can be stacked, but 
only one block can fit directly on top of another. A robot arm can pick up a block and move 
it to another position, either on the table or on top of another block. The arm can pick up 
only one block at a time, so it cannot pick up a block that has another one on it The goal will 
always be to build one or more stacks of blocks, specified in terms of what blocks are on top 

 

2  The blocks world used in planning research is much simpler than SHRDLU's  version, shown on page 20. 
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Init(On(A,  Table) A On(B, Table) A. 0n(C,  A) 
A Block(A) A Biock,(B)  A Block(C)  A Clear(B) A Clear(C))  

G  oc22( 021(A,  B) A On(B , C))  
Action(Move(b,  x, y).  

PRECOND;  On(b.  X)  A Clear(b)  A Clear(y)  A Block(b)  A Blackly)  A 
(b 3.;)  A (!4y)  A (x#y),  

ErrrEcT:  Ora(b,y)  A Cie2r(x)  A —.0n(b,  x)  A —  Clear  (y))  
Aetion(MoveToTable(b,  x),  

PRECOND: On.(b,  x) A Clear (b)  A Block(b) A (b0z),  
EFFECT On(b  ,  Table) A Clear(x)  A —, On(b,  x)) 

Figure 10.3 A planning problem in the blocks  world: building a three-block tower. One 
solution is the sequence [MoveToTable(C,  A), Move(B,  Table, C),  At ove.(A,  Table,  B)],  

A 

C B 

B A C 

Start State Goal State 

Figure 10,4 Diagram of the blocks-world problem in Figure 10.3. 

of what other blocks. For example, a. goal might be to get block A on B and block B on C 
(see Figure 10,4). 

We use On.(b,  37)  to indicate that block A is on x,  where x  is either another block or the 
table. The action for moving block b from the top of x to the top of y will be Mem  e(b,  x.  y).  
Now, one of the preconditions on moving b  is that no other block be on it. In first-order logic, 
this would be —a x  On(x  ,b)  or, alternatively, V  x  —.0n(r  b).  Basic PDDL does not allow 
quantifiers, so instead we introduce a predicate Clear(x)  that is true when nothing is on x.  
(The complete problem description is in Figure 10.3.) 

The action Move moves a block b  from x  to y if both I)  and y  are clear. After the move 
is made, b is still clear but y is not. A first attempt at the Move schema is 

Action(Move(b,  x,  y),  
PRECOND: On. (b,  x)  A Clear (b) A Clear (y), 
EFFECT!  Ort(b  .  a) A C/ear(x)  A Ora x)  A Clear{y))  . 

Unfortunately, this does not maintain Clear properly when x  or y is the table. When x  is the 
Table, this action has the effect Clear ( Table),  but the table should not become cleat,  and 
when y  = Table, it has the precondition Clear (Table), but the table does not have to be clear 
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for us to move a block onto it. To fix this, we do two things. First, we introduce another 
action to move a block b from x to the table: 

Action(M  ove  To Table(b, x), 
PRECOND:  On(b, x) A Clear(b),  
EFFECT: On(b,  Table) A Clear (E)  A On (b, :r.))  .  

Second, we take the interpretation of Clear(x)  to be -there  is a clear space on a;  to hold a 
block." Linder  this interpretation, Clear (Table) will always be true. The only problem is that 
nothing prevents the planner from using Mave(b,  s,  Table) instead of MavenTable(b,  
We could live with this problem—it will lead to a larger-than-necessary search space, but will 
not lead to incorrect answers—or we could introduce the predicate Block and add Block(b)  
131nek(y)  to the precondition of Mom' .  

10.1.4 The complexity of classical planning 

PLAINEAT  

BOUNDED PLANSAT  

In this subsection we consider the theoretical complexity of planning and distinguish two 
decision problems. PIanSAT  is the question of whether there exists any plan that solves a 
planning problem. Bounded PIanSAT  asks whether there is a solution of length k or less; 
this can be used to find an optimal plan. 

The first result is that both decision problems are decidable for classical planning. The 
proof follows from the fact that the number of states is finite. But if we add function symbols 
to the language, then the number of states becomes infinite, and P1anSAT  becomes only 
semidecidable:  an algorithm exists that will terminate with the correct answer for any solvable 
problem, but may not terminate on unsolvable problems. The Bounded PIanSAT  problem 
remains decidable even in the presence of function symbols. For proofs of the assertions in 
this section, see Ghallab et aL  (2004). 

Both PIanSAT  and Bounded PIanSAT  are in the complexity class PSPACE, a class that 
is larger and hence more difficult) than NP and refers to problems that can he solved by a 
deterministic Turing machine with a polynomial amount of space. Even if we make some 
rather severe restrictions, the problems remain quite difficult. For example, if we disallow 
negative effects, both problems are still NP-hard. However, if we also disallow negative 
preconditions, PIanSAT  reduces to the class P. 

These worst-case results may seem discouraging. We can take solace in the fact that 
agents are usually not asked to find plans for arbitrary worst-case problem instances, but 
rather are asked for plans in specific domains (such as blocks-world problems with n blocks), 
which can be much easier than the theoretical worst case. For many domains (including the 
blocks world and the air cargo world), Bounded P1anSAT  is NP-complete while PIanSAT  is 
in P; in other words, optimal planning is usually hard. but sub-optimal planning is sometimes 
easy. To do well on easier-than-worst-case problems, we will need good search heuristics. 
That's the true advantage of the classical planning formalism: it has facilitated the develop- 
ment  of very accurate domain-independent  heuristics, whereas systems based on successoi- 
state  axioms in first-order logic have had less success in coming up with good heuristics. 
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Figure 10.5 Two approaches to searching for a plan. (a) Forward (progression) search 
through the space of states, starting in the initial state and using the problem's actions to 
search forward for a member of the set of goal states. Oa)  Backward (regression) search 
through sets of relevant states, starting at the set of states representing the goal and using the 
inverse of the actions to search backward for the initial state. 

—  
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10.2 ALGORITHMS FOR PLANNING AS STATE-SPACE SEARCH 

Now we turn our attention to planning algorithms. We saw how the description of a planning 
problem defines a search problem: we can search from the initial state through the space 
of states, looking for a goal. One of the nice advantages of the declarative representation of 
action schemas is that we can also search backward from the goal, looking for the initial state. 
Figure 10.5  compares forward and backward searches. 

10.2.1 Forward (progression) state-space search 

Now that we have shown how a planning problem maps into a search problem, we can  solve 
planning problems with any of the heuristic search algorithms from Chapter 3 or a local 
search algorithm from Chapter 4 (provided we keep track of the actions used to reach the 
goal). From the earliest clays of planning research (around 1961) until around 1998 it was 
assumed that forward state-space search was too inefficient to be practical It is not hard to 
come up with reasons why. 

First, forward search is prone to exploring irrelevant actions. Consider the noble task 
of buying a copy of Al: A Modern Approach from an online bookseller. Suppose there is an 
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action schema Buy(isbn)  with effect 02.1m(isbn).  ISBNs are 10 digits, so this action schema 
represents 10 billion ground actions. An uninformed forward-search algorithm would have 
to start enumerating these 10 billion actions to find one that leads to the goal. 

Second, planning problems often have large state spaces. Consider an air cargo problem 
with 10 airports, where each airport has 5 planes and 20 pieces of cargo. The goal is to move 
all the cargo at airport A to airport B. There is a simple solution to the problem: load the 20 
pieces of cargo into one of the planes at A, fly the plane to B, and unload the cargo. Finding 
the solution can be difficult because the average branching factor is huge: each of the 50 
planes can fly to 9 other airports, and each of the 200 packages can be either unloaded (if 
it is loaded) or loaded into any plane at its airport (if it is unloaded). So in any state there 
is a minimum of 450 actions (when all the packages are at airports with no planes) and a 
maximum of 10,450 (when all packages and planes are at the same airport). On average, let's 
say there are about 2000 possible actions per state, so the search graph up to the depth of the 
obvious solution has about 2000 41  nodes. 

Clearly, even this relatively small problem instance is hopeless without an accurate 
heuristic. Although many real-world applications of planning have relied on domain-specific 
heuristics, it turns out (as we see in Section 10.2.3) that strong domain-independent heuristics 
can be derived automatically; that is what makes forward search feasible. 

10.2.2 Backward (regression) relevant -states search 
In regression search we start at the goal and apply the actions backward until we find a 

R  EL EVANT  STAT  ES sequence of steps that reaches the initial state. It is called relevant-states search because we 
only consider actions that are relevant to the goal (or current state). As in belief-state search 
(Section 4.4),  there is a set of relevant states to consider at each step, not just a single state. 

We start with the goal, which is a conjunction of literals forming a description of a set of 
states—for example, the goal –,Poor  A Famous describes those states in which Poor is false. 
Famous is true, and any other fluent can have any value. If there are 71 ground fluents in a 
domain, then there are 2" ground states (each fluent can be true or false), but 3" descriptions 
of sets of goal states (each fluent can be positive, negative, or not mentioned). 

In general, backward search works only when we know how to regress from a state 
description to the predecessor state description. For example, it is hard to search backwards 
for a solution to the n,-queens  problem because there is no easy way to describe the states that 
are one move away from the goal. Happily, the PDDL representation was designed to make 
it easy to regress actions—if a domain can be expressed in PDDL, then we can do regression 
search on it. Given a ground goal description g and a ground action a, the regression from g 
over a  gives us a state description 9/ defined by 

= (g – AnD(a))  U Precond  (a)  . 

That is, the effects that were added by the action need not have been true before, and also 
the preconditions must have held before, or else the action could not have been executed. 
Note that DEL(a)  does not appear in the formula; that's because while we know the fluents  
in ❑EL(c)  are no longer true after the action, we don't know whether or not they were true 
before, so there's nothing to be said about them. 
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REEVANCE  

To get the full advantage of backward search, we need to deal with partially uninstanti- 
atcd  actions and states, not just ground ones. For example, suppose the goal is to deliver a spe-
cific piece of cargo to SFO:  At(C2, 5F0).  That suggests the action Unload (C2.19',  SF0): 

Action(Urbload(C2,  p'.SFO),  
PRECOND:R.(C2,  pr)  A At(pi  , SFO)  A Cargo(C2)  A Plane (pi  ) A Airport(SFO) 
EFFECT: At (C2, SFO)  A –dit(C2,P').  

(Note that we have standardized variable names (changing p to p'  in this case) so that there 
will be no confusion between variable names if we happen to use the same action schema 
twice in a plan. The same approach was used in Chapter 9 for first-order logical inference.) 
This represents unloading the package from an unspecified plane at SFO;  any plane will do, 
but we need not say which one now. We can take advantage of the power of first-order 
representations: a single description summarizes the possibility of using any of the planes by 
implicitly quantifying over p'.  The regressed state description is 

= In(C2,11 )  A A t  (p'  SF0)  A Cargo ;C2) A Plane(p') A Airport(SFO)  . 

The final issue is deciding which actions are candidates to regress over. In the forward direc- 
tion we chose actions that were applicable—those actions that could be the next step in the 
plan. In backward search we want actions that are relevant—those actions that could be the 
Iasi  step in a plan leading up to the current goal state. 

For an action to be relevant to a goal it obviously must contribute to the goal: at least 
one of the action's effects (either positive or negative) must unify with an clement of the goal. 
What is less obvious is that the action must not have any effect (positive or negative) that 
negates an element of the goal. Now, if the goal is A A B A C and an action has the effect 
AABA –C  then there is a colloquial sense in which that action is very relevant to the goal—it 
gets us two-thirds of the way there. But it is not relevant in the technical sense defined here, 
because this action could not be the final step of a solution—we would always need at least 
one more step to achieve C. 

Given the goal A t  (C2;  SF0),  several instantiations of Unload are relevant: we could 
chose any specific plane to unload from, or we could leave the plane unspecified by using 
the action Unioad(C2 ,  p',  SF0). We can reduce the branching factor without ruling out any 
solutions by always using the action formed by substituting the most general unifier into the 
(standardized) action schema. 

As another example, consider the goal. 0wn(0136042597),  given an initial state with 
10 billion ISBNs, and the single action schema 

A = Action(Buy  (i),PREcoND:  ISBN (i), EFFECT:Own(i))  . 

As we mentioned before, forward search without a heuristic would have to start enumer- 
ating the 10 billion ground Buy actions. But with backward search, we would unify the 
goal Oun(0136042597)  with the (standardized) effect Mun(i!),  yielding the substitution 

= {e/0136042597}.  Then we would regress over the action Subst(0  , A') to yield the 
predecessor state description /SBN(0136042597).  This is part of, and thus entailed by, the 
initial state, so we are done. 
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We can make this more formal. Assume a goal description g which contains a goal 
literal 9.,  and an action schema A that is standardized to produce A'. If A' has an effect literal 

where Unify (gi,  ej )  = t) and where we define a' = SUB sT(O,  A') and if there is no effect 
in a' that is the negation of a literal in g, then a' is a relevant action towards g. 

Backward search keeps the branching factor lower than forward search, for most prob-
lem domains. However, the fact that backward search uses state sets rather than individual 
states makes it harder to come up with good heuristics. That is the main reason why the 
majority of current systems favor forward search. 

10.2.3 Heuristics for planning 

Neither forward nor backward search is efficient without a good heuristic function. Recall 
from Chapter 3 that a heuristic function ft(s)  estimates the distance from a slate a to the 
goal and that if we can derive an admissible heuristic for this distance—one that does not 
overestimate—then we can use A  search to find optimal solutions. An admissible heuristic 
can be derived by defining a relaxed problem that is easier to solve. The exact cost of a 
solution to this easier problem then becomes the heuristic for the original problem. 

By definition, there is no way to analyze an atomic state, and thus it it requires some 
ingenuity by a human analyst to define good domain-specific heuristics for search problems 
with atomic states. Planning uses a factored representation for states and action schemas,  
That makes it possible to define good domain-independent heuristics and for programs to 
automatically apply a good domain-independent heuristic for a given problem. 

Think of a search problem as a graph where the nodes are states and the edges are 
actions. The problem is to find a path connecting the initial state to a goal state. There are 
two ways we can relax this problem to make it easier: by adding more edges to the graph, 
making it strictly easier to find a path, or by grouping multiple nodes together, forming an 
abstraction of the state space that has fewer states, and thus is easier to search. 

We look first at heuristics that add edges to the graph. For example, the ignore pre- 
IGNORE 
PRECCNDMONS conditions heuristic drops all preconditions from actions_  Fvery  action becomes applicable 
HEURISTIC 

in every state, and any single goal fluent can be achieved in one step (if there is an applica-
ble action—if not, the problem is impossible). This almost implies that the number of steps 
required to solve the relaxed problem is the number of unsatisfied goals—almost but not 
quite, because (1) some action may achieve multiple goals and (2) some actions may undo 
the effects of others. For many problems an accurate heuristic is obtained by considering (1) 
and ignoring (2). First, we relax the actions by removing all preconditions and all effects 
except those that are literals in the goal. Then, we count the minimum number of actions 
required such that the union of those actions' effects satisfies the goal. This is an instance 

SEIC
noncOVroEI9 of the set-cover  problem. There is one minor irritation: the set-cover problem is NP-hard. r   

Fortunately a simple greedy algorithm is guaranteed to return a set covering whose size is 
within a factor of lug ii of the true minimum covering, where D.  is the number of literals in 
the goal. Unfortunately, the greedy algorithm loses the guarantee of admissibility. 

It is also possible to ignore only selected  preconditions of actions. Consider the  sliding-
block puzzle (8-puzzle  or 15-puzzle) from Section 3.2. We could encode this as a planning 
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problem involving tiles with a single schema Slide: 
Action(Slide(t,  si,  .92),  

PRECOND:  On(t,  Si) A Tile(t)  A Blank(s2)  A Adjacent (s  t,  s2)  
EFFECT: Ort(t,  82)  A Blank (si )  A Or(t,  s  1)  A -,Blank(s 2 ))  

As we saw in Section 3_6,  if we remove the preconditions Blank(s2 )  A Adjacent (s  1,  s2)  
then any tile can move in one action to any space and we get the number-of-misplaced-tiles 
heuristic. If we remove Blank( s 2 )  then we get the Manhattan -distance  heuristic. It is easy to 

see how these heuristics could be derived automatically from the action schema description. 
The ease of manipulating the schemas is the great advantage of the factored representation of 
planning problems, as compared with the atomic representation of search problems. 

Another possibility is the ignore delete lists heuristic. Assume for a moment that all 
goals and preconditions contain only positive literals3  We want to create a relaxed version of 
the original problem that will be easier to solve, and where the length of the solution will serve 
as a good heuristic. We can do that by removing the delete lists from all actions (i.e.,  removing 
all negative literals from effects). That makes it possible to make monotonic progress towards 
the goal—no action will ever undo progress made by another action. It turns out it is still NP- 
hard to find the optimal solution to this relaxed problem, but an approximate solution can be 
found in polynomial time by hill-climbing.  Figure 10.6 diagrams part of the state space fur 

two planning problems using the ignore-delete-lists heuristic. The dots represent states and 
the edges actions, and the height of each dot above the bottom plane represents the heuristic 
value. States on the bottom plane are solutions,  in both these problems, there is a wide path 
to the goal. Thcrc arc no dead cnds, so no need for backtracking; a simple hillelimbing  search 
will easily find a solution to these problems (although it may not be an optimal solution). 

The relaxed problems leave us with a simplified—but still expensive—planning prob-
lem just to calculate the value of the heuristic function. Many planning problems have 10 1(1°  
states or more, and relaxing the actions does nothing to reduce the number of states. There-
fore, we now look at relaxations that decrease the number of states by forming a state ab-
straction—a many-to-one mapping from states in the ground representation of the problem 
to the abstract representation. 

The easiest form of state abstraction is to ignore some fluents.  For example, consider 
an air cargo problem with 10 airports, 54  planes, and 200 pieces of cargo. Each plane can 
be at one of 10 airports and each package can be either in one of the planes or unloaded at 
one of the airports. So there are 50 10  x  2005° + 1°  10 15  states. Now consider a particular 
problem in that domain in which it happens that all the packages are at just 5  of the airports, 
and all packages at a given airport have the same destination. Then a useful abstraction of the 
problem is to drop all the At fluents  except for the ones involving one plane and one package 
at each of the 5 airports. Now there are only 5 1°  x  55+ 10  10 17  states. A solution in this 
abstract state space will be shorter than a solution in the original space (and thus will be an 
admissible heuristic), and the abstract solution is easy to extend to a solution to the original 
problem (by adding additional Load and Unload actions). 
3  Many problems are written with this convention. For problems that aren't, replace every negative literal -49  
in a goal or precondition with a new positive literal, 

MISOKE  DELE!  E  
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Figure 10.6 Two state spaces from planning problems with the ignore-delete-lists heuris- 
tic. The height above the bottom plane is the heuristic score of a state; states on the bottom 
plane are goals. There are no local minima, su  search fur the goal is s[raigliforward.  Fruits  

Hoffmann (2005). 

378 Chapter 10. Classical Planning 

A key idea in defining heuristics is decomposition: dividing a problem into parts, solv- 

ing each part independently, and then combining the parts. The subgoal  independence as-
sumption is that the cost of solving a conjunction of subgoals is approximated by the sum 
of the costs of solving each subgoal independently. The subgoal independence assumption 
can be optimistic or pessimistic. It is optimistic when there are negative interactions between 
the subplans for each subgoal—for example, when an action in one subplan deletes a goal 
achieved by another subplan.  It is pessimistic, and therefore inadmissible, when subplans 
contain redundant actions—for instance, two actions that could be replaced by a single action 
in the merged plan. 

Suppose the goal is a set of fluents  G, which we divide into disjoint subsets (71 ,  _  , G,,. 
We then and plans P1 ,  _Pr,  that solve the respective subgoals. What is an estimate of the 
cost of the plan for achieving all of G"?  We can think of each Co 6t(P,)  as a heuristic estimate, 
and we know that if we combine estimates by taking their maximum value, we always get an 
admissible heuristic. So maxi CosT(Pi)  is admissible, and sometimes it is exactly correct: 
it could be that P1 serendipitously achieves all the G,.  But in most cases, in practice the 
estimate is too low. Could we sum the costs instead? For many problems that is a reasonable 
estimate, but it is not admissible. The best case is when we can determine that G,  and G3 are 
independent. If the effects of .13i  leave all the preconditions and goals of P  unchanged, then 
the estimate CosT(P,)  CosT(Pj )  is admissible, and more accurate than the max estimate. 
We show in Section 10.3.1 that planning graphs can help provide better heuristic estimates. 

It is clear that there is great potential for cutting down the search space by forming ab- 

stractions. The trick is choosing the right abstractions and using them in a way that makes 
the total cost—defining an abstraction, doing an abstract search, and mapping the abstraction 

back to the original problem—less than the cost of solving the original problem. The tech- 
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piques of pattern databases from Section 3.6.3 can be useful, because the cost of creating 
the pattern database can be amortized over multiple problem instances.  

An example of a system that makes use of effective heuristics is FF,  or FASTFORWARD 
(Hoffmann, 2005), a forward state-space searcher that uses the ignore-delete-lists heuristic, 
estimating the heuristic with the help of a planning graph (see Section 10.3). FF then uses 
hill-climbing search (modified to keep track of the plan) with the heuristic to find a solution. 
When it hits a plateau or local maximum—when no action leads to a state with better heuristic 
score—then  FF uses iterative deepening search until it finds a state that is better, or it gives 
up and restarts hill-climbing. 

10.3 PLANNING GRAPHS 

PUNNING GRAPH 

LEVEL 

All of the heuristics we have suggested can suffer from inaccuracies. This section shows 
how a special data structure called a planning graph can be used to give better heuristic 
estimates. These heuristics can be applied to any of the search techniques we have seen so 
far. Alternatively, we can search for a solution over the space formed by the planning graph, 
using an algorithm called GRAPHPLAN. 

A planning problem asks if we can reach a goal state from the initial state. Suppose we 
are given a tree of all possible actions from the initial state to successor states, and their suc- 
cessors, and so on. If we indexed this tree appropriately, we could answer the planning ques- 
tion "can we reach state G from state So"  immediately, just by looking it up. Of course, the 
tree is of exponential size, so this approach is impractical. A planning graph is polynomial- 
size approximation to this tree that can be constructed quickly. The planning graph can't 
answer definitively whether G is reachable from So, but it can estimate how many steps it 
takes to reach G. The estimate is always correct when it reports the goal is not reachable, and 
it never overestimates the number of steps, so it is an admissible heuristic. 

A planning graph is a directed graph organized into levels: first a level So  for the initial 
state, consisting of nodes representing each fluent that holds in So ; then a level A0 consisting 
of nodes for each ground action that might be applicable in So ; then alternating levels S, 
followed by A ; until we reach a termination condition (to be discussed later). 

Roughly speaking, Si contains all the literals that could hold at time I.,  depending on 
the actions executed at preceding time steps. If it is possible that either P or –P could hold, 
then both will be represented in Si. Also roughly speaking, A i  contains all the actions that 
could have their preconditions satisfied at time i. We say "roughly speaking" because the 
planning graph records only a restricted subset of the possible negative interactions among 
actions; therefore, a literal might show up at level S.,  when actually it could not be true until 
a later level, if at all. (A literal will never show up too late.) Despite the possible error, the 
level j at which a literal first appears is a good estimate of how difficult it is to achieve the 
literal from the initial state. 

Planning graphs work only for propositional planning problems—ones  with no vari-
ables. As we mentioned on page 358, it is straightforward to propositionalize a set of ac- 



So  AG Sy  A t  92  

Have(Cake)  

Eater(Cake)  

tiave,(Cake)  

▪ Have(Cake)  

Eaten(Cake)  
▪ Eaton(Cake)  

Init(Have(Cahe))  
Goal(Have(Cake)  A Eaten(Cake))  
Action (Eat  ( Cake) 

PRECOND: Have(Cake)  
EFFECT: Have(Cake) Eaten(Cske))  

Action.(Bake(Cake)  
PP.ECOND;  -.  Have (  Cake) 
EFFECT: Have(Cake))  

Figure 10.7  The "have cake and eat cake too" problem. 

Figure 10.8  The planning graph iur  the "have cake and eat cake Mu" problem up to  level 
Ss. Rectangles indicate actions (small squares indicate persistence actions), and straight 
lines indicate preconditions and effects. Mutes links are shown as curved gray lines. Not all 
mutex  links are shown, because  the graph would be too cluttered. In general, if two literals 
arc mutex  at 5„  then the persistence actions for these literals will be rnutcx  at A, and we 
need not draw that mutex  link. 
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Lion  schemas. Despite the resulting increase in the site of the problem description, planning 
graphs have proved to be effective tools for solving hard planning problems. 

Figure 10.7  shows a simple planning pmblem,  and Figure 10_8  shows its planning 
graph. Each action at level A,  is connected to its preconditions at S, and its effects at Si+ 1.  
So a literal appears because an action caused it, but we also want to say that a literal can 
persist if no action negates it. This is represented by a persistence action (sometimes called 
a no-op).  For every literal C, we add to the problem a persistence action with precondition C 
and effect C. Level Ao  in Figure 10.8  shows one "real" action, Eat(Cake),  along with two 
persistence actions drawn as small square boxes. 

Level A t)  contains all the actions that could occur in state So, but just as important it 
records conflicts between actions that would prevent them from occurring together. The gray 
lines in Figure 10.8 indicate mutual exclusion (or mutex) links For example. Eat(Cake)  is 
mutually exclusive with the persistence of either Heave(Cake)  or —Eaten(Cake).  We shall 
see shortly how mutex  links are computed. 

Level Si  contains all the literals that could result from picking any subset of the actions 
in An , as well as murex links (gray lines) indicating literals that could not appeal together, 
regardless of the choice of actions. For example, Have( Cake) and Eaten(Cake) are mutex: 
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ACSON  

MLFRIAL  EXCLUSION 

MUTES 



Section 10.3. Planning Graphs 381 

LEVELED OFF 

depending  on the choice of actions in Ao,  either, but not both, could be the result. In other 
words, S1 represents a belief state! a set of possible states. The members of this set arc all 
subsets of the literals such that there is no mutex  link between any members of the subset. 

We continue in this way, alternating between state level S,  and action level A i  until we 
reach a point where two consecutive levels are identical. At this point, we say that the graph 
has leveled off. The graph in Figure 10.8 levels off at S2. 

What we end up with is a structure where every A4  level contains all the actions that are 
applicable in S„  along with constraints saying that two actions cannot both be executed at the 
same level. Every S4 level contains all the literals that could result from any possible choice 
of actions in A,_ 1 , along with constraints saying which pairs of literals are not possible. 
It is important to note that the process of constructing the planning graph does not require 
choosing among actions, which would entail combinatorial search. Instead, it just records the 
impossibility of certain choices using mutex links. 

We now define mutex links for both actions and literals. A mutex relation holds between 
two actions at a given level if any of the following three conditions holds: 

• Inconsistent effects: one action negates an  effect of the other. For example, Eat(Cake)  
and the persistence of Have ( Cake) have inconsistent effects because they disagree on 
the effect Have(Cake).  

• Interference: one of the effects of one action is the negation of a precondition of the 
other. For example Eat(Cake)  interferes with the persistence of Have (Cake) by negat-
ing its precondition. 

■ Competing needs: one of the preconditions of one action is mutually exclusive with a 
precondition of the other. For example, Bake( Cake) and Eat( Cake) are mutex because 
they compete on the value of the Have ( Cake) precondition. 

A mutex relation holds between two Werals at the same level if one is the negation of the other 
or if each possible pair of actions that could achieve the two literals is mutually exclusive. 
This condition is called inconsistent support. For example, Have(Cake) and Eaten(Cake)  
are mutex in S1 because the only way of achieving Have(Cake),  the persistence action, is 
mutex with the only way of achieving Eaten(Cake),  namely Eat(Cake). In 52 the two 
literals are not mutex, because there are new ways of achieving them, such as Bake(Cake)  
and the persistence of Eaten(Cake), that are not murex. 

A planning graph is polynomial in the size of the planning problem. For a planning 
problem with 1 literals and a actions, each Si  has no more than 1 nodes and / 2  mutex links, 
and each Ai  has nu more than a +  /nudes  (including the no-ups), (a +  0 2 

 mutex  links, and 
2(al  +  1) precondition and effect links. Thus, an entire graph with tz  levels has a size of 
U(n(a  + 1)2 ). The time to build the graph has the same complexity. 

103.1 Planning graphs for heuristic estimation 

A planning graph, once constructed, is a rich source of information about the problem. First, 
if any goal literal fails to appear in the final level of the graph, then the problem is unsolvable. 
Second, we can estimate the cost of achieving any goal literal gti from state a as the level at 
which gi  first appears in the planning graph constructed from initial state s. We call this the 



382 Chapter 10. Classical Planning 

level cost of g,.  In Figure 10.8, Have(Cake)  has level cost 0 and Eaten( Cake) has level cost 
I. It is easy to show (Exercise 10.10)  that these estimates arc admissible for the individual 
goals. The estimate might not always be accurate, however, because planning graphs allow 
several actions at each level, whereas the heuristic counts just the level and not the number 
of actions. For this reason, it is common to use a serial planning graph for computing 
heuristics. A serial graph insists that only one action can actually occur at any given time 
step; this is done by adding mutex links between every pair of nonpersistence actions. Level 
costs extracted from serial graphs are often quite reasonable estimates of actual costs. 

To estimate the cost of a conjunction of goals, there are three simple approaches. The 
max-level heuristic simply takes the maximum level cost of any of the goals; this is admissi-
ble, but not necessarily accurate. 

The level sum heuristic, following the subgoal independence assumption, returns the 
sum of the level costs of the goals; this can be inadmissible but works well in practice 
for problems that are largely decomposable. It is much more accurate than the number-
of-unsatisfied-goals heuristic from Section 10.2. For our problem, the level-sum heuristic 
estimate for the conjunctive goal Have( Cake) A Eaten.(  Cake) will be 0 + 1 = 1, whereas 
the correct answer is 2, achieved by the plan [Eat( ( Cake), Bake(Cake)].  That doesn't seem 
so bad. A more serious error is that if Bake( Cake) were not in the set of actions, then the 
estimate would still be I, when in fact the conjunctive goal would be impossible. 

Finally, the set-level heuristic rinds the level at which all the literals in the conjunctive 
goal appear in the planning graph without any pair of them being mutually exclusive. This 
heuristic gives the correct values of 2 for our original problem and infinity for the problem 
without Bake(Cake). It is admissible, it dominates the max-level heuristic, and it works 
extremely well on tasks in which there is a good deal of interaction among subplans. It is not 
perfect, of course; for example, it ignores interactions among three or more literals. 

As a tool for generating accurate heuristics, we can view the planning graph as a relaxed 
problem that is efficiently solvable. To understand the nature of the relaxed problem, we 
need to understand exactly what it means for a literal g  to appear at level Si  in the planning 
graph_  Ideally, we would like it to he a guarantee that there exists a plan with i  action levels 
that achieves g, and also that if g does not appear, there is no such plan. Unfortunately, 
making that guarantee is as difficult as solving the original planning problem. So the planning 
graph makes the second half of the guarantee (if g does not appear, there is no plan), but 
if g  does appear, then all the planning graph promises is that there is a plan that possibly 
achieves g and has no "obvious" flaws. An obvious flaw is defined as a flaw that can  be 
detected by considering two actions or two literals at a time—in other words, by looking at 
the mutex relations. There could be more subtle flaws involving three, four, or more actions, 
but experience has shown that it is not worth the computational effort to keep track of these 
possible flaws. This is similar to a lesson learned from constraint satisfaction problems—that 
it is often worthwhile to compute 2-consistency before searching for a solution, but less often 
worthwhile to compute 3-consistency or higher. (See page 211.) 

One example of an unsolvable problem that cannot be recognized as such by a planning 
graph is the blocks-world problem where the goal is to get block A on B, B on C, and C on  

A. This is an impossible goal; a tower with the bottom on top of the top. But a planning graph 
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cannot detect the impossibility, because any two of the three subgoals  are achievable. There 
arc no mutexcs  between any pair of literals, only between the three as a whole. To detect that 
this problem is impossible, we would have to search over the planning graph. 

10.3.2 The GRAPHPLAN algorithm 

This subsection shows how to extract a plan directly from the planning graph, rather than just 
using the graph to provide a heuristic The GRAPHPLAN  algorithm (Figure 10.9)  repeatedly 

adds a level to a planning graph with EXPAND-GRAPH. Once all the goals show up as non- 
mutex in the graph, GRAPIIPLAs;  calls EXTRACT-SOLUTION to search for a plan that solves 
the problem. If that fails, it expands another level and tries again, terminating with failure 
when there is no reason to go on. 

function GRAPHPLAN( problem)  returns solution or failure 

graph 4— INITIAL-PLANNING-GRAPH( problem) 
goals  ComurtcTs(probiem.GoAt)  
nogoods  4— an empty hash table 
for tl = 0 to DC do 

if goals all non-mutex in St  of graph then 
solution  EXTRACT-SOLUTION(graph,  goals, NumLEvELs(graph),  nogoods)  
if solution 0  failure then return solution 

if graph and nogoods  have both leveled off then return failure 
graph T EXPAND-GRAPH(graph,  problem) 

Figure 10.9  The GRAPHPLAN  algorithm. GRAPHPLAN  calls EXPAND-GRAPH to add a 
levet until either a solution is found by EXTRACT- SOLUTION, or no solution is possible. 

Let us now trace the operation of GRAPHPLAN  on the spare tire problem from page 370. 

The graph is shown in Figure 10.10. The first line of GRAPHPLAN initializes the planning 
graph to a one-level (So) graph representing the initial state. The positive fluents  from the 
problem description's initial state are shown, as are the relevant negative fluents. Not shown 
are the unchanging positive literals (such as Tire(Spare))  and the irrelevant negative literal& 
The goal At (Spare ,  Axle) is not present in So , so we need not call EXTRACT-SOLUTION- 
we  are certain that there is no solution yet. Instead, EXPAND-GRAPH adds into A0 the three 
actions whose preconditions exist at level So (i.e., all the actions except PutOn (Spare ,  Azle)), 
along with persistence actions for all the literals in So. The effects of the actions are added at 
level Si.  EXPAND-GRAPH then looks  for mutex relations and adds them to the graph. 

At(Spare , Axle)  is still not present in Si, so again we do not call EXTRACT-SOLUTION. 
We call EXPAND-GRAPH again, adding Ai  and S i  and giving us the planning graph shown 
in Figure 10.10. Now that we have the full complement of actions, it is worthwhile to look at 
some of the examples of mutex relations and their causes: 

•  Inconsistent effects: Reinove(Spare  ,  Trunk) is mutex  with Leave Overnight because 
one has the effect At(Spare  Ground) and the other has its negation. 



S2  
AqSpart.Trunk)  

AirSpare,Tronkf  

At(Fiat.Alle)  

Ar(Ree.Azfe)  

Aq$pare.A.r.le)  

At(Spare.A.V.e)  

—,..17(Ral.Ground)  

At(Rat.GrOtind)  

At(Spare.Grourrel)  

Ai(Spare,Graerel)  

Figure 10.10  The planning graph for the spare tire problem after expansion to level S2. 
Mutex links are shown as gray lines. Not all links are shown, because the graph would be too 
cluttered if we showed them all. The solution is indicated by bold lines and outlines. 
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■ Interference: Remove (Flat, Axle) is mutex with LeaveOvernight because one has the 
precondition At(Flat, Azle) and the other has its negation as an effect. 

• Competing needs: Put On(Spare, Axle) is mutex with Remove(Flat, Axle) because 
one has A t (  Flat ,  Axle) as a precondition and the other has its negation. 

• Inconsistent support:  At(Spare.  Axle) is mutex  with At(Flat , Axle) in S2  because the 
only way of achieving A (Spare , Axle) is by PutOn(Spare,  Axle), and that is mutex 
with the persistence action that is the only way of achieving At(Flat,  Axle). Thus, the 
mutex relations detect the immediate conflict that arises from trying to put two objects 
in the same place at the same time. 

This time, when we go back to the start of the loop, all the literals from the goal are present 
in S2, and none of them is mutex with any other, That means that a solution might exist. 
and EXTRACT-SOLUTION will try to find it. We can formulate EXTRACT-SOLUTION  as a 
Boolean constraint satisfaction problem (CSP) where the variables are the actions at each 
level, the values for each variable are in or out of the plan, and the constraints are the mutexes  
and the need to satisfy each goal and precondition. 

Alternatively, we can define EXTRACT-SOLUTION as a backward search problem, where 
each state in the search contains a pointer to a level in the planning graph and a set of unsat-
isfied goals. We define this search problem as follows: 

■ The initial stale is the last level of the planning graph, 5,,  along with the set of goals 
from the planning problem.  

• The actions available in a state at level S i  are to select any conflict-free subset of the 
actions in whose effects  cover the goals in the state. The resulting state has level 
5,_ i  and has as its set of goals the preconditions for the selected set of actions. By 
"conflict free," we mean a set of actions such that nu two of them are mutex  and no two 
of their preconditions are mutex. 
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• The goal is to reach a state at level So such that all the goals are satisfied. 
• The cost of each action is I. 

For this particular problem, we start at S2 with the goal At (Spare, Axle). The only choice we 
have for achieving the goal set is PutOn(Spare, Axle). That brings us to a search state at 5 1  
with goals At(Spare,  Ground) and —At(Flat . Axle). The former can be achieved only by 
Rernove(Spare,  Trunk), and the latter by either Remove(Flat Axle) or LeaveOvernight.  
But LearcOvernight  is nautex  with Remove (Spore, so the only solution is to choose 

R.emove(Spare,  Trunk) and Reinove(Flat,  Axle). That brings us to a search state at So with 
the goals A t(Spar  e, Trririls)  and Ai(Flul,  Axle). Both of these are present in the slate, so 
we have a solution: the actions Reinove(Spare,  Prink)  and Remove(Flat, Axle) in level 
Ao,  followed by Put On(SparE  , Axle) in A 1 . 

In the case where EXTRACT-SOLUTION fails to find a solution for a set of goals at 
a given level, we record the (level,  goals) pair as a no-good, just as we did in constraint 
learning for CSPs (page 220). Whenever EXTRACT-SOLUTION is called again with the same 
level and goals, we can find the recorded no-good and immediately return failure rather than 
searching again. We see shortly that no-goods are also used in the termination test. 

We know that planning is PSPACE-complete and that constructing the planning graph 
takes polynomial time, so it must be the case that solution extraction is intractable in the worst 
case. Therefore, we will need some heuristic guidance for choosing among actions during the 
backward search. One approach that works well in practice is a greedy algorithm based on 
the level cost of the literals. For any set of goals, we proceed in the fallowing order: 

I.  Pick first the literal with the highest level cost. 
2. To achieve that literal, prefer actions with easier preconditions. That is, choose an action 

such that the sum (or maximum) of the level costs of its preconditions is smallest. 

103.3 Termination of GRAPHPLAN  

So far, we have skated over the question of termination. Here we show that GRAPHPLAN will 
in fact terminate and return failure when there is no solution_  

The first thing to understand is why we can't stop expanding the graph as soon as it has 
leveled off. Consider an air cargo domain with one plane and n pieces of cargo at airport 
A, all of which have airport B as their destination In this version of the problem, only one 
piece of cargo can tit  in the plane at a time. The graph will level off at level 4, reflecting the 
fact that for any single piece of cargo, we can load it, fly it, and unload it at the destination in 
three steps. But that does not mean that a solution can be extracted from the graph at level 4; 
in fact a solution will require 4r — 1 steps: for each piece of cargo we load, fly, and unload, 
and for all but the last piece we need to fly back to airport A to get the next piece. 

How long do we have to keep expanding after the graph has leveled off? If the function 
EXTRACT-SOLUTION fails to find a solution, then there must have been at least one set of 
goals that were not achievable and were marked as a no -good. So if it is possible that there 
might be fewer no-goods in the next level, then we should continue. As soon as the graph 
itself and the no-goods have bolt leveled off, with no solution found. we can terrnitiale  with 
failure because there is no possibility of a subsequent change that could add a solution. 
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Now all we have to do is prove that the graph and the no-goods will always level off. The 
key to this proof is that certain properties of planning graphs arc monotonically increasing or 
decreasing. "X increases monotonically" means that the set of Xs at level i + 1 is a superset 
(not necessarily proper) of the set at level i. The properties are as follows: 

■ Literals increase monotonically: Once a literal appears at a given level, it will appear 
at all subsequent levels. This is because of the persistence actions; once a literal shows 
up, persistence actions cause it to stay forever. 

■ Actions increase monotonically: Once an action appears at a given level, it will appear 
at all subsequent levels. This is a consequence of the monotonic increase of literals; if 
the preconditions of an action appear at one level, they will appear at subsequent levels, 
and thus so will the action. 

■ Mutexes  decrease monotonically:  If two actions are mutex at a given level Ai, then they 
will also be mutex for all previous levels at which they both appear. The same holds for 
mutexes between Literals.  It might not always appear that way in the figures, because 
the figures have a simplification: they display neither literals that cannot hold at level 
S,  nor actions that cannot  be executed at level Ai. We can see [hat "mutexes decrease 
monotonically" is true if you consider that these invisible literals and actions are mutex 
with everything 

The proof can be handled by cases: if actions A and B are mutex at level Ai ,  it 
must be because of one of the three types of mutex The first two, inconsistent effects 
and interference, are properties of the actions themselves, so if the actions are mutex 
at 21„,  they will be mutex at every level. The third case, competing needs, depends on 
conditions at level Si : that level must contain a precondition of A that is mutes with 
a precondition of B. Now, these two preconditions can be mutex if they are negations 
of each other in which case they would be mutex  in every level) or if all actions for 
achieving one are mutex with all actions for achieving the other. But we already know 
that the available actions are increasing monotonically, so, by induction, the mutexes 
must be decreasing. 

• No-goods decrease monotonically: If a set of goals is not achievable at a given level, 
then they are not achievable in any previous level. The proof is by contradiction: if they 
were achievable at some previous level, then we could just add persistence actions to 
make them achievable at a subsequent level. 

Because the actions and literals increase monotonically and because there are only a finite 
number of actions and literals, there must come a level that has the same number of actions 
and literals as the previous level. Because mutexes  and no-goods decrease, and because there 
can never be fewer than zero mutexes or no-goods,  there must come a level that has the 
same number of mutexes and no-goods as the previous level_ Once a graph has reached this 
state, then if one of the goals is missing or is mutex with another goal, then we can stop the 
GRAPHPLAN  algorithm and return failure. That concludes a sketch of the proof; for more 
details see Ghallab  et aL  12004).  
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Year Track Winning Systems (approaches) 

2008 
2008 

Optimal 
Satisficing 

GAMER (model checking, bidirectional search) 
LAMA (fast downward search with FF  heuristic) 

2006 
2006 

Optimal 
Satisficing 

SATPLAN, MAXPLAN  (Boolean satisfiability) 
SGPLAN (forward search; partitions into independent subproblems) 

2004 
2004 
2002 
2002 

Optimal 
Satisficing 
Automated 
Hand-coded 

SATPLAN (Boolean satisfiability) 
FAST DIAGONALLY DOWNWARD (forward search with causal graph) 
LPG (local search, planning graphs converted to CSPs) 
TLPLAN (temporal action logic with control rules for forward search) 

2000 
2000 

Automated 
Hand-coded 

FF (forward search) 
TALPLANNER  (temporal action logic with control rules for forward search) 

1998 Automated IPP  (planning graphs); H SP (forward search) 

Figure 10.11 Some of the top-performing systems in the international Planning Compe- 
tition. Each year there are various tracks: "Optimal" means the planners must produce the 
shortest possible plan, while "Satisficing"  means nonoptirnal  solutions are accepted. "Hand-
coded"  means domain-specific heuristics are allowed; "Automated" means they are not. 

10.4 OTHER CLASSICAL PLANNING APPROACHES 

Currently the most popular and effective approaches to fully automated planning are: 
• Translating to a Boolean satisfiability  (SAT) problem 

• Forward state-space search with carefully crafted heuristics (Section 10.2) 
• Search using a planning graph (Section 10.3) 

These three approaches are not the only ones tried in the 40-year history of automated plan-
ning. Figure 10.11 shows some of the top systems in the International Planning Competitions, 
which have been held every even year since 1998. In this section we first describe the transla-
tion to a satisfiability  problem and then describe three other influential approaches: planning 
as first-order logical deduction: as constraint satisfaction; and as plan refinement. 

10.4.1 Classical planning as Boolean satisfiability  

In Section 73.4 we saw how SATPLAN solves planning problems that are expressed in propo-
sitional logic. Here we show how to translate a PDDL description into a form that can be 
processed by SATPLAN. The translation is a series of straightforward steps: 

• Propositionalize the actions: replace each action schema with a set of ground actions 
formed by substituting constants for each of the variables. These ground actions are not 
part of the translation, but will be used in subsequent steps. 

• Define the initial state: assert F0  for every fluent F in the problem's initial state, and 
—LP  for every fluent not mentioned in the initial state. 

• Propositionalize the goal: for every variable in the goal, replace the literals that contain 
the variable with a disjunction over constants. For example, the goal of having block A 
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on another block, On(A,  x) A Block (x)  in a world with objects A, B and C, would be 
replaced by the goal 

( Ort(A,  A) A B/ock(A))  V (On(A,B) A Block (B)) v  ( On(A,  C) A Block (C)) 

■ Add successor-state axioms: For each fluent F, add an axiom of the form 
Ft+t 

ActionCausesF t  V (F t  A — ActionCausesNotP)  

where ActionCaus ,,...9F  is a disjunction of all the pound actions that have Fin then 

add list, and A ctionCausesNotF  is a disjunction of all the ground actions that have F 
in their delete list. 

• Add precondition axioms: For each ground action A, add the axiom A t PRE(A) 1 ,  
that is, if an action is taken at time t,  then the preconditions must have been true. 

■ Add action exclusion axioms: say that every action is distinct from every other action_  

The resulting translation is in the form that we can hand to SATPLAN to find a solution. 

10.4.2 Planning as first-order logical deduction: Situation calculus 

PDDL is a language that carefully balances the expressiveness of the language with the com- 
plexity of the algorithms that operate on it But somc problems remain difficult to express in 
PDDL. For example, we can't express the goal "move all the cargo from A to B regardless 
of how many pieces of cargo there are" in PDDL, but we can do it in first-order logic, using a 
universal quantifier. Likewise, first-order logic can concisely express global constraints such 
as "no  more than four robots can be in the same place at the same time." PDDL can only say 
this with repetitious preconditions on every possible action that involves a move. 

The propositional logic representation of planning problems also has limitations, such 
as the fact that the notion of time is tied directly to fluents. For example, South means 
"the agent is facing south at time 2." With that representation, there is no way to say "the 
agent would be facing south at time '2 if it executed a right turn at time 1;  otherwise it would 
be facing east." First-order logic lets us get around this limitation by replacing the notion 
of linear time with a notion of branching situations, using a representation called situation 
calculus that works like this: 

SITUATION 

POSSIBILITY AXIOM  

• The initial state is called a situation.  If s is a situation and a is an action, then 
REs  [Jur  (s,  a) is also a situation. There are no other situations. Thus, a situation cor-
responds to a sequence, or history, of actions. You can also think of a situation as the 
result of applying the actions, but note that two situations arc the same only if their start 
and actions are the same: (REsuLT(s,  a) = REsuLT(s',  a')) (s = A a = a'). 
Some examples of actions and situations are shown in Figure 10.12. 

■ A function or relation that can vary from one situation to the next is a fluent. By conven-
tion, the situation s  is always the last argument to the fluent, for example At (x,  s) is a 
relational fluent that is true when object x is at location /  in situation s, and Location is a 
functional fluent such that Location (x ,  a) = 1 holds in the same situations as At (x 1 ,  s). 

• Each action's preconditions arc described with a possibility axiom that says when the 
action can be taken. It has the form T(s) Poss (a, s)  where 41, (s)  is some formula 

SITUATION 
CALCULUS 



Result(Result(5 0 ,1Forwara),  
Turn(Right)) 

Resuit(S u gonvard)  

Forward 

So  

Figure 10,12 Situations as the results of actions in the wumpus world. 
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UNIQUE ACTION  
AXIOMS 

involving .s  that describes the preconditions. An example from the wumpus world says 
that it is possible to shoot if the agent is alive and has an arrow: 

Aiive(Agent,  s) A Have(Agent,  Arrow, s) Pass (Shoot „s)  

• Each fluent is described with a successor-state  axiom that says what happens to the 
fluent, depending on what action is taken. This is similar to the approach we took for 
propositional logic. The axiom has the form 

Action is possible 
(Fluent is true in result state tr Action'.s  effect made it true 

V It was true before and action left  it alone) .  

Fnr  example, the axiom for the relational fluent finiding  says that the agent is holding 
some gold g after executing a possible action if and only if the action was a Grab of g 
or if the agent was already holding g and the action was not releasing it: 

Poss(a,.$)  
(  Holding (Agent, g, Result (a,$)) 

a = Grab(g)  {II odding(Ag  ent,  g s) A a 4  Release . 

• We need unique action axioms so that the agent can deduce that, for example, a 
lieteaseg).  For each distinct pair of action names Ai and A,  we have an axiom that 
says the actions are different: 

A,(x, .) .)  
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and for each action name Ai  we have an axiom that says two uses of that action name 
arc equal if and only if all their arguments arc equal! 

•  , x -n.) = •  •  •  , Y.) -#>  xi  =  yi  I1  ...  A  fin,  =  Y.  • 
■  A solution is a situation (and hence a sequence of actions) that satisfies the goal. 

Work in situation calculus has done a lot to define the formal semantics of planning and to 
open up new areas of investigation_ Rut so far there have not been any practical large -scale 
planning programs based on logical deduction over the situation calculus. This is in part 
because of the difficulty of doing efficient inference in FOL, but is mainly because the field 
has not yet developed effective heuristics for planning with situation calculus. 

10.4.3 Planning as constraint satisfaction 

We have seen that constraint satisfaction has a lot in common with Boolean satisfiability,  and 
we have seen that CSP techniques are effective for scheduling problems, so it is not surprising 

that it is possible to encode a bounded planning problem (i.e., the problem of finding a plan of 
length k) as a constraint satisfaction problem  (CSP). The encoding is similar  to the encoding 

to a SAT problem (Section 10.4.1), with one important simplification: at each time step we 
need only a single variable, Action', whose domain is the set of possible actions. We no 
longer need one variable for every action, and we don't need the action exclusion axioms. 11 
is also possible to encode a planning graph into a CSP. This is the approach taken by GP-CSP  
(Do and Kambhampati, 2003). 

10.4.4 Planning as refinement of partially ordered plans 

All the approaches we have seen so far construct totally ordered plans consisting of a strictly 
linear sequences of actions, This representation ignores the fact that many subproblems are 
independent. A solution to an air cargo problem consists of a totally ordered sequence of 
actions, yet if 30 packages are being loaded onto one plane in one airport and 50 packages are 
being loaded onto another at another airport, it seems pointless to come up with a strict I inear 
ordering of 80 load actions; the two subsets of actions should be thought of independently. 

An alternative is to represent plans as partially ordered structures: a plan is a set of 
actions and a set of constraints of the form Before(ai,  0i) saying that one action occurs 
before another. In the bottom of Figure 10.13, we see a partially ordered plan that is a solution 
to the spare tire problem. Actions are boxes and ordering constraints are arrows. Note that 
Remove(Spare,  Trunk) and Remote(Flat,  Axle) can  be done in either order as long as they 
are both completed before the Putan(Spare,  Axle) action. 

Partially ordered plans are created by a search through the space of plans rather than 
through the state space. We start with the empty plan consisting of just the initial state and 
the goal, with no actions in between, as in the top of Figure 10.13. The search procedure then 

FLAW looks for a flaw in the plan, and makes an addition to the plan to correct the flaw (or if no 

correction can be made, the search backtracks and tries something else). A flaw is anything 
that keeps the partial plan from being a solution. For example, one flaw in the empty plan is 

that no action achieves A t( Spare , Axle). One way to correct the flaw is to insert into the plan 



Finish  J  At( Spans.A  xle)  
A(Spare.Trank)  

Start_l  
Fiat.  Ark  

I  Finish 
At{  Spare.Thwrk)   Start 
A ( F.I.al.,Ar.k.  

Alt3P'''a"'""°1  Putan(Spars,Axio)  
▪ At(Fiaf.A.xte)  

(3)  

tai  

AllSpare.  Trunk I Remcue(Spare,Trun()  

AaSpare,Trund  Remove(Spare,Tnink)  

(c) 

Figure 10.13 (a) the tire problem expressed as an empty plan. (b) an incomplete partially 
ordered plan for the tire problem. Boxes represent actions and arrows indicate that one action 
must occur before another. (c) a complete partially-ordered solution. 

 Spa re, rrunk)At  
Start I 

AIR &Axle]  

A l(Flat.Axf  e)  I 

I PutOn(Spare,Axie)  1■11.-A4Spare,Axie  
▪ Aviar  Axle)  	  

(1  Fiernov(Flat,PO410)  

AXSparaGround,  I  Finish 1 
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the action PutOn(Spare  , Axle). Of course that introduces some new flaws: the preconditions 
of the new action are not achieved. The search keeps adding to the plan (backtracking if 
necessary) until all flaws are resolved, as in the bottom of Figure 10.13. At every step, we 

1E5ST  COMM-WENT  make the least commitment possible to fix the flaw. For example, in adding the action 
Remove(Spare,  Trunk) we need to commit to having it occur before PutOn(Sparr  , Axle},  
but we make no other commitment that places it before or after other actions. If there were a 
variable in the action schema that could be left unbound, we would do so. 

ln  the 1980s and 90s, partial-order planning was seen as the best way to handle plan-
ning problems with independent subproblems—after  all, it was the only approach that ex-
plicitly represents independent branches of a plan. On the other hand, it has the disadvantage 
of not having an explicit representation of states in the state-transition model. That makes 
some computations cumbersome. By 2000, forward-search planners had developed excellent 
heuristics that allowed them to efficiently discover the independent subproblems that partial-
order planning was designed for. As a result, partial-order planners are not competitive on 
fully automated classical planning problems. 

However, partial-order planning remains an  important part of the field. For some spe-
cific tasks, such as operations scheduling, partial-order planning with domain specific heuris-
tics is the technology of choice. Many of these systems use libraries of high-level plans, as 
described in Section 11.2. Partial-order planning is also often used in domains where it is im- 
portant for humans to understand the plans. Operational plans for spacecraft and Mars rovers 
are generated by partial-order planners and are then checked by human operators before being 
uploaded to the vehicles for execution. The plan refinement approach makes ii easier fur the 
humans to understand what the planning algorithms are doing and verify that they are correct. 



392 Chapter 10. Classical Planning 

10.5 ANALYSIS OF PLANNING APPROACHES 

SESIAIJZABLi  
SLIRGTAI  

Planning combines the two major areas of Al we have covered so far: search and logic. A 
planner can be seen either as a program that searches for a solution or as one that (construc-
tively) proves the existence of a solution. The cross-fertilization of ideas from the two areas 
has led both to improvements in performance amounting to several orders of magnitude in 
the last decade and to an increased use of planners in industrial applications.  Unfortunately, 
we do not yet have a clear understanding of which techniques work best on which kinds of 
problems. Quite possibly, new techniques will emerge that dominate existing methods. 

Planning is foremost an exercise in controlling combinatorial explosion. If there are is 

propositions in a domain. then there are 2' states. As we have seen, planning is PSPACE-
hard. Against such pessimism, the identification of independent subproblems can be a pow-
erful weapon. In the best case—full decomposability of the problem—we get an exponential 
speedup. Decomposability is destroyed, however, by negative interactions between actions. 
GRAPHPLAN  records mutexes to point out where the difficult interactions are. SATPLAN rep-
resents a similar range of mutex  relations, but does so by using the general CNF form rather 
than a specific data structure. Forward search addresses the problem heuristically by trying 
to find patterns (subsets of propositions) that cover the independent subproblems. Since this 
approach is heuristic, it can work even when the subproblems are not completely independent- 

Sometimes it is possible to solve a problem efficiently by recognizing that negative 
interactions can be ruled out. We say that a problem has serializable subgoals if there exists 
an order of subgoals such that the planner can achieve them in that order without having to 
undo any of the previously achieved subgoals. For example, in the blocks world, if the goal 
is to build a tower (e.g., A on B, which in turn is on C, which in turn is on the Table, as in 
Figure 10.4 on page 371), then the subgoals  are serializable bottom to top: if we first achieve 
C on Table, we will never have to undo it while we are achieving the other subgoals.  A 
planner that uses the bottom-to-top trick can solve any problem in the blocks world without 
backtracking (although it might not always find the shortest plan). 

As a more complex example, for the Remote Agent planner that commanded NASA's 
Deep Space One spacecraft, it was determined that the propositions involved in command-
ing a spacecraft are serializable.  This is perhaps not too surprising, because a spacecraft is 
desrgned by its engineers to be as easy as possible to control {subject to other constraints). 
Taking advantage of the serialized ordering of goals, the Remote Agent planner was able to 
eliminate most of the search. This meant that it was fast enough to control the spacecraft in 
real time, something previously considered impossible. 

Planners such as GRAPHPLAN, SATPLAN, and FF have moved the field of planning 
forward, by raising the level of performance of planning systems, by clarifying the repre-
sentational and combinatorial issues involved, and by the development of useful heuristics. 
However, there is a question of how far these techniques will scale. It seems likely that further 
progress on larger problems cannot rely only on factored and propositional representations, 
and will require some kind of synthesis of first-order  and hierarchical representations with 
the efficient heuristics currently in use. 
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10.6 SUMMARY 

In this chapter, we defined the problem of planning in deterministic, fully observable, static 
envirorunents.  We described the PDDL representation for planning problems and several 
algorithmic approaches for solving them. The points to remember: 

• Planning systems are problem -solving algorithms that operate on explicit propositional 
or relational representations of states and actions. These representations make possi-
ble the derivation of effective heuristics and the development of powerful and flexible 
algorithms for solving problems. 

• PDDL, the Planning Domain Definition Language, describes the initial and goal states 
as conjunctions of literals, and actions in terms of their preconditions and effects. 

• State-space search can operate in the forward direction (progression) or the backward 
direction (regression), Effective heuristics can be derived by subgoal independence 
assumptions and by various relaxations of the planning problem. 

• A planning graph can be constructed incrementally, starting from the initial state, Each 
layer contains a superset of all the literals or actions that could occur at that time step 
and encodes mutual exclusion (mutex) relations among literals or actions that cannot co-
occur_  Planning graphs yield useful heuristics for state-space and partial-order planners 
and can be used directly in the GRAPI-IPLkN  algorithm. 

• Other approaches include first-order deduction over situation calculus axioms; encoding 
a planning problem as a Boolean satisfiability problem or as a constraint satisfaction 
problem; and explicitly searching through the space of partially ordered plans. 

• Each of the major approaches to planning has its adherents, and there is as yet no con-
sensus on which is best. Competition and cross-fertilization among the approaches have 
resulted in significant gains in efficiency for planning systems. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Al planning arose from investigations into state-space search, theorem proving, and control 
theory and from the practical needs of robotics, scheduling, and other domains. STRIPS (Fikes  
and Nilsson, 1971), the first major planning system, illustrates the interaction of these influ-
ences. STRIPS was designed as the planning component of the software for the Shakey robot 
project at SRI. Its overall control structure was modeled on that of GPS, the General Problem 
Solver (Newell and Simon, 1961), a state-space search system that used means—ends anal-
ysis. Bylander (1992) shows simple STRIPS planning to be PSPACE-complete. Fikes and 
Nilsson (1993) give a historical retrospective on the STRIPS project and its relationship to 

more recent planning efforts. 
The representation language used by STRIPS has been far more influential than its al-

gorithmic approach; what we call the "classical" language is close to what STRIPS used. 
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The Action Description Language, or ADL (Pednault,  1986), relaxed some of the STRIPS 
restrictions and made it possible to encode more realistic problems. Nebel (2000) explores 
schemes for compiling ADL into STRIPS. The Problem Domain Description Language, or 
PDDL (Ghallab et al., 1998), was introduced as a computer-parsable, standardized syntax for 
representing planning problems and has been used as the standard language for the Interna-
tional Planning Competition since 1998. There have been several extensions; the most recent 
version, PDDL 3.0, includes plan constraints and preferences (Gerevini and Long, 2005). 

Planners in the early 1970s generally considered totally ordered action sequences. Prob-
lem decomposition was achieved by computing a subplan for each subgoal and then stringing 

LINEAR PLANNING  the subplans together in some order. This approach, called linear planning by Sacerdoti  
(1975), was soon discovered to be incomplete. It cannot solve some very simple problems, 
such as the Sussman anomaly (see Exercise 10.7), found by Allen Brown during experimen- 
tation with the HACKER system (Sussman, 1975). A complete planner must allow for inter- 

INTERLEAVAG  leaving of actions from different subplans within a single sequence. The notion of serializable 
subgoals (Koff, 1987)  corresponds exactly to the set of problems for which noninterleaved 
planners are complete. 

One solution to the interleaving problem was goal-regression planning, a technique in 
which steps in a totally ordered plan are reordered so as to avoid conflict between subgoals. 
This was introduced by Waldinger  (1975) and also used by Warren's (1974) WARPLAN. 
WARPLAN is also notable m that it was the first planner to be written in a logic program-
ming language (Prolog) and is one of the best examples of the remarkable economy that can 
sometimes be gained with logic programming: WARPLAN is only 100 lines of code, a small 
fraction of the size of comparable planners of the time. 

The ideas underlying partial-order planning include the detection of conflicts (Tate, 
1975a) and the protection of achieved conditions from interference (Sussman, 1975). The 
construction of partially ordered plans (then called task networks) was pioneered by the 
NOAH planner (Sacerdoti, 1975, 1977) and by Tate's {1975b, 1977) NONLIN system. 

Partial-order planning dominated the next 20 years of research, yet the first clear for-
mal exposition was TWEAK (Chapman, 1987), a planner that was simple enough to allow 
proofs of completeness and intractability (NP-hardness  and undecidability) of various plan-
ning problems. Chapman's work led to a straightforward description of a complete partial-
order planner (McAllester  and Rosenblitt, 1991), then to the widely distributed implementa-
tions SNLP (Soderland and Weld, 1991) and CCPOP  (Penberthy and Weld, 1992). Partial-
order planning fell out of favor in the late 1990s as faster methods emerged. Nguyen and 
Kambhampati  (2001) suggest that a reconsideration is merited: with accurate heuristics de-
rived from a planning graph, their REPOP planner scales up much better than GRAPHPLAN 
in parallelizable  domains and is competitive with the fastest state-space planners. 

The resurgence of interest in state-space planning was pioneered by Drew McDer-
mott's UNPOP program (1996), which was the first to suggest the ignore-delete-list heuristic, 
The name UNPOP  was a reaction to the overwhelming concentration on partial-order plan-
ning at the time; McDermott suspected that other approaches were not getting the attention 
they deserved. Bondi  and Geffner's  Heuristic Search Planner (HSP) and its later deriva-
tives (Bonet and Geffner, 1999; Haslum et al., 2005; Haslum, 2006) were the first to make 
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state-space search practical for large planning problems. HSP searches in the forward di- 
rection while HSPR (Bonet and Geffner,  1999) searches backward. The most successful 
state-space searcher to date is FF (Hoffmann, 2001; Hoffmann and Nebel, 2001; Hoffmann, 
2005), winner of the ALPS 2000 planning competition. FASTDOWNWARD  (Helmen,  2006) 
is a forward state-space search planner that preprocesses the action schemas into an alter- 
native representation which makes some of the constraints more explicit. FASTDOWNWARD  
(Helmen and Richter, 2004;  Helmen,  2006) won the 2004 planning competition, and LAMA 
(Richter and Westphal, 2008), a planner based on FASTDOWNWARD  with improved heuris- 
tics, won the 2008 competition. 

Bylander (1994) and Ghallab et al.  (2004) discuss the computational complexity of 
several variants of the planning problem. Helmert  (2003) proves complexity bounds for many 
of the standard benchmark problems, and Hoffmann (2005) analyzes the search space of the 
ignore-delete-list heuristic. Heuristics for the set-covering  problem are discussed by Caprara 
et al. (1995) for scheduling operations of the Italian railway. Edelkamp (2009) and Haslum 
et at. (2007) describe how to construct pattern databases for planning heuristics. As we 
mentioned in Chapter 3, Feiner  et al.  (2004) show encouraging results using pattern databases 
for sliding blocks puzzles, which can be thought of as a planning domain, but Hoffmann et al. 
(2006) show some limitations of abstraction for classical planning problems. 

Avrim  Blum and Merrick Furst (1995, 1997) revitalized the field of planning with their 
GRAPUIPLAN  system, which was orders of magnitude faster than the partial-order planners of 
the time. Other graph-planning systems, such as IPP (Koehler el al., 1997), STAN (Fox and 
Long, 1998), and SCP  (Weld et al., 1998), soon followed. A data structure closely resembling 
the planning graph had been developed slightly earlier by Ghallab  and Laruelle  (1994), whose 
IXTET partial-order planner used it to derive accurate heuristics to guide searches. Nguyen 
et al. (2001) thoroughly analyze heuristics derived from planning graphs. Our discussion of 
planning graphs is based partly on this work and on lecture notes and articles by Subbarao  
Kambhampati (Bryce and Kambhampati. 2007). As mentioned in the chapter, a planning 
graph can be used in many different ways to guide the search for a solution. The winner 
of the 2002 ALPS  planning competition, LPG  (Gerevini and Serina, 2002, 2003), searched 
planning graphs using a local search technique inspired by WALKS AT.  

The situation calculus approach to planning was introduced by John McCarthy (1963).  
The version we show here was proposed by Ray Reiter (1991, 2001). 

Kautz et al. (1996) investigated various ways to propositionalize action schemas,  find-
ing that the most compact forms did not necessarily lead to the fastest solution times. A 
systematic analysis was carried out by Ernst et al. (1997), who also developed an auto-
matic "compiler" for generating propositional representations from PDDL problems. The 
BLACKBOX planner, which combines ideas from GRAPHPLAN and SATPLAN, was devel-
oped by Kautz and Selman (1998). CPLAN. a planner based on constraint satisfaction, was 
described by van Beek and Chen (1999). 

Most recently, there has been interest in the representation of plans as binary decision 
diagrams, compact data structures for Boolean expressions widely studied in the hardware 
verification community (Clarke and Grumberg,  1987; McMillan, 1993). There are techniques 
for proving properties of binary decision diagrams, including the property of being a solution 
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to a planning problem. Cimatti et al. (199g)  present a planner based on this approach. Other 
representations have also been used; for example, Vosscn  et al. (2001) survey the use of 
integer programming for planning. 

The jury is still out, but there are now some interesting comparisons of the various 
approaches to planning. Helmert  (2001) analyzes several classes of planning problems, and 
shows that constraint-based approaches such as GRAPHPLAN and SATPLAN are best for NP-
hard domains, while search-based approaches do better in domains where feasible solutions 
can be found without backtracking. GRAPHPLAN  and SATPLAN have trouble in domains 
with many objects because that means they must create many actions. In some cases the 
problem can be delayed or avoided by generating the propositionalized  actions dynamically, 
only as needed, rather than instantiating them all before the search begins. 

Readings in Planning (Allen et al., 1990) is a comprehensive anthology of early work 
in the field. Weld (1994, 1999) provides two excellent surveys of plaruung  algorithms of 
the 1990s. It is interesting to see the change in the five years between the two surveys: 
the first concentrates on partial-order planning, and the second introduces URAPHPLAN and 
SATPLAN.  Automated Planning (Ghallab et al., 2004) is an excellent textbook on all aspects 
of planning. LaValle's text Planning Algorithms  (2006)  covers both classical and stochastic 
planning. with extensive coverage of robot motion planning. 

Planning research has been central to AI since its inception, and papers on planning are 
a staple of mainstream AI journals and conferences. There are also specialized conferences 

such as the International Conference en AI Planning Systems, the International Workshop on 
Planning and Scheduling for Space, and the European Conference on Planning. 

EXERCISES 

10.I  Describe the differences and similarities between problem solving and  planning 

10.2 Given the action schemas and initial state from Figure 10.1,  what are all the applicable 
concrete instances of Fly(p, from, to) in the state described by 

At(Pi „IFK)  A At(P2 ,  SFO)  A Plarbe(Pi )  A Plarre(P2 )  
A Airport(iFIC)  A Airport (SFO)? 

10.3 The monkey-and-bananas  problem is faced by a monkey in a laboratory with some 
bananas hanging out of reach from the ceiling. A box is available that will enable the monkey 
to reach the bananas if he climbs on it. Initially, the monkey is at A, the bananas at B, and the 
box at C. The monkey and box have height Law, but if the monkey climbs onto the box he 
will have height High, the same as the bananas. The actions available to the monkey include 
Go from one place to another, Push an object from one place to another, ClimbUp  onto or 
ClirnbD  own from an object, and Grasp or tin  grasp an object. The result of a Grasp is that 
the monkey holds the object if the monkey and object are in the same place at the same height 

a. Write down the initial state description. 
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Figure 10.14 Shakey's world. Shakey can move between landmarks within a room, can 
pass through the door between rooms, can climb climbable objects and push pushable objects, 
and can flip light switches. 

b. Write the six action schemas.  
c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the 

honoring,  hot leaving the box in its original place Write this as a general goal (i , not 
assuming that the box is necessarily at C) in the language of situation calculus. Can this 
goal be solved by a classical planning system? 

d. Your schema for pushing is probably incorrect, because if the object is too heavy, its  
position will remain the same when the Push schema is applied. Fix your action schema 
to account for heavy objects. 

10.4 The original STRIPS planner was designed to control Shakey the robot. Figure 10.14  
shows a version of Shakey's world consisting of four rooms lined up along a corridor, where 
each Loom  has a door  and a light switch. The actions in Shakey's world include moving from 
place to place, pushing movable objects (such as boxes), climbing onto and down from rigid 
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objects (such as boxes), and turning light switches on and off. The robot itself could not climb 
on a box or toggle a switch, but the planner was capable of finding and printing out plans that 
were beyond the robot's  abilities. Shakey's  six actions are the following: 

■ Go(x,  y, r), which requires that Shakey  be At x and that x and y are locations In the 
same room r. By convention a door between two rooms is in both of them. 

• Push a box b from location x to location y within the same room: Push(b, r, y, r). You 
will need the predicate Box and constants for the boxes. 

• Climb onto a box from position x: ClimbUp(x,  b); climb down from a box to position 
UlimbDown(b, x). We will need the predicate On and the constant Floor. 

• Turn  a light switch on or off: ThrnOn(s,b);  Turn° ff (.9, 0.  To turn a light on or off, 
Shakey must be on top of a box at the light switch's location. 

Write PDDL sentences for Shakey's six actions and the initial state from Figure 10.14.  Con-
struct a plan for Shakey to get Box2  into Room2.  

10.5 A finite Turing machine has a finite one-dimensional tape of cells, each cell containing 
one of a finite number of symbols. One cell has a read and write head above it. There is a 
finite set of states the machine can be in, one of which is the accept state. At each time step. 
depending on the symbol on the cell under the head and the machine's current state, there are 
a set of actions we can choose from. Each action involves writing a symbol to the cell under 
the head, transitioning  the machine to a state, and optionally moving the head left or right. 
The mapping that determines which actions are allowed is the Turing machine's program. 
Your goal is to control the machine into the accept state. 

Represent the Turing machine acceptance problem as a planning problem. If you can 
do this, it demonstrates that determining whether a planning problem has a solution is at least 
as hard as the Turing acceptance problem, which is PSPACE-hard.  

10.6 Explain why dropping negative effects from every action schema in a planning prob-
lem results in a relaxed problem. 

10.7 Figure I0.4 (page 371) shows a blocks-world problem that is known as the Sussman 
anomaly. The problem was considered anomalous because the noninterleaved planners of 
the early 1970s could not solve it. Write a definition of the problem and solve it, either by 
hand or with a planning program.  A noninterleaved planner is a planner that, when given two 
subgoals GI  and G2, produces either a plan for G1 concatenated with a plan for G2, or vice 
versa_ Explain why a noninterleaved planner cannot solve this problem_ 

10.8 Prove that backward search with PDDL problems is complete. 

10.9 Construct levels 0, 1, and 2 of the planning graph for the problem in Figure 10.1, 

10.10 Prove the following assertions about planning graphs: 

a. A literal that does not appear in the final level of the graph cannot be achieved. 
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b. The level cost of a literal in a serial graph is no greater than the actual cost of an optimal 
plan for achieving it. 

10.11 The set-level heuristic (see page 382)  uses a planning graph to estimate the cost of 
achieving a conjunctive goal from the current state. What relaxed problem is the set-level 
heuristic the solution to? 

10.12 Examine the definition of bidirectional search in Chapter 3. 

a. Would bidirectional state-space search be a good idea for planning? 
b. What about bidirectional search in the space of partial-order plans? 
c. Devise a version of partial-order planning in which an action can be added to a plan if its  

preconditions can be achieved by the effects of actions already in the plan. Explain how 
to deal with conflicts and ordering constraints. Is the algorithm essentially identical to 
forward state-space search? 

10.13 We contrasted forward and backward state-space searchers with partial-order plan-
ners, saying that the latter is a plan-space searcher. Explain how forward and backward state-
space search can also be considered plan-space searchers, and say what the plan refinement 
operators are_ 

10.14 Up to now we have assumed that the plans we create always make sure that an action's 
preconditions are satisfied. Let us now investigate what propositional successor-state axioms 
such as HaveArroty+ 1  (.11-oveArrow i  A —Shama)  have to say about actions whose 
preconditions are not satisfied. 

a. Show that the axioms predict that nothing will happen when an action is executed in a 
state where its preconditions are not satisfied. 

b. Consider a plan p that contains the actions required to achieve a goal but also includes 
illegal actions. Is it the case that 

initial state A successor-state axioms A p goal ? 

c. With first-order successor-state axioms in situation calculus, is it possible to prove that 
a plan containing illegal actions will achieve the goal? 

10.15 Consider how to translate a set of action schemas into the successor-state axioms of 
situation calculus .  

a. Consider the schema for ny(p,  from, to). Write a logical definition for the predicate 
Poss(Fly(p,  from, to), s),  which is true if the preconditions for Fly(p, from, to) are 
satisfied in situation a. 

b. Next, assuming that Fly(p, from, to) is the only action schema available to the agent, 
write clown  a successor-state axiom for Aqp,  z ,  s) that captures the same information 
as the action schema. 
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c. Now suppose there is an additional method of travel: Teleport(p, from, to). It has 
the additional precondition —k  Warped (p) and the additional effect Warped (p).  Explain 
how the situation calculus knowledge base must be modified. 

tl.  Finally, develop a general and precisely specified procedure for carrying out the trans-
lation from a set of action schemas to a set of successor-state axioms. 

10.16 In the SATPLAN algorithm in Figure 7.22 {page  272). each call to the satisfiabil-
ity  algorithm asserts a goal 9T , where T ranges from 0 to TiTiax .  Suppose instead that the 
satisfiability algorithm is called only once, with the goal 9°  V gl  V  V gTma".  

a. Will this always return a plan if one exists with length less than or equal to TT.?  
b. Does this approach introduce any new spurious "solutions"? 
c. Discuss how one might modify a satisfiability algorithm such as WALKSAT so that it 

finds short solutions (if they exist) when given a disjunctive goal of this form. 



 

11  PLANNING AND ACTING 
IN THE REAL WORLD 

In which we see how more expressive representations and more interactive agent 
architectures lead to planners that are useful in the real world. 

The previous chapter introduced the most basic concepts, representations, and algorithms for 
planning. Planners that are are used in the real world for planning and scheduling the oper-
ations of spacecraft, factories, and military campaigns are more complex; they extend both 
the representation language and the way the planner interacts with the environment This 
chapter shows how. Section 11.1 extends the classical language for planning to talk about 
actions with durations and resource constraints. Section 11.2  describes methods for con-
structing plans that are organized hierarchically. This allows human experts  to communicate 
to the planner what they blow  about how to solve the problem. Hierarchy also lends itself to 
efficient plan construction because the planner can solve a problem at an abstract level before 
delving into details.  Section 11.3 presents agent architectures that can handle uncertain envi-
ronments and interleave deliberation with execution, and gives some examples of real-world 
systems. Section 11.4 shows how to plan when the environment contains other agents. 

H  . I  TIME. SCHEDULES AND RESOURCES 

The classical planning representation talks about what to do, and in what order, but the repre-
sentation cannot talk about time: how long an action takes and when it occurs. For example, 
the planners of Chapter 10 could produce a schedule for an airline that says which planes are 
assigned to which flights, but we really need to know departure and arrival times as well. This 
is the subject matter of scheduling. The real world also imposes many resource constraints; 
for example, an airline has a limited number of staff—and staff who are on one flight cannot 
be on another at the same time. This section covers methods for representing and solving 
planning problems that include temporal and resource constraints. 

The approach we take in this section is "plan first, schedule later": that is, we divide 

the overall problem into a planning phase in which actions are selected, with some ordering 
constraints, to meet the goals of the problem, and a later scheduling phase, in which tempo- 

ral information is added to the plan to ensure that it meets resource and deadline constraints. 

401 
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Jobs(fAddEngine1  Addneets1  Inspect11,  
(AddEngtine2  Add Wheeds2  Inspe021)  

Resources(EngineHoists  (1). Wh,eelStations  (1), Inspectors (2) , Lug Nuts (500)) 

Action(AddEnginel  , DURATION:30,  
USE:Engine:Hoists(  1)) 

Action(AddEngme.  2, DURATION:60,  
USE: EngineHamts(1))  

Action(AddWheels1  ,  DURATION:30, 
CONSUME: LugYuts  (20),  USE: WheelStations(1))  

Action(AddWheels2  , DURATION: 115,  
CONSUME:LugNuts(20),  USE: WheelStations  (1)) 

Action(Inspect  DURATION:1U,  
USE: Inspectors.(1))  

Figure 11.1  A job-shop scheduling problem for assembling two cars, with resource con-
straints. The notation A  B means that action A must precede action B. 

This approach is common in real-world manufacturing and logistical settings, where the plan-
ning phase is often performed by human experts. The automated methods of Chapter 10 can 
also be used for the planning phase, provided that they produce plans with just the minimal 
ordering constraints required for correctness. GRAPHPLAN (Section 10-3),  SATPLAN (Sec-
tion 10.4.1),  and partial-order planners (Section 10.4.4) can do this; search-based methods 
(Section 10.2) produce totally ordered plans, but these can easily be converted to plans with 
minimal ordering constraints _  

11.1.1 Representing temporal and resource constraints 

JOB  

DURATION 

COUSLIMABI  

EUSABLE  

MAKESRAN  

A typical job-shop  scheduling problem, as first introduced in Section 6_  .2, consists of a 
set of jobs, each of which consists a collection of actions with ordering constraints among 
them. Each action has a duration and a set of resource constraints required by the action. 
Each constraint specifies a type of resource (e.g.,  bolts, wrenches, or pilots), the number 
of that resource required, and whether that resource is consumable (e.g.,  the bolts are no 
longer available for use) or reusable (e.g., a pilot is occupied during a flight but is available 
again when the flight is over). Resources can also be produced by actions with negative con-
sumption, including manufacturing, growing, and resupply actions. A solution to a job-shop 
scheduling problem must specify the start times for each action and must satisfy all the tern-
pond ordering constraints and resource constraints. As with search and planning problems. 
solutions can be evaluated according to a cost function; this can be quite complicated, with 
nonlinear resource costs, time-dependent delay costs, and so on. For simplicity, we assume 
that the cost function is just the total duration of the plan, which is called the makespan. 

Figure 11.1 shows a simple example: a problem involving the assembly of two cals.  The 
problem consists of two jobs, each of the form [AddEngine, AddWheels,  Inspect]. Then the 
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Resources statement declares that there are four types of resources, and gives the number 
of each typc  available at the start: 1  engine hoist, 1 wheel station, 2 inspectors, and 500  lug 
nuts. The action schemas give the duration and resource needs of each action. The lug nuts 
are consumed as wheels are added to the car, whereas the other resources are "borrowed" at 
the start of an action and released at the action's end. 

The representation of resources as numerical quantities, such as Inspectors (2), rather 
than as named entities, such as Inspecto•(b)  and Inspector(12),  is an example of a very 

AG3REGATION  general technique called aggregation. The central idea of aggregation is to group individual 
objects into quantities when the objects are all indistinguishable with respect to the purpose 
at hand. In out assembly problem, it does not matter which inspector inspects the car, so there 
is no need to make the distinction. (The same idea works in the missionaries-and-cannibals 
problem in Exercise 3.9.1 Aggregation is essential for reducing complexity. Consider what 
happens when a proposed schedule has 10 concurrent Inspect, actions but only 9 inspectors 
are available. With inspectors represented as quantities, a failure is detected immediately and 
the algorithm backtracks to try another schedule. With inspectors represented as individuals, 
the algorithm backtracks to try all 10! ways of assigning inspectors to actions. 

11.1.2 Solving scheduling problems 

CRITICAL PATH 
METHOD 

CRITICAL PATH 

SLACK 

SGIEDULE  

We begin by considering just the temporal scheduling problem, ignoring resource constraints. 
To minimize makespan (plan duration), we must find the earliest start times for all the actions 
consistent with the ordering constraints supplied with the problem. It is helpful to view these 
ordering constraints as a directed graph relating the actions, as shown in Figure 11.2. We can 
apply the critical path method (CPM) to this graph to determine the possible start and end 
times of each action. A path through a graph representing a partial-order plan is a linearly 
ordered sequence of actions beginning with Start and ending with Finish. (For example, 
there are two paths in the partial-order plan in Figure 11.2.) 

The critical path is that path whose total duration is longest; the path is "critical" 
because it determines the duration of the entire plan—shortening other paths doesn't shorten 
the plan as a whole, but delaying the start of any action on the critical path slows down the 
whole plan. Actions that are off the critical path have a window of time in which they can be 
executed. The window is specified in terms of an earliest possible start time, ES, and a latest 
possible start time, LS. The quantity LS — ES is known as the slack of an action. We can 
see in Figure 11.2 that the whole plan will take 85 minutes, that each action in the top job 
has 15 minutes of slack, and that each action on the critical path has no slack (by definition). 
Together the ES and LS times for all the actions constitute a schedule for the problem. 

The following formulas serve as a definition for ES and LS and also as the outline of a 
dynamic-programming algorithm to compute them. A and B are actions, and A B means 
that A comes before B: 

ES(Start) = 0 
ES(B) = maxA  B  E  S ( A) Duration(A)  
LS(Finish)  = ES(Finish)  
LS(A)  = mins A LS(B) — Durettion0)  . 
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Figure 11.2 Top: a representation of the temporal constraints for the job-shop scheduling 
problem of Figure 11.1. The duration of each action is given at the bottom of each rectangle. 
In sclving  the problem, we compute the earliest and latest start times as the pair [ES, LS], 
displayed in the upper left The difference between these two numbers is the stack of an 
action; actions with zero slack are on the critical path, shown with hold arrows. Bottom: the 
same solution shown as a timeline. Grey rectangles represent time intervals during which an 
action may be executed, provided that the ordering constraints are respected. The unoccupied 
portion of a gray rectangle indicates the slack. 
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The idea is that we start by  assigning ES (Start) to he 0_ Then ;  as soon as we get an action 
B such that all the actions that come immediately before B have ES values assigned, we 
set ES (B) to be the maximum of the earliest finish times of those immediately preceding 
actions, where the earliest finish time of an action is defined as the earliest start time plus the 
duration. This process repeats until every action has been assigned an ES value. The LS 
values are computed in a similar manner, working backward from the Finish action. 

The complexity of the critical path algorithm is just 0(Nb),  where N is the number of 
actions and b is the maximum branching factor into or out of an action. (To see this, note that 
the LS and ES computations are done once for each action, and each computation iterates 
over at most b other actions.) Therefore, finding a minimum-duration schedule, given a partial 
ordering on the actions and no resource constraints, is quite easy. 

Mathematically speaking, critical-path  problems are easy to solve because they are de- 
fined as a conjunction of linear inequalities on the start and end times. When we introduce 
resource  constraints, the resulting constraints on start and end times become more  compli- 
cated. For example, the AddEngine actions, which begin at the same time in Figure 11.2, 
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Figure 11.3  A solution to the job-shop scheduling problem from Figure 11.1, taking into 
account resource constraints. The left-hand margin lists the three reusable resources, and 
actions are shown aligned horizontally with the resources they use. There are two possi-
ble schedules, depending on which assembly uses the engine hoist first; we've shown the 
shortest-duration solution, which takes 115 minutes. 
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require the same EngineHoisl  and so cannot overlap. The "cannot overlap" constraint is a 
disjunction of two linear inequalities, one for each possible ordering. The introduction of 
disjunctions turns out to make scheduling with resource constraints NP-hard. 

Figure 11.3  shows the solution with the fastest completion time. 115 minutes.  This is 
30 minutes longer than the 85 minutes required for a schedule without resource constraints. 
Notice that there is no time at which both inspectors are required, so we can immediately 
move one of our two inspectors to a more productive position. 

The complexity of scheduling with resource constraints is often seen in practice as 
well as in theory. A challenge problem posed in 1963—to find the optimal schedule for a 
problem involving just 10 machines and 10 jobs of 100 actions each—went unsolved for 
23 years (Lawler et al., 1993).  Many approaches have been tried, including branch-and-
bound, simulated annealing, tabu search, constraint satisfaction, and other techniques from 
Chapters 3 and 4. One simple but popular heuristic is the minimum slack algorithm: on 
each iteration, schedule for the earliest possible start whichever unscheduled action has all 
its predecessors scheduled and has the least slack; then update the E.5'  and LS  times for each 
affected action and repeat. The heuristic resembles the minimum-remaining-values (VIRV)  
heuristic in constraint satisfaction. It often works well in practice, but for our assembly 
problem it yields a 130—minute solution, not the 115—minute solution of Figure 11.3.  

Up to this point, we have assumed that the set of actions and ordering constraints is 
fixed. Under these assumptions, every scheduling problem can be solved by a nonoverlapping 
sequence that avoids all resource conflicts, provided that each action is feasible by itself. If 
a scheduling problem is proving very difficult, however, it may not be a good idea to solve 
it this way—it may be better to reconsider the actions and constraints, in case that leads to a 
much easier scheduling problem. Thus, it makes sense to integrate planning and scheduling 
by taking into account durations and overlaps during the construction of a partial-order plan. 
Several of the planning algorithms in Chapter 10 can he augmented to handle this information. 
For example, partial-order planners can detect resource constraint violations in much the 
same way they detect conflicts with causal links. Heuristics can be devised to estimate the 
total completion time of a plan. This is currently an active area of research. 
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1 1.2 HIERARCHICAL PLANNING 

HIERARCHICAL 
DECOMPOSITION 

H IERARCH  !CAL  TAM 
NETWORK 

HIT LEVEL  ACTON 

The problem-solving and planning methods of the preceding chapters all operate with a fixed 
set of atomic actions. Actions can be strung together into sequences or branching networks; 
state-of-the-art algorithms can generate solutions containing thousands of actions. 

For plans executed by the human brain, atomic actions are muscle activations. In very 
round numbers, we have about 103  muscles to activate (639, by some counts, but many of 
them have multiple subunits); we can modulate their activation perhaps 10 times per second; 
and we are alive and awake for about 10 9  seconds in all. Thus, a human life contains about 
1013  actions, give or Lake one or t wo orders of magnitude. Even if we restrict ourselves to 
planning over much shorter time horizons—for example, a two-week vacation in Hawaii—a 
detailed motor plan would contain around 10 10  actions. This is a lot more than 1000. 

To bridge this gap, Al systems will probably have to do what humans appear to do: plan 
at higher levels of abstraction. A reasonable plan for the Hawaii vacation might be "Go to 
San Francisco airport: take Hawaiian Airlines flight 11 to Honolulu; do vacation stuff for two 
weeks; take Hawaiian Airlines flight 12 back to San Francisco; go home." Given such a plan, 
the action "Go to San Francisco airport" can be viewed as a planning task in itself, with a 
solution such as "Drive to the long-term parking lot; park; take the shuttle to the terminal." 
Each of these actions, in turn,  can be decomposed further, until we reach the level of actions 
that can be executed without deliberation to  generate the required motor control sequences. 

In this example, we see that planning can occur both before and during the execution 
of the plan; for example, one would probably defer the problem of planning a route from a 
parking spot in long-term parking to the shuttle bus stop until a particular parking spot has 
been found during execution. Thus, that particular action will remain at an abstract level 
prior to the execution phase. We defer discussion of this topic until Section 11,3.  Here, we 
concentrate on the aspect of hierarchical decomposition, an idea that pervades almost all 
attempts to manage complexity. For example, complex software is created from a hierarchy 
of subroutines or object classes; armies operate as a hierarchy of units; governments and cor-
porations have hierarchies of departments, subsidiaries, and branch offices. The key benefit 
of hierarchical structure is that,  at each level of the hierarchy, a computational task, military 
mission, or administrative function is reduced to a small number of activities at the next lower 
level, so the computational cost of finding the correct way to arrange those activities for the 
current problem is small. Nonhierarchical methods, on the other hand, reduce a task to a 
large number of individual actions; for large-scale problems, this is completely impractical. 

11.2.1 High-level actions 

The basic formalism we adopt to understand hierarchical decomposition comes from the area 
of hierarchical task networks or FUN  planning.  As in classical planning (Chapter 10), we 
assume full observability and determinism and the availability of a set of actions, now called 
primitive actions, with standard  precondilion—effect  schernas.  The key additional concept is 
the high-level action or HLA—for  example, the action "Go to San Francisco airport" in the 



Refinerrtent(0  o  (Home , SFO),  
STEPS: [Drive (Horne, SFOLonTermParking),  

Shuttle( SFOLorigTermParking  SFO)]  ) 
Refinement(G  (Home ,  SFO),  

STEPS: [ Tazi.(Harrae,  SFO)]  )  

Refineynemt(Navigateffa,  b],  [a, 
PRECOND: a=r A b= y 
STEPS: L  )  

R.efinement(  N avigate([  a, b]  ,  [x ,  y]),  
PRECOND: Conttec  tedaa,  b],  [a — 1,  b];  
STEPS: [Left, NavigoteCa  – 1, DDT )  

Refinemen4Navigateaa, y]), 
PRECOND:Gonnected([a,  ,  [a + 1, b];  
STEPS: [Right.. Navivatead  + 1, bj, )  

Figure 11.4 Definitions of possible refinements for two high-level actions: going to San 
Francisco airport and navigating in the vacuum world. In the latter case, note the recursive 
nature of the refinements and the use of preconditions. 
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RF=INFMFN- example given earlier_ Each HLA has one or more possible refinements, into a sequence [  
of actions, each of which may be an  HLA  or a primitive action (which has no refinements 
by definition). For example, the action "Go to San Francisco airport," represented formally 
as Co(Honte  SFO),  might have two possible refinements, as shown in Figure 11.4, The 
same figure shows a recursive refinement for navigation in the vacuum world to get to a 
destination, take a step, and then go to the destination. 

These examples show that high-level actions and their refinements embody knowledge 
about how to do things. For instance, the refinements for Go(Home,  SF0)  say that to get to 
the airport you can drive or take a taxi; buying milk, sitting down, and moving the knight to 
e4 are not to he considered. 

I MPLEMENTATION An HLA refinement that contains only primitive actions is called an implementation 
of the HLA. For example, in the vacuum world, the sequences [Right, Right, Down] and 
[Dawn, Right, Right [  both implement the HLA  N avigate([1  ,  3],  [3,  2]),  An implementation 
of a high-level plan (a sequence of HLAs)  is the concatenation of implementations  of each 
HLA in the sequence. Given the precondition–effect definitions of each primitive action, it is 
straighttorward  to determine whether any given implementation of a high-level plan achieves 
the goal. We can say, then, that a high-level plan achieves the goal from a given state if at 
least one of its implementations achieves the goal from that state. The "at least one" in this 
definition is crucial—not all implementations need to achieve the goal, because the agent gets 

HTN planners  often allow refinement into partially ordered plans, and they allow the refinements of two 
different HLAs  in a plan to share actions. We omit these important complications in the interest of understanding 
the basic  concepts of hierarchical planning. 
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to decide which implementation it will execute. Thus, the set of possible implementations in 
HTN planning—cach  of which may have a different outcome—is not the same as the set of 
possible outcomes in nondeterministic planning. There, we required that a plan work for all 
outcomes because the agent doesn't get to choose the outcome; nature does. 

The simplest case is an HLA that has exactly one implementation. In that case, we 
can compute the preconditions and effects of the HLA from those of the implementation 
(see Exercise 11.3) and then treat the 1-ILA  exactly as if it were a primitive action itself. It 
can be shown that the right collection of HLAs can result in the time complexity of blind 
search dropping from exponential in the solution depth to linear in the solution depth, al-
though devising such a collection of HLAs  may be a nontrivial task in itself. When HLAs 
have multiple possible implementations, there are two options: one is to search among the 
implementations for one that works, as in Section 11.2.2; the other is to reason directly about 
the HLAs—clespite  the multiplicity of implementations—as  explained in Section 11.2.3. The 
latter method enables the derivation of provably correct abstract plans, without the need to 
consider their implementations. 

11.2.2 Searching for primitive solutions 

HTN  planning is often formulated with a single "top level" action called Act, where the aim is 
to find an implementation of Act that achieves the goal. This approach is entirely general. For 
example, classical planning problems can be defined as follows: for each primitive action a„  
provide one refinement of Act with steps [a t , Act]_ That creates a recursive definition of Act 
that lets us add actions. But we need some way to stop the recursion; we do that by providing 
one more refinement for Act, one with an empty list of steps and with a precondition equal 
to the goal of the problem. This says that if the goal is already achieved, then the right 
implementation is to do nothing. 

The approach leads to a simple algorithm: repeatedly choose an  HLA  in the current 
plan and replace it with one of its refinements, until the plan achieves the goal. One possible 
implementation based on breadth-first tree search is shown in Figure 11.5_  Plans are consid-
ered in order of depth of nesting of the refinements, rather than number of primitive steps. It 
is straightforward to design a graph-search version of the algorithm as well as depth-first and 
iterative deepening versions. 

In essence, this form of hierarchical search explores the space of sequences that conform 
to the knowledge contained in the HLA library about how things are to be done. A great deal 
of knowledge can be encoded, not just in the action sequences specified in each refinement but 
also in the preconditions for the refinements. For some domains, HTN planners have been 
able to generate huge plans with very little search. For example, 0-PLAN  (Bell and Tate. 
1985), which combines HTN planning with scheduling, has been used to develop production 
plans for Hitachi. A typical problem involves a product line of 350 different products, 35 
assembly machines ;  and over 2000 different operations. The planner generates a 30-day 
schedule with three 8-hour  shifts a day, involving tens of millions of steps. Another important 
aspect of HTN plans is that they are, by definition, hierarchically structured; usually this 
makes them easy for humans to understand. 



Section 11.2. Hierarchical Planning 409 

function HILRARCIIICAL-SEARCII(  problem, hierarchy) returns a solution, or failure 

frontier 4—  a FIFO queue with [Act] as the only element 
loop do 

if EMPTY?(  frontier) then return failure 
plan 4— POP( frontier) i*  chooses the shallowest plan in frontier */  
We 4— the first HLA  in plan, or null if none 
prefix ,suffix  4— the action subsequences before and after hia  in plan 
outcome 4—  RES ULT(probiern  INITIAL-STATE,  prefix) 
If his is null then ,/,`  so plan is primitive and vacuum is its result */ 

if outcome satisfies probie  fl.G+DAL  then return plan 
else for each sequence in REFINEMENTS(hia,  outcome, hierarchy) do 

frontier ■—  INSERT(APPEND(prefix,  sequence, suffix), frontier) 

Figure 11.5  A breadth-first implementation of hierarchical forward planning search. The 
initial plan supplied to the algorithm is [Act]. The REFINEMENTS function returns a set of 
action sequences, one for each refinement of the HLA whose preconditions are satisfied by 
the specified state, outcome, 

The computational benefits of hierarchical search can be seen by examining an ide- 
alized  case. Suppose that a planning problem has a solution with d  primitive actions. For 
a nonhierarchical, forward state-space planner with b allowable actions at each state, the 
cost is 0(bd ),  as explained in Chapter 3. For an HTN  planner, let us suppose a very reg-
ular refinement structure: each nonprimitive  action has r possible refinements, each into 
k actions at the next lower level. We want to know how many different refinement trees 
there are with this structure. Now. if there are d  actions at the primitive level, then the 
number of levels below the root is logk  d, so the number of internal refinement nodes is 

k k 2 kin&  d-1  =  a — 1)Ak  — 1). Each internal node has r possible refine-
ments, so r(c1-1 )/(")  possible regular decomposition trees could he constructed, Examining 
this formula, we see that keeping r small and k  large can result in huge savings: essentially 
we are taking the kth root of the nonhierarchical cost, if b and r are comparable. Small r and 
large k means a library of HLAs with a small number of refinements each yielding a long 
action sequence (that nonetheless allows us to solve any problem). This is not always pos-
sible: long action sequences that are usable across a wide range of problems are extremely 
precious. 

The key to HTN planning, then, is the construction of a plan library containing known 
methods for implementing complex, high-level actions. One method of constructing the li-
brary is to learn the methods from problem-solving experience. After the excruciating ex-
perience of constructing a plan from scratch, the agent can save the plan in the library as a 
method for implementing the high-level action defined by the task. In this way, the agent can 
become more and more competent over time as new methods are built on top of old methods. 
One importarn  aspect of this learning process is the ability to generalize the methods that  
are constructed, eliminating detail that is specific to the problem instance (e.g., the name of 
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the builder or the address of the plot of land) and keeping just the key elements of the plan. 
Methods for achieving this kind of generalization arc described in Chapter 19.  It seems  to us 
inconceivable that humans could be as competent as they are without some such mechanism. 

DOWNWARD 
REFINEMENT 
PROPERTY 

DEMONIC 
NORDETERIANISM  

11.2.3 Searching for abstract solutions 

The hierarchical search algorithm in  the preceding section refines HLAs all the way to primi- 
tive action sequences to determine if a plan is workable. This contradicts common sense: one 
should be able to determine that the two-HLA high-level plan 

[Drive(Home, SFOLongTermParking),  Shuttle(SFOLongTermParking  SF0)]  

gets one to the airport without having to determine a precise route, choice of parking spot, 
and so on. The solution seems obvious: write precondition–effect descriptions of the HLAs, 
just as we write down what the primitive actions du. From the descriptions, it ought  to be 
easy to prove that the high-level plan achieves the goal. This is the holy grail, so to speak, of 
hierarchical planning because if we derive a high-level plan that provably achieves the goal, 
working in a small search space of high-level actions, then we can commit to that plan and 
work on the problem of refining each step of the plan. This gives us the exponential reduction 
we seek.  For this to work, it has to be the case that every high-level plan that "claims" to 
achieve the goal (by virtue of the descriptions of its steps) does in fact achieve the goal in 
the sense defined earlier: it must have at least one implementation that does achieve the goal. 
This property has been called the downward refinement property for HLA descriptions. 

Writing 'ILA  descriptions that satisfy the downward refinement property is, in princi-
ple, easy: as long as the descriptions are true, then any high-level plan that claims to achieve 
the goal must in fact do so—otherwise, the descriptions are making some false claim about 
what the HLAs do. We have already seen how to write true descriptions for IRAs  that have 
exactly one implementation (Exercise 11.3); a problem arises when the HLA  has multiple  
implementations. How can we describe the effects of an action that can be implemented in 
many different ways? 

One safe answer (at least for problems where all preconditions and goals are positive) is 
to include only the positive effects that are achieved by every implementation of the HLA and 
the negative effects of any implementation. Then the downward refinement property would 
be satisfied. Unfortunately, this semantics for HLAs is much too conservative. Consider again 
the HLA Go(Home,  SFO),  which has two refinements, and suppose, for the sake of argu-
ment, a simple world in which one can always drive to the airport and park, but taking a taxi 
requires Cash as a precondition. In that case, Go (Home, 5T0) doesn't always get you to 
the airport. In particular, it fails if Cash is false, and so we cannot assert At(Agent,  SF()) as 
an effect of the HLA. This makes no sense, however,  if the agent didn't have Cash, it would 
drive itself.  Requiring that an effect hold for every implementation is equivalent to assuming 
that someone else—an adversary—will choose the implementation. It treats the HLA's mul- 
tiple outcomes exactly as if the HLA  were a nondeterministic  action, as in Section 4.3. For 
our case, the agent itself will choose the implementation. 

The programming languages community has coined the term demonic nundelermin-
ism  for the case where an adversary makes the choices, contrasting this with angelic nonde- 
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REACHABLE SET 

Figure 11.6 Schematic examples of reachable sets The set of goal  states is shaded Hlsck  
and gray arrows indicate possible implementations of h i  and h2 , respectively. (a) The reach-
able set of an HLA h i  in a state s. (b) The reachable set for the sequence [h i , h 2 ]  Because 
this intersects the goal set, the sequence achieves the goal. 

terminism, where the agent itself makes the choices. We borrow this term to define angelic 
semantics for HLA descriptions_ The basic concept required for understanding angelic se 
mantics is the reachable set of an HLA: given a state s. the reachable set for an HLA h, 
written as REACH(s,  h), is the set of states reachable by any of the HLA's implementations. 
The key idea is that the agent can choose which element of the reachable set it ends up in 
when it executes the HLA;  thus, an HLA with multiple refinements is more "powerful" than 
the same HLA  with fewer refinements. We can also define the reachable set of a sequences of 
HLAs.  For example, the reachable set of a sequence [h i , h2]  is the union of all the reachable 
sets obtained by applying h2  in each state in the reachable set of hi: 

REAcH(s,  [hi, h2])  = V REAcii(si .  h2)  •  
s'EREACH(s,  h i ) 

Given these definitions, a high-level plan—a sequence of HLAs—achieves the goal if its 
reachable set intersects the set of goal states. (Compare this to the much stronger condition 
for demonic semantics, where every member of the reachable set has to be a goal state.) 
Conversely, if the reachable set doesn't intersect the goal, then the plan definitely doesn't 
work. Figure 11.6 illustrates these ideas. 

The notion of reachable sets yields a straightforward algorithm: search among high-
level plans, looking for one whose reachable set intersects the goal; once that happens, the 
algorithm can commit to that abstract plan, knowing that it works, and focus on refining 
the plan further. We will come back to the algorithmic issues later; first, we consider the 
question of how the effects of an HLA—the  reachable set for each possible initial state—ale  
represented. As with the classical action schemas of Chapter 10, we represent the changes 
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made to each fluent. Think of a fluent as a state variable. A primitive action can add or delete 
a variable or leave it unchanged. (With conditional effects (sec Section 11 -3.1) there is a 
fourth possibility: flipping a variable to its opposite.) 

An HLA  under angelic semantics can do more: it can control  the value of a variable,  
setting it to true or false depending on which implementation is chosen. In fact, an HLA can 
have nine different effects on a variable: if the variable starts out true, it can always keep 
it true, always make it false, or have a choice; if the variable starts out false, it can always 
keep it false, always make it true, or have a choice; and the three choices for each case can 
be combined arbitrarily, making nine. Notationally,  this is a bit challenging. We'll use the 
symbol to mean "possibly, if the agent so chooses,"  Thus, an effect +A means "possibly add 
A," that is, either leave A unchanged or make it true. Similarly, IA  means "possibly delete 
A" and IA means "possibly add or delete A." For example, the HLA Go(Home,  
with the Iwo refinements shown in Figure 11.4, possibly deletes Cash (if the agent decides to 
take a taxi), so it should have the effect  Cash. Thus, we see that the descriptions of HLAs 
are derivable, in principle, from the descriptions of their refinements—in  tact, this is required 
if we want true HLA  descriptions, such that the downward refinement property holds. Now 
suppose we have the following schemas for the HLAs hi and hQ:  

Action(h i ,  PR.EcoND:  -A, EFFEcT:  A A '1 B)  ,  
Action(h2,  PRECOND: -B EFFECT:TA  A IC) . 

That is, 14  adds A and possible deletes B, while h2 possibly adds A and has full control over 
C. Now, if only B is true in the initial state and the goal is A A C then the sequence [h t , h2] 
achieves the goal: we choose an implementation of h1 that makes B false, then choose an 
implementation of h9  that leaves A true and makes C true. 

The preceding discussion assumes that the effects of an HLA—the  reachable set for 
any given initial state—can be described exactly by describing the effect on each variable. It 
would be nice if this were always true, but in many cases we can only approximate the ef-
fects because an IILA  may have infinitely many implementations and may produce arbitrarily 
wiggly reachable sets—rather like the wiggly-belief-state problem illustrated in Figure 7.21 
on page 271. For example, we said that Go (Home, SFO)  possibly deletes Cash; it also 
possibly adds At( Car , SFOLengTerraParking);  but it cannot do both—in fact, it must do 
exactly one. As with belief states, we may need to write approximate descriptions. We will 
use two kinds of approximation: an optimistic description REACH +  (a, h) of an HLA h may 
overstate the reachable set, while a pessimistic description REACH - (s,  is)  may understate 
the reachable set_ Thus, we have 

REACH (8, ft) C REACH(s,  h) C REACH+  (s,h)  . 

For example, an optimistic description of Go(Home,SFO)  says that it possible deletes Cash 
and possibly adds At(Car, SFOLongTermParking).  Another good example arises in the 
8-puzzle, half of whose states are unreachable from any given state (see Exercise 3.4 on 
page 113): the optimistic description of Act might well include the whole state space, since 
the exact reachable set is quite wiggly. 

With approximate descriptions, the Lest fur whether it plan achieves the goal needs LO  

be modified slightly. If the optimistic reachable set for the plan doesn't intersect the goal, 
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Figure 11.7 Goal achievement for high-level plans with approximate descriptions. The 
set of goal states is shaded. For each plan, the pessimistic (solid lines) and optimistic (dashed 
lines) reachable sets are shown. (al The plan indicated by the black arrow definitely achieves 
the goal, while the plan indicated by the gray arrow definitely doesn't (b) A plan that would 
need to be refined further to determine if it really does achieve the goal. 
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then the plan doesn't work; if the pessimistic reachable set intersects the goal, then the plan 
does work (Figure 11.7(a)). With exact descriptions, a plan either works or it doesn't, but 
with approximate descriptions, there is a middle ground: if the optimistic set intersects the 
goal but the pessimistic set doesn't, then we cannot tell if the plan works (Figure 11.7(17)1.  
When this circumstance arises, the uncertainty can be resolved by refining the plan. This is 
a very common situation in human reasoning. For example, in planning the aforementioned 
two-week  Hawaii vacation, one might propose to spend two days on each of seven islands_ 
Prudence would indicate that this ambitious plan needs to be refined by adding details of 
inter-island transportation. 

An algorithm for hierarchical planning with approximate angelic descriptions is shown 
in Figure 11.8. For simplicity, we have kept to the same overall scheme used previously in 
Figure 11.5, that is, a breadth-first search in the space of refinements. As just explained, the 
algorithm can detect plans that will and won't work by checking the intersections of the opti-
mistic and pessimistic reachable sets with the goal. (The details of how to compute the reach-
able sets of a plan, given approximate descriptions of each step, are covered in Exercise 11.5.) 
When a workable abstract plan is found, the algorithm decomposes the original problem into 
subproblems, one for each step of the plan. The initial state and goal for each subproblem 
are obtained by regressing a guaranteed-reachable goal state through the action schemas for 
each step of the plan. (See Section 10.2.2 for a discussion of how regression works.) Fig-
ure 11.6(b)  illustrates the basic idea: the right-hand  circled stale is the guaranteed-reachable 
goal state, and the left-hand circled state is the intermediate goal obtained by regressing the 
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function ANGELIC-SEAR CH(problem,  hierarchy, in itialPlan)  returns solution or fail 

frontier 4— a FIFO queue with initialPlan  as the only element 
loop do 

if EMPTY?( frontier) then return fall  
plan.  P oP  ( frontier) i*  chooses the shallowest node in frontier *1 
if REAoH l-  (problem . INIT1  AL-ST ATE, plan) intersects problem _ GOAL then 

if plan is primitive then return plan /*  RFACE±  is exact for  primitive  plans 
guaranteed K—  REACH (probie?r,INITLAL-STATE,pdan)  fl problem.GOAL  
if guaranteed  and MAKING-PRoGREss(plan,  initialPlan)  then 

finalState  any element of guaranteed 
return DECOMPOS  E(hierarchy,  problem. INITIAL-STATE, plan, finalState)  

hla  4—  some HLA in plan 
prefix,suffix  the action subsequences before and after lila  in plan 
for each sequence in REFINEMENTS(hla,  outcome, hierarchy) do 

frontier 4—  INSERVAPPEND(  preform.,  sequence, suffix), frontier) 

function DEcomPosE(hierarchy,  so , plan, sf)  returns a solution 
solution 4—  an empty plan 
while plan is not  empty do 

action 4-  REMOVE-LAST(pdan)  
S4  4—  a state in REACH  (.gp,  plan) such that sf  ERF.Arin  (s,,  
problem 4—  a problem with INITIAL-STATE = si and GOAL = .sf  
solution 4—  APPENDIANCELic-SEARcH(prolitern,  hierarchy. action), solution)  
s  f s i  

return solution 

Figure 11.8 A hierarchical planning algorithm that uses angelic semantics to identify and 
commit to high-level plans that work while avoiding high-level  plans that don't. The predi- 
cate MAKING-PROGRESS checks la 'mike  sure that we aren't  studk  in an infinite regression 
of refinements. At top level, call ANGELIC- SEARCH  with [Actl  as the initialPlan.  

goal through the final action. 
The ability to commit to or reject high-level plans can give ANGELIC-SEARCH a sig-

nificant computational advantage over HIERARCHICAL-SEARCH,  which in turn may have 
a large advantage over plain old BREADTH-FIRST-SEARCH. Consider, for example, clean-
ing up a large vacuum world consisting of rectangular rooms connected by narrow corri-
dors. It makes sense to have an HLA for Navigate (as shown in Figure 11.4) and one for 
CleanWholeRoom.  (Cleaning the room could be implemented with the repeated application 
of another HLA  to clean each row.) Since there are five actions in this domain, the cosi 
for BREADTH-FIRST-SEARCH grows as 5 d ,  where d is the length of the shortest solution 
(roughly twice the total number of squares); the algorithm cannot manage even two 2 Y.  2 
rooms. HIERARCHICAL-SEARCH is more efficient, but still suffers from exponential growth 
because it tries all ways of cleaning that are consistent with the hierarchy.  ANGELIC-SEARCH 
scales approximately linearly in the number of squares—it commits to a good high-level se- 



Section 11.3. Planning and Acting in Nondetenninistic  Domains 415 

HIERARCHICAL 
LOOKAHEAD  

quence and prunes away the other options. Notice  that cleaning a set of rooms by cleaning 
each room in turn is hardly rocket science: it is easy for humans precisely because of the 
hierarchical structure of the task. When we consider how difficult humans find it to solve 
small puzzles such as the 8-puzzle,  it seems likely that the human capacity for solving com-
plex problems derives to a great extent from their skill in abstracting and decomposing the 
problem to eliminate combinatorics.  

The angelic approach can be extended to find least-cost solutions by generalizing the 
notion of reachable set. Instead of a state being reachable or not, it has a cost for the most 
efficient way to get there. (The cost is oo  for unreachable states.) The optimistic and pes-
simistic descriptions bound these costs. In this way, angelic search can find provably optimal 
abstract plans without considering their implementations. The same approach can be used to 
obtain effective hierarchical lookahead algorithms for online search, in the style of LRTA  
(page 152). In some ways, such algorithms mirror aspects of human deliberation in tasks such 
as planning a vacation to Hawaii—consideration of alternatives is done initially at an abstract 
level over long time scales; some parts of the plan are left quite abstract until execution time, 
such as how to spend two lazy days on Molokai, while others parts are planned in detail, such 
as the flights to be taken and lodging to be reserved—without these refinements, there is no 
guarantee that the plan would be feasible. 

11 .3  PLANNING AND ACTING IN NONDETERMINISTIC DOMAINS 

In this section we extend planning to handle partially observable, nondetenninistic, and un-
known environments. Chapter 4 extended search in similar ways, and the methods here are 
also similar_ sensirrless  planning (also known as conformant  planning) for environments 
with no observations; contingency planning for partially observable and nondeterministic 
environments; and online planning and replanning for unknown environments. 

While the basic concepts are the same as in Chapter 4, there are also significant dif-
ferences.  These arise because planners deal with factored representations rather than atomic 
representations. This affects the way we represent the agent's capability for action and obser-
vation and the way we represent belief states—the sets of possible physical states the agent 
might be in—for unobservable and partially observable environments. We can also take ad-
vantage of many of the domain-independent methods given in Chapter 10 for calculating 
search heuristics. 

Consider this problem: given a chair and a table, the goal is to have them match—have 
the same color. In the initial state we have two cans of paint, but the colors of the paint and 
the furniture are unknown. Only the table is initially in the agent's field of view: 

Init(  Object (  Table) A Object( Chair) I\  Can(CI)  A Can(C2)  A InView  ( Table)) 
Goad{  Color ,  e) A Color( Table, r)) 

There are two actions: removing the lid from a paint can  and painting an object using the 
paint from an open can. The action schemas  are straightforward, with one exception: we now 
allow preconditions and effects to contain variables that are not part of the action's variable 
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list. That is, Paint(x, can) does not mention the variable c, representing the color of the 
paint in the can In the fully observable case, this is not allowed—we  would have to namc  
the action Paint(x,  can ,c). But in the partially observable case, we might or might not 
know what color is in the can. The variable cis universally quantified, just like all the other 
variables in an action schema.) 

Action (RemoveLid  (can),  
PRECOND:  Can(can)  

EFFECT: Open( can)) 
Action (Paint(x, can), 

PRECOND: Object(x)  A Can(can)  Color(can,  c)  A Open(can)  
EFFECT: Color(x, e)) 

To solve a partially observable problem, the agent will have to reason about the percepts it will 
obtain when it is executing the plan. The percept will be supplied by the agent's sensors when 
it is actually acting, but when it is planning it will need a model of its sensors. In Chapter 4. 
this model was given by a function, PERcEPT(s).  For planning, we augment PDDL with a 
new type of schema, the percept schema: 

Percept (Color (x ,c), 
PRECOND: Object(x)  A InView(x) 

Percept (Color (con, r.),  
PRECOND: Can(can) A faViete(con)  A Open(can) 

The first schema says that whenever an object is in view, the agent will perceive the color 
of the object (that is, for the object a:, the agent will learn the truth value of Color(x, c) for 
all c).  The second schema says that if an open can is in view, then the agent perceives the 
color of the paint in the can. Because there are no exogenous events in this world, the color 
of an object will remain the same, even if it is not being perceived, until the agent performs 
an action to change the object's color. Of course, the agent will need an action that causes 
objects (one at a time) to come into view: 

Action I,LookAt  (x),  
PRECOND:InView(y)  A (x  y) 
EFFECT: In 112ew(x)  A —In View(y)) 

For a fully observable environment, we would have a Percept axiom with no preconditions 
for each fluent. A sensorless agent, on the other hand, has no Percept axioms at all. Note 
that even a sensorless agent can solve the painting problem. One solution is to open any can 
of paint and apply it to both chair and table, thus coercing them to be the same color (even 
though the agent doesn't know what the color is). 

A contingent planning agent with sensors can generate a better plan. First, look at the 
table and chair to obtain their colors; if they are already the same then the plan is done. If 
not look at the paint cans; if the paint in a can is the same color as one piece of furniture, 
then apply that paint to the other piece. Otherwise, paint both pieces with any color. 

Finally, an online planning agent might generate  a contingent plan with fewer branches 
at first—perhaps ignoring the possibility that no cans match any of the furniture—and deal 
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with problems when they arise by replanning. It could also deal with incorrectness of its 
action schemas.  Whereas a contingent planner simply assumes that the effects of an action 
always succeed—that painting the chair does the job—a replanning agent would check the 
result and make an additional plan to fix any unexpected failure, such as an unpainted area or 
the original color showing through. 

In the real world, agents use a combination of approaches. Car manufacturers sell spare 
tires and air bags, which are physical embodiments of contingent plan branches designed 
to handle punctures or crashes. On the other hand ;  most car drivers never consider these 
possibilities; when a problem arises they respond as replanning agents. In general, agents 
plan only for contingencies that have important consequences and a nonnegligible chance 
of happening. Thus, a car driver contemplating a trip across the Sahara desert should make 
explicit contingency plans for breakdowns, whereas a trip to the supermarket requires less 
advance planning. We next look at each of the three approaches  in more detail. 

11.3.1 Semorle.ss  planning 

Section 4.4.1 (page 138) introduced the basic idea of searching in belief-state space to find 
a solution for sensorless problems. Conversion of a sensorless planning problem to a belief-
state planning problem works much the same way as it did in Section 4.4.1; the main differ-
ences are that the underlying physical transition model is represented by a collection of action 
schemas and the belief state can be represented by a logical formula instead of an explicitly 
enumerated set of states. For simplicity, we assume that the underlying planning problem is 
deterministic. 

The initial belief state for the sensorless painting problem can ignore InView  fluents  
because the agent has no sensors. Furthermore, we take as given the unchanging facts 
Ohje.e.t.(Table)  A Ohjent(Chnir)  A Can(Cn) A Can( C2  )  because these hold in every be- 
lief state. The agent doesn't know the colors of the cans or the objects, or whether the cans 
arc open or closed, but it does know that objects and cans have colors: V  x  c  Color(x,  c).  
After Skolemizing,  (see Section 9.5), we obtain the initial belief state: 

bo  = Color(x,  C(s)) .  

In classical planning, where the dosed-world  assumption is made, we would assume that 
any fluent not mentioned in a state is false, but in sensorless (and partially observable) plan-
ning we have to switch to an open-world assumption in which states contain both positive 
and negative fluents,  and if a fluent does not appear, its value is unknown. Thus, the belief 
state corresponds exactly to the set of possible worlds that satisfy the formula. Given this 
initial belief state, the following action sequence is a solution: 

[Relauve.Li.dCan t ),  Paint (Chair, Can i ),  Paini(Table,  Curt i )]  .  

We now show how to progress the belief state through the action sequence to show that the 
final belief state satisfies the goal. 

First, note that in a given belief state b, the agent can consider any action whose pre-
conditions are satisfied by b.  (The other actions cannot be used because the transition model 
doesn't define the effects of actions whose preconditions might be unsatisfied.) According 
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to Equation (4.4) (page 139), the general formula for updating the belief state b given an 
applicable action a in a deterministic world is as follows: 

= RESULT a) =  {s' :  —REsuiTp(s,  a) and s E b} 
where RESULTp  defines the physical transition model. For the time being, we assume that the 
initial belief state is always a conjunction of literals, that is, a 1-CNF formula. To construct 
the new belief state V, we must consider what happens to each literal f in each physical state 
$  in b when action a is applied. For literals whose truth value is already known in b, the truth 
value in b'  is computed from the current value and the add list and delete list of the action. 
(For example, if is in the delete list of the action, then  is added to U.) What about a 
literal whose truth value is unknown in b? There are three cases: 

1. If the action adds e, then P will be true in V  regardless of its initial value. 
2. If the action deletes P, then Q will be false in b' regardless of its initial value. 
3. If the action does not affect t,  then 11 will retain its initial value (which is unknown) and 

will not appear in W.  

Hence, we see that the calculation of b' is almost identical to the observable case, which was 
specified by Equation (10.1) on page 368: 

= RESULT:6,a)  =  (b— DEL(a))U  ADD(a)  . 
We cannot quite use the set semantics because (1) we must make sure that b'  does not con-
tain both .e and —4 and (2) atoms may contain unbound variables. But it is still the case 
that REsuLr(b.  a) is computed by starting with b, selling  any atom that appears in DEL(a) 
to false, and setting any atom that appears in ADD( a) to true. For example, if we apply 
kemoveLid(Cani)  to the initial belief state 60,  we get 

bt  — Color(z,C(x))  A Open(Cani)  •  

When we apply the action Paint (Chair Caul),  the precondition Color (Can 1 , c) is satisfied 
by the known literal Color (x  C(x))  with binding {x/ Cam., cl  C ( Can].  )}  and the new belief 
state is 

62 = Color(s,C(x))  A Open( Cant) A Color(Chair,C(Cani))  

Finally, we apply the action Paint(Table,  Can!)  to obtain 
b3 — Color (x,C(x))  A Open(Cant)  A Color(Chair  ,  (Cant)) 

A Color(Table,C(Cani))  •  
The final belief state satisfies the goal, Color (Table ,  c) A Color(Chair, c), with the variable 
c bound to C( Cana 

The preceding analysis of the update rule has shown a very important fact: the family 
of belief states defined as conjunctions of literals is closed under updates defined by PDDL 
action schemas.  That is, if the belief state starts as a conjunction of literals, then any update 
will yield a conjunction of literals. That means that in a world with n fluents, any belief 
state can be represented by a conjunction of size G(n).  This is a very comforting result, 
considering that there are 2" states in the world. It says we can compactly represent all the 

subsets of those 2'  states that we will ever need. Moreover ;  the process of checking for belief 
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states that are subsets or supersets of previously visited belief states is also easy, at least in 
the propositional case. 

The fly in the ointment of this pleasant picture is that it only works for action schemas 
that have the same effects for all states in which their preconditions are satisfied. It is this 
property that enables the preservation of the 1-CNF  belief-state representation. As soon as the 
effect can depend on the state, dependencies are introduced between fluents and the 1-CNF 
property is lost. Consider, for example, the simple vacuum world defined in Section 3.2.1. 
Let the fluents be A tL  and AtR  for the location of the robot and CleanL  and Mardi for 
the state of the squares. According to the definition of the problem, the Suck action has no 
precondition—it  can always be done, The difficulty is that its effect depends on the robot's lo- 
cation:  when the robot is AtL, the result is CleanL, but when it is AtR,  the result is Clean.R.  
For such actions, our action schemas will need something new: a conditional effect. These 
have the syntax "when amdition:  effect," where condition is a logical formula to be com-
pared against the current state, and effect is a fonnula  describing the resulting state. For the 
vacuum world, we have 

Action(Suck,  
EFFECT: when ALL:  CleanL  A when AtR:  Cleanff,  

When applied to the initial belief state True, the resulting belief state is (AtL A CleanL) V  
(AtR  A CleanR),  which is no longer in 1-CNF. (This transition can be seen in Figure 4.14 
on page 141.) In general, conditional effects can induce arbitrary dependencies among the 
fluents in a belief state, leading to belief states of exponential size in the worst case. 

It is important to understand the difference between preconditions and conditional ef- 
fects_ All  conditional effects whose conditions are satisfied have their effects applied to  gener- 
ate the resulting state; if none are satisfied, then the resulting state is unchanged. On the other 
hand, if a precondition is unsatisfied, then the action is inapplicable and the resulting state 
is undefined. From the point of view of sensorless planning, it is better to have conditional 
effects than an inapplicable action. For example, we could split Suck into two actions with 
unconditional effects as follows: 

Action(SuckL,  
PR E COND:  AIL; EFFECT: CleanL)  

Action(Suckli,  
PRECOND:  A tR;  EFFECT: Mani?)  . 

Now we have only unconditional schemas, so the belief states all remain in I-CNF;  unfortu-
nately, we cannot determine the applicability of SuckL  and SockR  in the initial belief state. 

It seems inevitable, then, that nontrivial problems will involve wiggly belief states, just 
like those encountered when we considered the problem of state estimation for the wumpus 
world (see Figure 7.21 on page 271). The solution suggested then was to use a conservative 
approximation to the exact belief state; for example, the belief state can remain in l-CNF  
if it contains all literals whose truth values can be determined and treats all other literals as 
unknown. While this approach is sound, in that it never generates an incorrect plan, it is 
incompkre  because it may be unable to find solutions to problems that necessarily involve 
interactions among literals. To give a trivial example, if the goal is for the robot to be on 
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a clean square, then [Suck] is a solution but a sensorless agent that insists on 1-CNF  belief 
states will not find it. 

Perhaps a better solution is to look for action sequences that keep the belief state 
as simple as possible. For example, in the sensorless  vacuum world, the action sequence 
[Right, Suck, Left, Suck] generates the following sequence of belief states: 

bo  = Trite 

bit = AtR,  
b2 = AtR A CleaaR  

63 = AtL A CleauR  

b4 = AtL A CleaaR  A CieailL  

That is, the agent can solve the problem while retaining a 1-CNF belief state, even though 
some sequences (e.g., those beginning with Suck) go outside 1-CNF.  The general lesson is 
not lost on humans: we are always performing little actions (checking the time, patting our 
pockets to make sure we have the car keys, reading street signs as we navigate through a city) 
to eliminate uncertainty and keep our belief state manageable. 

There is another, quite different approach to the problem of unmanageably wiggly be- 
lief stales: don't bother computing them at all. Suppose the initial belief state is bo  and we 

would like to know the belief state resulting from the action sequence [a l , , am ].  Instead 
of computing it explicitly, just represent it as "bo  then [at, , am]."  This is a lazy but un- 
ambiguous representation of the belief state, and it's quite concise-0(n  +  in) where n is 
the size of the initial belief state (assumed to be in 1-CNF) and m is the maximum length 
of an action sequence. As a belief-state representation, it suffers from one drawback, how-
ever: determining whether the goal is satisfied, or an action is applicable, may require  a lot 
of computation. 

The computation can be implemented as an entailment test: if A„  represents the collec-
tion of successor-state axioms required to define occurrences of the actions 0 1  , .  am—as 
explained for SATPLAN in Section 10.4.1—and Gm  asserts that the goal is true after rrl  steps, 
then the plan achieves the goal if b o  A A, p  Gm , that is, if bo  A Am  A  is unsatisfiable.  
Given a modem SAT solver, it may be possible to do this much more quickly than computing 
the full belief state. For example, if none of the actions in the sequence has a particular goal 
fluent in its add list, the solver will detect this immediately. It also helps if partial results 
about the belief state—for example, fluents known to be true or false—are cached to simplify 
subsequent computations 

The final piece of the sensorless  planning puzzle is a heuristic function to guide the 
search. The meaning of the heuristic function is the same as for classical planning: an esti-
mate (perhaps admissible) of the cost of achieving the goal from the given belief state. With 
belief states, we have one additional fact: solving any subset of a belief state is necessarily 
easier than solving the belief state: 

if bi  C b2 then ft'  (bi) < (b2) •  

Hence, any admissible heuristic computed fur a subset is admissible for the belief stale itself. 
The most obvious candidates are the singleton subsets, that is, individual physical states. We 
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can take any random collection of states si, , sN  that are in the belief state 5,  apply any 
admissible heuristic h from Chapter 10, and return 

H (b) = max{ h(si), ,11(sN )}  

as the heuristic estimate for solving b.  We could also use a planning graph directly on b  itself: 
if it is a conjunction of literals (1-CNF),  simply set those literals to be the initial state layer 
of the graph. If b is not in 1-CNF, it may be possible to find sets of literals that together entail 
b. For example, if b is in disjunctive normal form (DNF), each term of the DNF formula is 
a conjunction of literals that entails b  and can form the initial layer of a planning graph. As 
before, we can take the maximum of the heuristics obtained from each set of literals. We can 
also use inadmissible heuristics such as the ignore-delete-lists heuristic (page 377), which 
seems to work quite well in practice. 

11.3.2 Contingent planning 

We saw in Chapter 4 that contingent planning—the generation of plans with conditional 
branching based on percepts—is appropriate for environments with partial observability, non-
determinism, or both. For the partially observable painting problem with the percept axioms 
given earlier, one possible contingent solution is as follows: 

[LookAt  ( Table) LookAt(Chair),  
if Color( Table, c)  A Calor(  Chair, c) then NoOp 

else [RemoveLid(Cani),  LookAt  ( Can I. ),  RemoveLid(Can2)  .  LookAt  ( Can 2 ), 
if Color( Table, a)  A Color (can, c)  then Paint (Chair , can) 
else if Color ,  ( Chair , c)  t  Color (can, a) then Paint(Table,  can) 
else [Paint (Chair, Cani),  Paint (Table, Cant)]]]  

Variables in this plan should he considered existentially quantified; the second line says 

that if there exists some color a that is the color of the table and the chair, then the agent 
need not do anything to achieve the goal. When executing this plan, a contingent-planning 
agent can maintain its belief state as a logical formula and evaluate each branch condition 
by determining if the belief state entails the condition formula or its negation. (It is up to 
the contingent-planning algorithm to make sure that the agent will never end up in a be-
lief state where the condition formula's truth value is unknown.) Note that with first-order 
conditions, the formula may be satisfied in more than one way; for example, the condition 
Cotor  ( Table, a) A COIOT  (can ,  c)  might be satisfied by {  can Cani}  and by {can"  Can2}  if 
both cans are the same color as the table, In that case, the agent can choose any satisfying 
substitution to apply to the rest of the plan. 

As shown in Section 4.4.2, calculating the new belief state after an action and subse-
quent percept is done in two stages. The first stage calculates the belief state after the action, 
just as for the sensorless agent: 

= (b  — DELM)  IJ  A DD  (  ) 
where, as before, we have assumed a belief state represented as a conjunction of literals. The 
second stage is a little trickier. Suppose that percept literals pi,...,pa  are received. One 
might think that we simply need to add these into the belief state; in fact, we can also infer 
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that the preconditions for sensing are satisfied. Now, if a percept p has exactly one percept 
axiom, Percept (p, PRECOND:  c), where c is a conjunction of literals , thcn those literals can 
be thrown into the belief state along with p. On the other hand, if p has more than one percept 
axiom whose preconditions might hold according to the predicted belief state b,  then we have 
to add in the disjunction of the preconditions. Obviously, this takes the belief state outside 
1-CNF  and brings up the same complications as conditional effects, with much the same 
classes of solutions. 

Given a mechanism for computing exact or approximate belief states, we can generate 
contingent plans with an extension of the AND—OR forward search over belief states used 
in Section 4.4. Actions with nondetermitnstic  effects—which are defined simply by using a 
disjunction in the EFFECT of the action schema—can be accommodated with minor changes 
to the belief-state update calculation and no change to the search algorithm.` For the heuristic 
function, many of the methods suggested for sensorless  planning are also applicable in the 
partially observable, nondeterministic  case. 

11.3.3 Online replanning 

Imagine watching a spot-welding robot in a car plant The robot's fast, accurate motions are 
repeated over and over again as each car passes down the line. Although technically im-
pressive, the robot probably does not seem at all intelligent because the motion is a fixed, 
preprogrammed sequence; the robot obviously doesn't "know what it's doing" in any mean-
ingful sense. Now suppose that a poorly attached door falls off the car just as the robot is 
about to apply a spot-weld. The robot quickly replaces its welding actuator with a gripper, 
picks up the door, checks it for scratches, reattaches it to the car, sends an email to the floor 
supervisor, switches back to the welding actuator, and resumes its work. All of a sudden, 
the robot's behavior seems purposive rather than rote; we assume it results not from a vast, 
precomputed contingent plan but from an online replanning process—which means that the 
robot does need to know what it's trying to do. 

Replanning presupposes some form of execution monitoring to determine the need for 
a new plan. One such need arises when a contingent planning agent gets tired of planning 
for every little contingency, such as whether the sky might fall on its hea1.3  Some branches 
of a partially constructed contingent plan can simply say Replant; if such a branch is reached 
during execution, the agent reverts to planning mode. As we mentioned earlier, the decision 
as to how much of the problem to solve in advance and how much to leave to replanning 
is one that involves tradeoffs among possible events with different costs and probabilities of 
occurring. Nobody wants to have their car break down in the middle of the Sahara desert and 
only then think about having enough water. 

2  H  cyclic solutions A TE  regnintd  for s remileterministic  problem, AND—OR  search must he generalized  ton loopy 
version such as LAO' (Hansen and Zilberstein, 2001). 
3  la  1954, a Mrs. Hodges of Alabama was hit by meteorite that crashed through her roof. In 1992. a piece of 
the Mbale meteorite hit a small boy on the head; fortunately, its descent was slowed by banana leaves (Jenniskens  
eral.,  1994). And in 2009, a German boy claimed to have been hit in the hand by a pea-sized  meteorite. Na  serious 
injuries resulted from any of these incidents, suggesting that the need for preplanning against such contingencies 
is sometimes overstated. 
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Figure 11.9  Before execution, lhe  planner comes up with a plan, here called whole man, 
to get from S to G. The agent executes steps of the plan until it expects to be in state E, but 
observes it is actually in O. The agent then replans for the minimal repair plus continuation 
to reach a 
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Replanning may also be needed if the agent's model of the world is incorrect. The model 
for an action may have a missing precondition—for example, the agent may not know that 
removing the lid of a paint can often requires a screwdriver; the model may have a missing 
effect—for example, painting an object may get paint on the floor as well; or the model may 
have a missing state variable—for example, the model given earlier has no notion of the 
amount of paint in a can, of how its actions affect this amount, or of the need for the amount 
to be nonzero. The model may also lack provision for exogenous events such as someone 
knocking over the paint can. Exogenous events can also include changes in the  goal, such 
as the addition of the requirement that the table and chair not be painted black. Without the 
ability to monitor and replan, an agent's behavior is likely to be extremely fragile if it relies 
on absolute correctness of its model. 

The online agent has a choice of how carefully to monitor the environment. We distin-
guish three levels: 

• Action monitoring: before executing an action, the agent verifies that all the precondi-
tions still hold. 

• Plan monitoring: before executing an action, the agent verifies that the remaining plan 
will still succeed. 

• Goal monitoring: before executing an action, the agent checks to see if there is a better 
set of goals it could be trying to achieve. 

In Figure 11.9 we see a schematic of action monitoring. The agent keeps track of both its 
original plan, wholeplan, and the part of the plan that has not been executed yet, which is 
denoted by plan. After executing the first few steps of the plan, the agent expects to be in 
state E. But the agent observes it is actually in state O.  It then needs to repair the plan by 
finding some point P on the original plan that it can get back to. (It may be that P is the goal 
state, O.)  The agent tries to minimize the total cost of the plan: the repair part (from 0 to P)  
plus the continuation (from P to G).  

MISSING 
PRECONDITION  

MISSING EFFECT 

MISSING STATE 
VARIABLE 

EXOGENOUS EVENT 
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Now let's return to the example problem of achieving a chair and table of matching 
colon Suppose the agent comes up with this plan: 

[LookAt  ( Table), LookA  t ( Chair), 
if Color (Table , a) A Color (Chair , c) then NoOp 

else [RemoveLid (Cani),  LookAt  ( Can 1)  
if Color(Table  ,  c)  t Color ( Cani,  c) then Paint(Chair,  Cant) 
else REPLAN]] .  

Now the agent is ready to execute the plan. Suppose the agent observes that the table and 
can of paint are white and the chair is black. It then executes Paint(Chair,  Cani).  At this 
point a classical planner would declare victory; the plan has been executed. But an online 
execution monitoring agent needs to check the preconditions of the remaining empty plan—
that the table and chair are the same color. Suppose the agent perceives that they do not 
have the same color—in fact, the chair is now a mottled gray because the black paint is 
showing through. The agent then needs to figure out a position in whole plan to aim fur 
and a repair action sequence to get there. The agent notices that the current state is identical 
to the precondition before the Paint(Chair,  , Cant) action, so the agent chooses the empty 
sequence for repair and makes its plan be the same 'Paint]  sequence that it just attempted. 
With this new plan in place, execution monitoring resumes, and the Paint action is retried. 
This behavior will Mop until the chair is perceived to be completely painted. But notice that 
the loop is created by a process of plan–execute–replan, rather than by an explicit loop in a 
plan. Note also that the original plan need not cover every contingency. If the agent reaches 
the step marked REPLAN, it can then generate a new plan (perhaps involving Cuti2).  

Action monitoring is a simple method of execution monitoring, but it can sometimes 
lead to less than intelligent behavior. For example, suppose there is no black or white paint, 
and the agent constructs a plan to salve the painting problem by painting both the chair and 
table red. Suppose that there is only enough red paint for the chair. With action monitoring, 
the agent would go ahead and paint the chair red, then notice that it is out of paint and cannot 
paint the table, at which point it would replan a repair—perhaps painting both chair and table 
green. A plan-monitoring agent can detect failure whenever the current state is such that the 
remaining plan no longer works. Thus, it would not waste time painting the chair red. Plan 
monitoring achieves this by checking the preconditions for success of the entire remaining 
plan—that is, thc  preconditions of each step in the plan, except thosc preconditions that are  
achieved by another step in the remaining plan. Plan monitoring cuts off execution of a 
doomed plan as soon as possible, rather than continuing until the failure actually occurs. 1 

 

Plan monitoring also allows for serendipity—accidental success. If someone comes along 
and paints the table red at the same time that the agent is painting the chair red, then the final 
plan preconditions are satisfied (the goal has been achieved), and the agent can go home early. 

It is straightforward to modify a planning algorithm so that each action in the plan 
is annotated with the action's preconditions, thus enabling action monitoring. It is slightly 

4  Han monitoring means that finally, after 424 pages, we have an agent that is smarter than a dung beetle (see 
page 39). A plan-monitoring agent would notice that the dung ball was missing from its grasp and would replan 
to get another ball and plug its hole. 
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more complex to enable plan monitoring. Partial-order and planning-graph planners have 
the advantage that they have already built up structures that contain the relations necessary 
for plan monitoring. Augmenting state-space planners with the necessary annotations can be 
done by careful bookkeeping as the goal fluents are regressed through the plan.  

Now that we have described a method for monitoring and replanning, we need to ask, 
"Does it work?" This is a surprisingly tricky question. If we mean, "Can we guarantee that 
the agent will always achieve the goal?" then the answer is no, because the agent could 
inadvertently arrive at a dead end from which there is no repair. For example, the vacuum 
agent might have a faulty model of itself and not know that its batteries can sun out. Once 
they do, it cannot repair any plans. If we rule out dead ends—assume that there exists a plan 
to reach the goal from any state in the environment—and assume that the environment is 
really nondeterministic,  in the sense that such a plan always has some chance of success on 
any given execution attempt, then the agent will eventually reach the goal. 

Trouble occurs when an action is actually not nondeterministic, but rather depends on 
some precondition that the agent does not know about For example, sometimes a paint 
can may be empty, so painting from that can has no effect. No amount of retrying is going to 
change this. 5  One solution is to choose randomly from among the set of possible repair plans, 
rather than to try the same one each time. In this case, the repair plan of opening another can 
might work. A better approach is to learn a better model. Every prediction failure is an 
opportunity for learning; an agent should be able to modify its model of the world to accord 
with its percepts. From then on, the replanner  will be able to come up with a repair that gets 
at the root problem, rather than relying on luck to choose a good repair. This kind of learning 
is described in Chapters 18 and 19. 

11.4 MULTIAGENT PLANNING 
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So far, we have assumed that only one agent is doing the sensing, planning, and acting. 
When there are multiple agents in the environment, each agent faces a multiagent  planning 
problem in which it tries to achieve its own goals with the help or hindrance of others. 

Between the purely single-agent and truly multiagent cases is a wide spectrum of prob- 
lems that exhibit various degrees of decomposition of the monolithic agent An agent with 
multiple effectors that can operate concurrently—for example, a human who can type and 
speak at the same time needs to do multieffeetor  planning to manage each effector while 
handling positive and negative interactions among the effectors. When the effectors are 
physically decoupled into detached units—as in a fleet of delivery robots in a factory- 
inultieffector  planning becomes multibudy  planning. A multihody  problem is still a "stan- 
dard" single-agent problem as long as the relevant sensor information collected by each body 
can be pooled—either centrally or within each body—to form a common estimate of the 
world state that then informs the execution of the overall plan; in this case, the multiple bod- 
ies act as a single body. When communication constraints make this impossible, we have 

MLL111:00DV  
PUNNING 

 

Futile repetition of a plan repair is exactly the behavior exhibited by the sphex wasp (page 39). 
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what is sometimes called a decentralized planning problem; this is perhaps a misnomer, be-
cause thc  planning phase is centralized but thc  execution phase is at least partially dccouplcd. 
In this case, the subplan constructed for each body may need to include explicit communica-
tive actions with other bodies. For example, multiple reconnaissance robots covering a wide 
area may often be out of radio contact with each other and should share their findings during 
times when communication is feasible. 

When a single entity is doing the planning, there is really only one goal, which all the 
bodies necessarily share.  When the bodies are distinct agents that do their own planning, they 
may still share identical goals; for example, two human tennis players who form a doubles 
team share the goal of winning the match Even with shared goals, however, the multibody 
and multiagent  cases are quite different In a multibody  robotic doubles team, a single plan 
dictates which body will go where on the court and which body will hit the ball. In a multi-
agent doubles team, on the other hand, each agent decides what to do; without some method 
for coordination, both agents may decide to cover the same part of the court and each may 
leave the ball tor the other to hit. 

The clearest case of a multiagent  problem, of course ;  is when the agents have different 
goals. In tennis, the goals of two opposing teams are in direct conflict, leading to the zero-
sum situation of Chapter 5.  Spectators could be viewed as agents if their support or disdain 
is a significant factor and can be influenced by the players' conduct; otherwise, they can be 
treated as an aspect of nature—just  like the weather—that is assumed to be indifferent to the 
players' intentions. 6  

Finally, some systems are a mixture of centralized and multiagent planning. For ex-
ample, a delivery company may do centralized, offline planning for the routes of its trucks 
and planes each day, but leave some aspects open for autonomous decisions by drivers and 
pilots who can respond individually to traffic and weather situations. Also, the goals of the 
company and its employees are brought into alignment, to some extent, by the payment of 
incentives (salaries and bonuses)—a  sure sign that this is a true multiagent system. 

The issues involved in multiagent planning can be divided roughly into two sets. The 
first, covered in Section 1 I .4.1,  involves issues of representing and planning for multiple 
simultaneous actions; these issues occur in all settings from multieffector to multiagent plan-
ning. The second, covered in Section 11.4.2, involves issues of cooperation, coordination, 
and competition arising in true multiagent settings. 

11.4.1 Planning with multiple simultaneous actions 

For the time being, we will treat the multieffector, multibody,  and multiagent settings in the 
same way, labeling them generically as multiactur  settings, using the generic term  actor to 
cover effectors, bodies, and agents. The goal of this section is to work out how to define 
transition models, correct plans, and efficient planning algorithms for the multiactor setting. 
A correct plan is one that, if executed by the actors, achieves the goal. (In the true multiagent 
setting, of course, the agents may not agree to execute any particular plan, but at least they 

5  We apologize to residents of the United Kingdom, where the mere act of  contemplating a game of tennis 
guarantees ram. 

L/LI  !AU  ! UK  

AS IUM  
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SYNCHRONIZATION 

JONT  ACTION 

LOOSELY COUPLED 

Actors(A,B)  
Init(At(A,  LeftBaseline) A At(B , RightNet)  A 

Approaching(Ball,  RigetBaseline))  A Partner(A,B)  A Pariner(B  ,  A) 
GoLV(Returned(Ball)  A (At(a,  RightNet)  V At(a, LeftNet))  
Actin-n(11a  (actor, Ball), 

PRECOND:Approaching(Ball,loc)  A At(actor, boc)  
EFFECT:  Rettirreed(Balf))  

Action(Go(actar,  , to), 
PRECOND:Agactor,!oc)  A to doe, 
EFFECT: At(actor,  to) A At(actor,  ioc))  

Figure 11.10  The doubles tennis problem. Two actors A and B are playing together and 
can be in one of four locations: LeiftBas ,..iine,  RighiBaseline,  _WINN.,  and RightNet.  The 
ball can be returned only if a player is in the right place. Note that each action must include 
the actor as an argument. 

will know what plans would work if they did agree to execute them.) For simplicity, we 
assume perfect synchronization: each action takes the same amount of time and actions at 
each point in the joint plan are simultaneous. 

We begin with the transition model; for the deterministic case, this is the function 
RESULT(s,  a), In the single-agent setting, there might be b different choices for the action; 
b can be quite large, especially for first -order representations with many objects to act on, 
but action schemas provide a concise representation nonetheless. In the multiactor setting 
with n actors, the single action is is replaced by a joint action (Cl,..  ,  , a0,  where a,  is the 
action taken by the ith actor. Immediately, we see two problems: first, we have to describe 
the transition model for  different joint actions; second, we have a joint planning problem 
with a branching factor of V. 

Having put the actors together into a multiactor  system with a huge branching factor, 
the principal focus of research on multiactor planning has been to decomple  the actors to 
the extent possible, so that the complexity of the problem grows linearly with n rather than 
exponentially. If the actors have no interaction with one another—for example, n actors each 
playing a game of solitaire—then we can simply solve n separate problems. If the actors are 
loosely coupled, can we attain something close to this exponential improvement? This is, of 
course, a central question in many areas of AI. We have seen it explicitly in the context of 
CSPs, where "tree like" constraint graphs yielded efficient solution methods (see page 225), 
as well as in the context of disjoint pattern databases (page 106) and additive heuristics for 
planning (page 378).  

The standard approach to loosely coupled problems is to pretend the problems are com- 
pletely decoupled and then fix up the interactions. For the transition model, this means writing 
action schemas as if the actors acted independently. Let's see how this works for the doubles 
tennis problem. Let's suppose that at one point in the game, the team has the goal of returning 
the ball that has been hit to them and ensuring that at least one of them is covering the net. 
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JOINT CLAN 

CONCURRENT 
ACTION  UST 

A first pass at a multiactor definition might look like Figure 11.10. With this definition, it is 
easy to sec that the following joint plan plan works: 

PLAN 1: 
A :  [ GO(A,  RightBaseline),  Rit(A,  Ball)] 
B : 1.1Vo0p(B),  No0p(B)]  . 

Problems arise, however, when a plan has both agents hitting the ball at the same time. In the 
real world, this won't work, but the action schema far Nil says that the ball will be returned 

successfully. Technically, the difficulty is that preconditions constrain the state in which an 
action can be executed successfully, but do not constrain other actions that might mess it up. 
We solve this by augmenting action schemas  with one new feature: a concurrent action list 
stating which actions must or must not be executed concurrently. For example, the Hit action 
could be described as follows: 

Action(Hit(e,  Ball), 
CONCURRENT:b  a = —11i1(b,  Ball) 
PRECOND: Approaching (Ball, lac) A At(a, Toe)  
FIFFF  rT7  RPt21711Pd.(13o.1  1))  

In other words, the Hit action has its stated effect only if no other Hit action by another 
agent Occurs at the same time. (In the SATPLAN approach, this would be handled by a 
partial action exclusion axiom.) For some actions, the desired effect is achieved only when 
another action occurs concurrently. For example, two agents are needed to carry a cooler full 
of beverages to the tennis court: 

Action(Carry  (a, cooler, here, there), 
CONCUR REN a A Carlo  (b, cooler, here, there) 
PRECOND:At(a, here) A At(cocler,  , here) A Cooler(eooler)  
EFFECT: At(a, there)  A At(eooler,  , there) A —At(a,  here) A —,At(cooler,  ,  here)). 

With these kinds of action schemas, any of the planning algorithms described in Chapter 10 
can be adapted with only minor modifications to generate multiactor plans. To the extent that 
the coupling among subplans is loose—meaning that concurrency constraints come into play 
only rarely during plan search—one would expect the various heuristics derived for single-
agent planning to also be effective in the multiactor context. We could extend this approach 
with the refinements of the last two chapters—HTNs,  partial observability, conditionals, exe-
cution monitoring, and replanning—but that is beyond the scope of this book. 

11.4.2  Planning with multiple agents: Cooperation and coordination 

Now let us consider the true multiagent setting in which each agent makes its own plan. To 
start with, let us assume that the goals and knowledge base are shared. One might think 
that this reduces to the multibody case—each agent simply computes the joint solution and 
executes its own part of that solution. Alas, the "the" in "the joint solution" is misleading. 
For our doubles team, more than one joint solution exists: 

PLAN 2: 
A : [ Go(A,  LeftNet),  NoOp(A)]  
B : [ Go(B,  RightBaseline), Hit(B, Ball)] .  
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if both agents can agree on either plan 1 or plan 2, the goal will be achieved. But if A chooses 
plan 2 and B chooses plan 1, then nobody will return the ball. Conversely, if A chooses 1 and 
B chooses 2, then they will both try to hit the ball. The agents may realize this, but how can 
they coordinate to make sure they agree on the plan? 

CONVENTION One option is to adopt a convention before engaging in joint activity. A convention is 
any constraint on the selection of joint plans. For example, the convention "stick to your side 
of the court" would rule out plan 1, causing the doubles partners to select plan 2. Drivers on 
a road face the problem of not colliding with each other; this is (partially) solved by adopting 
the convention "stay on the right side of the road" in most countries; the alternative, "stay 
on the left side," works equally well as long as all agents in an environment agree. Similar 
considerations apply to the development of human language, where the important thing is not 
which language each individual should speak, but the fact that a community all speaks the 

SL}SIAL  LAW'S same language. When conventions are widespread, they are called social laws. 
In the absence of a convention, agents can use communication to achieve common 

knowledge of a feasible joint plan. For example, a tennis player could shout "Mine!" or 
"Yours!" to indicate a preferred joint plan. We cover mechanisms for communication in more 
depth in Chapter 22, where we observe that communication does not necessarily involve a 
verbal exchange. For example, one player can communicate a preferred joint plan to the other 
simply by executing the first part of it. If agent A heads for the net, then agent B is obliged 
to go back to the baseline to hit the ball, because plan 2 is the only joint plan that begins with 

PLAN RECOGNITION 
 A's heading for the net. This approach to coordination, sometimes called plan recognition, 

works when a single action (or short sequence of actions) is enough to determine a joint plan 
unambiguously. Note that communication can work as well with competitive agents as with 
cooperative ones. 

Conventions can also arise through evolutionary processes. For example, seed-eating 
harvester ants are social creatures that evolved from the less social wasps. Colonies of ants 
execute very elaborate joint plans without any centralized control—the queen's job is to re-
produce, not to do centralized planning—and with very limited computation, communica-
tion, and memory capabilities in each ant (Gordon, 2000, 2007). The colony has many roles, 
including interior workers, patrollers, and foragers. Each ant chooses to perform a role ac-
cording to the local conditions it observes. For example, foragers travel away from the nest, 
search for a seed, and when they find one, bring it back immediately. Thus, the rate at which 
foragers return to the nest is an approximation of the availability of food today. When the 
rate is high, other ants abandon their current role and take on the role of scavenger. The ants 
appear to have a convention on the importance of roles—foraging is the most important—and 
ants will easily switch into the more important roles, but not into the less important. There is 
some learning mechanism: a colony learns to make more successful and prudent actions over 
the course of its decades-long life, even though individual ants live only about a year. 

One final example of cooperative multiagent behavior appears in the flocking behavior 
of birds. We can obtain a reasonable simulation of a flock if each bird agent (sometimes 

BOO 

	

	 called a bold) observes the positions of its nearest neighbors and then chooses the heading 
and acceleration that maximizes the weighted sum of these three components: 



  

(b) (C)  

Figure 11.11 (a) A simulated flock of birds, using Reynold's braids model. Image courtesy 
Giuseppe Randazzo, novastntctura.net .  (b)  An actual flock of starlings. image by Eduardo 
(pastaboy sleeps on flickr).  (c) Two competitive teams of agents attempting to capture the 
towers in  Ole  NERO game. Image courtesy RisLu  

EMERGENT 
BEHAVIOR 

1. Cohesion: a positive score for getting closer to the average position of the neighbors 
2. Separation: a negative score for getting too close to any one neighbor 
3. Alignment: a positive score for getting closer to the average heading of the neighbors 

If all the boids execute this policy, the flock exhibits the emergent behavior of flying as a 
pseudorigid body with roughly constant density that does not disperse over time, and that 
occasionally makes sudden swooping motions. You can see a still images in Figure 11.11(a) 
and compare it to an actual flock in (b). As with ants, there is no need for each agent to 
possess a joint plan that models the actions of other agents. 

The most difficult multiagent problems involve both cooperation with members of one's 
own team and competition against members of opposing teams, all without centralized con-
trol.  We see this in games such as robotic soccer or the NERO  game shown in Figure 11.11(c), 
in which two teams of software agents compete to capture the control towers. As yet, meth-
ods for efficient planning in these kinds of environments—for example, taking advantage of 
loose coupling—are in their infancy. 

11.5 SUMMARY 
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This chapter has addressed some of the complications of planning and acting in the real world 
The main points: 

■ Many actions consume resources, such as money, gas, or raw materials. It is convenient 
to treat these resources as numeric measures in a pool rather than try to reason about. 
say, each individual coin and bill in the world. Actions can generate and consume 
resources, and it is usually cheap and effective to check partial plans for satisfaction of 
resource constraints before attempting further refinements. 

• Time is one of the most important feSOLliCeS.  It can be handled by specialized schedul-
ing algorithms, or scheduling can be integrated with planning. 

http://novastntctura.net
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• Hierarchical task network (HTN)  planning allows the agent to take advice from the 
domain designer in the form of high-level actions (HLAs) that can be implemented in 
various ways by lower-level action sequences. The effects of HLAs  can be defined with 
angelic semantics, allowing provably correct high-level plans to be derived without 
consideration of lower-level implementations. HTN methods can create the very large 
plans required by many real-world applications. 

• Standard planning algorithms assume complete and correct information and determin-
istic, fully observable environments. Many domains violate this assumption. 

• Contingent plans allow the agent to sense the world during execution to dccidc what 
branch of the plan to follow, hi some cases, sensorless or conformant planning can be 
used to construct a plan that works without the need for perception. Both conformant 
and contingent plans can be constructed by search in the space of belief states. Efficient 
representation or computation of belief states is a key problem. 

• An online planning agent uses execution monitoring and splices in repairs as needed 
to recover from unexpected situations, which can be due to nondeterministic actions, 
exogenous events, or incorrect models of the environment. 

• Multiagent  planning is necessary when there are other agents in the environment with 
which to cooperate or compete. Joint plans can be constructed, but must be augmented 
with some form of coordination if two agents are to agree on which joint plan to execute. 

• This chapter extends classic planning to cover nondeterministic  environments (where 
outcomes of actions are uncertain), but it is not the last word on planning. Chapter 17 
describes techniques for stochastic environments (in which outcomes of actions have 
probabilities associated with them): Markov decision processes, partially observable 

Markov decision processes, and game theory. In Chapter 21 we show that reinforcement 
learning allows an agent to learn how to behave from past successes and failures. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Planning with time constraints was first dealt with by DEVISER (Vere, 1983). The repre-
sentation of time in plans was addressed by Allen (1984) and by Dean et al. (1990) in the 
FoRtiiN  system. NONLIN+ (Tate and Whiter, 1984) and SIPE  (Wilkins, 1988, 1990) could 
reason about the allocation of limited resources to various plan steps. 0-PLAN  (Bell and 
Tate, 1985), an HTN planner, had a uniform, general representation for constraints on time 
and resources. In addition to the Hitachi application mentioned in the text, 0-PLAN has 
been applied to software procurement planning at Price Waterhouse and back-axle assembly 
planning at Jaguar Cars. 

The two planners SAPA  (Do and Kambhampati, 2001) and T4 (Haslum and Geffner,  
2001) both used forward state-space search with sophisticated heuristics to handle actions 
with durations and resources. An alternative is to use very expressive action languages, but 
guide them by human-written domain-specific  heuristics, as is done by ASPEN (Fukunaga  
et al., 1997), HSTS (Jonsson et al., 2000), and IxTeT (Ghallab and Laruelle, 1994). 



432 Chapter I 1  . Planning and Acting in the Real World 

MACROPS  

ABETFIACTIONI  
H IEPARCHV  

CASE-BASED 
PLANNING  

A number of hybrid planning-and-scheduling systems have been deployed: Isis (Fox 
et al., 1982;  Fox, 1990) has been used for job shop scheduling at Westinghouse, GARI (Dc- 
scone  and Latombe, 1985) planned the machining and construction of mechanical parts, 
FORBIN was used for factory control, and NONLIN+ was used for naval logistics planning. 
We chose to present planning and scheduling as two separate problems; (Cushing et al., 2007) 
show that this can lead to incompleteness on certain problems, There is a long history of 
scheduling in aerospace. T- ScHED  (Drabble,  1990) was used to schedule mission-command 
sequences for the LIDSAT-II  satellite. OPTIMUM-Ail/  (Aarup et al., 1994) and PLAN-FRS  1 
(Fuchs et al., 1990), both based on 0 -PLAN, were used for spacecraft assembly and obser-
vation planning, respectively, at the European Space Agency. SPIKE (Johnston and Adorf.  
1992) was used for observation planning at NASA for the Hubble Space Telescope, while 
the Space Shuttle Ground Processing Scheduling System (Deale et al., 1994) does job-shop 
scheduling of up to 16,000 worker-shifts. Remote Agent (Museettula  ex al., 1998) became 
the first autonomous planner–scheduler to control a spacecraft when it flew onboard the Deep 
Space One probe in 1999. Space applications have driven the development of algorithms for 
resource allocations:  see Laborie  (2003) and Muscettola (2002).  The literature on scheduling 
is presented in a classic survey article (Lawler et c11.,  1993), a recent book (Pinedo,  2008), 
and an edited handbook (Blazewicz el al., 2007). 

The facility in the STRIPS program for learning macrops—"macro-operators"  consist- 
ing of a sequence of primitive steps—could  be considered the first mechanism for hierarchi-
cal planning (Pikes et al., 1972). Hierarchy was also used in the LAWALY system (Siklossy 
and Dreussi, 1973). The ABSTRIPS system (Sacerdoti, 1974) introduced the idea of an ab-
straction  hierarchy, whereby planning at higher levels was permitted to ignore lower-level 
preconditions of actions in order to derive the general structure of a working plan. Austin 
Tate's Ph.D. thesis (1975b)  and work by Earl Sacerdoti (1977) developed the basic ideas of 
HTN planning in its modem form. Many practical planners, including 0-PLAN and SIPE. 
are HTN planners. Yang (1990) discusses properties of actions that make HTN planning ef-
ficient_ F,rol,  Hendler, and Nau  (1994,  1996) present a complete hierarchical decomposition 
planner as well as a range of complexity results for pure HTN planners. Our presentation of 
HLAs  and angelic semantics is due to Marthi et al. (2007, 2008). Kambhampati etal.  (1998) 
have proposed an approach in which decompositions are just another form of plan refinement, 
similar to the refinements for non-hierarchical partial-order planning. 

Beginning with the work on macro-operators in S TRIPS, one of the goals of hierarchical 
planning has been the reuse of previous planning experience in the form of generalized plans. 
The technique of explanation-based learning. described in depth in Chapter 19, has been 
applied in several systems as a means of generalizing previously computed plans, including 
SOAR (Laird et al., 1986) and PRODIGY (Carbonell et al., 1989). An alternative approach is 
to store previously computed plans in their original form and then reuse them to solve new. 
similar problems by analogy to the original problem. This is the approach taken by the field 
called case-based planning (Carbonell, 1983; Alterman, 1988; Hammond, 1989). Kamb- 
hampati  (1994) argues that ease-based planning should be analyzed as a form of refinement 
planning and provides a formal foundation for case-based partial-order planning. 
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Early planners lacked conditionals and loops, but some could use coercion to form 
conformant  plans. Saccrdoti's NOAH solved the "keys and boxes" problem, a planning chal-
lenge problem in which the planner knows little about the initial state, using coercion. Ma-
son (1993) argued that sensing often can and should be dispensed with in robotic planning, 
and described a sensorless plan that can move a tool into a specific position on a table by a 
sequence of tilting actions, regardless of the initial position. 

Goldman and Boddy (1996) introduced the term  conformant  planning, noting that sen-
sorless plans are often effective even if the agent has sensors. The first moderately efficient 
conformant planner was Smith and Weld's (1998) Conformant Graphplan or CGP. Ferraris 
and Giunchiglia (2000) and Rintanen (1999) independently developed SATPLAN-based con-
formant  planners. Bonet and Geffner  (2000) describe a conformant planner based on heuristic 
search in the space of belief states, drawing on ideas first developed in the 1960s for partially 
observable Markov  decision processes, or POMDPs (see Chapter 17). 

Currently, there are three main approaches to conformant  planning The first two use 
heuristic search in belief-state space: HSCP (Bertoli et al., 2001a) uses binary decision 
diagrams (BDDs) to represent belief states, whereas Hoffmann and Brafman (2006) adopt 
the lazy approach of computing precondition and goal tests on demand using a SAT solver. 
The third approach, championed primarily by Jussi Rintanen (2007), formulates the entire 
sensorless planning problem as a quantified Boolean formula (QBF)  and solves it using a 
general-purpose QBF solver. Current conformant planners are five orders of magnitude faster 
than CGP. The winner of the 2006 conformant-planning track at the International Planning 
Competition was To  (Palacios and Geffner,  2007), which uses heuristic search in belief-state 
space while keeping the belief-state representation simple by defining derived literals that 
cover conditional effects. Bryce and Kambhampati (2007) discuss how a planning graph can 
be generalized to generate good heuristics for conformant and contingent planning. 

There has been some confusion in the literature between the terms "conditional" and 
"contingent" planning. Following Majercik and Littman (2003), we use "conditional" to 
mean a plan (or action) that has different effects depending on the actual state of the world, 
and "contingent" to mean a plan in which the agent can choose different actions depending 
on the results of sensing. The problem of contingent planning received more attention after 
the publication of Drew McDermott's (1978a) influential article, Planning and Acting. 

The contingent-planning approach described in the chapter is based on Hoffmann and 
Brafman (2005), and was influenced by the efficient search algorithms for cyclic AND-Olt  
graphs developed by Jimenez and Torras (2000) and Hansen and Zilberstein (2001). Bertoli 
et al. (2001b) describe MBP (Model-Based Planner), which uses binary decision diagrams 
to do conformant  and contingent planning. 

In retrospect, it is now possible to see how the major classical planning algorithms led 
to extended versions for uncertain domains. Fast-forward heuristic search through state space 
led to forward search in belief space (Bonet and Geffner,  2000; Hoffmann and Brafman,  
2005); SATPLAN led to stochastic SATPLAN  (Majercik and Littman, 2003) and to planning 
with quantified Boolean logic (Rintanen, 2007); partial order planning led to UWL (Etzioni 
et al., 1992) and CNLP (Prot  and Smith, 1992); GRAPHPLAN  led to Sensory Graphplan  ur 
SGP (Weld et al., 1998). 
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The first online planner with execution monitoring was PLANEx  (Pikes et al., 1972), 
which worked with the STRIPS planner to control the robot Shakcy. The NASL planner 
(McDermott, 1978a) treated a planning problem simply as a specification for carrying out a 
complex action, so that execution and planning were completely unified. SIPE  (System for 
Interactive Planning and Execution monitoring) (Wilkins, 1988, 1990) was the first planner 
to deal systematically with the problem of replanning. It has been used in demonstration 
projects in several domains including planning operations on the flight deck of an aircraft 
carrier, job-shop scheduling for an Australian beer factory, and planning the construction of 
multistory buildings (Kartam and Levitt, 1990). 

In the mid-1980s, pessimism about the slow run times of planning systems led to the 
REACTIVE  PLANN I NG  proposal of reflex agents called reactive planning systems (Brooks, 1986, Agre and Chap-

man, 1987).  PENGI (Agre and Chapman, 1987) could play a (fully observable) video game 
by using Boolean circuits combined with a "visual" representation of current goals and the 
agent's internal state. "Universal plans" (Schoppers, 1987, 1989) were developed as a lookup- 

POLICY  table method for reactive planning, but turned out to be a rediscovery of the idea of policies 
that had long been used in Markov decision processes (see Chapter 17).  A universal plan (or 
a policy) contains a mapping from any state to the action that should be taken in that state. 
Koenig (2001) surveys online planning techniques, under the name Agent-Centered  Search. 

Multiagent planning has leaped in popularity in recent years, although it does have 
a long history. Konolige (1982) formalizes multiagent planning in first-order logic, while 
Pednault (1986) gives a STRIPS-style  description. The notion of joint intention, which is es-
sential if agents are to execute a joint plan, comes from work on communicative acts (Cohen 
and Levesque, 1990; Cohen et al., 1990).  Boutilier  and Brafman (2001) show how to adapt 
partial-order planning to a multiactor setting.  Brafman  and Domshlak (2008) devise a mul-
tiactor  planning algorithm whose complexity grows only linearly with the number of actors, 
provided that the degree of coupling (measured partly by the tree width of the graph of inter-
actions among agents) is bounded. Petrik  and Zilberstein (2009) show that an approach based 
on bilinear programming outperforms the cover-set approach we outlined in the chapter. 

We have barely skimmed the surface of work on negotiation in multiagent planning. 
Durfee and Lesser (1989) discuss how tasks can be shared out among agents by negotiation. 
Kraus et al. (1991) describe a system for playing Diplomacy, a board game requiring negoti-
ation, coalition formation, and dishonesty. Stone (2000) shows how agents can cooperate as 
teammates in the competitive, dynamic, partially observable environment of robotic soccer. In 
a later article, Stone (2003) analyzes two competitive multiagent environments—RoboCup,  
a robotic soccer competition, and TAC, the auction-based Trading Agents Competition—
and finds that the computational intractability of our current theoretically well-founded ap-
proaches has led to many multiagent systems being designed by ad hoc methods. 

In his highly influential Society of Mind theory, Marvin Minsky (1986, 2007) proposes 
that human minds are constructed from an ensemble of agents. Livnat and Pippenger (2006) 
prove that, for the problem of optimal path-finding, and given a limitation on the total amount 
of compiling resources, the best architecture for an agent is an ensemble of subagents, each 
of which tries to optimize its own objective, and all of which are in conflict with one another. 
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The boid model on page 429 is due to Reynolds (1987), who won an Academy Award 
for its application to swamis of penguins in Batman Returns. The NERD  game and the meth-
ods for learning strategies are described by Bryant and Miikkulainen (2007). 

Recent book on multiagent systems include those by Weiss (2000a), Young (2004), 
Vlassis (2008), and Shoham and Leyton-Brown (241109).  There is an annual conference on 
autonomous agents and multiagent systems (AAMAS). 

EXERCISES 

111 The goals we have considered so far all ask the planner to make the world satisfy the 
goal at just one time step. Not all goals can be expressed this way: you do not achieve the 
goal of suspending a chandelier above the ground by throwing it in the air. More seriously, 
you wouldn't want your spacecraft life-support system to supply oxygen one day but not 
the next. A maintenance goal is achieved when the agent's plan causes a condition to hold 
continuously from a given state onward. Describe how to extend the formalism of this chapter 
to support maintenance goals. 

11.2 You have a number of trucks with which to deliver a set of packages. Each package 
starts at some location on a grid map, and has a destination somewhere else. Each truck is di-
rectly controlled by moving forward and turning. Construct a hierarchy of high-level actions 
for this problem. What knowledge about the solution does your hierarchy encode? 

11.3 Suppose that a high-level action has exactly one implementation as a sequence of 
primitive actions. Give an algorithm for computing its preconditions and effects, given the 
complete refinement hierarchy and schemas for the primitive actions. 

11.4 Suppose that the optimistic reachable set of a high-level plan is a superset of the goal 
set; can anything be concluded about whether the plan achieves the goal'? What it the pes-
simistic reachable set doesn't intersect the goal set? Explain. 

113 Write an algorithm that takes an initial state (specified by a set of propositional literals) 
and  a sequence of HLAs (each defined by preconditions and angelic specifications of opti-
mistic and pessimistic reachable sets) and computes optimistic and pessimistic descriptions 
of the reachable set of the sequence. 

11.6 In Figure 11.2 we showed how to describe actions in a scheduling problem by using 
separate fields for DURATION. USE, and CONSUME. Now suppose we wanted to combine 
scheduling with nondetenninistic  planning, which requires nomleterininistic  and conditional 
effects. Consider each of the three fields and explain if they should remain separate fields, or 
if they should become effects of the action. Give an example for each of the three. 

11.7 Some of the operations in standard programming languages can be modeled as actions 
that change the state of the world. For example, the assignment operation changes the con- 
tents of a memory location, and the punt operation changes the state of the output stream. A 
program consisting of these operations can also be considered as a plan, whose goal is given 
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by the specification of the program. Therefore, planning algorithms can be used to construct 
programs that achieve a given specification. 

a. Write an action schema for the assignment operator (assigning the value of one variable 
to another). Remember that the original value will be overwritten! 

b. Show how object creation can be used by a planner to produce a plan for exchanging 
the values of two variables by using a temporary variable.  

11.8 Suppose the Flip action always changes the truth value of variable L. Show how 
to define its effects by using an action schema with conditional effects. Show that, despite 
the use of conditional effects, a I -CNF belief state representation remains in 1-CNF after a 
Flip.  

11_9  In the blocks world we were forced to introduce two action schemas, Move. and 
Move To Table, in order to maintain the Clear predicate properly. Show how conditional 
effects can be used to represent both of these cases with a single action. 

11.10 Conditional effects were illustrated for the Suck action in the vacuum world—which 
square becomes clean depends on which square the robot is in. Can you think of a new set of 
propositional variables to define states of the vacuum world, such that Suck has an uncondi-
tional description? Write out the descriptions of Suck, Left, and Right, using your proposi-
tions, and demonstrate that they suffice to describe all possible states of the world. 

11.11 Find a suitably dirty carpet, free of obstacles, and vacuum it. Draw the path taken 
by the vacuum cleaner as accurately as you can. Explain it, with reference to the forms of 
planning discussed in this chapter. 

11.12 To the medication problem in the previous exercise, add a Test action that has the 
conditional effect Culture Growth when Disease is true and in any case has the perceptual 
effect Known(CultureGrowth).  Diagram a conditional plan that solves the problem and 
minimizes the use of the Medicate action. 



12  KNOWLEDGE 
REPRESENTATION 

In which we show how to use first-order logic to represent the most important 
aspects of the real world, such as action, space, time, thoughts, and shopping. 

The previous chapters described the technology for knowledge-based agents: the syntax, 
semantics, and proof theory of propositional and first-order logic, and the implementation of 
agents that use these logics. In this chapter we address the question of what content to put 
into such an agent's knowledge base—how to represent facts about the world. 

Section 12.1 introduces the idea of a general ontology, which organizes everything in 
the world into a hierarchy of categories. Section 12.2 covers the basic categories of objects, 
substances, and measures; Section 12_3  covers events, and Section 12.4 discusses knowledge 
about beliefs, We then return to consider the technology for reasoning with this content: 
Section 12.5 discusses reasoning systems designed for efficient inference with categories, 
and Section 12.6 discusses reasoning with default information. Section 12.7 brings all the 
knowledge together in the context of an Internet shopping environment. 

12.1 ONTOLOGICAL ENGINEERING 

ONTOLOGICAL  
ENGINEERIVG  

In "toy" domains, the choice of representation is not that important; many choices will work. 
Complex domains such as shopping on the Internet or driving a car in traffic require more 
general and flexible representations. This chapter shows how to create these representations, 
concentrating on general concepts—such as Events, Time, Physical Objects, and Beliefs—
that occur in many different domains. Representing these abstract concepts is sometimes 
called ontological engineering. 

The prospect of representing everything in the world is daunting. Of course, we won't 
actually write a complete description of everything—that would be far too much for even a 
1000-page  textbook—but we will leave placeholders where new knowledge for any domain 
can fit in. For example, we will define what it means to be a physical object, and the details of 
different types of objects—robots, televisions, hooks, or whatever—can be filled in later. This 
is analogous to the way that designers of an object-oriented pi  ogramming  framework (such as 
the Java Swing graphical framework) define general concepts like Window, expecting users to 
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AbstractObjects GerteralizedEvents  

Sets Numbers RepresentationalObjects Interval 

Categories Sentences Measurements Moments 

Places  PhysicalObjects Processes 

Things Stuff 

Times Weights Animals Agents  Solid Liquid Gas 

Ilinuans  

Figure 12.1  The upper ontology of the world, showing the topics in  be covered later in 
the chapter. Each link indicates that the lower concept is a specialization of the upper one. 
Specializations are not necessarily disjoint; a human is both an animal and an agent, for 
example. We will see in Section 12.3.3  why physical objects come under generalized events. 
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UPPER ONTCLOGY  

use these to define more specific concepts like SpreadsheetWindow.  The general framework 
of concepts is called an upper ontology because of the convention of drawing graphs with 
the general concepts at the top and the more specific concepts below them, as in Figure 12.1. 

Before considering the ontology further, we should state one important caveat. We 

have elected to use first-order logic to discuss the content and organization of knowledge, 
although certain aspects of the real world are hard to capture in FOL.  The principal difficulty 
is that most generalizations have exceptions or hold only to a degree. For example, although 
"tomatoes are red" is a useful rule, some tomatoes are green, yellow, or orange. Similar 
exceptions can be found to almost all the rules in this chapter, The ability to handle exceptions 
and uncertainty is extremely important, but is orthogonal to the task of understanding the 
general ontology. For this reason, we delay the discussion of exceptions until Section 12.5 of 
this chapter, and the more general topic of reasoning with uncertainty until Chapter 13. 

Of what use is an upper ontology? Consider the ontology for circuits in Section 8.4.2. 
It makes many simplifying assumptions: time is omitted completely; signals are fixed and do 
not propagate; the structure of the circuit remains constant. A more general ontology would 
consider signals at particular times, and would include the wire lengths and propagation de-
lays. This would allow us to simulate the timing properties of the circuit, and indeed such 
simulations are often carried out by circuit designers. We could also introduce more inter-
esting classes of gates, for example, by describing the technology (TTL,  CMOS, and so on) 
as well as the input—output specification. If we wanted to discuss reliability or diagnosis, we 

would include the possibility that the structure of the circuit or the properties of the gates 
might change spontaneously. To account for stray capacitances, we would need to represent 
where the wires are on the board. 
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If we look at the wumpus  world, similar considerations apply. Although we do represent 
time, it has a simple structure: Nothing happens except when the agent acts, and all changes 
are instantaneous. A more general ontology, better suited for the real world, would allow for 
simultaneous changes extended over time. We also used a Pit predicate to say which squares 
have pits. We could have allowed for different kinds of pits by having  several individuals 
belonging to the class of pits, each having different properties. Similarly, we might want to 
allow for other animals besides wumpuses. It might not be possible to pin down the exact 
species from the available percepts, so we would need to build up a biological taxonomy to 
help the agent predict the behavior of cave-dwellers from scanty clues. 

For any special-purpose ontology, it is possible to make changes like these to move 
toward greater generality. An obvious question then arises: do all these ontologies converge 
on a general-purpose ontology? After centuries of philosophical and computational inves-
tigation,  the answer is "Maybe:' In this section,  we present one general-purpose ontology 
that synthesizes ideas from those centuries. Two major characteristics of general-purpose 
ontologies distinguish them from collections of special-purpose ontologies: 

• A general-purpose ontology should be applicable in more or less any special-purpose 
domain (with the addition of domain-specific axioms). This means that no representa-
tional issue can be finessed or brushed under the carpet. 

• In any sufficiently demanding domain, different areas of knowledge must be unified, 
because reasoning and problem solving could involve several areas simultaneously. A 
robot circuit-repair system, for instance, needs to reason about circuits in terms of elec-
trical connectivity and physical layout, and about time, both for circuit timing analysis 
and estimating labor costs. The sentences describing time therefore must be capable 
of being combined with those describing spatial layout and must work equally well for 
nanoseconds and minutes and for angstroms and meters. 

We should say up front that the enterprise of general ontological engineering has so far had 
only limited success. None of the top Al applications (as listed in Chapter 1) make use 
of a shared ontology—they all use special-purpose knowledge engineering. Social/political 
considerations can make it difficult for competing parties to agree on an ontology. As Tom 
Gruber (2004) says, "Every ontology is a treaty—a social agreement—among  people with 
some common motive in sharing." When competing concerns outweigh the motivation for 
sharing, there can be no common ontology. Those ontologies that do exist have been created 
along four routes: 

1. By a team of trained ontologist/logicians, who architect the ontology and write axioms. 
The CYC system was mostly built this way (Lenat and Guha, 1990). 

2. By importing categories, attributes, and values from an existing database or databases. 
DBPEDIA  was built by importing structured facts from Wikipedia (Biter et al., 2007). 

3. By parsing text documents and extracting information from them. TEXTRUNNER  was 
built by reading a large corpus of Web pages (Banko and Etzioni. 2008). 

4. By enticing unskilled amateurs to enter commonsense knowledge. The OPENMIND 
system was built by volunteers who proposed facts in English (Singh et al., 2002; 
Chklovski and Gil, 2005). 
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12.2 CATEGORIES AND OBJECTS 

CATEGORY  

RDICATION  

TAXONOMY 

The organization of objects into categories is a vital part of knowledge representation. Al-
though interaction with the world takes place at the level of individual objects, much reason-
ing takes place at the level qf  categories_  For example, a shopper would normally have the 
goal of buying a basketball, rather than a particular basketball such as BB 9 .  Categories also 
serve to make predictions about objects once they are classified.  One infers the presence  of 

certain objects from perceptual input, infers  category membership from the perceived proper-
ties of the objects, and then uses category information to make predictions about the objects. 
For example, from its green and yellow mottled skin, one-foot diameter, ovoid shape, red 
flesh, black seeds, and presence in the fruit aisle, one can infer that an object is a watermelon; 
from this, one infers that it would be useful for fruit salad. 

There are two choices for representing categories in first-order logic: predicates and 
objects. That is, we can use the predicate Basketball(b),  or we can reify 1  the category as 
an object, Basketballs. We could then say Mernber(b, Basketballs), which we will abbre-
viate as b  c  Bask etballs, to say that b is a member of the category of basketballs. We say 
Sttbset(Basketballs,  Balls), abbreviated as Basketballs C  Balls, to say that Basketballs is 
a subcategory of Balls. We will use subcategory, subclass, and subset interchangeably_ 

Categories serve to organize and simplify the knowledge base through inheritance. If 
we say that all instances of the category Food are edible, and if we assert that Fruit  is a 
subclass of Food and Apples is a subclass of Fruit, then we can infer that every apple is 
edible. We say that the individual apples inherit the property of edibility, in this case from 
their membership in the Food category. 

Subclass relations organize categories into a taxonomy, or taxonomic hierarchy. Tax-
onomies have been used explicitly for centuries in technical fields. The largest such taxonomy 
organizes about 10 million living and extinct species, many of them beetles? into a single hi-
erarchy; library science has developed a taxonomy of all fields of knowledge, encoded as the 
Dewey Decimal system; and tax authorities and other government departments have devel-
oped extensive taxonomies of occupations and commercial products. Taxonomies are also an 
important aspect of general commonsense knowledge. 

First-order logic makes it easy to state facts about categories, either by relating ob-
jects to categories or by quantifying over their members. Here are some types of facts, with 
examples of each: 

• An object is a member of a category. 
BB9  E Basketballs 

■ A category is a subclass of another category. 
Basketballs C  Balls 

• All members of a category have some properties. 
E  RolAkeihrtil.q) Sph ■,..rirril(.r)  

Turning a proposition into an object is called reification, from the Latin word res, or thing. John McCarthy 
proposed the term "thingification,"  but it never caught on. 
2  The famous biologist]. B. S. Haldane deduced An inordinate fondness for beetles" on the part of the Creator. 

SUBCATEGORY 

INHERITANCE  
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• Members of a category can be recognized by some properties. 
Orange(x)  A Round(x) A Diameter(x)=  9.5" A x E Balls x  E Basketballs 

• A category as a whole has some properties. 
Dogs E DomesticatedSpecies  

Notice that because Dogs is a category and is a member of DowestieatedSpecies,  the latter 
must be a category of categories. Of course there are exceptions to many of the above rules 
(punctured basketballs are not spherical); we deal with these exceptions later. 

Although subclass and member relations are the most important ones for categories, 
we also want to be able to state relations between categories that are not subclasses of each 
other. For example, if we just say that Males and Females are subclasses of Animals, then 
we have not said that a male cannot be a female. We say that two or more categories are 
disjoint if they have no members in common. And even if we know that males and females 
are disjoint, we will not know that an animal that is not a male must be a female, unless 
we say that males and females constitute an exhaustive decomposition of the animals_ A 
disjoint exhaustive decomposition is known as a partition. The following examples illustrate 
thcsc three concepts: 

Disjoint({ Animals , Vegetables}) 
ErhaustiveDecomposition  (f  Americans , Canadians, Mexicans}, 

NorthAmericans)  
Partition({Males, Females} Animals) 

(Note that the ExhaustiveDecomposition  of NorthAmericans is not a Partition, because 
some people have dual citizenship.) The three predicates are defined as follows: 

Disjoint(s) E s A c2 E s Act  
4 

 c2 4-  intersection(ei,  02)  = 
ExhaustiveDecomposition(s, {S i Ec  <=>  ll c2 c2ERAiE 02)  
Partition(s,  a) Disjoint(s)  A ExhaustiveDecomposition  (s a) .  

Categories can also be defined by providing necessary and sufficient conditions for 
membership. For example, a bachelor is an unmarried adult male: 

x E Bachelors 0 Unmarried(x)  A x E Adults A r E Males . 

As we discuss in the sidebar on natural kinds on page 443, strict logical definitions for cate-
gories are neither always possible nor always necessary. 

12.2.1 Physical composition 

The idea that one object can be part of another is a familiar one. One's nose is part of one's 
head, Romania is part of Europe, and this chapter is part of this book_  We use the general 
PartOf relation to say that one thing is part of another. Objects can be grouped into PartOf  
hierarchies, reminiscent of the Subset hierarchy: 

PartOf (Bucharest, Rornanla)  
PartOf  ( Romania, EasternEurope)  
PartOf  (EasternEurope,  Europe) 
PartOf (Europe , Earth) . 

DISJOINT 

EXHAUSTIVE 
DECOMPOSITION 

PARTITION 
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The PartOf relation is transitive and reflexive; that is, 

PartOf (x ,y)  A PartOf  ( y, z) = PartOf  ( x, z) .  
PartOf  (T,T)  . 

Therefore, we can conclude PartOf  ( Bucharest, Earth). 
COMPOSITE OBJECT Categories of composite objects are often characterized by structural relations among 

parts. For example, a biped has two legs attached to a body: 

Biped (a) i2,  b Leg(li)  A Leg(12)  A Body (b) A 
PartOf  (11,a)  A PartOf  (l2,  a) A PartOf  (b,  cr)  n  

Attached(11,b)  A Attached(I2,b)  A 
/2  A rv. 

 la Leg(la)  A PartOf  (l3,  a) = (i3  = it V la = /2)]  •  
The notation for "exactly two" is a little awkward; we are forced to say that there are two 
legs, that they are not the same, and that if anyone proposes a third leg, it must be the same 
as one of the other two. In Section 12.5.2, we describe a formalism called description logic 
makes it easier to represent constraints like "exactly two." 

We can define a PartPartition  relation analogous to the Partition relation for cate-
gories, (Sec Exercise 12.8.) An object is composed  of the parts in its PartPartition and can 
be viewed as deriving some properties from those parts. For example, the mass of a compos-
ite object is the sum of the masses of the parts. Notice that this is not the case with categories, 
which have no mass, even though their elements might. 

It is also useful to define composite objects with definite parts but no particular struc-
ture. For example, we might want to say "The apples in this bag weigh two pounds." The 
temptation would be to ascribe this weight to the set of apples in the bag, but this would be 
a mistake because the set is an abstract mathematical concept that has elements but does not 

BUNCH 

	

	 have weight. Instead, we need a new concept, which we will call a bunch. For example, if 
the apples are Apple i ,  Apple 2 , and Apple s , then 

BunchOf ((Apple ' , Apple 2, A pple3  }) 

denotes the composite object with the three apples as parts (not elements). We can then use the 
bunch as a normal, albeit unstructured. object. Notice that BunetiOf  ({x})  = T.  Furthermore, 
BunchOf (Apples) is the composite object consisting of all apples—not to be confused with 
Apples, the category or set of all apples_ 

We can define BanchOf  in terms of the PartOf relation. Obviously, each element of 
s  is part of BunehOf  (s):  

Vx  xis = PartOf  (x,  BunchOf  (s))  . 

Furthermore, Bunch. Of (a) is the smallest object satisfying this condition. In other words, 
BunchOf (s)  must be part of any object that has all the elements of s  as parts: 

dy  [Vx xEs PartOf (x, PartOf ( Bunch0f(s),  y)  . 

LOGICAL 
MINIMIZATION These axioms are an example of a general technique called logical minimization, which 

means defining an object as the smallest one satisfying certain conditions. 
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NATURAL KINDS 

Some categories have strict definitions: an object is a triangle if and only if it is 
a polygon with three sides. On the other hand, most categories in the real world 
have no clear-cut definition; these are called natural kind categories. For example, 
tomatoes tend to be a dull scarlet; roughly spherical; with an indentation at the top 
where the stem was; about two to four inches in diameter; with a thin but tough 

skin; and with flesh, seeds, and juice inside. There is, however, variation: some 
tomatoes arc yellow or orange, unripe tomatoes arc green, some arc smaller or 
larger than average, and cherry tomatoes are uniformly small. Rather than having 
a complete definition of tomatoes, we have a set of features that serves to identify 
objects that are clearly typical tomatoes, but might not be able to decide for other 
objects. (Could there be a tomato that is fuzzy like a peach?) 

This poses a problem for a logical agent. The agent cannot be sure that an 
object it has perceived is a tomato, and even if it were sure, it could not be cer- 
tain which of the properties of typical tomatoes this one has This problem is an 

inevitable consequence of operating in partially observable environments. 
One useful approach is to separate what is true of all instances of a cate-

gory from what is true only of typical instances. So in addition to the category 
Tomatoes, we will also have the category Typical( Tomatoes). Here, the Typical 
function maps a category to the subclass that contains only typical instances: 

Typical(c) C c 

Most knowledge about natural kinds will actually be about their typical instances: 

E Typical{ Tomatoes)  Red(x)  A Round(x)  . 

Thus, we can write down useful facts about categories without exact defini-
tions. The difficulty of providing exact definitions for most natural categories was 
explained in depth by Wittgenstein (1953). He used the example of games to show 
that members of a category shared "family resemblances"  rather than necessary 
and sufficient characteristics: what strict definition encompasses chess, tag, soli-
taire, and dodgeball? 

The utility of the notion of strict definition was also challenged by 
Quine (1953). He pointed out that even the definition of "bachelor" as an un-
married adult male is suspect; one might, for example, question a statement such 
as "the Pope is a bachelor." While not strictly false, this usage is certainly infe- 
licitous because it induces unintended inferences on the part of the listener. The 
tension could perhaps be resolved by disinguishing  between logical definitions 
suitable for internal knowledge representation and the more nuanced criteria for 
felicitous linguistic usage. The latter may be achieved by "filtering" the assertions 
derived from the former. It is also possible that failures of linguistic usage serve as 
feedback for modifying internal definitions, so that filtering becomes unnecessary. 
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MEASURE 

UNFIS  FUNC110N  

12.2.2 Measurements 

In both scientific and commonsense theories of the world, objects have height, mass, cost. 
and so on. The values that we assign for these properties are called measures. Ordi-
nary quantitative measures are quite easy to represent. We imagine that the universe in-
cludes abstract "measure objects," such as the length that is the length of this line seg-
ment. I  l  We can call this length 1.5 inches or 3.81 centimeters. Thus. 
the same length has different names in our language.We  represent the length with a units 
function that takes a number as argument (An alternative scheme is explored in Exer-
cise 12.9.) If the line segment is called Li, we can write 

Lersgth(L i )  = Inches(1.5)  = Centimeters(3.81)  .  

Conversion between units is done by equating multiples of one unit to another: 
Centimeters(2.54  x d) = Inches(d)  .  

Similar axioms can be written for pounds and kilograms, seconds and days, and dollars and 
cents. Measures can be used to describe objects as follows: 

Diatneter(Basketballis  = Inches.:9.5)  .  
LigtPrice(Baskeibcdl i2 ;  = ${19)  _  
d E  Days Duration(d)  = Hours(24) .  

Note that $(1)  is no a dollar bill! One can have two dollar bills, but there is only one object 
named S(1).  Note also that, while Inches(0)  and Centimeters(0)  refer to the same zero 
length, they are not identical to other zero measures, such as Second.s(0).  

Simple, quantitative measures are easy to represent. Other measures present more of a 
problem, because they have no agreed scale of values. Exercises have difficulty, desserts have 
deliciousness, and poems have beauty, yet numbers cannot be assigned to these qualities. One 
might, in a moment of pure accountancy, dismiss such properties as useless for the purpose of 
logical reasoning; or, still worse, attempt to impose a numerical scale on beauty. This would 
be a grave mistake, because it is unnecessary. The most important aspect of measures is not 
the particular numerical values, but the fact that measures can be ordered. 

Although measures are not numbers, we can still compare them, using an ordering 
symbol such as >. For example, we might well believe that Norvig's exercises are tougher 
than Russell's, and that one scores less on tougher exercises: 

Cl  E Exercises A e2  E  Exercises A Wrote(Norvig, el) A Wrote(Russell, e2)  
Difficuity(ei)  >  Difficulty(e2)  .  

et E Exercises A e2  E  Exercises A Difficulty(et)  > Difficulty(e2)  
ExpectedScore  (e l ) < ErpectedScore(e2)  .  

This is enough to allow one to decide which exercises to do, even though no numerical values 
for difficulty were ever used. (One does, however, have to discover who wrote which exer- 
cises.) These sorts of monotonic relationships among measures form the basis for the field of 
qualitative physics, a subfield of AI that investigates how to reason about physical systems 
without plunging into detailed equations and numerical simulations, Qualitative physics is 
discussed in the historical notes section. 
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INTRINSIC 

EXTRINSIC 

12.2.3 Objects: Things and stuff 
The real world can be seen as consisting of primitive objects (e.g., atomic particles) and 
composite objects built from them. By reasoning at the level of large objects such as apples 
and cars, we can overcome the complexity involved in dealing with vast numbers of primitive 
objects individually. There is, however, a significant portion of reality that seems to defy any 
obvious individuation—division into distinct objects. We give this portion the generic name 
stuff.  For example. suppose 1 have some butter and an aardvark in front of me. I can say 
there is one aardvark, but there is no obvious number of "butter-objects," because any part of 
a butter-object is also a butter-object,  at least until we get to very small parts indeed. This is 
the major distinction between stuff and things. If we cut an aardvark in half, we do not get 
two aardvarks (unfortunately).  

The English language distinguishes clearly between stuff and things. We say "an aard-
vark," but, except in pretentious California restaurants, one cannot say "a butter." Linguists 
distinguish between count nouns, such as aardvarks, holes, and theorems, and mass nouns, 
such as butter, water, and energy. Several competing ontologies claim to handle this distinc-
tion. Here we describe just onc; the others arc covered in the historical notes section. 

To represent stuff properly, we begin with the obvious. We need to have as objects in 
our ontology at least the gross "lumps" of stuff we interact with. For example, we might 
recognize a lump of butter as the one left on the table the night before; we might pick it up, 
weigh it, sell it, or whatever. In these senses, it is an object just like the aardvark. Let us 
call it Butter;;.  We also define the category Butter. Informally, its elements will be all those 
things of which one might say "It's Enter,"  including Butter3.  With some caveats about very 
small parts that we w omit for now, any part of a butter-object is also a butter-object: 

b E Butter A PartOf  (p, b) p E Butter . 

We can now say that butter melts at around 30 degrees centigrade: 

b E Butter MEItingPoint(b,  Centi9rude  (30)) .  

We could go on to say that hinter  is yellow, is less dense than water, is soft at room tempera-
ture, has a high fat content, and so on. On the other hand, butter has no particular size, shape, 
or weight. We can define more specialized categories of butter such as UnsaltedButter,  
which is also a kind of stuff. Note that the category PoundOiButter,  which includes as 
members all butter-objects  weighing one pound, is not a kind of stuff If we cut a pound of 
butter in half, we do not, alas, get two pounds of butter. 

What is actually going on is this: some properties are intrinsic: they belong to the very 
substance of the object, rather than to the object as a whole. When you cut an instance of 
stuff in half, the two pieces retain the intrinsic properties—things like density, boiling point, 
flavor, color, ownership, and so on. On the other hand, their extrinsic properties—weight,  
length, shape, and so on—are not retained under subdivision. A category of objects that 
includes in its definition only intrinsic properties is then a substance, or mass noun; a class 
that includes any extrinsic properties in its definition is a count noun. The category Stuff is 
the most general substance category, specifying no intrinsic properties. The category Thing  
is the most general discrete object category, specifying no extrinsic properties. 

INDIVIDUATION 

STUFF 
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12.3 EVENTS 

In Section 10.4.2, we showed how situation calculus represents actions and their effects. 
Situation calculus is limited in its applicability: it was designed to describe a world in which 
actions are discrete, instantaneous, and happen one at a time. Consider a continuous action, 
such as filling a bathtub Situation calculus can say that the tub is empty before the action and 

full when the action is done, but it can't talk about what happens during the action. It also 
can't describe two actions happening at the same time—such as brushing one's teeth while 
waiting for the tub to fill. To handle such cases we introduce an alternative formalism known 

EVENT CALCULUS as event calculus, which is based on points of time rather than on situations. 3  
Event calculus reifies fluents and events. The fluent At(Shankar,  , Berkeley) is an ob-

ject that refers to the fact of Shankar being in Berkeley, but does not by itself say anything 
about whether it is true. To assert that a fluent is actually true at some point in time we use 
the predicate T, as in T(At(Shankar.  . Berkeley), t).  

Events are described as instances of event categories.4  The event Et of Shankar flying 
from San Francisco to Washington, D.C. is described as 

E1  E Flyings  A Flyer(El,  Shankar)  A Origin(Ei, SF) A Destination(Ei,  DC) . 

If this is too verbose, we can define art alternative three-argument version of the category of 
flying events and say 

Et E Flyings(Shankar,  ,  SF, DC). 

We then use Happens(Ei,i)  to say that the event E1  took place over the time interval i, and 
we say the same thing in functional form with Extent ( E1 )  = i. We represent time intervals 
by a (start, end) pair of times; that is, i =  fs)  is the time interval that starts at ti  and ends 
at t2.  The complete set of predicates for one version of the event calculus is 

T( f , t) Fluent f is true at time 
Happens (e,  i) Event e  happens over the time interval i 
Initiates (e.,  f ,t) Event e  causes fluent f  to start to hold at time t 
Terminates (e,  f, t}  Event e  causes fluent f  to cease to hold at time t 
GliPPed(f,  i) Fluent f ceases to be true at some point during time interval i 
Restored ( f ,  i) Fluent f becomes true sometime during time interval 

We assume a distinguished event, Start, that describes the initial state by saying which fluents 
are initialed or terminated at the start time. We define T by saying that a fluent holds at a point 
in time if the fluent was initiated by an event at some time in the past and was not made false 
(clipped) by an intervening event. A fluent does not hold if it was terminated by an event and 

3  The terms "event" and "action" may be used interchangeably. Informally. "action" connotes an agent while 
"event" connotes the possibility of agentless actions. 

Some versions of event calculus do not distinguish event categories from instances of the categories. 
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not made true (restored) by another event. Formally, the axioms are: 
Happens(e,  (t1, t2 )) A Initiate*, f, t 1 ) A –, Clipped(f,  (t i , t)) A ti  <  t 

T(f,t) 
Happens(e, (t1, t2)) A Terminate  s(e,  f ti) A –Restored( f , (ti ,t)) A ti <  t 

,t) 
where Lipped and Restored are defined by 

Clipped(f t2)) t4.  
ri  e,t,t3  Happen*, (t, t3)) A ti <  t <  t2 A Terrnmates(e,  f ) 

Restored(f  , , t2)) 
e,t,t 3  Happen*, {t, t 3 )) A t i  < t <  t2 A Initiate*, f ,t) 

It is convenient to extend T to work over intervals as well as time points; a fluent holds over 
an interval if it holds on every point within the interval: 

T(f (t1, t2)) t (t1 <  t <  t2) T (  f ,t)] 

Fluents and actions are defined with domain-specific axioms that are similar to successor-
state axioms. For example, we can say that the only way a wumpus-world agent gets an 
arrow is at the start, and the only way to use up an arrow is to shoot it 

Initiates (e,  HavteArroui  (a), t) e = Start 

Terminates(e,  HaveArrow(a),  t) <#.  e E Shootings( a) 
By reifying events we make it possible to add any amount of arbitrary information about 
them. For example, we can say that Shankar's flight was bumpy with Bump y(E1).  In an 
ontology where events are n-ary  predicates, there would be no way to add extra information 
like this; moving to an n,  -F  1-ary  predicate isn't a scalable solution. 

We can extend event calculus to make it possible to represent simultaneous events (such 
as two people being necessary to ride a seesaw), exogenous events (such as the wind blowing 
and changing the location of an object), continuous events (such as the level of water in the 
bathtub continuously rising) and other complications. 

12.3.1 Processes 

DISCRETE DENTS 

PROCESS 

LICUID  EVENT  

TEIAPCIIAL  
SUBSTANCE 
SPARAL  SUBSTANCE 

The events we have seen so far are what we call discrete events—they have a definite struc-
ture. Shankar's trip has a beginning, middle, and end. If interrupted halfway, the event would 
be something different—it would not be a trip from San Francisco to Washington, but instead 
a trip from San Francisco to somewhere over Kansas. On the other hand, the category of 
events denoted by Flyings  has a different quality. If we take a small interval of Shankar's 
flight, say, the third 20-minute segment (while he waits anxiously for a bag of peanuts), that 
event is still a member of Flyings.  In fact, this is true for any subinterval. 

Categories of events with this property are called process categories or liquid event 
categories. Any process e that happens over an interval also happens over any subinterval: 

(e e Processes) A ilappens(e,(t1  ,  Li))  A (t1 <  ta.  <  t3  <  t4 ) Happerts(e,(t7 ,t :i ",)  .  

The distinction between liquid and nonliquid events is exactly analogous to the difference 
between substances, or stuff, and individual objects, or things. In fact, some  have called 
liquid events temporal substances, whereas substances like butter are spatial substances. 
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12.3.2 Time intervals 
Event calculus opens us up to the possibility of talking about time, and time intervals. We 
will consider two kinds of time intervals: moments and extended intervals. The distinction is 
that only moments have zero duration: 

PartitionaMuments,  Extenciedhitervals},  Intervals) 
i E Moments 4  Duration(i)=  Seconds (0)  . 

Next we invent a time scale and associate points on that scale with moments, giving us ab- 
solute times. The time scale is arbitrary; we measure it in seconds and say that the moment 
at midnight (GMT) on January 1, 1900, has time O.  The functions Begin and End pick out 
the earliest and latest moments in an interval, and the function Time delivers the point on the 
time scale for a moment. The function Duration gives the difference between the end time 
and the start tune. 

Interval(i) Duration(i)=-(Tirne(End(i))  — Time(Begin(i)))  .  
Tirne(Begin(AD1900))=  Seconds(0)  . 
Time(Begin  (AD2001))  = Seconds (3187324800) . 
Time(End(AD2001))  = Seconds(3218860800)  . 
Duration(A  D2001) = Seconds (31536000) .  

To make these numbers easier to read, we also introduce a function Date, which takes six 
arguments (hours, minutes, seconds, day, month, and year) and returns a Lime point: 

Time(Begin(AD2001))  = Date(0,  0, 0,1, Jan ,2001) 
Date (0, 20,21, 24,1,1995) = Seconds (300)000000)  

Two intervals Meet if the end time of the first equals the start time of the second. The com-
plete set of interval relations, as proposed by Allen (1983), is shown graphically in Figure 12.2 
and logically below: 

Meet(i, j) Cr End(i).=  Begin(j) 
Before(i,  j) 

• 

End(i) < Begin(j)  
After (j ,  i) Befor(i,  j) 
During(i,  j) 

• 

Begin(j)  < Begin(i)  < End(i) < End(j) 
Overlap(i,  j) Begin(i) < Begin(j) < End(i) < End(j)  
Begins (i,  j) Begin(i) = Begin(j) 
Finishes (i, j)  c End(i) = End(j) 
Equals  (i,  j) 

• 

Begin(i)  = Begin(j)  A End(i) = End(j) 

These all have their intuitive meaning, with the exception of Overlap: we tend to think of 
overlap as symmetric (if i overlaps j then j overlaps i),  but in this definition. Overlap(i,  j) 
only holds if i  begins before j. To say that the reign of Elizabeth 11 immediately followed that 
of George VI, and the reign of Elvis overlapped with the 1950s, we can write the following: 

Meets (ReignOf (GeorgeVI), ReignOf ( Elizabeth.11))  
Overlap(Fifties,  ReignOf  (Elvis)) .  
Begin(Fifties) = Begin(AD1950)  .  
End(Fifties)  = End(AD1959)  . 
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Figure 12.2 Predicates on time intervals. 

Figure 12.3  A schematic view of the object President( US A) for the first 15 years of its 
existence. 

Section 12.3, Events 449 

123.3 Fluents and objects 

Physical objects can be viewed as generalized events, in the sense that a physical object is 
a chunk of space—time. For example, USA can be thought of as an event that began in, 
say, 1776 as a union of 13 states and is still in progress today as a union of 50. We can 
describe the changing properties of USA using state fluents. such as Population( USA). A 
property of the USA that changes every four or eight years, barring mishaps, is its president. 
One might propose that President( USA) is a logical term that denotes a different object 
at different times. Unfortunately, this is not possible, because a term denotes exactly one 
object in a given model structure. (The tens  President(  USA, t) can denote different objects, 
depending on the value of t, but our ontology keeps time indices separate from fluents.) The 
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only possibility is that President(USA) denotes a single object that consists of different 
people at different times. It is the object that is George Washington from 1789 to 1797, John 
Adams from 1797 to 1801, and so on, as in Figure 12.3. To say that George Washington was 
president throughout 1790, we can write 

T(Equals(President  ( USA), George Washington), AD1790) 

We use the function symbol Equals rather than the standard logical predicate =, because 
we cannot have a predicate as an argument to 1,  and because the interpretation is nor that 
George Washington and President (USA) are logically identical in 1790; logical identity is 
not something that can change over time. The identity is between the subevents of each object 
that are defined by the period 1790. 

12.4 MENTAL EVENTS AND MENTAL OBJECTS 

PROPOSMOWL  
ATTITUDE  

The agents we have constructed so far have beliefs and can deduce new beliefs. Yet none 
of them has any knowledge about beliefs or about deduction. Knowledge about one's own 
knowledge and reasoning processes is useful for controlling inference. For example, suppose 
Alice asks "what is the square root of 1764" and Bob replies "I don't know." If Alice insists 
"think harder," Bob should realize that with some more thought, this question can in fact 
be answered. On the other hand, if the question were "Is your mother sitting down right 
now?" then Bob should realize that thinking harder is unlikely to help. Knowledge about 
the knowledge of other agents is also important; Bob should realize that his mother knows 
whether she is sitting or not, and that asking her would be a way to find out. 

What we need is a model of the mental objects that are in someone's head (or some-
thing's knowledge base) and of the mental processes that manipulate those mental objects. 
The model does not have to be detailed. We do not have to he able to predict how many 
milliseconds it will take for a particular agent to make a deduction. We will be happy just to 
be able to conclude that mother knows whether or not she is sitting. 

We begin with the propositional attitudes that an agent can have toward mental ob-
jects: attitudes such as Believes, Knows, Wants, Intends, and Informs. The difficulty is 
that these attitudes do not behave like "normal" predicates. For example, suppose we try to 
assert that Lois knows that Sup erman can fly: 

Knows (Lois, CanFly (Superman)) . 

One minor issue with this is that we normally  think of CanFly (Superman) as a sentence, but 
here it appears as a term. That issue can be patched up just be reifying Canny(Superman);  
making it a fluent. A more serious problem is that, if it is true that Superman is Clark Kent, 
then we must conclude that Lois knows that Clark can fly: 

(Superman = Clark) A Knows(Lois,  CanFly(Superman))  
Knows (Lois , CanFly(Clark))  

This is a consequence of the fact that equality reasoning is built into logic. Normally that is 
a good thing; if our agent knows that 2 +  2 = 4 and 4 <  5, then we want our agent to know 
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RFEREENT1AL  
TRANSPARENCY 

MODAL LOGIC  

POSSIBLE WORLD 

ACGESSIBILRY  
RE ATIDNS  

that 2 +  2 < 5. This property is called referential transparency—it doesn't matter what 
term a logic uses to refer to an object, what matters is the object that the term names. But for 
propositional attitudes like believes and knows, we would like to have referential opacity—the 
terms used do matter, because not all agents know which terms are co-referential. 

Modal logic is designed to address this problem. Regular logic is concerned with a sin-
gle modality, the modality of truth, allowing us to express "P is true Modal logic includes 
special modal operators that take sentences (rather than terms) as arguments. For example, 
"A knows P" is represented with the notation KAP, where K is the modal operator for knowl-
edge. It takes two arguments, an agent (written as the subscript) and a sentence. The syntax 
of modal logic is the same as first-order  logic, except that sentences can also be formed with 
modal operators. 

The semantics of modal logic is more complicated.  In first-order logic a model con-
tains a set of objects and an interpretation that maps each name to the appropriate object, 
relation, or function. In modal logic we want to be able to consider both the possibility that 
Superman's secret identity is Clark and that it isn't. Therefore, we will need a more com-
plicated model, one that consists of a collection of possible worlds rather than just one true 
world. The worlds are connected in a graph by accessibility relations, one relation for each 
modal operator. We say that world w 1  is accessible from world u1n with respect to the modal 
operator KA if everything in w 1  is consistent with what A knows in wo,  and we write this 
as Ace(KA ,  wo ,  w i ).  In diagrams such as Figure 124 we show accessibility as an arrow be-
tween possible worlds. As an example, in the real world, Bucharest is the capital of Romania, 
but for an agent that did not know that, other possible worlds are accessible, including ones 
where the capital of Romania is Sibiu or Sofia. Presumably a world where 2 +  2 = 5 would 
not be accessible to any agent. 

In general, a knowledge atom KAP is true in world w if and only if P is true in every 
world accessible from w. The truth of more complex sentences is derived by recursive appli-
cation of this rule and the normal rules of first-order logic. That means that modal logic can 
be used to reason about nested knowledge sentences: what one agent knows about another 
agent's knowledge. For example, we can say that, even though I .nis  doesn't know whether 
Superman's secret identity is Clark Kent, she does know that Clark knows: 

[K cjark Identity  ( Superman, Clark) V K ciark–Jdentity  (Superman, Clark)] 

Figure 12.4 shows some possible worlds for this domain, with accessibility relations for Lois 
and Superman. 

In the TOP-LEFT diagram, it is common knowledge that Superman knows his own iden-
tity, and neither he nor Lois has seen the weather report. So in wo  the worlds wo  and w2 are 
accessible to Superman; maybe rain is predicted, maybe not. For Lois all  four worlds are ac-
cessible from each other; she doesn't know anything about the report or if Clark is Superman. 
But she does know that Superman knows whether he is Clark, because in every world that is 
accessible to Lois, either Superman knows I, or he knows –1.  Lois does not know which is 
the case, but either way she knows Superman knows. 

In the TOP-RIGHT diagram iL  is common knowledge that Lois has seen the weather 
report. So in ru4  she knows rain is predicted and in w6 she knows rain is not predicted. 
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Figure 12.4 Possible worlds with accessibility relations Ks.up„,„„.„  (solid arrows) and 
K .L .,„  (dotted arrows). The proposition 73  means "the weather report for tomorrow is rain" 
and I means "Superman's secret identity is Clark Kent." All worlds are accessible to them-
selves; the arrows from a world to itself are not shown_ 

 

Superman does not know the report, but he knows that Lois knows, because in every world 
that is accessible to him, either she knows R or she knows —JR.  

In the BOTTOM diagram we represent the scenario where it is common knowledge that 
Superman knows his identity, and Lois might or might not have seen the weather report_ We 
represent this by combining the two top scenarios, and adding arrows to show that Superman 
does not know which scenario actually holds. Lois does know, so we don't need to add any 
arrows for  her In too Superman still knows I but not R,  and now he does not know whether 
Lois knows R. From what Superman knows, he might be in trio  or w2,  in which case Lois 
does not know whether R  is true, or he could be in yid,  in which case she knows R,  or w6,  in 
which case she knows — R.  

There are an infinite number of possible worlds, so the trick is to introduce just the ones 
you need to represent what you are trying to model. A new possible world is needed to talk 
about different possible facts (e.g., rain is predicted or not), or to talk about different states 
of knowledge (e.g., does Lois know that rain is predicted). That means two possible worlds, 
such as w4  and wo  in Figure 12.4, might have the same base facts about the world, but differ 
in their accessibility relations, and therefore in facts about knowledge. 

Modal logic solves some tricky issues with the interplay of quantifiers and knowledge. 
The English sentence "Bond knows that someone is a spy" is ambiguous. The first reading is 
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Loa CAL 
OMNISCIENCE 

that there is a particular someone who Bond knows is a spy; we can write this as 
x Knond  SPY (l),  

which in modal logic means that there is an x that, in all accessible worlds, Bond knows to 
be a spy. The second reading is that Bond just knows that there is at least one spy: 

KBonct  X Spy(x),  

The modal logic interpretation is that in each accessible world there is an x that is a spy, but 
it need not be the same x  in each world. 

Now that we have a modal operator for knowledge, we can write axioms for it. First, 
we can say that agents are able to draw deductions; if an agent knows P and knows that P 
implies Q, then the agent knows Q: 

(KaP  A Ka ( P  Q))  KaQ  

From this (and a few other rules about logical identities) we can establish that KA(P V —P)  
is a tautology; every agent knows every proposition P is either true or false. On the other 
hand, (KA P) V (K -'P)is  not a tautology; in general, there will be lots of propositions that 
an agent does not know to be true and does not know to be false. 

It is said (going back to Plato) that knowledge is justified true belief. That is, if it is 
true, if you believe it, and if you have an unassailably good reason, then you know it. That 
means that if you know something, it must be true, and we have the axiom: 

Ka P  P. 

Furthermore, logical agents should be able to introspect on their own knowledge. If they 
know something, then they know that they know it; 

K„P K.(K,,P)  . 

We can define similar axioms for belief (often denoted by B) and other modalities. However, 
one problem with the modal logic approach is that it assumes logical omniscience on the 
part of agents. That is, if an agent knows a set of axioms, then it knows all consequences of 
those axioms. This is on shaky ground even for the somewhat abstract notion of knowledge, 
but it seems even worse for belief, because belief has more connotation of referring to things 
that are physically represented in the agent, not just potentially derivable. There have been 
attempts to define a form of limited rationality for agents; to say that agents believe those 
assertions that can be derived with the application of no more than k reasoning steps, or no 
more than a seconds of computation. These attempts have been generally unsatisfactory. 

12.5 REASONING SYSTEMS FOR CATEGORIES 

Categories are the primary building blocks of large-scale knowledge representation schemes. 
This section describes systems specially designed for organizing and reasoning with cate-
gories. There are two closely related families of systems: semantic networks provide graph-
ical aids for visualizing a knowledge base and efficient algorithms for inferring properties 
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of an object on the basis of its category membership; and description logics provide a for-
mal language for constructing and combining category definitions and efficient algorithms 
for deciding subset and superset relationships between categories. 

12.5.1 Semantic networks 

Ms-ITEM- 1AL  
GRAPHS 

In 1909, Charles S. Peirce proposed a graphical notation of nodes and edges called existential 
graphs that he called "the logic of the future." Thus began a long -running debate between 
advocates of "logic" and advocates of "semantic networks." Unfortunately, the debate ob- 
scured the fact that semantics networks—at least those with well-defined semantics—are a 
form of logic. The notation that semantic networks provide far certain kinds of sentences 
is often more convenient, but if we strip away the "human interface" issues, the underlying 
concepts—objects, relations, quantification, and so on—are the same. 

There are many variants of semantic networks, but all are capable of representing in-
dividual objects, categories of objects, and relations among objects. A typical graphical no-
tation displays object or category names in ovals or boxes, and connects them with labeled 
links. For example, Figure 12.5 has a MemberOf link between Mary  and FeynalePersons,  
corresponding to the logical assertion Mary E FemalePersons; similarly, the SisterOf link 
between Mary  and John corresponds to the assertion SisterOf  ( Mary, John). We can con-
nect categories using SubsetOf l inks, and so on. It is such fun drawing bubbles and arrows 
that one can get carried away. For example, we know that persons have female persons as 
mothers, so can we draw a HasMother  link from Persons to FernalePersons?  The answer 
is no, because IIasMother  is a relation between a person and his or her mother, and categories 
do not have mothers. 5  

For this reason, we have used a special notation—the double-boxed link—in Figure 12.5. 
This link asserts that 

V  2.  a E  Persons y HasMother(z,  y) y  E  FentalePersons]  

We might also want to assert that persons have two legs—that is, 

VxxE  Persons Legs(x,2)  . 

As before, we need to be careful not to assert that a category has legs; the single-boxed link 
in Figure 12.5 is used to assert properties of every member of a category. 

The semantic network notation makes it convenient to perform inheritance reasoning 
of the kind introduced in Section 12.2. For example, by virtue of being a person, Mary inherits 
the property of having two legs. Thus, to find out how many legs Mary has, the inheritance 
algorithm follows the MentherOf  link from Mary to the category she belongs to, and then 
follows Sii.h.spi Qf  links up the hierarchy until it finds a category for which there is a boxed 
Lc9.3  link—in this case, the Persons category. The simplicity and efficiency of this inference 

5  Several early systems failed to distinguish between properties of members of a category and properties of the 
category as a whole. This can lead directly to inconsistencies, as pointed out by Drew McDermott (1976) in his 
article "Artificial Intelligence Meets Natural Stupidity." Another common problem was the use of IsA links for 
both subset and membership relations, in correspondence with English usage: "a cat is a mammal" and "Fifi  is a 
cat:' See Exercise 12.22 for more on these issues. 
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Figure 12.5 A semantic network with four objects (John. Mary. 1. and 2) and lour  cate- 
gories. Relations are denoted by labeled finks 

Figure 12.6  A fragment of a semantic network showing the representation of the logical 
assertion Fly(Shankar,  NewYork, NewDelhi, Yesterday).  

mechanism, compared with logical theorem proving, has been one of the main attractions of 
semantic networks. 

inheritance becomes  complicated when an object car belong to more than one category 
or when a category can be a subset of more than one other category; this is called multiple in 
hcritancc.  In such cases, the inheritance algorithm might find two or more conflicting values 
answering the query. For this reason, multiple inheritance is banned in some object-oriented 
programming (OOP) languages, such as Java, that use inheritance in a class hierarchy. It is 
usually allowed in semantic networks, but we defer discussion of that until Section 12.6. 

The reader might have noticed an obvious drawback of semantic network notation, com-
pared to first-order logic: the fact that links between bubbles represent only binary relations. 
For example, the sentence Flyr,Shcink  ar  , New York, NeviDelhi,  Yesterday) cannot be as-
serted directly in a semantic network. Nonetheless, we can obtain the effect of n-ary asser-
tions by reifying the proposition itself as an event belonging to an appropriate event category. 
Figure 12.6 shows the semantic network structure for this particular event. Notice that the 
restriction to binary relations forces the creation of a rich ontology of reified concepts. 

Reification of propositions makes it possible to represent every ground, function-free  
atomic sentence of first-order logic in the semantic network notation. Certain kinds of univer- 
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sally quantified sentences can be asserted using inverse links and the singly boxed and doubly 
boxed arrows applied to categories, but that still leaves us a long way short of full first-order 
logic. Negation, disjunction, nested function symbols, and existential quantification are all 
missing. Now it is possible to extend the notation to make it equivalent to first-order logic—as 
in Peirce's existential graphs—but doing so negates one of the main advantages of semantic 
networks, which is the simplicity and transparency of the inference processes_  Designers can 
build a large network and still have a good idea about what queries will be efficient, because 
(a) it is easy to visualize the steps that the inference pmcedure will go through and (b) in some 
cases the query language is so simple that difficult queries cannot be posed. In cases where 
the expressive power proves to be too limiting, many semantic network systems provide for 
procedural attachment to fill in the gaps. Procedural attachment is a technique whereby 
a query about (or sometimes an assertion of) a certain relation results in a call to a special 
procedure designed for that relation rather than a general inference algorithm. 

One of the most important aspects of semantic networks is their ability to represent 
default values for categories. Examining Figure 12.5 carefully, one notices that John has one 
leg, despite the fact that he is a person and all persons have two legs. In a strictly logical KB, 
this would be a contradiction, but in a semantic network, the assertion that all persons have 
two legs has only default status; that is, a person is assumed to have two legs unless this is 
contradicted by more specific information. The default semantics is enforced naturally by the 
inheritance algorithm, because it follows links upwards from the object itself (John in this 
case) and stops as soon as it finds a value. We say that the default is overridden by the more 
specific value. Notice that we could also override the default number of legs by creating a 
category of OneLeggedPersons, a subset of Persons of which John is a member. 

We can retain a strictly logical semantics for the network if we say that the Legs asser-
tion for Persons includes an exception for John: 

or  x E  Persons A x#  John Legs(x,  2) 

For a fixed network, this is semantically adequate but will be much less concise than the 
network notation itself if there are lots of exceptions. For a network that will be updated with 
more assertions, however. such an approach fails—we really want to say that any persons as 
yet unknown with one leg are exceptions too. Section 12.6 goes into more depth on this issue 
and on default reasoning in general. 

12.5.2 Description logics 

The syntax of first-order logic is designed to make it easy to say things about objects. De. 
DESCRIPTION LOGIC 

 scription logics are notations that are designed to make it easier to describe definitions and 
properties of categories. Description logic systems evolved from semantic networks in re-
sponse to pressure to formalize what the networks mean while retaining the emphasis on 
taxonomic structure as an organizing principle. 

S IBSUM PTICIL` The principal inference tasks for description logics are subsumption (checking if one 
CiASSIFICAT  ON category is a subset of another by comparing their definitions) and classification (checking 

whether an object belongs to a category).. Some systems also include consistency of a cate-
gory definition—whether the membership criteria are logically satisfiable. 
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Figure 12.7  The syntax of descriptions in a subset of the CLASSIC language- 
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The  CLASSIC language (Borgida et al., 1989) is a typical description logic. The syntax 
of CLASSIC descriptions is shown in Figure 12.7. °  For example, to say that bachelors are 
unmarried adult males we would write 

Bachelor = And(Unmarried,  Adult, Male) 
The equivalent in first-order logic would be 

Bachelor (x) Unmarried(x)  A Adult(x)  A Male(s)  . 
Notice that the description logic has an an algebra of operations on predicates, which of 
course we can't do in first-order logic.  Any description in CLASSIC can be translated into an 
equivalent first-order sentence, but some descriptions are more straightforward in CLASSIC. 
For example, to describe the set of men with at least three sons who are all unemployed 
and married to doctors, and at most two daughters who are all professors in physics or math 
departments, we would use 

And ( Man, A tLeast  (3, Son), AtMost  (2, Daughter) ;  
All(Son,  And( Unemployed, Married, All(Spouse, Doctor))),  
Ali(Daughter,  And{Professor,  Fills(Department,  Physics, Math)))) .  

We leave it as an exercise to translate this into first-order logic. 
Perhaps the most important aspect of description logics is their emphasis on tractability 

of inference.  A problem instance is solved by describing it and then asking if it is subsumed 
by one of several possible solution categories. In standard first-order  logic systems, predicting 
the solution time is often impossible. It is frequently left to the user to engineer the represen-
tation to detour around sets of sentences that seem to be causing the system to take several 
weeks to solve a problem. The thrust in description logics, on the other hand, is to ensure that 
subsumption-testing can be solved in time polynomial in the size of the descriptions.? 
6  Notice that the language does not allow one to simply state that one concept, or category, is a subset of 
another. This is a deliberate policy: subsumption between categories must be derivable from some aspeds of the 
descriptions of the categories. If not, then something is missing from the descriptions. 
7  CLASSIC provides efficient subsumption testing in practice, but the worst-case run time is exponential. 
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This sounds wonderful in principle, until one realizes that it can only have one of two 
consequences! either hard problems cannot be stated at all, or they require exponentially 
large descriptions! However, the tractability results do shed light on what sorts of constructs 
cause problems and thus help the user to understand how different representations behave.  
For example, description logics usually lack negation and disjunction. Each forces first-
order logical systems to go through a potentially exponential case analysis in order to ensure 
completeness. CLASSIC allows only a limited form of disjunction in the Fills and OneOf  
constructs, which permit disjunction over explicitly enumerated individuals but not over de-
scriptions. With disjunctive descriptions, nested definitions can lead easily to an exponential 
number of alternative routes by which one category can subsume another. 

12.6 REASONING WITH DEFAULT INFORMATION 

NOIMONOTNICITY  

NCOMONCFNIC  
LOGIC 

In the preceding section, we saw a simple example of an assertion with default status: people 
have two legs. This default can be overridden by more specific information, such as that 
Long John Silver has one leg. We saw that the inheritance mechanism in semantic networks 
implements the overriding of defaults in a simple and natural way. In this section, we study 
defaults more generally, with a view toward understanding the semantics of defaults rather 
than just providing a procedural mechanism. 

12.h.1  Circumscription and default logic 

We have seen two examples of reasoning processes that violate the monotonicity property of 
logic that was proved in Chapter 7.'  In this chapter we saw that a property inherited by all 
members of a category in a semantic network could be overridden by more specific informa-
tion for a subcategory. In Section 9.4.5,  we saw that under the closed-world assumption, if a 
proposition a is not mentioned in KB then KB  but KB A or  a. 

Simple introspection suggests that these failures of monotonicity are widespread in 
commonsense reasoning. It seems that humans often "jump to conclusions." For example. 
when one sees a car parked on the street, one is normally willing to believe that it has four 
wheels even though only three are visible. Now, probability theory can certainly provide a 
conclusion that the fourth wheel exists with high probability, yet, for most people, the possi-
bility of the car's not having four wheels does not arise unless some new evidence presents 
itself.  Thus, it seems that the four-wheel conclusion is reached by default, in the absence of 
any reason to doubt it. If new evidence arrives—for example, if one sees the owner carrying 
a wheel and notices that the car is jacked up—then the conclusion can be retracted. This kind 
of reasoning is said to exhibit nonmonotonicity,  because the set of beliefs does not grow 
monotonically over time as new evidence arrives. Nonmonotonic logics have been devised 
with modified notions of truth and entailment in order to capture such behavior. We will look 
at two such logics that have been studied extensively: circumscription and default logic. 

 

g  Recall that monotonicity  requires all entailed sentences to remain entailed after new sentences are added to the 
KB. That is, if KB 1  a then KB A .03  
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Circumscription can be seen as a more powerful and precise version of the closed- 
world assumption. The idea is to specify particular predicates that arc assumed to be "as false 
as possible"—that  is, false for every object except those for which they are known to be true. 
For example, suppose we want to assert the default rule that birds fly. We would introduce a 
predicate, say Abnorrnali(x),  and write 

Bird(x)  A –Abnormali(x) Flies(x) .  

If we say that A bnormail  is to be circumscribed, a circumscriptive reasoner is entitled to 
assume – Abnortnali(x)  unless Abnormal],  (/)  is known to be true. This allows the con-
clusion Flies (Tweety) to be drawn from the premise Bird( Tweety),  but the conclusion no 
longer holds if Abnormal 1 ( Tumefy) is asserted. 

Circumscription can be viewed as an example of a model preference logic.  In such 
logics, a sentence is entailed (with default status) if it is true in all preferred models of the KB, 
as opposed to the requirement of truth in all models in classical logic. For circumscription, 
one model is preferred to another if it has fewer abnormal objects. 9  Let us see how this idea 
works in the context of multiple inheritance in semantic networks. The standard example for 
which multiple inheritance is problematic is called the "Nixon diamond." It arises from the 
observation that Richard Nixon was both a Quaker (and hence by default a pacifist) and a 
Republican (and hence by default not a pacifist). We can write this as follows: 

Republican (Nixon) I\ Quaker (Nixon) 
Republican (x)  A –,Abnormai2(37) –, Pacifist(x)  
Quaker(x) Atmormal3(x) Pacifist(x)  .  

If we circumscribe Abnormal2  and Abv,ormad3,  there are two preferred models: one in 
which Abnormal 2 (Nixon) and Pacifist(Nixon)  hold and one in which Abnorm,a13 (Kixon)  
and –.Pacifist(Nixon)  hold. Thus, the circumscriptive reasoner remains properly agnostic as 
to whether  Nixon was a pacifist. If we wish, in addition, to assert that religious beliefs take 
precedence over political beliefs, we can use a formalism called prioritized circumscription 
to give preference to models where A bnormal: is minimized 

Default logic is a formalism in which default rules can be written to generate contin-
gent, nonmonotonic  conclusions. A default rule looks like this: 

Bird(x)  : Flies(x)  Flies(x)  

This rule means that if Bing x) is true, and if Flies(x)  is consistent with the knowledge base, 
then Flies(x)  may be concluded by default. In general, a default rule has the form 

P : 

where P is called the prerequisite, C is the conclusion, and J, are the justifications—if any 
one of them can be proven false, then the conclusion cannot be drawn. Any variable that 

9  For the closed-world assumption, one model is preferred to another if it has fewer true atoms—that is, preferred  
models are minimal models. There a a natural connection between the closed-world  assumption and definite. 
clause KBs,  because the fixed point reached by forward chaining on definite.clause  KBs  is the unique minimal 
model. See page 258 for more on this point. 
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appears in Ji  or C must also appear in P. The Nixon-diamond example can be represented 
in default logic with one fact and two default rules: 

Republican(Nixon)  A Quaker(Nixon)  . 
Republican(x)  :  –.Pacifist(x)hPacifist(x)  .  
Quaker(x)  : Pacifist(x)I  Pacifist(x)  .  

To interpret what the default rules mean, we define the notion of an extension of a default 
theory to be a maximal set of consequences of the theory. That is, an extension ,5  consists 
of the original known facts and a set of conclusions from the default rules, such that no 
additional conclusions can be drawn from S and the justifications of every default conclusion 
in S are consistent with S. As in the case of the preferred models in circumscription, we have 
two possible extensions for the Nixon diamond: one wherein he is a pacifist and one wherein 
he is not. Prioritized schemes exist in which some default rules  can be given precedence over 
others, allowing some ambiguities to be resolved. 

Since 1980, when norurionotonic  logics were first proposed, a great deal of progress 

has been made in understanding their mathematical properties. There are still unresolved 
questions, however. For example, if "Cars have four wheels" is false, what does it mean 
to have it in one's knowledge base? What is a good set of default rules to have? If we 
cannot decide, for each rule separately, whether it belongs in our knowledge base, then we 
have a serious problem of nonmodularity. Finally, how can beliefs that have default status be 
used to make decisions? This is probably the hardest issue for default reasoning. Decisions 
often involve tradeoffs, and one therefore needs to compare the strengths of belief in the 
outcomes of different actions, and the costs of making a wrong decision. In cases where the 
same kinds of decisions are being made repeatedly, it is possible to interpret default rules 
as 'threshold  probability" statements. For example, the default rule "My brakes are always 
OK" really means 'The probability that my brakes arc OK, given no other information, is 
sufficiently high that the optimal decision is for me to drive without checking them." When 
the decision context changes—for example, when one is driving a heavily laden truck down a 
steep mountain road—the default rule suddenly becomes inappropriate, even though there is 
no new evidence of faulty brakes. These considerations have led some researchers to consider 
how to embed default reasoning within probability theory or utility theory. 

12.6.2 Truth maintenance systems 

We have seen that many of the inferences drawn by a knowledge representation system will 
have only default status, rather than being absolutely certain. Inevitably, some of these in-
ferred facts will turn out to be wrong and will have to be retracted in the face of new informa-
tion. This process is called belief revision.° Suppose that a knowledge base KB contains 
a sentence P—perhaps a default conclusion recorded by a forward-chaining algorithm, or 
perhaps just an incorrect assertion—and we want to execute TELL(KB, –,P).  To avoid cre-
ating a contradiction, we must first execute RETRACT(KB,  P). This sounds easy enough. 

lu  Belief revision is often contrasted with belief update, which occurs when a knowledge base is revised to reflect 
a change in the world rather than new information about a fixed world. Belief update combines belief revision 
with reasoning about time and change; it is also related to the process of filtering  described in Chapter l5.  
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Problems arise, however, if any additional sentences were inferred from P and asserted in 
the KB. For example, the implication P = Q might have been used to add Q. The obvious 
"solution"—retracting  all sentences inferred from P—fails because such sentences may have 
other justifications besides P. For example, if R and R = Q are also in the KB, then Q 
does not have to be removed after all. Truth maintenance systems, or TMSs, are designed 
to handle exactly these kinds of complications. 

One simple approach to truth maintenance is to keep track of the order in which sen-
tences are told to the knowledge base by numbering them from P1 to P.  When the call 
RETRAcT(K/3,  P)  is made, the system reverts to the state just before P  was added, thereby 
removing both P, and any inferences that were derived from P. The sentences Pi+i  through 
Pr,  can then be added again. This is simple, and it guarantees that the knowledge base will 
be consistent, but retracting .137.  requires retracting and reasserting n — i sentences as well as 
undoing and redoing all the inferences drawn from  those sentences. Fur systems to which 
many facts are being added—such as large commercial databases—this is impractical. 

A more efficient approach is the justitication-based truth maintenance system, or JTMS. 
In a JTMS, each sentence in the knowledge base is annotated with a justification consisting 
of the set of sentences from which it was inferred. For example, if the knowledge base 
already contains P Q, then TELL (P) will cause Q to be added with the justification 

P Q}.  In general, a sentence can have any number of justifications. Justifica- 
tions make retraction efficient. Given the call RETRAcT(P),  the JTMS will delete exactly 
those sentences for which P is a member of every justification. So, if a sentence Q had 
the single justification {P, P Q}, it would be removed; if it had the additional justi- 
fication {P, P V R = Q},  it would still be removed; but if it also had the justification 
{R, P V R Q},  then it would be spared. In this way, the time required for retraction of P 
depends only on the number of sentences derived from P rather than on the number of other 
sentences added since P entered the knowledge base. 

The JTMS assumes that sentences that are considered once will probably be considered 
again, so rather than deleting a sentence from the knowledge base entirely when it loses 
all justifications, we merely mark the sentence as being out  of the knowledge base. if a 
subsequent assertion restores one of the justifications, then we mark the sentence as being 
back in. In this way, the JTMS retains all the inference chains that it uses and need not 
rederive sentences when a justification becomes valid again. 

In addition to handling the retraction of incorrect information. TMSs can be used to 
speed up the analysis of multiple hypothetical situations. Suppose, for example, that the 
Romanian Olympic Committee is choosing sites for the swimming, athletics, and eques-
trian events at the 2048 Games to be held in Romania. For example, let the first hypothe-
sis be Site(Swimming  Pitesti), Site(Atfiletics,  Bucharest), and Site(Equestrian,  Arad. 
A great deal of reasoning must then be done to work out the logistical consequences and 
hence the desirability of this selection. If we want to consider Site(Athletics,  Sibiu) in- 
stead, the TMS  avoids the need to start again from scratch. Instead, we simply retract 
Site(Athletics,  Bucharest) and assert Site(Athletics,  Sibiu) and the TMS takes care of the 
necessary revisions. Inference chains generated from the choice of Bucharest can be reused 
with Sibiu, provided that the conclusions are the same. 
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An assumption-based truth maintenance system, or ATMS, makes this type of context-
switching between hypothetical worlds particularly efficient. In a ITMS,  the maintenance of 
justifications allows you to move quickly from one state to another by making a few retrac-
tions and assertions, but at any time only one state is represented. An ATMS represents all the 
states that have ever been considered at the same time. Whereas a JTMS simply labels each 
sentence as being in or out, an ATMS keeps track, for each sentence, of which assumptions 
would cause the sentence to be true. In other words, each sentence has a label that consists of 
a set of assumption sets. The sentence holds just in those cases in which all the assumptions 
in one of the assumption sets hold. 

Truth maintenance systems also provide a mechanism for generating explanations. 
Technically, an explanation of a sentence P is a set of sentences E such that E  entails P. 

If the sentences in E  are already known to be true, then E simply provides a sufficient ba- 
sis for proving that P must be the case. But explanations can also include  assumptions— 
sentences  that are not known to be true, but would suffice to prove P if they were true. For 
example, one might not have enough information to prove that one's car won't start, but a 
reasonable explanation might include the assumption that the battery is dead. This, combined 
with knowledge of how cars operate, explains the observed nonbehavior. In most cases, we 
will prefer an explanation E that is minimal meaning that there is no proper subset of E that 
is also an explanation. An ATMS  can generate explanations for the "car won't start" problem 
by making assumptions (such as "gas in car" or "battery dead") in any order we like, even if 
some assumptions are contradictory. Then we look at the label for the sentence "car won't 
start" to read off the sets of assumptions that would justify the sentence. 

The exact algorithms used to implement truth maintenance systems are a little compli-
cated, and we do not cover them here. The computational complexity of the truth maintenance 
problem is at least as great as that of propositional inference—that is, MP-hard.  Therefore, 
you should not expect truth maintenance to be a panacea. When used carefully, however, a 
TMS can provide a substantial increase in the ability of a logical system to handle complex 
environments and hypotheses. 

12.7 THE INTERNET SHOPPING WORLD 

In this final section we put together all we have learned to encode knowledge for a shopping 
research agent that helps a buyer find product offers on the Internet. The shopping agent is 
given a product description by the buyer and has the task of producing a list of Web pages 
that offer such a product for sale, and ranking which offers are best. In some cases the 
buyer's product description will be precise, as in Canon Rebel XTi  digital camera, and the 
task is then to find the store(s) with the best offer. In other cases the description will be only 
partially specified, as in digital camera far under $300, and the agent will have to compare 
different products. 

The shopping agent's environment  is the entire World Wide Web in its full complexity—
not a toy simulated environment. The agent's percepts are Web pages, but whereas a human 
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Example Online Store 
Select from our fine line of products: 
• Computers  
• Cameras  
• Books  
• Videos 
• Music  

<h1>Example  Online Store</hl>  
<i>Select</i>  from our fine line of products: 
<ul> 
<li>  <a href—"http://example.com/compu ">Computers</a>  
<li>  <a href="http://example.com/camer ">Cameras</a>  
<li>  <a href="http://example.com/books ">Books</a>  
<li>  <a href"http!//example.com/video ">Videos</a>  
<li>  <a href"http!//example.com/music ">Music</a>  
</ul>  

Figure 12.8  A Web page from a generic online store in the form perceived by the human 
user of a browser (top), and the corresponding lITML  string as perceived by the browser or 
the shopping agent (bottom). In HTML, characters between <  and > are markup directives 
that specify how the page is displayed. For example, the string <1>select</i>  means 
to switch to  italic font, display the word Select, and then end the use of italic font. A page 
identifier such as http / /example .  corn/books  is called a uniform resource locator 
(URL).  The markup <a href="ur1">Books<I  a> means to create a hypertext link to Eul  
with the anchor text Books. 

Web user would see pages displayed as an array of pixels on a screen, the shopping agent 
will perceive 2 page as a character string consisting of ordinary words interspersed with for-
matting commands in the HTML markup language. Figure 12.8 shows a Web page and a 
corresponding HTML character string. The perception problem for the shopping agent in-
volves extracting useful information from percepts of this kind. 

Clearly, perception on Web pages is easier than, say, perception while driving a taxi in 
Cairo. Nonetheless, there are complications to the Internet perception task. The Web page in 
Figure 12.8 is simple compared to real shopping sites, which may include CSS, cookies, Java, 
Javascript, Flash, robot exclusion protocols, malformed HTML, sound tiles, movies, and text 
that appears only as part of a PEG image. An agent that can deal with all of the Internet is 
almost as complex as a robot that can move in the real world. We concentrate on a simple 
agent that ignores most of these complications. 

The agent's first task is to collect product offers that are relevant to a query. If the query 
is "laptops," then a Web page with a review of the latest high-end laptop would be relevant, 
but if it doesn't provide a way to buy, it isn't an offer. For now, we can say a page is an offer 
if it contains the words "buy" or "price" or "add to cart" within an HTML link or form on the 
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page. For example, if the page contains a string of the fonn  "<a .. add to cart ...</a" 
then it is an offer. This could be represented in first-order  logic, but it is more straightforward 
to encode it into program code. We show how to do more sophisticated information extraction 
in Section 22.4. 

12.7.1 Following links 

The strategy is to start at the home page of an online store and consider all pages that can he 
reached by following relevant links. °  The agent will have knowledge of a number of stores, 
for example: 

Amazon E OnlineStores  A Hornepage(Amazon,"am.azon.corn")  . 
Ebay  E OnlineStores  A Homepage(Ebay  ,"eboy.eam")  
ExampleStore  E OnlineStores A Hornepage(ExarnpleStore  , "example. corn")  . 

These stores classify their goods into product categories, and provide links to the major cat-
egories from their home page. Minor categories can be reached through a chain of relevant 
links, and eventually we will reach offers. In other words, a page is relevant to the query if it 
can be reached by a chain of zero or more relevant category links from a store's borne page, 
and then from one more link to the product offer. We can define relevance: 

Relevant(page  ,  query) <=>  
store, home store e OnlineStores  A Homepage(store,  home) 

A 3  url,  ur12  RelevantChain(home,  ur12,  query) A Link (ur12,  url)  
A page — Contents(url  .  

Here the predicate Link(from,  to) means that there is a hyperlink from the from LTRL  tc 
the to URL. To define what counts as a PelevantChttin,  we need to follow not just any old 
hyperlinks, but only those links whose associated anchor text indicates that the link is relevant 
to the product query. For this, we use LinkText(from,  to, text) to mean that there is a link 
between from and to with text as the anchor text. A chain of links between two URLs,  start 
and end, is relevant to a description d if the anchor text of each link is a relevant category 
name for d. The existence of the chain itself is determined by a recursive definition, with the 
empty chain (start = end) as the base case: 

RelevantChain(start,  end, query) <=>  (start = end) 
V u,  text LinkText(start,u,  text) A Relevant CategoryName  (query, text) 

A RelevantChain(u,  end, query)) .  

Now we must define what it means for tea to be a RelevantCategoryName  for query. 
First, we need to relate strings to the categories they name. This is done using the predicate 
Name(s,e),  which says that string s  is a name for category c—for  example, we might assert 
that Narae("laptops",  Lap topComputers).  Some more examples of the MIME'  predicate 
appear in Figure 12.9(b). Next, we define relevance. Suppose that query is "laptops: -  Then 
Relevant CategoryName(query  , text) is true when one of the following holds: 

■ The text and query name the same category—e.g.,  "notebooks" and "laptops." 

An alternative to the link-following strategy is to use an Internet search engine; the technology behind Internet 
search, information retrieval, will be covered in Section 22.3. 



Books C Products 
MusicRecordings C Products 

MusicCDs  C MusicRecordings 
Electronics C Products 

DigitalCameras C Electronics 
StereoEquipment C Electronics 
Computers C Electronics 

DesktopComputers C Computers 
LaptopComputers c Computers 

Name("books",  Books) 
No Rie  ("MUSiC",  Musicliecardings)  

Name ("C D s", MusicCDs)  
Name("electronics",  Electronics) 

Name ("digital cameras", DigitalCameras)  
Name ("stereos", Stereo Equipment) 
Name ("computer s", Computers) 

Narne("desktops",  DesktopComputers)  
Name ("I  aptops",  LaptopComputers)  
Nanie("noteliooks",  LaptopComputers)  

(a) (b) 

Figure 12.9  (a) Taxonomy of product categories. (b) Names for those categories. 
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• The text names a supercategory such as "computers." 
• The text names a subcategory such as "ultralight notebooks." 

The logical definition of Relevant CategoryName  is as follows: 

RelevantCategoryName  ( query, text) .*  

ci,  c2 Narne(query  , ci)  A Name(text, c2) A (Cl  C c2 V c2 C ) • (12.1) 

Otherwise, the anchor text is irrelevant  because it names a category outside this line, such as 
"clothes" or "lawn Sc  garden." 

To follow relevant links, then, it is essential to have a rich hierarchy of product cate-
gories. The top part of this hierarchy might look Like Figure 12.9(a).  It will not be feasible to 
list all possible shopping categories, because a buyer could always come up with some new 
desire and manufacturers will always come out with new products to satisfy them (electric 
kneecap warmers?). Nonetheless, an ontology of about a thousand categories will serve as a 
very useful tool for most buyers. 

In addition to the product hierarchy itself, we also need to have a rich vocabulary of 
names for categories. Life would be much easier if there were a one-to-one correspon-
dence between categories and the character strings that name them. We have already seen 
the problem of synonymy—two names for the same category, such as "laptop computers" 
and "laptops." There is also the problem of ambiguity—one name for two or more different 
categories. For example, if we add the sentence 

Natne("C  D s", Certificates OfDeposit)  

to the knowledge base in Figure 12.9(b), then "CDs" will name two different categories. 
Synonymy and ambiguity can cause a significant increase in the number of paths that 

the agent has to follow, and can sometimes make it difficult to determine whether a given 
page is indeed relevant. A much more serious problem is the very broad range of descriptions 
that a user can type and category names that a store can use. For example, the link might say 
"laptop" when the knowledge base has only "laptops" or the user might ask for "a computer 



466 Chapter 12. Knowledge Representation 

PROCEDURA_  
ATTCHMEN7  

VVR4PF'ER  

I can fit on the tray table of an economy-class airline seat." It is impossible to enumerate in 
advance all the ways a category can he named, so the agent will have to be able to do addi-
tional reasoning in some cases to determine if the Name relation holds. In the worst case, this 
requires full natural language understanding, a topic that we will defer to Chapter 22. In prac-
tice, a few simple rules—such as allowing "laptop" to match a category named "laptops"—go 
a long way. Exercise 12.10 asks you to develop a set of such rules after doing some research 
into online stores. 

Given the logical definitions from the preceding paragraphs and suitable knowledge 
bases of product categories and naming conventions, are we ready to apply an inference 
algorithm to obtain a set of relevant offers for our query? Not quite! The missing element 
is the Contents (uri)  function, which refers to the HTML  page at a given URL.  The agent 
doesn't have the page contents of every URL in its knowledge base; nor does it have explicit 
rules for  deducing what those contents might be. Instead, we can arrange for the right HTTP 
procedure to be executed whenever a subgoal involves the Contents function. In this way, it 
appears to the inference engine as if the entire Web is inside the knowledge base. This is an 
example of a general technique called procedural attachment, whereby particular predicates 
and functions can be handled by special-purpose methods. 

12.7.2 Comparing offers 

Let us assume that the reasoning processes of the preceding section have produced a set of 
offer pages for our "laptops" query. To compare those offers, the agent must extract the rele-
vant information—price, speed, disk size, weight, and so on—from the offer pages_ This can 
be a difficult task with real Web pages, for all the reasons mentioned previously.  A common 
way of dealing with this problem is to use programs called wrappers to extract information 
from a page. The technology of information extraction is discussed in Section 22.4. Far 
now we assume that wrappers exist, and when given a page and a knowledge base, they add 
assertions to the knowledge base_ Typically, a hierarchy of wrappers would be applied to a 
page: a very general one to extract dates and prices, a more specific one to extract attributes 
for computer-related  products, and if necessary a site-specific  one that knows the format of a 

particular store. Given a page on the example .com site with the text 

IBM ThinkBook  970. Our price: $399.00  

followed by various technical specifications, we would like a wrapper to extract information 
such as the following: 

3  c, offer c E LaptopComputers  A offer e ProductOffers  A 
Manufacture*, IBM) A Model (c,  ThinkBook97O)  A 
ScreenSize(c,  Inches (14)) A ScrtenType(c,  Co1orLCD)  A 
MemorySize(c,  Gigabytes (2)) A CPUSpeed(e,  GHz(1.2))  A 
OfferedProduct(offer,  c) A Store(offer,  GenStore)  A 
URL( offer , "e  x amp 1  e.c  om/c  omput  er s/34356  html")  A 
Price(offer,  ,  $(399)) A Date(offer,  Today) .  

This example illustrates several issues that arise when we take seriously the task of knowledge 
engineering for commercial transactions. For example, notice that the price is an attribute of 
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the offer, not the product itself. This is important because the offer at a given store may 
change from day to day even for the same individual laptop; for some categories—such as 
houses and paintings—the same individual object may even be offered simultaneously by 
different intermediaries at different prices. There are still more complications that we have 
not handled, such as the possibility that the price depends on the method of payment and on 
the buyer's qualifications for certain discounts. The final task is to compare the offers that 
have been extracted. For example, consider these three offers: 

A : L4 GHz  CPU, 2GB RAM, 250 GB disk, $299 . 
: 1.2 GHz  CPU, 4GB RAM, 350 GB disk, $500 . 

C :  1.2 GHz  CPU, 2GB RAM, 250 GB disk, $399 -  
C is dominated by A; that is, A is cheaper and faster, and they are otherwise the same. In 
general, X dominates Y if X has a better value on at least one attribute, and is not worse on 
any attribute. But neither A nor B dominates the other. To decide which is better we need 
to know how the buyer weighs CPU speed and price against memory and disk space. The 
general topic of preferences among multiple attributes is addressed in Section 16.4; for now, 
our shopping agent will simply return a list of all undominated  offers that meet the buyer's  
description. In this example, both A and B are undominated. Notice that this outcome relies 
on the assumption that everyone prefers cheaper prices, faster processors, and more storage. 
Some attributes, such as screen size on a notebook, depend on the user's particular preference 
(portability versus visibility); for these, the shopping agent will just have to ask the user. 

The shopping agent we have described here is a simple one; many refinements are 
possible. Still. it has enough capability that with the right domain-specific knowledge it can 
actually be of use to a shopper. Because of its declarative construction, it extends easily to 
more complex applications. The main point of this section is to show that some knowledge 
representation—in particular. the product hierarchy—is necessary for such an agent, and that 
once we have some knowledge in this form, the rest follows naturally. 

12.8 SUMMARY 

By delving into the details of how one represents a variety of knowledge, we hope we have 
given the reader a sense of how real knowledge bases are constructed and a feeling for the 
interesting philosophical issues that arise. The major points are as follows: 

• Large-scale knowledge representation requites  a general-purpose ontology to organize 
and tie together the various specific domains of knowledge. 

• A general-purpose  ontology needs to cover a wide variety of knowledge and should be 
capable, in principle, of handling any domain. 

• Building a large, general-purpose ontology is a significant challenge that has yet to be 
fully realized, although current frameworks seem to be quite robust 

• We presented an upper ontology based on categories and the event calculus. We 
covered categories, subcategories, parts, structured objects, measurements, substances,  
events, time and space, change, and beliefs. 
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■ Natural kinds cannot be defined completely in logic, but properties of natural kinds can 
be represented. 

■ Actions, events, and time can be represented either in situation calculus or in more 
expressive representations such as event calculus. Such representations enable an agent 
to construct plans by logical inference. 

• We presented a detailed analysis of the Internet shopping domain, exercising the general 
ontology and showing how the domain knowledge can be used by a shopping agent 

■ Special-purpose representation systems, such as semantic networks and description 
logics, have been devised to help in organizing a hierarchy of categories. Inheritance 
is an important form of inference, allowing the properties of objects to be deduced from 
their membership in categories. 

■ The closed-world assumption, as implemented in logic programs, provides a simple 
way to avoid having to specify lots of negative information. It is best interpreted as a 
default that can be overridden by additional information. 

• Nonmonotonic  logics, such as circumscription and default logic, are intended to cap-
ture default reasoning in general. 

• Truth maintenance systems handle knowledge updates and revisions efficiently. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Briggs (1985) claims that formal knowledge representation research began with classical In- 
dian theorizing about the grammar of Shastric  Sanskrit, which dates back to the first millen- 
nium B.C. In the West, the use of definitions of terms in ancient Greek mathematics can be 
regarded as the earliest instance: Aristotle's Metaphysics (literally, what comes after the book 
on physics) is a near-synonym for Ontology. Indeed, the development of technical terminol-
ogy in any field can be regarded as a form of knowledge representation. 

F.arly  discussions of representation in Al tended to focus on "pmblern  representation" 
rather than "knowledge representation." (See, for example, Amarel's (1968) discussion of the 
Missionaries and Cannibals problem.) In the 1970s, Al emphasized the development of "ex-
pert systems" (also called "knowledge-based systems") that could, if given the appropriate 
domain knowledge, match or exceed the performance of human experts on narrowly defined 
tasks. For example. the first expert system, DENDRAL (Feigenbaum et aL, 1971; Lindsay 
et al., 1980), interpreted the output of a mass spectrometer (a type of instrument used to ana-
lyze the structure of organic chemical compounds) as accurately as expert chemists. Although 
the success of DENDRAL was instrumental in convincing the Al research community of the 
importance of knowledge representation, the representational formalisms used in DENDRAL 
are highly specific to the domain of chemistry. Over time, researchers became interested in 
standardized knowledge representation formalisms and ontologies that could streamline the 
process of creating new expert systems. In so doing, they ventured into territory previously 
explored by philosophers of science and of language. The discipline imposed in AI by the 
need for one's theories to "work" has led to more rapid and deeper progress than was the case 
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when these problems were the exclusive domain of philosophy (although it has at times also 
led to the repeated reinvention of the wheel). 

The creation of comprehensive taxonomies or classifications dates back to ancient times. 
Aristotle (384-322 B.C.)  strongly emphasized classification and categorization schemes. His 
Organon, a collection of works on logic assembled by his students after his death, included a 
treatise called Categories in which he attempted to construct what we would now call an upper 
ontology. He also introduced the notions of genus and species for lower-level classification. 
Our present system of biological classification, including the use of "binomial nomenclature" 
(classification via genus and species in the technical sense), was invented by the Swedish 
biologist Carolus Linnaeus, or Carl von Linne  (1707-1778). The problems associated with 
natural kinds and inexact category boundaries have been addressed by Wittgenstein (1953), 
Quine (1953), Lakoff (1987), and Schwartz (1977), among others,  

Interest in larger-scale ontologies  is increasing, as documented by the Handbook on 
Ontologies  (Staab, 2004). The OPENCYC project (Lenat and Guha, 1990; Matuszek et al., 
2006) has released a 150,000-concept ontology, with an upper ontology similar to the one in 
Figure 12.1  as well as specific concepts like "OLED Display" and "'Phone," which is a type 
of "cellular phone," which in turn is a type of "consumer electronics," "phone," "wireless 
communication device." and other concepts.  The DBPEDIA  project extracts structured data 
from Wikipedia; specifically from Infoboxes: the boxes of attribute/value pairs that accom-
pany many Wikipedia  articles (Wu and Weld, 2008; Bizer  et aL,  2007). As of mid-2009, 
DBPEDIA  contains 2.6 million concepts, with about 100 facts per concept. The IEEE work-
ing group P1600.1  created the S uggested Upper Merged Ontology (SUMO) (Niles  and Pease, 
2001; Pease and Niles, 2002), which contains about 1000 terms in the upper ontology and 
links to over 20,000 domain-specific terms. Stoffel et al. (1997) describe algorithms for ef-
ficiently managing a very large ontology. A survey of techniques for extracting knowledge 
from Web pages is given by Etzioni et al. (200f).  

On the Web, representation languages are emerging. RDF (Brickley and Guha, 2004) 
allows for assertions to be made in the form of relational triples, and provides some means 
for evolving the meaning of names over time. OW!. (Smith et al., 2004) is a description logic 
that supports inferences over these triples. So far, usage seems to be inversely proportional to 
representational complexity: the traditional HTML and CSS formats account for over 99% of 
Web content, followed by the simplest representation schemes, such as microformats (Khare, 
2006) and RDFa (Adida  and Birbeck, 2008), which use HTML and XHTML markup to 
add attributes to literal text. Usage of sophisticated RDF and OWL ontologies is not yet 
widespread, and the full vision of the Semantic Web (Bemers-Lee et al., 2001) has not yet 
been realized. The conferences on Formal Ontology in Information Systems (FOIS) contain 
many interesting papers on both general and domain-specific ontologies. 

The taxonomy used in this chapter was developed by the authors and is based in part 
on their experience in the CYC project and in part on work by Hwang and Schubert (1993) 
and Davis (1990, 2005).  An inspirational discussion of the general project of commonsense 
knowledge representation appears in Hayes's (1978, 1985b)  "Naive Physics Manifesto." 

Successful deep ontologies  within a specific field include the Gene Ontology project 
(Consortium, 2008) and CML, the Chemical Markup Language (Murray-Rust et al.,  2003). 
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Doubts about the feasibility of a single ontology for all knowledge are expressed by 
Doctorow (2001), Gruber (2004), Halcvy  et al. (2009), and Smith (2004), who states, "the 
initial project of building one single ontology ...  has ...largely been abandoned." 

The event calculus was introduced by Kowalski and Sergot (1986) to handle continuous 
time, and there have been several variations (Sadri and Kowalski, 1995; Shanahan, 1997) and 
overviews (Shanahan, 1999; Mueller, 2006). van Lambalgen and Hamm (2005) show how 
the logic of events maps onto the language we use to talk about events. An alternative to the 
event and situation calculi is the fluent calculus (Thielscher, 1999). James Allen introduced 
time intervals for the same reason (Allen, 1984), arguing that intervals were much more natu-
ral than situations for reasoning about extended and concurrent events. Peter Ladkin (1986a, 
1986b) introduced "concave" time intervals (intervals with gaps; essentially, unions of ordi-
nary "convex" time intervals) and applied the techniques of mathematical abstract algebra to 
time representation. Allen (1991) systematically investigates the wide variety of techniques 
available for time representation; van Beek and Manchak (1996) analyze algorithms for tem-
poral reasoning. There are significant commonalities between the event-based ontology given 
in this chapter and an analysis of events due to the philosopher Donald Davidson (1980). 
The histories in Pat Hayes's (1985a) ontology of liquids and the chronicles in McDermott's 
(1985) theory of plans were also important influences on the field and this chapter. 

The question of the ontological status of substances has a long history. Plato proposed 
that substances were abstract entities entirely distinct from physical objects; he would say 
Made Of ( Butter;,  Butter) rather than Butter ;; E Butter. This leads to a substance hierar-
chy in which, for example, UnsattedButter  is a more specific substance than Butter. The po-
sition adopted in this chapter, in which substances are categories of objects, was championed 
by Richard Montague (1973). It has also been adopted in the CYC project. Copeland (1993) 
mounts a serious, but not invincible, attack. The alternative approach mentioned in the chap-
ter, in which butter is one object consisting of all buttery objects in the universe, was proposed 

M EREOLOGY 
 originally by the Polish logician Legniewski (1916). His mereology (the name is derived from 

the Greek word for "part") used the part–whole relation as a substitute for mathematical set 
theory, with the aim of eliminating abstract entities such as sets_  A more readable exposition 
of these ideas is given by Leonard and Goodman (1940), and Goodman's The Structure of 
Appearance (1977) applies the ideas to various problems in knowledge representation. While 
some aspects of the mereological approach are awkward—for example, the need for a sepa-
rate inheritance mechanism based on part–whole relations—the approach gained the support 
of Quine (1960). Harry Bunt (1985) has provided an extensive analysis of its use in knowl-
edge representation. Casati and Varzi (1999) cover parts, wholes, and the spatial locations. 

Mental objects have been the subject of intensive study in philosophy and Al. There 
are three main approaches. The one taken in this chapter, based on modal logic and possible 
worlds, is the classical approach from philosophy (Hintikka,  1962; Kripke,  1963: Hughes 
and Cresswell,  1996). The book Reasoning about Knowledge (Fagin et al., 1995) provides a 
thorough introduction. The second approach is a first-order theory in which mental objects 

are fluents.  Davis (2005) and Davis and Morgenstem (2005) describe this approach. It relies 
on he possible-worlds formalism, and builds on work by Robert Moore (1980, 1985). The 

SYNTACTIC THEORY 
 third approach is a syntactic theory, in which mental objects are represented by character 
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strings. A string is just a complex term denoting a list of symbols, so CanFly(Clark)  can 
be represented by the list of symbols IC, a, 71,  F, , y ,  (,  C ,  , a, r, k ,  )1.  The syntactic theory 
of mental objects was first studied in depth by Kaplan and Montague (1960), who showed 
that it led to paradoxes if not handled carefully. Ernie Davis (1990) provides an excellent 
comparison of the syntactic and modal theories of knowledge. 

The Greek philosopher Porphyry (c. 234-305 A.D.),  commenting on Aristotle's Cat-
egories, drew what might qualify as the first semantic network. Charles S. Peirce (1909) 
developed existential graphs as the first semantic network formalism using modern logic. 
Ross Quillian (1961), driven by an interest in human memory and language processing, ini-
tiated work on semantic networks within AI. An influential paper by Marvin Minsky (1975) 
presented a version of semantic networks called frames:  a frame was a representation of 
an object or category, with attributes and relations to other objects or categories. The ques-
tion of semantics arose quite acutely with respect to Quillian's  semantic networks (and those 
of others who followed his approach), with their ubiquitous and very vague "IS-A  links" 
Woods's (1975) famous article "What's In a Link?" drew the attention of AI researchers to the 
need for precise semantics in knowledge representation formalisms Brachman (1979) elab-
orated on this point and proposed solutions. Patrick Hayes's (1979) "The Logic of Frames" 
cut even deeper, claiming that "Most of 'frames'  is just a new syntax for parts of first-order 
logic." Drew McDermott's (1978b)  "Tarskian  Semantics, or, No Notation without Denota-
tion!" argued that the model-theoretic approach to semantics used in first-order logic should 
be applied to all knowledge representation formalisms. This remains a controversial idea; 
notably, McDermott himself has reversed his position in "A Critique of Pure Reason" (Mc-
Dermott, 1987). Selman and Levesque (1993) discuss the complexity of inheritance with 
exceptions, showing that in most formulations it is NP-complete. 

The development of description logics is the most recent stage in a long line of re-
search aimed at finding useful subsets of first-order logic for which inference is computa-
tionally tractable. Hector Levesque and Ron Brachman (1987) showed that certain logical 
constructs—notably, certain uses of disjunction and negation—were primarily responsible 
for the intractability of logical inference_ Building on the KL-ONE  system (Schmolze and 
Lipkis, 1983), several researchers developed systems that incorporate theoretical complex-
ity analysis, most notably KRYPTON (Brachman  et al., 1983) and Classic (Borgida et al., 
1989). The result has been a marked increase in the speed of inference and a much better 
understanding of the interaction between complexity and expressiveness in reasoning sys-
tems. Calvanese et al. (1999) summarize the state of the art, and Baader et al. (2007) present 
a comprehensive handbook of description logic. Against this trend, Doyle and Patil (1991) 
have argued that restricting the expressiveness of a language either makes it impossible to 
solve certain problems orencourages the user to circumvent the language restrictions through 
nonlogical means. 

The three main formalisms for dealing with nonmonotonic inference—circumscription 
(McCarthy, 1980),  default logic (Reiter, 1980), and modal nonmonotonic logic (McDermott 
and Doyle, 1980)—were  all introduced in one special issue of the AI Journal. Delgrande and 
Schaub (2003) discuss the merits of the variants, given 25 years of hindsight. Answer set 
programming can be seen as an extension of negation as failure or as a refinement of circurn- 
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QUALITAT  VE 
PHYSICS 

scription; the underlying theory of stable model semantics was introduced by Gelfond and 
Lifschitz (1988), and the leading answer set programming systems arc DLV (Eiter  et al., 1998) 
and SMODELS (Niemela  el al., 2000). The disk drive example comes from the S MODELS user 
manual (Syrjanen,  2000). Lifschitz (2001) discusses the use of answer set programming for 
planning. Brewka ei  al. (1997) give a good overview of the various approaches to nonmono-
tonic  logic. Clark (1978) covers the negation-as-failure approach to logic programming and 
Clark completion. Van Emden and Kowalski (1976) show that every Prolog program without 
negation has a unique minimal model. Recent years have seen renewed interest in applica-
tions of nonmonotonic logics to large-scale knowledge representation systems. The BENIN()  
systems for handling insurance-benefit inquiries was perhaps the first commercially success- 
ful  application of a nonmonotonic  inheritance system (Morgenstern, 1998). Lifschitz (2001) 
discusses the application of answer set programming to planning. A variety of nonmonotonic 
reasoning systems based on logic programming are documented in the proceedings of the 
conferences on Logic Programming and Nonmonotonic  Reasoning (LPNMR).  

The study of truth maintenance systems began with the TMS (Doyle, 1979) and RUP  
(McAllester, 1980) systems, both of which were essentially JTMSs. Forbus and de Kleer 
(1993) explain in depth how TMSs can be used in AI applications. Nayak and Williams 
(1997) show how an efficient incremental TMS called an ITMS  makes it feasible to plan the 
operations of a NASA spacecraft in real time. 

This chapter could not cover every area of knowledge representation in depth.  The three 
principal topics omitted are the following: 

Qualitative physics: Qualitative physics is a subfield of knowledge representation concerned 
specifically with constructing a logical, nonnumeric  theory of physical objects and processes. 
The tenn  was coined by Johan de Kleer (1975), although the enterprise could be said to 
have started in Fahhnan's  (1974) BUILD, a sophisticated planner for constructing complex 
towers of blocks. Fahlman discovered in the process of designing it that most of the effort 
(80%, by his estimate) went into modeling the physics of the blocks world to calculate the 
stability of various subassemblies of blocks, rather than into planning per se. He sketches a. 
hypothetical naive-physics-like process to explain why young children can solve BUILD -Like  
problems without access to the high-speed floating-point arithmetic used in BUILD's  physical 
modeling. Hayes (1985a) uses "histories"—four-dimensional  slices of space-time similar to 
Davidson's events—to construct a fairly complex naive physics of liquids. Hayes was the 
first to prove that a bath with the plug in will eventually overflow if the tap keeps running and 
that a person who falls into a lake will get wet all over. Davis (2008) gives an update to the 
ontology of liquids that describes the pouring of liquids into containers. 

De Kleer and Brown (1985), Ken Forbus (1985), and Benjamin Kuipers (1985) inde-
pendently and almost simultaneously developed systems that can reason about a physical 
system based on qualitative abstractions of the underlying equations. Qualitative physics 
soon developed to the point where it became possible to analyze an impressive variety of 

complex physical systems (Yip, 1991). Qualitative techniques have been used to construct 
novel designs fur clucks, windshield wipers, and six-legged walkers (Subrarnanian  and Wang, 
1994). The collection Readings in Qualitative Reasoning about Physical Systems (Weld and 
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de Kleer,  1990) an encyclopedia article by Kuipers  (2001), and a handbook article by Davis 
(2007) introduce to the field. 

SPATIAL REASONING  Spatial reasoning: The reasoning necessary to navigate in the wumpus world and shopping 
world is trivial in comparison to the rich spatial structure of the real world. The earliest 
serious attempt to capture commonsense reasoning about space appears in the work of Ernest 
Davis (1986,  1990). The region connection calculus of Cohn et al. (1997) supports a form of 
qualitative spatial reasoning and has led to new kinds of geographical information systems; 
see also (Davis, 2006). As with qualitative physics, an agent can go a long way, so to speak, 
without resorting to a full metric representation. When such a representation is necessary, 
techniques developed in robotics (Chapter 25) can be used. 

Psychological reasoning: Psychological reasoning involves the development of a working 
psychology for artificial agents to use in reasoning about themselves and other agents, This 
is often based on so-called folk psychology, the theory that humans in general are believed 
to use in reasoning about themselves and other humans. When Al researchers provide their 
artificial agents with psychological theories for reasoning about other agents, the theories are 
frequently based on the researchers' description of the logical agents' own design. Psycholog-
ical reasoning is currently most useful within the context of natural language understanding, 
where divining the speaker's intentions is of paramount importance. 

Minker  (2001) collects papers by leading researchers in knowledge representation, sum-
marizing 40 years of work in the field. The proceedings of the international conferences on 
Principles of Knowledge Representation and Reasoning provide the most up-to-date  sources 
for work in this area. Readings in Knowledge Representation (Bradman and Levesque, 
1985) and Formal Theories of the Commonsense World !Hobbs  and Moore, 1985) are ex-
cellent anthologies on knowledge representation; the former focuses more  on historically 
important papers in representation languages and formalisms,  the latter on the accumulation 
of the knowledge itself. Davis (1990), Stefik (1995), and Sowa (1999) provide textbook in-
troductions to knowledge representation, van Harmelen et al. (2007) contributes a handbook, 
and a special issue of Al Journal corers recent progress (Davis and Morgenstern, 2004). The 
biennial conference on Theoretical Aspects of Reasoning About Knowledge (TARK) covers 
applications of the theory of knowledge in AI, economics, and distributed systems. 

PSYCHOLOGICAL 
RE4SONING  

EXERCISES 

12.1 Define an ontology in first-order logic for tic-tac-toe. The ontology should contain 
situations, actions, squares, players, marks (X, 0, or blank), and the notion of winning, losing, 
or drawing a game. Also define the notion of a forced win (or draw): a position from which 
a player can force a win (or draw) with the right sequence of actions. Write axioms for the 
domain. (Note: The axioms that enumerate the different squares and that characterize the 
winning  positions ate lathe"  long. You need not write these out in full, but indicate clearly  
what they look like.) 
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12.2 Figure 12.1 shows the top levels of a hierarchy for everything. Extend it to include 
as many real categories as possible. A good way to do this is to cover all the things in your 
everyday life. This includes objects and events. Start with waking up, and proceed in an 
orderly fashion noting everything that you see, much, do, and think about. For example, 
a random sampling produces music, news, milk, walking driving, gas, Soda Hall, carpet, 
talking, Professor Fateman, chicken curry, tongue, $7, sun, the daily newspaper, and so on. 

You should produce both a single hierarchy chart (on a large sheet of paper) and a 
listing of objects and categories with the relations satisfied by members of each category. 
Every object should be in a category. and every category should be in the hierarchy. 

12.3 Develop a representational system for reasoning about windows in a window-based 
computer interface. In particular, your representation should be able to describe: 

• The state of a window: minimized, displayed, or nonexistent. 
• Which window (if any) is the active window. 
• The position of every window at a given time. 
• The order (front to back) of overlapping windows. 
• The actions of creating, destroying, resizing, and moving windows; changing the state 

of a window; and bringing a window to the front. Treat these actions as atomic; that is. 
do not deal with the issue of relating them to mouse actions. Give axioms describing 
the effects of actions on fluents,  You may use either event or situation calculus. 

Assume an ontology containing situations, actions, integers (for x and y coordinates) and 
windows, Define a language over this ontology; that is, a list of constants, function symbols, 
and predicates with an English description of each. If you need to add more categories to the 
ontology (e.g., pixels), you may do so. but be sure to specify these in your write-up. You may 
(and should) use symbols defined in the text, but be sure to list these explicitly. 

12.4 State the following in the language you developed for the previous exercise: 

a. In situation So, window W1 is behind W2 but sticks out on the left and right. Do not 
state exact coordinates for these; describe the general situation. 

b. If a window is displayed, thcn its top cdgc  is higher than its bottom cdgc.  
c. After you create a window w, it is displayed. 
d. A window can be minimized if it is displayed. 

12.5 (Adapted from an example by Doug Lenat.) Your mission is to capture, in logical 
form, enough knowledge to answer a series of questions about the following simple scenario: 

Yesterday John went to the North Berkeley Safeway supermarket and bought two 
pounds of tomatoes and a pound of ground beef. 

Start by trying to represent the content of the sentence as a series of assertions. You should 
write sentences that have straightforward logical structure (e.g., statements that objects have 
certain properties, that objects are related in certain ways, that all objects satisfying one prop-
erty satisfy another). The following might help you get started: 
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• Which classes, objects, and relations would you need? What are their parents, siblings 
and so on? (You will need events and temporal ordering, among other things.) 

• Where would they fit in a more general hierarchy? 
• What are the constraints and interrelationships among them? 
• How detailed must you be about each of the various concepts? 

To answer the questions below, your knowledge base must include background knowledge. 
You'll have to deal with what kind of things are at a supermarket, what is involved with 
purchasing the things one selects, what the purchases will be used for, and so on. Try to make 
your representation as general as possible. To give a trivial example: don't say "People buy 
food from Safeway," because that won't help you with those who shop at another supermarket. 
Also, don't turn the questions into answers; for example, question (c) asks "Did John buy any 
meat?"—not  "Did John buy a pound of ground beef?" 

Sketch the chains of reasoning that would answer the questions. If possible, use a 
logical reasoning system to demonstrate the sufficiency of your knowledge base. Many of the 
things you write might be only approximately correct in reality, but don't worry too much; 
the idea is to extract the common sense that lets you answer these questions at all. A truly 
complete answer to this question is extremely difficult, probably beyond the state of the art of 
current knowledge representation. But you should be able to put together a consistent set of 
axioms for the limited questions posed here_ 

a. Is John a child or an adult? [Adult] 
b. Does John now have at least two tomatoes? [Yes] 
c. Did John buy any meat? [Yes] 
d. If Mary was buying tomatoes at the same time as John, did he see her? [Yes] 
e. Are the tomatoes made in the supennarket? [No] 
f. What is John going to do with the tomatoes? [Eat them] 
g. Does Safeway sell deodorant? [Yes] 
h. Did John bring some money or a credit card to the supermarket? [Yes] 
i. Does John have less money after going to the supermarket? [Yes] 

12.6 Make the necessary additions or changes to your knowledge base from the previous 
exercise so that the questions that follow can be answered. Include in your report a discussion 
of your changes, explaining why they were needed, whether they were minor or major, and 
what kinds of questions would necessitate further changes. 

a. Are there other people in Safeway while John is there? [Yes—staff?] 
h.  Is John a vegetarian? [No] 
c. Who owns the deodorant in Safeway? [Safeway Corporation] 
d. Did John have an ounce of ground beef? [Yes] 
e. Does the Shell station next door have any gas? [Yes] 
f. Do the tomatoes fit in John's car trunk? [Yes] 
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12.7 Represent the following seven sentences using and extending the representations de-
vclopcd in the chapter: 

a. Water is a liquid between 0 and 100 degrees. 
b. Water boils at 100 degrees. 
c. The water in John's water bottle is frozen. 
d. Perrier is a kind of water. 
e. John has Perrier in his water bottle. 
f. All liquids have a freezing point. 
g. A liter of water weighs more than a liter of alcohol_ 

12.8 Write definitions for the following: 

a. ExhaustivePartDecomposition  

b. PartPartittion  

c. PartwiseDisjoint  

These should be analogous to the definitions for ExhaustiveDeeorn.position,  Partition, and 
Disjoint. Is it the case that PartPartition(s,  BunchOf (s))? If so, prove it; if not, give a 
counterexample and define sufficient conditions under which it does hold. 

12.9 An alternative scheme for representing measures involves applying the units function 
to an abstract length object. In such a scheme, one would write luches(Length(L i ))  = 
1.5. How does this scheme compare with the one in the chapter? Issues include conversion 
axioms, names for abstract quantities (such as "50 dollars"), and comparisons of abstract 
measures in different units (50 inches is more than 50 centimeters). 

12.10 Add sentences to extend the definition of the predicate Namek  e) so that a string 
such as "laptop computer" matches the appropriate category names from a variety of stores. 
Try to make your definition general. Test it by looking at ten online stores, and at the category 
names they give for three different categories. For example, for the category of laptops, we 
found the names "Notebooks," "Laptops,"  "Notebook Computers," "Notebook," "Laptops 
and Notebooks," and "Notebook PCs." Some of these can be covered by explicit Name facts. 
while others could be covered by sentences for handling plurals, conjunctions, etc. 

12.11 Write event calculus axioms to describe the actions in the wumpus world. 

12.12 State the interval-algebra relation that holds between every pair of the following real- 
world events. 

LK: The life of President Kennedy. 
The infancy of President Kennedy. 

PK: The presidency of President Kennedy. 
LJ:  The life of President Johnson. 
PJ: The presidency of President Johnson. 
LO:  The life of President ()barna.  
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12.13 Investigate ways to extend the event calculus to handle simultaneous events. Is it 
possible to avoid a combinatorial explosion of axioms? 
12.14 Construct a representation for exchange rates between currencies that allows for daily 
fluctuations. 
12.15 Define  the predicate Fixed, where Fixed(Location(x))  means that the location of 
object x is fixed over time. 
12.16 Describe the event of trading something for something else. Describe buying as a 
kind of trading in which one of the objects traded is a sum of money. 
12.17 The two preceding exercises assume a fairly primitive notion of ownership. For ex-
ample, the buyer starts by owning the dollar bills. This picture begins to break down when, 
for example, one's money is in the bank, because there is no longer any specific collection 
of dollar bills that one owns. The picture is complicated still further by borrowing, leasing, 
renting, and bailment. Investigate the various commonsense and legal concepts of ownership, 
and propose a scheme by which they can be represented formally, 
12.18 (Adapted from Fagin  et al. (1995).)  Consider a game played with a deck of just 8 
cards, 4 aces and 4 kings. The three players, Alice, Bob, and Carlos, are dealt two cards each. 
Without looking at them, they place the cards on their foreheads so that the other players can 
see them.  Then the players take turns either announcing that they know what cards are on 
their own forehead, thereby winning the game, or saying "I don't know." Everyone knows 
the players are truthful and are perfect at reasoning about beliefs. 

a. Game 1. Alice and Bob have both said "I don't know." Carlos sees that Alice has two 
aces (A-A) and Bob has two kings (K-K),  What should Carlos say? (//int:  consider all 
three possible cases for Carlos: A-A, K-K, A-K.) 

b. Describe each step of Game 1 using the notation of modal logic. 
c. Game 2. Carlos, Alice, and Bob all said "1  don't know" on their first turn. Alice holds 

K-K and Bob holds A-K. What should Carlos say on his second turn? 
d. Game 3. Alice, Carlos, and Bob all say "I don't know" on their first turn, as does Alice 

on her second turn. Alice and Bob both hold A-K. What should Carlos say? 
e. Prove that there will always be a winner to this game. 

12.19 The assumption of logical omniscience, discussed on page 453, is of course not true 
of any actual reasoners. Rather, it is an idealization of the reasoning process that may be 
more or less acceptable depending on the applications. Discuss the reasonableness of the 
assumption for each of the following applications of reasoning about knowledge: 

a. Partial knowledge adversary games, such as card games. Here one player wants to 
reason about what his opponent knows about the state of the game. 

b. Chess with a clock. Here the player may wish to reason about the limits of his oppo-
nent's or his own ability to find the best move in the time available. For instance, if 
player A has much more time left than player B, then A will sometimes make a move 
that greatly complicates the situation, in the hopes of gaining an advantage because he 
has more time to work out the proper strategy. 



478 Chapter 12. Knowledge  Representation 

c. A shopping agent in an environment in which there are costs of gathering information. 
d. Reasoning about public key cryptography, which rests on the intractability  of certain 

computational problems. 

12.20 Translate the following description logic expression (from page 457) into first-order 
logic, and comment on the result: 

And (Man,  AtLeast (3, Son), A tMost (2. Dauahten),  
All(Son,  And(Uneniployed  , Harried,  All(Spouse,  Doctor))), 
All(Dayoh.te.r,  ,  An d(Prnfessor  Fillg(  Department, Physir.s,  Moth)))) .  

12.21 Recall that inheritance information in semantic networks can be captured logically 
by suitable implication sentences. This exercise investigates the efficiency of using such 
sentences for inheritance_ 

2.  Consider the information in a used-car catalog such as Kelly's Blue Book—for exam-
ple. that 1973 Dodge vans are or perhaps were once) worth $575. Suppose all this 
information (for 11,000 models) is encoded as logical sentences, as suggested in the 
chapter. Write down three such sentences, including that for 1973 Dodge vans. How 
would you use the sentences to find the value of a particular car, given a backward-
chaining theorem prover such as Prolog? 

b. Compare the time efficiency of the backward-chaining method for solving this problem 
with the inheritance method used in semantic nets. 

c. Explain how forward chaining allows a logic -based system to solve the same problem 
efficiently, assuming that the KB contains only the 11,000 sentences about prices. 

d. Describe a situation in which neither forward nor backward chaining on the sentences 
will allow the price query for an individual car In  he handled efficiently_ 

e. Can you suggest a solution enabling this type of query to be solved efficiently in all 
cases in logic systems? (Hint: Remember that two cars of the same year and model 
have the same price.) 

12.22 One might suppose that the syntactic distinction between unboxed links and singly 
boxed links in semantic networks is unnecessary, because singly boxed links are always at-
tached to categories; an inheritance algorithm could simply assume that an unboxed link 
attached to a category is intended to apply to all members of that category. Show that this 
argument is fallacious, giving examples of errors that would arise. 

12.23 One part of the shopping process that was not covered in this chapter is checking 
for compatibility between items. Fur example, if a digital camera is ordered, what accessory 
batteries, memory cards, and cases are compatible with the camera? Write a knowledge base 
that can determine the compatibility of a set of items and suggest replacements or additional 
items if the shopper makes a choice that is not compatible. The knowledge base should works 
with at least one line of products and extend easily to other lines. 

1.2.24 A complete solution Lu the problem of inexact matches  to the buyer's description 
in shopping is very difficult and requires a full array of natural language processing and 
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information retrieval techniques. (See Chapters 22 and 23.) One small step is to allow the 
uscr to specify minimum and maximum values for various attributes. The buyer must use the 
following grammar for product descriptions: 

Description  

- 

Category [Connector Modified* 
Connector  

- 

"with" I "and" ","  
Modifier Attribute'  Attribute Op Value 
Op I 44  < P,  

Here, Category names a product category, Attribute is some feature such as "CPU" or 
"price," and Value is the target value for the attribute. So the query "computer with at least a 
2.5 GHz  CPU for under $500" must be re-expressed as "computer with CPU > 2.5 GHz and 
price < S500."  Implement a shopping agent that accepts descriptions in this language. 

12.25 Our description of Internet shopping omitted the all-important step of actually buying 
the product. Provide a formal logical description of buying, using event calculus. That is, 
define the sequence of events that occurs when a buyer submits a credit-card purchase and 
then eventually gets billed and receives the product. 



13 QUANTIFYING 
UNCERTAINTY 

In which we see how an agent can tame uncertainty with degrees of belief 

13.1 ACTING UNDER UNCERTAINTY 

UNCERTAEM  Agents may need to handle uncertainty, whether due to partial observability, nondetennin-
ism, or a combination of the two. An agent may never know for certain what state it's in or 
where it will end up after a sequence of actions. 

We have seen problem-solving agents (Chapter 4) and logical agents (Chapters 7 and 11) 
designed to handle uncertainty by keeping track of a belief state—a representation of the set 
of all possible world states that it might be in—and generating a contingency plan that han-
dles every possible eventuality that its sensors may report during execution. Despite its many 
virtues, however, this approach has significant drawbacks when taken literally as a recipe for 
creating agent programs: 

■ When interpreting partial sensor information, a logical agent must consider every log-
ically possible explanation for the observations, no matter how unlikely This leads to 
impossible large and complex belief-state representations. 

• A correct contingent plan that handles every eventuality can grow arbitrarily large and 
must consider arbitrarily unlikely contingencies. 

• Sometimes there is no plan that is guaranteed to achieve the goal—yet  the agent must 
act. It must have some way to compare the merits of plans that arc not guaranteed. 

Suppose, for example, that an automated taxi!automated  has the goal of delivering a pas-
senger to the airport on time. The agent forms a plan, Ago,  that involves leaving home 90 
minutes before the flight departs and driving at a reasonable speed. Even though the airport 
is only about 5 miles away, a logical taxi agent will not be able to conclude with certainty 
that "Plan A00 will get us to the airport in time." Instead, it reaches the weaker conclusion 

"Plan Am  will get us to the airport in time, as long as the car doesn't break down or run out 
of gas, and I don't get into an accident, and there are no accidents on the bridge, and the plane 

doesn't leave early, and no meteorite hits the car, and ...."  None of these conditions can be 

480 
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deduced for sure, so the plan's success cannot be inferred. This is the qualification problem 
(page 26g), for which we so far have seen no real solution_ 

Nonetheless, in some sense AN  is in fact the right thing to do. What do we mean by 
this? As we discussed in Chapter 2, we mean that out of all the plans that could be executed, 
A90  is expected to maximize the agent's performance measure (where the expectation is rel-
ative to the agent's knowledge about the environment). The performance measure includes 
getting to the airport in time for the flight, avoiding a long, unproductive wait at the airport, 
and avoiding speeding tickets along the way. The agent's knowledge cannot guarantee any of 
these outcomes for A50,  but it can provide some degree of belief that they will be achieved. 
Other plans, such as A lso ,  might increase the agent's belief that it will get to the airport on 
time, but also increase the likelihood of a long wait. The right thing to do—the rational 
decision—therefore depends on both the relative importance  of various goals and the likeli-
hood  that, and degree to which, they will be achieved. The remainder of this section hones 
these ideas, in preparation for the development of the general theories of uncertain reasoning 
and rational decisions that we present in this and subsequent chapters. 

13.1.1  Summarizing uncertainty 

Let's consider an example of uncertain reasoning: diagnosing a dental patient's toothache. 
Diagnosis—whether for medicine, automobile repair, or whatever—almost always involves 
uncertainty. Let us try to write rules for  dental diagnosis using propositional logic, so that we 
can see how the logical approach breaks down. Consider the following simple rule: 

Toothache = Cavity .  

The problem is that this rule is wrong. Not all patients with toothaches have cavities; some 
of them have gum disease, an abscess, or one of several other problems: 

Toothache Cavity V GuutProblem  V Abscess .  .  

Unfortunately, in order to make the rule true, we have to add an almost unlimited list of 
possible problems. We could try turning the rule into a causal rule: 

Cavity Toothache .  

But this rule is not right either, not all cavities cause pain_ The only way to fix the rule 
is to make it logically exhaustive: to augment the left-hand side with all the qualifications 
required for a cavity to cause a toothache. Trying to use logic to cope with a domain like 
medical diagnosis thus fails for three main reasons: 

• Laziness: It is too much work to list the complete set of antecedents or consequents  
needed to ensure an exceptionless rule and too hard to use such rules. 

■ Theoretical ignorance: Medical science has no complete theory for the domain. 
• Practical ignorance: Even if we know all the rules, we might be uncertain about a 

particular patient because not all the necessary tests have been or can be run. 

The connection between toothaches and cavities is just not a logical consequence in either 
direction_ This is typical of the medical domain, as well as most other judgmental domains: 
law, business, design, automobile repair, gardening, dating, and so on. The agent's knowledge 
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can at best provide only a degree of belief in the relevant sentences. Our main tool for 
dealing with degrees of belief is probability theory. In the terminology of Section 8.1, the 
ontological commitments of logic and probability theory are the same—that the world is 
composed of facts that do or do not hold in any particular case—but the epistemological 
commitments are different: a logical agent believes each sentence to be true or false or has 
no opinion, whereas a probabilistic agent may have a numerical degree of belief between 
(for sentences that are certainly  false) and I (certainly true). 

Probability provides a way of  summarizing the uncertainty that conies from our lazi-
ness and ignorance, thereby solving the qualification problem. We might not know for sure 
what afflicts a particular patient, but we believe that there is, say, an 80% chance—that is, 
a probability of 0.8—that  the patient who has a toothache has a cavity. That is, we expect 
that out of all the situations that are indistinguishable from the current situation as far as our 
knowledge goes, the patient will have a cavity in 80% of diem. This belief could be derived 
from statistical data-80%  of the toothache patients seen so far have had cavities—or from 
some general dental knowledge, or from a combination of evidence sources. 

One confusing point is that at the time of our diagnosis, there is no uncertainty in the 
actual world: the patient either has a cavity or doesn't. So what does it mean to say the 
probability of a cavity is 0.8? Shouldn't it be either 0 or 1? The answer is that probability 
statements are made with respect to a knowledge state, not with respect to the real world. We 
say "Theprobability  that the patient has a cavity, given that she has a toothache, is 0.8." If we 
later learn that the patient has a history of gum disease, we can make a different statement: 
"The probability that the patient has a cavity, given that she has a toothache and a history of 
gum disease, is 0.4:"  If we gather further conclusive evidence against a cavity, we can say 
"The probability that the patient has a cavity, given all we now know, is almost 0." Note that 
these statements do not contradict each other; each is a separate assertion about a different 
knowledge state. 

13.1.2 Uncertainty and rational decisions 

Consider again the A90  plan for getting to the airport. Suppose it gives us a 97% chance 
of catching our flight. Does this mean it is a rational choice? Not necessarily: there might 
be other plans, such as A180, with higher probabilities. If it is vital not to miss the flight. 
then it is worth risking the longer wait at the airport. What about Aldio,  a plan that involves 
leaving home 24 hours in advance? In most circumstances, this is not a good choice, because 
although it almost guarantees getting there on time, it involves an intolerable wait—not to 
mention a possibly unpleasant diet of airport food. 

To make such choices, an  agent must first have preferences between the different pos-
sible outcomes of the various plans. An outcome is a completely specified state, including 
such factors as whether the agent arrives on time and the length of the wait at the airport. We 
use utility theory to represent and reason with preferences. (The term utility is used here in 
the sense of "the quality of being useful," not in the sense of the electric company or water 
works.) Utility theory says that every state has a degree of usefulness, or utility, to an agent 
and that the agent will prefer states with higher utility. 
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The utility of a state is relative to an agent. For example, the utility of a state in which 
White has checkmated Black in a game of chess is obviously high for the agent playing White, 
but low for the agent playing Black. But we can't go strictly by the scores of 1, 1/2, and 0 that 
are dictated by the rules of tournament chess—some players (including the authors) might be 
thrilled with a draw against the world champion, whereas other players (including the former 
world champion) might not. There is no accounting for taste or preferences: you might think 
that an agent who prefers jalapefici  bubble-gum ice cream to chocolate chocolate chip is odd 
or even misguided, but you could not say the agent is irrational. A utility function can account 
for any set of preferences—quirky or typical, noble or perverse. Note that utilities can account 
for altruism, simply by including the welfare of others as one of the factors. 

Preferences, as expressed by utilities. are combined with probabilities in the general 
theory of rational decisions called decision theory: 

Decision theory = probability theory +  minty theory . 

MAXIMUM EXPECTED 
UTILITY  

The fundamental idea of decision theory is that an agent is rational if and only if it chooses 
the action that yields the highest expected utility, averaged over all the possible outcomes 
of the action. This is called the principle of maximum expected utility f,  M EU ) . Note that 
"expected" might seem like a vague, hypothetical term, but as it is used here it has a precise 
meaning: it means the "average," or "statistical mean" of the outcomes, weighted by the 
probability of the outcome. We saw this principle in action in Chapter 5 when we touched 
briefly on optimal decisions in hackgammon;  it is in fact a completely general principle_ 

Figure 13.1  sketches the structure of an agent that uses decision theory to select actions. 
The agent is identical, at an abstract level, to the agents described in Chapters 4 and 7 that 
maintain a belief state reflecting the history of percepts to date. The primary difference is 
that the decision-theoretic agent's belief state represents not just the possibilities for world 
states but also their probabilities. Given the belief state, the agent can make probabilistic 
predictions of action outcomes and hence select the action with highest expected utility. This 
chapter and the next concentrate on the task of representing and computing with probabilistic 
information in general. Chapter 15 deals with methods for the specific tasks of representing 
and updating the belief state over time and predicting the environment. Chapter 16 covers 
utility theory in more depth, and Chapter 17 develops algorithms for planning sequences of 
actions in uncertain environments. 

13.2 BASIC PROBABILITY NOTATION 

For our agent to represent and use probabilistic information, we need a formal language. 
The language of probability theory has traditionally been informal, written by human math-
ematicians to other human mathematicians. Appendix A includes a standard introduction to 
elementary probability theory; here, we take an approach inore  suited to the needs of Al and 
more consistent with the concepts of formal logic. 
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function DT-AGENT( percept) returns an action 
persistent: belief_state,  probabilistic beliefs about the current state of the world 

action, the agent's action 

update belief _state based on action and percept 
calculate outcome probabilities for actions, 

given action descriptions and current belief_state  
select action with highest expected utility 

given probabilities of outcomes and utility information 
return action 

Figure 13.1 A decision-theoretic agent that selects rational actions. 

13.2.1 What probabilities are about 

Like logical assertions, probabilistic assertions are about possible worlds. Whereas logical 
assertions say which possible worlds are strictly ruled out (all those in which the assertion is 
false), probabilistic assertions talk about how probable the various worlds are. In probability 

SAMPLE SPACE  theory, the set of all possible worlds is called the sample space. The possible worlds are 
mutually exclusive and exhaustive—two possible worlds cannot both be the case, and one 
possible world must be the case. For example, if we are about to roll two (distinguishable) 
dice, there are 36 possible worlds to consider: (1,1), (1,2), ...,  (6,6). The Greek letter f2  
(uppercase omega) is used to refer to the sample space, and w (lowercase omega) refers to 
elements of the  space, that is, particular possible worlds. 

PROBABILITY MODEL A fully specified probability model associates a numerical probability P(w)  with each 
possible world. 1  The basic axioms of probability theory say that every possible world has a 
probability between 0 and 1 and that the total probability of the set of possible worlds is 1: 

0 <  P(.)) <  1 for every w and E = 1. (13.1) 
west  

For example, if we assume that each die is fair and the rolls don't interfere with each other, 
then each of the possible worlds (1.1), (1,2), ...,  (6,6) has probability 1/36.  On the other 
hand, if the dice conspire to produce the same number, then the worlds (1,1), (2,2), (3,3), etc.,  
might have higher probabilities, leaving the others with lower probabilities. 

Probabilistic assertions and queries are not usually about particular possible worlds, but 
about sets of them. For example, we might be interested in the cases where the two dice add 
up to 11, the cases where doubles are rolled, and so on. In probability theory, these sets are 

EVENT 
 called events—a term already used extensively in Chapter 12 for a different concept. In Al, 

the sets are always described by propositions in a formal language. (One such language is 
described in Section 13.2.2.) For each proposition, the corresponding set contains just those 
possible worlds in which the proposition holds. The probability associated with a proposition 

For now, we assume a discrete, countable set of worlds. The proper treatment of the continuous case brings in 
certain complications that are less relevant for most purposes in AI. 
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is defined to be the sum of the probabilities of the worlds in which it holds: 

For any proposition 0,  P(0)  = p(w)  . (13.2)  
wEq,  

For example, when rolling fair dice, we have P(Total  =11) = P (5,6))  P((6.5))  = 
1/36 + 1/36 = 1/18. Note that probability theory does not require complete knowledge 
of the probabilities of each possible world. For example, if we believe the dice conspire to 
produce the same number, we might assert that P( doubles) = 1/4 without knowing whether 
the dice prefer double 6 to double 2.  Just as with logical assertions, this assertion constrains 
the underlying probability model without fully determining it. 

Probabilities such as P(Total  =11) and P(doubles)  are called unconditional or prior 
probabilities (and sometimes just "priors" for short); they refer to degrees of belief in propo-
sitions in the absence of any other information. Most of the time, however, we have some 
information, usually called evidence, that has already been revealed. For example, the first 
die may already be showing a 5 and we are waiting with bated breath for the other one to 
stop spinning. In that case, we are interested not in the unconditional probability of rolling 
doubles, but the conditional or posterior probability (or just "posterior" for short) of rolling 
doubles given that the first die is a 5. This probability is written P(doubles  Diei=  5),  where 
the "1"  is pronounced "given." Similarly, if I am going to the dentist for a regular checkup, 
the probability P(cavity)  = 0.2 might be of interest; but if I go to the dentist because I have 
a toothache, it's P (cavity I toothache) = 0.6 that matters. Note that the precedence of "1"  is 
such that any expression of the form N._  _  ...) always means P((.  )1(  ))  

It is important to understand that P(cavity)  =0.2 is still valid after toothache is ob-
served; it just isn't especially useful. When making decisions, an agent needs to condition 
on all the evidence it has observed. It is also important to understand the difference be-
tween conditioning and logical implication.  The assertion that P(cavity  I toothache) = 0.6 
does not mean "Whenever toothache is true, conclude that cavity is true with probabil-
ity 0.6" rather it means ' Whenever toothache is true and we have no further information, 
conclude that cavity is true with probability 0.6." The extra condition is important; for ex-
ample, if we had the further information that the dentist found no cavities, we definitely 
would not want to conclude that cavity is true with probability 0.6; instead we need to use 
P(cavityItoothache  A cavity) = 0. 

Mathematically speaking, conditional probabilities are defined in terms of uncondi-
tional probabilities as follows: for any propositions a and b,  we have 

P (alb) —  
P(

(  
a A b)  

(13.3)  
Pb)  

which holds whenever P ;b)  >  O.  For example, 

P(doubles  A Diei  =  5)  
P(doubles  Diei  =5) — 

P(Diei = 5) 
The definition makes sense if you remember that observing b rules out all those possible 
worlds where b is false, leaving a set whose total probability is just P(b).  Within that set, the 
a-worlds satisfy a A b  and constitute a fraction P(a A b)/  P(b).  

LINDONDITIONAL  
PRORABILITY  

PR OR PROVABILITY  

EVIDENCE 

CONDITIONAL  
PROBABILITY 
POSTERIOR 
PROBABILITY 
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The definition of conditional probability, Equation (13.3), can be written in a different 
PRODUCT RL LE form called the product rule: 

P(a A b) = P(a I b)P(b) .  

The product rule is perhaps easier to remember: it comes from the fact that, for a and 11  to be 
true, we need b to be true, and we also need a to be true given b. 

13.2.2 The language of propositions in probability assertions 

In this chapter and the next, propositions describing sets of possible worlds are written in a 
notation that combines elements of propositional logic and constraint satisfaction notation. In 
the terminology of Section 2.4.7, it is a factored representation, in which a possible world 
is represented by a set of variablevalue  pairs. 

Variables in probability theory are called random variables and their names begin with 
an uppercase letter. Thus, in the dice example, Total and Die].  are random variables. Every 
random variable has a domain—the set of possible values it can take on. The domain of 
Total for two dice is the set {2,  ,12} and the domain of Diet is {1,  6}. A Boolean 
random variable has the domain {true, false} (notice that values are always lowercase); fot  
example, the proposition that doubles are rolled can be written as Doubles —  true. By con-
vention, propositions of the form A= trte  are abbreviated simply as a, while A = false is 
abbreviated as -'a. (The uses of doubles, cavity, and toothache in the preceding section are 
abbreviations of this kind.) As in CSPs, domains can be sets of arbitrary tokens; we might 
choose the domain of Age to he {yliventie,  teen, adult} and the domain of Weather might 
be sunny, rain, cloudy, snoul  . When no ambiguity is possible, it is common to use a value 
by itself to stand for the proposition that a particular variable has that value; thus, sunny can 
stand for Weather = sunny. 

The preceding examples all have finite domains. Variables can have infinite domains 
too—either discrete (like the integers) or continuous (like the reds) For any variable with an 
ordered domain, inequalities are also allowed, such as NumberPfAtomsInUniverse  7  107'. 

Finally, we can combine these sorts of elementary propositions (including the abbre- 
viated forms for Boolean variables) by using the connectives of propositional logic. For 
example, we can express "The probability that the patient has a cavity, given that she is a 
teenager with no toothache, is 0.1" as follows: 

P(cavity -,toothache A  teen) = 0.1 .  

Sometimes we will want to talk about the probabilities of all the possible values of a random 
variable. We could write: 

P(WeathAr  = sunny) = 0_6 
P(Wcather  —  rain) —  0.1 
P(Weather  = cloudy) = 0.29 
P( Weather = snow) = 0.01 ,  

but as an abbreviation we will allow 

P( Weather) =  X0.6, 0.1,0.29, 0.01) ,  

RARDOM  VARIABLE 

DOMAIN 
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where the bold P indicates that the result is a vector of numbers, and where we assume a pre- 
defined  ordering( sunny,  rain, cloudy, .171.01,0  on the domain of Weather.  We say that the 
P statement defines a probability distribution for the random variable Weather. The P nota-
tion is also used for conditional distributions: P (X Y) gives the values of P(X =  =Yi)  
for each possible i, j pair. 

For continuous variables, it is not possible to write out the entire distribution as a vector, 
because there are infinitely many values. Instead, we can define the probability that a random 
variable takes on some value x as a parameterized function of x. For example, the sentence 

P ( NOOnTertip  = X)  = Uaiforiea  [sc.  ,26c1(X)  

PROBABILITY 
DE ,ISITY  FUNCTION 

JONT  PROBABILITY 
DI.T13113111101I  

expresses the belief that the temperature at noon is distributed uniformly between 18 and 26 
degrees Celsius, We call this a probability density function. 

Probability density functions (sometimes called pdfs) differ in meaning from discrete 
distributions. Saying that the probability density is uniform from 18C to 26C means that 
there is a 100% chance that the temperature will fall somewhere in that 8C-wide  region 
and a 50% chance that it will fall in any 4C-wide region, and so on. We write the probability 
density for a continuous random variable X at value x  as P(X = x)  or just P(x); the intuitive 
definition of P(x) is the probability that X falls within an arbitrarily small region beginning 
at x,  divided by the width of the region: 

P(x)  =limo P(x  <  X <  x  dx)Idx  . 

For NoonTemp  we have 

if 18C  < <  26C 
P(AroonTeynp  =x)  = Uniforrn[isc,260(x)  =  0otherwise  

where C stands for centigrade (not for a constant). In P(NoonTemp  = 20.18C) = 47 ,  note 
that k  is not a probability, it is a probability density. The probability that NoonTemp is 
exactly 20.18C is zero, becauac  20.18C is a region of width O. Some authors use different 
symbols for discrete distributions and density functions; we use P in both cases, since confu-
sion seldom arises and the equations are usually identical. Note that probabilities are unitless  
numbers, whereas density functions are measured with a unit, in this case reciprocal degrees. 

In addition to distributions on single variables, we need notation for distributions on 
multiple variables. Commas are used for this. For example, P( Weather, Cavity) denotes 
the probabilities of all combinations of the values of Weather and Cavity. This is a 4 x 2 
table of probabilities called the joint probability distribution of Weather and Cavity. We 
can also mix variables with and without values; P(sunny,  Cavity) would be a two-element 
vector giving the probabilities of a sunny day with a cavity and a sunny day with no cavity. 
The P notation makes certain expressions much more concise than they might otherwise be. 
For example, the product rules for all possible values of Weather and Cavity can be written 
as a single equation: 

P( Weather, Cavity) = P( Weather Cavity )P( Cavity) , 
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instead of as these 4 x 2 = 8 equations (using abbreviations W and C): 

P(W = sunny A C = true) = P(W = sunnyr  = true) P(C = true) 
P(W = rain A C = true) = P(W  = rain1C  = true) P(C = true) 
P(W = cloudy A C = true) = P(W = cloudy1C  = true) P(C  = true) 
P(W = snow A C = true) = = snowr  = true) 13 (C  = true) 
P(W = sunny A C= false) = P(W = sunnyr  = false) P(C = false) 
P(W = rain A C = false) = P(W  = rain[C  = false) Pr = false) 
P(W ='cloudy'  A (,`  = false) = = cloudy(,'  = false) P(C:  = false) 
P(W = snow A C = fa/se;  = P(W  = snow C = false) P(C = false) .  

As a degenerate case, P(sunny,  cavity) has no variables and thus is a one-element vec-
tor that is the probability of a sunny day with a cavity, which could also be written as 
P(sunny,  cavity) or P(sunny A cavity). We will sometimes use P notation to derive results 
about individual P values, and when we say "P (sunny) = 0.6" it is really art abbreviation for 
"P(sunny)  is the one-element vector (0.6 which means that P(sunny)  =0.6." 

Now we have defined a syntax for propositions and probability assertions and we have 
given part of the semantics: Equation (13.2) defines the probability of a proposition as the sum 
of the probabilities of worlds in which it holds, To complete the semantics, we need to say 
what the worlds are and how to determine whether a proposition holds in a world. We borrow 
this part directly from the semantics of propositional logic, as follows. A possible world is 
defined to he an assignment of values to all of the random variables ander  consideration. It is 
easy to see that this definition satisfies the basic requirement that possible worlds be mutually 
exclusive and exhaustive (Exercise 12.5). For example, if the random variables are  Cavity, 
Toothache, and Weather, then there are 2 x 2 x 4 = 16 possible worlds. Furthermore, the 
truth of any given proposition. no matter how complex, can be determined easily in such 
worlds using the same recursive definition of truth as for formulas in propositional logic. 

From the preceding definition of possible worlds, it follows that a probability model is 
completely determined by the joint distribution for all of the random variables—the  so-called 

13.2.3 Probability axioms and their reasonableness 

The basic axioms of probability (Equations (13.1) and (13.2)) imply certain relationships 
among the degrees of belief that can be accorded to logically related propositions_  For exam-
ple, we can derive the familiar relationship between the probability of a proposition and the 
probability of its negation: 

P(—.a) = P(4.0) by Equation (13.2) 
= P(w)  + P(w)  —  E„,a  P(w)LJWEa  

= P(w)  — E L, E.  P(w) grouping the first two termswEtt  
= 1 — P(a) by (13.1) and (13.2). 

FULLJONT  
PROBABILI  FY full joint probability distribution. For example, if the variables are Cavity, Toothache, 

ISTAJ  AUTIOV  
and Weather, then the full joint distribution is given by P(Cavity,  Toothache, Weather;_  
This joint distribution can be represented as a 2 x 2 x 4 table with 16 entries. Because every 
proposition's probability is a sum over possible worlds, a full joint distribution suffices, in 
principle, for calculating the probability of any proposition. 
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INCLUSON-
EXCLUBION  
PP NCIPLE 

HOJACCOROV'S  
AXIOMS 

We can also derive the well-known  formula for the probability of a disjunction, sometimes 
called the inclusion—exclusion  principle: 

P(a.  V b) = P(a) P(b)  — P(a A b) . (13.4) 
This rule is easily remembered by noting that the cases where a holds, together with the cases 
where b holds. certainly cover all the cases where a V b holds; but summing the two sets of 
cases counts their intersection twice. so  we need to subtract P(a.  A b).  The proof is left as an 
exercise (Exercise 13.6). 

Equations (13.1) and (13.4) are often called Kolmogarov's  axioms in honor of the Rus-
sian mathematician Andrei Kolmogorov, who showed how to build up the rest of probability 
theory from this simple foundation and how to handle the difficulties caused by continuous 
vanables. 2  While Equation (13.2) has a definitional flavor, Equation (13.4) reveals that the 
axioms really do constrain the degrees of belief an agent can have concerning logically re-
lated propositions. This is analogous to the fact that a logical agent cannot simultaneously 
believe A, B,  and —.( A  A /3),  because there is no possible world in which all three are true. 
With probabilities, however, statements refer not to the world directly, but to the agent's own 
stale of knowledge. Why, then, um an agent not hold the following set of beliefs (even though 
they violate Kohnogorov's  axioms)? 

P(a) = 0.4 
P(b) = 0.3 

P(a A = 0.0  
P(a V b) = 0.8  . (13.5)  

This kind of question has been the subject of decades of intense debate between those who 
advocate the use of probabilities as the  only legitimate form for degrees of belief and those 
who advocate alternative approaches. 

One argument for the axioms of probability, first stated in 1931 by Bruno de Finetti  
(and translated into English in de Finetti (1993)), is as follows: If an agent has some degree of 
belief in a proposition a, then the agent should be able to state odds at which it is indifferent 
to a bet for or against a.3  Think of it as a game between two agents: Agent 1 states. "my 
degree of belief in event a is 0.4." Agent 2 is then free to choose whether to wager for or 
against a at stakes that are consistent with the stated degree of belief. That is, Agent 2 could 
choose to accept Agent l's bet that a will occur, offering S6  against Agent 1  's  $4. Or Agent 
2 could accept Agent l's bet that  will occur, offering $4 against Agent l's $6. Then we 
observe the outcome of a, and whoever is right collects the money. If an agent's degrees of 
belief do not accurately reflect the world. then you would expect that it would tend to lose 
money over the long run to an opposing agent whose beliefs more accurately reflect the state 
of the world. 

But de Pineal  proved something much stronger: If Agent I expresses a set of degrees 
of belief that violate the axioms of probability theory  then there is a combination of bets by 
Agent 2 that guarantees that Agent 1  will lose money every time_  For example, suppose that 
Agent 1 has the set of degrees of belief from Equation (13.5). Figure 13.2 shows that if Agent 
2  The difficulties include the Vitali  set, a well-defined subset of the interval la, 11  with no well-defined size. 
3  One might argue that the agent's preferences for different bank balances  are such that the possibility of losing 
Si  is not counterbalanced by an equal possibility of winning Si.  One possible response is to make the bet ,amounts  
small enough to avoid this problem. Savage's analysis (1954)  circumvents the issue altogether. 
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2 chooses to bet $4 on a, $3 on b, and $2 on –, (a,  V b), then Agent 1 always loses money. 
regardless of the outcomes for a and b. Dc Finctti's  theorem implies that no rational agent 
can have beliefs that violate the axioms of probability. 

Agent 1 
Proposition Belief 

Agent 2 
Bet Stakes 

Outcomes and payoffs to Agent 1 
cz,b a, –.I) –.a, b –,a,–, :b.  

a 0.4 a 4 to 6 –6  –6 4 4 
b 0.3 b 3 to 7 –7 3 –7 3 

a V b 0,8  –, (a  V b) 2 to 8 2 2 2 –8 
–11 –1 –1 –1 

Figure 13.2 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set of 
bets that guarantees a loss for Agent 1, no matter what the outcome of a and I. 

One common objection to de Finetti's  theorem is that this betting game is rather con-
trived. For example, what if one refuses to bet? Does that end the argument? The answer is 
that the betting game is an abstract model for the  decision-making situation in which every 
agent is unavoidably  involved at every moment. Every action (including inaction) is a kind 
of bet, and every outcome can be seen as a payoff of the bet. Refusing to bet is like refusing 
to allow time to pass. 

Other strong philosophical arguments have been put forward for the use of probabilities, 
most notably those of Cox (1946), Carnap (1950), and Jaynes (2003). They each construct a 
set of axioms for reasoning with degrees of beliefs: no contradictions, correspondence with 
ordinary logic (for example, if belief in A goes up, then belief in –,11  must go down), and so 
on. The only controversial axiom is that degrees of belief must be numbers, or at least act 
like numbers in that they must be transitive (if belief in A is greater than belief in B, which is 
greater than belief in C, then belief in A must be greater than C) and comparable (the belief 
in A must be one of equal to, greater than, or less than belief in B). It can then be proved that 
probability is the only approach that satisfies these axioms. 

The world being the way it is, however, practical demonstrations sometimes speak 
louder than proofs. The success of reasoning systems based on probability theory has been 
much more effective in making converts. We now look at how the axioms can be deployed to 
make inferences. 

13.3 INFERENCE USING FULL JOINT DISTRIBUTIONS 

PROBABILISTIC 
INFERENCE In this section we describe a simple method for probabilistic inference—that is, the compu- 

tation of posterior probabilities for query propositions given observed evidence. We use the 
full joint distribution as the "knowledge base" from which answers to all questions may be de- 
rived.  Along the way we also introduce several useful techniques for manipulating equations 
involving probabilities. 
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WHERE Do PROBABILITIES COME FROM? 

There has been endless debate over the source and status of probability numbers. 
The frequentist position is that the numbers can come only from experiments: if 
we test 100 people and find that 10 of them have a cavity, then we can say that 
the probability of a cavity is approximately 0.1. In this view, the assertion "the 
probability of a cavity is 0.1" means that 0.1 is the fraction that would be observed 

in the limit of infinitely many samples. From any finite sample, we can estimate 
the true fraction and also calculate how accurate our estimate is likely to be, 

The objectivist view is that probabilities are real aspects of the universe—
propensities of objects to behave in certain ways—rather than being just descrip-
tions of an observer's degree of belief. For example, the fact that a fair coin comes 
up heads with probability 0.5 is a propensity of the coin itself. In this view, fre-
quentist measurements are attempts to observe these propensities. Most physicists 
agree that quantum phenomena are objectively probabilistic, but uncertainty at the 
macroscopic scale—e  g_,  it coin tossing—usually arises from ignorance of initial 
conditions and does not seem consistent with the propensity view. 

The subjectivist view describes probabilities as a way of characterizing an 
agent's beliefs, rather than as having any external physical significance. The sub-
jective Bayesian view allows any self-consistent ascription of prior probabilities to 
propositions, but then insists on proper Bayesian updating as evidence arrives. 

In the end, even a strict frequentist  position involves subjective analysis be-
cause of the reference class problem: in trying to determine the outcome probabil-
ity of a particular experiment, the frequentist has to place it in a reference class of 
"similar" experiments with known outcome frequencies. I. J. Good (1983, p. 27) 
wrote, "every event in life is unique, and every real-life  probability that we esti-
mate in practice is that of an event that has never occurred before." For example, 
given a particular patient, a frequentist who wants to estimate the probability of a 
cavity will consider a reference class of other patients who are similar in important 
ways—age, symptoms, diet—and see what proportion of them had a cavity. If the 
dentist considers everything that is known about the patient—weight to the nearest 
gram, hair color, mother's maiden name—then the reference class becomes empty. 
This has been a vexing problem in the philosophy of science. 

The principle of indifference attributed to Laplace (1816) states that propo-
sitions that are syntactically "symmetric" with respect to the evidence should be 
accorded equal prohability_  Various refinements have been proposed, culminating 
in the attempt by Catnap and others to develop a rigorous inductive logic, capa- 
ble of computing the correct probability for any proposition from any collection of 

observations. Currently, it is believed that no unique inductive logic exists; rather, 
any such logic rests on a subjective prior probability distribution whose effect is 
diminished as more observations are collected. 
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toothache —toothache  

catch —'catch  catch —, catch  

cavity 0.108 0.012 0.072 0.008 
—pcavity  0.016 0.064 0.144 0.576 

Figure 13.3 A full joint distribu ion for the Toothache, Cavity, Catch world. 

We begin with a simple example: a domain consisting of just the three Boolean variables 
Toothache, Cavity, and Catch (the dentist's nasty steel probe catches in my tooth). The full 
joint distribution is a 2 x 2 x 2 table as shown in Figure 13.3. 

Notice that the probabilities in the joint distribution sum to 1, as required by the axioms 
of probability. Notice also that Equation (13.2) gives us a direct way to calculate the probabil-
ity of any proposition, simple or complex: simply identify those possible worlds in which the 
proposition is true and add up their probabilities. For example, there are six possible worlds 
in which cavity V toothache holds: 

P(cavity  V toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28 
One particularly common task is to extract the distribution over some subset of variables or 
a single variable. For example, adding the entries in the first row gives the unconditional or 
marginal probability4  of cavity: 

P(cavity)  = 1).108 +  0.012 + 0.072 + 0.008 = 0.2 . 
This process is called marginalization,  or summing out—because we sum up the probabil-
ities for each possible value of the other variables, thereby taking them out of the equation. 
We can write the following general marginalization rule for any sets of variables Y and Z: 

P(Y) = E P(Y, z) , (13.6) 
zEZ  

where Ezez  means to sum over all the possible combinations of values of the set of variables 
Z. We sometimes abbreviate this as rz ,  leaving Z implicit. We just used the rule as 

P(Cavity) = P( Cavity ,z) . (13.7) 
ze  { Cach,  Teo tleache}  

A variant of this rule involves conditional probabilities instead of joint probabilities, using 
the product rule: 

P(Y) = E 
P(Y 

 I 03 (2 )  • (13.8) 

This rule is called conditioning. Marginalization and conditioning turn out to be useful rules 
for all kinds of derivations involving probability expressions. 

In most cases, we are interested in computing conditional probabilities of some vari-
ables, given evidence about others. Conditional probabilities can be found by first using 

So called because of a common practice among actuaries of writing the sums of observed frequencies in the 
margins of insurance tables. 

MARGINAL 
PROBABILITY 

MARGIMIZATION  

CONDITIONING 
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NORMAL gATI  ON 

Equation (13.3) to obtain an expression in terms of unconditional probabilities and then eval-
uating the expression from the full joint distribution. For example, we can compute the 
probability of a cavity, given evidence of a toothache, as follows: 

P  (cavity A toothache) 
P (cavity toothache) —   

P(toothache)  
0.108  +  0.012 

=  0.6 0.108 +  0.012 +  0.016 +  0.064 
Just to check, we can also compute the probability that there is no cavity, given a toothache. 

P (—wavity  A toothache) 
P h  cavity I toothache) =  

P(toothache) 
0.016 + 0.064  

 
0.108 +  0.012 + 0.016 +  0.064  

0.4  

The two values sum to 1,0, as they should. Notice that in these two calculations the term 
11  P(toothaehe)  remains constant, no matter which value of Cavity we calculate. hi fact, 
it can be viewed as a normalization constant for the distribution P(Cavity  toothache), 
ensuring that it adds up to 1. Tlu-oughout  the chapters dealing with probability, we use a  to 
denote such constants. With this notation, we can write the two preceding equations in one: 

P(  Cavity toothache) = P(Cavity,  toothache) 

= cr [P(Cavity,  toothache, catch) I P(Cavity,  toothache, —,catch)]  

= [(0.108,  0.016) +  (0.012, 0.064)] =  (0.12, 0.08)  = (0.6, 0.4) .  
In other words, we can calculate P(Cavity  I toothache) even if we don't know the value of 
P(toothache)!  We temporarily forget about the factor 1/P(  toothache) and add up the values 
for cavity and -,cavity,  getting 0.12 and 0.08. Those are the correct relative proportions, but 
they don't sum to 1,  so we normalize them by dividing each one by 0.12 + 0.08, getting 
the true probabilities of 0.6 and 0.4.  Normalization turns out to be a useful shortcut in many 
probability calculations, both to make the computation easier and to allow us to proceed when 
some probability assessment (such as P(toothoche))  is not available. 

From the example, we can extract a general inference procedure. We begin with the 
case in which the query involves a single variable, X (Cavity in the example). Let E  be the 
list of evidence variables (just Toothache in the example), let e  be the list of observed values 
for them, and let Y  be the remaining unobserved variables (just Catch in the example). The 
query is P(X I e) and can be evaluated as 

P(X e) = aP(X,e)  = cr P(X,  e, y) (13.9) 

where the summation is over all possible ys  (i.e., all possible combinations of values of the 
unobserved variables Y). Notice that together the variables X, E, and Y  constitute the com-
plete set of variables for the domain, so P(X, e, y) is simply a subset of probabilities from the 
full joint distribution. 

Given the full joint distribution to work with, Equation (13.9) can answer probabilistic 
queries for discrete variables. It does not scale well, however: fur a domain described by rt  
Boolean variables, it requires an input table of size 0 (2"  ) and takes 0(2") time to process the 
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table. In a realistic problem we could easily have n > 100, making 0(2n)  impractical. The 
full joint distribution in tabular form is just not a practical tool for building reasoning systems. 
Instead, it should be viewed as the theoretical foundation on which more effective approaches 
may be built, just as truth tables formed a theoretical foundation for more practical algorithms 
like DPLL. The remainder of this chapter introduces some of the basic ideas required in 
preparation for the development of realistic systems in Chapter 14.  

13.4 INDEPENDENCE 

INDEPENDENCE 

Let us expand the full joint distribution in Figure 13,3  by adding a fourth variable, Weather. 
The full joint distribution then becomes Pi:  Toothache, Catch ;  Cavity, Weather), which has 
2 x 2 x 2 )4  4 = 32 entries. It contains four "editions" of the table shown in Figure 133, 
one for each kind of weather. What relationship do these editions have to each other and to 
the original three-variable  table? For example, how are P (toothache , catch, cavity, cloudy) 
and P(toothache,  catch, cavity) related? We can use the product rule: 

P(toothache  catch, cavity, cloudy) 
= P(cloudy  I  toothache, catch, cavity)P(toothaehe  , catch, cavity) .  

Now, unless one is in the deity business, one should not imagine that one's dental problems 
influence the weather. And for indoor dentistry, at least, it seems safe to say that the weather 
does not influence the dental variables. Therefore, the following assertion seems reasonable: 

P(cloudy  I toothache, catch. cavity) = P(cloudy)  . (13.10) 
From this, we can deduce 

P(toothache, catch, cavity, cloudy) = P (cloudy)P  (toothache , catch, cavity) .  
A similar equation exists for every entry in P( Toothache, Catch, Cavity, Weather). In fact, 
we can write the general equation 

P( Toothache, Catch, Cavity, Weather) = P( Toothache , Catch, Cavity)P(Weather)  

Thus. the 32-element table for four variables can be constructed from one 8-element table 
and one 4-element table. This decomposition is illustrated schematically in Figure 13.4(a). 

The property we used in Equation (13.10) is called independence (also marginal in-
dependence and absolute independence). In particular, the weather is independent of one's 
dental problems. Independence between propositions a and b can be written as 

P(a I b) = P(a)  or P(b a, = P(b) or P(a A b) = P(a)P(b)  . (13.11) 
All these forms are equivalent (Exercise 13.12). Independence between variables X and Y 
can be written as follows (again, these are all equivalent): 

P(X I Y) = P(X)  or P(Ir  X) = P(Y) or P(X,  =P(X)P(Y) . 
Independence assertions are usually based on knowledge of the domain. As the toothache- 
weather example illustrates, they can dramatically reduce the amount of information nec- 
essary to specify the full joint distribution. If the complete set of variables can be divided 



(a) (b) 

decomposes 
into 

Cavity 
Toothache  Clack  

Figure 13,4  Two examples of factoring a large joint distribution into smaller distributions, 
using absolute independence. (a) Weather and dental problems are independent. (b) Coin 
flips arc independent. 
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into independent subsets. then the full joint distribution can be factored into separate joint 
distributions on those subsets. For example, the full joint distribution on the outcome of rz  
independent coin flips, P(C.,'"  G),  has 2'  entries, but it can be represented as the prod-
uct of rz  single-variable distributions P(Ci).  In a more practical vein, the independence of 
dentistry and meteorology is a good thing, because otherwise the practice of dentistry might 
require intimate knowledge of meteorology, and vice versa. 

When they are available, then, independence assertions can help in reducing the size of 
the domain representation and the complexity of the inference problem. Unfonuaately,  clean 
separation of entire sets of variables by independence is quite rare. Whenever a connection, 
however indirect, exists between two variables, independence will fail to hold. Moreover, 
even independent subsets can be quite large—for example, dentistry might involve dozens of 
diseases and hundreds of symptoms, all of which are interrelated. To handle such problems, 
we need more subtle methods than the straightforward concept of independence. 

13.5 BAYES'  RULE AND ITS USE 

EWES' RULE 

On page 486, we defined the product rule. It can actually be written in two forms: 
P(a.  A b) = P(a.  b)P (b) and P ( a  A b) = P(b  a)P(a)  .  

Equating the two right-hand sides and dividing by P(a),  we get 
P(a  I b)P(b)   

P (b I = ( 13.12)  
P(a)  

This equation is known as Bayes'  rule (also Bayes' law or Bayes' theorem). This simple 

equation underlies most modem Al systems for probabilistic inference. 
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The more general case of Bayes' rule for multivalued variables can be written in the P 
notation as follows: 

P(X) 

As before, this is to be taken as representing a set of equations, each dealing with specific val-
ues of the variables. We will also have occasion to use a more general version conditionalized 
on sonic background evidence.  e: 

PO
T 

 I 
X, 

 e) = 
P(X1Y,  e) 13 ( 1(  e) 

P(X  e) 
(13.13) 

13.51  Applying Bayes' rule: The simple case 

On the surface, Bayes' rule does not seem very useful. It allows us to compute the single 
term P (b I a) in terms of three terms: P(rr b), P(b),  and P (a). That seems like two steps 
backwards, but Bayes' rule is useful in practice because there are many cases where we do 
have good probability estimates for these three numbers and need to compute the fourth. 
Often, we perceive as evidence the effect of some unknown cause and we would like to 
determine that cause. In that case, Bayes' rule becomes 

P (cause effect) 
P (effect  I cause)P  (cause) 

I =  
P(effect)  

CAUSAL The conditional probability I" (effect cause) quantities the relationship in the causal direc- 
❑ IK.AOSIIC Lion,  whereas P(coalse  effect) describes the diagnostic direction. In a task such as medical 

diagnosis, we often have conditional probabilities on causal relationships (that is, the doctor 
knows P(symployro  I disease})  and want to derive a diagnosis,  F(tlisease  symptoms). For 
example, a doctor knows that the disease meningitis causes the patient to have a stiff neck. 
say, 70% of the time. The doctor also knows some unconditional facts: the prior probabil-
ity  that a patient has meningitis is 1/50,000, and the prior probability that any patient has a 
stiff neck is 1%. Letting s be the proposition that the patient has a stiff neck and m be the 
proposition that the patient has meningitis, we have 

P(s  I m)  = 0.7 
P(m)  = 1/50000 

P(s)  — 0.01 

p(tn  8) P(s  I;2
(.)13

) : 111 ) 0.7 x01.0/150000 —  0.0014 . (13.14) 

That is,  we expect less than 1 in 700 patients with a stiff neck to have meningitis. Notice that 
even though a stiff neck is quite strongly indicated by meningitis (with probability 0.7), the 
probability of meningitis in the patient remains small. This is because the prior probability of 
stiff necks is much higher than that of meningitis. 

Section 13.3 illustrated  a process by which one can avoid assessing the prior probability 
of the evidence (here, P(s)) by instead computing a posterior probability for each value of 

PO' I - 
P(X  I }TR(Y )   
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the query variable (here, in and – at) and then normalizing the results. The same process can 
be applied when using Bayes'  vale. We have 

P(M  I a) = a P(.5  I  ?TOP  (rn),  P (6 1  –411 )  P  ( –'1n))  •  
Thus, to use this approach we need to estimate P(s  I–rut)  instead of P(s). There is no free 
lunch—sometimes  this is easier, sometimes it is harder. The general form of Bayes'  rule with 
normalization is 

13 (37  I = P(X  Y)P(Y) (1 3.1 5) 

where a is the normalization constant needed to make the entries in P(Y X) sum to 1. 
One obvious question to ask about Bayes' rule is why one might have available the 

conditional probability in one direction, but not the other. In the meningitis domain, perhaps 
the doctor knows that a stiff neck implies meningitis in 1 out of 5000 cases; that is, the doctor 
has quantitative information in the diagnostic direction from symptoms to causes. Such a 
doctor has no need to use Bayes' rule. Unfortunately, diagnostic knowledge is often more 
fragile than causal knowledge. If there is a sudden epidemic of meningitis, the unconditional 
probability of meningitis, P(m).  will go up. The doctor who derived the diagnostic proba-
bility P(m  I s)  directly from statistical observation of patients before the epidemic will have 
no idea how to update the value, but the doctor who computes P(rn  I  s)  from the other three 
values will see that P(m  s)  should go up proportionately with P(m). Most important, the 
causal information P(s m) is unaffected by the epidemic, because it simply reflects the way 
meningitis works. The use of this kind of direct causal or model-based knowledge provides 
the crucial robustness needed to make probabilistic systems feasible in the real world. 

13.5.2 Using Bayes' rule: Combining evidence 

We have seen that Bayes'  rule can be useful for answering probabilistic queries conditioned 
on one piece of evidence—for example, the stiff neck. In particular. we have argued that 
probabilistic information is often available in the form P(eifem  I cause). What happens when 
we have two or more pieces of evidence? For example, what can a dentist conclude if her 
nasty steel probe catches in the aching tooth of a patient? If we know the full joint distribution 
(Figure 13.3), we can read off the answer: 

P(  Cavity toothache A catch) = 0.108 ;  0.016) t0.871,0.129 
We know, however, that such an approach does not scale up to larger numbers of variables. 
We can try using Bayes' rule to reformulate the problem: 

P(Cavity  toothache A catch) 

= aP(toothache  A catch I Cavity)  Cavity) . 113.16)  

For this reformulation to work, we need to know the conditional probabilities of the conjunc- 
tion toothache A catch for each value of Cavity.  That might be feasible for just two evidence 
variables, but again it does not scale up. If there are 74  possible evidence variables (X rays, 
diet, oral hygiene, etc.), then there are 2n  possible combinations of observed values for which 
we would need to know conditional probabilities. We might as well go back to using the  
full joint distribution. This is what first led researchers away from probability theory toward 
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approximate methods for evidence combination that, while giving incorrect answers, require 
fewer numbers to give any answer at all. 

Rather than taking this route, we need to find some additional assertions about the 
domain that will enable us to simplify the expressions. The notion of independence in Sec-
tion 13.4 provides a clue, but needs refining. It would be nice if Toothache and Catch were 
independent, but they are not: if the probe catches in the tooth, then it is likely that the tooth 
has a cavity and that the cavity causes a toothache. These variables are independent, how-
ever, given the presence or the absence of a cavity. Each is directly caused by the cavity, but 
neither has a direct effect on the other: toothache depends on the state of the nerves in the 
tooth, whereas the probe's accuracy depends on the dentist's skill, to which the toothache is 
irrelevant. 5  Mathematically, this property is written as 

P(toothache  A catch I Cavity) = P(toothache  I Cavity)P(catch I Cavity) . (13.17) 
This equation expresses the conditional independence of toothache and catch given Cavity. 
We can plug it into Equation (13_16) to obtain the probability of a cavity: 

P( Cavity I toothache A catch) 
= orP(tooth.ache  Cavity)P(catch  Cavity)P(Cavity)  . (13.18) 

Now the information requirements are the same as for inference, using each piece of evi-
dence separately: the prior probability P (Cavity) for the query variable and the conditional 
probability of each effect, given its cause. 

The general definition of conditional independence of two variables X and Y, given a 
third variable 7, is 

P(X,  Y Z) = P(X Z)13(Y  I Z) . 
In the dentist domain, for example, it seems reasonable to assert conditional independence of 
the variables Toothache and Catch, given Cavity: 

P(Toothache ,  Catch I Cavity) = P(Toothache Cavity)P(Catch I  Cavity) . (13.19) 
Notice that this assertion is somewhat stronger than Equation (13.17), which asserts indepen-
dence only for specific values of Toothache and Catch. As with absolute independence in 
Equation (13A1), the equivalent forms 

P(X  I Y,  2) =P( X Z) and P(Y I X, Z) =P(Y I Z) 
can also be used (see Exercise 13.17). Section 13.4 showed that absolute independence as-
sertions allow a decomposition of the full joint distribution into much smaller pieces. It turns 
out that the same is true for conditional independence assertions. For example, given the 
assertion in Equation (13.19), we can derive a decomposition as follows: 

P(Toothache, Catch, Cavity) 
= P( Toothache, Catch I Carity)P(  Cavity) (product rule) 

= P( Toothache Cavity)P(  Catch I Cavity)P( Cavity)  (using 13.19). 
(The reader can easily check that this equation does in fact hold in Figure 13.3.) In this way. 
the original large table is decomposed into three smaller tables. The original table has seven 

We assume that the patient and dentist are distinct individuals. 
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independent numbers (23 =  8 entries in the table, but they must sum to 1, so 7 are indepen- 
dent). The  smaller tables contain five independent numbers (for a conditional probability 
distributions such as P(TIC  there are two rows of two numbers, and each row sums to 1,  so 
that's two independent numbers: for a prior distribution like P(C) there is only one indepen-
dent number). Going from seven to five might not seem like a major triumph, but the point 
is that, for ra  symptoms that are all conditionally independent given Cavity, the size of the 
representation grows as 0(72)  instead of 0(2n).  That means that conditional independence 
assertions can allow probabilistic systems to stale up; Inoreoyer,  they are much more com-
monly available than absolute independence assertions. Conceptually, Cavity separates 
Toothache and Catch because it is a direct cause of both of them. The decomposition of 
large probabilistic domains into weakly connected subsets through conditional independence 
is one of the most important developments in the recent history of Al. 

The dentistry example illustrates a commonly UCCILIT1lig  pattern in which a single cause 
directly influences a number of effects, all of which are conditionally independent, given the 
cause. The full joint distribution can be written as 

P (Cause, Effect Effect,,)  — P(  Cause)llP(Effect,1  Cause) .  

Such a probability distribution is called a naive Bayes  model—"naive"  because it is often 
used (as a simplifying assumption) in cases where the "effect" variables are not actually 
conditionally independent given the cause variable. (The naive Bayes model is sometimes 
called a Bayesian classifier, a somewhat careless usage that has prompted true Bayesians 
to call it the idiot Bayes model.) In practice, naive Bayes systems can work surprisingly 
well, even when the conditional independence assumption is not true. Chapter 20 describes 
methods for learning naive Bayes distributions from observations. 

13.6 THE WUMPUS WORLD REVISITED 

We can combine of the ideas in this chapter to solve probabilistic reasoning problems in the 
wumpus world. (See Chapter 7 for a complete description of the wumpus world.) Uncertainty 
arises in the wumpus  world because the agent's sensors give only partial information about 
the world. For example, Figure 13.5  shows a situation in which each of the three reachable 
squares—[1,3],  [2,2],  and [3,1]—might  contain a pit. Pure logical inference can conclude 
nothing about which square is most likely to be safe, so a logical agent might have to choose 
randomly. We will see that a probabilistic agent can do much better than the logical agent. 

Our aim is to calculate the probability that each of the three squares contains a pit. (For 
this example we ignore the wumpus and the gold.) The relevant properties of the wumpus 
world are that (1) a pit causes breezes in all neighboring squares, and (2) each square other 
than [1,1] contains a pit with probability 0.2. The first step is to identify the set of random 
variables we need: 

•  As in the propositional logic case, we want one Boolean variable Pij  for each square, 
which is true iff square [i,  j] actually contains a pit. 
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• We also have Boolean variables 13,,  that are true iff  square [i,  j] is breezy; we include 
these variables only for the observed squares—in this case, [1,1], [1,2], and [2,1]. 

The next step is to specify the full joint distribution, P(Pi  1, •  •  •  P4,4,  B1,3, B1,2, B2,1). Ap-

plying the product rule, we have 

P(Pi,i,••  •  , 134,4,  B1,1, B1,2, B2,1) 

P(B1,1 -  B1,2 B2,1 I P1,1;  •  -  P4,4)P(P1.,1,  •  -  •  -P44  )  - 

This decomposition makes it easy to see what the joint probability values should be. The 
first term is the conditional probability distribution of a breeze configuration, given a pit 
configuration; its values are 1 if the breezes are adjacent to the pits and Cl  otherwise. The 
second term is the prior probability of a pit configuration. Each square contains a pit with 
probability 0.2, independently of the other squares; hence, 

4.4 

13 (131,1,  • • • ,  P4,4) = P(Pi  )  • (13.20) 
id —1,1 

For a particular configuration with exactly n pits, P(Pi,i,  •  •  •  , Pa,a)  = 0-2"  x 0.816',  
In the situation in Figure 13.5(a), the evidence consists of the observed breeze (or its 

absence) in each square that is visited, combined with the fact that each such square contains 
no pit. We abbreviate these facts as b=  A b1,2  A b2,1 and known = —pi  1  A —P1,2 A —1)2,i•  
We are interested in answering queries such as P(P1 ,3  known, b): how likely is it that [1,3] 
contains a pit, given the observations so far? 

To answer this query, we can follow the standard approach of Equation (13.9), namely. 
summing over entries from the full joint distribution Let Unknown be the set of Pij  vari- 
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ables for squares other than the Known squares and the query square [1,3]. Then, by Equa-
tion (13.9), we have 

P(P1 ,3  I known , b) = E  p(pi ,,,  unknown, known, b) .  
unknown 

The full joint probabilities have already been specified, so we are done—that is, unless we 
care about computation. There are 12 unknown squares; hence the summation contains 
2 12  = 4119 6 terms_ In general, the summation grows exponentially with the number of squares_ 

Surely, one might ask, aren't the other squares irrelevant? How could [4,4] affect 
whether [1,3] has a pit? Indeed, this intuition is correct Let Frontier be the pit variables 
(other than the query variable) that are adjacent to visited squares, in this case just [22] and 
[3,1].  Also, let Other he the pit variables for the other unknown squares; in this ease, there arc 
10 other squares, as shown in Figure 13.5(b).  The key insight is that the observed breezes are 
conditionally independent of the other variables, given the known, frontier, and query van-
ables. To use the insight, we manipulate the query formula into a form in which the breezes 
are conditioned on all the other variables, and then we apply conditional independence: 

P(P1,3  I known., 
 6)  

= a  E  p(p,,,,  known, b,  unknown) (by Equation (13.9)) 
unknown  

= cx  E  P(b  pi,,,  known, unknown)P(P1,3,  known, unknown) 
-unknown 

(by the product nile)  
=ci P{b  I known, P1 ,3, frontier, other)P(P1,3 ,  known, frontier, other) 

frontier other 

=ce P(b I known,Pi ,a ,,  rontier)P(Pi  3,  known frontier, other) ,  
frontier other 

where the final step uses conditional independence: b  is independent of other given known, 

-P1,3,  and frontier. Now, the first term in this expression does not depend on the Other 
variables, so we can move the summation inward: 

P{/31,3  I known , b)  

= a E  P(b I known,P1 ,3 ,  frontier) E  p(pi,  known, frontier , other) .  
frontier other 

By independence, as in Equation (13.20), the prior term can be factored, and then the terms 
can be reordered: 

P(P1,3  I known, b)  

= cx E  P(b known.,  P1,3,1runtier. )  E  p(pi,3 )p(knywr,)puruntie•p(oth,)  
frontier other 

P(known)P(P1 , 3 )  E  P(b I known, Pi ,a , frontier)P(frontier)  E  P (other) 
fronher other 

P(P1,3)  E  P(b  known, P1 ,3 ,  frontier)P (frontier) , 
frontier 
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where the last step folds P(known) into the normalizing constant and uses the fact that 
Eahc,  P(other)  equals 1. 

Now, there are just four terms in the summation over the frontier variables P2 , 2 and 
P3L.  The use of independence and conditional independence has completely eliminated the 
other squares from consideration. 

Notice that the expression P(b known, P13 ,  frontier) is 1  when the frontier is consis-
tent with the breeze observations, and 0 otherwise. Thus, for each value of P13,  we sum over 
the logical models for the frontier variables that are consistent with the known facts. (Com- 
pare with the enumeration over models in Figure 7.5 on page 241.) The models and then 
associated prior probabilities—P(frontier)—are shown in Figure 13.6. We have 

P(231,3  known, b)  = cr11,0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)) . 
That is, [1,3] (and [3,1] by symmetry) contains a pit with roughly 31%  probability. A similar 
calculation, which the reader might wish to perform, shows that [2,2] contains a pit with 
roughly 86% probability. The wumpus agent should definitely avoid [2,2]! Note that our 
logical agent from Chapter 7 did not know that [2,2] was worse than the other squares. Logic 
can tell us that it is unknown whether there is a pit in [2, 2], but we need probability to tell us 
how likely it is. 

What this section has shown is that even seemingly complicated problems can be for-
mulated precisely in probability theory and solved with simple algorithms. To get efficient 
solutions, independence and conditional independence relationships can be used to simplify 
the summations required. These relationships often correspond to our natural understanding 
of how the problem should be decomposed. In the next chapter, we develop formal represen-
tations for such relationships as well as algorithms that operate on those representations to 
perform probabilistic inference efficiently_ 
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13.7 SUMMARY 

This chapter has suggested probability theory as a suitable foundation for uncertain reasoning 
and provided a gentle introduction to its use. 

• Uncertainty arises because of both laziness and ignorance. It is inescapable in complex, 
nondeterministic, or partially observable environments. 

• Probabilities express the agent's inability to reach a definite decision regarding the truth 
of a sentence. Probabilities summarize the agent's beliefs relative to the evidence. 

• Decision theory combines the agent's beliefs and desires, defining the best action as the 
one that maximizes expected utility. 

• Basic probability statements include prior probabilities and conditional probabilities 
over simple and complex propositions. 

• The axioms of probability constrain the possible assignments of probabilities to propo-
sitions. An agent that violates the axioms must behave irrationally in some cases. 

• The full joint probability distribution specifies the probability of each complete as-
signment of values to random variables_ It is usually too large to create or use in its 
explicit form, but when it is available it can be used to answer queries simply by adding 
up entries for the possible worlds corresponding to the query propositions. 

• Absolute independence between subsets of random variables allows the full joint dis- 
tribution to be factored into smaller joint distributions, greatly reducing its complexity. 
Absolute independence seldom occurs in practice. 

• Bayes'  rule allows unknown probabilities to be computed from known conditional 
probabilities, usually in the causal direction. Applying Bayes' rule with many pieces of 
evidence runs into the same scaling problems as does the full joint distribution. 

• Conditional independence brought about by direct causal relationships in the domain 
might allow the full joint distribution to be factored into smaller, conditional distri-
butions. The naive Bayes model assumes the conditional independence of all effect 
variables, given a single cause variable, and grows linearly with the number of effects. 

• A wumpus-world agent can calculate probabilities for unobserved aspects of the world, 
thereby improving on the decisions of a purely logical agent. Conditional independence 
makes these calculations tractable. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Probability theory was invented as a way of analyzing games of chance. In  about 850 A.D. 
the Indian mathematician Mahaviracarya described how to arrange  a set of bets that can't lose 
(what we now call a Dutch book). In Europe, the first significant systematic analyses were 
produced by Girolamo  Caidano  mound 1565, although publication was posthumous (1663).  
By that time, probability had been established as a mathematical discipline due to a series of 
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results established in a famous correspondence between Blaise Pascal and Pierre de Fermat 
in 1654. As with probability itself, the results were initially motivated by gambling problems 
(see Exercise 13.9). The first published textbook on probability was De Ratiociniis in Ludo 
Aleae (Huygens, 1657). The -laziness  and ignorance" view of uncertainty was described 
by John Arbuthnot in the preface of his translation of Huygens (Arbuthnot, 1692): "It is 
impossible for a Die, with such determin'd force and direction, not to fall on such determin'd 
side, only I don't know the force and direction which makes it fall on such determin'd side. 
and therefore I call it Chance, which is nothing but the want of art..." 

Laplace (1816) gave an exceptionally accurate and modem overview of probability; he 
was the first to use the example "take two urns, A and B, the first containing four white and 
two black balls, ..."  The Rev.  Thomas Bayes (1702-1761) introduced the rule for reasoning 
about conditional probabilities that was named after him (Bayes, 1763). Bayes only con-
sidered the case of uniform priors; it was Laplace who independently developed the general 
case. Kolmogorov (1950, first published in German in 1933) presented probability theory in 
a rigorously axiomatic framework for the first time. Renyi  (1970) later gave an axiomatic 
presentation that took conditional probability, rather than absolute probability, as primitive. 

Pascal used probability in ways that required both the objective interpretation, as a prop-
erty of the world based on symmetry or relative frequency. and the subjective interpretation, 
based on degree of belief—the former in his analyses of probabilities in games of chance, the 
latter in the famous "Pascal's wager" argument about the possible existence of God.  How-
ever, Pascal did not clearly realize the distinction between these two interpretations. The 
distinction was first drawn clearly by James Bernoulli (1654-1705). 

Leibniz introduced the "classical" notion of probability as a proportion of enumerated, 
equally probable cases, which was also used by Bernoulli, although it was brought to promi-
nence by Laplace (1749-1827). This notion is ambiguous between the frequency interpreta-
tion and the subjective interpretation. The cases can be thought to he equally probable either 
because of a natural, physical symmetry between them, or simply because we do not have 
any knowledge that would lead us to consider one more probable than another.  The use of 
this latter, subjective consideration to justify assigning equal probabilities is known as the 
principle of indifference. The principle is often attributed to Laplace, but he never isolated 
the principle explicitly. George Boole and John Venn both referred to it as the principle or 
insufficient reason; the modem name is due to Keynes (1921).  

The debate between objectivists and subjectivists became sharper in the 20th century. 
Kolmogorov  (1963), R. A. Fisher (1922), and Richard von Mises (1928) were advocates of 
the relative frequency interpretation. Karl Popper's (1959, first published in German in 1934) 
"propensity" interpretation traces relative frequencies to an underlying physical symmetry. 
Frank Ramsey (1931), Bruno de Finetti (1937), R. T. Cox (1946), Leonard Savage (1954), 
Richard Jeffrey (1983), and E. T. Jaynes (2003) interpreted probabilities as the degrees of 
belief of specific individuals. Their analyses of degree of belief were closely tied to utili-
ties and to behavior—specifically, to the willingness to place bets. Rudolf Carnap,  following 
Leibniz and Laplace, offered a different kind of subjective interpretation of probability—
not as any actual individual's degree of belief, but as the degree of belief that an idealized 
individual should have in a particular proposition a, given a particular body of evidence e. 

PRINCIPLE  Or 
IND  FFERENCE 

PRINCIPLE  0= 
INSJFFICIENF  
REASON 
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Catnap attempted to go further than Leibniz or Laplace by making this notion of degree of 
CONFIRMAEON confirmation mathematically precise, as a logical relation between a and e. The study of this 
INDUCTIVE LDGC relation was intended to constitute a mathematical discipline called inductive logic, analo- 

gous to ordinary deductive logic (Catnap, 1948, 1950). Catnap was not able to extend his 
inductive logic much beyond the propositional case, and Putnam (1963) showed by adversar-
ial arguments that some fundamental difficulties would prevent a strict extension to languages 
capable of expressing arithmetic. 

Cox's theorem (1946) shows that any system for uncertain reasoning that meets his set 
of assumptions is equivalent to probability theory. This gave renewed confidence to those 
who already favored probability. but others were not convinced, pointing to the assumptions 
(primarily that belief must be represented by a single number, and thus the belief in must 
be a function of the belief in p).  Halpern (1999) describes the assumptions and shows some 
gaps in Cox's  original formulation. Hum (2003) shows how to patch up the difficulties. 
Jaynes (2003) has a similar argument that is easier to read. 

The question of reference classes is closely tied to the attempt to find an inductive logic. 
The approach of choosing the "most specific" reference class of sufficient size was formally 
proposed by Reichenbach (1949). Various attempts have been made. notably by Henry Ky-
burg (1977, 1983), to formulate more sophisticated policies in order to avoid some obvious 
fallacies that arise with Reichenbach's rule, but such approaches remain somewhat ad hoc. 
More recent work by Bacchus, Grove, Halpern, and Koller (1992) extends Carnap's  methods 
to first-order theories, thereby avoiding many of the difficulties associated with the straight-
forward reference-class method. Kyburg and Teng (2006) contrast probabilistic inference 
with nonmonotonic logic. 

Bayesian probabilistic reasoning has been used in Al since the 1960s, especially in 
medical diagnosis. It was used not only to make a diagnosis from available evidence, but also 
to select further questions and tests by using the theory of information value (Section 16.6) 
when available evidence was inconclusive (Corry, 1968; Gorry  et al., 1973).  One system 
outperformed human experts in the diagnosis of acute abdominal illnesses (de Dombal  et at.  
1974).  Lucas et al. (2004) gives an overview. These early Bayesian systems suffered from a 
number of problems, however. Because they lacked any theoretical model of the conditions 
they were diagnosing, they were vulnerable to unrepresentative data occurring in situations 
for which only a small sample was available (de Dombal et al., 1981). Even more fundamen-
tally, because they lacked a concise formalism (such as the one to be described in Chapter 14) 
for representing and using conditional independence information, they depended on the ac-
quisition, storage, and processing of enormous tables of probabilistic data. Because of these 
difficulties, probabilistic methods for coping with uncertainty fell out of favor in AI from the 
1970s to the mid-1980s.  Developments since the late 1980s  are described in the next chapter. 

The naive Bayes model for joint distributions has been studied extensively in the pat-
tern recognition literature since the 1950s (Duda and Hart, 1973). It has also been used, often 
unwittingly, in information retrieval. beginning with the work of Maron (1961). The proba-
bilistic foundations of this technique, described further in Exercise 13.22, were elucidated  by 
Robertson and Sparck Jones (1976). Domingos and Pazzani (1997) provide an explanation 
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for the surprising success of naive Bayesian reasoning even in domains where the indepen-
dence assumptions arc clearly violated. 

There are many good introductory textbooks on probability theory, including those by 
Bensekas  and Tsitsiklis (2008) and Grinstead and Snell (1997). DeGroot and Schervish 
(2001) offer a combined introduction to probability and statistics from a Bayesian stand-
point. Richard Hamming's (1991) textbook gives a mathematically sophisticated introduc-
tion to probability theory from the standpoint of a propensity interpretation based on physical 
symmetry. Hacking (1975) and Hald (1990) cover the early history of the concept of proba-
bility. Bernstein (1996) gives an entertaining popular account of the story of risk. 

EXERCISES 

13.1 Show from first principles that P(a I  b A a) = 1. 

13.2 Using the axioms of probability, prove that any probability distribution on a discrete 
random variable must sum to 1 

13.3 For each of the following statements, either prove it is true or give a counterexample. 

a. If P(a 1,  c) = a, c.), then P(a I c) = P(b  c) 

b. If P(a 1, c) = P(a), then POI 0)  = P(b) 

c. If P(a I) = P(a),  then P(a Ib ,  c) = P(a  c) 

13.4 Would it be rational for an agent to hold the three beliefs P(A) = (1.4. P(B) = 0.3, and 
P(A V B) — 0.5? If so, what range of probabilities would be rational for the agent to hold for 
A /+,  B? Make up a table like the one in Figure 13.2, and show how it supports your argument 
about rationality. Then draw another version of the table where P(A V B) = 0.7. Explain 
why it is rational to have this probability, even though the table shows one case that is a loss 
and three that just break even. (Hint: what is Agent 1 committed to about the probability of 
each of the four cases, especially the case that is a loss?) 

13.5 This question deals with the properties of possible worlds, defined on page 488 as 
assignments to all random variables. We will work with propositions that correspond to 
exactly one possible world because they pin down the assignments of all the variables. In 

ATCMIC EVENT  probability theory, such propositions are called atomic events. For example, with Boolean 
variables X1, X2, X5, the proposition xi  A —,x2  A -C3 fixes the assignment of the variables; 
in the language of propositional logic, we would say it has exactly one model. 

a. Prove, for the case of n Boolean variables, that any two distinct atomic events are 
mutually exclusive; that is, their conjunction is equivalent to false. 

b. Prove that the disjunction of all possible atomic events is logically equivalent to true.  

c. Prove that any proposition is logically equivalent to the disjunction of the atomic events 
that entail its truth. 
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13.6 Prove Equation (13.4) from Equations (13.1)  and (13.2). 
13.7 Consider the set of all possible five-card poker hands dealt fairly from a standard deck 
of fifty-two cards. 

a. How many atomic events are there in the joint probability distribution (i.e., how many 
five-card hands are there)? 

b. What is the probability of each atomic event? 
c. What is the probability of being dealt a royal straight flush? Four of a kind? 

13.8 Given the full joint distribution shown in Figure 13.3, calculate the following: 
P(toothache).  

b. P(  Cavity) •  
c. P(Toothache  I cavity) . 
d. P( Cavity I toothache V catch). 

13.9 In his letter of August 24,  1654, Pascal was trying to show how a pot of money should 
be allocated when a gambling game must end prematurely. Imagine a game where each turn 
consists of the roll of a die, player E gets a point when the die is even, and player 0 gets a 
point when the die is odd. The first player to get 7 points wins the pot. Suppose the game is 
interrupted with E leading 4-2. How should the money be fairly split in this case? What is 
the general formula? (Fermat and Pascal made several errors before solving the problem, but 
you should be able to get it right the first time.) 

13.10 Deciding to put probability theory to good use, we encounter a slot machine with 
three independent wheels, each producing one of the four symbols BAR, BELL, LEMON, or 
CHERRY with equal probability. The slot machine has the following payout scheme for a bet 
of I coin (where "?"  denotes that we don't care what comes up for that wheel): 

BAR/BAR/BAR pays 20 coins 
BELL/BELL/BELL pays 15 coins 
LEMON/LEMON/LEMON pays 5 coins 
CHERRY/CHERRY/CHERRY pays 3 coins 
CHERRY/CHERRY/?  pays 2 coins 
CHERRY/?/? pays I coin 

a. Compute the expected "payback" percentage of the machine. In other words, for each 
coin played, what is the expected coin return? 

b. Compute the probability that playing the slot machine once will result in a win. 
c_  Estimate the mean and median number of plays you can expect to make until you go 

broke, if you start with 10 coins. You can run a simulation to estimate this, rather than 
trying to compute an exact answer. 

13.11 We wish to transmit an n-bit message to a receiving agent. The bits in the message are 
independently corrupted (flipped) diming transmission with E  probability each. With an extra 
parity bit sent along with the original information, a message can be corrected by the receiver 
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if at most one bit in the entire message (including the parity bit) has been corrupted. Suppose 
we want to ensure that the correct message is received with probability at least 1 — S. What is 
the maximum feasible value of n? Calculate this value for the case e = 0.001, 6  = 0.01. 

13.12 Show that the three forms of independence in Equation (13.11) are equivalent. 

13.13 Consider two medical tests, A and B, for a virus, Test A is 95% effective at recog-
nizing the virus when it is present, but has a 10% false positive rate (indicating that the virus 
is present, when it is not). Test B is 90% effective at recognizing the virus, but has a 5% false 
positive rate. The two tests use independent methods of identifying the virus. The virus is 
carried by 1% of all people. Say that a person is tested for the virus using only one of the tests :  
and that test comes hack positive for carrying the virus_ Which test returning positive is more 
indicative of someone really carrying the virus? Justify your answer mathematically. 

13.14 Suppose you are given a coin that lands heads with probability x and tails with 
probability 1 — x. Are the outcomes of successive flips of the coin independent of each 
other given that you know the value of x? Are the outcomes of successive flips of the coin 
independent of each other if you do not know the value of .r9  Justify your answer. 

13.15 After your yearly checkup, the doctor has bad news and good news. The bad news 
is that you tested positive for a serious disease and that the test is 99% accurate (Le., the 
probability of testing positive when you do have the disease is 0.99, as is the probability of 
testing negative when you don't have the disease). The good news is that this is a rare disease, 
striking only 1 in 10,000 people of your age_ Why is it good news that the disease is rare? 
What are the chances that you actually have the disease? 

13.16 It is quite often useful to consider the effect of some specific propositions in the 
context of some general background evidence that remains fixed, rather than in the complete 
absence of information. The following questions ask you to prove more general versions of 
the product rule and Bayes' nile, with respect to some background evidence e: 

a. Prove the conditionalized version of the general product rule: 
P(X,  Y e) = P(X  Y, e)P(Yi e) 

b. Prove the conditionalized version of B ayes' rule in Equation (13.13). 

13.17 Show that the statement of conditional independence 

P(X,  
Y  Z) = Z)P(Y  1 Z)  

is equivalent to each of the statements 

P(X Z) = P(X  1 1 )  and P(B I X. Z) = P(Y I Z) 

13.18 Suppose you are given a bag containing n unbiased coins. You are told that n —  1 of 
these coins are normal, with heads on one side and tails on the other, whereas one coin is a 
fake, with heads on both sides. 

a. Suppose you reach into the bag, pick out a coin at random, flip it, and get a head, What 
is the (conditional) probability that the coin you chose is the fake coin? 
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b. Suppose you continue flipping the coin for a total of k times after picking it and see k  
heads. Now what is the conditional probability that you pickcd the fake coin? 

c. Suppose you wanted to decide whether the chosen coin was fake by flipping it k times. 
The decision procedure returns fake if all k  flips come up heads; otherwise it returns 
normal. What is the (unconditional) probability that this procedure makes an error? 

13.19 In this exercise, you will complete the normalization calculation for the meningitis 
example. First, make up a suitable value for P(s  —1m.),  and use it to calculate unnomializecl  
values for P(m  s)  and P(—In  I s)  (i.e.,  ignoring the P(s) term in the Bayes' rule expression, 
Equation (13.14)). Now normalize these values so that they add to 1.  

13.20 Let X, Y, Z be Boolean random variables. Label the eight entries in the joint dis-
tribution P(X,  Y,  Z) as o through h. Express the statement that X and Y are conditionally 
independent given Z, as a set of equations relating a through Is.  How many nonmdtoidant  
equations are there? 

13.21 (Adapted from Pearl (1988).) Suppose you are a witness to a nighttime hit-and-run 
accident involving a taxi in Athens All taxis in Athens are blue or green You swear, under 
oath, that the taxi was blue. Extensive testing shows that, under the dim lighting conditions, 
discrimination between blue and green is 75% reliable. 

a. Is it possible to calculate the most likely color for the taxi? (Hint: distinguish carefully 
between the proposition that the taxi is blue and the proposition that it appears blue.) 

b. What if you know that 9 out of 10 Athenian taxis are green'? 

13.22 Text categorization is the task of assigning a given document to one of a fixed set of 
categories on the basis of the text it contains. Naive Bayes models are often used for this 
task_ In these models, the query variable is the document category, and the "effect" variables 
are the presence or absence of each word in the language; the assumption is that words occur 
independently in documents, with frequencies determined by the document category. 

a. Explain precisely how such a model can be constructed, given as "training data" a set 
of documents that have been assigned to categories. 

b. Explain precisely how to categorize a new document. 
c. Is the conditional independence assumption reasonable? Discuss. 

13.23 In our analysis of the wumpus world, we used the fact that each square contains a 
pit with probability 0.2, independently of the contents of the other squares, Suppose instead 
that exactly N/5 pits are scattered at random among the N  squares other than [1, II. Are 
the variables P 1  and Pk,1  still independent? What is the joint distribution P(Pi,t,  . •  •  P.14)  
now? Redo the calculation for the probabilities of pits in [1,3]  and [2.2]. 
13.24 Redo the probability calculation for pits in [1,3] and [2,2], assuming that each square 
contains a pit with probability 0.01, independent of the other squares. What can you say 
about the relative performance of a logical versus a probabilistic agent in this case? 
13.25 Implement a hybrid probabilistic agent for the wumpus world, based on the hybrid 
agent in Figure 7.20 and the probabilistic inference procedure outlined in this chapter. 



14 PROBABILISTIC 
REASONING 

In which we explain how to build network models to reason under uncertainty 
according to the laws of probability theory. 

Chapter 13 introduced the basic elements of probability theory and noted the importance of 
independence and conditional independence relationships in simplifying probabilistic repre-
sentations of the world.  This chapter introduces a systematic way to represent such relation-
ships explicitly in the form of Bayesian networks. We define the syntax and semantics of 
these networks and show how they can be used to capture uncertain knowledge in a natu-
ral and efficient way. We then show how probabilistic inference, although computationally 
intractable in the worst case, can be done efficiently in many practical situations. We also 
describe a variety of approximate inference algorithms that are often applicable when exact 
inference is infeasible. We explore ways in which probability theory can be applied to worlds 
with objects and relations—that is, to first-order.  as opposed to propositional, representations.  
Finally, we survey alternative approaches to uncertain reasoning. 

14.1 REPRESENTING KNOWLEDGE IN AN UNCERTAIN DOMAIN 

BAYESIAN  NETWORK 

In Chapter 13, we saw that the full joint probability distribution can answer any question about 
the domain, but can become intractably large  as the number of variables grows. Furthermore, 
specifying probabilities for possible worlds one by one is unnatural and tedious.  

We also saw that independence and conditional independence relationships among vari-
ables can greatly reduce the number of probabilities that need to be specified in order to define 
the full joint distribution. This section introduces a data structure called a Bayesian network s  
to represent the dependencies among variables. Bayesian networks can represent essentially 
any full joint probability distribution and in many cases can do so very concisely. 

 

This is the most common name, but there are many synonyms, including belief network, probabilistic net-
work, cams! network, and knowledge map. In statistics, the term graphical model refers to a somewhat 
broader class that includes Bayesian networks An extension of II  ayesian  networks called a decision network or 
influence diagram is covered in Chapter 16. 
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Figure 14.1  A simple Bayesian network in which Weather is independent of the other 
three variables and Toothache  and Catch, are conditionally independent, given Cavity. 
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A Bayesian network is a directed graph in which each node is annotated with quantita-
tive probability information. The full specification is as follows: 

Each node corresponds to a random variable, which may be discrete or continuous. 
2. A set of directed links or arrows connects pairs of nodes. If there is an arrow from node 

X to node Y, X is said to be a parent of Y. The graph has no directed cycles (and hence 
is a directed acyclic graph, or DAG. 

3. Each node Xi has a conditional probability distribution P(X L  Parents(Xj))  that quan-
tifies the effect of the parents on the node. 

The topology of the network—the set of nodes and links—specifies the conditional indepen-
dence relationships that hold in the domain, in a way that will be made precise shortly. The 
intuitive meaning of an arrow is typically that X has a direct influence on Y, which suggests 
that causes should be parents of effects. It is usually easy for a domain expert to decide what 
direct influences exist in the domain—much easier, in fact, than actually specifying the prob-
abilities themselves. Once the topology of the Bayesian network is laid out, we need only 
specify a conditional probability distribution for each variable, given its parents. We will 
see that the combination of the topology and the conditional distributions suffices to specify 
(implicitly) the full joint distribution for all the variables_ 

Recall the simple world described in Chapter 13, consisting of the variables Toothache, 
Cavity, Catch, and Weather. We argued that Weather is independent of the other vari-
ables; furthermore, we argued that Toothache and Catch are conditionally independent, 
given Cavity. These relationships are represented by the Bayesian network structure shown 
in Figure 14.1. Formally, the conditional independence of Toothache and Catch„ given 
Cavity, is indicated by the absence of a link between Toothache and Catch. Intuitively, the 
network represents the fact that Cavity is a direct cause of Toothache and Catch, whereas 
no direct causal relationship exists between Toothache and Catch. 

Now consider the following example, which is just a little more complex. You have 
a new burglar alarm installed at home. it is fairly reliable at detecting a burglary, but also 
responds on occasion to minor earthquakes. (This example is due to Judea Pearl, a resident 
of Los Angeles—hence the acute interest in earthquakes.) You also have two neighbors, John 
and Mary, who have promised to call you at work when they hear the alarm.  John nearly 
always calls when he hears the alarm, but sometimes confuses the telephone ringing with 



P(E) 
.002 

A PI MJ  

.70  
f  

Figure 14.2  A typical Bayesian network, showing both the topology and the conditional 
probability tables (CPI's). In the CPTs, the letters B, E, A, .7,  and ILI  stand for Burglary, 
Earthquake, Alarm, John Calls, and MaryCalls, respectively. 

512 Chapter 14. Probabilistic Reasoning 

the alarm and calls then, too. Mary, on the other hand, likes rather loud music and often 
misses the alarm altogether. Given the evidence of who has or has not called, we would like 
to estimate the probability of a burglary. 

A Bayesian network for this domain appears in Figure 14.2. The network structure 
shows that burglary and earthquakes directly affect the probability of the alarm's going off, 
but whether John and Mary call depends only on the alann.  The network thus represents 
our assumptions that they do not perceive burglaries directly, they do not notice minor earth-
quakes, and they do not confer before calling. 

The conditional distributions in Figure 14.2 are shown as a conditional probability 
CORDET1ONAL  
PROBABILITY  TABLE  table, or CPT. (This form of table can be used for discrete variables: other representations, 

including those suitable for continuous variables, are described in Section 14_2 ) F.ach  row 
CONDITIONING,  CASE  in a CPT contains the conditional probability of each node value for a conditioning case. 

A conditioning case is just a possible combination of values for the parent nodes—a minia-
ture possible world, if you like. Each row must sum to 1, because the entries represent an 
exhaustive set of cases for the variable. For Boolean variables, once you know that the prob-
ability of a true value is p, the probability of false must be 1 — p,  so we often omit the second 
number, as in Figure 14.2. In general, a table for a Boolean variable with k Boolean parents 
contains 2 k  independently specifiable probabilities. A node with no parents has only one row. 
representing the prior probabilities of each possible value of the variable. 

Notice that the network does not have nodes corresponding to Mary's currently listening 
to loud music or to the telephone ringing and confusing John. These factors are summarized 
in the uncertainty associated with the links from Alarm to John  Calls and MaryCalls. This 
shows both laziness and ignorance in operation: it would be a lot of work to find out why those 
factors would be more  or less likely in any particular ease, and we have no reasonable way Lu 
obtain the relevant information anyway. The probabilities actually summarize a potentially 
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infinite set of circumstances in which the alarm might fail to go off (high humidity, power 
failure, dead battery, cut wires, a dead mouse stuck inside the bell, etc.) or John or Mary 
might fail to call and report it (out to lunch, on vacation, temporarily deaf, passing helicopter, 
etc.). In this way, a small agent can cope with a very large world, at least approximately. The 
degree of approximation can be improved if we introduce additional relevant information. 

1 4.2 THE SEMANTICS OF BAYESIAN NETWORKS 

The previous section described what a network is, but not what it means. There are two 
ways in which one can understand the semantics of Bayesian networks. The first is to see 
the network as a representation of the joint probability distribution. The second is to view 
it as an encoding of a collection of conditional independence statements. The two views are 
equivalent, but the first turns out to be helpful in understanding how to construct networks, 
whereas the second is helpful in designing inference procedures. 

14.2.1 Representing the full joint distribution 
Viewed as a piece of "syntax," a Bayesian network is a directed acyclic graph with some 
numeric parameters attached to each node. One way to define what the network means—its 
semantics—is to define the way in which it represents a specific joint distribution over all the 
variables. To do this, we first need to retract (temporarily) what we said earlier about the pa- 
rameters associated with each node. We said that those parameters correspond to conditional 
probabilities P(X,  Parents (X,));  this is a true statement, but until we assign semantics to 
the network as a whole, we should think of them just as numbers 0  (Xi I Porents(Xj)).  

A generic entry in the joint distribution is the probability of a conjunction of particular 
assignments to each variable, such as _P(Xi  = xi  A ...  X?,  = urn ).  We use the notation 
P(xi  ,  sr,  as an abbreviation for this. The value of this entry is given by the formula 

P(xl, a:Tt)  = H  °(:E,  I parer (Xi)) (14.1) 
=1  

where parents(Xi)  denotes the values of Parents(Xi)  that appear in xi, s,.  Thus, 
each entry in the joint distribution is represented by the product of the appropriate elements 
of the conditional probability tables (CPTs) in the Bayesian network. 

From this definition, it is easy to prove that the parameters 0(Xi  Parents(Xi))  are 
exactly the conditional probabilities P(Xi  I Parents(Xi))  implied by the joint distribution 
(see Exercise 14_2).  Hence, we can rewrite F.quatinn  (14.1)  as 

71  

P(Xl,  . 2-„)  = 11  P(xi  I parents(X0)  . (14_2) 
=1  

In other words, the tables we have been calling conditional probability tables really are  con- 
ditional probability tables according to the semantics defined in Equation (14.1). 

To illustrate  this, we can calculate the probability that the alarm has sounded, but neither 
a burglary nor an earthquake has occurred, and both John and Mary call. We multiply entries 
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from the joint distribution (using single-letter names for the variables): 

PC 7, m,  a, -4), = 13(i  I a)P(m  a)P(a  I  -6 A -,e)P(-6)P(-,e)  

= 0.90 x C.70 x 0.001 x 0.999 x 0.998 = 0.000628 .  

Section 13.3 explained that the full joint distribution can be used to answer any query about 
the domain. If a Bayesian network is a representation of the joint distribution, then it too can 
be used to answer any query, by summing all the relevant joint entries. Section 14.4 explains 
how to do this, but also describes methods that are much more efficient. 

A method for constructing Bayesian  networks 

Equation (14.2) defines what a given Bayesian network means. The next step is to explain 
how to construct a Bayesian network in such a way that the resulting joint distribution is a 

goad representation of a given domain. We will now show that Equation (14.2) implies certain 
conditional independence relationships that can be used to guide the knowledge engineer in 
constructing the topology of the network. First, we rewrite the entries in the joint distribution 
in terms of conditional probability, using the product rule (see page 486): 

P(Ti,  ,xn)  = P(xn  

Then we repeat the process, reducing each conjunctive probability to a conditional probability 
and a smaller conjunction. We end up with one big product: 

P(xi,  •  , xn)  = •  - , ,Ti)P(xn-i  xn-2,  •  •  ,  xi)  •  •  '  P(s2  xi)P(xi)  

=  11 P(Ti , .i)  
i =  

This identity is called the chain rule. It holds for any set of random variables, Comparing it 
with Equation (14.2), we see that the specification of the joint distribution is equivalent to the 
general assertion that, for every variable X, in the network. 

P(Xi  I Xi_i,  „Xi)  = P(X!  I Parents(X0)  , (14.3) 

provided that Parents( Xi) C pci  _ , ,  X1 }.  This last condition is satisfied by numbering 
the nodes in a way that is consistent with the partial order implicit in the graph structure_ 

What Equation (14.3) says is that the Bayesian network is a correct representation of 
the domain only if each node is conditionally independent of its other predecessors in the 
node ordering, given its parents. We can satisfy this condition with this methodology: 

1. Nodes: First determine the set of variables that are required to model the domain. Now 
order them, {Xi, X,J.  Any order will work, but the resulting network will be more 
compact if the variables are ordered such that causes precede effects. 

2. Links: For i = 1 to n do; 
• Choose, from X1, ,  X j _. 1 ,  a minimal set of parents for Xi, such that Equa- 

tion (14.3) is satisfied. 
• For each parent insert a link from the parent to Xi _  
• CPTs: Write down the conditional probability table, P(X,IParents  (Xi)). 

CHAIN RULE 
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Intuitively, the parents of node X,  should contain all those nodes in Xi. ,  X,_  t that 
directly influence X,.  For example, suppose we have completed the network in Figure 14.2  
except for the choice of parents for Mary Calls.  MaryCalls  is certainly influenced by whether 
there is a Burglary or an Earthquake, but not directly influenced. Intuitively, our knowledge 
of the domain tells us that these events influence Mary's calling behavior only through their 
effect on the alarm.  Also, given the state of the alarm, whether John calls has no influence on 
Mary's calling. Formally speaking, we believe that the following conditional independence 
statement holds: 

P(MaryCails  Johnaalls Earthquake, Burglary) = P(MaryCalls  Alarm) . 

Thus, Alarm will be the only parent node for MaryCalls.  
Because each node is connected only to earlier nodes, this construction method guaran-

tees that the network is acyclic_ Another important property of Bayesian networks is that they 
contain no redundant probability values.  If there is no redundancy, then there is no chance 
for inconsistency: it is impossible for the knowledge engineer or domain expert  to create a 
Boyesiati  network that violates the axioms of probability. 

Compactness and node ordering 

As well as being a complete and nonredundant  representation of the domain, a Bayesian net- 
work can often be far more compact than the full joint distribution. This property is what 
makes it feasible to handle domains with many variables. The compactness of Bayesian net- 
works is an example of a general property of locally structured (also called sparse) systems. 
In a locally structured system, each subcomponent interacts directly with only a bounded 
number of other components, regardless of the total number of components. Local structure 
is usually associated with linear rather than exponential growth in complexity. In the case of 
Bayesian networks, it is reasonable to suppose that in most domains each random variable 
is directly influenced by at most k others, for some constant k. If we assume n.  Boolean 
variables for simplicity, then the amount of information needed to specify each conditional 
probability table will be at most 2k numbers, and the complete network can be specified by 
922 k  numbers. In contrast, the joint distribution contains 2"  numbers. To make this concrete, 
suppose we have n = 30 nodes, each with five parents (Ii7  = 5).  Then the Bayesian network 
requires 960 numbers, but the full joint distribution requires over a billion. 

There are domains in which each variable can be influenced directly by all the others, 
so that the network is fully connected. Then specifying the conditional probability tables re-
quires the same amount of information as specifying the joint distribution. In some domains, 
there will be slight dependencies that should strictly be included by adding a new Link. But 
if these dependencies are tenuous, then it may not be worth the additional complexity in the 
network for the small gain in accuracy. For example, one might object to our burglary net-
work on the grounds that if there is an earthquake, then John and Mary would not call even 
if they heard the alarm, because they assume that the earthquake is the cause. Whether to 
add the link from Earthquake to Johnealls  and MaryCalls  (and thus enlarge the tables) 
depends on comparing the importance of getting more accurate probabilities with the coat of 
specifying the extra information. 

LOCALLY 
R/1111E:TARIM  

SPARSE 
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Figure 14.3 Network structure depends on order of introduction. In each network, we 
have introduced nodes in top-to-bottom order. 

Even in a locally structured domain, we will get a compact Bayesian network only if 
we choose the node ordering well. What happens if we happen to choose the wrong or-
der? Consider the burglary example again. Suppose we decide Lo  add the nodes in the order 
MaryCalls,  JohnCalls,  Alarm, Burglary, Earthquake. We then get the somewhat more 
complicated network shown in Figure 14.3(a). The process goes as follows: 

■ Adding MraryCalls.  No parents. 
■ Adding JohnCalls:  If Mary calls, that probably means the alarm has gone off, which 

of course would make it more likely that John calls. Therefore, JohnCalls needs 
Mary Calls as a parent. 

■ Adding Alarm: Clearly, if both call, it is more likely that the alarm has gone off than if 
just one or neither calls, so we need both MaryCalls  and JohnCalls as parents. 

■ Adding Burglary: If we know the alarm state, then the call from John or Mary might 
give us information about our phone ringing or Mary's music, but not about burglary: 

P(Burglary  Alarm, John Calls, MaryCalls) = P(Burglary  I Alarm) . 

Hence we need just Alarm as parent. 
■ Adding Earthquake: If the alarm is on, it is more likely that there has been an earth-

quake. (The alarm is an earthquake detector of sorts.) But if we know that there has 
been a burglary, then that explains the alarm, and the probability of an earthquake would 
be only slightly above normal. Hence, we need both Aiartn.  and Burglary as parents. 

The resulting network has two more links than the original network in Figure 14.2 and re- 
quires tin=  more probabilities to be specified. What's worse, some of the links represent 
tenuous relationships that require difficult and unnatural probability judgments, such as as- 
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sessing the probability of Earthquake, given Burglary and Alarm. This phenomenon is 
quite general and is related to the distinction between causal and diagnostic models intro- 
duced in Section 13.5.1 (see also Exercise 8.13). If we try to build a diagnostic model with 
links from symptoms to causes (as from MaryCalls to Alarm or Alarm to h'urglarg),  we 
end up having to specify additional dependencies between otherwise independent causes (and 
often between separately occurring symptoms as well). If we stick to a causal model, we end 
up having to specify fewer numbers, and the numbers will often  be easier to come up with. In 
the domain of medicine, for example, it has been shown by Tversky and Kahneman  (1982) 
that expert physicians prefer to give probability judgments for causal rules rather than for 
diagnostic ones. 

Figure 14.3(h) shows a very had node ordering! MaryCadlg,  Johnealls,  Earthquake, 
Burglary, Alwyn.  This network requires 31 distinct probabilities to be specified—exactly the 
same number as the full joint disuibution.  It is impurnun  to realize, however, that any of the 
three networks can represent exactly the same joint distribution. The last two versions simply 
fail to represent all the conditional independence relationships and hence end up specifying a 
lot of unnecessary numbers instead. 

142.2 Conditional independence relations in Bayesian networks 

We have provided a "numerical" semantics for Bayesian networks in terms of the represen-
tation of the full joint distribution, as in Equation (14.2). Using this semantics to derive a 
method for constructing Bayesian networks, we were led to the consequence that a node is 
conditionally independent of its other predecessors, given its parents. It turns out that we 
can also go in the other direction_  We can start from a "topological" semantics that specifies 
the conditional independence relationships encoded by the graph structure, and from this we 
can derive the "numerical" semantics. The topological semantics2  specifies that each vari- 

DEiCENDIANT 
 able is conditionally independent of its non-descendants, given its parents. For example, in 

Figure 14.2, Johnealls  is independent of Burglary, Earthquake, and Mary Calls given the 
value of Alarm. The definition is illustrated in Figure 14.4(a). From these conditional inde-
pendence assertions and the interpretation of the network parameters O(X i  Parents(Xj ))  
as specifications of conditional probabilities P(Xi  I Parents (Xi)), the full joint distribution 
given in Equation (14.2) can be reconstructed. In this sense, the "numerical" semantics and 
the "topological" semantics are equivalent. 

Another important independence property is implied by the topological semantics!  a 
node is conditionally independent of all other nodes in the network, given its parents, children, 

MARKEN  BLANKET 
 and children's parents—that is, given its Markov blanket (Exercise 14.7 asks you to prove 

this.) For example, Burglary is independent of JohnCalls  and Mar-gOalls,givcn  Alarm and 
Earthquake.  This property is illustrated in Figure 14.4(b). 

2  There is also a general topological  criterion called d-separation for deciding whether a set of nodes X Ls 
conditionally independent of another set Y, given a third set Z. The criterion is rather complicated and is not 
needed forderiving the algorithms in this chapter, so we omit it. Details may be found in Pearl (1988) or Darwiche  
(2009). Shachter (1998) gives a more intuitive method of ascertaining d-separation.  
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Figure 14.4  (a) A node X is conditionally independent of its non-descendants (e.g., the 
Zag s)  given its parents (the Ups  shown in the gray area). (b) A node X is conditionally 
independent of all other nodes in the network given its Markov blanket (the gray area). 

 

14.3 EFFICIENT REPRESENTATION OF CONDITIONAL DISTRIBUTIONS   
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Even if the maximum number of parents k  is smallish, filling in the CPT for a node requires 
up to 0(2k )  numbers and perhaps a great deal of experience with all the possible conditioning 
cases. hi fact, this is a worst-case scenario in which the relationship between the parents and 
the child is completely arbitrary. Usually, such relationships are describable by a canonical 
distribution that fits some standard pattern. In such cases, the complete table can he specified 
by naming the pattern and perhaps supplying a few parameters—much easier than supplying 
an exponential number of parameters. 

The simplest example is provided by deterministic. nodes_  A deterministic node has 
its value specified exactly by the values of its parents, with no uncertainty. The relationship 
can be a logical one: for example, the relationship between the parent nodes Canadian, US, 
Mexican and the child node NarthAmerican  is simply that the child is the disjunction of 
the parents. The relationship can also be numerical: for example, if the parent nodes are 
the prices of a particular model of car at several dealers and the child node is the price that 
a bargain hunter ends up paying, then the child node is the minimum of the parent values; 
or if the parent nodes are a lake's inflows (rivers, runoff, precipitation) and outflows (rivers,  
evaporation, seepage) and the child is the change in the water level of the lake, then the value 
of the child is the sum of the inflow parents minus the sum of the outflow parents. 

Uncertain relationships can often be characterized by so-called noisy logical relation- 
ships. The standard example is the noisy-OR  relation, which is a generalization of the log- 
ical OR. In propositional logic, we might say that Fever is true if and only if Cold,,  Flu, or 
Malaria is true.  The noisy-OR model allows for uncertainty about the  ability of each par- 
ent to cause the child to be true—the causal relationship between parent and child may be 
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inhibited, and so a patient could have a cold, but not exhibit a fever. The model makes two 
assumptions. First, it assumes that all the possible causes arc listed (If some arc missing, 

LEAK NODE 
 we can always add a so-called leak node that covers "miscellaneous causes.") Second, it 

assumes that inhibition of each parent is independent of inhibition of any other parents: for 
example, whatever inhibits Malaria from causing a fever is independent of whatever inhibits 
Flu from causing a fever. Given these assumptions, Fever is ,false  if and only if all its true 
parents are inhibited, and the probability of this is the product of the inhibition probabilities 
q  for each parent. Let us suppose these individual inhibition probabilities are as follows: 

qcold P( fever I cold. flu, 'malaria) — 0.6 , 
= P(—fever  =cold, flu =malaria)  = 0.2 , 

qm P(—fever  —.cold  —.flu,  malaria) = 0.1 . 

Then, from this information and the noisy-OR assumptions, the entire CPT can be built. The 
general rule is that 

P(xi  parents(Xi))  = 1  — H qi  
{,;: x  =true} 

where the product is taken over the parents that are set to true for that row of the CPT. The 
following table illustrates this calculation: 

Cold Flu Malaria P(Fever) P (—,  Fever) 

L
I. F

,  1.  F
 L

I, P
  L

i. F
 

4
, fz• 

F
 4

* 4
.1

 F
 E-0  

Lr.*  
L
L
 L

L
 L

I. E-
■  

[--, 
E-1  

0.0 1.0 
0.9 0.1 
0.8 0.2 
0.98 0.02 = 0,2 x 0.1 
0.4  Olt 
0.94 0.06 = 0.6 X  0.1 
0.88 0.12 = 0.6 x 0.2 
0.988 0.012 = 0.6 x 0.2 x 0.1 

➢L!CPEDZA1ON  

In general, noisy logical relationships in which a variable depends on k  parents can he de- 
scribed using 0(k) parameters instead of 0(2k )  for the full conditional probability table. 
This makes assessment and learning much easier. For example, the CPCS  network (Praci- 
ban  et at, 1994) uses noisy-OR and noisy-MAX distributions to model relationships among 
diseases and symptoms in internal  medicine. With 448  nodes and 906 links, it requires only 
8,254  values instead of 133,931,430 for a network with full CPTs. 

Sayesian  nets with continuous variables 

Many real-world problems involve continuous quantities, such as height, mass, temperature, 
and money; in fact, much of statistics deals with random variables whose domains are contin-
uous. By definition. continuous variables have an infinite number of possible values, so it is 
impossible to specify conditional probabilities explicitly for each value. One possible way to 
handle continuous variables is to avoid them by using discretization—that  is, dividing up the 



Figure 14.5  A simple network with discrete variables (Subsidy  and Buys) and continuous 
variables ( Harvest and Cost). 

520 Chapter 14. Probabilistic Reasoning 

possible values into a fixed set of intervals. For example, temperatures could be divided into 
( <0°C), (0°C-100°C), and (>100°C) Discretization is sometimes an adequate solution, 
but often results in a considerable loss of accuracy and very large CPTs. The most com-
mon solution is to define standard families of probability density functions (sec Appendix A) 
that are specified by a finite number of parameters. For example, a Gaussian (or normal) 
distribution N(p,  62 )(x) has the mean p and the variance cr2  as parameters. Yet another 
solution—sometimes called a nonparametric representation—is to define the conditional 
distribution implicitly with a collection of instances, each containing specific values of the 
parent and child variables. We explore this approach further in Chapter 18. 

A network with both discrete and continuous variables is called a hybrid Bayesian 
network. To specify a hybrid network, we have to specify two new kinds of distributions: 
the conditional distribution for a continuous variable given discrete or continuous parents; 
and the conditional distribution for a discrete variable given continuous parents. Consider the 
simple example in Figure 14.5, in which a customer buys some fruit depending on its cost, 
which depends in turn on the size of the harvest and whether the government's  subsidy scheme 
is operating. The variable Cost is continuous and has continuous and discrete parents; the 
vanable Buys is discrete and has a continuous parent 

For the Cost variable, we need to specify P( Cost I Harz:est,  Subsidy). The discrete 
parent is handled by enumeration—that is, by specifying both P(Cost  I Harvest, subsidy) 
and P(Cost Harvest, -,subsidy).  To handle Harvest, we specify how the distribution over 
the cost c depends on the continuous value h of Harvest. In other words, we specify the 
parameters of the cost distribution as a function of h. The most common choice is the linear 
Gaussian distribution, in which the child has a Gaussian distribution whose mean p varies 
linearly with the value of the parent and whose standard deviation Cr  is fixed. We need two 
distributions, one for subsidy and one for -isubsidy,  with different parameters: 

1 ( , -(.fh+ht)) 2  
P(c1  h, subsidy) — Math + ht,  01)(c)  — e  2 

 at  2zr  

c—  fh+bi  )  2  

)  P(c  I  h,-,subsidy)  = IV  (a fh  b f, 2 =  
1 

'f  

f N/27 
For this example, then, the conditional distribution for Cost is specified by naming the Linear 
Gaussian distribution and providing the parameters at, be, mot,  af,  bf,  and a f. Figures 14.6(a) 

PAFAMETER  

NONPARAMETRIC  

HYBRID BAYESIAN  
NETWORK  

LINEAR GAUSSIAN 
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CONDITENAL  
GABSIAN  

(a) (b) (c) 

Figure 14.6  The graphs in (a) and (b) show the probability distribution over Cost as a 
function of Harvest size, with Subsidy true and false, respectively. Graph (c) shows the 
distribution P(  Gast  Harvest), obtained by summing over the two subsidy cases. 

and (b) show these two relationships. Notice that in each case the slope is negative, because 
cost decreases as supply increases. (Of course, the assumption of linearity implies that the 
cost becomes negative at some point; the linear model is reasonable only if the harvest size is 
limited to a narrow range.) Figure 14.6(c) shows the distribution P(el  h),  averaging over the 
two possible values of Subsidy and assuming that each has prior probability 0.5. This shows 
that even with very simple models, quite interesting distributions can be represented. 

The linear Gaussian conditional distribution has some special properties. A network 
containing only continuous variables with linear Gaussian distributions has a joint distribu-
tion that is a multivariate Gaussian distribution (see Appendix A) over all the variables (Exer-
cise 14.9).  Furthermore, the posterior distribution given any evidence also has this property.3  

When discrete variables are added as parents (not as children) of continuous variables, the 
network defines a conditional Gaussian. or CG, distribution: given any assignment to the 
discrete variables, the distribution  over  the continuous variables is a multivariate  Gaussian. 

Now we turn to the distributions for discrete variables with continuous parents. Con-
sider, for example, the Buys node in Figure 14.5.  It seems reasonable to assume that the 
customer will buy if the cost is low and will not buy if it is high and that the probability of 
buying varies smoothly in some intermediate region. In other words, the conditional distribu-
tion is like a "soft" threshold function. One way to make soft thresholds is to use the integral 
of the standard normal distribution: 

<NT)  —  Lo N(0,1)(x)dx  

Then the probability of Buys given Cost might be 

P(buy.s  I Cost —  c) — .b((—c  1.1)/  cr)  ,  

which means that the cost threshold occurs around j ,  the width of the threshold region is pro- 
portional to cx,  and the probability of buying decreases as cost increases. This probit distri- 

It  follows that inference in hnear  Gaussian networks takes only 0(n')  time in the worst case, regardless of the 
network topology. In Section 14.4, we see that inference for networks of discrete variables is NP-hard. 
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Figure 14.7 (a) A normal (Gaussian) distribution for the cost threshold, centered on 
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bution  (pronounced "pro-bit" and short for "probability unit") is illustrated in Figure 14.7(a). 
The form can be justified by proposing that the underlying decision process has a hard thresh- 
old, but that the precise location of the threshold is subject to random Gaussian noise. 

An alternative to the probit model is the logit distribution (pronounced "low-jit").  It 
uses the logistic function 1/(1 + e - ') to produce a soft threshold: 

1 
P(buysl  Cost — c) — 

14.4 EXACT INFERENCE IN BAYES1AN  NETWORKS 

PROBIT  
❑ ISTPIAITION  

LOG IT DISTRIBUTION 

LOGISTIC FUNCTION 

1 + exp(  — 2 L  ) 

This is illustrated in Figure 14.7(b). The two distributions look similar, but the logit actually 
has much longer "tails." The probit is often a better fit to real situations, but the logit is some-
times easier to deal with mathematically. It is used widely in neural networks (Chapter 20). 
Both probit and logit can be generalized to handle multiple continuous parents by taking a 
linear combination of the parent values. 

EVENT 

HIDDEN VARIEBLE  

The basic task for any probabilistic inference system is to compute the posterior probability 
distribution for a set of query variables, given some observed event—that is, some assign-
ment of values to a set of evidence variables. To simplify the presentation, we will consider 
only one query variable at a time; the algorithms can easily be extended to queries with mul-
tiple variables. We will use the notation from Chapter 13: X denotes the query variable; E 
denotes the set of evidence variables E 1 , E,,  and e is a particular observed event; Y will 
denotes the nonevidence, nonquery variables 171 ,...  , Y (called the hidden variables). Thus, 
the complete set of variables is X = X1 U E U Y. A typical query asks for the posterior 
probability distribution P(X e). 
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In the burglary network, we might observe the event in which JohnCalls = true and 
Mary Ca dig  = true. We could then ask for, say, the probability that a burglary has occurred: 

P(Burglary  I JohnCalls = true, IllargCalls  = true) = (l.284,  0.716)  .  
In this section we discuss exact algorithms for computing posterior probabilities and will 
consider the complexity of this task. IL turns out that the general case is intractable, su  Sec-
tion 14.5 covers methods for approximate inference. 

14.4.1 Inference by enumeration 
Chapter 13 explained that any conditional probability can be computed by summing terms 
from the full joint distribution. More specifically, a query P(X I  e) can be answered using 
Equation (13.9), which we repeat here for convenience: 

P (X I e)  = P(X,  e) = P( X , e,  y)  .  

Now, a Bayesian network gives a complete representation of the full joint distribution. More 
specifically, Equation (14.2) on page 313  shows that the terms P(x, e, y) in the joint distri-
bution can be written as products of conditional probabilities from the network. Therefore, a 
query can be answered using a Bayesian network by computing sums of products of condi-
tional probabilities from the network. 

Consider the query P(Burglary  JohnCalls  = true, Mary Calls = true). The hidden 
variables for this query are Earthquake and Alarm. From Equation (13.9), using initial 
letters for the variables to shorten the expressions, we have4  

P(B I j, m)  = aP(B  ,  j.  in) = a L  EP(B,j,m,e„).  
c a 

The semantics of Bayesian networks (Equation (14.2)) then gives us an expression in terms 
of CPT entries. For simplicity, we do this just for Burglarv=  true: 

PVC, = a  EEP(b)P(E)P(a 
 h, 

 e)P(i  I a)P(ml  a) •  

To compute this expression, we have to add four terms, each computed by multiplying five 
numbers. In the worst case, where we have to sum out almost all the variables, the complexity 
of the algorithm for a network with D.  Boolean variables is 0(n2").  

An improvement can be obtained from the following simple observations: the P(b)  
term is a constant and can be moved outside the sununations  over a. and e, and the P(e)  term 
can be moved outside the summation over a. Hence, we have 

P(b  I  , m)  = a P(b) P(e) L  P(a  b , e)P(i  a)P(rn  a) (14.4) 
a 

This expression can be evaluated by looping through the variables in order, multiplying CPT 
entries as we go. For each summation, we also need to loop over the variable's possible 
4  An expression such as j r  P(a, e)  means to sum l'(A  = a, E  = e)  for all possible values of e.  When  E 
Boolean, there is an ambiguity in that P(e) is used to mean both P ( E  = true) and P ( E  = e),  but it should be 
clear from context which is intended; in particular,  in the context of a sum the tatter a intended. 
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VAHIAHLE  
ELIMINATION  

FACTOR 

values. The structure of this computation is shown in Figure 14.8. Using the numbers from 
Figure 14.2,  we obtain P(b j, m) = cs x 0.00059224. The corresponding computation for 
–.5  yields a x 0.0014919; hence, 

P(B1  j, m) = cr (0.00059224,0.0014919) 2::  (0.284, 0.716) .  

That is, the chance of a burglary, given calls from both neighbors, is about 28%. 
The evaluation process for the expression in Equation (14.4)  is shown as an expression 

tree in Figure 14.8. The ENUMERATION-ASK algorithm in Figure 14.9 evaluates such trees 
using depth-first recursion. The algorithm is very similar in structure to the backtracking al-
gorithm for solving CSPs (Figure 6.5) and the DPLL algorithm for satisfiability (Figure 7.17). 

The space complexity of ENUMERATION-ASK is only linear in the number of variables: 
the algorithm sums over the full joint distribution without ever constructing it explicitly. Un-
fortunately, its time complexity for a network with n Boolean variables is always O(2n)-
better  than the 0(n 2') for the simple approach described earlier, but still rather grim. 

Note that the tree in Figure 14.8 makes explicit the repeated subexpressions  evalu-
ated by the algorithm. The products P(j I a)P(rn I a) and P(j –,a)P(rn  I -'a)  are computed 
twice, once for each value of e. The next section describes a general method that avoids such 
wasted computations. 

14.4.2 The variable elimination algorithm 

The enumeration algorithm can be improved substantially by eliminating repeated calcula- 
tions of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and 
save the results for later use. This is a form of dynamic programming. There are several ver- 
sions of this approach; we present the variable elimination algorithm, which is the simplest. 
Variable elimination works by evaluating expressions such as Equation (14.4) in right-to-left 
order (that is, bottom up in Figure 14.8). Intermediate results are stored, and summations over 
each variable are done only for those portions of the expression that depend on the variable. 

Let us illustrate this process for the burglary network. We evaluate the expression 

P(B I j, tn.)  = cm P(B) E  P(e)  E  P(a  B, e) P(j  la)  P(m I a) 

ri  ( B) r3(A-B,E) f4(A) ,(A)  
Notice that we have annotated each h part of the expression with the name of the corresponding 

in  
factor; each factor is a matrix indexed by the values of its argument variables. For example, 
the factors f4(A)  and f5( A) corresponding  f

5 (4) 

 to P{jI  a) and P(rn  I a) depend just on A because 
J and AI  are fixed by the query. They are therefore two-element vectors: 

P(j \ (  0.90 P(tn  I a) (  0.70 
f4(A)  =  

P(j  I –1 a)  ) "5  ) 
f5 (A) = 

P (in  I  –,a) 0.01 

F3 (A, B, E) will be a 2 x 2 x 2 matrix, which is hard to show on the printed page. (The "first"  
element is given by P (a 15, e) = 0.95 and the "last" by P –,b ;  = 999.) In terms of 
factors, the query expression is written as 

P(0  m) =  ft(B) f2(E)  1:  1.3(A,  E) x  f4(A)  x fs(A)  
a 



P(b) 
.001  

P(  e) ""' P( e)  
.002 .99S  

P(alb,e) ,e) P(alb  
.95 .05 .94 06 

P(jla) P( jla) P(  j1 —,a)  
.90 .05 .90 .05  

P(inla) P(tni-,a) P(nla) P(ml  a) 
70 .01 .70 .01 

Figure 14.8  The structure of the expression shown in Equation (14.4). The evaluation 
proceeds top down, multiplying values along each path and summing at the "+"  nodes. Notice 
the repetition of the paths for j and m.  

function ENUMERATION-ASK(X,  e, bn) returns a distribution over X 
inputs: X, the query variable 

e,  observed  values for variables E 
bn,  a Bayes net with variables {X } U  E U Y /*  Y  = hidden variables * 

Q (X)  a distribution over X, initially empty 
for each value x, of X do 

Q(x0  ENUMERATE-ALL(ba.VARs,e)  
where ez  is e  extended with X = x,  

return NORMALIZE(Q(X))  

function ENUMERATE -ALL(vars,e)  returns a real number 
if EMPTV'Oars)  then return 1.0 
Y FIRST(vars)  
if Y has value y in e  

then return P(y  parents(Y  ))  x ENUMERATE-ALL(REsr(inurs),e)  
else return )7, 1,  P(y parents(Y))  x Es UMERATE  ALL(REST(vars),  ey )  

where e„  is e  extended with Y = y  

Figure 14.9  The enumeration algorithm for answering queries on Bayesian networks. 
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POINTVVEE  
PRODUCT 

where the "x" operator is not ordinary matrix multiplication but instead the pointwise prod-
uct operation, to be described shortly. 

The process of evaluation is a process of summing out variables (right to left) from 
pointwise products of factors to produce new factors, eventually yielding a factor that is the 
solution, i.e., the posterior distribution over the query variable. The steps are as follows: 

■ First, we sum out A from the product of f3, f4, and ffi.  This gives us a new 2 x 2 factor 
16 (13,  E) whose indices range over just B and E: 

f6 (B E) = B. E) x (A) x fE (A)  

= (f3 (a , B, E)  x f4(a)  x 15(a))  +  (13(—,a,  B , E) x 14(—.a)  x (—,a)).  

Now we are left with the expression 

P(B  m)  = (B) x Ef,(E)  x fo,  E) .  

■ Next, we sum out E from the product of f2 and f6 :  

f7 (B) = E  f,(E)  x f,; (B,E)  

= fa  (e)  x f6(B,  e)  +  12( —c)  x f6(B, —'e)  -  

This leaves the expression 

P(Bli,n1 )  = fi(-13 )  x 17(B) 

which can be evaluated by taking the pointwise product and normalizing the result. 

Examining this sequence, we see that two basic computational operations are required: point-
wise product of a pair of factors, and summing out a variable from a product of factors. The 
next section describes each of these operations. 

Operations on factors 

The pointwise  product of two factors 11  and 12 yields a new factor f whose variables are 
the union of the variables in C  and f2 and whose elements are given by the product of the 
corresponding elements in the two factors. Suppose the two factors have variables  .1/F,  
in common. Then we have 

f(Xi  ... X1, Yk ,  ZE Zi)  = Xj, Yk  )  f2{Y1  Yk,  Z  •  

If all the variables are binary, then f1 and f2 have 21+k  and 2 k+ /  entries, respectively, and 
the pointwise product has 23 +k+ 1  entries. For example, given two factors 11 ( A,  B) and 
12 (B,  C), the pointwise product f 1  x 12  =13 ( A, B, C) has 2 1+ 1+1  = 8 entries, as illustrated 
in Figure 14.10. Notice that the factor resulting from a pointwise  product can contain more 
variables than any of the factors being multiplied and that the size of a factor is exponential in 
the number of variables. This is where both space and time complexity arise in the variable 
elimination algorithm. 
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A B fi(A,  B) B C f2(B  , C) A B C f3(A,  B,  C) 

E-  
E.--,  

11,  
41, 

[--,  
41,  

IL,  

T .3  x .2 = .06 
F .3 X  .8 = .24 
T .7  x .6  = .42 
F _7 x  .4 = .28 

Li.  T .9  x .2 = .18 
F .9  x .8 = .72 
T .1  x .6  = .06 
F .1  x .4 = .04 

Fgure  14.10 illustrating pointwise multiplication: fi  ( A, B) x  f2 (B, C) = f3 (A,B,C). 

Summing out a variable from a product of factors is done by adding up the submatrices  
formed by fixing the variable to each of its values in turn. For example, to sum out A from 
1.3 (A,  B,  (I), we write 

f(B, C) = A, B, C) = f3(a, B,  C) + f3(—a,  B ,C) 

(

( (  
.42 .28 ) .06 .04) .48 32 }  

The only trick is to notice that any factor that does not depend on the variable to be summed 
out can be moved outside the summation. For example, if we were to sum out E first in the 
burglary network, the relevant part of the expression would be 

Ef2 (E)  x f,(A,D,  E) x f4(A) x  f5(A)  —  f4(A) x  f5(A)  x Ef,(E)  x  f3(A,  B,  E)  . 
e e 

Now the poirawise  product inside the summation is computed, and the variable is summed 
out of the resulting matrix. 

Notice that matrices are not multiplied until we need to sum out a vanable from the 
accumulated product. At that point, we multiply just those matrices that include the variable 
to be summed out. Given functions for pointwise pro-duct  and summing out, the variable 
elimination algorithm itself can be written quite simply. as shown in Figure 14.11. 

Variable ordering and variable relevance 

The algorithm in Figure 14.11 includes an unspecified ORDER function to choose an ordering 
for the variables. Every choice of ordering yields a valid algorithm, but different orderings 
cause different intermediate factors to be generated during the calculation. For example, in 
the calculation shown previously, we eliminated A before E; if we do it the other way, the 
calculation becomes 

11 {./3  I j,rri)  = x Ef,,(A)  x f5(A)  x Ef,(E)  x  c,(A,  B,  E) ,  

during which a new factor f6  (A, B) will be generated. 
In general, the time and space requirements of variable elimination are dominated by 

the size of the largest factor constructed during the operation of the algorithm. This in turn 
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CONVECTED 
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function ELIMINATION-AsK(X,  c, b•o)  returns a distribution over X 
inputs: X, the query variable 

e, observed values for variables E 
tot, a Bayesian network specifying joint distribution P(X t , )  

factors 4—  [1 
for each var in ORDER.(bn.VARs)  do 

factors 4— [MAKE-FACTOR (  Gr,  e) factors]  
if var  is a hidden variable then factors •—  SUM-O UT(tar ,  factors) 

return NORMALIZE( POINT WISE-PRoDucT(factors))  

Figure 14.11 The variable elimination algorithm for inference in Bayesian  networks. 

is determined by the order of elimination of variables and by the structure of the network. 
It turns out to be intractable to determine the optimal ordering, but several good heuristics 
are available. One fairly effective method is a greedy one: eliminate whichever variable 
minimizes the size of the next factor to be constructed. 

Let us consider one more query: P(JohnCalls1  Burglarj  —  true). As usual, the first 
step is to write out the nested summation. 

P(J  13 )  = P(b) Pi,e) P(ai  b, e)P(J  a) >=P(in  I a) -  

Evaluating this expression from right to left, we notice something interesting: E rn  P(m I a) 
is equal to I by definition! Hence, there was no need to include it in the first place; the vari- 
able AI is irrelevant to this query. Another way of saying this is that the result of the query 

13rurgiury  = true) is unchanged if we remove liefuryCalls  from  the network 
altogether. In general, we can remove any leaf node that is not a query variable or an evidence 
variable. Alter its removal, there may be some more leaf nodes, and these too may be irrele-
vant. Continuing this process, we eventually find that every variable that is not an ancestor 
of a query variable or evidence variable is irrelevant to the query. A variable elimination 
algorithm can therefore remove all these variables before evaluating the query. 

14.4.3 The complexity of exact inference 

The complexity of exact inference in Bayesian networks depends strongly on the structure of 
the network. The burglary network of Figure 14.2 belongs to the family of networks in which 
there is at most one undirected path between any two nodes in the network. These are called 
singly connected networks or polytrees,  and they have a particularly nice property: The time 
and space complexity of exact inference in polytrees  is linear in the size of the network. Here. 
the size is defined as the number of CPT entries; if the number of parents of each node is 
bounded by a constant, then the complexity will also be linear in the number of nodes. 

For multiply connected networks, such as that of Figure 14.12(a), variable elimination 
can have exponential time and space complexity in the worst case, even when the numb= 
of parents per node is bounded. This is not surprising when one considers that because it 
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Figure 14.12 (a) A multiply connected network with conditional probability tables. (b)  A 
clustered equivalent of the multiply connected network. 
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includes inference its propositional logic as a special case, inference in Bayesian  networks is 
NP-hard. In fact, it can be shown (Exercise 14.16) that the problem is as hard as that of com- 
puting the number of satisfying assignments for a propositional logic formula. This means 
that it is #P-hard  ("number-P hard")—that  is, strictly harder than NP-complete problems. 

There is a close connection between the complexity of Bayesian  network inference and 
the complexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 6, 
the difficulty of solving a discrete CSP is related to how "treelike" its constraint graph is. 
Measures such as tree width, which bound the complexity of solving a CSP, can also be 
applied directly to Bayesian networks. Moreover, the variable elimination algorithm can be 
generalized to solve CSPs as well as Bayesian networks. 

CLUSTERING 

JOI4  TREE 

14.4.4 Clustering algorithms 

The variable elimination algorithm is simple and efficient for answering individual queries. If 
we want to compute posterior probabilities for all the variables in a network, however, it can 
be less efficient. For example, in a polytree network, one would need to issue 0(n) queries 
costing 0(n) each, for a total of Ot,n2 )  time. Using clustering algorithms (also known as 
join tree algorithms), the time can be reduced to 0(n). For this reason, these algorithms are 
widely used in commercial Bayesian network tools. 

The basic idea of clustering is to join individual nodes of the network to form  clus-
ter nodes in such a way that the resulting network is a polytree. For example, the multiply 
connected network shown in Figure 14.12(a)  can be converted into a polytree by combin-
ing the Sprinkler and Rain node into a cluster node called Sprinkler+Rain, as shown in 
Figure 14.12(b).  The two Boolean nodes are replaced by a "meganode" that takes on four 
possible values: tt,  t  f , ft,  and f  f . The meganode has only one parent, the Boolean variable 
Cloudy, so there are two conditioning cases. Although this example doesn't show it, the 
process of clustering often produces meganodes that share some variables. 
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Once the network is in polytree form, a special-purpose inference algorithm is required, 
because ordinary inference methods cannot handle mcganodcs  that share  variables with each 
other. Essentially, the algorithm is a form of constraint propagation (see Chapter 6) where the 
constraints ensure that neighboring meganodes agree on the posterior probability of any vari-
ables that they have in common. With careful bookkeeping, this algorithm is able to compute 
posterior probabilities for all the nonevidence nodes in the network in time linear in the size 
of the clustered network. However, the NP-hardness of the problem has not disappeared: if a 
network requires exponential time and space with variable elimination, then the CPTs in the 
clustered network will necessarily be exponentially large. 

14.5 APPROXIMATE INFERENCE IN BAYESIAN NETWORKS 

Given the intractability of exact inference in large, multiply connected networks, it is essen- 
tial to consider approximate inference methods. This section describes randomized sampling 

MONTE  CARLO  algorithms, also called Monte Carlo algorithms, that provide approximate answers whose 
accuracy depends on the number of samples generated. Monte Carlo algorithms, of which 
simulated annealing (page 126) is an example, are used in many branches of science to es-
timate quantities that are difficult to calculate exactly. In this section, we are interested in 
sampling applied to the computation of posterior probabilities. We describe two families of 
algorithms: direct sampling and Markov  chain sampling. Two other approaches—variational 
methods and loopy propagation—are mentioned in the notes at the end of the chapter. 

14.5.1 Direct sampling methods 

The primitive element in any sampling algorithm is the generation of samples from a known 
probability distribution. For example, an unbiased coin can be thought of as a random variable 
Coin with values (heads, tails) and a prior distribution P(  C061)  = (0.5, 0.5). Sampling 
from this distribution is exactly like flipping the coin: with probability 0.5 it will return head6.  
and with probability 0.5 it will return tails. Given a source of random numbers uniformly 
distributed in the range [0, 1], it is a simple matter to sample any distribution on a single 
variable, whether discrete or continuous_  (See Exercise 14  .17.) 

The simplest kind of random sampling process for Bayesian networks generates events 
frum a network that has no evidence assuciaied with it. The idea is to sample each variable 
in turn, in topological order. The probability distribution from which the value is sampled is 
conditioned on the values already assigned to the variable's parents.  This algontlun  is shown 
in Figure 14.13. We can illustrate its operation on the network in Figure 14.12(a), assuming 
an ordering [Cloucky,  Sprinkler, Ram, WetGrass]:  

1. Sample from P(  Cloudy) = (0.5, 0.0,  value is true. 

2. Sample from P(Sprinkler  Cloudy = true) = 0.9), value is false.  

3. Sample from P(Rain Cloudy = true) = (0.8,0.2,  value is true. 
4 Sample from 1)(  WM!  GraNN  Sprinklor  = fl1iRe,  Rain = true) = (0 9,  (_  ),  value is tri ,  

In this case, PRIOR-SAMPLE returns the event [true, false, true, true]. 
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CONSISTETF  

function PRIOR-SAMPLE(t'n)  returns an event sampled from the prior specified by bn  
inputs: bn,  a Bayesian  network specifying joint distribution P(X i , X„)  

x 4— an event with n elements 
foreach variable X i  in Xr ,  ... X„ do 

x[i]4—  a random sample from P(X, parents(X,))  
return x 

Figure 14.13  A sampling algorithm that generates events from a Bayesian network. Each 
variable is sampled according to the conditional distribution given the values already sampled 
for the variable's parents. 

It is easy to see that PRIOR-SAMPLE generates samples from the prior joint distribution 
specified by the network. First,  let Sps  ,  x„)  be the probability that a specific event is 
generated by the PRIOR-SAMPLE  algorithm. Just looking at the sampling process, we have 

Sps(xi  .  X.)  = H P(iiiparents(X0)  
=  

because each sampling step depends only on the parent values. This expression should look 
familiar, because it is also the probability of the event according to the Bayesian net's repre-
sentation of the joint distribution, as stated in Equation (14.2). That is, we have 

Sps(xi x,„,)  — P(x i x.„)  •  

This simple fact makes it easy to answer questions by using samples. 
In any sampling algorithm, the answers are computed by counting the actual samples 

generated_  Suppose there  arc N total samples, and let Nps(xl, ,  xn )  be the number of 
times the specific event xi, , x„,  occurs in the set of samples. We expect this number, as a 
fraction of the total. to converge in the limit to its expected value according to the sampling 
probability: 

NRS'  (X1,  
11111   SPS  (X1  •  •  • = P (S1, •  -  •  r x0) • (14.5)  

For example, consider the event produced earlier: [true,  false, true, true]. The sampling 
probability for this event is 

Sps  (true false, true, true) = 0.5 x 0.9 x 0.8 x 0.9 = 0.324 .  

Hence, in the limit of large N, we expect 32.49's of the samples to be of this event. 
Whenever we use an approximate equality (" ")  in what follows, we mean it in exactly 

this sense—that the estimated probability becomes exact in the large-sample limit. Such an 
estimate is called consistent. For example, one can produce a consistent estimate of the 
probability of any partially specified event xi,  , xm ,  where m < 11,  as follows: 

P(zi, , s,„) Nps(xl, xn-,)/N  . (14.6) 

That is, the probability of the event can  be estimated as the ft-action  of all complete events 
generated by the sampling process that match the partially specified event. For example, if 
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R UCTION 
SAMPLING 

we generate 1000 samples from the sprinkler network, and 511 of them have Rain = true, 
then the estimated probability of rain, writtcn  as P(Rain  = true), is 0.511. 

Rejection sampling in Bayesian  networks 

Rejection sampling is a general method for producing samples from a hard-to-sample distri- 
bution given an easy-to-sample distribution. In its simplest form, it can be used to compute 
conditional probabilities—that is, to determine P(X I e). The REJECTION-SAMPLING algo- 

rithm is shown in Figure 14.14. First, it generates samples from the prior distribution specified 
by the network. Then, it rejects all those that do not match the evidence. Finally, the estimate 
P(X = x  le)  is obtained by counting how often X —x  occurs in the remaining samples. 

Let P(X e) be the estimated distribution that the algorithm returns. From the definition 
of the algorithm, we have 

P(X  e) = a NP$  (X, e) =  IN
N
Ps

p
(
s
X; )  

From Equation (14.6), this becomes 

1=1 (X  I e) P
`jC' e  = P(X I  . 
P(e)  

That is, rejection sampling produces a consistent estimate of the true probability. 
Continuing with our example from Figure 14.12(a), let us assume that we wish to esti-

mate  P(Rain  Sprinkler = true), using 100 samples. Of the 100 that we generate, suppose 
that 73 have Sprinkler = false and are rejected, while 27 have Sprinkler = true; of the 27. 
g have Rain = true and 19 have Ruin = false. Hence, 

P(Rain Sprinkler  = true)  NORMALIZE( (8,19)) = (0.296, 0.704) .  

The true answer is s 1).3,  0.7). As more samples are collected, the estimate will converge to 
the true answer. The standard deviation of the error in each probability will be proportional 
to 1/Vii..  where n is the number of samples used in the estimate. 

The biggest problem with rejection sampling is that it rejects so many samples! The 
fraction of samples consistent with the evidence e drops exponentially as the number of evi-
dence variables grows, so the procedure is simply unusable for complex problems. 

Notice that rejection sampling is very similar to the estimation of conditional probabili- 
ties  directly from the real world. For example, to estimate P(Rain RedSkyAtIVight  = true), 
one can simply count how often it rains after a red sky is observed the previous evening— 
ignoring those evenings when the sky is not red. (Here, the world itself plays the role of 
the sample-generation  algorittun.)  Obviously, this could take a long tune if the sky is very 
seldom red, and that is the weakness of rejection sampling. 

Likelihood weighting 

Likelihood weighting avoids the inefficiency of rejection sampling by generating only events 
that are consistent with the evidence e. It is a particular instance of the general statistical 
technique of importance sampling, tailored for inference in Bayesian networks. We begin by 

LIKELIHOOD 
WEIGHTING 

IMPORTANCE 
SAMPLING 
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function REJECTION-SAMPLING(X,  C,  bn, N) returns an estimate of P(Xle)  
inputs: X, the query variable 

e,  observed values for variables E  
bn,  a Bayesian network 
N.  the total number of samples to be generated 

local variables: N,  a vector of counts for each value of X, initially zero 

for j  = 1  to N  do 
x  PRIOR-SAMPLE(bn)  
if x is consistent with e  then 

—N[x]+1  where r is the value of X in x  
return NORMALIZE(N)  

Figure 14.14  The rejection-sampling algorithm for answering queries given evidence in a 
Bayesian  network 

describing how the algorithm works; then we show that it works correctly—that is, generates 
consistent probability estimates. 

LIKELIHOOD-WEIGHTING (see Figure 14.15) fixes the values for the evidence vari-
ables E and samples only the nonevidence variables. This guarantees that each event gener-
ated is consistent with the evidence. Not all events are equal, however. Before tallying the 
counts in the distribution for the query variable, each event is weighted by the likelihood that 
the event accords to the evidence, as measured by the product of the conditional probabilities 
for each evidence variable, given its parents. Intuitively, events in which the actual evidence 
appears unlikely should be given less weight. 

Let us apply the algorithm to the network shown in Figure 14.12(a), with the query 
P(Flain  Cloudy = true, WetGrass = true) and the ordering Cloudy, Sprinkler, Rain, Wet- 
Grass. (Any topological ordering will do.) The process goes as follows: First, the weight w 
is set to 1.0. Then an event is generated: 

L.  Cloudy is an evidence variable with value true. Therefore, we set 

x P(Cloudy  = true) = 0.5 . 

2. Sprinkler is not an evidence variable, so sample from P(Sprinkle•  I Cloudy = true) = 

(0.1, 0.9 ; suppose this returns false. 

3. Similarly, sample from P(Rain  Cloudy = true) = (0.8, 0.2); suppose this returns 
true. 

4_  WP.tGraRs  is an evidence variable with value true_  Therefore, we set 

w  .— w x P(WetGrass  = true Sprinkler = ,false, Rain= true) = 0.45 . 

Here WEIGHTED-SAMPLE  returns the event (arise,  false, true, true] with weight 0.45, and 
this is tallied under Rain = true. 

To understand why likelihood weighting works, we start by examining the sampling 

probability Sy's  for WE IG HTED-S AMPLE. Remember that the evidence variables E are fixed 
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function LIKELII100D-WEIGIITINC(X  ,  c,  bn,  N) returns an estimate of P(X c)  
inputs: X, the query variable 

e, observed values for variables E 
bn, a Bayesian network specifying joint distribution P(X l , ,  X„)  
N, the total number of samples to be generated 

local variables: W, a vector of weighted counts for each value of X, initially zero 

for j = 1 to N  do 
x, w 4— WEIGHTED-5  AMPL E(bn,e)  
W[xj  W[xl where x  is the value of X in x  

return NORMALIZE(W)  

function WELGHTED-S AMPLE( bn, e)  returns an event and a weight 
w 4— 1; x  4—  an event with n elements initialized from e 
foreach variable X,  in X i , . . X.„  do 

if Xi is an evidence variable with value x i  in e 
then .u.r  .w  x P(X, ;  = x,  parents(Xi))  
else x[ij  a random sample from P(X, parents(X  i ))  

return x, at 

Figure 14.15  The likelihood -weighting algorithm for inference in Baycsian  networks. In 
WEIGHTED-SAMPLE,  each nonevidence variable is sampled according to the conditional 
distribution given the values already sampled for the variable's parents, while a weight is 
accumulated based on the likelihood fur each evidence variable. 

with values e. We call the nonevidence variables Z (including the query variable X). The 
algorithm samples each variable in Z giver'  its parent values: 

Sws(z,e)  = 11  P(.4 
 par ents(ZO) . (14.7) 

Notice that Porents(Z,)  can include both nonevidence variables and evidence variables. Un-
like the prior distribution P(z),  the distribution .5  ws pays some attention to the evidence: the 
sampled values for each Zi  will be influenced by evidence among Zi's  ancestors. For exam-
ple, when sampling Sprinkler the algorithm pays attention to the evidence Cloudy = true in 
its parent variable. On the other hand, S us  pays less attention to the evidence than does the 
true posterior distribution P(z e), because the sampled values for each Zi  ignore evidence 
among Zi 's  non-ancestors,5  For example, when sampling Sprinkle.r  and Rain the algorithm 
ignores the evidence in the child variable Wet.Gra.sR  = trace;  this means it will generate many 
samples with Sprinkler = false and Rain = false despite the fact that the evidence actually 
rules out this case. 

Ideally, we would like to use a sampling distribution equal to the true posterior P(/  I e), to take all the evidence 
into account. This cannot be done efficiently, however. If it could, then we could approximate the desired 
probability to arbitrary accuracy with a polynomial number of samples. It can be shown that no such polynomial-
time approximation scheme can exist. 
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The likelihood weight rp  makes up for the difference between the actual and desired 
sampling distributions. The weight for a given sample x, composed from z and e, is the 
product of the likelihoods for each evidence variable given its parents (some or all of which 
may be among the Zis):  

TR  

iv(z,e)  = 1-11-V,Iparents(E0)  . (14J) 
=1 

Multiplying Equations (14.7) and (14.8), we see that the weighted probability of a sample has 
the particularly convenient form 

S , e )w e) = P(zi  parents(ZO) P(ei  parents(Ei )) 

=  1 4  =  1 
= P(z,e) (14.9) 

MARKOV  CHAIN  
MCHTE  CAWO  

because the two products cover all the variables in the network, allowing us to use Equa-
tion (14.2) for the joint probability. 

Now it is easy to show that likelihood weighting estimates are consistent For any 
particular value x of X, the estimated posterior probability can be calculated as follows: 

P(x  e) = cr ENws(z,  y,e)w(x,y,e) from LIKELIHOOD-WEIGHTING 

y,e)tv(x,  y, e) for large N 

= cr` P(x,  y , e) by Equation (14.9) 

= i r P(u],e)  = P(fr  e) 

Hence, likelihood weighting returns consistent estimates. 
Because likelihood weighting uses all the samples generated, it can be much more ef-

ficient than rejection sampling. It will, however, suffer a degradation in performance as the 
number of evidence variables increases. This is because most samples will have very low 
weights and hence the weighted estimate will be dominated by the tiny fraction of samples 
that accord more than an infinitesimal likelihood to the evidence. The problem is exacerbated 
if the evidence variables occur late in the variable ordering, because then the nonevidence  
variables will have no evidence in their parents and ancestors to guide the generation of sam-
ples. This means the samples will be simulations that bear little resemblance to the reality 
suggested by the evidence. 

14.5.2 Inference by Markov chain simulation 

Markov chain Monte Carlo (MCMC) algorithms work quite differently from rejection sam- 
pling and likelihood weighting. Instead of generating each sample from scratch, MCMC al- 
gorithms generate each sample by making a random change to the preceding sample. It is 
therefot-e  helpful to think of an MCMC algoi  ithm  as being in a particular current state speci- 
fying a value for every variable and generating a next state by making random changes to the 
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GIBBS  SAMPLING 

TRANSITION 
PROBABILITY PROBABILITY 

current state. Of this reminds you of simulated annealing from Chapter 4 or WALKS AT from 
Chapter 7, that is because both arc members of the MCMC family.) Here we describe a par- 
ticular form of MCMC called Gibbs sampling, which is especially well suited for Bayesian 
networks. (Other forms, some of them significantly more powerful, are discussed in the notes 
at the end of the chapter.) We will first describe what the algorithm does, then we will explain 
why it works. 

Gibbs sampling in Bayesian networks 

The Gibbs sampling algorithm for Bayesian networks starts with an arbitrary state (with the 
evidence variables fixed at their observed values) and generates a next state by randomly 
sampling a value for one of the nonevidence variables X,. The sampling for Xi  is done 
conditioned on the current values of the variables in the Markus)  blanker of Xi. (Recall from 
page 517 that the Markov blanket of a variable consists of its parents, children, and children's 
parents.) The algorithm therefore wanders randomly around the state space—the space of 
possible complete assignments—flipping one variable at a time, but keeping the evidence 
variables fixed  

Consider the query P(Rain  I Sprinkler = true, WetGross  = true) applied to the net-
work in Figure 14.12(a). The evidence  variables Sprinkler and WetGrass  are fixed to their 
observed values and the nonevidence variables Cloudy and Rain are initialized randomly—
let us say to true and false respectively. Thus, the initial state is [true, true, false, true]. 
Now the nonevidence variables are sampled repeatedly in an arbitrary order. For example: 

1. Cloudy is sampled, given the current values of its Markov  blanket variables: in this 
case, we sample from P( Cloudy I Sprinkler = true, Rain = false). (Shortly, we will 
show how to calculate this distribution.) Suppose the result is Cloudy = false. Then 
the new current state is [false, true, false, true]. 

2. Rain is sampled. given the current values of its Markov blanket variables: in this case. 
we sample from P(Rain Cloudy = false, Sprinkler = true, WetGrass  = true). Sup-
pose this yields Rain. — true. The new current state is [false, true, true, true]. 

Each state visited during this process is a sample that contributes to the estimate for the query 
variable Rain. If the process visits 20 states where Rain is true and 60 states where Rain is 
false, then the answer to the query is NoRmALizE((20,  60)) = (0.25, 0.75). The complete 
algorithm is shown in Figure 14.16. 

Why Gibbs sampling works 

We will now show that Gibbs sampling returns consistent estimates for posterior probabil-
ities. The material in this section is quite technical, but the basic claim is straightforward: 
the sampling process settles into a 'dynamic equilibrium" in which the long-run fraction of 
time spent in each state is exactly proportional to its posterior probability. This remarkable 
property follows from the specific transition probability with which the process moves from 
one state to another-, as defined by the conditional distribution given the Markov  blanket of 
the variable being sampled. 
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function G II S-AS e,  bn,  X)  returns an estimate of P(X 
local variables: N,  a vector of counts for each value of X, initially zero 

Z, the nonevidence variables in lm  
x, the current state of the network, initially copied from e 

initialize x with random values for the variables in Z 
for j  = 1  to N  do 

for each Zi  in Z do 
set the value of Zi  in x  by sampling from P(Z,ImbZi.))  
Mx.]  N [xj  + 1 where ar  is the value of X in x 

return NCRMALIZE(N)  

Figure 14.16  The Gibbs sampling algorithm for approximate inference in Bayesian net- 
works; this version cycles through the variables, but choosing variables at random also works. 

Let q(x x 1 ) be the probability that the process makes a transition from state x to 
state x'. This transition probability defines what is called a Markov chain on the state space. 
(Markov chains also figure prominently in Chapters 15 and 17.) Now suppose that we run 
the Markov chain for t steps, and let trt(x)  be the probability that the system is in state x at 
time t.  Similarly, let Irt. ±((x`)  be the probability of being in state x' at time t +  L Given 

Irt(x),  we can calculate irt+i(x')  by summing, for all states the system could be in at time t,  
the probability of being in that state times the probability of making the transition to x':  

71. +1 (x')  = E  Art(x)q(x .  

We any that the chain has reached its stationary distribution if Art  =171+1 .  Let us cull this 
stationary distribution 7r;  its defining equation is therefore 

ar(x')  = Er  r(x)9(x 3e) for all x' . (14.10)  

Provided the transition probability distribution q is ergodic—that is, every state is reachable 
from every other and there are no strictly periodic cycles—there is exactly one distribution (r  
satisfying this equation for any given q. 

Equation (14.10)  can be read as saying that the expected "outflow" from each state (i.e., 
its current "population") is equal to the expected "inflow" from all the states. One obvious 
way to satisfy this relationship is if the expected flow between any pair of states is the same 
in both directions; that is, 

rr(x)q(x — 7r(x1 )q(x / x) for all x,  x l  . (14.11)  

DETAILED BALANCE  When these equations hold, we say that q(x x') is in detailed balance with ir(x).  
We can show that detailed balance implies stationarity  simply by summing over x in 

Equation (14.11). We have 

n(x)q(x = 7r(x')(/(xl x)  = 7r(x l ) q(x' x) = tr(x')  

MNSKOV  CHAIN 

STATIONARY 
➢ IETRIBUTION  

ER.DODIC  
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where the last step follows because a transition from x'  is guaranteed to occur. 
The transition probability q(x  x')  defined by the sampling step in Glans-ASK  is 

actually a special case of the more general definition of Gibbs sampling, according to which 
each variable is sampled conditionally on the current values of all the other variables. We 
start by showing that this general definition of Gibbs sampling satisfies the detailed balance 
equation with a stationary distribution equal to P(x I e), (the true posterior distribution on 
the nonevidence variables). Then, we simply observe that, for Bayesian networks, sampling 
conditionally on all variables is equivalent to sampling conditionally on the variable's Markov 
blanket (see page 517). 

To analyze the general Gibbs sampler, which samples each Xi  in turn with a transition 
probability (q i  that conditions on all the other variables, we define X i  to be these other vari-
ables (except the evidence variables); their values in the current state are K.  If we sample a 
new value x:  fur Xi conditionally on all the other variables, including the evidence, we have 

qi(x x i ) = C)  = P(xli e) 
Now we show that the transition probability for each step of the Gibbs sampler is in detailed 
balance with the true posterior: 

7r(x)qi(x x')  = P(x e)P(Zi  I e) = P(xi ,  xi  I e)P(x i
i I K.,  e)  

= P(xi e)P(x%  I e)P(x 'i.I  
xi,  e) (using the chain rule on the first term) 

= P(3,7  i  K, (x: e) (using the chain rule backward) 

= 91- ( x r)qi(x 1 s x) .  

We can think of the loop 'Tor  each Z 1  in Z do" in Figure 14.16 as defining one large transition 
probability q that is the sequential composition qi  o  42  o  • • • o  qi,  of the transition probabilities 
for the individual variables. It is easy to show (Exercise 14.19) that if each of qi  and qj  has 
r as its stationary distribution, then the sequential composition qi  o qj  does too; hence the 
transition probability q for the whole loop has P(x e) as its stationary distribution. Finally, 
unless the CPTs contain probabilities of 0  or 1—which can cause the state space to become 
disconnected—it is easy to see that q is ergodic. Hence, the samples generated by Gibbs 
sampling will eventually be drawn from the true posterior distribution 

The final step is to show how to perform the general Gibbs sampling step—sampling 
Xi  from P(X i  e) —in a Bayesian network. Recall from page 517 that a variable is inde-
pendent of all other variables given its Markov blanket; hence, 

P(x%  I  K,  e)  = P(x:  rrib(Xi ))  ,  

where rrib(Xi )  denotes the values of the variables in X i 's  Markov blanket, 114B(Xi ).  As 
shown in Exercise 14.7, the probability of a variable given its Markov blanket is proportional 
to the probability of the variable given its parents times the probability of each child given its 
respective parents: 

P(x:  I mb(X. i ))  = cr P(ra  parents(X 4 ))  x P(yj  parents(Y  j ))  .  (14.12)  

E  Chi idren(Xi)  

Hence, to flip each variable Xi  conditioned on its Markov  blanket, the number of multiplica-
tions required is equal to the number of Xi's  children. 
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14.6 RELATIONAL AND FIRST-ORDER PROBABILITY MODELS 

In Chapter 8,  we explained the representational advantages possessed by first-order logic in 
comparison to propositional logic. First-order logic commits to the existence of objects and 
relations among them and can express facts about some or all of the objects in a domain. This 
often results in representations that are vastly more concise than the equivalent propositional 
descriptions. Now, Bayesian networks are essentially propositional: the set of random vari-
ables  is fixed and finite, and each has a fixed domain of possible values This fact limits the 
applicability of Bayesian networks. If we can ,find a way to combine probability theory with 
the expressive power of first -order representations, we expect to he able to increase draMall- 
catty  the range of problems that can be handled. 

For example, suppose that an online book retailer would like to provide overall evalu-
ations of products based on recommendations received from its customers. The evaluation 
will take the form of a posterior distribution over the quality of the book, given the avail-
able evidence. The simplest solution to base the evaluation on the average recommendation, 
perhaps with a variance determined by the number of recommendations, but this fails to take 
into account the fact that some customers are kinder than others and some are less honest than 
others. Kind customers tend to give high recommendations even to fairly mediocre books, 
while dishonest customers give very high or very low recommendations for reasons other 
than quality—for example, they might work for a publisher. 6  

For a single customer C1 , recommending a single book B1, the Bayes net might look 
like the one shown in Figure 14.17(a).  (Just as in Section 9.1, expressions with parentheses 
such as Honest(C1)  are just fancy symbols—in this case, fancy names for random variables.) 

6  A game theorist would advise a dishonest customer to avoid detection by occasionally recommending a good 
book from a competitor. See Chapter 17. 
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With two customers and two books, the Bayes net looks like the one in Figure 14.17(b). For 
larger numbers of hooks  and customers, it becomes completely impractical to specify the 
network by hand. 

Fortunately, the network has a lot of repeated structure. Each Recommendation (c , 
variable has as its parents the variables Honest(c),  Kindness(c),  and Quality (b). Moreover, 
the CPTs  for all the Recornmendation(c,  b) variables are identical, as are those for all the 
Honest (c) variables, and so on. The situation seems tailor-made for a first-order language. 
We would like to say something like 

Recommendation (c,  b) ti  RecCPT  (Hon est(e),  Kindness (c), Quafity(b))  

with the intended meaning that a customer's recommendation for a book depends on the 
customer's honesty and kindness and the book's quality according to some fixed CPT. This 
section develops a language that lets us say exactly this, and a lot more besides. 

14.6.1 Possible worlds 

Recall from Chapter 13 that a probability model defines a set 12  of possible worlds with 
a probability P(4.,))  for each world Lc,.  For Bayesian networks, the possible worlds are as-
signments of values to variables; for the Boolean case in particular, the possible worlds are 
identical to those of propositional logic. For a first-order probability model, then, it seems 
we need the possible worlds to be those of first-order logic—that  is, a set of objects with 
relations among them and an interpretation that maps constant symbols to objects, predicate 
symbols to relations, and function symbols to functions on those objects_ (See  Section 8_2.)  
The model also needs to define a probability for each such possible world, just as a Bayesian 
network defines a probability for each assignment of values to variables. 

Let us suppose, for a moment, that we have figured out how to do this. Then, as usual 
(see page 485), we can obtain the probability of any first-order logical sentence  as a sum 
over the possible worlds where it is truer 

P(0)  = E P(w) (14.13) 
,.0:0  is true in 

Conditional probabilities P(0.  I e)  can be obtained similarly, so we can, in principle, ask any 
question we want of our model—e.g.,  "Which books are most likely to be recommended 
highly by dishonest customers?"—and  get an answer So far, so good. 

There is, however, a problem: the set of first-order models is infinite. We saw this 
explicitly in Figure 8.4 on page 293, which we show again in Figure 14.18 (top). This means 
that (1) the summation in Equation (14.13) could be infeasible, and (2) specifying a complete, 
consistent distribution over an infinite set of worlds could be very difficult. 

Section 14.6.2 explores one approach to dealing with this problem. The idea is to 
borrow not from the standard semantics of first-order logic but from the database seman- 
tics defined in Section 8.2.8 (page 299). The database semantics makes the unique names 
assumption—here, we adopt it for the constant symbols. It also assumes domain closure— 
there are no inure objects than those that are named. We can then guarantee  a finite set of 
possible worlds by making the set of objects in each world be exactly the set of constant 
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Figure 14,18  Top: Some members of the set of all possible worlds for a language with two 
constant symbols, R and  and one binary relation symbol, under the standard semantics for 
first-order  logic. Bottum; the possible worlds under database sermunics.  The interpretation 
of the constant symbols is fixed, and there is a distinct object for each constant symbol. 
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symbols that are used; as shown in Figure 14.18 (bottom), there is no uncertainty about the 
mapping from symbols to objects or about the objects that exist. We will call models defined 
in this way relational probability models, or RPMs.7  The most significant difference be- 

tween the semantics of RPMs and the database semantics introduced in Section 8.2.8 is that 
RPMs do not make the closed-world assumption—obviously, assuming that every unknown 
fact is false doesn't make sense in a probabilistic reasoning system! 

When the underlying assumptions of database semantics fail to hold, RPMs won't work 
well. For example, a book retailer might use an ISBN (International Standard Book Number) 
as a constant symbol to name each book, even though a given "logical" book (e.g.,  "Gone 
With the Wind") may have several ISBNs. It would make sense to aggregate recommenda-
tions across multiple ISBNs, but the retailer may not know for sure which ISBNs are really 
the same book. (Note that we are not reifying the individual copies of the book, which might 
be necessary for used-book sales, car sales, and so on.) Worse still, each customer is iden-
tified by a login ID, but a dishonest customer may have thousands of IDs! In the computer 
security field, these multiple IDs are called sibyls and their use to confound a reputation sys-
tem is called a sibyl attack. Thus, even a simple application in a relatively well-defined, 
online domain involves both existence uncertainty (what are the real books and customers 
underlying the observed data) and identity uncertainty (which symbol really refer to the 
same object). We need to bite the bullet and define probability models based on the standard 
semantics of first-order logic, for which the possible worlds vary in the objects they contain 
and in the mappings from symbols to objects. Section 14.6.3 shows how to do this. 

7  The name relational probability model was given by Pfeffer (2000) to a slightly different representation,  but 
the underlying ideas are the same. 

NE_ATiONAL  
11013A11112  I Y MCDEL  

SIBYL 

SIBYL ATTACK 

EXISTENCE 
LINE  ERTAINTY  
IDENTITY 
UNG.ENTAKIT  



542 Chapter 14. Probabilistic Reasoning 

TYPE SIGNATURE 

CORIEXT-SPECIFIC  
INDEPENDENCE 

14.6.2 Relational probability models 
Like first-order logic, RPMs have constant, function, and predicate symbols. (It turns out to 
be easier to view predicates as functions that return true or false.) We will also assume a 
type signature for each function, that is, a specification of the type of each argument and the 
function's value. If the type of each object is known, many spurious possible worlds are elim- 
inated by this mechanism. For the book -recommendation domain, the types are Customer 
and Book, and the type signatures for the functions and predicates are as follows: 

Honest : Customer {truelalse  } Kindness : Customer {1,  2,3, 4, 5} 
Quality : Book —>  {1,2,3, 4,5} 
Recommendation :  Customer x Book -Y  {1,2,3,4.5}  

The constant symbols will be whatever customer and book names appear in the retailer's data 
set. In the example given earlier (Figure 14.17(b)), these were Ct ,  C2 and Bi,  B2 - 

Given the constants and their types, together with the functions and their type signa-
tures, the random variables of the RPM are obtained by instantiating each function with each 
possible combination of objects: Honest ( Ci),  Quality(B2),  Reeommendation(Ct, B2),  
and so on. These are exactly the variables appearing in Figure 14.17(b). Because each type 
has only finitely many instances, the number of basic random variables is also finite. 

To complete the RPM, we have to write the dependencies that govern these random 
variables. There is one dependency statement for each function, where each argument of the 
function is a logical variable (i.e.,  a variable that ranges over objects, as in first-order logic): 

Honest(c) .90, 0.01) 
Kindness(c) .1, 0.1, 0.2, 0.3, 0.3) 
Quality(b)  —  (0.05, 0.2,0.4,0.2, 0.15)  
Recommendation (c,  b)  Rae CPT ( Honest(c),  Kindness (c), Quality(b))  

where RecCPT  is a separately defined conditional distribution with 2 x 5 x 5 = 50 rows. 
each with 5 entries. The semantics of the RPM can be obtained by instantiating these de-
pendencies for all known constants, giving a Bayesian network (as in Figure 14.17(h))  that 
defines a joint distribution over the RPM's  random variables. 3  

We can refine the model by introducing a context-specific independence to reflect the 
fact that dishonest customers ignore quality when giving a recommendation; moreover, kind-
ness plays no role in their decisions. A context-specific independence allows a variable to be 
independent of some of its parents given certain values of others; thus, Recommendation(c,b)  
is independent of Kindness(c) and Quality(b) when Honest(c)  — false: 

Recommendation (c,  b) —  if Honest(c)  then 
HonestRecCPT (Kindness (c), Quality (b)) 

else (0.4,  0.1, 0.0.0.1, 0.4)  .  
g  Some technical conditions must be observed to guarantee that the RPM defines a proper distribution. First, 
the dependencies must be acyclic, otherwise the resulting Bayesian  network will have cycles and will not define 
a proper distribution.  Second, the dependencies must be well founded,  that is, there can be no infinite ancestor 
chains, such as might arise from recursive dependencies. Under some circumstances (see Exercise 14.6), a fixed-
point calculation yields a well-defined probability model for a recursive RPM. 
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Figure 14.19  Fragment of the equivalent Bayes net when Author(B2 )  is unknown. 
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This kind of dependency may look like an ordinary if—then—else statement on a programming 
language, but there is a key difference: the inference engine doesn't necessarily know the 
value of the conditional test! 

We can elaborate this model in endless ways to make it more realistic. For example, 
suppose that an honest customer who is a fan of a book's author always gives the book a 5, 
regardless of quality: 

Recommendation(c,b)  —  if Honest (c) then 
if Fan(c, Author(b)) then Exactly  (5) 

else HonestRecCPT  (Ifindness(c),  Quality (0) 
else {0.4, 0.1. 0.0, 0.1, 0.4) 

Again, the conditional test Fan(c,  Author(b)) is unknown, but if a customer gives only 5s to 
a particular author's books and is not otherwise especially kind, then the posterior probability 
that the customer is a fan of that author will be high. Furthermore, the posterior distribution 
will tend to discount the customer's Ss in evaluating the quality of that author's books. 

In the preceding example, we implicitly assumed that the value of Author(b)  is known 
for every h, but this may not he the case. How can the system reason about whether, say, C 1  
is a fan of Author(B 2 )  when Author(B 2 )  is unknown? The answer is that the system may 
have to reason about all possible authors. Suppose (to keep things simple) that there are just 
two authors, Al and A2. Then Author(B2)  is a random variable with two possible values, 
Al and A2, and it is a parent of Recommendation(Ct,  B2). The variables Fan(Ci,  A t) and 
Fan(Ci,  A2) are parents too. The conditional distribution for Recommendation(Ci,  B2) is 
then essentially a multiplexer in which the Author(B2)  parent acts as a selector to choose 
which of Fan(C1,  A1) and Fun  (C1, A2) actually gets to influence the recommendation. A 
fragment of the equivalent Bayes net is shown in Figure 14.19. Uncertainty in the value 
of Author(B 2 ), which affects the dependency structure of the network, is an instance of 
relational uncertainty. 

In case you are wondering how the system can possibly work out who the author of 
B2 is: consider the possibility that three other customers are fans of A l  (and have no other 
favorite authors in common) and all three have given B2 a 5, even lough  mosi  other cus- 
tomers find it quite dismal. In that case, it is extremely likely that Al is the author of B2. 
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The emergence of sophisticated reasoning like this from an RPM model of just a few lines 
is an intriguing example of how probabilistic influences spread through the wcb of intercon-
nections among objects in the model. As more dependencies and more objects are added, the 
picture conveyed by the posterior distribution often becomes clearer and clearer. 

The next question is how to do inference in RPMs. One approach is to collect the 
evidence and query and the constant symbols therein, construct the equivalent Bayes net, 
and apply any of the inference methods discussed in this chapter. This technique is called 

UNROLLING 
 unrolling. The obvious drawback is that the resulting Bayes net may be very large. Further-

more, if there are many candidate objects for an unknown relation or function—for example. 
the unknown author of B2—then  some variables in the network may have many parents. 

Fortunately, much can be done to improve on generic inference algorithms. First, the 
presence of repeated substructure in the unrolled Bayes net means that many of the factors 
constructed during variable elimination (and similar kinds of tables constructed by cluster-
ing algorithms) will be identical; effective caching schemes have yielded speedups of three 
orders of magnitude for large networks. Second, inference methods developed to take advan-
tage of context-specific independence in Bayes nets find many applications in RPMs. Third. 
MCMC inference algorithms have some interesting properties when applied to RPMs with 
relational uncertainty. MCMC works by sampling complete possible worlds, so in each state 
the relational structure is completely known. In the example given earlier, each MCMC state 
would specify the value of Author(B2 ),  and so the other potential authors are no longer par-
ents of the recommendation nodes for B2. For MCMC,  then, relational uncertainty causes no 
increase in network complexity; instead, the MCMC process includes transitions that change 
the relational structure, and hence the dependency structure, of the unrolled network. 

All of the methods just described assume that the RPM has to be partially or completely 
unrolled into a Bayesian network. This is exactly analogous to the method of proposition-
alization  for first-order logical inference. (See page 322.) Resolution theorem-provers and 
logic programming systems avoid propositionalizing by instantiating the logical variables 
only as needed to make the inference go through; that is, they lift the inference process above 
the level of ground propositional sentences and make each lifted step do the work of many 
ground steps. The same idea applied in probabilistic inference. For example, in the variable 
elimination algorithm, a lifted factor can represent an entire set of ground factors that assign 
probabilities to random variables in the RPM, where those random variables differ only in the 
constant symbols used to construct them. The details of this method are beyond the scope of 
this book, but references are given at the end of the chapter. 

14.tl.3  ❑pen-universe  probability models 

We argued earlier that database semantics was appropriate for situations in which we know 
exactly the set of relevant objects that exist and can identify them unambiguously. (In partic-
ular, all observations about an object are correctly associated with the constant symbol that 
names it.)  In many real-world settings, however, these assumptions are simply untenable. We 
gave the examples of multiple ISBNs and sibyl attacks in ihe  book-recommendation  domain 
(to which we will return in a moment), but the phenomenon is far more pervasive: 
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• A vision system doesn't know what exists, if anything, around the next corner, and may 
not know if the object it sees now is the same one it saw a fcw minutes age. 

• A text-understanding system does not know in advance the entities that will be featured 
in a text, and must reason about whether phrases such as "Mary," "Dr. Smith," "she." 
"his cardiologist," "his mother," and so on refer to the same object. 

• An intelligence analyst hunting for spies never knows how many spies there really are 
and can only guess whether various pseudonyms, phone numbers, and sightings belong 
to the same individual. 

In fact, a major part of human cognition seems to require learning what objects exist and 
being able to connect observations—which almost never come with unique 1Ds  attached—to 
hypothesized objects in the world. 

OPEN UNIVERSE For these reasons, we need to be able to write so-called open-universe probability 
models or OUPMs based on the standard semantics of first-order logic, as illustrated at the 
top of Figure 14.18. A language for OUPMs provides a way of writing such models easily 
while guaranteeing a unique, consistent probability distribution over the infinite space of 
possible worlds. 

The basic idea is to understand how ordinary Bayesian networks and RPMs manage 
to define a unique probability model and to transfer  that insight to  the first-order setting.  In 
essence, a Bayes net generates each possible world, event by event, in the topological order 
defined by the network structure, where each event is an assignment of a value to a variable.  
An RPM extends this to entire sets of events, defined by the possible instantiations of the 
logical variables in a given predicate or function. OUPMs go further by allowing generative 
steps that add objects to the possible world under construction, where the number and type 
of objects may depend on the objects that are already in that world. That is, the event being 
generated is not the assignment of a value to a variable, but the very existence of objects. 

One way to do this in OUPMs  is to add statements that define conditional distributions 
over the numbers of objects of various kinds. For example, in the book-recommendation 
domain, we might want to distinguish between customers (real people) and their login Ws.  
Suppose we expect somewhere between 100 and 10,000 distinct customers (whom we cannot 
observe directly). We can express this as a prior log-normal distribution9  as follows: 

# Customer LegNo91=1[6.9,2.310 . 

We expect honest customers to have just one ID, whereas dishonest customers might have 
anywhere between 10 and 1000 IDs: 

# LoginID(Ourner  =e)—  if Honest(c)  then Exaetly1)  

else LogNormal  [6.9, 2.32 ]0 .  
This statement defines the number of login IDs for a given owner, who is a customer. The 

ORIGIN  FUNCTION  Owner function is called an origin function because it says where each generated object 
came from. In the formal semantics of BLOC (as distinct from first-order logic), the domain 
elements in each possible world are actually generation histories (e.g..  "the fourth login ID of 
the seventh customer") rather than simple tokens. 
9  A distribution Lag Norrnal[4,  al (z)  is equivalent to a distribution My, C2 1(x)  over log , (a).  
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Subject to technical conditions of acyclicity and well-foundedness similar to those for 
RPMs, open-universe  models of this kind define a unique distribution over possible worlds. 
Furthermore, there exist inference algorithms such that, for every such well-defined model 
and every first-order query, the answer returned approaches the true posterior arbitrarily 
closely in the limit. There are some tricky issues involved in designing these algorithms. 
For example, an MCMC algorithm cannot sample directly in the space of possible worlds 
when the size of those worlds is unbounded; instead, it samples finite, partial worlds, rely-
ing on the fact that only finitely many objects can be relevant to the query in distinct ways. 
Moreover, transitions must allow for merging two objects into one or splitting one into two. 
(Details are given in the references at the end of the chapter.) Despite these complications, 
the basic principle established in Equation (14.13) still holds: the probability of any sentence 
is well defined and can be calculated. 

Research in this area is still at an early stage, but already ii is becoming clear that first-
order probabilistic reasoning yields a tremendous increase in the effectiveness of Al systems 
at handling uncertain information. Potential applications include those mentioned above—
computer vision, text understanding, and intelligence analysis—as well as many other kinds 
of sensor interpretation. 

14.7 OTHER APPROACHES TO UNCERTAIN REASONING 

Other sciences (e.g., physics, genetics, and economics) have long favored probability as a 
model for uncertainty. In 1819.  Pierre Laplace said. "Probability theory is nothing but com-
mon sense reduced to calculation." In 1850,  James Maxwell said, "The true logic for this 
world is the calculus of Probabilities, which takes account of the magnitude of the probabil-
ity which is, or ought to be, in a reasonable man's mind." 

Given this long tradition, it is perhaps surprising that AI has considered many alterna-
tives to probability. The earliest expert systems of the 1970s ignored uncertainty and used 
strict logical reasoning, but it soon became clear that this was impractical for most real-world 
domains. The next generation of expert systems (especially in medical domains) used prob-
abilistic techniques. Initial results were promising, but they did not scale up because of the 
exponential number of probabilities required in the full joint distribution. (Efficient Bayesian 
network algorithms were unknown then.) As a result, probabilistic approaches fell out of 
favor from roughly 1975 to 19g8,  and a variety of alternatives to probability were tried for a 
variety of reasons: 

• One common view is that probability theory is essentially numerical, whereas human 
judgmental reasoning is more "qualitative." Certainly, we are not consciously aware 
of doing numerical calculations of degrees of belief. (Neither are we aware of doing 
unification, yet we seem to be capable of some kind of logical reasoning.) It might be 

that we have some kind of numerical degrees  of belief encoded directly in strengths 
of connections and activations in our neurons.  In that case, the difficulty of conscious 
access to those strengths is not surprising. One should also note that qualitative reason- 
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ing mechanisms can be built directly on top of probability theory, so the "no numbers" 
argument against probability has little force. Nonetheless, some qualitative schemes 
have a good deal of appeal in their own right. One of the best studied is default rea- 
soning,  which treats conclusions not as "believed to a certain degree," but as "believed 
until a better reason is found to believe something else." Default reasoning is covered 
in Chapter 12. 

• Rule-based approaches to uncertainty have also been tried. Such approaches hope to 
build on the success of logical rule-based systems, but add a sort of "fudge factor" to 
each rule to accommodate uncertainty. These methods were developed in the mid-1970s  
and formed the basis for a large number of expert systems in medicine and other areas. 

• One area that we have not addressed so far is the question of ignorance, as opposed 
to uncertainty. Consider the flipping of a coin. If we know that the coin is fair, then 
a probability of 0.5 for heads is reasonable. If we know that the coin is biased, but 
we do not know which way, then 0,5  for heads is again reasonable. Obviously, the 
two cases are different, yet the outcome probability seems not to distinguish them. The 
Dempster Shaferthenry uses interval-valued degrees of belief to represent an agent's 
knowledge of the probability of a proposition. 

• Probability makes the same un[ulogical  commitment as logic: that  propositions arc true 
or false in the world, even if the agent is uncertain as to which is the case. Researchers 
in fuzzy logic have proposed an ontology that allows vagueness: that a proposition can 
be "sort of" true. Vagueness and uncertainty are in fact orthogonal issues. 

The next three subsections treat some of these approaches in slightly more depth. We will not 
provide detailed technical material, but we cite references for further study. 

14.7.1 Rule -based methods for uncertain reasoning 

Rule-based systems emerged from early work on practical and intuitive systems for logical 
inference. Logical systems in general, and logical rule-based systems in particular, have three 
desirable properties. 

• Locality: In logical systems, whenever we have a rule of the form A = B, we can 
conclude B, given evidence A, without worrying  about  any other rules. In probabilistic 
systems, we need to consider all the evidence. 

• Detaclunent:  Once a logical proof is found for a proposition B, the proposition can be 
used regardless of how it was derived. That is, it can be detached from its justification. 
In dealing with probabilities, on the other hand, the source of the evidence for a belief 
is important for subsequent reasoning. 

• Truth-functionality: In logic, the truth of complex sentences can be computed from 
the truth of the components. Probability combination does not work this way, except 
under strong global independence assumptions. 

There have been several attempts to devise uncertain reasoning schemes that retain these 
advantages. The idea is to attach degrees of belief to propositions and rules and to devise 
purely local schemes for combining and propagating those degrees of belief. The schemes 
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are also truth-functional; for example, the degree of belief in A V B is a function of the belief 
in A and the belief  in B. 

The bad news for rule-based systems is that the properties of locality, detachment, and 
truth-functionality  are simply mit  appmpriate for uncertain reasoning. Let us look at truth-
functionality first. Let HI be the event that a fair coin flip comes up heads, let Ti  be the event 
that the coin comes up tails on that same flip, and let H2 be the event that the coin comes 
up heads on a second flip. Clearly, all three events have the same probability, 0.5, and so a 
truth-functional system must assign the same belief to the disjunction of any two of them. 
But we can see that the probability of the disjunction depends on the events themselves and 
not just on their probabilities: 

P(A) P(B) 13 (AV  B)  

PA-) =  0.5  P(Hi V Hi) = 0.50 
P(H1 )  = 0.5 P(Ti )  = 0.5 P(H1  V TO = LOU  

P(H2)  = 0.5  P(H1  V H2)  = 0.75  

It gets worse when we chain evidence together, Truth -functional systems have rules of the 
form A B that allow us to compute the belief in B as a function of the belief in the rule 
and the belief in A. Both forward- and backward-chaining  systems can be devised. The belief 
in the rule is assumed to be constant and is usually specified by the knowledge engineer—for 
example, as A d o  q  B. 

Consider the wet-grass situation from Figure 14.12(a) (page 529). lf  we wanted to be 
able to do both causal and diagnostic reasoning we would need the two rules 

Rain H WetGrass and WetGrass  I  Rain . 

These two rules form a feedback loop: evidence for Rain increases the belief in We t Grass, 
which in turn increases the belief hi Rain even more. Clearly, uncertain reasoning systems 
need to keep track of the paths along which evidence is propagated. 

Intercausal  reasoning (or explaining away) is also tricky. Consider what happens when 
we have the two rules 

Sprinkler 1—*  WetGrass and WetGrass  1—*  Rain . 

Suppose we see that the sprinkler is on. Chaining forward through our rules, this increases the 
belief that the grass will be wet, which in turn increases the belief that it is raining. But this 
is ridiculous: the fact that the sprinkler is on explains away the wet grass and should reduce 
the belief in rain. A truth-functional system acts as if it also believes Sprinkler  Rain, 

Given these difficulties, how can truth-functional systems be made useful in practice? 
The answer lies in restricting the task and in carefully engineering the rule base so that un-
desirable interactions do not occur. The most famous example of a truth-functional system 

CERTAINTY  F4CTOR  for uncertain reasoning is the certainty factors model, which was developed for the MYCIN 
medical diagnosis program and was widely used in expert systems of the late 1970s and 
1980s. Almost all uses of certainty factors involved rule sets that were either purely diagnos- 
tic (as in MYCIN)  or purely causal. Furthermore, evidence was entered only at the - roots" 
of the rule set, and most rule sets were singly connected. Beckerman (1986) has shown that, 
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under these circumstances, a minor variation on certainty-factor inference was exactly equiv- 
alent to Bayesian  inference on polytrccs. In other circumstances, certainty factors could yield 
disastrously incorrect degrees of belief through overcounting of evidence. As rule sets be- 
came larger, undesirable interactions between rules became more common, and practitioners 
found that the certainty factors of many other rules had to be "tweaked" when new rules were 
added. For these reasons, Bayesian  networks have largely supplanted rule-based  methods for 
uncertain reasoning. 

14.7.2 Representing ignorance: Dempster—Shafer theory 

DEMPETER-SHAFER  
THEORY 

BELIEF FUNCTION 

mass  

The Dempster—Shafer theory is designed to deal with the distinction between uncertainty 
and ignorance. Rather than computing the probability of a proposition, it computes the 
probability that the evidence supports the proposition. This measure of belief is called a 
belief function, written Bel(X).  

We return to coin flipping for an example of belief functions. Suppose you pick a 
coin from a magician's pocket. Given that the coin might or might not be fair, what belief 
should you ascribe to the event that it comes up heads? Dempster—Shafer theory says that 
because you have no evidence either way, you have to say that the belief Bel(Heads)  = 0 
and also that Bel(—Heads)  = 0. This makes Dempster—Shafer reasoning systems skeptical 
in a way that has some intuitive appeal. Now suppose you have an expert at your disposal 
who testifies with 90% certainty that the coin is fair (i.e., he is 90% sure that P(Heads) = 
0.5). Then Dempster—Shafer theory gives Bel(Heads)  — 0.9 x 0.5 — 0.45 and likewise 
Bel(—Heads)  = 0.45. There is still a 10 percentage point "gap" that is not accounted for by 
the evidence. 

The mathematical underpinnings of Dempster—Shafer theory have a similar flavor to 
those of probability theory; the main difference is that, instead of assigning probabilities 
to possible worlds, the theory assigns masses to sets of possible world, that is, to events. 
The masses still must add to 1 over all possible events. Bel(A) is defined to be the sum of 
masses for all events that are subsets of (i.e.,  that entail) A, including A itself_  With this 
definition, Bel(A)  and Bel(—A)  sum to at most I, and the gap—the interval between Bel(A)  
and 1  Bel(—A)—is  often interpreted as bounding the probability of A. 

As with default reasoning, there is a problem in connecting beliefs to actions. Whenever 
there is a gap in the beliefs, then a decision problem can be defined such that a Dempster—
Shafer system is unable to make a decision. In fact, the notion of utility in the Dempster—
Shafer model is not yet well understood because the meanings of masses and beliefs them-
selves have yet to be understood. Pearl (1988) has argued that B el (A) should be interpreted 
not as a degree of belief in A but as the probability assigned to all the possible worlds (now 
interpreted as logical theories) in which A is provable. While there are cases in which this 
quantity might be of interest, it is not the same as the probability that A is true. 

A Bayesian  analysis of the coin-flipping example would suggest that no new formalism 
is necessary to handle such cases. The model would have two variables: the Bias of the coin 
(a number between 0 and 1, where 0 is a coin that always shows tails and 1 a coin that always 
shows heads) and the outcome of the next Flip. The prior probability distribution for Bias 



550 Chapter 14. Probabilistic Reasoning 

FUZZY SET  T-IEORY  

FUZZY LOGIC. 

FUZZY CONTROL 

would reflect our beliefs based on the source of the coin (the magician's pocket): some small 
probability that it is fair and some probability that it is heavily biased toward heads or tails. 
The conditional distribution P(Flip  Bias) simply defines how the bias operates. If P(Bias) 
is symmetric about 0.5, then our prior probability for the flip is 

P(Flip  = heads)  = P(Bias = x)P(Flip  = heads I 13as  = x)dx  = 0.3 . 

This is the same prediction as if we believe strongly that the coin is fair, but that does not 

mean that probability theory treats the two situations identically. The difference arises after 
the flips in computing the posterior distribution for Bias. If the coin came from a bank, then 
seeing it come up heads three times running would have almost no effect on our strong prior 
belief in its fairness; but if the coin comes from the magician's pocket, the same evidence 
will lead to a stronger posterior belief that the coin is biased toward heads. Thus, a Bayesian  
approach expresses our "ignorance" in terms of how our beliefs would change in the face of 
future inforniation  gathering. 

14.7.3 Representing vagueness: Fuzzy sets and fuzzy logic 

Fuzzy set theory is a means of specifying how well an object satisfies a vague description. 
For example, consider the proposition "Nate is tall." Is this true if Nate is 5'  10"?  Most 
people would hesitate to answer "true" or "false," preferring to say, "sort of." Note that this 
is not a question of uncertainty  about the external world—we are sure of Nate's height. The 
issue is that the linguistic term "tall" does not refer to a sharp demarcation of objects into two 
classes—there are degrees of tallness. For this reason, fuzzy set theory is not a method for 
uncertain reasoning at all_ Rather, fuzzy set theory treats Tall as a fuzzy predicate and says 
that the truth value of Tall(Nate)  is a number between 0  and 1, rather than being just true 
or false. The name "fuzzy set" derives from the interpretation of the predicate as implicitly 
defining a set of its members—a set that does not have sharp boundaries. 

Fuzzy logic is a method for reasoning with logical expressions describing membership 
in fuzzy sets. For example, the complex sentence Tall(Nate)  A Heavy(Nate)  has a fuzzy 
truth value that is a function of the truth values of its components. The standard rules for 
evaluating the fuzzy truth, T, of a complex sentence are 

TO A B) = iniu(T(A),  T(B))  
T(A V B) = max(T(A),  T(B)) 
T(—,A)  = 1— T(A)  . 

Fuzzy logic is therefore a truth-functional system—a fact that causes serious difficulties. 
For example, suppose that T(Tall(Nate))  = 0.6  and T(Ifealry(Nate))=  0.4. Then we have 
T(Tall(Nate)  A Heavy(Nate))=  0.4, which seems reasonable, but we also get the result 
T(Tall(Nate)  A Tall(Nate))=  OA,  which does not_ Clearly, the problem arises from the 
inability of a truth-functional approach to take into account the correlations or anticorrelations 
among the component propositions. 

Fuzzy control is a methodology for constructing control systems in which the mapping 
between real-valued  input and output parameters is represented by fuzzy rules. Fuzzy con- 
trol has been very successful in commercial products such as automatic transmissions, video 
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cameras, and electric shavers. Critics (see, e.g., Man, 1993) argue that these applications 
arc successful because they have small rule bases, no chaining of inferences, and tunable 
parameters that can be adjusted to improve the system's performance. The fact that they are 
implemented with fuzzy operators might be incidental to their success; the key is simply to 
provide a concise and intuitive way to specify a smoothly interpolated, real-valued function. 

There have been attempts to provide an explanation of fuzzy logic in terms of probabil-
ity theory. One idea is to view assertions such as "Nate is Tall" as discrete observations made 
concerning a continuous hidden variable, Nate's actual Height. The probability model speci-
fies P(Observer  says Nate is tall I Height), perhaps using a probit distribution as described 
on page 522. A posterior distribution over Nate's height can then be calculated in the usual 
way, for example, if the model is part of a hybrid Bayesian network. Such an approach is not 
truth-functional, of course. For example, the conditional distribution 

P(Observer says Nate is tall and heavy I Height, 14 eight) 

allows for interactions between height and weight in the causing of the observation. Thus, 
someone who is eight feet tall and weighs 190 pounds is very unlikely to be called "tall and 
heavy," even though "eight feet" counts as "tall' and "190 pounds" counts as "heavy." 

Fuzzy predicates can also be given a probabilistic interpretation in terms of random 
sets—that is, random variables whose possible values are sets of objects. For example, Tall 
is a random set whose possible values are sets of people. The probability P( Tall = 
where St is some particular set of people, is the probability that exactly that set would be 
identified as "tall" by an observer. Then the probability that "Nate is tall" is the sum of the 
probabilities of all the sets of which Nate is a member. 

Both the hybrid Bayesian network approach and the random sets approach appear to 
capture aspects of fuzziness without introducing degrees of truth. Nonetheless, there remain 
many open issues concerning the proper representation of linguistic observations and contin-
uous quantities—issues that have been neglected by most outside the fuzzy community. 

14.8 SUMMARY 

This chapter has described Bayesian networks, a well-developed representation for uncertain 
knowledge. Bayesian networks play a role roughly analogous to that of propositional logic 
for definite knowledge. 

• A Bayesian network is a directed acyclic graph whose nodes correspond to random 
variables; each node has a conditional distribution for the node, given its parents. 

• Bayesian networks provide a concise way to represent conditional independence rela-
tionships in the domain. 

• A Bayesian network specifies a full joint distribution; each joint entry is defined as the 
product of the corresponding entries in the local conditional distributions. A Bayesian 
network is often exponentially smaller than an explicitly enumerated joint distribution. 

• Many conditional distributions can be represented compactly by canonical families of 
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distributions. Hybrid Bayesian networks, which include both discrete and continuous 
variables, use a variety of canonical distributions. 

• Inference in Bayesian networks means computing the probability distribution of a set 
of query variables, given a set of evidence variables. Exact inference algorithms, such 
as variable elimination, evaluate sums of products of conditional probabilities as effi-
ciently as possible.  

• In polytrees  (singly connected networks), exact inference takes time linear in the size 

of the network. In the general case, the problem is intractable. 
• Stochastic approximation techniques such as likelihood weighting and Markov chain 

Monte Carlo can give reasonable estimates of the true posterior probabilities in a net-
work and can cope with much larger networks than can exact algorithms. 

• Probability theory can be combined with representational ideas from first-order logic to 
produce very powerful systems for reasoning under uncertainty, Relational probabil'  
ity models (RPMs) include representational restrictions that guarantee a well-defined 
probability distribution that can be expressed as an equivalent Bayesian network. Open-
universe probability models handle existence and identity uncertainty, defining prob-
abilty distributions over the infinite space of first-order possible worlds. 

• Various alternative systems for reasoning under uncertainty have been suggested. Gen-
erally speaking, truth-functional systems are not well suited for such reasoning. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The use of networks to represent probabilistic information began early in the 20th century, 
with the work of Sewall Wright on the probabilistic analysis of genetic inheritance and an-
imal growth factors (Wright, 1921, 1934). I. J. Good (1961), in collaboration with Alan 
Turing, developed probabilistic representations and Bayesian inference methods that could 
he regarded as a forerunner of modem Bayesian  networks—although the paper is not often 
cited in this context-

to 
 The same paper is the original source for the noisy-OR model. 

The influence diagram representation for decision problems, which incorporated a 
DAG representation for random variables, was used in decision analysis in the late 1970s 
(see Chapter 16), but only enumeration was used for evaluation. Judea Pearl developed the 
message-passing method for carrying out inference in tree networks (Pearl, 1982a) and poly-
tree networks (Kim and Pearl, 1983) and explained the importance of causal rather than di-
agnostic probability models, in contrast to the certainty-factor systems then in vogue. 

The first expert system using Bayesian networks was CONVINCE (Kim, 1983). Early 
applications inmedicine included the M UN IN system for diagnosing neuromuscular disorders 
(Andersen et ill.,  1989) and the PATHFINDER system for pathology (Beckerman, 1991). The 
CPCS system (Pradhan  Et al., 1994) is a Bayesian network for internal medicine consisting 

lu  I. J. Good was chief statistician for Turing's code-breaking team in World War II. In 2001: A Space Odyssey 
(Clarke, 1%8a), Good and Minsky are credited with making the breakthrough that led to the development of the 
HAL 9000  computer. 
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of 448 nodes, 906 links and 8,254 conditional probability values. (The front cover shows a 
portion of the network.) 

Applications in engineering include the Electric Power Research Institute's work on 
monitoring power generators (Morjaria  at at.,  1995), NASA's work on displaying time-
critical information at Mission Control in Houston (Horvitz and Barry, 1995), and the general 
field of network tomography, which aims to infer unobserved local properties of nodes and 
links in the Internet from observations of end-to-end message performance (Castro et al., 
2004). Perhaps the most widely used Bayesian network systems have been the diagnosis-
and-repair modules (e.g., the Printer Wizard) in Microsoft Windows (Breese and Heckennan,  
1996) and the Office Assistant in Microsoft Office (Horvitz et al., 1998), Another impor-
tant application area is biology! Bayesian networks have been used for identifying human 
genes by reference to mouse genes (Zhang et al., 2003), inferring cellular networks Friedman 
(2004), and many other tasks in bioinformatics.  We could go on, but instead we'll refer you 
to Pourret et at_ (2008), a 400-page guide to applications of Bayesian networks_ 

Ross Shachter (1986), working in the influence diagram community, developed the first 
complete algorithm for general Bayesian networks. His method was based on goal-directed 
reduction of the network using posterior-preserving transformations.  Pearl (1986) developed 
a clustering algorithm for exact inference in general Bayesian networks, utilizing a conversion 
to a directed polytree of clusters in which message passing was used to achieve consistency 
over variables shared between clusters. A similar approach, developed by the statisticians 
David Spiegelhalter and Steffen Lauritzen (Lauritzen and Spiegelhalter, 1988), is based on 
conversion to an undirected form of graphical model called a Markov network. This ap-
proach is implemented in the HUGIN system, an efficient and widely used tool for uncertain 
reasoning (Andersen at al., 1989). Boutilier et al. (1996) show how to exploit context-specific 
independence in clustering algorithms. 

The basic idea of variable elimination—that repeated computations within the overall 
sum-of-products expression can be avoided by caching—appeared in the symbolic probabilis-
tic inference (SPI) algorithm (Shachter at al.,  1990). The elimination algorithm we describe 
is closest to that developed by Mang and Poole (1994). Criteria for pruning irrelevant vari-
ables were developed by Geiger et al. (1990) and by Lauritzen et al. (1990); the criterion we 
give is a simple special case of these. Dechter  (1999) shows how the variable elimination idea 
is essentially identical to nonserial  dynamic programming (Bertele and Brioschi, 1972), an 
algorithmic approach that can be applied to solve a range of inference problems in Bayesian 
networks—for example, finding the most likely explanation for a set of observations. This 
connects Bayesian network algorithms to related methods for solving CSPs and gives a direct 
measure of the complexity of exact inference in terms of the tree width of the network. Wexler 
and Meek (2009) describe a method of preventing exponential growth in the size of factors 
computed in variable elimination; their algorithm breaks down large factors into products of 
smaller factors and simultaneously computes an error bound for the resulting approximation. 

The inclusion of continuous random variables in Bayesian networks was considered 
by Pearl (1988) and Shachter and Kenley (1989); these papers discussed networks contain-
ing only continuous variables with linear Gaussian distributions. The inclusion of discrete 
variables has been investigated by Lauritzen and Wermuth  (1989) and implemented in the 
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cHUGIN system (Olesen, 1993). Further analysis of linear Gaussian models, with connec- 
tions to many other models used in statistics, appears in Rowcis and Ghahramani (1999) The 
probit distribution is usually attributed to Gaddum (1933) and Bliss (1934), although it had 
been discovered several times in the 19th century. Bliss's work was expanded considerably 
by Finney (1947). The probit has been used widely for modeling discrete choice phenomena 
and can be extended to handle more than two choices (Daganzo, 1979). The logit model was 
introduced by Berkson (1944);  initially much derided, it eventually became more popular 
than the probit model. Bishop (1995) gives a simple justification for its use. 

Cooper (1990) showed that the general problem of inference in unconstrained Bayesian 
networks is NP-hard, and Paul Dagunn  and Mike Luby (1993) showed the corresponding 
approximation problem to be NP-hard. Space complexity is also a serious problem in both 
clustering and variable elimination methods. The method of cutset conditioning, which was 
developed fur CSPs in Chapter 6, avoids the construction of exponentially large tables. In a 
Bayesian network, a cutset is a set of nodes that, when instantiated, reduces the remaining 
nodes to a polytree that can be solved in linear time and space. The query is answered by 
summing over all the instantiations of the cutset, so the overall space requirement is still lin-
ear (Pearl, 1988). Darwiche  (2001) describes a recursive conditioning algorithm that allows 
a complete range of space/time tradeoffs. 

The development of fast approximation algorithms for Bayesian network inference is 
a very active area, with contributions from statistics, computer science, and physics. The 
rejection sampling method is a general technique that is long known to statisticians; it was 
first applied to Bayesian networks by Max llenrion  (1988), who called it logic sampling. 
Likelihood weighting, which was developed by Fung and Chang (1989) and Shachter and 
Pect (1989), is an example of the well-known statistical method of importance sampling. 
Cheng and Druzdzel (2000) describe an adaptive version of likelihood weighting that works 
well even when the evidence has very low prior likelihood. 

Markov chain Monte Carlo (MCMC) algorithms began with the Metropolis algorithm, 
due to Metropolis et al. (1953), which was also the source of the simulated annealing algo-
rithm described in Chapter 4_  The Gibbs sampler was devised by Geman  and Creman  (1984)  
for inference in undirected Markov networks. The application of MCMC to Bayesian net-
works is due to Pearl (1987). The papers collected by Gilks  et  al (1996) cover a wide variety 
of applications of MCMC, several of which were developed in the well-known BUGS pack-
age (Gilks el  al., 1994). 

There are two very important families of approximation methods that we did not cover 
in the chapter. The first is the family of variational approximation methods, which can be 
used to simplify complex calculations of all kinds. The basic idea is to propose a reduced 
version of the original problem that is simple to work with, but that resembles the original 
problem as closely as possible. The reduced problem is described by some variational pa-
rameters A that are adjusted to minimize a distance function D between the original and 
the reduced problem, often by solving the system of equations OD  la).  — O.  In many cases. 
strict upper and lower bounds can be obtained. Variational methods have long been used in 
statistics (Rustagi,  1976). In statistical physics, the mean-field method is a particular vari-
ational approximation in which the individual variables making up the model are assumed 
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to be completely independent. This idea was applied to solve large undirected Markov net- 
works (Peterson and Anderson, 1987; Parisi, 1988). Saul et al. (1996) developed the math- 
ematical foundations for applying variational methods to Bayesian networks and obtained 
accurate lower-bound approximations for sigmoid networks with the use of mean-field meth 
ods. Jaakkola  and Jordan (1996) extended the methodology to obtain both lower and upper 
bounds_  Since these early papers, variational methods have been applied to many specific 
families of models. The remarkable paper by Wainwright and Jordan (2008) provides a uni- 
fying theoretical analysis of the literature on variational methods. 

A second important family of approximation algorithms is based on Pearl's polytree 
message-passing algorithm (1982a). This algorithm can be applied to general networks, as 
suggested by Pearl (1988). The results might be incorrect, or the algorithm might fail to ter-
minate, but in many cases, the values obtained are close to the true values. Little attention 
was paid to this so-called belief propagation (or BP) approach until McEfirer  et al. (1998) 
observed that message passing in a multiply connected Bayesian network was exactly the 
computation performed by the turbo decoding algorithm (Berrou et al., 1993), which pro-
vided a major breakthrough in the design of efficient error-correcting codes. The implication 
is that BP is both fast and accurate on the very large and very highly connected networks used 
for decoding and might therefore be useful more generally Murphy et al- (1999) presented a 
promising empirical study of BP's performance, and Weiss and Freeman (2001) established 
strong convergence results for BP on linear Gaussian networks. Weiss (2000b) shows how an 
approximation called loopy belief propagation works, and when the approximation is correct. 
Yedidia et al. (2005) made further connections between loopy propagation and ideas from 
statistical physics. 

The connection between probability and first-order languages was first studied by Car-
nap  (1950). Gaifman  (1964) and Scott and Krauss (1966) defined a language in which proba-
bilities could be associated with first-order sentences and for which models were probability 
measures on possible worlds. Within Al, this idea was developed for propositional logic 
by Nilsson (1986) and for first-order logic by Halpern (1990).  The first extensive inves-
tigation of knowledge representation issues in such languages was carried out by Bacchus 
(1990). The basic idea is that each sentence in the knowledge base expressed a constraint on 
the distribution over possible worlds; one sentence entails another if it expresses a stronger 
constraint. For example, the sentence V oc  P(.Hungry(x))  > 0.2 rules out distributions 
in which any object is hungry with probability less than 0.2; thus, it entails the sentence 
V tr  P(Hungry(x))  > 0.1. It turns out that writing a consistent set of sentences in these 
languages is quite difficult and constructing a unique probability model nearly impossible 
unless one adopts the representation approach of Bayesian networks by writing suitable sen-
tences about conditional probabilities. 

Beginning in the early 1990s. researchers working on complex applications noticed 
the expressive limitations of Bayesian networks and developed various languages for writing 
"templates" with logical variables, from which large networks could be constructed automat-
ically for each problem instance (Breese, 1992; Wellman et al., 1992). The most important 
such language was BUGS (Bayesian inference Using Gibbs Sampling) (Gilks et al., 1994,  
which combined Bayesian networks with the indexed random variable notation common in 
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statistics. (In Buns, an indexed random variable looks like X kb where i has a defined integer 
range.) These languages inherited the key property of Baycsian  networks!  every well-formed  
knowledge base defines a unique, consistent probability model. Languages with well-defined 
semantics based on unique names and domain closure drew on the representational capa-
bilities of logic programming (Poole, 1993; Sam and Kameya,  1997: Kersting et al., 2000) 
and semantic networks (Koller and Pfeffer, 1998; Pfeffer, 2000). Pfeffer (2007) went on to 
develop 1BAL,  which represents first-order probability models as probabilistic programs in a 
programming language extended with a randomization primitive. Another important thread 
was the combination of relational and first-order notations with (undirected) Markov net-
works (Taskar et al.,  2002; Domingos and Richardson, 2004), where the emphasis has been 
less on knowledge representation and more on learning from large data sets. 

Initially, inference in these models was perfonned  by generating an equivalent Bayesian 
network. Pfeffer et al. (1999) introduced a variable elimination algorithm that cached each 
computed factor for reuse by later computations involving the same relations but different 
objects, thereby realizing some of the computational gains of lifting. The first truly lifted 
inference algorithm was a lifted form of variable elimination described by Poole (2003) and 
subsequently improved by de Salvo Braz et ad. (2007). Further advances, including cases 
where certain aggregate probabilities can be computed in closed form, are described by Milch 
et al. (2008) and Kisynski and Poole (2009). Pasula and Russell (2001) studied the application 
of MCMC to avoid building the complete equivalent Bayes net in cases of relational and 

identity uncertainty. Getoor and Taskar (2007) collect many important papers on first-order 
probability models and their use in machine learning. 

Probabilistic reasoning about identity uncertainty has two distinct origins. In statis- 
R  ECORD LINKAGE  tics, the problem of record linkage arises when data records do not contain standard unique 

identifiers—for example, various citations of this book might name its first author "Stuart 
Russell" or "S. J.  Russell" or even "Stewart Russle," and other authors may use the some of 
the same names. Literally hundreds of companies exist solely to solve record linkage prob-
lems in financial, medical, census, and other data. Probabilistic analysis goes back to work 
by Dunn (1946); the Fellegi–Sunter model (1969), which is essentially naive Bayes applied 
to matching, still dominates current practice. The second origin for work on identity uncer-
tainty is multitarget tracking (Sittler.  1964), which we cover in Chapter 15. For most of its 
history, work in symbolic AI assumed erroneously that sensors could supply sentences with 
unique identifiers for objects. The issue was studied in the context of language understanding 
by Charniak and Goldman (1992) and in the context of surveillance by (Huang and Russell, 
1998) and Pasula et aL  (1999). Pasula et al. (2003) developed a complex generative model 
for authors, papers, and citation strings, involving both relational and identity uncertainty, 
and demonstrated high accuracy for citation information extraction. The first formally de-
fined language for open-universe  probability models was BLOC (Milch et aL,  2005), which 
came with a complete (albeit slow) MCMC inference algorithm for all well-defined mdoels. 
(The program code faintly visible on the front cover of this book is part of a BLOC model 
for detecting nuclear explosions from seismic signals as part of the UN Comprehensive Test 
Ban Treaty verification regime.) Laskey (2008) describes another open-universe  modeling 
language called multi-entity Bayesian  networks. 
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As explained in Chapter 13, early probabilistic systems fell out of favor in the early 
1970s, leaving a partial vacuum to be filled by alternative methods. Certainty factors were 
invented for use in the medical expert system MYCIN (Shortliffe, 1976), which was intended 
both as an engineering solution and as a model of human judgment under uncertainty. The 
collection Rule-Based Expert Systems (Buchanan and Shortliffe, 1984) provides a complete 
overview of MYCIN and its descendants (see also Stefik, 1995). David Heckerman (1986) 
showed that a slightly modified version of certainty factor calculations gives correct proba-
bilistic results in some cases, but results in serious overcounting of evidence in other cases. 
The PROSPECTOR expert system (Duda et al.. 1979) used a rule-based approach in which the 
rules were justified by a (seldom tenable) global independence assumption. 

Dempster—Shafer theory originates with a paper by Arthur Dempster (1968) proposing 
a generalization of probability to interval values and a combination rule for using them. Later 
work by Glenn Shafer (1976) led to the Dempster-Shafer  theory's being viewed as a compel-
ing  approach to probability. Pearl (1988) and Ruspini et al. (1992) analyze the relationship 
between the Dempster—Shafer theory and standard probability theory. 

Fuzzy sets were developed by Lotfi Zadeh (1965) in response to the perceived difficulty 
of providing exact inputs to intelligent systems. The text by Zimmermann (2001) provides 
a thorough introduction to fuzzy set theory; papers on fuzzy applications are collected in 
Zimmermann (1999). As we mentioned in the text, fuzzy logic has often been perceived 
incorrectly as a direct competitor to probability theory, whereas in fact it addresses a different 

POSSIBILITY THEORY 
 set of issues. Possibility theory (Zadeh, 1978) was introduced to handle uncertainty in fuzzy 

systems and has much in common with probability. Dubois and grade (1994) survey the 
connections between possibility theory and probability theory. 

The resurgence of probability depended mainly on Pearl's development of Bayesian 
networks as a method for representing and using conditional independence information. This 
resurgence did not come without a fight; Peter Cheeseman's (1985) pugnacious "hi Defense 
of Probability" and his later article An Inquiry into Computer Understanding" (Cheeseman, 
1988, with commentaries) give something of the flavor of the debate. Eugene Chamiak  
helped present the ideas to Al researchers with a popular article, "Bayesian  networks with-
out tears" 11  (1991), and book (1993). The book by Dean and Wellman (1991) also helped 
introduce Bayesian networks to Al researchers. One of the principal philosophical objections 
of the logicists was that the numerical calculations that probability theory was thought to re-
quire were not apparent to introspection and presumed an unrealistic level of precision in our 
uncertain knowledge. The development of qualitative probabilistic networks (Wellman, 
1990a) provided a purely qualitative abstraction of Bayesian networks, using the notion of 
positive and negative influences between variables. Wellman shows that in many cases such 
information is sufficient for optimal decision making without the need for the precise spec-
ification of probability values. Goldszmidt  and Pearl (1996) take a similar approach. Work 
by Adnan Darwiche and Matt Ginsberg (1992) extracts the basic properties of conditioning 
and evidence combination from probability theory and shows that they can also be applied in 
logical and default reasoning. Often. programs speak louder than words, and the ready avail- 

11  The title of the original version of the  article was "Pear! for swine." 
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ability of high-quality software such as the Bayes Net toolkit (Murphy, 2001) accelerated the 
adoption of the technology. 

The most important single publication in the growth of Bayesian networks was undoubt-
edly the text Probabilistic Reasoning in Intelligent Systems (Pearl, 1988). Several excellent 
texts (Lauritzen, 1996; Jensen, 2001; Korb and Nicholson, 2003; Jensen, 2007; Darwiche,  
2009; Koller and Friedman, 2009) provide thorough treatments of the topics we have cov-
ered in this chapter. New research on probabilistic reasoning appears both in mainstream 
AI journals, such as Artificial Intelligence and the Journal of Al Research, and in more spe-
cialized journals, such as the International Journal of Approximate Reasoning. Many papers 
on graphical models, which include Bayesian networks, appear in statistical journals. The 
proceedings of the conferences on Uncertainty in Artificial Intelligence (UAI), Neural Infor-
mation Processing Systems (NIPS), and Artificial Intelligence and Statistics (AISTATS) are 
excellent sources for current research. 

EXERCISES 

14.1 We have a bag of three biased coins a, b. and c with probabilities of coming up heads 
of 20%, 60%, and 80%, respectively. One coin is drawn randomly from the bag (with equal 
likelihood of drawing each of the three coins), and then the coin is flipped three times to 
generate the outcomes X i , X2, and 

a. Draw the Bayesian  network corresponding to this setup and define the necessary CPTs .  

b. Calculate which coin was most likely to have been drawn from the bag if the observed 
flips come out heads twice and tails once. 

14.2  Equation (14.1) on page 513 defines the joint distribution represented by a Bayesian 
network in terms of the parameters 61 (X i  I  Parents(X,)).  This exercise asks you to derive the 
equivalence between the parameters and the conditional probabilities P{Xi  Parents(Xj))  
from this definition. 

a. Consider a simple network X — Z with three Boolean variables. Use Equa- 
tions (13.3) and (13.6) (pages 485 and 492) to express the conditional probability 
P(z I  y)  as the ratio of two sums. each over entries in the joint distribution P(X, Y, Z).  

b. Now use Equation (14.1)  to write this expression in terms of the network parameters 
0  (X), (1(Y  X), and B(Z  I Y) .  

c. Next, expand out the summations in your expression from part (b), writing out explicitly 
the terms for the true and false values of each summed variable. Assuming that all 
network parameters satisfy the constraint E„o{x,iparents(x,))=  1, show that the 
resulting expression reduces to a(T  I y). 

d. Geneialize  this derivation to show that 6(Xi  Putrents(X0)  = P{Xi  Pw-ellts(Xi))  

for any Bayesian network. 
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ARC REVERSAL 14.3 The operation of arc reversal in a Bayesian network allows us to change the direction 
of an arc X Y while preserving the joint probability distribution that the network repre-
sents (Shachter, 1986). Arc reversal may require introducing new arcs: all the parents of X 
also become parents of Y, and all parents of Y also become parents of X. 

a. Assume that X and Y start with m and n parents, respectively, and that all variables 
have k values. By calculating the change in size for the CPTs  of X and Y, show that the 
total number of parameters in the network cannot decrease during arc reversal_ ( Hint. 
the parents of X and Y need not be disjoint.) 

b. Under what circumstances can the total number remain constant? 
e.  Let the parents of X be U U  V and the parents of Y be V U W, where U and W are 

disjoint. The formulas for the new CPTs after arc reversal are as follows: 
P(Y  I U, V, W) = P(Y  I V, W,  x)P(x  U, V) 

I 

P(X  I  U, V, W, Y) — P(Y I X, V, W)P(X I  U, V )/P( 
 Y 

 I  U,  V, W) .  
Prove that the new network expresses the same joint distribution over all variables as 
the original network. 

14.4 Consider the Bayesian network in Figure 14.2. 
a. If no evidence is observed, are Burglary and Earthquake independent? Prove this from 

the numerical semantics and from the topological semantics. 
b. If we observe Alarm — true, are Burglary  and Earthquake independent? Justify your 

answer by calculating whether the probabilities involved satisfy the definition of condi-
tional independence. 

14.5 Suppose that in a Bayesian  network containing an unobserved variable Y. all the vari-
ables in the Markov blanket MB(Y;  have been observed.  

a. Prove that removing the node Y from the network will not affect the posterior distribu-
tion for any other unobserved variable in the network. 

b. Discuss whether we can remove Y if we are planning to use (i) rejection sampling and 
(ii) likelihood weighting. 

14_6 Let Hy  be a random variable denoting the handedness of an individual x,  with possible 
values l or r.  A common hypothesis is that left- or right-handedness is inherited by a simple 
mechanism; that is, perhaps there is a gene G,,  also with values l or r, and perhaps actual 
handedness turns out mostly the same (with some probability s) as the gene an individual 
possesses. Furthermore, perhaps the gene itself is equally likely to be inherited from either 
of an individual's parents, with a small nonzero probability rn,  of a random mutation flipping 
the handedness. 

a_ Which of the three networks in Figure I 410 claim that P(Gf„th„, G ‘had )  = Which 
 )P(Gmother)P(C  ch ild)? 

b.  Which of the three networks make independence claims that are consistent with the 
hypothesis about the inheritance of handedness? 



Figure 14.21 A Bayesian network describing some features of a car's electrical system 
and engine. Each variable is Boolean, and the true value indicates that the corresponding 
aspect of the vehicle is in working order. 
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Figure 14.20 Three possible structures for a Bayesian network describing genetic inheri- 
tance of handedness. 

c. Which of the three networks is the best description of the hypothesis? 
d. Write down the CPT for the G  child  node in network (a), in terms of s and t- 

e. Suppose that P(Gfaher  =1) = P(CmothEr  =1) = q. In network (a), derive an expres-
sion for P(Gchiu  = 1) in terms of m and q only, by conditioning on its  parent nodes. 

f. Under conditions of genetic equilibrium, we expect the distribution of genes to be the 
same across generations. Use this to calculate the value of q, and, given what you know 
about handedness in  humans, explain why the hypothesis described at the beginning of 
this question must be wrong, 

14.7 The Markov  blanket of a variable is defined on page 517. Prove that a variable 
is independent of all  other variables in the network, given its Markov blanket and derive 
Equation (14.12) (page 538). 
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14.8  Consider the network for car diagnosis shown in Figure 14.21. 
a. Extend the network with the Boolean variables leyW  eather and Starter/Victor.  
b. Give reasonable conditional probability tables for all the nodes. 
c. How many independent values are contained in the joint probability distribution for 

eight Boolean nodes, assuming that no conditional independence relations are known 
to hold among them? 

d. How many independent probability values do your network tables contain? 
e. The conditional distribution for Starts could be described as a noisy-AND distribution. 

Define this family in general and relate it to the noisy-OR distribution. 

14.9 Consider the family of linear Gaussian networks, as defined on page 520. 
a In a two-variable network, let X1 be the parent of X2, let Xi have a Gaussian prior, 

and let P(X2  Xi) he a linear Gaussian distribution. Show that the joint distribution 
P(Xi ,  X2 ) is a multivariate Gaussian, and calculate its covariance matrix. 

b. Prove by induction that the joint distribution for a general linear Gaussian network on 
.  ,  X„ is also a multivariate Gaussian. 

14.10 The probit distribution defined on page 522 describes the probability distribution for 
a Boolean child, given a single continuous parent. 

a. How might the definition be extended to cover multiple continuous parents? 
b. How might it be extended to handle a multivalued child variable? Consider both cases 

where the child's values are ordered (as in selecting a gear while driving, depending 
on speed, slope, desired acceleration, etc.) and cases where they are unordered (as in 
selecting bus, train, or car to get to work). ( Hint: Consider ways to divide the possible 
values into two sets, to mimic a Boolean variable.) 

14.11 In your local nuclear power station, there is an alarm that senses when a temperature 
gauge exceeds a given threshold. The gauge measures the temperature of the core. Consider 
the Boolean variables A (alarm sounds), FA (alarm is faulty), and Fr  (gauge is faulty) and 
the multivalued  nodes G (gauge reacting) and T (actual core temperature). 

a. Draw a Bayesian network for this domain, given that the gauge is more likely to fail 
when the core temperature gets too high. 

b. Is your network a polytree? Why or why not? 
c. Suppose there are just two possible actual and measured temperatures, normal and high; 

the probability that the gauge gives the correct temperature is x when it is working, but 
when it is faulty. Give the conditional probability table associated with G. 

d. Suppose the alarm works correctly unless it is faulty, in which case it never sounds. 
Give the conditional probability table associated with A. 

e. Suppose the alarm and gauge are working and the alarm sounds. Calculate an expres-
sion fur the probability that the temperaLure  of the core is Lou high, in Lemts  of the 
various conditional probabilities in the network. 
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Figure 14.22  Three possible networks for the telescope problem. 
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14.12 Two astronomers in different parts of the world make measurements Mi.  and M2 of 
the number of stars N in some small region of the sky, using their telescopes.  Normally, there 
is a small possibility e  of error by up to one star in each direction. Each telescope can also 
(with a much smaller probability f)  be badly out of focus (events Ft  and F2 ),  in which case 

the scientist will undercount by three or more stars (or if N is less than 3, fail to detect any 
stars at all). Consider the three networks shown in Figure 14.22. 

a. Which of these Bayesian networks are correct (but not necessarily efficient) represen-
tations of the preceding information?  

b. Which is the best network? Explain_ 
c. Write out a conditional distribution for P(11.1i  N), for the case where N E {1,  2, 3}  and 

e (0, 1, 2, 3, 4}.  Each entry in the conditional distribution should be expressed as a 
function of the parameters e  and/or f. 

d. Suppose M1  =1 and M2  = 3. What are the possible numbers of stars if you assume no 
prior constraint on the values of N? 

e. What is the frost  likely number of stars, given these observations? Explain how to 
compute this, or if it is not possible to compute, explain what additional information is 

needed and how it would affect the result. 

14.13 Consider the network shown in Figure 14.22(ii),  and assume that the two telescopes 
work identically. N e  {1,2, 3}  and MI,  M2  E {0, 1, 2, 3, 4},  with the symbolic CPTs as de-
scribed in Exercise 14.12. Using the enumeration algorithm (Figure 14.9 on page 525), cal-
culate the probability distribution P(N  I Mi.  = 2, M2 = 2). 

14.14 Consider the Bayes net shown in Figure 14.23. 

a. Which of the following are asserted by the network structure? 

(i)  PCB  .1,111)  = P(B)P(I)P;11.1).  
(ill P(JI  0 )  —  P(J  1 0 , 1)-  

( E)  P(M  G,  B  I) = G,  B, , 



 

r(bo  I 

 

Figure 14.23  A simple Bayes net with Boolean variables B = BrokeElectioriLuP,  
I = Indicted, M = PcliticallyMotivatedProseentar,  G  = FatindGuilty,  J = Jailed. 
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b.  Calculate the value of P(b, g,  j). 

e.  Calculate the probability that someone goes to jail given that they broke the law, have 
been indicted, and face a politically motivated prosecutor. 

d. A cunlexl-specific  independence (see page 542) allows a variable to be independent 
of some of its parents given certain values of others. In addition to the usual conditional 
independences given by the graph structure, what context-specific  independences  exist 
in the Bayes net in Figure 14.23? 

e. Suppose we want to add the variable P = PresidentialPardan  to the network; draw the 
new network and briefly explain any links you add. 

14_15  Consider the variable elimination algorithm in Figure 14.11 (page 528). 

a. Section 14.4  applies variable elimination to the query 

P(Burgittry  JolinCalls  = true, Mary Calls = true) 

Perform the calculations indicated and check that the answer is correct. 
b. Count the number of arithmetic operations performed, and compare it with the number 

performed by the enumeration algorithm. 
e.  Suppose a network has the form of a chain: a sequence of Boolean variables X i ,  , X„  

where Parents(Xi ) =  {X i  _ 1 }  for = 2, ...  , n. What is the complexity of computing 
P(Xi  I  = true) using enumeration? Using variable elimination? 

d.  Prove that the complexity of running variable elimination on a polytree network is linear 
in the size of the tree for any variable ordering consistent with the network structure. 

14.16  Investigate the complexity of exact inference in general Bayesian networks: 
a. Prove that any 3-SAT problem can be reduced to exact inference in a Bayesian network 

constructed to represent the particular problem and hence that exact inference is NP- 
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hard. (Hint: Consider a network with one variable for each proposition symbol, one for 
each clause, and one for the conjunction of clauses.) 

b. The problem of counting the number of satisfying assignments for a 3-SAT problem is 
#P-complete.  Show that exact inference is at least as hard as this. 

CUMULATIVE 
DISTRISUTID  

M PROPOLPS- 
HASTINGS  

14.17 Consider the problem of generating a random sample from a specified distribution 
on a single variable. Assume you have a random number generator that returns a random 
number uniformly distributed between 0 and I. 

a. Let X be a discrete variable with P(X —xi ) — pi  for i E (1, , k}.  The cumulative 
distribution of X gives the probability that X E Ix1, xi )  for each possible j. (See 
also Appendix A.) Explain how to calculate the cumulative distribution in 0(k) time 
and how to generate a single sample of X from it. Can the latter be done in less than 
0(k) time? 

b. Now suppose we want to generate N samples of  X, where N >> k. Explain how to do 
this with an expected run time per sample that is constant (i.e., independent of k).  

c. Now consider a continuous-valued variable with a parameterized distribution (e.g.. 
Gaussian). How can samples be generated from such a distribution? 

d. Suppose you want to query a continuous-valued variable and you are using a sampling 
algorithm such as LIKELIFIOODWE1GHTING  to do the inference. How would you have 
to modify the query-answering process? 

14.111  Consider the query P(Rain  I Sprinkler = true, WetGrass = true) in Figure 14.12(a) 
(page 529) and how Gibbs sampling can answer it. 

a. How many states does the Markov  chain have? 
b. Calculate the tr.msitinn  matrix  Q containing q(y —>  y`)  fur all y, y'. 
c. What does Q 2 , the square of the transition matrix, represent? 
d. What about Q' as n  co? 
e. Explain how to do probabilistic inference in Bayesian networks, assuming that Q'  is 

available. Is this a practical way to do inference? 

14.19 This exercise explores the stationary distribution for Gibbs sampling methods. 
a. The convex composition [cr,  qi.;  1 — rx,  q2J  of qi  and q2 is a transition probability distri-

bution that first chooses one of qi  and q2 with probabilities or  and 1 — a, respectively, 
and then applies whichever is chosen. Prove that if qi and q2 are in detailed balance 
with 7r,  then their convex composition is also in detailed balance with Ir.  .  (Note: this 
result justifies a variant of GIBBS-ASK in which variables are chosen at random rather 
than sampled in a fixed sequence.) 

b. Prove that if each of qi  and q2 has rr  as its stationary distribution, then the sequential 
composition q= qt  o q2 also has it as its stationary distribution. 

14.20 The Metropolis—Hastings  algorithm is a member of the MCMC family; as such, it is 
designed to generate samples x (eventually) according to target probabilities 7r(x',.  (Typically 
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TriA41--ift   

we are interested in sampling from w(x)  = P(x  e).)  Like simulated annealing, Metropolis–
Hastings operates in two stages.  First, it samples a new state xi  from a proposal distribution 
q(x/  x), given the current state x. Then, it probabilistically accepts or rejects x`  according to 
the acceptance probability 

cv(x)  x) = 
Tr(xj )q(x  x i )  min  (1.  Tr  

(x)  q(x)  x) 

If the proposal is rejected, lie state remains al x.  

a. Consider an ordinary Gibbs sampling step for a specific variable X.  Show that this 
step, considered as a proposal, is guaranteed to be accepted by Metropolis–Hastings. 
(Hence, Gibbs sampling is a special case of Metropolis–Hastings.) 

b. Show that the two-step process above, viewed as a transition probability distribution, is 
in detailed balance with r.  

14.21 Three soccer teams A, B, and C,  play cach other once. Each match is between two 
teams, and can be won, drawn. or lost. Each team has a fixed, unknown degree of quality—
an integer ranging from 0 to 3—and the outcome of a match depends probabilistically on the 
difference in quality between the two teams. 

a. Construct a relational probability model to describe this domain, and suggest numerical 
values for all the necessary probability distributions. 

b. Construct the equivalent Bayesian network for the three matches. 
c. Suppose that in the first two matches A beats B and draws with C. Using an exact 

inference algorithm of your choice, compute the posterior distribution for the outcome 
of the third match. 

d. Suppose there are rt  teams in the league and we have the results for all but the last 
match. How does the complexity of predicting the last game vary with n?  

e. Investigate the application of MCMC to this problem. How quickly does it converge in 
practice and how well does it scale? 

PROPOSAL 
DISTRIBUTION  

ACCEPTANCE  
PRDBABILITY  



15  PROBABILISTIC 
REASONING OVER TIME 

In which we try to interpret the present, understand the past, and perhaps predict 
the future, even when very little is crystal clear. 

Agents in partially observable environments must be able to keep track of the current state, to 
the extent that their sensors allow. In Section 4.4 we showed a methodology for doing that: an 
agent maintains a belief state that represents which states of the world are currently possible. 
From the belief state and a transition model, the agent can predict how the world might 
evolve in the next time step. From the percepts observed and a sensor model, the agent can 
update the belief state. This is a pervasive idea: in Chapter 4 belief states were represented by 
explicitly enumerated sets of states, whereas in Chapters 7 and 1 I they were represented by 
logical formulas. Those approaches defined belief states in terms of which world states were 
possible, but could say nothing about which states were likely or unlikely. In this chapter, we 
use probability theory to quantify the degree of belief in elements of the belief state. 

As we show in Section 15.1, time itself is handled in the same way as in Chapter 7: a 
changing world is modeled using a variable for each aspect of the world state at each point in 
time. The transition and sensor models may be uncertain: the transition model describes the 
probability distribution of the variables at time t, given the state of the world at past times. 
while the sensor model describes the probability of each percept at time t, given the current  
state of the world. Section 15.2 defines the basic inference tasks and describes the gen-
eral structure of inference algorithms for temporal models. Then we describe three specific 
kinds of models: hidden Markov  models, Kalman filters, and dynamic Bayesian net-
works (which include hidden Marker models and Kalman filters as special cases). Finally. 
Section 15.6 examines the problems  faced when keeping track of name than one thing 

15.1 TIME AND UNCERTAINTY 

We have developed our techniques for probabilistic reasoning in the context  of static worlds, 
in which each random variable has a single fixed value. For example, when repairing a eat 
we assume that whatever is broken remains broken during the process  of diagnosis; our job 
is to infer the state of the car from observed evidence, which also remains fixed. 

566 
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Now consider a slightly different problem: treating a diabetic patient. As in the case of 
car repair, we have evidence such as recent insulin doses, food intake, blood sugar measure-
ments, and other physical signs. The task is to assess the current state of the patient, including 
the actual blood sugar level and insulin level. Given this information, we can make a deci-
sion about the patient's food intake and insulin dose. Unlike the case of car repair, here the 
dynamic aspects of the problem are essential. Blood sugar levels and measurements thereof 
can change rapidly over time, depending on recent food intake and insulin doses, metabolic 
activity, the time of day, and so on. To assess the current state from the history of evidence 
and to predict the outcomes of treatment actions, we must model these changes. 

The same considerations arise in many other contexts, such as tracking the location of 
a robot, tracking the economic activity of a nation, and making sense of a spoken or written 
sequence of words. How can dynamic situations like these be modeled? 

15.1.1 States and observations 

TIME SLICE We view the world as a series of snapshots, or time slices, each of which contains a set of 
random variables, some observable and some not.' For simplicity, we will assume that the 
same subset of variables is observable in each time slice (although this is not strictly necessary 
in anything that follows). We will use Xt  to denote the set of state variables at time t, which 
are assumed to be unobservable, and Et  to denote the set of observable evidence variables.  
The observation at time t  is E t  —e t  for some set of values e t . 

Consider the following example: You are the security guard stationed at a secret under- 
pound installation. You want to know whether it's raining today, but your only access to the 
outside world occurs each morning when you see the director coming in with, or without, an 
umbrella For each day t, the set E t  thus contains a single evidence variable Umbrella, or (.1t  
for short (whether the umbrella appears), and the set Xt  contains a single state variable Raint  
or Rt  for short (whether it is raining). Other problems can involve larger sets of variables. In 
the diabetes example, we might have evidence variables, such as MeasuredBloadSugart  and 
PutseRate,,  and state variables, such as BloodSugar,  and Stomachamtenis t .  (Notice that 
BloodSugar t  and MeasuredBloodthigart  are not the same variable; this is how we deal with 
noisy measurements of actual quantities.) 

The interval between time slices also depends on the problem. For diabetes monitoring, 
a suitable interval might be an hour rather than a day. In  this chapter we assume the interval 
between slices is fixed, so we can label times by integers. We will assume that the state 
sequence starts at I = 0; for various uninteresting reasons, we will assume that evidence starts 
arriving at t  =1 rather than t  = 0. Hence, our umbrella world is represented by state variables 
Ro,  RI,  R2,...  and evidence variables Eri.  , Ua, ....  We will use the notation a:b to denote 
the sequence of integers from a to Et  (inclusive), and the notation Xa ,b  to denote the set of 
variables from X„  to Xb_  For example, th,a  corresponds to the variables Ul ,  U2, T.T3.  

Uncertainty over cotifinzious  time can be modeled by stochastic  differential equations (SDEs).  The models 
studied in this chapter can be viewed as discrete-time  approximations to SDEs. 



(f)  

(a)  

Figure 15.1 (a) Bayesian network structure corresponding to a first order Markov process 

with state defined by the variables Xt .  (b) A second-order Markov process. 
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15.1.2 Transition and sensor models 

MARKOV  
ASSUMPTr  ors  

MARKOV  PROCESS 

FIRST-ORDER 
MARKOV  PROCESS 

STATIONARY 
PROCESS 

SENSOR MARKOV  
ASSUMPTION 

With the set of state and evidence variables for a given problem decided on, the next step is 
to specify how the world evolves (the transition model) and how the evidence variables get 
their values (the sensor model). 

The transition model specifies the probability distribution over the latest state variables, 
given the previous values, that is, P(Xf  I X0 , 5 _ 1 ). Now we face a problem: the set X( „ t _ i  is 
unbounded in size as t increases. We solve the problem by making a Markov assumption—
that the current state depends on only a finite fixed number of previous states. Processes sat-
isfying this assumption were first studied in depth by the Russian statistician Andrei Markov 
(1856-1922) and are called Markov  processes or Markov chains. They came in various fla-
vors; the simplest is the first order Markov process, in which the current state depends only 
on the previous state and not on any earlier states.  In other words, a state provides enough 
information to make the future conditionally independent of the past, and we have 

P(Xt  I Xo:t-t;  = P(Xf  I Xt-t)  • (15.1) 
Hence, in a first-order Markov process, the transition model is the conditional distribution 
P(Xt  Xt_ i ).  The transition model for a second-order Markov process is the conditional 
distribution P(Xt  I Xt_2,  Xt _1).  Figure 15.1 shows the Bayesian network structures corre-
sponding to first-order and second-order Markov processes. 

Even with the Markov assumption there is still a problem: there are infinitely many 
possible values of t Do we need to specify a different distribution for each time step? We 
avoid this problem by assuming that changes in the world state are caused by a stationary 
process—that is, a process of change that is governed by laws that do not themselves change 
over time. (Don't confuse stationary with static: in a static process, the state itself does not 
change.) In the umbrella world, then, the conditional probability of rain, P(Rt Rt-i),  is the 
same for all t, and we only have to specify one conditional probability table. 

Now for the sensor model. The evidence variables E i  could depend on previous vari-
ables as well as the current state  variables. but any state that's worth its salt should suffice to 
generate the current sensor values. Thus, we make a sensor Markov assumption as follows: 

P(FtlXo:t,Eo:t-t)  = P(Et  1Xt) (15.2) 
Thus, P(E 5 1Xt )  is our sensor model (sometimes called the observation model). Figure 15.2 
shows both the transition model and the sensor model for the umbrella example. Notice the 



Figure 15.2 Bayesian network structure and conditional distributions describing the 
umbrella world. The transition model is P(Rain f  Rain t _i)  and the sensor model is 
P(  ErnatimHa t  Rain s ).  
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direction of the dependence between state and sensors: the arrows go from the actual state 
of the world to sensor values because the state of the world causes the sensors to take on 
particular values: the rain causes the umbrella to appear. (The inference process, of course, 
goes in the other direction; the distinction between the direction of modeled dependencies 
and the direction of inference is one of the principal advantages of Bayesian networks.) 

In addition to specifying the transition and sensor models, we need to say how every-
thing gets started—the prior probability distribution at time 0, P(X0 ).  With that, we have a 
specification of the complete joint distribution over all the variables, using Equation (14.2). 
For any t,  

p(x..t,Ei.,)  = P(Xo)  11  P(Xi  Xi-1)P(Ei  X , ) (15.3) 
i =  t  

The three terms on the right-hand side are the initial slate model P(XD),  the transition model 
P(Xi  X t_i),  and the sensor model P(Ei  Xi). 

The structure in Figure 15.2 is a first-order Markov process—the probability of rain is 
assumed to depend only on whether it rained the previous day. Whether such an assumption 
is reasonable depends on the domain itself. The first-order Markov assumption says that the 
state variables contain all  the information needed to characterize the probability distribution 
for the next time slice.  Sometimes the assumption is exactly true for example, if a particle 
is executing a random walk along the x-axis,  changing its position by +1 at each time step, 
then using the x-coordinate as the state gives a first-order Markov process. Sometimes the 
assumption is only approximate, as in the case of predicting rain only on the basis of whether 
it rained the previous day. There are two ways to improve the accuracy of the approximation: 

1. Increasing the order of the Markov  process model. For example, we could make a 
second-order model by adding Rail-4_9  as a parent of Rain s ,  which might give slightly 
more accurate predictions. For example, in Palo Alto, California, it very rarely rains 
more than two days in a row. 

2. Increasing the set of state variables. For example, we could add Seasons  to allow 
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us to incorporate historical records of rainy seasons. or we could add Temperature t ,  
Humidity t  and Pressure s  (perhaps at a range of locations) to allow us to use a physical 
model of rainy conditions. 

Exercise 15.1 asks you to show that the first solution—increasing the order—can always be 
reformulated as an increase in the set of state variables, keeping the order fixed. Notice that 
adding state variables might improve the system's predictive power but also increases the 
prediction requirements: we now  have to predict the new variables as well Thus, we are 

looking for a "self-sufficient" set of variables, which really means that we have to understand 
the "physics" of the process being modeled. The requirement for accurate modeling of the 
process is obviously lessened if we can add new sensors (e.g., measurements of temperature 
and pressure) that provide information directly about the new state variables. 

Consider, for example, the problem of tracking a robot wandering randomly on the X—Y  
plane. One might propose that the position and velocity are a sufficient set of state variables: 
one can simply use Newton's laws to calculate the new position, and the velocity may change 
unpredictably. If the robot is battery-powered,  however, then battery exhaustion would tend to 
have a systematic effect on the change in velocity. Because this in turn depends on how much 
power was used by all previous maneuvers, the Markov property is violated. We can restore 
the Markov property by including the charge level Battery t  as one of the state variables that 
make up X. This helps in predicting the motion of the robot, but in turn requires a model 
for predicting Buttergt  from Battergt_i  and the velocity. In some cases, that can be done 
reliably, but more often we find that error accumulates over time. In that case, accuracy can 
be improved by adding a new sensor for the battery level_ 

15.2 INFERENCE IN TEMPORAL MODELS 

FILTERING 

BELIEF STATE 

STATE ESTINVION  

PREDICTION 

Having set up the structure of a generic temporal model, we can formulate the basic inference 
tasks that must be solved: 

• Filtering: This is the task of computing the belief state—the  posterior distribution 
over the most recent state—given all evidence to date. Filtering2  is also called state 
estimation. In our example, we wish to compute P(X t  ei  t ). In the umbrella example. 
this would mean computing the probability of rain today, given all the observations of 
the umbrella carrier made so far. Filtering is what a rational agent does to keep track 
of the current state so that rational decisions can be made. It turns out that an almost 
identical calculation provides the likelihood of the evidence sequence, P(ei,t).  

• Prediction: This is the task of computing the posterior distribution over the future state. 
given all evidence to date. That is, we wish to compute P(Xt+k  el :t  )  for some k 7 O.  
In the umbrella example, this might mean computing the probability of rain three days 
from now, given all the observations to date. Prediction is useful for evaluating possible 
courses of action based on their expected outcomes. 

 

2  The term "filtering .  rrfers  to the roots of this problem in early work on signal processing,  where the problem 
is to filter out the noise in a signal by estimating its underlying properties. 
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SIDOTHINS  

RECURSIVE 
ESTIMATION 

• Smoothing: This is the task of computing the posterior distribution over a past state, 
given all evidence up to the present. That is, we wish to compute P(Xk  e1:0  for same 
such that U  <  k C t. In the umbrella example, it might mean computing the probability 
that it rained last Wednesday, given all the observations of the umbrella carrier made 
up to today. Smoothing provides a better estimate of the state than was available at the 
time, because it incorporates more evidence. 3  

• Most likely explanation: Given a sequence of observations, we might wish to find the 
sequence of states that is most likely to have generated those observations. That is, we 
wish to compute argmax„,.,  P(xi  e i  For example, if the umbrella appears on each 
of the first three days and is absent on the fourth, then the most likely explanation is that 
it rained on the first three days and did not rain on the fourth. Algorithms for this task 
are useful in many applications, including speech recognition—where the aim is to find 
the most likely sequence of words, given a series of sounds—and the reconstruction of 
bit strings transmitted over a noisy channel. 

In addition to these inference tasks, we also have 
• Learning: The transition and sensor models, if not yet known, can be learned from 

observation& Just as with static Bayesian networks, dynamic Bayes net learning can be 
done as a by-product of inference. Inference provides an estimate of what transitions 
actually occurred and of what states generated the sensor readings, and these estimates 
can be used to update the models. The updated models provide new estimates, and the 
process iterates to convergence. The overall process is an instance of the expectation-
maximization or EM algorithm. (See Section 20.3.) 

Note that learning requires smoothing, rather than filtering, because smoothing provides bet-
ter estimates of the states of the process. Learning with filtering can fail to converge correctly; 
consider, for example, the problem of learning to solve murders: unless you are an eyewit-
ness, smoothing is always required to infer what happened at the murder scene from the 
observable variables. 

The remainder of this section descrihes generic algorithms for the four inference tasks, 
independent of the particular kind of model employed. Improvements specific to each model 
are described in subsequent sections. 

15.2.1 Filtering and prediction 

As we pointed out in Section 7.7.3, a useful filtering algorithm needs to maintain a current 
state estimate and update it, rather than going back over the entire history of percepts for each 
update. (Otherwise, the cost of each update increases as time goes by.) In other words, given 
the result of filtering up to time t,  the agent needs to compute the result for t  + 1 from the 
new evidence et+i ,  

P(Xt+1  et:t+1)  = f(et+i,P(Xt el:t))  
for some function f . This process is called recursive estimation. We can view the calculation 
3  In particular, when tracking a moving object with inaccurate position observations, smoothing gives a smoother 
estimated trajectory than filtering—hence the  name. 
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as being composed of two parts: first, the current state distribution is projected forward from 
t to t  1; then it is updated using the new evidence er÷1 .  This two-part process emerges quite 
simply when the formula is rearranged: 

P(X1+1 = P(Xt-1-1  ei:t,  et+t)  idividing  up the evidence) 

= Wei-Fi.  Xt-H.  ei:t)  P(It-Fi.  010 (using Rayes'  nile)  

= P(et+i  I Xt+i ) P(Xj+1  ei:t)  (by the sensor Markov  assumption). (15.4) 
Here and throughout this chapter, a is a normalizing constant used to make probabilities sum 
up to 1. The second term, P(Xt + i  ei : t)  represents a one-step prediction of the next state, 
and the first term updates this with the new evidence; notice that P(et+i  I  Xt+ 1)  is obtainable 
directly from the sensor model. Now we obtain the one-step prediction for the next state by 
conditioning on the current state X t : 

P(Xt± i  el:t+i)  = a P(et+1  Xe+1) p(xt+i  xt ,  el.t  )P(xt ei:t)  

= a P(et+1  I Xt+i)  E p(xt+ i  xi)P(xt (Markov  assumption). (15.5) 
x,  

Within the summation, the first factor comes from the transition model and the second comes 
from the current state distribution. Hence, we have the desired recursive formulation. We can 
think of the filtered estimate P(X t  I ei,t )  as a "message" ft t  that is propagated forward along 
the sequence, modified by each transition and updated by each new observation. The process 
is given by 

=a  FoRwARD(ft.t  et+i.)  7 

where FORWARD implements the update described in Equation (15.5) and the process begins 
with f1 :0 = P(Xo).  When all the state variables are discrete, the time for each update is 
constant (i.e., independent of t), and the space required is also constant. (The constants 
depend, of course, on the size of the state space and the specific type of the temporal model 
in question.) The time and space requirements for updating must be constant 1-f  an agent with 
limited memory is to keep track of the current slate distribution over an unbounded sequence 
of observations..  

Let us illustrate the filtering process for two steps in the basic umbrella example (Fig-
ure 15.2.1  That is, we will compute P(R2  1/1 : 2)  as follows: 

■ On day 0, we have no observations, only the security guard's prior beliefs; let's assume 
that consists of P(  ) = (0.5, 0.5 

■ On day 1, the umbrella appears, so U1 = true. The prediction from t = 0 to t =1 is 

P(R1)  = E rO)P(rC)  

— (0.7, x 0.5 + x 0.5 — (0.E,  0.5) .  

Then the update step simply multiplies by the probability of the evidence for t =1 and 
normalizes, as shown in Equation {15.4): 

P(R1 = to  (ui  I ROP(Ri)  = cr  (0.9, 0.2)(0.5.0.5Y 

= s (C.45,0.1) ti (0.818,0.182) .  
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• On day 2, the umbrella appears, so U2 = true. The prediction from t  =1 to t = 2 is 

P(R2  I tia)  = E  P(R2  I ri)-P(rt  tit) 
T i  

= (0.7,0.3) x 0.818 +  (0.3,0.7) x 0.182 (0.627,0.373) ,  

MIXING TIME 

and updating it with the evidence for t —2 gives 

P(R2  I tit  ,  u2)  = a P(n2  I ROP(R2  ni  ) = ci (0.9.0.2)(0.627,0.373)  
= a (0.565 ;  0.075) (0.883,0.117) .  

Intuitively, the probability of rain increases from day 1  to day 2 because rain persists. Exer-
cise 15.2(a) asks you to investigate this tendency further. 

The task of prediction can be seen simply as filtering without the addition of new 
evidence. In fact, the filtering process already incorporates a one-step prediction, and it is 
easy to derive the following recursive computation for predicting the state at t  +  k  1 from 
a prediction for t 

P(Xt+k+1  I et:t)  = P(Xt+k+i  x1-1-0P(xr+k  I et:t)  • (15.6) 
Xt+k  

Naturally, this computation involves only the transition model and not the sensor model. 
It is interesting to consider what happens as we try to predict further and further into 

the future. As Exercise 15.2(b) shows, the predicted distribution for rain converges to a 
fixed point (0.5,  0.0,  after which it remains constant for all time. This is the stationary 
distribution of the Markov process defined by the transition model. (See also page 537.) A 
great deal is known about the properties of such distributions and about the mixing time— 
roughly, the time taken to reach the fixed point. In practical terms, this dooms to failure any 
attempt to predict the actual state for a number of steps that is more than a small fraction of 
the mixing time, unless the stationary distribution itself is strongly peaked in a small area of 
the state space. The more uncertainty there is in the transition model, the shorter will be the 
mixing time and the more the future is obscured. 

In addition to filtering and prediction, we can use a forward recursion to compute the 
likelihood of the evidence sequence. P(e i , t ).  This is a useful quantity if we want to compare 
different temporal models that might have produced the same evidence sequence (e.g., two 
different models for the persistence of rain). For this recursion, we use a likelihood message 
ii,t(X1)=P(Xt,e1 ;1).  It is a simple exercise to show that the message calculation is identical 
to that for filtering: 

ft:t+1 FoRwARD(fi:t,et+i)  • 
Having computed  £L t ,  we obtain the actual likelihood by summing out X i : 

Liar = P(ei,t)  =  Lti.:tr,xt) (15:7)  

Notice that the likelihood message represents the probabilities of longer and longer evidence 
sequences as time goes by and 30  becomes numerically smaller and smaller, leading to under- 
flow problems with floating-point arithmetic,  This is an important problem in practice, but 
we shall not go into solutions here. 



Xk  

  

Etipc  
Figure 15.3 Smoothing computes P(Xkle 1 , i ),  the posterior distribution of the state at 
some past time k given a complete sequence of observations from 1 to t. 
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15.2.2 Smoothing 

As we said earlier, smoothing is the process of computing the distribution over past states 
given evidence up to the present; that is, P(Xk  et a )  for 0 < k < t. (See Figure 15.3.) 
In anticipation of another recursive message-passing approach, we can split the computation 
into two parts—the evidence up to k and the evidence from k + 1 to t, 

P(Xk  I ei:t)  = P (Xk ek+i:t)  
= ct P(Xk  I ei:k)P(ek-i-i:t  I Xk,  el:k)  (using Bayes' rule) 

= P(Xk  iet:k  )P;ek-Ft:t  1Xk  )  (using conditional independence) 

= f k X b k + I  :  t (15.8) 
where " x" represents pointwise multiplication of vectors. Here we have defined a "back-
ward" message hk+1:t  =P(ek±1:t1Xk),  analogous to the forward message fi:k _  The forward 
message fi:k  can be computed by filtering forward from 1 to k, as given by Equation (15.5). 
It turns out that the backward message b k+ 1:t can be computed by a recursive process that 
runs backward from t: 

P(ek+Lt lXk)  = 
 E Xk,Xk+1)P(Xk+11Xk) 

 
(conditioning on XA,F1) 

544:  

= E P(ek+,:t  I xk,i)P(xk±i  Xk)  (by conditional independence) 
tk+1  

= E .13 (ek+i,ek-F2:t  Xk+1)P(Xk±1  Xk) 

'1 , 1  1 

= E P(ek+i  xk +1) P (ek+2,i  I  xk+t)P(xk+t  I Xk)  , (15.9)  

where the last step follows by the conditional independence of ek+i  and ek+21,  given Xk+1.  

Of the three factors in this summation, the first and third are obtained directly from the model, 
and the second is the "recursive call." Using the message notation, we have 

bk+i , t  = BACKWARD  (bk+2:t,ek+1) 

where BACKWARD implements the update described in Equation (15.9). As with the forward 
recursion, the time and space needed for each update are constant and thus independent of t. 

We can now see that the two terms in Equation (15.8) can both be computed by tectu- 
sions  through time, one running forward from 1 to k and using the filtering equation (15.5) 
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FOIWAFID- 
BACKWARD  
ALGORITHM 

and the other running backward from t  to k + 1 and using Equation (15.9). Note that the 
backward phase is initialized with lat+i , t  =P(et+i , t  3it ) =  P( 1X t )1,  where 1  is a vector of 
ls.  (Because et+i,t  is an empty sequence, the probability of observing it is 1.) 

Let us now apply this algorithm to the umbrella example, computing the smoothed 
estimate for the probability of rain at time k =1, given the umbrella observations on days 1 
and 2. From Equation (15.8),  this is given by 

P(Ri  ui,u2)  —  aP(Rt1/4].)P(u2IRi)  • (15.10) 
The first term we already know to be (.818,  .182),  from the forward filtering process de-
scribed earlier. The second term can be computed by applying the backward recursion in 
Equation (15.9): 

P(u2  Ri)  = EP(,2  r2)P(  1r2)P(r2  I Ri)  
r2  

= (0.9 x 1 x 0.3)) (0.2 x 1 x (0.3,0.7)) = (0.69, 0.41) .  
Plugging this into Equation (15.10), we find that the smoothed estimate for rain on day 1 is 

P(R1  ui,u2)  = cx (0.818,0.182) x (0.69,  0.41) (0.883,0.117) .  
Thus, the smoothed estimate for rain on day 1  is higher than the filtered estimate (0.818) in 
this case. This is because the umbrella on day 2 makes it more likely to have rained on day 
2; in turn, because rain tends to persist, that makes it more likely to have rained on day I. 

Both the forward and backward recursions take a constant amount of time per step; 
hence, the time complexity of smoothing with respect to evidence el , t  is 0(t).  This is the 
complexity for smoothing at a particular time step k.  If we want to smooth the whole se-
quence, one obvious method is simply to run the whole smoothing process once for each 
time step to be smoothed. This results in a time complexity of 0(t2 ).  A better approach 
uses a simple application of dynamic programming to reduce the complexity to 0(t).  A clue 
appears in the preceding analysis of the umbrella example, where we were able to reuse the 
results of the forward-filtering phase. The key to the linear-time algorithm is to record the 
results of forward filtering over the whole sequence. Then we run the backward recursion 
from t down to 1, computing the smoothed estimate at each step k  from the computed back-
ward message hk+i:t  and the stored forward message fi , k .  The algorithm, aptly called the 
forward—backward algorithm, is shown in Figure 15.4. 

The alert reader will have spotted that the Bayesian network structure shown in Fig-
ure 15.3 is a polytree  as defined on page 528. This means that a straightforward application 
of the clustering algorithm also yields a linear-time algorithm that computes smoothed es-
timates for the entire sequence. It is now understood that the forward—backward algorithm 
is in fact a special case of the polytree propagation algorithm used with clustering methods 
(although the two were developed independently). 

The forward—backward algorithm forms the computational backbone for many applica- 
tions that deal with sequences of noisy observations. As described so far, it has two practical 
drawbacks. The first is that its space complexity can be too high when the state space is large 
and the  sequences are long.  It uses o(Irit)  space where 

111 
 is the size of the representation of 

the forward message. The space requirement can be reduced to 0(If  log t) with a concomi- 



function  FORWARD -BACK'WARD(ev,prior)  returns a vector of probability distributions 
inputs: ev,  a vector of evidence values for steps 1, ...  t 

prior, the prior distribution on the initial state, P(X0 )  
local variables: fv,  a vector of forward messages for steps I) ....... t 

h, a representation of the backward message, initially all lc  
sv, a vector of smoothed estimates for steps 1, ,  t 

fv[01.t—  prior 
for i = 1 to t do 

fv [i] FORWARD(fv[•  — 1], ev[2])  
for i= t downto  1 do 

sv[i]  NoRmALizE(fvN  x b) 
Is,— BACKWARD (b, ev[i])  

return sv  

Figure 154  The forward-backward algorithm for smoothing: computing posterior prob- 
abilities of a sequence of states given a sequence of observations. The FORWARD and 
BACKWARD operators are defined by Equations (15.5) and (15.9), respectively. 
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tarn  increase in the time complexity by a factor of log t, as shown in Exercise 15.3. hi  some 
cases (see Section 15.3), a constant-space algorithm can be used. 

The second drawback of the basic algorithm is that it needs to be modified to work 
in an online setting where smoothed estimates must be computed for earlier time slices as 
new observations are continuously added to the end of the sequence. The most common 
requirement is for fixed-lag  smoothing, which requires computing the smoothed estimate 
P(Xt_d  el.s.)  for fixed d. That is, smoothing is done for the time slice d steps behind the 
current time t; as t increases, the smoothing has to keep up. Obviously, we can run the 
forward—backward algorithm over the d-step "window" as each new observation is added. 
but this seems inefficient. In Section 15.3, we will see that fixed-lag smoothing can, in some 
cases, be done in constant time per update, independent of the lag d. 

15.2.3 Finding the most likely sequence 

Suppose that [true, true, false, true, true] is the umbrella sequence for the security guard's 
first five days on the job. What is the weather sequence most likely to explain this? Does 
the absence of the umbrella on day 3 mean that it wasn't raining, or did the director forget 
to bring it? If it didn't rain on day 3, perhaps (because weather tends to persist) it didn't 
rain on day 4 either, but thc  director brought the umbrella just in case. In all, there arc 2 5  
possible weather sequences we could pick, Is there a way to find the most likely one, short of 
enumerating all of them? 

We could try this linear-time procedure: use smoothing to find the posterior distribution 
for the weather at each time step; then construct the sequence, using at each step the weather 
that is most likely according to the posterior. Such an approach should set off alarm bells 
in the reader's head, because the posterior distributions computed by smoothing are distri- 



Rain ]  Rain y  Rain y  Rainy Rain s  

true 
(a)  

(b)  

1"1:7  M1:3  

Figure 15.5  (a) Possible state sequences for Rain t  can be  viewed as paths through a graph 
of the possible states at each time step. (States are shown as rectangles to avoid confusion 
with nodes in a Bayes net.) (b) Operation of the Viterbi algorithm far the umbrella obser-
vation sequence [true, true, false, true, true]. For each t, we have shown the values of the 
message mi , t  ,  which gives the probability of the best sequence reaching each state at time t. 
Also, for each state, the bold arrow leading into it indicates its best predecessor as measured 
by the product of the preceding sequence probability and the transition probability. Following 
the bold arrows back from the most likely state in mi..s  gives the most likely sequence. 
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butions over single time steps. whereas to find the most likely sequence we must consider 
joint probabilities over all the time steps. The results can in fact be quite different (See 
Exercise 15.4.) 

There is a linear-time algorithm for finding the most likely sequence, but it requires a 
little more thought. It relies on the same Markov property that yielded efficient algorithms for 
filtering and smoothing. The easiest way to think about the problem is to view each sequence 
as a path through a graph whose nodes are the possible states at each time step. Such a 
graph is shown for the umbrella world in Figure 15.5(a). Now consider the task of finding 
the most likely path through this graph, where the likelihood of any path is the product of 
the transition probabilities along the path and the probabilities of the given observations at 
each state. Let's focus in particular on paths that reach the state Rain5  = true. Because of 
the Markov property, it follows that the most likely path to the state Attin5=  true consists of 
the most likely path to some state at time 4 followed by a transition to Rains = true; and the 
state at time 4 that will become part of the path to Rains = true is whichever maximizes the 
likelihood of that path. In other words, there is a recursive relationship between most likely 
paths to each state x t. +1  and most likely paths to each state xt _  We can write this relationship 
as an equation connecting the probabilities of the paths: 

max xt,Xt+1  I et:t+t)  xi...xt  

= cx P(et+i  I Xt+i)  max (P(Xt+1  I xt) max P(xi, xtlet:t)  J . (15.11) x,  

Equation (15.11) is identical to the filtering equation (15.5) except that 
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1. The forward message fl a t =  P(Xt  I et a )  is replaced by the message 

li.t  = Ina3:  P(xi, xt-1,  Xt  I ei:t) 

that is, the probabilities of the most likely path to each state x t ; and 

2. the summation over x t  in Equation (15.5) is replaced by the maximization over xt  in 
Equation (15. 1 1 ). 

VITERPJALGORIT14M  

Thus, the algorithm for computing the most likely sequence is similar to filtering; it runs for-
ward along the sequence, computing the m message at each time step, using Equation (15.11). 
The progress of this computation is shown  in Figure 15.5(b). AL the end, it will have the 
probability for the most likely sequence reaching each of the final states. One can thus easily 
select the most likely sequence overall (the states outlined in bold). In order to identify the 
actual sequence, as opposed to just computing its probability, the algorithm will also need to 
record, for each state, the best state that leads to it; these are indicated by the bold arrows in 
Figure 15.5(b). The optimal sequence is identified by following these bold arrows backwards 
from the best final state. 

The algorithm we have just described is called the Viterbi algorithm, after its inventor. 
Like the filtering algorithm, its time complexity is linear in t, the length of the sequence. 
Unlike filtering, which uses constant space, its space requirement is also linear in t. This 
is because the Viterbi algorithm needs to keep the pointers that identify the best sequence 
leading to each state. 

15.3 HIDDEN MARKOV MODELS 

HIDDEN MARKOV  
MODEL 

The preceding section developed algorithms for temporal probabilistic reasoning using a gen-
eral framework that was independent of the specific form of the transition and sensor models. 
In this and the next two sections, we discuss more concrete models and applications that 
illustrate the power of the basic algorithms and in some cases allow further improvements. 

We begin with the hidden Markov  model, or MIA  An HMM is a temporal proba-
bilistic model in which the state of the process is described by a single discrete random vari-
able. The possible values of the variable are the possible states of the world. The umbrella 
example described in the preceding section is therefore an HMM, since it has just one state 
variable.  _  What happens if you have a model with two or more state variables? You can 
still fit it into the HMM  framework by combining the variables into a single "megavariable"  
whose values arc all possible tuples of values of the individual state variables. We will sec 
that the restricted structure of HMMs allows for a simple and elegant matrix implementation 
of all the basic algorithms. 4  

 

The reader unfamiliar with basic operations on vectors and matrices might wish to consult Appendix A before 
proceeding with this section. 
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15.3.1 Simplified matrix algorithms 
With a single, discrete state variable Xt ,  we can give concrete fonn  to the representations 
of the transition model, the sensor model. and the forward and backward messages. Let the 
state variable Xt  have values denoted by integers 1, . .  5,  where S is the number of possible 
states. The transition model P(Xt  I Xi  _ 1 ) becomes an S x S  matrix T, where 

= P(Xt= =i)  -  
That is, Tad is the probability of a transition from state i  to state j. For example, the transition 
matrix for the umbrella world is 

0.7  0.3  T =  P(Xt  I Xt_i  )  =  0.3  0.7  )  
We also put the sensor model in matrix form. In this case, because the value of the evidence 
variable Et is known at time t  (call it et), we need only specify, for each state, how likely it 
is that the state causes e t  to appear: we need P(e t  X t  = i) for each state 4.  For mathematical 
convenience we place these values into an S x S diagonal matrix, Ot  whose ith diagonal 
entry is P(el  I X t  =i) and whose other entries are O.  For example, on day 1  in the umbrella 
world of Figure 15.5, U1  = true, and on day 3, U3 = false, so, from Figure 15.2, we have 

oi  = (  0.9 
0  

0  
D.2  03 = 

(  0.1 
0  

C  
0.8  )  

Now, if we use column vectors to represent the forward and backward messages, all the com-
putations become simple matrix-vector operations. The forward equation (15.5)  becomes 

= tx Cit-Ft  TT  ht (15.12) 
and the backward equation (15.9)  becomes 

bk+1,1-  = TOk+rbk+2:t  • (15.13) 

From these equations, we can see that the time complexity of the forward-backward algo- 
rithm (Figure 15.4)  applied to  a sequence of length t  is 0(8 2 0,  because each step requires 
multiplying an 5-element  vector by an S x S matrix. The space requirement is O(St),  be-
cause the forward pass stores t  vectors of size S. 

Besides providing an elegant description of the filtering and smoothing algorithms for 
1111/Ms,  the matrix formulation reveals opportunities for improved algorithms.  The first is 
a simple variation on the forward-backward algorithm that allows smoothing to be carried 
out in constant space, independently of the  length of the sequence. The idea is that smooth-
ing for any particular time slice k requires the simultaneous presence of both the forward and 
backward messages, ft ;  k  and hk-i,t,  according to Equation (15.8).  The forward-backward al-
gorithm achieves this by storing the fs computed on the forward pass so that they are available 
during the backward pass. Another way to achieve this is with a single pass that propagates 
both f and b in the same direction. For example, the "forward" message f can be propagated 
backward if we manipulate Equation (15.12) to work in the other direction: 

:  =  of  (TT  )  -1 01+1111:  r+  • 
The modified smoothing algorithm works by first running the standard forward pass to com- 
pute ft :  t (forgetting all the intermediate results) and then running the backward pass for both 
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function FIXED-LAG-SMOOTIIING(et,  brim,  d) returns a distribution over Xt_d 
inputs: e t , the current evidence for time step t 

hoses,  a hidden Markov model with S S transition matrix T 
d, the length of the lag for smoothing 

persistent: t, the current time, initially 1 
f, the forward message P(X 5  ei,t),  initially hmm. PRIOR 
B, the d-stcp  backward transformation matrix, initially the identity matrix 

et-ths,  double-ended list of evidence from t - d to t, initially empty 
local variables: O s _  d, Ot,  diagonal matrices containing the sensor model information 

add e t  to the end of et-riA  
Os  diagonal matrix containing 13 (et Xt)  
if t 7 d then 

f  I. oRwARD(f,  et) 
remove et-d-i  from the beginning of et_d,t  
Os-d  1— diagonal matrix containing P(et_diXt-d)  

else B  BTOt  
t I + 1 
if I > d then return NORMALIZE(f  x B1) else return null 

Figure 15.6  An algorithm for smoothing with a fixed  time lag of d steps, implemented 
as an online algorithm that outputs the new smoothed estimate given the observation for a 
new time step. Notice that the final output NonmALizn(f  x B1) is just o f x b, by Equa-
tion (15.14). 

b and f together, using them to compute the smoothed estimate at each step. Since only one 
copy of each message is needed, the storage requirements are constant (i.e., independent of 
t, the length of the sequence). There are two significant restrictions on this algorithm: it re-
quires that the transition matrix be invertible and that the sensor model have no zeroes—that 
is, that every observation be possible in every state. 

A second area in which the matrix formulation reveals an improvement is in online 
smoothing with a fixed lag. The fact that smoothing can be done in constant space suggests 
that there should cxist an efficient recursive algorithm for online smoothing—that is, an al-
gorithm whose time complexity is independent of the length of the lag. Let us suppose that 
the lag is d; that is, we are smoothing at time slice t - d, where the current time is t. By 
Equation (15.8), we need to compute 

kt-ct  

for slice t - d. Then, when a new observation arrives, we need to compute 

a ft: t-i-i  X bt-d-F2I+1  

for slice t — d +1. How can this be done incrementally? First, we can compute flat_  d+1  from 

11:1-d,  using the standard filtering process, Equation (15.5). 
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Computing the backward message incrementally is trickier, because there is no simple 
relationship between the old backward message ht _ d+i: ,  and the new backward message 
bt_d+2,t+1.  instead, we will examine the relationship between the old backward message 
bt _d_k i, t  and the backward message at the front of the sequence. h t+ i, t .  To do this, we apply 
Equation (15.13) d  times to get 

t  
bt-d+r:i  = 11  TO) = ,  (15.14)  

t-dtt   
where the matrix Bt_d+  ,t  is the product of the sequence of T and 0 matrices. B can be 
thought of as a "transformation operator" that transforms a later backward message into an 
earlier one. A similar equation holds for the new backward messages after the next observa-
tion arrives: 

±-Et  
bt  - 1  — TOi — . (15.15) 

i = t-d+2  

Examining the product expressions in Equations (15.14) and (15.15), we see that they have a 
simple relationship: to get the second product, "divide" the first product by the first element 
TO t _ d, L ,  and multiply by the new last element TO, +1 •  In matrix language, then, there is a 
simple relationship between the old and new B matrices: 

Bt_d+2:±+1  =  Otlid+1  T-  I  Bt-d+1:t  TOt+1  - 5.16)  

This equation provides an incremental update for the B matrix, which in turn (through Equa-
tion (15_15))  allows us to compute the new backward message b t _  d+2 : t  +1.  The complete 
algorithm, which requires storing and updating f and B, is shown in Figure 15.6. 

15.3.2 Hidden Markov  model  example: Localization 

On page 145, we introduced a simple form of the localization problem for the vacuum world.  
In that version, the robot had a single nondeterministic Move action and its sensors reported 
perfectly whether or not obstacles lay immediately to the north, south, east, and west; the 
robot's belief state was the set of possible locations it could be in. 

Here we make the problem slightly more realistic by including a simple probability 
model for the robot's motion and by allowing for noise in the sensors. The state variable X t  
represents the location of the robot on the discrete grid; the domain of this variable is the 
set of empty squares fsi  s T,}  Let NEIGHBORS(s)  be the set of empty squares that are 
adjacent to s  and let N(s) be the size of that set. Then the transition model for Move action 
says that the robot is equally likely to end up at any neighboring square: 

P(Xt±i  = — i) (1/Nei) if j E NEIGHBORS(i) else 0) . 

We don't know where the robot starts, so we will assume a uniform distribution over all the 
squares; that is, P(X0  — —  1/n. For the particular environment we consider (Figure 15.7j,  
11  = 42 and the transition matrix T has 42 x 42 = 1764 entries. 

The sensor variable Et  has 16 possible values, each a four-bit sequence giving the pres- 
ence or absence of an obstacle in a particular compass direction. We will use the notation 
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0 0 0 0 0 0  .  w—,—.11  .  
0 .  0 IT  

(a) Posterior distribution over robot location after E l =  NSW 

0 0 0 0  

o 0  0  0 0  

(b Posterior distribution over robot location after E = NSW, E2 = NS 

Figure 15.7 Posterior distribution over robot location: (a) one observation E1  = NSW; 
(b) after a second observation E2 = NS. The size of each disk corresponds to the probability 
that the robot is at that location. The sensor error rate is e = 0.2. 

N5",  for example to mean that the north and south sensors report an obstacle and the east and 
west do not. Suppose that each sensor's error rate is e  and that errors occur independently for 
the four sensor directions. In that case, the probability of getting all four bits right is (1 —  c) 1  
and the probability of getting them all wrong is e 4 . Furthermore, if din  is the discrepancy—the 
number of bits that are different—between  the true values for square 6 and the actual reading 
et, then the probability that a robot in square i would receive a sensor reading et is 

P(Et  =et 
 Xt = i) = Of ,, 

— ( 1  04-d,t eta 

Forexample, the probability that a square with obstacles to the north and south would produce 
a sensor reading NSE is (1— We t .  

Given the matrices T and Ot,  the robot can use Equation (15.12) to compute the pos-
terior distribution over locations—that is, to work out where it is. Figure 15.7 shows the 
distributions P(X1  I El  =NSW) and P(X2 I Et = NSW, E2 = NS). This is the same maze 
we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the loca-
tions that were possible, assuming perfect sensing. Those same locations are still the most 
likely with noisy sensing, but now every  location has some nonzero probability. 

In addition to filtering to estimate its current location, the robot can use smoothing 
(Equation (15.13)) to work out where it was at any given past time—for example, where it 
began at time 0—and it can use the Viterbi  algorithm to work out the most likely path it has 
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Figure 15.8  Performance of 11MM  localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability e; data averaged over 
400 runs. (a) The localization error, defined as the Manhattan distance from the true location. 
(b) The  Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path. 
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taken to get where it is now. Figure 15.8 shows the localization error and Viterbi  path accuracy 
for various values of the per-bit sensor error rate e. Even when e  is 20%—which  means that 
the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its 
location within two squares after 25 observations. This is because of the algorithm's ability 
to integrate evidence over time and to take into account the probabilistic constraints imposed 
on the location sequence by the transition model. When e is 10%, the performance after 
a half-dozen observations is hard to distinguish from the performance with perfect sensing. 
Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in 
the prior distribution P(X0)  and in the transition model itself. Broadly speaking, high levels 
of localization and path accuracy are maintained even in the face of substantial errors in the 
models used 

The state variable for the example we have considered in this section is a physical 
location in the world.  Other problems  can, of course, include other aspects of the world. 
Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going 
straight for as long as it can; only when it encounters an obstacle does it change to a new 
(randomly selected) heading. To model this robot, each state in the model consists of a 
(location, heading) pain For the environment in Figure 15.7, which has 42 empty squares, 
this leads to 168 states and a transition matrix with 168 2  = 28, 224 entries—still a manageable 
number. If we add the possibility of dirt in the squares, the number of states is multiplied by 
242  and the transition matrix ends up with more than 1020  entries—no longer a manageable 
number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with 
many state variables. If we allow the robot to move continuously rather than in a discrete 
grid, the number of states becomes infinite; the next section shows how to handle this case. 
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15.4 KALMAN FILTERS 

KALMAN FILTERING 

M LILTIVARIATE  
GAUSSIAN  

Imagine watching a small bird flying through dense jungle foliage at dusk: you glimpse 
brief, intermittent flashes of motion; you try hard to guess where the bird is and where it will 
appear next so that you don't lose it. Or imagine that you are a World Was II radar operator 
peering at a faint, wandering blip that appears once every  10 seconds on the screen. Or, going 
back further still, imagine you are Kepler trying to reconstruct the motions of the planets 
from a collection of highly inaccurate angular observations taken at irregular and imprecisely 
measured intervals. In all these cases, you are doing filtering: estimating state variables (here, 
position and velocity) from noisy observations over time. If the variables were discrete, we 
could model the system with a hidden Markov model. This section examines methods for 
handling continuous variables, using an algorithm called Kalman filtering, after one of its 
inventors, Rudolf E. Kalman. 

The bird's flight might be specified by six continuous variables at each time point; three 
for position (Xi . Yt ,  Zt )  and three for velocity (Xi , Yt,  ZE ).  We will need suitable conditional 
densities to represent the transition and sensor models; as in Chapter 14, we will use linear 
Gaussian distributions. This means that the next state Xt+t  must be a linear function of the 
current state X t ,  plus some Gaussian noise, a condition that turns out to be quite reasonable in 
practice. Consider, for example, the X-coordinate of the bird, ignoring the other coordinates 
for now. Let the time interval between observations be A, and assume constant velocity 
during the interval; then the position update is given by Xt+A  = Xt +X A. Adding Gaussian 
noise (to account for wind variation, etc.), we obtain a linear Gaussian transition model: 

P(Xt-kn,  XIA-A  Xt  Xt t  -kt=  tht)  =  N(Xt  .it 0' 2 )(xt+A)  
The Bayesian network structure for a system with position vector Xt  and velocity it  is shown 
in Figure 15.9. Note that this is a very specific form of linear Gaussian model; the general 
form will be described later in this section and covers a vast array of applications beyond the 
simple motion examples of the first paragraph. The reader might wish to consult Appendix A 
for some of the mathematical properties of Gaussian distributions; for our immediate pur-
poses, the most important is that a inunivariate  Gaussian distribution for d variables is 
specified by a d-element  mean ti  and a dx  d  covariance matrix E. 

15.4.1 Updating Gaussian distributions 

In Chapter 14 on page 521,  we alluded to a key property of the linear Gaussian family of dis-
tributions: it remains closed under the standard Bayesian network operations. Here, we make 
this claim precise in the context of filtering in a temporal probability model. The required 
properties correspond to the two-step filtering calculation in Equation (15.5): 

I. If the current distribution P(Xt  I ei,t)  is Gaussian and the transition model P(Xt+i  xt)  
is linear Gaussian, then the one-step predicted distribution given by 

P(Xt-Ei  I ent)  = f  P(Xt+1  I mt)P(xt  
x,  

is also a Gaussian distribution. 

ent)  cixt  (15.17) 



Figure 15.9  Bayesian network structure for a linear dynamical system with position X, 
velocity Xi . and position measurement Zt .  
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2. If the prediction P(Xt+iiel:t)  is Gaussian and the sensor model P(et+i  I X14 i)  is linear 
Gaussian, then, after conditioning on the new evidence, the updated distribution 

P(Xt+ilet:t1-1)  = r1 P(et-F1iXt+i)P(Xt+1  I et:t) (l5.18) 

is also a Gaussian distribution. 

Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward message ft  
specified by a mean ki t  and covariance matrix E t , and produces a new multivariate Gaussian 
forward message ti, t .EL,  specified by a mean it t+1  and covariance matrix  E t+  L.  So, if we 
start with a Gaussian prior f1,0 = P(Xn)  =N(pto .  En),  filtering with a linear Gaussian model 
produces a Gaussian state distribution for all time. 

This seems to be a nice, elegant result, but why is it so important? The reason is that, 
except for a few special cases such as this, ,filtering with continuous or hybrid (discrete and 
continuous) networks generates state distributions  whose representation grows without bound 
over time. This statement is not easy to prove in general, but Exercise 15.10 shows what 
happens for a simple example. 

154.2 A simple one-dimensional example 

We have said that the FORWARD operator for the Kalman filter maps a Gaussian into a new 
Gaussian. This translates into computing a new mean and covariance matrix from the previ-
ous mean and covariance matrix. Deriving the update rule in the general (multivariate) case 
requires rather a lot of linear algebra, so we will stick to a very simple univariate case for now; 
and later give the results for the general case. Even for the univariate case, the calculations 
are somewhat tedious, but we feel that they are worth seeing because the usefulness of the 
Kalman filter is tied so intimately to the mathematical properties of Gaussian distributions. 

The temporal model we consider describes a random walk of a single continuous state 
variable Xt  with a noisy observation Zi .  An example might be the "consumer confidence" in- 
dex, which can be modeled as undergoing a random  Gaussian-distributed change each month 
and is measured by a random consumer survey that also introduces Gaussian sampling noise. 
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The prior distribution is assumed to be Gaussian with variance crq:  

. ((r=42_0 )  P(so)  = or e 'a  

(For simplicity, we use the same symbol a for all normalizing constants in this section.) The 
transition model adds  a Gaussian perturbation of constant variance cq  to the current state: 

P(xi-Ft  xi) =  cr e •  
The sensor model assumes Gaussian noise with variance cr2 :  

P(24 =  e  
Now, given the prior P(X0 ),  the one-step predicted distribution comes from Equation (15.17): 

2

P(x i  xo )P(xo )  dxo  —  o e

; 2  

e dx o  
DO 

co ((.1-(0 2 ) 1 (  Gr•D  )  
2  

Lococ 1  (  '71  (.1 2  -E‘, .2,( -.0  -Po)  2  
2 2  2 dx0  

This integral looks rather complicated. The key to progress is to notice that the exponent is the 
sum of two expressions that are quadratic in xo  and hence is itself a quadratic in xo.  A simple 
trick known as completing the square allows the rewriting of any quadratic ax ij  bi o  r  
as the sum of a squared term a(xo  — 4) 2  and a residual term c  —  that is independent of 
xo.  The residual term can be taken outside the integral, giving us 

P(x i )  =ere  2 e - (Q(1°- 2 )2 )  d,To  ,  

Now the integral is just the integral of a Gaussian over its full range, which is simply 1. Thus. 
we are left with only thc  residual term from thc  quadratic. Then, we notice that the residual 
term is a quadratic in xi;  in fact, after simplification, we obtain 

,  

That is, the one-step predicted distribution is a Gaussian with the same mean RI  and a variance 
equal to the sum of thc  original variance 4 and the transition variance 

To complete the update step, we need to condition on the observation at the first time 
step, namely, zt .  From Equation (15.18), this is given by 

P(xl  1 21 )  = cs P(z1  I  xl)P(x 1 )  
1(   c. ,.i) 2 )  _  ex  e  2 e  2 )  

Once again, we combine the exponents and complete the square (Exercise 15.11),  obtaining 
+4o=rk  2 

1,-E=4+ ,=1   

(15.19) P(xi  zi)  =  6  

P(xi)  = 



Figure 15.10  Stages in the Kalman filter update cycle for a random walk with a prior 
given by ito  = 0.0 and Co  = 1.0, transition noise given by o = 2.0, sensor noise given by 
try  =1.0, and a first observation al  = 2.5 (marked on the z-axis). Notice how the prediction 
P(xl )  is flattened out. relative to P(xo ),  by the transition noise. Notice also that the mean 
of the posterior distribution P(xi 21) is slightly to the left of the observation 21 because the 
mean is a weighted average of the prediction and the observation. 
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Thus, after one update cycle, we have a new Gaussian distribution for the state variable. 
From the Gaussian formula in Equation (15.19), we see that the new mean and standard 

deviation can be calculated from the old mean and standard deviation as follows: 

Figure 15.10 shows one update cycle for particular values of the transition and sensor models. 
Equation (15.20) plays exactly the same role as the general filtering equation (15.5) or 

the HMM filtering equation (15.12). Because of the special nature of Gaussian distributions, 
however, the equations have some interesting additional properties. First. we can interpret 
the calculation for the new mean /it_E i  as simply a weighted mean of the new observation 
zt+1  and the old mean fi t .  If the observation is unreliable, then cr..2  is large and we pay more 
attention to the old mean; if the old mean is unreliable (cr  is large) or the process is highly 
unpredictable (cr2  is large), then we pay more attention to the observation.  Second, notice 
that the update for the variance 4

+1 
 is independent of the observation. We can therefore 

compute in advance what the sequence of variance values will be Third, the sequence of 
variance values converges quickly to a fixed value that depends only on cr and 4,  thereby 
substantially simplifying the subsequent calculations. (See Exercise 15.12.) 

15.4.3 The general case 

The preceding derivation illustrates the key property of Gaussian distributions that allows 
Kalman filtering to work: the fact that the exponent is a quadratic form. This is true not just 
for the univariate  case; the full multivariate Gaussian distribution has the form 

N(L,E)(x)  =  „  ((x-IL)TE-`(x_it))  
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Multiplying out the terms in the exponent makes it clear that the exponent is also a quadratic 
function of the values x in x. As in the univariatc case, thc  filtering update preserves the 
Gaussian nature of the state distribution. 

Let us first define the general temporal model used with Kalman filtering. Both the tran-
sition model and the sensor model allow for a linear transformation with additive Gaussian 
noise. Thus, we have 

P(xt_o  1 ,4)  = (15.21)  P(zt lxt )  = N(Hxt ,  E z )(z t )  
where F and Ex  arc matrices describing thc  linear transition model and transition noise co-
variance, and H and Ez  are the corresponding matrices for the sensor model. Now the update 
equations for the mean and covariance, in their full, hairy horribleness, are 

FLt+t  = Fret + Kt+1(Zt+i  HFItt) (15.22)  E t+i  = (I — Kt+I H)(FEtF7  ±  Ex ) , 
where K1+1  = (FE tFT  Ex )HT(H(FE tFT  Ex ) HT  Ez )  -1  is called the Kalman  gain 
matrix. 13elieve  it or not, these equations make some intuitive sense. For example, consider 
the update for the mean state estimate p. The term Flit  is the predicted state at t  1, so 
11Fit  is the predicted observation. Therefore, the term zt* 1  — HFtt,  represents the error in 
the predicted observation. This is multiplied by Kt+i  to correct the predicted state; hence, 
Kt+i  is a measure of how seriously to take the new observation relative to the prediction. As 
in Equation (15.20), we also have the property that the variance update is independent of the 
observations_ The sequence of values for E t  and K t  can therefore be computed offline, and 
the actual calculations required during online tracking are quite modest. 

To illustrate these equations at work, we have applied them to the problem of tracking 
an object moving on the X—Y plane. The state variables are X = (X, Y, X,  Y) T ,  so F, E x ,  
H, and E z  are 4 x 4 matrices. Figure 15.11(a)  shows the true trajectory, a series of noisy 
observations, and the trajectory estimated by Kalman filtering, along with the covariances 
indicated by the one-standard-deviation contours. The filtering process does a good job of 
tracking the actual motion, and, as expected, the variance quickly reaches a fixed point. 

We can also derive equations for smoothing as well as filtering with linear Gaussian 
models_ The smoothing results are shown in Figure 15_  I l(h).  Notice how the variance in the 
position estimate is sharply reduced, except at the ends of the trajectory (why?), and that the 
estimated trajectory is much smoother. 

15.4.4 Applicability of  Kalman filtering 

The Kalman filter and its elaborations are used in a vast array of applications. The "classical" 
application is in radar tracking of aircraft and missiles. Related applications include acoustic 
tracking of submarines and ground vehicles and visual tracking of vehicles and people. In a 
slightly more esoteric vein, Kalman filters are used to reconstruct particle trajectories from 
bubble-chamber photographs and ocean currents from satellite surface measurements. The 
range of application is much larger than just the tracking of motion: any system characterized 
by continuous state variables and noisy measurements will do. Such systems include pulp 
mills, chemical plants, nuclear reactors, plant ecosystems, and national economies. 
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EXTENDED KALMAN 
FILTER {EKF)  

NONLINEAR 

SWITCHING SALMAN 
FILTER 

The fact that Kalman filtering can be applied to a system does not mean that the re- 
sults will be valid or useful. The assumptions made—a linear Gaussian transition and sensor 
models—are very strong. The extended Kalman filter (EKF) attempts to overcome nonlin- 
cantles  in the system being modeled. A system is nonlinear if the transition model cannot 
be described as a matrix multiplication of the state vector, as in Equation (15.21). The EKF 
works by modeling the system as locally linear in xt  in the region of xt  = p t , the mean of the 
current state distribution. This works well for smooth, well-behaved systems and allows the 
tracker to maintain and update a Gaussian state distribution that is a reasonable approximation 
to the true posterior_ A detailed example is given in Chapter 25_ 

What does it mean for a system to be "unsmooth" or "poorly behaved"? Technically, 
it means that there is significant nonlinearity  in system response within the region that is 
"close" (according to the covariance E t ) to the current mean tt i .  To understand this idea 
in nontechnical terms, consider the example of trying to track a bird as it flies through the 
jungle. The bird appears to be heading at high speed straight for a tree trunk. The Kalman 
filter, whether regular or extended, can make only a Gaussian prediction of the location of the 
bird, and the mean of this Gaussian will be centered on the trunk, as shown in Figure 15.12(a). 
A reasonable model of the bird, on the other hand, would predict evasive action to one side or 
the other, as shown in Figure 15.12(b). Such a model is highly nonlinear,  because the bird's 
decision varies sharply depending on its precise location relative to the trunk. 

To handle examples like these, we clearly need a more expressive language for repre- 
senting the behavior of the system being modeled. Within the control theory community, for 
which problems such as evasive maneuvering by aircraft raise the same kinds of difficulties, 
the standard solution is the switching Kalman filter. In this approach, multiple Kalman fil- 



(a) (b) 

Figure 15.12  A bird flying toward a tree (top views). (a) A Kalman filter will predict the  
location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic 
model allows for the bird's evasive action, predicting that it will fly to one side or the other. 
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ters run in parallel, each using a different model of the system—for example, one for straight 
flight, one for sharp left turns, and one for sharp right turns. A weighted sum of predictions 
is used, where the weight depends on how well each filter fits the current data. We will see 
in the next section that this is simply a special case of the general dynamic Bayesian net-
work model, obtained by adding a discrete "maneuver" state variable to the network shown 
in Figure 15.9. Switching Kalman filters are discussed further in Exercise 15.10.  

15.5 DYNAMIC BAYESIAN NETWORKS 

BYNAME BAYESIAN  
N ETNDFIK  A dynamic Bayesian  network, or DBN, is a Bayesian  network that represents a temporal 

probability model of the kind described in Section 15.1.  We have already seen examples of 
DBNs: the umbrella network in Figure 15.2 and the Kalman filter network in Figure 15.9. In 
general, each slice of a DBN can have any number of state variables X t  and evidence variables 
Et. For simplicity, we assume that the variables and their links are exactly replicated from 
slice to slice and that the DBN represents a first-order Markov process, so that each variable 
can have parents only in its own slice or the immediately preceding slice. 

It should be clear that every hidden Markov model can be represented as a DBN with 
a single state variable and a single evidence variable. It is also the case that every discrete- 
variable DBN can be represented as an HMM; as explained in Section 15.3, we can combine 
all the state variables in the DBN into a single state variable whose values are all possible 
tuples  of values of the individual state variables. Now, if every HMM  is a DBN and every 
DBN can be translated into an HMM,  what's the difference? The difference is that, by de- 
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composing the state of a complex system into its constituent variables, the can take advantage 
of sparseness in the temporal probability model. Suppose, for example, that a DEN has 20 
Boolean state variables, each of which has three parents in the preceding slice. Then the 
DBN transition model has 20 x 2 3  = 160 probabilities, whereas the corresponding HMM  has 
220  states and therefore 2 4e , or roughly a trillion, probabilities in the transition matrix. This 
is bad for at least three reasons: first, the HMM  itself requires much more space; second, 
the huge transition matrix makes HMM inference much more expensive; and third, the prob-
lem of learning such a huge number of parameters makes the pure HMM model unsuitable 
for large problems. The relationship between DBNs and HMMs is roughly analogous to the 
relationship between ordinary Bayesian networks and full tabulated joint distributions. 

We have already explained that every Kalman filter model can be represented in a 
DBN with continuous variables and linear Gaussian conditional distributions (Figure 15.9). 
Il  should be clear from the discussion at the end of the preceding section that nor every DBN 
can be represented by a Kalman filter model. In a Kalman filter, the current state distribution 
is always a single multivariate Gaussian distribution—that is, a single "bump" in a particular 
location. DBNs, on the other hand, can model arbitrary distributions. For many real-world 
applications, this flexibility is essential. Consider, for example, the current location of my 
keys. They might be in my pocket, on the bedside table. on the kitchen counter, dangling 
from the front door, or locked in the car. A single Gaussian bump that included all these 
places would have to allocate significant probability to the keys being in mid-air in the front 
hall. Aspects of the real world such as purposive agents ;  obstacles, and pockets introduce 
"nenlinearities"  that require combinations of discrete and continuous variables in order to get 
reasonable models. 

15.5.1 Constructing DBNs 

To construct a DBN, one must specify three kinds of information: the prior distribution over 
the state variables, P(Xo );  the transition model P(Xt+i  I Xt);  and the sensor model P(E t  X t  ).  
To specify the transition and sensor models, one must also specify the topology of the con-
nections between successive shoes and between the state and evidence variables. Because 
the transition and sensor models are assumed to be stationary—the same for all t—it is most 
convenient simply to specify them for the first slice. For example, the complete DBN speci-
fication for the umbrella world is given by the three-node network shown in Figure 15.13(a). 
From this specification, the complete DBN with an unbounded number of time slices can be 
constructed as needed by copying the first slice. 

Let us now consider a more interesting example: monitoring a battery-powered robot 
moving in the X—Y plane, as introduced at the end of Section 15.1. First, we need state 
variables, which will include both Xt  = (Xt  , Yi )  for position and Xt  = (Xi, Y)  for velocity. 
We assume some method of measuring position—perhaps a fixed camera or onboard GPS 
(Global Positioning System)-yielding  measurements Z.  The position at the next time step 
depends on the current position and velocity, as in the standard Kalman filter model. The 
velocity at the next step depends on the current velocity and the stale of the battery. We 
add Buttery i  to represent the actual battery charge level, which has as parents the previous 
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Figure 15.13 (a) Specification  of the prior, transition model, and sensor model fur the 
umbrella DBN. All subsequent slices are assumed to be copies of slice 1. (b) A simple DBN 
for robot motion in the X—Y plane. 
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battery level and the velocity, and we add BMeter t ,  which measures the battery charge level. 
This gives us the basic model shown in Figure 15.13(b).  

It is worth looking in more depth at the nature of the sensor model for BMeter t .  Let 
us suppose, for simplicity, that both Battpxy t  and BMeter t  can take on discrete values 0  

through 5. If the meter is always accurate, then the CPT P(BAleter t  I Battery t )  should have 
probabilities of 1.0 "along the diagonal" and probabilities of 0.0 elsewhere. In reality, noise 
always creeps into measurements. For continuous measurements, a Gaussian distribution 
with a small variance might be used.5  For our discrete variables, we can approximate a 
Gaussian using a distribution in which the probability of error drops off in the appropriate 
way, so that the probability of a large error is very small. We use the term Gaussian error 

GAU  RSAN  ERROR  model to cover both the continuous and discrete versions. MODEL 

Anyone with hands-on experience of robotics, computerized process control, or other 
forms of automatic sensing will readily testify to the fact that small amounts of measurement 
noise are often the least of one's problems. Real sensors fail. When a sensor fails, it does 
not necessarily send a signal saying, "Oh, by the way, the data I'm about to send you is a 
load of nonsense." Instead, it simply sends the nonsense. The simplest kind of failure is 

TRANSIENT FAILURE  called a transient failure, where the sensor occasionally decides to send some nonsense. For 
example, the battery level sensor might have a habit of sending a zero when someone bumps 
the robot, even if the battery is fully charged. 

Let's see what happens when a transient failure occurs with a Gaussian error model that 
doesn't accommodate such failures. Suppose, for example, that the robot is sitting quietly and 
observes 20 consecutive battery readings of 5. Then the battery meter has a temporary seizure 

Strictly speaking, a Gaussian distribution is problematic because it assigns nonzero probability to large nega-
tive charge levels. The beta distribution is sometimes a better choice for a variable whose range is restricted. 
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and the next reading is BMeteril  =0.  What will the simple Gaussian error model lead us to 
believe about Betel-n .0  According to Baycs' rule, the answer depends on both the sensor 
model P(BMeter2i  =0 Battergai.)  and the prediction P(Batterym  BMeteri:20).  If the 
probability of a large sensor error is significantly less likely than the probability of a transition 
to Battery2i  = 0,  even if the latter is very unlikely, then the posterior distribution will assign 
a high probability to the battery's being empty. A second reading of 0 at i  = 22 will make 
this conclusion almost certain. If the transient failure then disappears and the reading returns 
to 5 from t  = 23 onwards, the estimate for the battery level will quickly return to 5, as if by 
magic. This course of events is illustrated in the upper curve of Figure 15.14(a). which shows 
the expected value of Battery t  over time, using a discrete Gaussian error model. 

Despite the recovery. there is a time (1 —  22) when the robot is convinced that its battery 
is empty; presumably, then, it should send out a mayday signal and shut down. Alas, its 
oversimplified sensor model has led it astray. How can this be fixed? Consider a familiar 
example from everyday human driving: on sharp curves or steep hills, one's "fuel tank empty" 
warning light sometimes turns on. Rather than looking for the emergency phone, one simply 
recalls that the fuel gauge sometimes gives a very large error when the fuel is sloshing around 
in the tank. The moral of the story is the following: for the system to handle sensor failure 
properly. the sensor model must  include the possibility of failure_  

The simplest kind of failure model for a sensor allows a certain probability that the 
sensor will return some completely incorrect value, regardless of the true state of the world. 
For example, if the battery meter fails by returning 0, we might say that 

P(BMeter  1 =01  Batteryt=  .5)  = 0.03  .  

which is presumably much larger than the probability assigned by the simple Gaussian error 
model. Let's call this the transient failure model. How does it help when we are faced 
with a reading of 0? Provided that the predicted probability of an empty battery, according 
to the readings so far, is much less than 0.03, then the best explanation of the observation 
BAfeter n  = 0  is that the sensor has temporarily failed. Intuitively, we can think of the belief 
about the -battery level as having a certain amount of "inertia" that helps to overcome tempo-
rary blips in the meter reading. The upper curve in Figure 15.14(b)  shows that the transient 
failure model can handle transient failures without a catastrophic change in beliefs. 

So much for temporary blips. What about a persistent sensor failure? Sadly, failures of 
this kind are all too common. If the sensor returns 20 readings of 5 followed by 20 readings 
of 0, then the transient sensor failure model described in the preceding paragraph will result 
in the robot gradually coming to believe that its battery is empty when in fact it may be that 
the meter has failed. The lower curve in Figure 15.14(b)  shows the belief "trajectory" for 
this case. By t  = 25—five readings of 0—the robot is convinced that its battery is empty. 
Obviously, we would prefer the robot to believe that its battery meter is broken—if indeed 
this is the more likely event. 

Unsurprisingly, to handle persistent failure, we need a persistent failure model that 
describes how the sensor behaves under normal conditions and after failure. To do this, we 
need to augment the state of the system with an additional variable, say, BM.87vIcem,  that 
describes the status of the battery meter. The persistence of failure must be modeled by an 
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Figure 15.14  (a) Upper curve: trajectory of the expected value of Battery [  for an observa 
tion sequence consisting of all Ss except for Os at t = 21 and t = 22, using a simple Gaussian 
error model. Lower curve: trajectory when the observation remains at 0 from I = 21 onwards. 
(b) The same experiment run with the transient failure model. Notice that the transient fail-
ure is handled well, but the persistent failure results in excessive pessimism about the battery 
charge. 
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Figure 15.15  (a) A DEN fragment showing the sensor status variable required for mod-
eling persistent failure of the battery sensor. (b) Upper curves: trajectories of the expected 
value of Bsttery t  for the "transient failure" and "permanent failure" observations sequences. 
Lower curves: probability trajectories for BMBroken  given the two observation sequences_ 
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PERSISTENCE ARC arc linking BMBrokeno  to BMBroken i .  This persistence arc has a CPT that gives a small 
probability of failure in any given time step, say, 0.001, but specifies that the sensor stays 

broken once it breaks. When the sensor is OK, the sensor model for BMeter is identical to 
the transient failure  model, when the sensor is broken, it says BMeter  is always 0, regardless  

of the actual battery charge. 
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The persistent failure model for the battery sensor is shown in Figure 15.15(a). Its 
performance on the two data sequences (temporary blip and persistent failure) is shown in 
Figure 15.15(b). There are several things to notice about these curves, First, in the case 
of the temporary blip, the probability that the sensor is broken rises significantly after the 
second 0 reading, but immediately drops back to zero once a 5 is observed. Second, in the 
case of persistent failure, the probability that the sensor is broken rises quickly to almost 1 
and stays there. Finally, once the sensor is known to be broken, the robot can only assume 
that its battery discharges at the "normal" rate, as shown by the gradually descending level of 
F(Rnit.pry i  I .  ).  

So far, we have merely scratched the surface of the problem of representing complex 
processes. The variety of transition models is huge, encompassing topics as disparate as 
modeling the human endocrine system and modeling multiple vehicles driving en a freeway. 
Sensor modeling is also a vast subfield in itself, but even subtle phenomena, such as sensor 
drift, sudden decalibration, and the effects of exogenous conditions (such as weather) on 
sensor readings, can be handled by explicit representation within dynamic Bayesian networks. 

155.2 Exact inference in DBNs 

Having sketched some ideas for representing complex processes as DBNs, we now turn to 
the question of inference. In a sense, this question has already been answered: dynamic 
Bayesian networks are Bayesian networks, and we already have algorithms for inference in 
Bayesian networks. Given a sequence of observations, one can construct the full Bayesian 
network representation of a DBN by replicating slices until the network is large enough to 
accommodate the observations, as in Figure 15.16. This technique, mentioned in Chapter 14 
in the context of relational probability models, is called unrolling. (Technically, the DBN is 
equivalent to the semi-infinite network obtained by unrolling forever. Slices added beyond 
the last observation have no effect on inferences within the observation period and can be 
omitted.) Once the DBN is unrolled, one can use any of the inference algorithms—variable 
elimination, clustering methods, and so on—described in Chapter 14. 

Unfortunately. a naive application of unrolling would not be particularly efficient. If 
we want to perform filtering or smoothing with a long sequence of observations eu,  the 
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unrolled network would require 0(t) space and would thus grow without bound as more 
observations were added. Moreover, if we simply run the inference algorithm anew each 
time an observation is added, the inference time per update will also increase as 0(t).  

Looking back to Section 15.2.1, we see that constant time and space per filtering update 
can be achieved if the computation can be done recursively. Essentially, the filtering update 
in Equation (15.5) works by summing out  the state variables of the previous time step to get 
the distribution for the new time step. Summing out variables is exactly what the variable 
elimination (Figure 14.11) algorithm does, and it turns out that running variable elimination 
with the variables in temporal order exactly mimics the operation of the recursive filtering 
update in Equation (15.5). The modified algorithm keeps at most two slices in memory at 
any one time: starting with slice 0, we add slice 1, then sum out slice 0, then add slice 2, then 
sum out slice 1, and so on. In this way, we can achieve constant space and time per filtering 
update. (The same  performance can be achieved by suitable modifications to the clustering 
algorithm.) Exercise 15.17 asks you to verify this fact for the umbrella network. 

So much for the good news; now for the bad news: It turns out that the "constant" for 
the per-update time and space complexity is, in almost all cases, exponential in the number of 
state variables. What happens is that, as the variable elimination proceeds,  the factors grow 
to include all the state variables (or, more precisely, all those state variables that have parents 
in the previous time slice). The maximum factor size is 0 (dm+  )  and the total update cost per 
step is 0(rtrin–k  ), where d is the domain size of the variables and k is the maximum number 
of parents of any state variable. 

Of course, this is much less than the cost of 11MM updating, which is 0 ,d2".),  but it 
is still infeasible for large numbers of variables. This grim fact is somewhat hard to accept. 
What it means is that even though we can use DBNs  to represent very complex temporal 
processes with many sparsely connected variables, we cannot reason efficiently and exactl)  
about those processes. The DEN model itself, which represents the prior joint distribution 
over all the variables, is factorable into its constituent CPTs, but the posterior joint distribu-
tion conditioned on an observation sequence—that is, the forward message—is generally not 
factorable. So far, no one has found a way around this pmblern,  despite the fact that many 
important areas of science and engineering would benefit enormously from its solution. Thus ;  
we must fall back on approximate methods. 

15.5.3 Approximate inference in DBNs 

Section 14.5 described two approximation algorithms: likelihood weighting (Figure 14.15) 
and Markov chain Monte Carlo (MCMC, Figure 14.15).  Of the two, the former is most easily 
adapted to the DBN  context. (An MCMC filtering algorithm is described briefly in the notes 
at the end of the chapter.) We will see, however, that several improvements are required over 
the standard likelihood weighting algorithm before a practical method emerges. 

Recall that likelihood weighting works by sampling the nonevidence  nodes of the net-
work in topological order, weighting each sample by the likelihood it accords to the observed 
evidence variables.  As with the exact algorithms, we could apply likelihood weighting di- 
rectly to an unrolled DBN,  but this would suffer from the same problems of increasing time 
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and space requirements per update as the observation sequence grows. The problem is that 
the standard algorithm runs each sample in turn, all the way through the network. Instead, 
we can simply run all N samples together through the DBN,  one slice at a time. The mod-
ified algorithm fits the general pattern of filtering algorithms, with the set of N samples as 
the forward message. The first key innovation, then, is to use the samples themselves as an 
approximate representation of the current slate distribution. This meets the requirement of a 
"constant" time per update, although the constant depends on the number of samples required 
to maintain an accurate approximation. There is also no need to unroll the DBN,  because we 
need to have in memory only the current slice and the next slice. 

In our discussion of likelihood weighting in Chapter 14, we pointed out that the al-
gorithm's accuracy suffers if the evidence variables are "downstream" from the variables 
being sampled, because in that case the samples are generated without any influence from 
the evidence. Looking at the typical structure of a DBN—say,  the umbrella DBN in Fig-
ure 15.16—we  see that indeed the early state variables will be sampled without the benefit of 
the later evidence. In fact, looking more carefully, we see that none of the state variables has 
any evidence variables among its ancestors? Hence, although the weight of each sample will 
depend on the evidence, the actual set of samples generated will be completely independent 
of the evidence. For example. even if the boss brings in the umbrella every day, the sam-
pling process could still hallucinate endless days of sunshine. What this means in practice is 
that the fraction of samples that rernain  reasonably close to the actual series of events  (and 
therefore have nonnegligible  weights) drops exponentially with t, the length of the observa-
tion sequence. In other words, to maintain a given level of accuracy, we need to increase the 
number of samples exponentially with t. Given that a filtering algorithm that works in real 
time can use only a fixed number of samples, what happens in practice is that the error blows 
up after a very small number of update steps. 

Clearly, we need a better solution. The second key innovation is to focus the set of 
samples on the high-pmhability  regions of the slate space. This can be done by throwing 
away samples that have very low weight, according to the observations, while replicating 
those that have high weight. In that way, the population of samples will stay reasonably close 
to reality. If we think of samples as a resource for modeling the posterior distribution, then it 
makes sense to use more samples in regions of the state space where the posterior is higher. 

A family of algorithms called particle filtering is designed to do just that. Particle 
filtering works as follows: First, a population of N initial-state samples is created by sampling 
from the prior distribution P(Xn).  Then the update cycle is repeated for each time step 

1. Each sample is propagated forward by sampling the next state value x t _ t  given the 
current value x t  for the sample, based on the transition model P(X tt  xt ).  

2. Each sample is weighted by the likelihood it assigns to the new evidence, P(e1+1 1x t+i ).  

3. The population is resampied  to generate a new population of N samples. Each new 
sample is selected from the current population; the probability that a particular sample 
is selected is proportional to its weight. The new samples are unweighted. 

The algorithm is shown in detail in Figure 15,17, and its operation for the tunbrella  DBN is 
illustrated in Figure 15.18. 
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function PARTICLE-FILTERING (c, N, dbn)  returns a set of samples for the next time step 
inputs: e, the new incoming evidence 

N, the number of samples to be maintained 
dim,  a DBN with prior P(X(,),  transition model P (X I  [X (: ),  sensor model P(E 1  X 1  l 

persistent: S, a vector of samples of size N, initially generated from PA„) 
local variables: W, a vector of weights of size N 

for i  = I to N do 
Sit] ,—  sample from P(X5  1  X0= S [i]) /*  step 1 *1 
W[il P(e X 5  = SW ) /*  step 2 */  

S ,—  WEIGHTED-SAMPLE-WITH-REPLACEMENT(N,  S, TV) I'  step 3 */  
return S 

Figure 15.17 The particle filtering algorithm implemented as a recursive update op- 
eration with state (the set of samples). Each of the sampling operations involves sam- 
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The 
WEIGHTED-5  AMPLE-W ITH-REPLACEMENT  operation can be implemented to run in 0(N ) 
expected time. The step numbers refer to the description in the text. 
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Figure 15.16 The particle filtering update cycle for the umbrella DBN with N = 10, show- 
ing the sample populations of each state. (a) At time /,  8 samples indicate rain and 2 indicate 
—rain. Each is propagated forward by sampling the next state through the transition model. 
At time t + 1, 6 samples indicate rain and 4 indicate — rain. (b) --ant6rellit  is observed at 
t +  1. Each sample is weighted by its Likelihood for the observation, as indicated by the size 
of the circles. (c) A new set of 10 samples is generated by weighted random selection from 
the current set, resulting in 2 samples that indicate rain and 8 that indicate —,rain.  

We can show that this algorithm is consistent—gives the correct probabilities as N tends 
to infinity—by considering what happens during one update cycle. We assume that the sample 
population starts with a correct representation of the forward message f1.t  =  P(Xf  .t) at 
time f.  Writing N (xt  et.t)  for the number of samples occupying state xi  after observations 

el :t  have been processed, we therefore have 

N(xt  el:i)  I N = P(xt  ei:t) (15.23) 
for large N. Now we propagate each sample forward by sampling the state variables at I -F  1, 
given the values for the sample at I. The number of samples reaching state xt_1.1  from each 
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xt  is the transition probability times the population of xt;  hence. the total number of samples 
reaching x t+1  is 

N(xt+tlet:t)  = P(xt+1  xt)N(xt  I et:t)  
xt  

Now we weight each sample by its likelihood for the evidence at t +1 A sample in state xf.+l  
receives weight P(et+ i  I xt+i).  The total weight of the samples in xt+ i  after seeing et+ i  is 
therefore 

W (xt-Filei,t+t)  = P(e1+11x1+1)  N (xt+1  et:t.)  
Now for the resampling step. Since each sample is replicated with probability proportional 
to its weight, the number of samples in state x t_ i  after resampling  is proportional to the total 
weight in xt+ i  before resampling: 

N(xt+ilei:t+i)/N  = c, W(xt+1  ier:t+t)  
c, P(et+1  I xt+1)-v(xt,1  I eirt)  

ci P(et-Ei  
I  xt-E1) EP(x,,  xoN(xt  I ei:t)  

xt  

ci NP(et-Ei  I xe+0  EPx+i  .0p(x,  I ell)  (by 15.23) 
x,  

= clefi(et+1  I xt+1) E 1-, (x,÷,  xt )P(xt  I 
x!

=  P(xt-Fr  lei:t-Fr)  (by 15.5). 

er:t)  

Therefore the sample population after one update cycle correctly represents the forward mes-
sage at time t + 1. 

Panicle filtering is consistent,  therefore, but is it efficient? In practice, it seems that the 
answer is yes: particle filtering seems to maintain a good approximation to the true posterior 
using a constant number of samples. Under certain assumptions—in particular, that the prob-
abilities in the transition and sensor models are strictly greater than 0 and less than I—it is 
possible to prove that the approximation maintains bounded error with high probability. On 
the practical side, the range of applications has grown to include many fields of science and 
engineering; some references are given at the end of the chapter. 

15.6 KEEPING TRACK OF MANY OBJECTS 

The preceding sections have considered—without mentioning it—state estimation problems 
involving a single object. In this section, we see what happens when two or more objects 
generate the observations. What makes this case different from plain old state estimation is 
that there is now the possibility of uncertainty about which object generated which observa- 
tion. This is the identity uncertainty problem of Section 14.6.3 (page 544), now viewed in a 

llok  A  ASSOLIAI  EON temporal context. In the control  theory literature, this is the data association problem—that 

is, the problem of associating observation data with the objects that generated them. 
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Figure 15.19 (a) Observations made of object locations in 21)  space over five time steps. 
Each observation is labeled with the time step but does not identify the object that produced 
it.  (b—c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the 
case in which false alarms, detection failures, and track initiation/termination are possible. 
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The data association problem was studied originally in the context of radar tracking, 
where reflected pulses are detected at fixed time intervals by a rotating radar antenna. At each 
time step, multiple blips may appear on the screen, but there is no direct observation of which 
blips at time t belong to which blips at time t  — 1. Figure 15.19(a) shows a simple example 
with two blips per time step for five steps. Let the two blip locations at time t  be  and 4.  
(The labeling of blips within a time step as "1"  and "2" is completely arbitrary and carries no 
information.) Let us assume, for the time being, that exactly two aircraft, A and B , generated 
the blips; their true positions are Xi4  and Kr. Just to keep things simple, we'll also assume 
that the each aircraft moves independently according to a known transition model—e.g.,  a 
linear Gaussian model as used in the Kalman filter (Section 15_4).  

Suppose we try to write down the overall probability model for this scenario, just as 
we did for general temporal processes in Equation (15.3) on page 569.  As usual, the joint 
distribution factors into contributions for each time step as follows: 

P(4t , ett)  —  

P(x64 )P(xii)3 )  ll  P(41  I i)P(43  xB  1 )  P(e!  ea I 4  1 , )  . (15.24) 
=  

We would like to factor the observation term P(4,  1 41 ,  xr)  into a product of two terms. 
one for each object, but this would require  knowing which observation was generated  by 
which object. Instead, we have to sum over all possible ways of associating the observations 
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with the objects. Some of those ways are shown in Figure 15.19(b—c);  in general, for n 
objects and T time steps, there arc (7-0)T  ways of doing it—an awfully large number. 

Mathematically speaking, the "way of associating the observations with the objects" 
is a collection of unobserved random variable that identify the source of each observation. 
We'll write wt  to denote the one-to-one mapping from objects to observations at time t, with 
wt (A)  and wt (B)  denoting the specific observations (1 or 2) that wt  assigns to A and B. 
(For n objects, wf will have it!  possible values; here,  = 2.) Because the labels "1" ad 
"2" on the observations are assigned arbitrarily, the prior on wt  is uniform and w t  is inde-
pendent of the states of the objects, 44  and xe).  So we can condition the observation term 

rii3)  on wt  and then simplify: 

= P(el,  414,e,  Ldi) P(L'ii  I x;:1 ,rt
i

.
3 )  

=  E  P(er(A)  4)P(er(B)  lx3)P(wi  1 4,  

2
E ) P(er(B)  x,B)  

NEAREST KEIGHBOR  
FILLER 

HURGARIAN  
ALGORITHM 

ma 

Plugging this into Equation (15.24), we get an expression that is only in terms of transition 
and sensor models for individual objects and observations. 

As for all probability models, inference means summing out the variables other than 
the query and the evidence. For filtering in HisaMs  and DBNs, we were able to sum out the 
state variables from 1 to t —  1 by a simple dynamic programming trick; for Kalman filters, we 
took advantage of special properties of Gaussians. For data association, we are less fortunate. 
There is no (known) efficient exact algorithm, for the same reason that there is none for the 
switching Kalman filter (page 589): the filtering distribution P(x't4 1  2  e i:t ,  e l:5 )  for object A 
ends up as a mixture of exponentially many distributions, one for each way of picking a 
sequence of observations to assign to A. 

As a result of the complexity of exact inference, many different approximate methods 
have hem used_ The simplest approach is to choose a single "hest" assignment at each time 
step, given the predicted positions of the objects at the current time step. This assignment 
associates observations with objects and enables the track of each object to be updated and 
a prediction made for the next time step. For choosing the "best" assignment, it is common 
to use the so-called nearest-neighbor filter, which repeatedly chooses the closest pairing 
of predicted position and observation and adds that pairing to the assignment. The nearest-
neighbor filter works well when the objects are well separated in state space and the prediction 
uncertainty and observation error are small—in  other words, when there is no possibility of 
confusion. When there is more uncertainty as to the correct assignment, a better approach 
is to choose the assignment that maximizes the joint probability of the current observations 
given the predicted positions. This can be done very efficiently using the Hungarian algo-
rithm (Kuhn, 1955), even though there are n.!  assignments to choose from. 

Any method that commits to a single best assignment at each time step fails miserably 
under more difficult conditions. In particular, if the algorithm commits to an  incorrect as-
signment, the prediction at the next time step may be significantly wrong, leading to more 
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Figure 15.20  Images from (a) upstream and (b) downstream surveillance cameras roughly 
two miles apart on Highway 99 in Sacramento, California. The boxed vehicle has been 
identified at both cameras. 

incorrect assignments, and so on. Two modem approaches turn out to be much more effec-
tive. A particle filtering algorithm (see page 598) for data association works by maintaining 
a large collection of possible current assignments. An MCMC algorithm explores the space 
of assignment histories—for example, Figure 15.19(b—c) might be states in the MCMC state 
space—and can change its mind about previous assignment decisions. Current MCMC data 
association methods can handle many hundreds of objects in real time while giving a good 
approximation to the true posterior distributions. 

The scenario described so far involved n  known objects generating n observations at 
each time step. Real application of data association are typically much more complicated. 

FALSE ALARM Often, the reported observations include false alarms (also known as clutter), which are not 
CLUTTER caused by real objects. Detection failures can occur, meaning that no observation is reported 
DETECTION FAILURE  for a real object. Finally, new objects arrive and old ones disappear_  These phenomena, which 

create even more possible worlds to worry about, are illustrated in Figure 15.19(d). 
Figure 15.20 shows two images from widely separated cameras on a California freeway. 

In this application, we are interested in two goals: estimating the time it takes, under current 
traffic conditions, to go from one place to another in the freeway system; and measuring 
demand, i.e., how many vehicles travel between any two points in the system at particular 
times of the day and on particular days of the week. Both Beals  require solving the data 
association problem over a wide area with many cameras and tens of thousands of vehicles 
per hour. With visual surveillance, false alarms are caused by moving shadows, articulated 
vehicles, reflections in puddles, etc.; detection failures are caused by occlusion, fag, darkness, 
and lack of visual contrast; and vehicles are constantly entering and leaving the freeway 
system. Furthermore, the appearance of any given vehicle can change dramatically between 
cameras depending on lighting conditions and vehicle pose in the image, and the transition 
model changes as traffic jams come and go. Despite these problems, modem data association 
algorithms have been successful in estimating traffic parameters in real-world settings. 
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Data association is an essential foundation for keeping track of a complex world, be-
cause without it there is no way to combinc multiple observations of any given object. Whcn 
objects in the world interact with each other in complex activities, understanding the world 
requires combining data association with the relational and open-universe probability models 
of Section 14.6.3. This is currently an active area of research. 

15,7  SUMMARY 

This chapter has addressed the general problem of representing and reasoning about proba-
bilistic temporal processes. The main points are as follows: 

• The changing state of the world is handled by using a set of random variables to repre- 
sent the state at each point in time. 

• Representations can be designed to satisfy the Markov property, so that the future 
is independent of the past given the present. Combined with the assumption that the 
process is stationary—that is, the dynamics do not change over time—this greatly 
simplifies the representation. 

• A temporal probability model can he thought of as containing a transition model de- 
scribing the state evolution and a sensor model describing the observation process. 

• The principal inference tasks in temporal models are filtering, prediction, smooth-
ing, and computing the most likely explanation. Each of these can be achieved using 
simple, recursive algorithms whose rim time is linear in the length of the sequence 

• Three families of temporal models were studied in more depth: hidden Markin'  mod. 
els, Kalman filters, and dynamic Bayesian networks (which include the other two as 
special cases). 

• Unless special assumptions are made, as in Kalman filters, exact inference with many 
stare variables is intractahle. In practice, the particle filtering algorithm seems to he an 
effective approximation algorithm. 

• When trying to keep track of many objects, uncertainty arises as to which observations 
belong to which objects—the data association problem. The number of association 
hypotheses is typically intractably large, but MCMC and particle filtering algorithms 
for data association work well in practice. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Many of the basic ideas for estimating the state of dynamical systems came from the mathe- 
matician C. F. Gauss (1809), who formulated a deterministic least-squares algorithm for the 
problem of estimating orbits from astronomical observations. A. A. Markov  (1913) devel- 
oped what was later called the Markov assumption in his analysis of stochastic processes; 
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he estimated a first-order Markov chain on letters from the text of Eugene Onegin.  The gen-
eral theory of Markov chains and their mixing times is covered by Levin et al. (2008). 

Significant classified work on filtering was done during World War II by Wiener (1942) 
for continuous-time processes and by Kolmogorov (1941) for discrete-time processes. Al-
though this work led to important technological developments over the next 20 years, its 
use of a frequency-domain representation made many calculations quite cumbersome. Di-
rect state-space modeling of the stochastic process turned out to be simpler, as shown by 
Peter Swerling (1959) and Rudolf Kalman (1960). The latter paper described what is now 
known as the Kalman filter for forward inference in linear systems with Gaussian noise; 
Kalman's results had, however, been obtained previously by the Danish statistician Thorvold 
Thiele (1880) and by the Russian mathematician Ruslan Stratonovich (1959), whom Kalman 
met in Moscow in 1960. After a visit to NASA Ames Research Center in 1960, Kalman 
saw the applicability of the method to the tracking of rocket trajectories, and the filter was 
later implemented for the Apollo missions. Important results on smoothing were derived by 
Rauch et al. (1965), and the impressively named Rauch—Tung—Striebel smoother is still a 
standard technique today. Many early results are gathered in Gelb (1974). Bar-Shalom and 
Fortmann (1988) give a more modem treatment with a Bayesian flavor, as well as many ref-
erences to the vast literature on the subject. Chatfield (1989) and Box et al.  (1994) cover the 
control theory approach to time series analysis. 

The hidden Markov  model and associated algorithms for inference and learning, in-
cluding the forward—backward algorithm, were developed by Baum and Petrie (1966). The 
Viterbi algorithm first appeared in (Viterbi, 196?). Similar ideas also appeared independently 
in the Kalman filtering community (Rauch et al., 1965). The forward—backward algorithm 
was one of the main precursors of the general formulation of the EM algorithm (Dempster 
et al., 1977); see also Chapter 20. Constant-space smoothing appears in Binder et al. (1997b), 
as does the divide-and-conquer algorithm developed in Exercise 15.3. Constant-time fixed-
lag smoothing for HMMs first appeared in Russell and Norvig (2003). IIMMs  have found 
many applications in language processing (Chamiak,  1993), speech recognition (Rabiner and 
Luang,  1993), machine translation (Och and Ney, 2003), computational biology (Krogh et al., 
1994; Baldi et al., 1994), financial economics Bhar and Hamori  (2004) and other fields. There 
have been several extensions to the basic HMM  model, for example the Hierarchical HMM 
(Fine et aL,  1998) and Layered HMM (Oliver et aL,  2004) introduce structure back into the 
model, replacing the single state variable of HMIVIs.  

Dynamic Bayesian networks (DBNs) can be viewed as a sparse encoding of a Markov  
process and were first used in AI by Dean and Kanazawa (1989b), Nicholson and Brady 
(1992), and Kjaendff  (1992). The last work extends the HUGIN Bayes net system to ac-
commodate dynamic Bayesian networks. The book by Dean and Wellman (1991) helped 
popularize DBNs and the probabilistic approach to planning and control within AL Murphy 
(2002) provides a thorough analysis of DBNs. 

Dynamic Bayesian  networks have become popular for modeling a variety of com-
plex motion processes in computer vision (Huang et al.,  1994; Intille and Bobick,  1999). 
Like HMMs, they have found applications in speech recognition (Zweig and Russell, 1998; 
Richardson etal.,  2000; Stephenson et al., 2000; Nefian et al., 2002; Livescu etal.,  2003), ge- 
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nomics (Murphy and Mian, 1999; Perrin  et al., 2003; Husmeier, 2003) and robot localization 
(Thcocharous  et al., 2004). The link between HMMs and DBNs,  and between the forward— 
backward algorithm and Bayesian network propagation, was made explicitly by Smyth et 
al. (1997). A further unification with Kalman filters (and other statistical models) appears in 
Roweis and Ghahramani (1999). Procedures exist for learning the parameters (Binder et al., 
1997a; Ghahramani,  1998) and structures (Friedman el al., 1998) of DBNs. 

The particle filtering algorithm described in Section 15.5 has a particularly interesting 
history. The first sampling algorithms for particle filtering (also called sequential Monte Carlo 
methods) were developed in the control theory community by Handschin  and Mayne (1969), 
and the resampling idea that is the core of particle filtering appeared in a Russian control 
journal (Zaritskii et al., 1975).  It was later reinvented in statistics as sequential importance- 
sampling resampling, or SIR (Rubin, 1988; Liu and Chen, 1998), in control theory as parti-
cle filtering (Gordon et al., 1993; Gordon, 1994), in AI as survival of the fittest (Kanazawa 
et al_  1995), and in computer vision as condensation (Isard and Blake, 1996). The paper by 
Kanazawa et al. (1995)  includes an improvement called evidence reversal whereby the state 
at time t  +  1 is sampled conditional on both the state at time t and the evidence at time t  +1.  
This allows the evidence to influence sample generation directly and was proved by Doucet 
(1997) and Liu and Chen (1998) to reduce the approximation error. Particle filtering has been 
applied in many areas, including tracking complex motion patterns in video (Isard  and Blake, 
1996), predicting the stock market (de Freitas et al., 2000), and diagnosing faults on plane- 
tary rovers (Verma et al.. 2004). A variant called the Rao-Blackwellized particle filter or 
RBPF (Doucet et al., 2000; Murphy and Russell, 2001) applies particle filtering to a subset 
of state variables and, for each particle, performs exact inference on the remaining variables 
conditioned on the value sequence in the particle. In some cases RBPF works well with thou-
sands of state variables. An application of RBPF to localization and mapping in robotics is 
described in Chapter 25. The book by Doucet et al. (2001) collects many important papers on 
sequential Monte Carlo (SMC) algorithms, of which particle filtering is the mast important 
instance. Pierre Del Moral and colleagues have performed extensive theoretical analyses of 
SMC algorithms (Del Moral, 2004; Del Moral et al., 2006).  

MCMC methods (see Section 14.5.2) can be applied to the filtering problem; for ex-
ample, Gibbs sampling can be applied directly to an unrolled DBN. To avoid the problem of 
increasing update times as the unrolled network grows, the decayed MCMC filter (Marthi 
et al., 2002) prefers to sample more recent state variables, with a probability that decays as 
lik2  for a variable k steps into the past. Decayed MCMC is a provably nondivergent filter. 
Nondivergence theorems can also be obtained for certain types of assumed-density filter. 
An assumed-density filter assumes that the posterior distribution over states at time t  belongs 
to a particular finitely parameterized family; if the projection and update steps take it outside 
this family, the distribution is projected back to give the best approximation within the fam-
ily. For DBNs, the Boyen—Koller  algorithm (Boyen et al., 1999) and the factored frontier 
algorithm (Murphy and Weiss, 2001)  assume that the posterior distribution can be approxi- 
mated well by a product of small factors. Variational techniques (see Chapter 14) have also 
been developed for temporal models. Ghahramani  and Jordan (1997) discuss an approxima- 
tion algorithm for the factorial HMM,  a DBN in which two or more independently evolving 
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Markov chains are linked by a shared observation stream. Jordan et al. (1998) cover a number 
of other applications. 

Data association for multitarget tracking was first described in a probabilistic setting 
by Sittler  (1964). The first practical algorithm for large-scale problems was the "multiple 
hypothesis tracker" or MHT  algorithm (Reid, 1979). Many important papers are collected by 
Bar-Shalom and Fortmann (1988) and Bar-Shalom (1992). The development of an MCMC 
algorithm for data association is due to Pasula et al. (1999), who applied it to traffic surveil-
lance problems. Oh et al. (2009) provide a formal analysis and extensive experimental com-
parisons to other methods. Schulz et al. (2003) describe a data association method based on 
particle filtering. Ingemar Cox analyzed the complexity of data association (Cox, 1993; Cox 
and Hingorani,  1994) and brought the topic to the attention of the vision community. He also 
noted the applicability of the polynomial-time Hungarian algorithm to the problem of find-
ing must-likely  assignments, which had long been considered an intractable problem in the 
tracking community. The algorithm itself was published by Kuhn (1955), based on transla-
tions of papers published in 1931 by two Hungarian mathematicians, Denes  Konig  and Jen8  
Egervary.  The basic theorem had been derived previously, however, in an unpublished Latin 
manuscript by the famous Prussian mathematician Carl Gustav Jacobi (1804-1851). 

EXERCISES 

15.1 Show that any second-order Markov process can be rewritten as a first-order Markov 
process with an augmented set of state variables. Can this always be done parsimoniously, 

i.e., without increasing the number of parameters needed to specify the transition model? 

15.2 In this exercise, we examine what happens to the probabilities in the umbrella world 
in the limit of long time sequences. 

a. Suppose we observe an unending sequence of days on which the umbrella appears. 
Show that, as the days go by, the probability of rain on the current day increases mono-
tonically toward a fixed point. Calculate this fixed point. 

b. Now consider forecasting further and further into the future, given just the first two 
umbrella observations_ First, compute the probability  P(r2±k1111.,  71.2)  for k=1 _  _  20  
and plot the results. You should see that the probability converges towards a fixed point. 
Prove that the exact value of this fixed point is 0.5. 

15.3 This exercise develops a space-efficient variant of the forward—backward algorithm 
described in Figure 15.4 (page 576). We wish to compute P(Xk.  for k =1, .  ,L This 
will be done with a divide-and-conquer approach. 

a. Suppose, for simplicity, that t is odd, and let the halfway point be h = (t + 1)/2. Show 
that P(Xk ei,t)  can be computed for k =1, .  ,h given just the initial forward message 
fi:0,  the backward message hh+ilt,  and the evidence e l .  ,.  

b. Show a similar result for the second half of the sequence. 
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c. Given the results of (a) and (b), a recursive divide-and-conquer algorithm can be con-
structed by first running forward along the sequence and then backward from the  cnd, 
storing just the required messages at the middle and the ends. Then the algorithm is 
called on each half. Write out the algorithm in detail, 

d. Compute the time and space complexity of the algorithm as a function of t, the length of 
the sequence. How does this change if we divide the input into more than two pieces? 

46W  

15.4 On page 577, we outlined a flawed procedure for finding the most likely state sequence, 
given an observation sequence. The procedure involves finding the most likely state at each 
time step, using smoothing, and returning the sequence composed of these states. Show that, 
for some temporal probability models and observation sequences, this procedure returns an 
impossible state sequence (i.e., the posterior probability of the sequence is zero). 

15.5 Equation (15.12) describes the filtering process for the matrix formulation of HMMs. 
Give a similar equation for the calculation of likelihoods, which was described generically in 
Equation (15.7). 

15.6 Consider the vacuum worlds of Figure 4.18 (perfect sensing) and Figure 15.7 (noisy 
sensing). Suppose that the robot receives an observation sequence such that, with perfect 
sensing, there is exactly one possible location it could he in. Is this location necessarily the 
most probable location under noisy sensing for sufficiently small noise probability e?  Prove 
your claim or find a counterexample. 

15.7 In Section 15.3.2. the prior distribution over locations is uniform and the transition 
model assumes an equal probability of moving to any neighboring square. What if those 
assumptions are wrong? Suppose that the initial location is actually chosen uniformly from 
the northwest quadrant of the room and the Move action actually tends to move southeast. 
Keeping the HMM model fixed, explore the effect on localization and path accuracy as the 
southeasterly tendency increases, for different values of E.  

15.S  Consider a version of the vacuum robot (page 582) that has the policy of going straight 
for as long as it can; only when it encounters an obstacle does it change to a new (randomly 
selected) heading. To model this robot, each state in the model consists of a (location, head-
ing) pair hnplement this model and see how well the Viterbi algorithm can track a robot with 
this model. The robot's policy is more constrained than the random-walk robot; does that 
mean that predictions of the most likely path are more accurate? 

15.9 This exercise is concerned with filtering in an environment with no landmarks. Con- 
sider a vacuum robot in an empty room, represented by an n x in rectangular grid. The robot's 
location is hidden; the only evidence available to the observer is a noisy location sensor that 
gives an approximation to the robot's location. If the robot is at location (x, y)  then with 
probability .1 the sensor gives the correct location, with probability .05 each it reports one 
of the 8 locations immediately surrounding (x. ;yr),  with probability .025 each it reports one 
of the 16 locations that surround those 8, and with the remaining probability of .1 it reports 
"nc  reading." The robot's  policy is to pick a direction and follow it with probability .8 on 
each step; the robot switches to a randomly selected new heading with probability .2 (or with 
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Figure 15.21  A Bayesian network representation of a switching Kalman filter. The 
switching variable St  is a discrete state variable whose value determines the transition 
model for the continuous state variables Xt .  For any discrete state i, the transition model 
P(X, +1  3C /  , Sr  =  i)  is a linear Gaussian model, just as in a regular Kalman filter. The tran-
sition model for the discrete state, P(St+i  SO,  can be thought of as a matrix, as in a hidden 
Markov model. 

probability 1 if it encounters a wall). Implement this as an HMM  and do filtering to track the 
robot. How accurately can we track the robot's path? 

15.10 Often, we wish to monitor a continuous-state system whose behavior switches unpre-
dictably among a set of k distinct "modes." For example, an aircraft trying to evade a missile 
can execute a series of distinct maneuvers that the  missile may attempt to track.  A Bayesian 
network representation of such a switching Kalman filter model is shown in Figure 15.21. 

a. Suppose that the discrete state Si  has k possible values and that the prior continuous 
state estimate P(X0)  is a multivariate Gaussian distribution. Show that the prediction 
P(X1)  is a mixture of Gaussians—that is, a weighted sum of Gaussians such that the 
weights sum to 1. 

h. Show that if the current continuous state estimate P(Xt  le i , t )  is a mixture of m Claus-
sians,  then in the general case the updated state estimate P(Xt+ i  I ei, t_i)  will be a mix-
ture of krn  Gaussians. 

c. What aspect of the temporal process do the weights in the Gaussian mixture represent? 
The results in (a) and (b) show that the representation of the posterior grows without limit even 
for switching Kalman filters, which are among the simplest hybrid dynamic models_ 

15.11 Complete the missing step in the derivation of Equation (15.19) on page 586, the first 
update step for the one-dimensional Kalman filter. 

15.12 Let us examine the behavior of the variance update in Equation (15.20) (page 587). 

a. Plot the value of of as a function of t, given various values for cr,2  and cf?,.  

b. Show that the update has a fixed point 
ei2 

 such that cr?  —›  (72  as t —>  Do,  and calculate 
the value of cr 2 .  

c. Give a qualitative explanation for what happens as 0 and as cr,2  —>  0. 
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15.13 A professor wants to know if students are getting enough sleep. Each day, the pro-
fessor observes whether the students sleep in class, and whether they have red eyes. The 
professor has the following domain theory: 

• The prior probability of getting enough sleep, with no observations, is 0.7. 
• The probability of getting enough sleep an night t  is 0_8  given that the student got 

enough sleep the previous night, and 0.3  if not. 
• The probability of having red eyes is 0.2  if the student got enough sleep, and 0.7 if not. 

• The probability of sleeping in class is 0.1 if the student got enough sleep, and 0.3 if not. 
Formulate this information as a dynamic Bayesian network that the professor could use to 
filter or predict from a sequence of observations. Then reformulate it as a hidden Markov 
model that has only a single observation variable. Give the complete probability tables for 
the model. 

15.14  For the DBN specified in Exercise 15.13  and for the evidence values 
ci  = not red eyes, not sleeping in class 
e2  = red eyes, not sleeping in class 
e3  = red eyes, sleeping in class 

perform the following computations: 
a. State estimation: Compute P(EnouyitSieep t  le i , t )  for each oft = 1, 2, 3. 

b. Smoothing.  Compute P(EnoughSleep t lei,3)  for each of t = 1,2,3. 
c. Compare the filtered and smoothed probabilities for t  = 1 and t = 2. 

15.15  Suppose that a particular student shows up with red eyes and sleeps in class every day. 
Given the model described in Exercise 15.13, explain why the probability that the student had 
enough sleep the previous night converges to a fixed point rather than continuing to go down 
as we gather more days of evidence. What is the fixed point? Answer this both numerically 
(by computation) and analytically. 

15.16 This exercise analyzes in more detail the persistent-failure model for the battery sen-
sor in Figure 15.15(a) (page 594). 

a. Figure 15.15(b) stops at t  = 32.  Describe qualitatively what should happen as t  
if the sensor continues to read O.  

b. Suppose that the external temperature affects the battery sensor in such a way that tran-
sient failures become more likely as temperature increases. Show how to augment the 
DBN  structure in Figure 15.15(a), and explain any required changes to the CPTs. 

c_  Given the new network structure, can battery readings he used by the robot to infer the 
current temperature? 

15.17  Consider applying the variable elimination algorithm to the umbrella DBN unrolled 
for three slices, where the query is P(R3lu1 ,  u2 ,  u3).  Show that the space complexity of the 
algorithm—the size of the largest factor—is the same, regardless  of whether the rain variables 
are eliminated in forward or backward order. 



16  MAKING SIMPLE 
DECISIONS 

In which we see how an agent should make decisions so that it gets what it wants—
on average, at least. 

In this chapter, we fill in the details of how utility theory combines with probability theory to 
yield a decision -theoretic agent—an agent that can make rational decisions based on what it 
believes and what it wants. Such an agent can make decisions in contexts in which uncertainty 
and conflicting goals leave a logical agent with no way to decide: a goal-based agent has a 

binary distinction between good (goal) and bad (non-goal) states, while a decision-theoretic 
agent has a continuous measure of outcome quality. 

Section 16.1 introduces the basic principle of decision theory: the maximization of 
expected utility. Section 16.2 shows that the behavior of any rational agent can be captured 
by supposing a utility function that is being maximized_ Section 163  discusses the nature of 
utility functions in more detail, and in particular their relation to individual quantities such as 
money. Section 16.4 shows how to handle utility functions that depend on several quantities. 
In Section 16.5, we describe the implementation of decision-making systems. In particular, 
we introduce a formalism called a decision network (also known as an influence diagram) 
that extends Bayesian networks by incorporating actions and utilities. The remainder of the 
chapter discusses issues that arise in applications of decision theory to expert systems. 

16.1 COMBINING BELIEFS AND DESIRES UNDER UNCERTAINTY 

Decision theory, in its simplest form, deals with choosing among actions based on the desir-
ability of their immediate outcomes; that is, the environment is assumed to be episodic in the 
sense defined on page 43, (This assumption is relaxed in Chapter 17.) In Chapter 3 we used 
the notation RESULT(s0,  a) for the state that is the deterministic outcome of taking action a 
in state so.  In this chapter we deal with nondeterministic  partially observable environments. 
Since the agent may not know the current state, we omit it and define RESULT (a) as a random 
variable whose values are the possible outcome states. The probability of outcome s l ,  given 
evidence observations e, is written 

P(RESULT (a) =  142  

610 
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where the a on the right-hand side of the conditioning bar stands for the event that action a is 
executed.' 

UTILITY  FLINETLON The agent's preferences are captured by a utility function, U(s), which assigns a single 
EXPECTED UTILITY number to express the desirability of a state. The expected utility of an action given the evi- 

dence, EU (a le), is just the average utility value of the outcomes, weighted by the probability 
that the outcome occurs: 

EU(ale)  —  E  P (RESULT (a )  _sr  a y e)U(.5")  . (16.1)  

The principle of maximum expected utility (MEU)  says that a rational agent should choose 
the action that maximizes the agent's expected utility: 

action = argmax E U (ale) 
a 

In a sense, the MEU principle could be seen as defining all of Al. All an intelligent agent has 
to do is calculate the various quantities, maximize utility over its actions, and away it goes. 
But this does not mean that the Al problem is solved by the definition! 

The MEU  principle formalizes  the general notion that the agent should -do  the right 

thing," but goes only a small distance toward a full operutionailzation  of that advice. Es-
timating the state of the world requires perception, learning, knowledge representation, and 
inference. Computing P(REs.ThT(a)  I a, e) requires a complete causal model of the world 
and, as we saw in Chapter 14, NP-hard inference in (very large) Bayesian networks. Comput-
ing the outcome utilities U(s')  often requires searching or planning, because an agent may 
not know how good a state is until it knows where it can get to from that state. So, decision 
theory is not a panacea that solves the Al problem—but it does provide a useful framework. 

The MEU  principle has a clear relation to the idea of performance measures introduced 
in Chapter 2. The basic idea is simple. Consider the environments that could lead to an 
agent having a given percept history, and consider the different agents that we could design. 
?fan  agent acts so as to maximize a utility function that correctly reflects the performance  
measure, then the agent will achieve the highest possible performance score (averaged over 
all the possible environments). This is the central justification for the MEU  principle itself. 
While the claim may seem tautological, it does in fact embody a very important transition 
from a global, external criterion of rationality—the performance measure over environment 
histories—to a local, internal criterion involving the maximization of a utility function applied 
to the next state. 

16.2 THE BASIS OF UTILITY THEORY 

3.1AYBALIM  EXPECTED 
UTILITY 

Intuitively, the principle of Maximum Expected Utility (141EU)  seems like a reasonable way 
to make decisions, but it is by no means obvious that it is the only rational way. After all, 
why should maximizing the average utility be so special? What's wrong with an agent that 

'  Classical decision theory leaves the current state Si implicit, but we could make it explicit by writing 
P(REsul:r(a)=s'  a, e)=  5 ,  P(REsuur(.s,  a)= a)P(So  =s  e). 
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maximizes the weighted sum of the cubes of the possible utilities, or tries to minimize the 
worst possible loss? Could an agent act rationally just by expressing preferences between 
states, without giving them numeric values? Finally, why should a utility function with the 
required properties exist at all? We shall see. 

16.2.1 Constraints on rational preferences 

These questions can be answered by writing down some constraints on the preferences that a 

rational agent should have and then showing that the MEU principle can be derived from the 
constraints. We use the following notation to describe an agent's preferences: 

A r B the agent prefers A over B. 

A B the agent is indifferent between A and B. 

A B the agent prefers A over B or is indifferent between them. 

Now the obvious question is, what sorts of things are A and B? They could be states of the 
world, but more often than not there is uncertainty about what is really being offered. For 
example, an airline passenger who is offered the pasta dish or the chicken" does not know 
what lurks beneath the tinfoil cover.` The pasta could be delicious or congealed, the chicken 
juicy or overcooked beyond recognition. We can think  of the set of outcomes fur each action 

LOTTERY as a lottery—think of each action as a ticket. A lottery L with possible outcomes S1, , 
that occur with probabilities pi, is written 

L= [pi  Si; 22,  S2; 5.]  - 
In general, each outcome Si  of a lottery can be either an atomic state or another lottery. The 
primary issue for utility theory is to understand how preferences between complex lotteries 
are related to preferences between the underlying states in those lotteries. To address this 
issue we list six constraints that we require any reasonable preference relation to obey: 

019DERA6ILITY • Orderability: Given any two lotteries, a rational agent must either prefer one to the 
other or else rate the two as equally preferable. That is, the agent cannot avoid deciding. 
As we said on page 490, refusing to bet is like refusing to allow time to pass. 

Exactly one of (A  B), (B >- A), or (A —  B) holds_  

TRANSITIVIT' 1,  Transitivity: Given any three lotteries, if an agent prefers A to B and prefers B to C, 
then the agent must prefer A to C, 

(A  B) (.13  C) = (A C) . 
CONTINUITY • Continuity: if some lottery B is between A and C in preference, then there is some 

probability p for which the rational agent will be indifferent between getting B for sure 
and the lottery that yields A with probability p and C with probability 1 — p. 

Ep  p, A ;  1 - p, Cl  B . 

SUBSTITUTARLITY ■ Substitutability: If an agent is indifferent between two lotteries A and B, then the 
agent is indifferent between two more complex lotteries that are the same except that B 

2  We apologize to readers whose local airlines no longer offer food on long Eights.  
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is substituted for A in one of them. This holds regardless of the probabilities and the 
other outcome(s)  in the lotteries. 

A B [p, A; 1 — p, C]  [p, B; 1 — p, CI  . 

This also holds if we substitute > for —  in this axiom. 
MCNOTONICITY • Monotonicity:  Suppose two lotteries have the same two possible outcomes, A and B. 

If an agent prefers A to B, then the agent must prefer the lottery that has a higher 
probability for A (and vice versa). 

A B (p > q -4=;-  [p, A; 1 —  p, B] [q, A; 1 —  q, B]) . 
DE'DMPOSABLITY • Decomposability; Compound lotteries can be reduced to simpler ones using the laws 

of probability. This has been called the "no fun in gambling" rule because it says that 
two consecutive lotteries can be compressed into a single equivalent lottery, as shown 
in Figure 16.1(b). 3  

A; 1 — p ,[q , B; 1 —  q, C]] [p, A; (1 — p)q,  B; (1 — p)(1 —  q),C]  

These constraints are known as the axioms of utility theory. Each axiom can be motivated 
by showing that an agent that violates it will exhibit patently irrational behavior in some 
situations. For example, we can motivate transitivity by making an agent with nontransitive  
preferences give us all its money. Suppose that the agent has the nontransitive preferences 
A r B r C r A, where A, B, and C are goods that can be freely exchanged. If the agent 
currently has A, then we could offer to trade C for A plus one cent. The agent prefers C, 
and so would be willing to make this trade_  We could then offer to trade B for C, extracting 
another cent, and finally trade A for B. This brings us back where we started from, except 
that the agent has given us three cents (Figure 16.1(a)). We can keep going around the cycle 
until the agent has no money at all. Clearly, the agent has acted irrationally in this case. 

16.2.2 Preferences lead to utility 

Notice that the axioms of utility theory are really axioms about preferences—they say nothing 
about a utility function. But in fact from the axioms of utility we can derive the following 
consequences (for the proof, see von Neumann and Morgenstern, 1944): 

• Existence of Utility Function: If an agent's preferences obey the axioms of utility, then 
there exists a function U such that U(A)  > U(B) if and only if A is preferred to B ,  

and U(A)  = U(B) if and only if the agent is indifferent between A and B. 
U(A) > U(B) .#›  A > B 
U(A)  = U(B) ,<=>  A B 

• Expected Utility of a Lottery: The utility of a lottery is the sum of the probability of 
each outcome times the utility of that outcome. 

LT ([23 1 ,  Si; -  - Sn])  = EpiLT(S,)  

3  We can account for the enjoyment of gambling by encoding gambling events into the state description; for 
example, "Have $10 and gambled" could be preferred to "Have $10 and didn't gamble.-  



Figure 16.1 (a) A cycle of exchanges showing that the nontransitive preferences A >-  
B C >- A result in irrational behavior. (b) The decomposability axiom. 
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In other words, once the probabilities and utilities of the possible outcome states are specified. 
the utility of a compound lottery involving those states is completely determined. Because the 
outcome of a noncleterministic  action is a lottery, it follows that an agent can act rationally—
that is, consistently with its preferences—only by choosing an action that maximizes expected 
utility according to Equation (16.1).  

The preceding theorems establish that a utility function exists for any rational agent, but 
they do not establish that it is unique. It is easy to see, in fact, that an agent's behavior would 
not change if its utility function U(S) were transformed according to 

( S)  = aU(S)  b (16.2) 

VALUE FUNCTION 

ORDINAL LITIJTY  
FUNCTION 

where a and b  are constants and a > 0; an affine transformation. 4  This fact was noted in 
Chapter 5 for two-player games of chance ,  here, we see that it is completely general. 

As in game-playing, in a deterministic environment an agent just needs a preference 
ranking on states—the numbers don't matter. This is called a value function or ordinal 
utility function. 

It is important to remember that the existence of a utility function that describes an 
agent's preference behavior does not necessarily mean that the agent is explicitly maximizing 
that utility function in its own deliberations. As we showed in Chapter 2, rational behavior can 
be generated in any number of ways. By observing a rational agent's preferences, however, 
an observer can construct the utility function that represents what the agent is actually trying 
to achieve (even if the agent doesn't know it). 

 

4  In this sense, utilities resemble temperatures: a temperature in Fahrenheit is 1.8 times the Celsius temperature 
plus 32. You get the same results in either measurement system. 
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16.3 UTILITY FUNCTIONS 

Utility is a function that maps from lotteries to real numbers. We know there are some axioms 
on utilities that all rational agents must obey. is that all we can say about utility functions? 
Strictly speaking, that is it: an agent can have any preferences it likes. For example, an agent 
might prefer to have a prime number of dollars in its hank account: in which case, if it had  6 
it would give away $3. This might be unusual, but we can't call it irrational. An agent might 
prefer a dented 1973 Ford Pinto to a shiny new Mercedes. Preferences can also interact: for 
example. the agent might prefer prime numbers of dollars only when it owns the Pinto, but 
when it owns the Mercedes, it might prefer more  dollars to fewer. Fortunately, the preferences 
of real agents are usually more systematic, and thus easier to deal with. 

16.3.1 Utility assessment and utility scales 

If we want to build a decision-theoretic system that helps the agent make decisions or acts 
on his or her behalf, we must first work out what the agent's utility function is. This process, 

PREFERENCE often called preference  elicitation, involves presenting choices to the agent and using the ELICRANON  

observed preferences to pin down the underlying utility function. 
Equation (16.2) says that there is no absolute scale for utilities, but it is helpful, nonethe- 

less, to establish some scale on which utilities can be recorded and compared for any particu-
lar problem. A scale can be established by fixing the utilities of any two particular outcomes, 
just as we fix a temperature scale by fixing the freezing point and boiling point of water. 
Typically, we fix the utility of a "best possible prize" at U(S) = UT and a "worst possible 

NORMALIZED 
LFTILIPES catastrophe" at U(S) = u_.  Normalized utilities use a scale with u_L  = 0  and UT = 1. 

Given a utility scale between lt-r  and ui ,  we can assess the utility of any particular 
STANDARD LOTTERY  prize S by asking the agent to choose between S and a standard lottery Fp. uT  ;  (1 — pi  , ujj.  

The probability p is adjusted until the agent is indifferent between S and the standard lottery. 
Assuming normalized utilities, the utility of S  is given by 2).  Once this is done for each prize, 
the utilities for all lotteries involving those prizes are determined. 

In medical, transportation, and environmental decision problems, among others, peo-
ple's lives are at stake. In such cases. ui  is the value assigned to immediate death (or perhaps 
many deaths). Although nobody feels comfortable with putting a value on human life, it is a 
fact that tradeoffs are mode all the time. Aircraft are given a complete overhaul at intervals 
determined by trips and miles flown, rather than after every trip. Cars are manufactured in 
a way that trades off costs against accident survival rates. Paradoxically, a refusal to "put a 
monetary value on life" means that life is often undervalued. Ross Shachter relates an ex-
perience with a government agency that commissioned a study on removing asbestos from 
schools. The decision analysts performing the study assumed a particular dollar value for the 
life of a school-age child, and argued that the rational choice under that assumption was to 

remove the asbestos. The agency, morally outraged at the idea of setting the value of a life, 
rejected the report  out of hand. It then decided against asbestos removal—implicitly  asserting 
a lower value for the life of a child than that assigned by the analysts. 
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Some attempts have been made to find out the value that people place on their own 
lives. One common "currency" used in medical and safety analysis is the micromort, a 
one in a million chance of death. If you ask people how much they would pay to avoid a 
risk—for example, to avoid playing Russian roulette with a million-barreled  revolver—they 
will respond with very large numbers, perhaps tens of thousands of dollars, but their actual 
behavior reflects a much lower monetary value for a micromort.  For example, driving in a car 
for 230 miles incurs a risk of one micromort; over the life of your car—say, 92.000 miles—
that's 400 micromorts. People appear to be willing to pay about $10,000 (at 2009 prices) 
more for a safer car that halves the risk of death, or about $50 per micromort. A number 
of studies have confirmed a figure in this range across many individuals and risk types. Of 
course, this argument holds only for small risks. Most people won't agree to kill themselves 
for $50 million. 

Another measure is the QALY, or quality-adjusted life year. Patients with a disability 
are willing to accept a shorter life expectancy to be restored to full health. For example. 
kidney patients on average are indifferent between living two years on a dialysis machine and 
one year at full health. 

16.3.2 The utility of money 

Utility theory has its roots in economics, and economics provides one obvious candidate 
for a utility measure: money (or more specifically, an agent's total net assets). The almost 
universal exchangeability of money for all kinds of goods and services suggests that money 
plays a significant role in human utility functions. 

It will usually be the case that an agent prefers more money to less, all other things being 
equal. We say that the agent exhibits a monotonic preference for more money. This does 
not mean that money behaves as a utility function, because it says nothing about preferences 
between lotteries  involving money. 

Suppose you have triumphed over the other competitors in a television game show_ The 
host now offers you a choice: either you can take the $1,000,000 prize or you can gamble it 
on the flip of a coin. If the coin comes up heads, you end up with nothing, but if it comes 
up tails, you get $2,500,000. If you're like most people, you would decline the gamble and 
pocket the million. Are you being irrational? 

Assuming the coin is fair, the expected monetary value (EMV) of the gamble is I($)  
+ ($2,500,000) = $1,250,000, which is more than the original $1,000,000. But that does 
not necessarily mean that accepting the gamble is a better decision. Suppose we use S.,  to 
denote the state of possessing total wealth $ri,  and that your current wealth is $k. Then the 
expected utilities of the two actions of accepting and declining the gamble are 

EU {Accept) — 21_7(Sk)+1-- U(Sec+2,5o0.0ot))  
EU (Decline) = U(Sk+1,00000)  

To determine what to do, we need to assign utilities to the outcome states. Utility is not 
directly proportional to monetary value, because the utility for your first million is very high 
(or so they say), whereas the utility for  an additional million is smaller. Suppose you assign 
a utility of 5 to your current financial status (Sk), a 9 to the state Sk+2,500,000,  and an 8 to the 

MICROMORT 

US? 

MONOTONIC 
PREFERENCE 

EXPECTED 
MONETARY IALUE  



(a) (b)  

Figure 16.2  The utility of money. (a) empirical data for Mr. Beard over a limited ranze.  
(b) A typical curve for the full range. 
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state Sk+i,000,noo.  Then the rational action would be to decline, because the expected utility 
of accepting is only 7 (less than the 8 for declining). On the other hand, a billionaire would 
most likely have a utility function that is locally linear over the range of a few million more, 
and thus would accept the gamble. 

In a pioneering study of actual utility functions, Grayson (1960) found that the utility of 
money was almost exactly proportional to the logarithm of the amount. (This idea was first 
suggested by Bernoulli (1738)t  see Exercise 16.3.) One particular utility curve, for a certain 
Mr. Beard, is shown in Figure 16.2(a). The data obtained for Mr. Beard's preferences are 
consistent with a utility function 

U(Sk+ n ) = —263.31 +  22.09  log(n  ±  150, 000) 
for the range between n  = —$150..  000 and n  = 5800,  000.  

We should not assume that this is the definitive utility function for monetary value, but 
it is likely that most people have a utility function that is concave for positive wealth. Going 
into debt is bad, but preferences between different levels of debt can display a reversal of 
the concavity associated with positive wealth. For example, someone already $10,000,000 in 
debt  might well accept a gamble on a fair coin with a gain of $10,000,000 for heads and a 
loss of $20,000,000 for tails. 5  This yields the S-shaped curve shown in Figure 16.2(b). 

If we restrict our attention to the positive part of the curves, where the slope is decreas-
ing, then for any lottery L, the utility of being faced with that lottery is less than the utility of 
being handed the expected monetary value of the lottery as a sure thing: 

U(L)  C U(SEA,1  v(0 )  
That is, agents with curves of this shape are risk-averse: they prefer a sure thing with a 
payoff that is less than the expected monetary value of a gamble. On the other hand, in the 
"desperate" region at large negative wealth in Figure 16.2(b), the behavior is risk-seeking. 

Such behavior might be called desperate, but it is rational if one is already in a desperate situation. 

RISK-AVERSE  

RISK-SEEKIF-G  
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The value an agent will accept in lieu of a lottery is called the certainty equivalent of the 
lottery. Studies have shown that most people will accept about S400 in lieu of a gamble that 
gives $1000 half the time and $0 the other half—that is, the certainty equivalent of the lottery 
is $400, while the EMV is $500. The difference between the EMV of a lottery and its certainty 
equivalent is called the insurance premium. Risk aversion is the basis for the insurance 
industry, because it means that insurance premiums are positive. People would rather pay a 
small insurance premium than gamble the price of their house against the chance of a fire. 
From the insurance company's point of view, the price of the house is very small compared 
with the firm's total reserves. This means that the insurer's utility curve is approximately 
linear over such a small region, and the gamble costs the company almost nothing. 

Notice that for small changes in wealth relative to the current wealth, almost any curve 
will be approximately linear. An agent that has a linear curve is said to be risk-neutral. For 
gambles with small sums, therefore, we expect risk neutrality. In a sense, this justifies the 
simplified procedure that proposed small gambles to assess probabilities and to justify the 
axioms of probability in Section 13.2.3. 

16.3.3 Expected utility and post-decision disappointment 

The rational way to choose the best action, a*,  is to maximize expected utility: 
a'  = argmaxEU(ale)  

If we have calculated the expected utility correctly according to our probability model, and if 
the probability model correctly reflects the underlying stochastic processes that generate the 
outcomes, then, on average, we will get the utility we expect if the whole process is repeated 
many times. 

In reality, however, our model usually oversimplifies the real situation, either because 
we don't know enough (e.g., when making a complex investment decision) or because the 
computation of the true expected utility is too difficult (e.g.,  when estimating the utility of 
successor states of the root node in backgammon). In that case, we are really working with 
estimates Et (ale) of the true expected utility. We will assume, kindly perhaps, that the 
estimates are unbiased, that is, the expected value of the error, E(EtT  (ale) — EU(ale))),  is 
zero. In that case, it still seems reasonable to choose the action with the highest estimated 
utility and to expect to receive that utility, on average, when the action is executed. 

Unfortunately, the real outcome will usually be significantly worse than we estimated, 
even though the estimate was unbiased! To see why, consider a decision problem in which 
there are k choices, each of which has true estimated utility of 0. Suppose that the error in 
each utility estimate has zero mean and standard deviation  of 1, shown as the bold curve in 
Figure 16.3. Now, as we actually start to generate the estimates, some of the errors will be 
negative (pessimistic) and some will be positive (optimistic). Because we select the action 
with the highest utility estimate, we are obviously favoring the overly optimistic estimates, 
and that is the source of the bias. It is a straightforward matter to calculate the distribution 
of the maximum of the k estimates (see Exercise 16.11)  and hence quantify the extent of 
our disappointment. The curve in Figure 16.3 for k = 3 has a mean around 0.85, so the 
average disappointment will be about 85% of the standard deviation in the utility estimates. 



Figure 16.3 Plot of the error in each of k utility estimates and of the distribution of the 
maximum of k estimates for k  =  3, 10, and 30. 
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With more choices, extremely optimistic estimates are more likely to arise: for k — 30, the 
disappointment will be around twice the standard deviation in the estimates. 

This tendency for the estimated expected utility of the best choice to be too high is 
OFRIAIZER'S  CURSE  called the optimizer's curse (Smith and Winkler, 2006). It afflicts even the most seasoned 

decision analysts and statisticians. Serious manifestations include believing that an exciting 
new drug that has cured 80% patients in a trial will cure 80% of patients (it's been chosen 
from k = thousands of candidate drugs) or that a mutual fund advertised as having above-
average returns will continue to have them (it's been chosen to appear in the advertisement 
out of k = dozens of funds in the company's overall portfolio). It can even be the case that 
what appears to be the best choice may not be, if the variance in the utility estimate is high: 
a drug, selected from thousands tried, that has cured 9 of 10 patients is probably worse than 
one that has cured 800 of 1000. 

The optimizer's curse crops up everywhere because of the ubiquity of utility-maximizing 
selection processes, so taking the utility estimates at face value is a bad idea. We can avoid the 
curse by using an explicit probability model P(EU EU) of the error in the utility estimates. 
Given this model and a prior P(EU)  on what we might reasonably expect the utilities to be, 
we treat the utility estimate, once obtained, as evidence and compute the posterior distribution 
for the true utility using Bayes'  rule. 

NORMATIVE THEORY 
DESCRIPTIVE 
THEORY 

16.3.4 Human judgment and irrationality 

Decision theory is a normative theory: it describes how a rational agent should act. A 
descriptive theory, on the other hand, describes how actual agents—for example, humans— 
really do act. The application of economic theory would be greatly enhanced if the two 
coincided, but there appears to be same experimental evidence io  the contrary. The evideine  
suggests that humans are "predictably irrational" (Ariely, 2009). 
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CERTAINTY EFFECT 

REGRET 

AMBIG  URY  
AVERSION 

The best-known problem is the Allais paradox (Allais, 1953). People are given a choice 
between lotteries A and B and thcn between C and D, which have the following prizes: 

A: 80% chance of $4000 C : 20% chance of $4000 
B :  100% chance of $3000 D :  25% chance of $3000 

Most people consistently prefer B over A (taking the sure thing), and C over D (taking the 
higher EMV). The normative analysis disagrees? We can see this most easily if we use the 
freedom implied by Equation 06.2)  to set U(t  ))  = U. In that case, then B ?-  A implies 
that U($3000) > 0.8 U(84000), whereas C Y D implies exactly the reverse. In other 
words, there is no utility function that is consistent with these choices. One explanation for 
the apparently irrational preferences is the certainty effect (Kahneman  and Tversky, 1979): 
people are strongly attracted to gains that are certain. There are several reasons why this may 
be so. First, people may prefer to reduce their computational burden; by choosing certain 
outcomes, they don't have to compute with probabilities. But the effect persists even when 
the computations involved are very easy ones. Second, people may distrust the legitimacy of 
the stated probabilities. I trust that a coin flip is roughly 50/50 if I have control over the coin 
and the flip, but I may distrust the result if the flip is done by someone with a vested interest 
in the outcome. °  In the presence of distrust, it might be better to go for the sure thing. 7  Third, 
people may be accounting for their emotional state as well as their financial state. People 
know they would experience regret if they gave up a certain reward (B) for an 80% chance at  
a higher reward and then lost. In other words, if A is chosen, there is a 20% chance of getting 
no money and feeling like a complete idiot, which is worse than just getting no money. So 
perhaps people who choose B over A and C over D are not being irrational; they are just 
saying that they are willing to give up $200 of F.MV  to avoid a 20% chance of feeling like an 
idiot. 

A related problem is the Ellsbcrg  paradox. Here the prizes arc fixed, but the probabilities 
are underconstrained. Your payoff will depend on the color of a ball chosen from an urn. You 
are told that  the urn contains 1/3 red balls, and 2/3 either black or yellow balls, but you don't 
know how many black and how many yellow. Again, you are asked whether you prefer lottery 
A ar  B; and then C or D: 

A :  $100 for a red hall C $100 for a red or yellow hall 
B $100 for a black hall D : $100 for a black or yellow ball . 

It should be clear that if you think there are more red than black balls then you should prefer 
A over B and C over D; if you think there are fewer red than black you should prefer the 
opposite. But it turns out that most people prefer A over B and also prefer D over C, even 
though there is no state of the world for which this is rational. It seems that people have 
ambiguity aversion: A gives you a 1/3 chance of winning, while B could be anywhere 
between 0 and 2/3. Similarly, 1) gives you a 2/3 chance, while C could he anywhere between 
1/3 and 3/3. Most people elect the known probability rather than the unknown unknowns. 

rj.  For example, Ole  mathematician/magician Persi Diaconis can make a coin flip come out the way he wants 
every time (Landhuis,  2004). 
7  Even the sure thing may not be certain. Despite cast-iron promises, we have not yet received that $27,000,00e  
from the Nigerian bank account of a previously unknown deceased relative. 
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Yet another problem is that the exact wording of a decision problem can have a big 
FRAMING EFFECT impact on the agent's choices; this is called the framing effect. Experiments show that pcoplc  

like a medical procedure that it is described as having a "90% survival rate" about twice as 
much as one described as having a "10% death rate," even though these two statements mean 
exactly the same thing. This discrepancy in judgment has been found in multiple experiments 
and is about the same whether the subjects were patients in a clinic, statistically sophisticated 
business school students, or experienced doctors. 

People feel more comfortable making relative utility judgments rather than absolute 
ones. I may have little idea how much I might enjoy the various wines offered by a restaurant. 
The restaurant takes advantage of this by offering a $200 bottle that it knows nobody will buy, 
but which serves to skew upward the customer's estimate of the value of all wines and make 

ANCHORING  EFFECT  the $55 bottle seem like a bargain. This is called the anchoring effect. 
If human informants insist on contradictory preference judgments, there is nothing that 

automated agents can do to be consistent with them. Fortunately, preference judgments made 
by humans are often open to revision in the light of further consideration. Paradoxes like 
the Allais  paradox are greatly reduced (but not eliminated) if the choices are explained bet-
ter. In work at the Harvard Business School on assessing the utility of money, Keeney and 
Raiffa (1976,  p. 210) found the following: 

Subjects tend to be too risk-averse in the small and therefore ... the fitted utility functions 
exhibit unacceptably large risk premiums for luiteries  with a large spread. ... Must of the 
subjects, however, can reconcile their inconsistencies and feel that they have learned an 
important lesson about how they want to behave. As a consequence, some subjects cancel 
their automobile collision insurance and take out more term insurance on their lives. 

EVOLUTIONARY 
PSYCHOLOGY 

The evidence for human irrationality is also questioned by researchers in the field of evo-
lutionary psychology, who point to the fact that our brain's decision -making mechanisms 
did not evolve to solve word problems with probabilities and prizes stated as decimal num-
bers. Let us grant, for the sake of argument, that the brain has built-in neural mechanism 
for computing with probabilities and utilities, or something functionally equivalent; if so, the 
required inputs would be obtained through accumulated experience of outcomes and rewards 
rather than through linguistic presentations of numerical values. It is far from obvious that we 
can directly access the brain's built-in neural mechanisms by presenting decision problems in 
linguistic/numerical form. The very fact that different wordings of the same decision prob-
lem elicit different choices suggests that the decision problem itself is not getting through. 
Spurred by this observation, psychologists have tried presenting problems in uncertain rea-
soning and decision making in "evolutionarily appropriate" forms; for example, instead of 
saying "90%  survival rate," the experimenter might show 100 stick-figure animations of the 
operation, where the patient dies in 10 of them and survives in 90.  (Boredom is a complicat-
ing factor in these experiments?) With decision problems posed in this way, people seem to 
be much closer to rational behavior than  previously suspected. 
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16.4 MULTIATTRIBUTE UTILITY FUNCTIONS 

MULTIATTROJTE  
UTLITY  THEORY 

SI SIG  I DUMFLANCE  

STOCHASTIC 
DCLIIINANCE  

Decision making in the field of public policy involves high stakes, in both money and lives. 
For example, in deciding what levels of harmful emissions to allow from a power plant, pol-
icy makers must weigh the prevention of death and disability against the benefit of the power 
and the economic burden of mitigating the emissions. Siting a new airport requires consid-
eration of the disruption caused by construction; the cost of land; the distance from centers 
of population; the noise of flight operations; safety issues arising from local topography and 
weather conditions; and so on. Problems like these, in which outcomes ate characterized by 
two or more attributes, are handled by multiattribute  utility theory. 

We will call the attributes X= X i , ,  X,:  a complete vector of assignments will be 
x =  ,  where each is either a numeric value or a discrete value with an assumed 
ordering on values. We will assume that higher values of an attribute correspond to higher 
utilities, all other things being equal. For example, if we choose AbsenceOfNoise  as an 
attribute in the airport problem, then the greater its value, the better the solution. 8  We begin by 
examining cases in which decisions can be made without combining the attribute values into 
a single utility value. Then we look at cases in which the utilities of attribute combinations 
can be specified very concisely. 

16.4.1 Dominance 

Suppose that airport site Si  costs less, generates less noise pollution, and is safer than site S2.  
One would not hesitate to reject 32.  We then say that there is strict dominance of Si  over 
S2. In general, if an option is of lower value on all attributes than some other option, it need 
not be considered further. Strict dominance is often very useful in narrowing down the field 
of choices to the real contenders, although it seldom yields a unique choice. Figure 16.4(a) 
shows a schematic diagram for the two-attribute case. 

That is fine for the deterministic case, in which the attribute values are known for sure. 
What about the general case, where the outcomes are uncertain? A direct analog of strict 
dominance can be constructed, where, despite the uncertainty, all possible concrete outcomes 
for Si strictly dominate all possible outcomes for S2.  (See Figure 16.4(b).) Of course, this 
will probably occur even less often than in the deterministic case. 

Fortunately, there is a more useful generalization called stochastic dominance, which 
occurs very frequently in real problems. Stochastic dominance is easiest to understand in 
the context of a single attribute. Suppose we believe that the cost of siting the airport at Si  is 
uniformly distributed between $2.8 billion and $4.8 billion and that the cost at S2  is uniformly 
distributed between $3 billion and $5.2 billion. Figure 16.5(a) shows these distributions, with 
cost plotted as a negative value. Then, given only the information that utility decreases with 

In  some cases, it may be necessary to subdivide the range of values so that utility varies monotonically within 
each range. For example, if the R oomTemperature attribute has a utility peak at 70 °F, we would split it into  t wo 
attributes measuring the difference from the ideal, one colder and one hotter. Utility would then be monotonically 
increasing m  each attribute. 
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Figure 16.5 Stochastic dominance. (a) SI  stochastically dominates 52  on cost. (b) Cu- 
mulative distributions for the negative cost of S5 and 52. 
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cost, we can say that Si stochastically dominates .52  (i.e., 52  can be discarded). his important 
to note that this does nor follow from comparing the expected costs. For example, if we knew 
the cost of Si  to be exactly $3.8 billion, then we would be unable to make a decision without 
additional information on the utility of money. (It might seem odd that more information on 
the cost of Si could make the agent less able to decide. The paradox is resolved by rioting 
that in the absence of exact cost information, the decision is easier to make but is more likely 
to be wrong.) 

The exact relationship between the attribute distributions needed to establish stochastic 
dominance is best seen by examining the cumulative distributions, shown in Figure 16.5(10.  
(See also Appendix A.) The cumulative distribution measures the probability that the cost is 
less than or equal to any given amount—that is, it integrates the original distribution. If the 

cumulative distribution for Si is always to the right of the cumulative distribution for S2, 
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then, stochastically speaking, Si  is cheaper than S2. Formally, if two actions Al and A2 lead 
to probability distributions p t (n)  and p•  (r) on attribute X, then A l  stochastically dominates 
A2 on X if 

`dx  f  111(x) d.x' <  f p2(.1)  di`  . 

OULU-AT-NE  
PRORMILIRTIC  
NETWORKS  

R EPA ES ENTATION  
THEOREM  

PREFERENCE 
INDEPENDENCE 

The relevance of this definition to the selection of optimal decisions comes from the following 
property: if A t  stochastically  dominates A2, then for any monotonically nondecreasing utility 
function U(x), the expected utility of Al is at least as high as the expected utility of A2. 
Hence, if an action is stochastically dominated by another action on all attributes, then it can 
be discarded. 

The stochastic dominance condition might seem rather technical and perhaps not so 
easy to evaluate without extensive probability calculations. In fact, it can be decided very 
easily in many cases. Suppose, for example, that the construction transportation cost depends 
on the distance to the supplier. The cost itself is uncertain, but the greater the distance, the 
greater the cost. If 51  is closer than S2. then Si will dominate 52  on cost. Although we 
will not present them here, there exist algorithms for propagating this kind of qualitative 
information among uncertain variables in qualitative probabilistic networks. enabling a 
system to make rational decisions based on stochastic dominance, without using any numeric 
values. 

16.4.2 Preference structure and multiattribute utility 

Suppose we have n attributes, each of which has d distinct possible values. To specify the 
complete utility function 1/(xl  ,  .  . x„), we need dm  values in the worst case. Now, the worst 
case corresponds to a situation in which the agent's preferences have no regularity at all Mul-
tiattribute  utility theory is based on the supposition that the preferences of typical agents have 
much more structure than that. The basic approach is to identify regularities in the preference 
behavior we would expect to see and to use what are called representation theorems to show 
that an agent with a certain kind of preference structure has a utility function 

U(xl.  -  xn)  = (xi ), -fm:x.02)]  

where F is, we hope, a simple function such as addition. Notice the similarity to the use of 
Bayesian  networks to decompose the joint probability of several random variables. 

Preferences without uncertainty 

Let us begin with the deterministic case. Remember that for deterministic environments the 
agent has a value function V (x 1,  , x,);  the aim is to represent this function concisely. 
The basic regularity that arises in deterministic preference structures is called preference 
independence. Two attributes X 1  and X2 are preferentially independent of a third attribute 
X3  if the preference between outcomes (x i , x 2 , x3 ) and (4, .4,  x,)  does not depend on the 
particular value x 3  for attribute X3. 

Going back to the airport example, where we have (among other attributes) Noise, 
Cost, and Deaths to consider, one may propose that Noise and Cost are preferentially inde- 
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NILITUAL  
PREFERENTIAL set of attributes {Noise, Cost, Deaths} exhibits mutual preferential independence (MPI).  
INDEPENDENCE MPI  says that. whereas each attribute may be important, it does not affect the way in which 

one trades off the other attributes against each other. 
Mutual preferential independence is something of a mouthful, but thanks to a remark-

able theorem due to the economist Gerard Debreu (1960), we can derive from it a very simple 
form fur the agent's value function: if attributes Xi, ... X„  are mutually preferentially in-
dependent, then the agent's preference behavior can he described as maximizing the function 

ADY-fIVE  VALUE 
FlYICTION  

where each V  is a value function referring on?y  to the attribute X. For example, it might 
well be the case that the airport decision can be made using a value function 

V (noise, cost, deaths) = —noise x  104  — cost — deaths x 1012  .  

A value function of this type is called an additive value function. Additive functions are an 
extremely natural way to describe an agent's preferences and are valid in many real-world 
situations. For u  attributes, assessing an additive value function requires assessing n separate 
one-dimensional value functions rather than one n-dimensional function; typically, this repre-
sents an exponential reduction in the number of preference experiments that are needed. Even 
when MPI  does not strictly hold, as might be the case at extreme values of the attributes, an 
additive value function might still provide a good approximation to the agent's preferences. 
This is especially true when the violations of MPl  occur in portions of the attribute ranges 
that are unlikely to occur in practice. 

To understand MPI better, it helps to look at cases where it doesn't hold. Suppose you 
are at a medieval market, considering the purchase of some hunting dogs, some chickens, 
and some wicker cages for the chickens. The hunting dogs are very valuable, but if you 
don't have enough caps for the chickens. the dogs will cat the chickens; hence, the tradeoff 
between dogs and chickens depends strongly on the number of cages, and MP1 is violated. 
The existence of these kinds of interactions among various attributes makes it much harder to 
assess the overall value function. 

Preferences with uncertainty 

When uncertainty is present in the domain, we also need to consider the structure of prefer-
ences between lotteries and to understand the resulting properties of utility functions, rather 
than just value functions. The mathematics of this problem can become quite complicated, 
so we present just me of the main results to give a flavor of what can be done. The teadet  is 
referred to Keeney and Raiffa {1976)  for a thorough survey of the field. 

pendent of Deaths. For example, if we prefer a state with 20,000 people residing in the flight 
path and a construction cost of $4 billion over a state with 70,000 people residing in the flight 
path and a cost of $3.7 billion when the safety level is 0.06 deaths per million passenger miles 
in both cases, then we would have the same preference when the safety level is 0.12 or 0.03; 
and the same independence would hold for preferences between any other pair of values for 
Noise and Cost. It is also apparent that Cost and Deaths are preferentially independent of 
Noise and that Noise and Deaths are preferentially independent of Cost. We say that the 
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The basic notion of utility independence extends preference independence to covet  
lotteries: a set of attributes X is utility independent of a act of attributes Y if preferences be-
tween lotteries on the attributes in X are independent of the particular values of the attributes 
in Y. A set of attributes is mutually utility independent (MUI) if each of its subsets is 
utility-independent of the remaining attributes. Again, it seems reasonable to propose that 
the airport attributes are MUI.  

MUI implies that the agent's behavior can be described using a multiplicative utility 
function (Keeney, 1974). The general form of a multiplicative utility function is best seen by 
looking at the case for three attributes. For conciseness, we use tfUa  to mean U.  (x i ): 

= k2U2 k3 U3 +  k2U1  U2 ±  k2 k3 U2 tr3  k3k1U3U1  
+ k1 k2k3U1 L2U3  . 

Although this does not look  very simple, it contains just three single-attribute utility functions 
and three constants. In general, an n-attribute problem exhibiting MUI can be modeled using 
n single-attribute utilities and rt  constants. Each of the single-attribute utility functions can 
be developed independently of the other attributes, and this combination will be guaranteed 
to generate the correct overall preferences. Additional assumptions are required to obtain a 
purely additive utility function. 

16_5  DECISION NETWORKS 

UTIJTY  
INDEPENDENCE 

•  UTUALLY  
INDEPENDENT 

MIILTIPLICATUE  
UTUTY  FUNCTION 

In this section, we look at a general mechanism for making rational decisions. The notation 
INF_U  EWE DIAGRAM  is often called an influence diagram (Howard and Matheson, 1984), but we will use the 
D ECISION NETWORK  more descriptive term decision network. Decision networks combine Bayesian networks 

with additional node types for actions and utilities. We use airport siting as an example. 

163.1 Representing a decision problem with a decision network 

In its most general form, a decision network represents information about the agent's current 
state, its possible actions, the state that will result from the agent's action, and the utility of 
that state. It therefore provides a substrate for implementing utility-based agents of the type 
first introduced in Section 2.4.5. Figure 16.6 shows a decision network for the airport siting 
problem. It illustrates the three types of nodes used: 

DEIAND  E NODES ■ Chance nodes (ovals) represent random variables, just as they do in Bayesian networks. 
The agent could be uncertain about the construction cost, the level of air traffic and the 
potential for litigation, and the Deaths, Noise, and total Cost variables, each of which 
also depends on the site chosen. Each chance node has associated with it a conditional 
distribution that is indexed by the state of the parent nodes. In decision networks, the 
parent nodes can include decision nodes as well as chance nodes. Note that each of 
the current-state chance nodes could be part of a large Bayesian network for assessing 
construction costs, air traffic levels, or litigation potentials. 

DECISION NODES ■ Decision nodes (rectangles) represent points where the decision maker has a choice of 
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IISLITY  NODES 

ALMON -LA  ILI1  
FUNCTION 

Figure 16.6 A simple decision network for the airport-siting problem. 

actions. In this case, the AirportSite action can take on a different value for each site 
under consideration. The choice influences the cost, safety, and noise that will result. 
In this chapter, we assume that we are dealing with a single decision node. Chapter 17 
deals with cases in which more than one decision must be made. 

• Utility nodes (diamonds) represent the agent's utility function. 9  The utility node has 
as parents all variables describing the outcome that directly affect utility. Associated 
with the utility node is a description of the agent's utility as a function of the parent 
attributes. The description could be just a tabulation of the function, or it might be a 
parameterized additive or linear function of the attribute values. 

A simplified form is also used in many cases. The notation remains identical, but the 
chance nodes describing the outcome state are omitted. Instead, the utility node is connected 
directly to the current-state nodes and the decision node. In this case, rather than representing 
a utility function on outcome states, the utility node represents the expected utility associated 
with each action, as defined in Equation (16.1) on page 611; that is, the node is associated 
with an action-utility  function (also known as a Q-function  in reinforcement learning, as 
described in Chapter 21). Figure 16.7 shows the action-utility representation of the airport 
siting problem. 

Notice that, because the Noise, Deaths, and Cost chance nodes in Figure 16.6 refer to 
future states, they can never have their values set as evidence variables. Thus, the simplified 
version that omits these nodes can be used whenever the more general form can be used. 
Although the simplified form contains fewer nodes, the omission of an explicit description 
of the outcome of the siting decision means that it is less flexible with respect to changes in 
circumstances. For example, in Figure 16.6, a change in aircraft noise levels can be reflected 
by a change in the conditional probability table associated with the Noise node, whereas a 
change in the weight accorded to noise pollution in the utility function can be reflected by 

These nodes are also called value nodes the literature. 



Figure 16.7 A simplified representation of the airport-siting  problem. Chance nodes cor- 
responding to outcome states have been factored out. 

628 Chapter 16. Making Simple Decisions 

a change in the utility table. In the action-utility diagram, Figure 16.7, on the other hand,  
all such changes have to be reflected by changes to the action-utility table_ Essentially, the 

action-utility formulation is a compiled version of the original formulation. 

16.5.2 Evaluating decision networks 
Actions are selected by evaluating the decision network for each possible setting of the deci- 
sion node. Once the decision node is set, it behaves exactly like a chance node that has been 
set as an evidence variable. The algorithm for evaluating decision networks is the following: 

1. Set the evidence variables for the current slate. 
2. For each possible value of the decision node: 

(a) Set the decision node to that value. 
(b  Calculate the posterior probabilities for the parent nodes of the utility node, using 

a standard probabilistic inference algorithm. 
(c)  Calculate the resulting utility for the action. 

3. Return the action with the highest utility. 
This is a straightforward extension of the Bayesian network algorithm and can be incorpo- 
rated  directly into the agent design given in Figure 13.1 on page 484. We will see in Chap- 
ter 17 that the possibility of executing several actions in sequence makes the problem much 
more interesting. 

16.6 THE VALUE OF INFORMATION 

In the preceding analysis, we have assumed that all relevant innfurmation,  or at least all avail- 
able information, is provided to the agent before it makes its decision. In practice, this is 
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Ft- 

INFORMATIM  VALUE 

hardly ever the case. One of the most important parts of decision making is knowing what 
questions to ask. For example. a doctor cannot expect to be provided with the results of all  
possible diagnostic tests and questions at the time a patient first enters the consulting room. to 
Tests are often expensive and sometimes hazardous (both directly and because of associated 
delays). Their importance depends on two factors: whether the test results would lead to a 
significantly better treatment plan, and how likely the various test results are. 

This section describes information value theory, which enables an agent to choose 
what information to acquire. We assume that, prior to selecting a "real" action represented 
by the decision node, the agent can acquire the value of any of the potentially observable 
chance variables in the model. Thus, information value theory involves a simplified form 
of sequential decision making—simplified because the observation actions affect only the 
agent's belief state. not the external physical state. The value of any particular observation 
must derive from the potential to affect the agent's eventual physical action; and this potential  
can be estimated directly from the decision model itself. 

16.6.1 A simple example 

Suppose an oil company is hoping to buy one of n indistinguishable blocks of ocean-drilling  
rights. Let us assume further that exactly one of the blocks contains oil worth C dollars, while 
the others are worthless. The asking price of each block is C/n  dollars. If the company is 
risk-neutral, then it will be indifferent between buying a block and not buying one. 

Now suppose that a seismologist offers the company the results of a survey of block 
number 3, which indicates definitively whether the block contains oil. How much should 
the company be willing to pay for the information? The way to answer this question is to 
examine what the company would do if it had the information: 

• With probability 1/n, the survey will indicate oil in block 3. In this case, the company 
will buy block 3 for Cht  dollars and make a profit of C — C In = (n — 1)0/n. dollars. 

• With probability (n— 1)/n, the survey will show that the block contains no oil, in which 
case the company will buy a different block. Now the probability of finding oil in one 
of the other blocks changes from 1/n, to 1/(n — 1), so the company makes an expected 
profit of Cl(n  — 1) —  C/a. =Clu(n  —  1) dollars. 

Now we can calculate the expected profit, given the survey information: 
1 (n — 1)C  a — 1 X 

x , —  CIrt.  
n tn  — 1) 

Therefore, the company should be willing to pay the seismologist up to C/n  dollars for the 
information; the information is worth as much as the  block itself. 

The value of information derives from the fact that with the information, one's course 
of action can be changed to suit the actual situation. One can discriminate according to the 
situation, whereas without the information, one has to do what's best on average over the 
possible situations. In general, the value of a given piece of information is defined to be the 
difference in expected value between best actions before and after information is obtained. 

fa the United States, the only question that is always asked beforehand is whether the patient has insurance. 
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VALUE OF PEFIFECT  
INFORMATION 

16.6.2 A general formula for perfect information 
It is simple to derive a general mathematical formula for the value of information. We assume 
that exact evidence can be obtained about the value of some random variable Ej  (that is, we 
learn Ej  = ej),  so the phrase value of perfect information (VPI) is used) ]  

Let the agent's initial evidence be e. Then the value of the current best action cs  is 
defined by 

EU (ode) = max E  P(RESULT(a)  = I a, e)(  (s') ,  

and the value of the new best action (after the new evidence Ej  = ej  is obtained) will be 

EU (or .,  le,  )  = rnax  E  P(REsuLT(a)= a, e, e  •) U(23')  .  

But E,  is a random variable whose value is currently unknown, so to determine the value of 
discovering EJ,  given current information e  we must average over all possible values elk  that 
we might discover for Ej,  using our current beliefs about its value: 

VP.1-,(E)  = (E  P(E,  = EU(ae,k  E.1 =  830)  — EU (ale) . 

To get some intuition for this formula, consider the simple case where there are only two 
actions, al and a2,  from which to choose. Their current expected utilities are Ur  and U2. The 
information E7  = cis,  will yield some new expected utilities Uf  and U2 for the actions, but 
before we obtain E,,  we will have some probability distributions over the possible values of 
Uf  and (.4  (which we assume are independent). 

Suppose that a t  and a2  represent two different routes through a mountain range in 
winter. al  is a nice, straight highway through a low pass, and a2  is a winding dirt road over 
the top. Just given this information, a l  is clearly preferable, because it is quite possible that 
a2 is blocked by avalanches, whereas it is unlikely that anything blocks a t. Ul is therefore 
clearly higher than U2.  It is possible to obtain satellite reports Ej  on the actual state of each 
road that would give new expectations, q.  and U2,  for the two crossings. The distributions 
for these expectations are shown in Figure 16.8(a). Obviously, in this case, it is not worth the 
expense of obtaining satellite reports, because it is unlikely that the information derived from 
them will change the plan. With no change, information has no value. 

Now suppose that we are choosing between two different winding dirt roads of slightly 
different lengths and we are carrying a seriously injured passenger. Then, even when Ui  
and U2 are quite close, the distributions of Ul  and U. are very broad. There is a significant 
possibility that the second route will turn out to be clear while the first is blocked, and in this 

11  There is no loss of expressiveness in requiring perfect information. Suppose we wanted to model the case 
in which we become somewhat more certain about a variable. We can do that by introducing another variable 
about which we learn  perfect information. For example, suppose we initially have broad uncertainty about the 
variable Thmperature  .  Then we gain the perfect knowledge Thermometer = 37; this gives us imperfect 
information about the true Temperature, and the uncertainty due to measurement error is encoded in the sensor 
model P( Thermometer I Temperature). See Exercise 16.17  for another example. 



Figure 16,8 Three generic cases for the value of information. In (a), a t  will almost cer- 
superior  Lt3  a2 , su  the information's  nut needed. Iu  (b), the choke is unclear and 

the information is crucial. In (c), the choice is unclear, but because it makes little difference, 
the information is less valuable. (Note: The fact that U2 has a high peak in (c) means that its 
expected value is known with higher certainty than U 1 .) 
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case the difference in utilities will he very high_ The VP1  formula indicates that it might he 
worthwhile getting the satellite reports. Such a situation is shown in Figure 16.81:b).  

Finally, suppose that we arc choosing between the two dirt roads in summertime, when 
blockage by avalanches is unlikely, In this case, satellite reports might show one route to be 
more scenic than the other because of flowering alpine meadows, or perhaps wetter because 
of errant streams. It is therefore quite likely that we would change our plan if we had the 
information. In this case, however, the difference in value between the two routes is still 
likely to be very small, so we will not bother to obtain the reports. This situation is shown in 
Figure 16.8(c). 

rfr
In  sum, information has value to the extent that it is likely to cause a change of plan 

and to the extent that the new plan will be significantly better than the old plan. 

Tfr  

16.6.3 Properties of the value of information 
One might ask whether it is possible for information to be deleterious: can it actually have 
negative expected value? Intuitively, one should expect this to be impossible. After all, one 
could in the worst case just ignore the information and pretend that one has never received it. 
This is confirmed by the following theorem, which applies to any decision-theoretic  agent: 

The expected value of information is nonnegative: 

V e, Ej  VPIe (B3 ) 7  . 

The theorem follows directly from the definition of VPI,  and we leave the proof as an exercise 
(Exercise 16.18). It is, of course, a theorem about expected value, not actual value. Additional 
information can easily lead to a plan that turns out to be worse than the original plan if the 
information happens to be misleading, For example, a medical test that gives a false positive 
result may lead to unnecessary surgery; but that does not mean that the test shouldn't be done. 
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It is important to remember that VPI depends on the current state of information, which 
is why it is subscripted.  It can change as more information is acquired. For any given piece 
of evidence E3 , the value of acquiring it can go down (e.g., if another variable strongly 
constrains the posterior for Ei)  or up (e.g., if another variable provides a clue on which Ei  
builds, enabling a new and better plan to be devised). Thus, VPI  is not additive. That is, 

VP1-,(Ei.Ek) VPI e (Ei ) +  VP!  e (Ek ) (in general) 
VPI is, however, order independent. That is, 

VPL(Ei,Ek )  = VPI,(Ej)+  VPI,,,(Ek )  =  VPI,(Ek )  VPle,„(Ei)  .  
Order independence distinguishes sensing actions from ordinary actions and simplifies the 
problem of calculating the value of a sequence of sensing actions. 

16.6.4 Implementation of an information-gathering agent 

A sensible agent should ask questions in a reasonable order, should avoid asking questions 
that are irrelevant, should take into account the importance of each piece of information in 
relation to its cost, and should slop asking questions when that is appropriate. All of  these 
capabilities can be achieved by using the value of information as a guide. 

Figure 16.9 shows the overall design of an agent that can gather information intel-
ligently before acting. For now, we assume that with each observable evidence variable 

there is an associated cost, Cost(Ei),  which reflects the cost of obtaining the evidence 
through tests, consultants, questions, or whatever. The agent requests what appears to be the 
most efficient observation in terms of utility gain per unit cost. We assume that the result of 
the action Request(Ej )  is that the next percept provides the value of E. If no observation is 
worth its cost, the agent selects a "real" action. 

The agent algorithm we have described implements a form of information gathering 
MYOPIC 
 that is called myopic. This is because it uses the VPI formula shortsightedly, calculating the 

value of information as if only a single evidence variable will be acquired. Myopic control 
is based on the same heuristic idea as greedy search and often works well in practice. (For 
example, it has been shown to outperform expert physicians in selecting diagnostic tests.) 

function INFORMATION-GATHERING-AGENT(percex)  returns an ra don 
persistent: D, a decision network 

integrate percept into D  
j  the value that maximizes VP/(Ei)  f Cost(E1 )  
if VP/(Ej )  >  Cost(Ea )  

return REQUEST(Ei)  
else return the best action from D 

Figure 16.9  Design of a simple information-gathering agent. The agent works by repeat- 
edly selecting the observation with the highest information value, until the cost of the next 
observation is greater than its expected benefit. 
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However, if there is no single evidence variable that will help a lot, a myopic agent might 
hastily take an action when it would have been better to request two or more variables first 
and then take action. A better approach in this situation would be to construct a conditional 
plan (as described in Section 11.3.2) that asks for variable values and takes different next 
steps depending on the answer. 

One final consideration is the effect a series of questions will have on a human respon-
dent. People may respond better to a series of questions if they "make sense," so some expert 
systems are built to take this into account, asking questions in an order that maximizes the 
total utility of the system and human rather than an order that maximizes value of information. 

16.7 DECISION-THEORETIC EXPERT SYSTEMS 

DEISION  ANALYSIS The field of decision analysis, which evolved in the 1950s and 1960s, studies the application 
of decision theory to actual decision problems. It is used to help make rational decisions in 
important domains where the stakes are high, such as business, government, law, military 
strategy, medical diagnosis and public health, engineering design, and resource management_ 
The process involves a careful study of the possible actions and outcomes, as well as the 
preferences placed on each outcome. It is traditional in decision analysis to talk about two 
roles: the decision  maker states preferences between outcomes, and the decision analyst 
enumerates the possible actions and outcomes and elicits preferences from the decision maker 
to determine the best course of action. Until the early 1980s, the main purpose of decision 
analysis was to help humans make decisions that actually reflect their own preferences. As 
more and more decision processes become automated, decision analysis is increasingly used 
to ensure that the automated processes are behaving as desired. 

Early expert system research concentrated on answering questions, rather than on mak-
ing decisions. Those systems that did recommend actions rather than providing opinions on 
matters of fact generally did so using condition-action rules, rather than with explicit rep-
resentations of outcomes and preferences. The emergence of Bayesian networks in the late 
1980s made it possible to build large-scale systems that generated sound probabilistic infer-
ences from evidence. The addition of decision networks means that expert systems can be 
developed that recommend optimal decisions, reflecting the preferences of the agent as well 
as the available evidence. 

A system that incorporates utilities can avoid one of the most common pitfalls associ-
ated with the consultation process: confusing likelihood and importance. A common strategy 
in early medical expert systems, for example, was to rank possible diagnoses in order of like-
lihood and report the most likely. Unfortunately, this can be disastrous! For the majority of 
patients in general practice, the two most likely diagnoses are usually "There's nothing wrong 
with you" and "You have a bad cold," but if the third most likely diagnosis for a given patient 
is lung cancer, that's a serious matter. Obviously, a testing or treatment plan should depend 
both on probabilities and utilities. Current medical expert systems can take into account the 
value of information to recommend tests, and then describe a differential diagnosis. 

DECISION  MAKER  

DECISION ANALYST 
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We now describe the knowledge engineering process for decision-theoretic expert sys-
tems. As an example we consider the problem of selecting a medical treatment for a kind of 
congenital heart disease in children (see Lucas, 1996). 

About 0.8%  of children are born with a heart anomaly, the most common being aortic 
coarctation  (a constriction of the aorta). It can be treated with surgery, angioplasty (expand-
ing the aorta with a balloon placed inside the artery), or medication The problem is to decide 
what treatment to use and when to do it: the younger the infant, the greater the risks of certain 
treatments, but one mustn't wait too long. A decision-theoretic expert system for this problem 
can be created by a team consisting of at least one domain expert (a pediatric cardiologist) 
and one knowledge engineer. The process can be broken down into the following steps: 

Create a causal model. Determine the possible symptoms, disorders, treatments, and 
outcomes. Then draw arcs between them, indicating what disorders cause what symptoms, 
and what treatments alleviate what disorders. Some of this will be well known to the domain 
expert, and some will come from the literature. Often the model will match well with the 
informal graphical descriptions given in medical textbooks. 

Simplify to a qualitative decision model. Since we are using the model to make 
treatment decisions and not for other purposes (such as determining the joint probability of 
certain svmptorn/disorder  combinations), we can often simplify by removing variables that 
are not involved in treatment decisions. Sometimes variables will have to be split or joined 
to match the expert's intuitions. For example, the original aortic coarctation model had a 
Treatment variable with values surgery, angioplasty, and medication, and a separate variable 
for Timing of the treatment. But the expert had a hard time thinking of these separately, so 
they were combined, with Treatment taking on values such as surgery in 1 month. This gives 
us the model of Figure 16.10.  

Assign probabilities. Probabilities can come from patient databases, literature studies, 
or the expert's subjective assessments. Note that a diagnostic system will reason from symp-
toms and other observations to the disease or other cause of the problems. Thus, in the early 
years of building these systems, experts were asked for the probability of a cause given an 
effect. In general they found this difficult to do, and were better able to assess the probability 
of an effect given a cause. So modern systems usually assess causal knowledge and encode it 
directly in the Bayesian network structure of the model, leaving the diagnostic reasoning to 
the Bayesian network inference algorithms (Shachter and Beckerman, 1987).  

Assign utilities. When there are a small number of possible outcomes, they can be 
enumerated and evaluated individually using the methods of Section 16.3.1. We would create 
a scale from best to worst outcome and give each a numeric value, for example 0 for death 
and 1 for complete recovery. We would then place the other outcomes on this scale. This 
can be done by the expert, but it is better if the patient (or in the case of infants, the patient's 
parents) can be involved, because different people have different preferences. If there are ex-
ponentially many outcomes, we need some way to combine them using multiattribute utility 
functions. For example, we may say that the costs of various complications are additive. 

Verify and refine the model. To evaluate the system we need a set of correct (input, 
output) pairs; a so-called gold standard to compare against, For medical expert systems 
this usually means assembling the best available doctors, presenting them with a few cases, 
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Figure 16.10  Influence diagram for aortic coarctation (courtesy of Peter Lucas). 

and asking them for their diagnosis and recommended treatment plan. We then see how 
well the system matches their recommendations. If it does poorly, we try to isolate the parts 
that are going wrong and fix them. It can be useful to run the system "backward." Instead 
of presenting the system with symptoms and asking for a diagnosis, we can present it with 
a diagnosis such as "heart failure," examine the predicted probability of symptoms such as 
tachycardia, and compare with the medical literature. 

Perform sensitivity analysis.  This important step checks whether the best decision is 
sensitive to small changes in the assigned probabilities and utilities by systematically varying 
those parameters and running the evaluation again. If small changes lead to significantly 

different decisions, then it could be worthwhile to spend more resources to collect better 
data. If all variations lead to the same decision, then the agent will have more confidence that 

it is the right decision. Sensitivity analysis is particularly important, because one of the main 
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criticisms of probabilistic approaches to expert systems is that it is too difficult to assess the 
numerical probabilities required. Sensitivity analysis often reveals that many of the numbers 
need be specified only very approximately. For example, we might be uncertain about the 
conditional probability P(tachucaMia  dyspnea),  but if the optimal decision is reasonably 
robust to small variations in the probability, then our ignorance is less of a concern. 

16.8 SUMMARY 

This chapter shows how to combine utility theory with probability to enable an agent to select 
actions that  will maximize its expected performance. 

■ Probability theory describes what an agent should believe on the basis of evidence,  
utility theory describes what an agent wants, and decision theory puts the two together 
to describe what an agent should do. 

■ We can use decision theory to build a system that makes decisions by considering all 
possible actions and choosing the one that leads to the best expected outcome. Such a 
system is known as a rational agent. 

• Utility theory shows that an agent whose preferences between lotteries are consistent 
with a set of simple axioms can be described as possessing a utility function; further-
more, the agent selects actions as if maximizing its expected utility. 

• Multiattribute  utility theory deals with utilities that depend on several distinct at-
tributes of states. Stochastic dominance is a particularly useful technique for making 
unambiguous decisions, even without precise utility values for attributes. 

• Decision networks provide a simple formalism for expressing and solving decision 
problems. They are a natural extension of Bayesian networks, containing decision and 
utility nodes in addition to chance nodes. 

■ Sometimes, salving a problem involves finding more information before making a de-
cision. The value of information is defined as the expected improvement in utility 
compared with making a decision without the information. 

• Expert systems that incorporate utility information have additional capabilities com-
pared with pure inference systems. In addition to being able to make decisions, they 
can use the value of information to decide which questions to ask, if any; they can rec- 
ommend contingency plans; and they can calculate the sensitivity of their decisions to 
small changes in probability and utility assessments_  

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The book L'art de Penser,  also known as the Port -Royal  Logic (Amauld, 1662) states: 
To judge what one must do to obtain a good or avoid an evil, it is necessary to consider 
not only the good and the evil in itself, but also the probability that it happens or does not 
happen; and to view geometrically the proportion that all these things have together. 
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Modem texts talk of utility rather than good and evil, but this statement correctly notes that 
one should multiply utility by probability ("view geometrically") to give expected utility, 
and maximize that over all outcomes ("all these things") to "judge what one must do." It 
is remarkable how much this got right, 350 years ago, and only 8 years after Pascal and 
Fermat showed how to use probability correctly. The Port-Royal Logic also marked the first 
publication of Pascal's wager. 

Daniel Bernoulli (1738), investigating the St. Petersburg paradox (see Exercise 16.3), 
was the first to realize the importance of preference measurement for lotteries, writing "the 
value of an item must not be based on its price, but rather on the utility that it yields" (ital-
ics his). Utilitarian philosopher Jeremy Bentham (1823) proposed the hedonic calculus for 
weighing "pleasures" and "pains," arguing that all decisions (not just monetary ones) could 
be reduced to utility comparisons. 

The derivation of numerical utilities from preferences was  first carried out by Ram- 
sey (1931); the axioms for preference in the present text are closer in form to those rediscov-
ered in Theory of Games and Economic Behavior (von Neumann and Morgenstern, 1944). 
A good presentation of these axioms, in the course of a discussion on risk preference, is given 
by Howard (1977). Ramsey had derived subjective probabilities (not just utilities) from an 
agent's preferences; Savage (1954) and Jeffrey (1983) carry out more  recent constructions 
of this kind. Von Winterfeldt and Edwards (1986) provide a modem perspective on decision 
analysis and its relationship to human preference structures. The micromort utility measure 
is discussed by Howard 1:1989). A 1994 survey by the Economist set the value of a life at 
between $750,000 and $2.6 million. However, Richard Thaler (1992)  found irrational fram- 
ing effects on the price one is willing to pay to avoid a risk of death versus the price one is 
willing to be paid to accept a risk. For a 1/1000 chance, a respondent wouldn't pay more 
than $200 to remove the risk, but wouldn't accept $50,000 to take on the risk. How much are 
people willing to pay for a QALY?  When it comes down to a specific case of saving oneself 
or a family member, the number is approximately "whatever I've got." But we can ask at a 
societal level: suppose there is a vaccine that would yield X QALYs but costs Y dollars; is it 
worth it? In  this case people report a wide range of values from around $10,000 to $150,000 
per QALY (Prades et al., 2008). QALYs  are much more widely used in medical and social 
policy decision making than are micromorts; see (Russell, 1990) for a typical example of an 
argument for a major change in public health policy on grounds of increased expected utility 
measured in QALYs.  

The optimizer's curse was brought  to the attention of decision analysts in a forceful 
way by Smith and Winkler (2006), who pointed out that the financial benefits to the client 
projected by analysts for their proposed course of action almost never materialized. They 
trace this directly to the bias introduced by selecting an optimal action and show that a more 
complete Bayesian analysis eliminates the problem. The same underlying concept has been 
called post-decision disappointment by Harrison and March (1984) and was noted in the 
context of analyzing capital investment projects by Brown (1974). The optimizer's  curse is 
also closely related to the winner's curse (Capen et al., 1971; Thaler, 1992), which applies 
to competitive bidding in auctions: whoever wins the auction is very likely to have overes-
timated the value of the object in question. Capen et al. quote a petroleum engineer on the 
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R EGRESSION TO THE 
MEAN 

topic of bidding for oil-drilling rights: "If one wins a tract against two or three others he may 
feel finc about his good fortune. But how should he feel if he won against 50 others? Ill." 
Finally, behind both curses is the general phenomenon of regression to the mean, whereby 
individuals selected on the basis of exceptional characteristics previously exhibited will, with 
high probability, become less exceptional in future. 

The Allais paradox, due to Nobel Prize-winning economist Maurice Allais (1953) was 
tested experimentally (Tversky  and Kahneman,  1982;  Conlisk, 1989) to show that people 
are consistently inconsistent in their judgments. The Fllsberg paradox on ambiguity aver-
sion was introduced in the Ph.D. thesis of Daniel Ellsberg (Ellsberg,  1962), who went on to 
become a military analyst at the RAND Corporation and to leak documents known as The 
Pentagon Papers, which contributed to the end of the Vietnam war and the  resignation of 
President Nixon. Fox and Tversky (1995) describe a further study of ambiguity aversion. 
Mark Machina  (2005) gives an overview of choice under uncertainty and how it can vary 
from expected utility theory. 

There has been a recent outpouring of more-or-less popular books on human irrational-
ity. The best known is Predictably Irrational (Aridly, 2009); others include Sway (Brafman 
and Brafman,  2009), Nudge (Thaler and Sunstein, 2009). Kluge (Marcus, 2009), How We 
Decide (Lehrer, 2009) and On Being Certain (Burton. 2009). They complement the classic 
(Kahneman  et al., 1982) and the article that started it all (Kabneman  and Tversky, 1979), 
The field of evolutionary psychology (Buss, 2005), on the other hand, has run counter to this 
literature, arguing that humans are quite rational in evolutionarily appropriate contexts. Its 
adherents point out that irrationality is penalized by definition in an evolutionary context and 
show that in some cases it is an artifact of the experimental setup (Cummins and Allen, 1998). 
There has been a recent resurgence of interest in Bayesian models of cognition, overturning 
decades of pessimism (Oaksford and Chater, 1998; Elio, 2002;  Chater and Oaksford, 2008). 

Keeney and Raiffa (1976) give a thorough introduction to multiattribute utility the-
ory. They describe early computer implementations of methods for eliciting the necessary 
parameters for a multiattribute  utility function and include extensive accounts of real appli-
cations of the theory_  in AT, the principal reference for MAI  TT is Wellman's (1985) paper, 
which includes a system called URP (Utility Reasoning Package) that can use a collection 
of statements about preference independence and conditional independence to analyze the 
structure of decision problems. The use of stochastic dominance together with qualitative 
probability models was investigated extensively by Wellman (1988, 1990a). Wellman and 
Doyle (1992) provide a preliminary sketch of how a complex set of utility-independence re-
lationships might be used to provide a structured model of a utility function, in much the 
same way that Bayesian networks provide a structured model of joint probability distribu-
tions. Bacchus and Grove (1995, 1996) and La Mura and Shoham (1999) give further results 
along these lines. 

Decision theory has been a standard tool in economics, finance, and management sci-
ence since the 1950s. Until the 1980s, decision trees were the main tool used for representing 
simple decision problems. Smith (1988) gives an overview of the methodology of deci-
sion innalysis.  Influence diagrams were introduced by Howard and Matheson (1984), based 
on earlier work at SRI (Miller et al., 1976). Howard and Matheson's method involved the 
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derivation of a decision tree from a decision network, but in general the tree is of exponential 
size. Shachtcr (1986) developed a method for making decisions based directly on a decision 
network, without the creation of an intermediate decision tree. This algorithm was also one 
of the first to provide complete inference for multiply connected Bayesian networks. Zhang 
et al. (1994) showed how to take advantage of conditional independence of information to re-
duce the size of trees in practice; they use the term decision network for networks that use this 
approach (although others use it as a synonym for influence diagram). Nilsson and Lauritzen 
(2000) link algorithms for decision networks to ongoing developments in clustering algo-
rithms for Bayesian networks. Koller and Mulch (2003) show how influence diagrams can be 
used to solve games that involve gathering information by opposing players, and Detwarasiti 
and Shachter  (2005]  show how influence diagrams can be used as an aid to decision making 
for a team that shares goals but is unable to share all information perfectly. The collection 
by Oliver and Smith (1990) has a number of useful articles on decision networks, as dues the 
1990 special issue of the journal Networks. Papers on decision networks and utility modeling 
also appear regularly in the journals Management Science and Decision Analysis. 

The theory of information value was explored first in the context of statistical experi-
ments, where a quasi-utility (entropy reduction) was used (Lindley, 1956). The Russian con-
trol theorist Ruslan Stratonovich (1965) developed the more general theory presented here, in 
which information has value by virtue of its ability to affect decisions. Stratonovich's work 
was not known in the West, where Ron Howard (1966) pioneered the same idea. His paper 
ends with the remark "If information value theory and associated decision theoretic structures 
do not in the future occupy a large part of the education of engineers, then the engineering 
profession will find that its traditional role of managing scientific and economic resources for 
the benefit of man has been forfeited to another profession." To date, the implied revolution 
in managerial methods has not occurred. 

Recent work by Krause and Guestrin  (2009) shows that computing the exact non-
myopic value of information is intractable even in polytree networks. There are other cases—
more restricted than general value of information—in which the myopic algorithm does pro-
vide a provably good approximation to the optimal sequence of observations (Krause et al., 
2008). In some cases—for example, looking for treasure buried in one of a places—ranking 
experiments in order of success probability divided by cost gives an optimal solution (Kadane 
and Simon, 1977). 

Surprisingly few early Al researchers adopted decision-theoretic tools after the early 
applications in medical decision making described in Chapter 13. One of the few exceptions 
was Jerry Feldman, who applied decision theory to problems in vision (Feldman and Yaki-
movsky, 1974) and planning (Feldman and Sproull, 1977). After the resurgence of interest in 
probabilistic methods in Al in the 1980s, decision-theoretic expert systems gained widespread 
acceptance (Horvitz et al.,  1988; Cowell et al., 2002). In fact, from 1991 onward, the cover 
design of the journal Artificial intelligence has depicted a decision network,  although some 
artistic license appears to have been taken with the direction of the arrows. 
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EXERCISES 

16.1 (Adapted from David Heckerman.) This exercise concerns the Almanac Came, which 
is used by decision analysts to calibrate numeric estimation. For each of the questions that 
follow, give your best guess of the answer, that is, a number that you think is as likely to be 
too high as it is to be too low. Also give your guess at a 25th percentile estimate, that  is, LI  

number that you think has a 25% chance of being too high, and a 75% chance of being too 
low. Do the same for the 75th percentile. (Thus,  you should give three estimates in all—low, 
median, and high—for each question.) 

a. Number of passengers who flew between New York and Los Angeles in 1989.  
b. Population of Warsaw in 1992. 
c. Year in which Coronado discovered the Mississippi River. 
d. Number of votes received by Jimmy Carter in the 1976 presidential election. 
e. Age of the oldest living tree, as of 2002. 

f. Height of the Hoover Dam in feet. 
g. Number of eggs produced in Oregon in 1985. 
h. Number of Buddhists in the world in 1992. 

i. Number of deaths due to AIDS in the United States in 1981. 
j. Number of U.S patents granted in 1901. 

The correct answers appear after the last exercise of this chapter. From the point of view of 
decision analysis, the interesting thing is not how close your median guesses came to the real 
answers, but rather how often the real answer came within your 25% and 75% bounds. If it 
was about half the time, then your bounds are accurate. But if you're like most people, you 
will be more sure of yourself than you should be, and fewer than half the answers will fall 
within the bounds_ With practice, you can calibrate yourself to give realistic bounds, and thus 
be more useful in supplying information for decision making. Try this second set of questions 
and see if there is any improvement: 

a. Year of birth of Zsa Zsa Gabor, 
b. Maximum distance from Mars to the sun in miles. 
c. Value in dollars of exports of wheat from the United States in 1992. 
d. Tons handled by the port of Honolulu in 1991. 
e. Annual salary in dollars of the governor of California in 1993. 
f. Population of San Diego in 1990. 
g. Year in which Roger Williams founded Providence, Rhode Island. 
h. Height of Mt. Kilimanjaro in feet. 
i. Length of the Brooklyn Bridge in feet. 
j. Number of deaths due to automobile accidents in the United States in 1992. 
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Figure 16.11  Three proposed Bayes  nets for the Surprise Candy problem, Exercise 16.5. 
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16.2 Chris considers four used cars before buying the one with maximum expected utility. 
Pat considers ten cars and does the same. All other things being equal, which one is more 
likely to have the better car? Which is more likely to be disappointed with their car's quality? 
By how much (in terms of standard deviations of expected quality)? 

163 In 1713, Nicolas Bernoulli stated a puzzle, now called the St_ Petersburg paradox, 
which works as follows. You have the opportunity to play a game in which a fair coin is 
tossed repeatedly until it comes up heads. If the first beads appears on the mth  toss, you win 

2Th  dollars. 
a. Show that the expected monetary value of this game is infinite. 
b. How much would you, personally, pay to play the game? 
c. Nicolas's cousin Daniel Bernoulli resolved the apparent paradox in 1738 by suggesting 

that the utility of money is measured on a logarithmic scale (Le.. U(S,)  — a loge  n  b, 
where S„  is the state of having Sri). What is the expected utility of the game under this 
assumption? 

d. What is the maximum amount that it would be rational to pay to play the game, assum-
ing that one's initial wealth is 5k? 

16.4 Write a computer program to automate the process in Exercise 16.9. Try your pro-
gram out on several people of different net worth and political outlook. Comment on the 
consistency of your results, both for an individual and across individuals. 

16.5 The Surprise Candy Company makes candy in two flavors: 70% are strawberry fla-
vor and 30% are anchovy flavor. Each new piece of candy starts out with a round shape; 
as it moves along the production line, a machine randomly selects a certain percentage to 
be trimmed into a square; then, each piece is wrapped in a wrapper whose color is chosen 
randomly to be red or brown. 80% of the strawberry candies are round and 80% have a red 
wrapper, while 90% of the anchovy candies are square and 90% have a brown wrapper_ All 
candies are sold individually in sealed, identical, black boxes, 

Now you, the customer, have just bought a Surprise candy at the store but have not yet 
opened the box. Consider the three Bayes nets in Figure 16.11. 

a. Which network(s) can correctly represent P(F)acor.  Wrapper, Shape)? 
b. Which network is the best representation for this problem? 
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c. Does network (i) assert that P(Wrapper Shape) —P(Wrapper)?  
ti.  What is the probability that your candy has a red wrapper? 

e. In the box is a round candy with a red wrapper. What is the probability that its flavor is 
strawberry? 

f. A unwrapped strawberry candy is worth s on the open market and an unwrapped an- 
chovy candy is worth a. Write an expression for the value of an unopened candy box. 

g. A new law prohibits trading of unwrapped candies, but it is still legal to trade wrapped 
candies (out of the box). Is an unopened candy box now worth more than less than, or 
the same as before? 

16.6 Prove that the judgments B A and C :›-  D  in the Allais paradox (page 620) violate 
the axiom of substitutability. 

16.7 Consider the Allais paradox described on page 620: an agent who prefers B over 
A (taking the sure thing), and C over D (taking the higher EMV)  is not acting rationally, 
according to utility theory. Do you think this indicates a problem for the agent, a problem for 
the theory, or no problem at all? Explain, 

16.8 Tickets to a lottery cost $1. There are two possible prizes: a $10  payoff with probabil-
ity 1/50, and a $1,000,000 payoff with probability 1/2,000,000. What is the expected mone-
tary value of a lottery ticket? When (if ever) is it rational to buy a ticket? Be precise—show ;rill  
equation involving utilities.  You may assume current wealth of $k and that U(Sk )  = O.  You 
may also assume that U(Sk+16 )  = 10 x  ET(Sk+i  ),  but you may not make any assumptions 
about U(Sk+  t  00000n).  Sociological studies show that people with lower income buy a dis-
proportionate number of lottery tickets. Do you think this is because they are worse decision 
makers or because they have a different utility function? Consider the value of contemplating 
the possibility of winning the lottery versus the value of contemplating becoming an action 
hero while watching an adventure movie. 

16.9 Assess your own utility for different incremental amounts of money by running a series 
of preference tests between some definite amount Mt and a lottery [p,1112;  (1 p), 01.  Choose 
different values of Aft and 1112,  and vary p until you are indifferent between the two choices. 
Plot the resulting utility function. 

16.10 How much is a micromort worth to you? Devise a protocol to determine this. Ask 
questions based both on paying to avoid risk and being paid to accept risk. 

16.11 Let continuous variables Xi, ....Xk  be independently distributed according to the 
same probability density function f (x).  Prove that the density function for max{Xi  ,  Xk)  
is given by k f(x)(F(x.)) i-1  , where F is the cumulative distribution for f 

16.12 Economists often make use of an exponential utility function for money: U(x)  = 
e=  01

,  where R  is a positive constant representing an individual's risk tolerance. Risk toler- 
ance reflects how likely an individual is to accept a lottery with a particular expected monetary 
value (EMV)  versus some certain payoff. As R (which is measured in the same units as zr)  
becomes larger, the individual becomes less risk-averse. 
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a. Assume Mary has an exponential utility function with 1? =  URI  Mary is given the 
choice between receiving $500 with certainty (probability 1) or participating in a lot-
tery which has a 60% probability of winning $5000 and a 40% probability of winning 
nothing. Assuming Marty acts rationally, which option would she choose? Show how 
you derived your answer. 

b. Consider the choice between receiving $100 with certainty (probability 1) or participat-
ing in a lottery which has a 50% probability of winning $500  and a 50% probability of 
winning nothing. Approximate the value of R (to 3 significant digits) in an exponential 
utility function that would cause an individual to be indifferent to these two alternatives. 
(You might find it helpful to write a short program to help you solve this problem.) 

16.13 Repeat Exercise 16.16, using the action-utility representation shown in Figure 16.7. 

16.14 For either of the airport-siting diagrams from Exercises 16.16 and 16.13, to which 
conditional probability table entry is the utility most sensitive, given the available evidence? 

16.15 Consider a student who has the choice to buy or not buy a textbook for a course. We'll 
model this as a decision problem with one Boolean decision node, B. indicating whether the 
agent chooses to huy  the honk, and two Boolean chance nodes, AT,  indicating whether the 
student has mastered the material in the book, and P, indicating whether the student passes 
the course. Of course, there is also a utility node, U. A certain student, Sam, has an additive 
utility function: 0 for not buying the book and -$100 for buying it; and $2000  for passing the 
course and 0 for not passing. Sam's conditional probability estimates are as follows: 

P(Plb,  Tn)  = 0.0 Pfralb)  = 0.9 
P(plb, = 0.5  P(m.1—b)  = 0.7 
P(PIL ,77/)  = 0.8 
P(PHL, = 0. 3  

You might think that P would be independent of 13 given Al,  But this course has an open-
book final—so having the book helps. 

a. Draw the decision network for this problem. 
b. Compute the expected utility of buying the book and of not buying it. 

c. What should Sam do? 

16.16 This exercise completes the analysis of the airport-siting problem in Figure 16.6. 
a. Provide reasonable variable domains, probabilities, and utilities for the network, assum-

ing that there are tl-zee  possible sites. 

b. Solve the decision problem. 
c. What happens if changes in technology mean that each aircraft generates half the noise? 
d. What if noise avoidance becomes three times more important? 

e. Calculate the VPI for AirTraffic, Litigation, and Construction, in your model. 
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SUBMODULA1ITY  

16.17  (Adapted from Pearl (1988).) A used-car buyer can decide to carry out various tests 
with various costs (e.g.,  kick the tires, take the car to a qualified mechanic) and then, depend- 
ing on the outcome of the tests, decide which car to buy. We will assume that the buyer is 
deciding whether to buy car ci,  that there is time to carry out at most one test, and that ti  is 
the test of el, and costs $50. 

A car can be in good shape (quality q+)  or bad shape (quality c),  and the tests might 
help indicate what shape the car is in. Car ei  costs $1,500, and its market value is $2,000 if it 
is in good shape; if not, $700 in repairs will be needed to make it in good shape. The buyer's 
estimate is that et  has a 70% chance of being in good shape. 

a. Draw the decision network that represents this problem. 
b. Calculate the expected net gain from buying cl ,  given no test. 
c. Tests can be described by the probability that the car will pass or fail the test given that 

the car is in good or bad shape. We have the following information: 
P(pass(ci ,  t i )lq+  (ei))  = 0.8 
P(Pass(ci,  tt)14(c1))  = 0 . 35  
Use Bayes' theorem to calculate the probability that the car will pass (or fail) its test and 
hence the probability that it is in good (or bad) shape given each possible test outcome. 

d. Calculate the optimal decisions given either a pass or a fail, and their expected utilities. 
e. Calculate the value of information of the test, and derive an optimal conditional plan 

for the buyer. 

16.18  Recall the definition of value of information in Section 16.6. 
a. Prove that the value of information is nonnegative and order independent. 
b. Explain why it is that some people would prefer not to get some information—for ex-

ample, not wanting to know the sex of their baby when an ultrasound is done. 
c. A function f on sets is submodular if, for any element a; and any sets A and B such 

that A C  B, adding x  to A gives a greater increase in ,f  than adding x  to B: 

AC B (f  (ALI  {x})  — f  ( A)) >  (f (B {x})  — f (B))  . 

Submodularity  captures the intuitive notion of diminishing returns. Is the value of in-
formation, viewed as a function f on sets of possible observations, submodular?  Prove 
this or find a counterexample. 

The answers to Exercise 16.1 (where M stands for million): First set: 3M, 1.6M, 1541, 41M,  
4768, 221, 649M, 295M, 132, 25,546. Second set: 1917, 155M, 4,500M, 11M,  120,000. 
1.1M, 1636, 19,340, 1,595,41,710. 



 

17  MAKING COMPLEX 
DECISIONS 

In which we examine methods for deciding what to do today, given that we may 
decide again tomorrow.  

SEQUENTIAL 
DECISION PROBLEM 

In this chapter, we address the computational issues involved in making decisions in a stochas-
tic environment. Whereas Chapter 16 was concerned with one-shot or episodic decision 
problems, in which the utility of each action's outcome was well known, we are concerned 
here with sequential decision problems, in which the agent's utility depends on a sequence 
of decisions. Sequential decision problems incorporate utilities, uncertainty, and sensing, 
and include search and planning problems as special cases. Section 17.1 explains how se-
quential decision problems are defined, and Sections 171 and 17.3  explain how they can 
be solved to produce optimal behavior that balances the risks and rewards of acting in an 
uncertain environment. Section 17.4 extends these ideas to the case of partially observable 
environments, and Section 17.43 develops a complete design for decision-theoretic agents in 
partially observable environments, combining dynamic Bayesian networks from Chapter 15 
with decision networks from Chapter 16. 

The second part of the chapter covers environments with multiple agents. In such en-
vironments, the notion of optimal behavior is complicated by the interactions among the 
agents. Section 17.5 introduces the main ideas of game theory, including the idea that ra-
tional agents might need to behave randomly. Section 17.6 looks at how multiagent systems 
can be designed so that multiple agents can achieve a common goal. 

17.1 SEQUENTIAL DECISION PROBLEMS 

Suppose that an agent is situated in the 4 x 3 environment shown in Figure 17.1(a). Beginning 
in the start state, it must choose an action at each time step. The interaction with the environ- 
ment terminates when the agent reaches one of the goal states, marked +1 or —1. Just as for 
search problems, the actions available to the agent in each state are given by AcTioNs(.$),  

sometimes abbreviated to A(s);  in the 4 x 3 environment, the actions in every state are Up, 
Dawn, Left, and Right. We assume for now that the environment is fully observable, so that 
the agent always knows where it is. 
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Figure 17.1 (a) A simple I x  3 environment that presents the agent with a sequential 
decision problem. (p)  Illustration of the transition model of the environment: the "intended" 
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles 
to the intended direction. A collision wilh  a wall results in no movement. The two terminal 
states have reward +1 and —I, respectively, and all other states have a reward of —0.04,  
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If the environment were deterministic, a solution would be easy: [ Up, Up, Right, Right, 
Right].  Unfortunately, the environment won't always go along with this solution, because the 
actions are unreliable. The particular model of stochastic motion that we adopt is illustrated 
in Figure 17.1(b).  Each action achieves the intended effect with probability 0.S,  but the rest 
of the time, the action moves the agent at right angles to the intended direction. Furthermore, 
if the agent bumps into a wall, it stays in the same square. For example, from the start square 
(1,1), the action Up moves the agent to (1.2) with probability 0.8, but with probability 0.1, it 
moves right to (2,1). and with probability 0.1, it moves left, bumps into the wall, and stays in 
(1,1). In such an environment, the sequence [ Up, Up, Right, Right ,  Right] goes up around 
the barrier and reaches the goal state at (4,3) with probability O. P  = 0.32768. There is also a 
small chance of accidentally reaching the goal by going the other way around with probability 
0.1 4  x 0.8, for a grand total of 0.32776.  (See also Exercise 17.1.) 

As in Chapter 3, the transition model (or just "model," whenever no confusion can 
arise) describes the outcome of each action in each state. Here, the outcome is stochastic, 
so we write P(s/  a, a) to denote the probability of reaching state a' if action a is done in 
state s.  We will assume that transitions are Markovian  in the sense of Chapter 15, that is, the 
probability of reaching a' from s depends only on a and not on the history of earlier states. For 
now, you can think of P(s'  I .s ;  a) as a big three-dimensional table containing probabilities. 
Later, in Section 17.4.3, we will see that the transition model can be represented as a dynamic 
Bayesian network, just as in Chapter 15. 

To complete the definition of the task environment, we must specify the utility function 
for the agent. Because the decision problem is sequential. the utility function will depend 
on a sequence of states—an environment history—rather than on a single state. Later in 
this section, we investigate how such utility functions can be specified in general; for now  

R  EAR 
 we simply stipulate that in each state a, the agent receives a reward R(s), which may be 

positive or negative, but must be bounded. For our particular example, the reward is —0.04 
in all states except the terminal states (which have rewards +1  and —1). The utility of an 



Section 17.1. Sequential Decision Problems 647 

environment history is just (for now) the sum of the rewards received. For example, if the 
agent reaches the +1 state after 10 steps, its total utility will he 0.6. The negative reward of 
—0.04 gives the agent an incentive to reach (4,3) quickly, so our environment is a stochastic 
generalization of the search problems of Chapter 3. Another way of saying this is that the 
agent does not enjoy living in this environment and so wants to leave as soon as possible. 

To sum up: a sequential decision problem for a fully observable, stochastic environment 
MARKIN 

 GIECFSION with a Markovian transition model and additive rewards is called a Markov  decision process, PROPPM  

or MDP,  and consists of a set of states (with an initial state so); a set ACTIONS (3) of actions 
in each state; a transition model P(s'  a, a); and a reward function Ks)) 

The next question is, what does a solution to the problem look like? We have seen that 
any fixed action sequence won't solve the problem, because the agent might end up in a state 
other than the goal. Therefore, a solution must specify what the agent should do for any state 

PC_IC'e  that the agent might reach. A solution of this kind is called a policy. It is traditional to denote 
a policy by 7,  and 7r(s)  is the action recommended by the policy it for state a. If the agent 
has a complete policy, then no matter what the outcome of any action, the agent will always 
know what to do next. 

Each time a given policy is executed starting from the initial state, the stochastic nature 
of the environment may lead to a different environment history. The quality of a policy is 
therefore measured by the expected utility of the possible environment histories generated 

OPTIMAL PCLICY  by that policy. An optimal policy is a policy that yields the highest expected utility. We  
use 7r*  to denote an optimal policy. Given rr*,  the agent decides what to do by consulting 
its current percept, which tells it the current state s, and then executing the action 7r*s).  A 
policy represents the agent function explicitly and is therefore a description of a simple reflex 
agent, computed from the information used for a utility-based agent 

An optimal policy for the world of Figure 17.1 is shown in Figure 17.2(a). Notice 
that, because the cost of taking a step is fairly small compared with the penalty for ending 
up in (4,2) by accident, the optimal policy for the state (3,1) is conservative. The policy 
recommends taking the long way round, rather than taking the shortcut and thereby risking 
entering (4,2). 

The balance of risk and reward changes depending on the value of R(s) for the nonter-
minal  states. Figure 17.2(b) shows optimal policies for four different ranges of R(s). When 
R(s) <  —1.6284, life is so painful that the agent heads straight for the nearest exit, even if 
the exit is worth —1. When —0.4278 <  R(s)  <  —0.0850, Life is quite unpleasant; the agent 
takes the shortest route to the +I state and is willing to risk falling into the —1 state by acci-
dent. In particular, the agent takes the shortcut from (3,1), When life is only slightly dreary 
(-0.0221 <  R(s) <  0), the optimal policy takes no risks at all. In (4,1) and (3,2), the agent 
heads directly away from the —1 state so that it cannot fall in by accident, even though this 
means banging its head against the wall quite a few times. Finally, if R(s)  > 0, then life is 
positively enjoyable and the agent avoids both exits. As long as the actions in (4,1), (3,2), 

Some definitions of 1VIDPs  allow the reward to depend on the action and outcome too, so the reward function 
is P(s,  a, s').  This  simplifies the description of some environments but does not change the problem in any 
fundamental way, as shown in Exercise 17.4. 
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and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward be-
cause it never enters a terminal state. Surprisingly, it turns out that there are six other optimal 
policies for various ranges of Ft(s);  Exercise 17.5 asks you to find them. 

The careful balancing of risk and reward is a characteristic of MDI's  that does not 
arise in deterministic search problems; moreover, it is a characteristic of many real-world 
decision problems. For this reason, MDPs have been studied in several fields, including 
AI, operations research, economics, and control theory. Dozens of algorithms have been 
proposed for calculating optimal policies. In sections 17.2 and 17.3 we describe two of the 
most important algorithm families_ First, however, we must complete our investigation of 
utilities and policies for sequential decision problems. 

17.1.1 Utilities over time 

ANTE 1-tORI20N  

INF NITE  HOPEON  

In the MDP example in Figure 17.1, the performance of the agent was measured by a sum of 
rewards for the states visited. This choice of performance measure is not arbitrary, but it is 
not the only possibility for the utility function on environment histories, which we write as 
U,Mso,  sn ])  Our analysis draws on multiattribute utility theory (Section 16.4) and 
is somewhat technical; the impatient reader may wish to skip to the next section. 

The first question to answer is whether there is a finite horizon or an infinite horizon 
for decision making. A finite horizon means that there is a fixed time N after which nothing 
matters—the game is over, so to speak. Thus, Uh([8 (1,  8 11  8N+k]) =  Uh(  1.9 0  Sl,  • -  SNI)  
for all k > 0. For example, suppose an agent starts at (3,1) in the 4 x 3 world of Figure 17.1, 
and suppose that N = 3. Then, to have any chance of reaching the +1 state, the agent must 
head directly for it, and the optimal action is to go Up. Oii  the other hand, if N = 

then there is plenty of time to take the safe route by going Left. So, with ci  finite horizon, 
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the optimal action in a given state could change over time. We say that the optimal policy 
NONSTATIONARY for a finite horizon is nonstationary.  With no fixed time limit, on the other hand, there is 

no reason to behave differently in the same state at different times. Hence, the optimal ac- 
SWOMARYF'OLICY  tion depends only on the current state, and the optimal policy is stationary. Policies for the 

infinite-horizon case are therefore simpler than those for the finite-horizon case, and we deal 
mainly with the infinite-horizon case in this chapter. (We will see later that for partially ob- 
servable environments, the infinite-horizon case is not so simple.) Note that "infinite horizon" 
does not necessarily mean that all state sequences are infinite; it just means that there is no 
fixed deadline In particular, there can be finite state sequences in an infinite-horizon MDP 
containing a terminal state. 

The next question we must decide is how to calculate the utility of state sequences. In 
the terminology of multiattribute  utility theory, each state si  can be viewed as an attribute of 
the slate sequence [50, 81, 82  .  .1. To obtain it simple expression in teens  of the attributes, we 
will need to make some sort of preference-independence assumption. The most natural as- 

STATIONARY  
PREFERENCE sum tion is that the agent's preferences between state sequences are stationary. Stationarity  

for preferences means the following: if two state sequences [so, s1„52,  and [s l
o ,  .  .]  

begin with the same state (i.e., sa  = 4), then the two sequences should be preference-ordered 
the same way as the sequences [s i ,  s2, ..  .]  and [81. .  _]  In English, this means that if you 
prefer one future to another starting tomorrow, then you should still prefer that future if it 
were to start today instead. Stationarity  is a fairly innocuous-looking assumption with very 
strong consequences: it turns out that under stationarity there are just two coherent ways to 
assign utilities to sequences: 

ADDITIVE REWARD I. Additive rewards: The utility of a state sequence is 

W[se,  si,  82,  -  •])  = R(so)  + R(s1)  + li(s2Y  + -  •  - 

The 4 X  3 world in Figure 17.1 uses additive rewards. Notice that additivity was used 
implicitly in our use of path cost functions in heuristic search algorithms (Chapter 3). 

2. Discounted rewards: The utility of a state sequence is 

Uhaso,.91,  82,  •  .])  = -13(so)  +'y -13(si) '72R(s2)  + •  •  

where the discount factor -y  is a number between 0 and 1. The discount factor describes 
the preference of an agent for current rewards over future rewards. When ry  is close 
to 0, rewards in the distant future are viewed as insignificant. When ry is 1, discounted 
rewards are exactly equivalent to additive rewards, so additive rewards are a special 
case of discounted rewards. Discounting appears to be a good model of both animal 
and human preferences over time. A discount factor of y is equivalent to an interest rate 
of (1 /-y)  —  1. 

For reasons that will shortly become clear, we assume discounted rewards in the remainder 
of the chapter, although sometimes we allow ry — 1. 

Lurking beneath our choice of infinite horizons is a problem: if the environment does 
not contain a terminal  state, or if the agent never reaches one, then all environment histories 
will be infinitely long, and utilities with additive, undiscounted rewards will generally be 

DISCOUNTED 
RENARD  

DISCOUNT FACTOR 
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infinite. While we can agree that±oc  is better than —oo,  comparing two state sequences with 
+co utility is more difficult. There arc three solutions, two of which we have seen already: 

1. With discounted rewards. the utility of an infinite sequence is finite. In fact, if 7 < 1 
and rewards are bounded by ±/iniax ,  we have 

O0  
UhUgo,  gi,  82,  •  -I) = E  

▪ 

7tR(st)  E  7tiimax  = Rmai/( 1  — (17.1) 
=o t  =  

using the standard formula for the sum of an infinite geometric series. 
2. If the environment contains terminal states and if the agent is guaranteed to get to one 

eventually, then we will never need to compare infinite sequences. A policy that is 
guaranteed to reach a terminal state is called a proper policy. With proper policies, we 
can use -y  = 1 (i.e., additive rewards). The first three policies shown in Figure 17.2(b) 
are proper, but the fourth is improper. It gains infinite total reward by staying away from 
the terminal states when the reward for the nonterminal  states is positive_ The existence 
of improper policies can cause the standard algorithms for solving MDPs to fail with 
additive rewards, and so provides a good reason for using discounted rewards. 

3 Infinite sequences can be compared in terms of the average reward obtained per time 
step. Suppose that square (1,1) in the 4 x  3 world has a reward of 0.1 while the other 
nontenninal  states have a reward of 0.01. Then a policy that does its best to stay in 
(1,1) will have higher average reward than one that stays elsewhere. Average reward is 
a useful criterion for some problems, but the analysis of average-reward algorithms is 
beyond the scope of this book. 

In sum, discounted rewards present the fewest difficulties in evaluating state sequences. 

17.1.2 Optimal policies and the utilities of states 

Having decided that the utility of a given state sequence is the sum of discounted rewards 
obtained during the sequence, we can compare policies by comparing the expected utilities 
obtained when executing them. We assume the agent is in some initial state s  and define S i  
(a random variable) to be the state the agent reaches at time t when executing a particular 
policy rr.  (Obviously, So = a, the state the agent is in now.) The probability distribution over 
state sequences Si, S2,  ,  is determined by the initial state s, the policy 7r, and the transition 
model for the environment. 

The expected utility obtained by executing ir  starting in s  is given by 

Un (s)  = E [E  -yt RA)] (17_2)  

where the expectation is with respect to the probability distribution over state sequences de-
termined by a and 7r.  Now, out of all the policies the agent could choose to execute starting in 
a, one (or more) will have higher expected utilities than all the others. We'll use 7r's'  to denote 
one of these policies: 

7r;  = argmax  Ms) . (17.3) 
71-  

PROPER POLICY 

AVERAGE RENARD 
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Figure 17.3 The utilities of the states in the 4 x 3 world, calculated with y = 1 and 
R(s)  =  — 0.114 for nunterminal  states. 
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Remember that 7r: is a policy, so it recommends an action for every state; its connection 
with 8  in particular is that it's an optimal policy when a is the starting state. A remarkable 
consequence of using discounted utilities with infinite horizons is that the optimal policy is 
independent of the starting state. (Of course, the action sequence won't be independent; 
remember that a policy is a function specifying an action for each state.) This fact seems 
intuitively obvious: if policy 7E:  is optimal starting in a and policy 7 1:  is optimal starting in b, 
then. when they reach a third state c, there's no good reason for them to disagree with each 
other, or with irc*,  about what to do next. 2  So we can simply write 7r* for an optimal policy. 

Given this definition, the true utility of a state is just Pr *  (s) —that is, the expected 
sum of discounted rewards if the agent executes an optimal policy, We write this as U(.0,  
matching the notation used in Chapter 16 for the utility of an outcome. Notice that U (a) and 
R(s)  are quite different quantities; R(s) is the "short term" reward for being in a, whereas 
U(a)  is the "long term" total reward  from a onward, Figure 17.3 shows the utilities for the 
4 x 3 world, Notice that the utilities are higher for states closer to the +1 exit, because fewer 
steps are required to reach the exit. 

The utility function U(s}  allows the agent to select actions by using the principle of 
maximum expected utility from Chapter 16—that is, choose the action that maximizes the 
expected utility of the subsequent state: 

7r*  (s) = argma,x P(s'  ,a)U-  (s1
) (17.4) 

cee..,1(,)  

The next two sections describe algorithms for finding optimal policies. 

2  Although this seems obvious, it does not hold for finite-horizon policies or for other ways of combining 
rewards over time. The proof follows directly from the uniqueness of the utility function on states, as shown in 
Section 17.2. 
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17.2 VALUE ITERATION 

VALUE REFLATION 

BELLMAN  ELIJATION  

BELLMAN JP)ATE  

In this section, we present an algorithm, called value iteration, for calculating an optimal 
policy. The basic idea is to calculate the utility of each state and then use the state utilities to 
select an optimal action in each state. 

17.2.1 The Bellman  equation for utilities 

Section 17.1.2 defined the utility of being in a state as the expected sun' of discounted rewards 
from that point onwards. From this, it follows that there is a direct relationship between the 
utility of a state and the utility of its neighbors: the utility of a state is the immediate reward 
for that state plus the expected discounted utility of the next state, assuming that the agent 
chooses the optimal action. That is, the utility of a state is given by 

U(s) = R(s) max y I s,a)U(s') (17.5) 
Le  EA (s  

This is called the Bellman equation, after Richard Bellman (1957).  The utilities of the 
states—defined by Equation (17.2) as the expected utility of subsequent state sequences—are 
solutions of the set of Bellman equations. In fact, they are the unique solutions, as we show 
in Section 17_2_3_  

Let us look at one of the Bellman equations for the 4 x 3 world. The equation for the 
state (1,1) is 

U(I,  I)  =  —0.04  + y max[ 0.8U(1,  2) + 0.1U(2,1)  + 0.1U(1,  1), ( Up)  
0.9U(1,1)±  0.1U(1,  2), ( Left) 
O.9U(1,  1) + 0.1U(2,1), (Down) 
0.8U(2,  1)  +  O.1U(1,  2) + 0.1U(1,  1) ]. (R.ight)  

When we plug in the numbers from Figure 17.3, we find that Up is the best action. 

17.2.2 The value iteration algorithm 

The Bellman equation is the basis of the value iteration algorithm for solving MDPs. If there 
are n possible states, then there are rt  Bellman equations, one for each state. The :n  equations 
contain n  unknowns—the utilities of the states. So we would like to solve these simultaneous 
equations to find the utilities. There is one problem: the equations are nonlinear, because the 
"max-  operator is not a linear operator. Whereas systems of linear equations can be solved 
quickly using linear algebra techniques, systems of nonlinear equations are more problematic. 
One thing to try is an iterative approach. We start  with arbitrary initial values for the utilities, 
calculate the right-hand side of the equation, and plug it into the left-hand side—thereby 
updating the utility of each state from the utilities of its neighbors. We repeat this until we 
reach an equilibrium.  Let  rii(s)  he the utility value for states at the ith iteration_ The iteration 
step, called a Bellman update, looks like this: 

Ui+t  (s) R(s) max yp(ar  s,  a.) U,,(.9 1 ) (17.6) 
aeA(s)  
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function VALUE - ITERATION(mdp,  e) returns a utility function 
inputs: rrady,  an MDP  with states S, actions A(s),  transition model P(s'  is,  a), 

rewards R.(s), discount •}•  
c,  the maximum error allowed in the utility of any state 

local variables: U, U', vectors of utilities for states in S, initially zero 
5, the maximum change in the utility of any state in an iteration 

repeat 
U .—  U':  c  5 —0  
for each state s in S do 

tE[s]  — R(s) + •-y max E P(s' 1 a, a) U[8']  
a c A(.) ,  

if [U'Is]  — U[s]1 > 3 then o  —1U1s1  — U[8]1  
until S  ..  c(1  — -Oh  
return U 

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termina- 
tion condition is from Equation (17.8). 
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Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value 
iteration. (b) The number of value iterations k required to guarantee an error of at most 
c  = r •  R im,  for different values of c, as a function of the discount factor -,,. .  

where the update is assumed to be applied simultaneously to all the states at each iteration. 
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium 
(see Section 17.2.3), in which case the final utility values must be solutions to the Bellman 
equations. In fact, they are also the unique solutions, and the corresponding policy (obtained 
using Equation (17.4)) is optimal. The algorithm, called VALUE - ITERATION,  is shown in 
Figure 17.4. 

We can  apply value iteration to the 4 x 3 world in Figuie  17.1(a). Starting with initial 
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ- 



654 Chapter 17. Making Complex Decisions 

ent  distances from (4,3) accumulate negative reward until a path is found to (4,3). whereupon 
the utilities start to increase. We can think of the value iteration algorithm as propagating  
information through the state space by means of local updates. 

17.2.3 Convergence of value iteration 

We said that value iteration eventually converges to a unique set of solutions of the Bellman  
equations. In this section, we explain why this happens. We introduce some useful mathe- 
matical ideas along the way, and we obtain some methods for assessing the error in the utility 
function returned when the algorithm is terminated early; this is useful because it means that 
we don't have to run forever. This section is quite technical. 

The basic concept used in showing that value iteration converges is the notion of a con.  
CURFACTION  traction. Roughly speaking, a contraction is a function of one argument that, when applied to 

two different inputs in turn, produces two output values that are "closer together," by at least 
some constant factor, than the original inputs_ For example, the function "divide by two" is 
a contraction, because, after we divide any two numbers by two, their difference is halved.  
Notice that the "divide by two" function has a fixed point, namely zero, that is unchanged by 
the application of the function. From this example_ we can discern two important properties 
of contractions: 

• A contraction has only one fixed point; if there were two fixed points they would not 
get closer together when the function was applied, so it would not be a contraction. 

• When the function is applied to any argument, the value must get closer to the fixed 
point (because the fixed point does not move), so repeated application of a contraction 
always reaches the fixed point in the limit. 

Now, suppose we view the Bellman  update (Equation (17.6)) as an operator B that is applied 
simultaneously to update the utility of every state. Let U.,  denote the vector of utilities for all 
the states at the ith iteration. Then the Gellman  update equation can be written as 

B  U,  .  

MAX NORM Next, we need a way to measure distances between utility vectors. We will use the max norm. 
which measures the "length" of a vector by the absolute value of its biggest component: 

1 U11  = max1U(.s)  .  
8  

With this definition, the "distance" between two vectors, II U  — U1 11,  is the maximum dif-
ference between any two corresponding elements. The main result of this section is the 
following: Let U and  be any two utility vectors. Then we have 

BUi—BUS -"Y  HUi - (17.7] 

That is, the Bellman  update is a contraction by a factor of ry  or the space of utility vectors. 
(Exercise 17.6 provides some guidance on proving this claim.) Hence, from the properties of 
contractions in general, it follows that value iteration always converges to a unique solution 

of the Bellman equations whenever 1,  < 1. 
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We can also use the contraction property to analyze the rate of convergence to a solu-
tion_ In particular, we can  replace U in Equation (17_7)  with the true utilities U, for which 
B U = U. Then we obtain the inequality 

Uii I - ul  
So, if we view Il Lri  — LT11  as the error in the estimate we see that the error is reduced by a 
factor of at least 7 on each iteration. This means that value iteration converges exponentially 
fast. We can calculate the number of iterations required to reach a specified error hound r 
as follows: First, recall from Equation (17.1) that the utilities of all states are bounded by 
±R,,,„/(1  — -y).  This means that the maximum initial error 1U0  — U < 2R„„„/(1  — '71•  
Suppose we run for N iterations to reach an error of at most €.  Then, because the error is 
reduced by at least y each time, we require 7N  • 2R„,,„/(1  —  < e. Taking logs, we find 

N= flog(2R„,,/e(1  — .-y))/  log(1/7)1  
iterations suffice. Figure 17.5(b) shows how N varies with 7, for different values of the ratio 
eilerna„  The good news is that, because of the exponentially fast convergence, IV  does not 
depend much on the ratio  The bad news is that N grows rapidly as y becomes close 
to 1. We can get fast convergence if we make 7  small, but this effectively gives the agent a 
short horizon and could miss the long-term effects of the agent's actions. 

The error bound in the preceding paragraph gives some idea of the factors influencing 
the run time of the algorithm, but is sometimes overly conservative as a method of deciding 
when to stop the iteration. For the latter purpose, we can use a bound relating the error 
to the size of the Bellman update on any given iteration_ From the contraction property 
(Equation (17.7)), it can be shown that if the update is small (i.e., no state's utility changes by 
much), then the error, compared with the true utility function, also is small. More precisely, 

— U11  < — 7)17  then Vi+1  Ull < E . (17.8) 

an  ICY I l'IGR  

This is the termination condition used in the VALUE-ITERATION  algorithm of Figure 17.4. 
Su far, we  have analyzed the error in the utility function returned by the value iteration 

algorithm. What the agent really cares about, however;  is how well it will do if  it makes its 
decisions on the basis of this uniity  finction.  Suppose that after i  iterations of value iteration, 
the agent has an estimate U, of the true utility U and obtains the MEU  policy it  based on 
one-step look-ahead using U, (as in Equation (17.4)). Will the resulting behavior be nearly 
as good as the optimal behavior? This is a crucial question for any real agent, and it turns out 
that the answer is yes. t.71- (8)  is the utility obtained if r, is executed starting in s, and the 
Policy  loss 11E7 '  —MI is the most the agent can lose by executing ari  instead of the optimal 
policy  The policy loss of gi  is connected to the error in f./,:  by the following inequality: 

Ull  <e then < 261/( 1 - (17.9) 
In practice. it often occurs that rr,  becomes optimal long before tri  has converged_ Figure 17.6 
shows how the maximum error in U  and the policy loss approach zero as the value iteration 
process proceeds for the 4 x 3 environment with — 0.9.  The policy era  is optimal when i — 4, 
even though the maximum error in U;  is still 0.46. 

Now we have everything we need to use value iteration in practice. We know that 

it converges to the correct utilities, we can bound the error in the utility estimates if we 
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Figure 17.6 The maximum error IC U — UPI of the utility estimates and the policy loss 
11 U-'`  U  as a function of the number of iterations of value iteration. 
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stop after a finite number of iterations, and we can bound the policy loss that results from 
executing the corresponding MEU policy. As a final note, all of the results in this section 
depend on discounting with 7  <  1. If -y  =1 and the environment contains terminal states, 
then a similar set of convergence results and error bounds can be derived whenever certain 
technical conditions are satisfied. 

1 7_3  POLICY  ITERATION 

In the previous section, we observed that it is possible to get an optimal policy even when 
the utility function estimate is inaccurate. If one action is clearly better than all others, then 
the exact magnitude of the utilities on the states involved need not be precise. This insight 

POLICY ITERATION 

	

	suggests an alternative way to find optimal policies. The policy iteration algorithm alternates 
the following two steps, beginning from some initial policy 7ro:  

POLICY EVALIKTION • Policy evaluation: given a policy rri,  calculate Ui  = U'',  the utility of each state if Tr,  
were to be executed. 

POLICY  
IMPROVEMENT • Policy improvement: Calculate a new MEU  policy rri + l,  using one-step look-ahead 

based on Ut  (as in Equation (17.4)). 
The algorithm terminates when the policy improvement step yields no change in the utilities. 
At this point, we know that the utility function Ui  is a fixed point of the Bellman update, so 
it is a solution to the Bellman  equations, and 7i,  must be an optimal policy. Because there are 
only finitely many policies for a finite state space, and each iteration can be shown to yield a 
better policy, policy iteration must terminate. The algorithm is shown in Figure 17.7. 

The policy improvement step is obviously straightforward, but how do we implement 
the POLICY-EVALUATION routine? It turns out that doing so is much simpler than solving 
the standard Bellman equations (which is what value iteration does), because the action in 
each state is fixed by the policy. At the ith iteration, the policy rri  specifies the action rri(s)  in 



Section 17.3. Policy Iteration 657 

state .s.  This means that we have a simplified version of the Bellman  equation (17.5) relating 
the utility of .s  (under ar,)  to the utilities of its neighbors: 

U.,(s)  = R(s)  + y >P(s'  I 8,  7r4(8))Ui(  s f  ) • (17.10) 

For example, suppose 7r,  is the policy shown in Figure 17.2(a). Then we have rri (1,  1) = Up, 
7r,  (1, 2) = Up, and so on, and the simplified Bellman equations are 

U,(1,1)  = —0.04±  0.8Ui(1,  2) +  0.1Ui(1,  1)  +  0.1U,(2,  1) .  
U,{1,2)  —  —0.04+ 0.811-J(1,  3) ±  0.21,Ti (1,  I?)  , 

MCDIF1ED  POLICY 
ITERATION  

 

The important point is that these equations are linear, because the "max" operator has been 
removed. For .n  states, we have n linear equations with n unknowns, which can be solved 
exactly in time 0(13 )  by standard linear algebra methods. 

For small state spaces, policy evaluation using exact solution methods is often the most 
efficient approach. For large state spaces, 0(ri 3 )  time might be prohibitive. Fortunately, it 
is not necessary to do exact policy evaluation. Instead, we can perform some number of 
simplified value iteration steps (simplified because the policy is fixed) to give a reasonably 
good approximation of the utilities. The simplified Bellman update for this process is 

Ui+t  (8) E(s)  +y  EP(3  1$,  (s))Ui  (.91 )  
s'  

and this is repeated k times to produce the next utility estimate. The resulting algorithm is 
called modified policy iteration. It is often much more efficient than standard policy iteration 
or value iteration. 

  

function POLICY- 1TERATioN(radp)  returns a pulley  
inputs: glp,  an MDP with states S, actions A(s), transition model Pis'  s  , a) 
local variables: U,  a vector of utilities for states in S,  initially zero 

7, a policy vector indexed by state, initially random 

repeat 
U  POLICY-EVALUATION(r,  U, 
unchanged? true 
for each state .s  in S do 

if max E  p(s'  a, a) Uls'l  > r[8])  U[s']  then do 
E  AO) 

[s]  argmax  E  P(s'  s,a)  Uls'l  
_4(s)  

unchanged? -- false  
until unchanged? 
return ir  

  

Figure 17.7 The policy iteration algorithm for calculating an optimal policy. 
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ASYNCHRONDUS  
POLICY ITERATION 

The algorithms we have described so far require updating the utility or policy for all 
states at once. It turns out that this is not strictly necessary. In fact, on each iteration, we 
can pick any subset of states and apply either kind of updating (policy improvement or sim-
plified value iteration) to that subset. This very general algorithm is called asynchronous 
policy iteration. Given certain conditions on the initial policy and initial utility function, 
asynchronous policy iteration is guaranteed to converge to an optimal policy. The freedom 
to choose any states to work on means that we can design much more efficient heuristic 
algorithms—for example, algorithms that concentrate on updating the values of states that 
are likely to be reached by a good policy. This makes a lot of sense in real life: if one has no 
intention of throwing oneself off a cliff, one should not spend time worrying about the exact 
value of the resulting states. 

17.4 PARTIALLY OBSERVABLE MDPS  

RURALLY 
ORSFFNARJ  F mnp  

 

The description of Markov decision processes in Section 17.1 assumed that the environment 
was fully observable. With this assumption, the agent always knows which state it is in. 
This, combined with the Markov assumption for the transition model, means that the optimal 
policy depends only on the current state. When the environment is only partially observable. 
the situation is, one might say, much less clear. The agent does not necessarily know which 
state it is in, so it cannot execute the action IT  ( a) recommended for that state. Furthermore, the 
utility of a state a and the optimal action in a depend not just on s, but also on how much the 
agent knows when it is in s. For these reasons, partially observable MDPs  (or POMDPs-
pronounced "pom-dee-pees")  are usually viewed as much more difficult than ordinary MDPs. 
We cannot avoid POMDPs,  however, because the real world is one_ 

17.4.1 Definition of POMDPs  

 

To get a handle on POMDPs, we must first define them properly. A POMDP has the same 
elements as an MDP—the transition model P(s'  I  a a), actions A(s), and reward function 
R(s)—but,  like the partially observable search problems of Section 4.4, it also has a sensor 
model P(e a). Here, as in Chapter 15, the sensor model specifies the probability of perceiv-
ing evidence e in state a. 3  For example, we can convert the 4 x 3 world of Figure 17.1 into 
a POMDP by adding a noisy or partial sensor instead of assuming that the agent knows its 
location exactly. Such a sensor  might measure the number of adjacent walls, which happens 
to be 2 in all the nonterminal  squares except for those in the third column, where the value 
is 1; a noisy version might give the wrong value with probability O. L 

In Chapters 4 and 11, we studied nondeterministic  and partially observable planning 
problems and identified the belief state—the set of actual states the agent might be in—as a 
key concept for describing and calculating solutions. In POMDPs, the belief state b becomes a 
probability distribution  over all possible states, just as in Chapter 15. For example, the initial 

  

3  As with the reward function for MDPs,  the sensor model can also depend on the action and outcome state, but 
again this change is not fundamental. 
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belief state for the 4 x 3 POMDP  could be the uniform distribution over the nine nonterminal 
states, i.e.,  (4, 4,  1

4.  IL J
o

-  ,  0,  0). We writc b(s)  for the probability assigncd to the 
actual state .s  by belief state b. The agent can calculate its current belief state as the conditional 
probability distribution over the actual states given the sequence of percepts and actions so 
fan  This is essentially the filtering task described in Chapter 15. The basic recursive filtering 
equation (15.5 on page 572) shows how to calculate the new belief state from the previous 
belief state and the new evidence. For POMDPs,  we also have an action to consider, but the 
result is essentially the same. If b(s)  was the previous belief state, and the agent does action 
a and then perceives evidence e, then the new belief state is given by 

(s/ )  = 13(el  s')  E  P;s'  s,a)b(s) , 

where or  is a normalizing constant that makes the belief state sum to 1. By analogy with the 
update operator for filtering (page 572), we can write this as 

= FoRwAnn(b,  a. e) . (17.11) 
In the 4 x 3 POMDP, suppose the agent moves Left and its sensor reports 1 adjacent wall; then 
it's quite likely (although not guaranteed, because both the motion and the sensor are noisy) 
that the agent is now in (3,1). Exercise 17.13 asks you to calculate the exact probability values 
for the new belief state. 

The fundamental insight required to understand POMDPs  is this: the optimal action 
depends only on the agent's current belief  state. That is, the optimal policy can be described 
by a mapping -Tr*(b)  from belief states to actions. It does Oat depend on the actual state the 
agent is in. This is a good thing, because the agent does not know its actual state; all it knows 
is the belief state, Hence, the decision cycle of a POMDP  agent can be broken down into the 
following three steps: 

1. Given the current belief state b,  execute the action a = Tr'  (b). 

2. Receive percept e.  

3. Set the current belief state to FoRwARD(b,  a. e) and repeat. 
Now we can think  of POMDPs as requiring a search in belief-state space, just like the meth-
ods for sensorless and contingency problems in Chapter 4. The main difference is that the 
POMDP belief-state space is continuous, because a POMDP  belief state is a probability dis-
tribution. For example, a belief state for the 4 x 3 world is a point in an 11-dimensional 
continuous space. An action changes the belief state, not just the physical state. Hence, the 
action is evaluated at least in part according to the information the agent acquires as a result. 
POMDPs therefore include the value of information (Section 16.6) as one component of the 
decision problem. 

Let's look more carefully at the outcome of actions. In particular, let's calculate the 
probability that an agent in belief state b  reaches belief state b'  after executing action a. Now, 
if we knew the action and the subsequent percept, then Equation (17.11) would provide a 
deterministic update to the belief state: b'  = FoRwARD(b,  a. e).  Of course, the subsequent 
percept is not yet known, so the agent might arrive in one of several possible belief states  b',  
depending on the percept that is received. The probability of perceiving e, given that a was 



660 Chapter 17. Making Complex Decisions 

performed starting in belief state b, is given by summing over all the actual states s' that the 
agent might reach: 

P(ela,  b) = E P(ela,  . b)P ( Zia,  6) 
s ,  

= E 
P(e 

 8')Pvia,  bl  

= P(e  8') P(,9' a)b(s)  

Let us write the probability of reaching b' from b, given action a, as P(b'  
gives us 

P(b'  

6, a)). Then that 

b, a) = P(b'  , 6) = E P(b'  e , a, NT b) 

= EP(Vh  a E  P(e  s') E P(s'  s , a)b(s)  , (17.12) 
C 8' .s 

where P(1116, a, b) is 1 if bi  = FoRwARD(b.  a, e) and 0 otherwise. 
Equation (17.12) can be viewed as defining a transition model for the belief-state space. 

We can also define a reward function for belief states (i.e.,  the expected reward for the actual 
states the agent might be in): 

p(b) = E b(0.17(s)  .  

Together. P(b'  I  b,  and p(b)  define an observable MDP on the space of belief states_  Fur-
thermore, it can be shown that an optimal policy for this MDP,  7r*  (6), is also an optimal policy 
for the original POMDP. In other words, solving a POMDP  on a physical state space can be 
reduced to solving an MDP on the corresponding belief-state space. This fact is perhaps less 
surprising if we remember that the belief state is always observable to the agent, by definition. 

Notice that, although we have reduced POMDPs to MDPs, the MD? we obtain has a 
continuous (and usually high-dimensional) state space. None of the MDP algorithms de-
scribed in Sections 17.2 and 17.3 applies directly to such MDPs. The next two subsec-
tions describe a value iteration algorithm designed specifically for POMDPs and an online 
decision-making algorithm, similar to those developed for games in Chapter 5. 

17.4.2  Value iteration for POMDPs  

Section 17.2 described a value iteration algorithm that computed one utility value for each 
state. With infinitely many belief states, we need to be more creative. Consider an optimal 
policy its  and its application in a specific belief state 6: the policy generates an action, then. 
for each subsequent percept, the belief state is updated and a new action is generated, and so 
on. For this specific 6, therefore, the policy is exactly equivalent to a conditional plan, as de- 
fined in Chapter 4 for nondeterministic  and partially observable problems. Instead of thinking 
about policies, let us think about conditional plans and how the expected utility of executing 
a fixed conditional plan varies with the initial belief state. We make two observations: 
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!.  Let the utility of executing a,fLred  conditional plan p starting in physical state a be cip (s  ). 
Then the expected utility of executing p in belief state b is just E s  b(s)ap (a),  or b  - 
if we think of them both as vectors. Hence, the expected utility of a fixed conditional 
plan varies linearly with b; that is, it corresponds to a hyperplane in belief space. 

2. At any given belief state b, the optimal policy will choose to execute the conditional 
plan with highest expected utility; and the expected utility of b under the optimal policy 
is just the utility of that conditional plan: 

U(b)  = U71-  (b) = max b . 
p  

If the optimal policy r*  chooses to execute p starting at b,  then it is reasonable to expect 
that it might choose to execute p in belief states that are very close to b; in fact, if we 
bound the depth of the conditional plans, then there are only finitely many such plans 
and the continuous space of belief slates will generally be divided into regions, each 
corresponding to a particular conditional plan that is optimal in that region. 

From these two observations, we see that the utility function U(b)  on belief states, being the 
maximum of a collection of hyperplanes, will he piecewise  linear and can vex, 

To illustrate this, we use a simple two-state world. The states are labeled 0 and 1, with 
R(0) = 0 and R(1) = 1.  There are two actions: Stay stays put with probability 0.9 and Go 
switches to the other state with probability 0.9. For now we will assume the discount factor 
7  = 1. The sensor reports the correct state with probability 0.6. Obviously, the agent should 
Stay when it thinks it's in state 1 and Go when it thinks it's in state 0. 

The advantage of a two-state world is that the belief space can be viewed as one- 
dimensional, because the two probabilities must sum to 1. In Figure 17.8(a), the x-axis 
represents the belief state, defined by b(1),  the probability of being in state 1. Now let us con-
sider the one-step plans [Stay] and [ Go], each of which receives the reward for the current 
state followed by the (discounted) reward for the state reached after the action: 

oi[,5in i  (0)  = R(0) +  ry(0.9R(0)  +  0.1R.(1))  = 0.1 
ct [siav]  (1) = R(1) + -7(0.9R(1)  + 0.1R(0)) = 1.9 
31Gc1(

(1
)  = R(0)  y(0.9R(1)  + 0.1R.(0))  = 0.9 

^ l Ga l (1)  = R(1) ±  ry(0.9R(0)  0.1R(1))  = 1.1 

The hyperplanes (lines, in this case) for b.ri [st„ri  and b • oc [Goi  are shown in Figure 17.8(a) and 
their maximum is shown in bold. The bold line therefore represents the utility function for 
the finite-horizon problem that allows just one action, and in each "piece" of the piecewise 
linear utility function the optimal action is the first action of the corresponding conditional 
plan. In this case, the optimal one-step policy is to Stay when b(1)  > 0.5 and Go otherwise. 

Once we have utilities ncp  (s)  for all the conditional plans p of depth l in each physical 
state a, we can compute the utilities for conditional plans of depth 2 by considering each 
possible first action, each possible subsequent percept, and then each way of choosing a 
depth-1  plan to execute for each percept: 

[Stay; if Percept —0 then Stay else Stay'  

[Stay; if Percept =0 then Stay else Go] . 
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DOMINATED PLAN 

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state 6(1) 
for the two-state world, with the corresponding utility function shown in hold. (b) Utilities 
for 8 distinct two-step plans. (c) Utilities for four undominated  two-step plans. (d) Utility 
function for optimal eight-step plans. 

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b). 
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief 
space—we say these plans are dominated, and they need not be considered further. There 
are four undominated  plans, each of which is optimal in a specific region, as shown in Fig- 
ure 17.8(c). The regions partition the belief-state space. 

We repeat the process for depth 3, and so on. In general, let p be a depth-d  conditional 
plan whose initial action is a and whose depth-d —  1 subplan for percept e  is p.e;  then 

Logs)  = R(s; (E  P (a' a, a) E P(c  I s i )ner.,(s') )  • (17.13) 
s' 6  

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9. 
The structure of the algorithm and its error analysis are similar to those of the basic value iter- 
ation algorithm in Figure 17.4 on page 03;  the main difference is that instead of computing 
one utility number for each state, POMDP-VALUE-ITERATION  maintains a collection of 
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function POMDP- VALUE-IrmtArtoN(pomdp,  E)  returns a utility function 
inputs: pomdp,  a POMIDP  with states S, actions A(p,  ),  transition model P(s'  s, a), 

sensor model .13 (e , rewards R(s),  discount 
c, the maximum error allowed in the utility of any state 

local variables: U, U', sets of plans p with associated utility vectors cep  

U' +—  a set containing just the empty plan [1, with a ii(s)  = R(s;  
repeat 

U IP  
U' q—  the set of all plans consisting of an action and, for each possible next percept, 

a plan in U with utility vectors computed according to Equation (17.13) 
REMOVE-DOMINATED-PLANS(  U') 

until MAX-DIFFERENCE( U, U') <  e(1 — 7)17  
return U 

Figure 17.9  A high-level sketch of the value iteration algorithm for POMDPs.  The 
REMOVE-DOMINATED-PLANS step and MAx-DIFFERENCE  test are typically implemented 
as linear programs. 

undominated plans with their utility hyperplanes. The algorithm's complexity depends pri-
marily on how many plans get generated. Given IA1  actions and 1E1  possible observations, it 
is easy to show that there are I Al() ( 1 Eld- ')  distinct depth-d plans. Even for the lowly two-state 
world with d= 8, the exact number is 2 255 .  The elimination of dominated plans is essential 
for reducing this doubly exponential growth: the number of undominated plans with d= 8 is 
just 144. The utility function for these 144 plans is shown in Figure 17.8(d). 

Notice that even though state 0 has lower utility than state 1, the intermediate  belief 
states have even lower utility because the agent lacks the information needed to choose a 
good action. This is why information has value in the sense defined in Section 16.6 and 
optimal policies in POMDPs often include information-gathering actions_ 

Given such a utility function, an executable policy can be extracted by looking at which 
hyperplane is optimal at any given belief state b and executing the first action of the corre-
sponding plan. In Figure 17.8(d), the corresponding optimal policy is still the same as for 
depth-1 plans: Stay when 6(1) > 0.5 and Go otherwise. 

In practice, the value iteration algorithm in Figure 17.9 is hopelessly inefficient for 
larger problems—even the 4 x 3 POMDP  is too hard. The main reason is that, given n,  con-
ditional plans at level d, the algorithm constructs 1 4  • n 1E1  conditional plans at level d + 1 
before eliminating the dominated ones. Since the 1970s, when this algorithm was developed, 
there have been several advances including more efficient forms of value iteration and various 
kinds of policy iteration algorithms. Some of these are discussed in the notes at the end of the 
chapter. For general POMDPs,  however, finding optimal policies is very difficult (PSPACE-
hard, in fact—i.e., very hard indeed). Pmblems  with a few dozen states are often infeasible. 
The next section describes a different, approximate method for solving POMDPs, one based 
on look-ahead search. 
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DYNAMIC DECISION 
NETWORK 

Figure 17.10  The generic structure of a dynamic decision network. Variables with known 
values are shaded.  The current time is t and the agent must decide what to do—that is, choose 
a value for A t . The network has been unrolled into the future for three steps and represents 
future rewards, as well as the utility of the state at the look-ahead horizon. 

17.4.3 Online agents for POMJ)Ps  

In this section, we outline a simple approach to agent design for partially observable, stochas-
tic environments. The basic elements of the design are already familiar: 

• The transition and sensor models are represented by a dynamic Bayesian  network 
(DBN), as described in Chapter 15. 

• The dynamic Bayesian network is extended with decision and utility nodes, as used in 
decision networks in Chapter 16.  The resulting model is called a dynamic decision 
network, or DDN. 

• A filtering algorithm is used to incorporate each new percept and action and to update 
the belief state representation_ 

• Decisions are made by projecting forward possible action sequences and choosing the 
best one. 

DRNs are factored representations in the terminology of Chapter 2; they typically have 
an exponential complexity advantage over atomic representations and can model quite sub-
stantial real-world problems. The agent design is therefore a practical implementation of the 
utility-based agent sketched in Chapter 2. 

In the OBN,  the single state ,5"t  becomes a set of state variables Xt,  and there may be 
multiple evidence variables E t . We will use A t  to refer to the action at time t,  so the transition 
model becomes P(Xi+11Xt,  A t ) and the sensor model becomes P(Et  IXt).  We will use Rt  to 
refer to the reward received at time t and Ut  to refer to the utility of the state at time t. (Both 
of these are random variables.) With this notation, a dynamic decision network looks like the 
one shown in Figure 17.10.  

Dynamic decision networks can be used as inputs for any POMDP  algorithm, including 
those for value and policy iteration methods. In this section, we focus on look-ahead  methods 

that project action sequences forward from the current belief state in much the same way as do 
the game-playing  algorithms of ChapLer 5. The network in Figure 17.10 has been projected 
three steps into the future; the current and future decisions A and the future observations 
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Figure 17.11  Part of the Look-ahead  solution of the DON in Figure 17,10, Each decision 
will be taken in the belief state indicated. 
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E and rewards R are all unknown. Notice that the network includes nodes for the rewards 

for X t+ i  and Xt+2,  but the utility for Xt+3.  This is because the agent must maximize the 
(discounted) sum of all future rewards, and U(Xt+;si  represents the reward for Xt+3  and all 
subsequent rewards. As in Chapter 5, we assume that U is available only in some approximate 
form: if exact utility values were available, look-ahead beyond depth I would be unnecessary. 

Figure 17.11  shows part of the search tree corresponding to the three-step look-ahead 
DON in Figure 17.10, Each of the triangular nodes is a belief state in which the agent makes 
a decision for i = 0, 1, 2,  .... The round (chance) nodes correspond to choices by the 
environment, namely, what evidence Et+i  arrives. Notice that there are no chance nodes 
corresponding to the action outcomes; this is because the belief-state update for an action is 
deterministic regardless of the actual outcome. 

The belief state at each triangular node can be computed by applying a filtering al-
gorithm to the sequence of percepts and actions leading to it. In this way, the algorithm 
takes into account the fact that, for decision At+ i,  the agent will have available percepts 
Et+1 ,  even though at time t it does not know what those percepts will be. In this 
way, a decision-theoretic agent automatically takes into account the value of information and 
will execute information-gathering actions where appropriate. 

A decision can be extracted from the search tree by backing up the utility values from 
the leaves. taking an average at the chance nodes and taking the maximum at the decision 
nodes. This is similar to the EXPECTIMINIMAX  algorithm for game trees with chance nodes, 
except that (1)  there can also be rewards at non-leaf states and (2) the decision nodes corre- 
spond to belief states rather than actual states. The time complexity of an exhaustive search 
to depth d is 0(  Al d  • El d ), where I A1  is the number of available actions and E is the num- 
ber of possible percepts. (Notice that this is far less than the number of depth-ci  conditional 



666 Chapter 17. Making Complex Decisions 

plans generated by value iteration.) For problems in which the discount factor y is not too 
close to 1, a shallow search  is often good enough to give near-optimal decisions. It is also 
possible to approximate the averaging step at the chance nodes, by sampling from the set of 
possible percepts instead of summing over all possible percepts. There are various other ways 
of finding good approximate solutions quickly, but we defer them to Chapter 21. 

Decision-theoretic agents based on dynamic decision networks have a number of advan-
tages compared with other, simpler agent designs presented in earlier chapters. In particular, 
they handle partially observable, uncertain environments and can easily revise their "plans" to 
handle unexpected evidence. With appropriate sensor models, they can handle sensor failure 
and can plan to gather information. They exhibit "graceful degradation" under time pressure 
and in complex environments, using various approximation techniques. So what is missing? 
One defect of our DDN-based  algorithm  is its reliance on forward search through state space, 
rather than using the hierarchical and other advanced planning techniques described in Chap-
ter 11. There have been attempts to extend these techniques into the probabilistic domain, but 
so far they have proved to be inefficient. A second, related problem is the basically proposi-
tional nature of the DDN language. We would like to be able to extend some of the ideas for 
first-order probabilistic languages to the problem of decision making. Current research has 
shown that this extension is possible and has significant benefits, as discussed in the notes at 
the end of the chapter. 

17.5 DECISIONS WITH MULTIPLE AGENTS: GAME THEORY 

GAME THEORY  

This chapter has concentrated on making decisions in uncertain environments. But what if 
the uncertainty is due to other agents and the decisions they make? And what if the decisions 
of those agents are in turn influenced by our decisions? We addressed this question once 
before, when we studied games in Chapter 5. There, however, we were primarily concerned 
with turn-taking games in fully observable environments, for which minimax search can be 
used to find optimal moves. In this section we study the aspects of game theory that analyze 
games with simultaneous moves and other sources of partial observability. (Game theorists 
use the terms perfect information and imperfect information rather than fully and partially 
observable.) Game theory can be used in at least two ways: 

1. Agent design: Game theory can analyze the agent's decisions and compute the expected 
utility for each decision (under the assumption that other agents are acting optimally 
according to game theory). For example, in the game two-finger Marra, two players, 
0 and E, simultaneously display one or two fingers. Let the total number of ringers  
be f . If f is odd, 0  collects f dollars from E; and if f is even, E collects f dollars 
from 0. Game theory can determine the best strategy against a rational player and the 
expected return for each player. 4  

 

4  Moira  is a recreational version of an inspection game. In such games, an inspector chooses a day to inspect a 
facility (such as a restaurant or a biological weapons plant), and the facility operator chooses a day to hide all the 
nasty stuff. The inspector wins if the days are different, and the facility operator wins if they are the same. 
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2. Mechanism design: When an environment is inhabited by many agents, it might be 
possible to define the rules of the environment (Lc., the game that the agents must 
play) so that the collective good of all agents is maximized when each agent adopts the 
game-theoretic solution that maximizes its own utility. For example, game theory can 
help design the protocols for a collection of Internet traffic routers so that each router 
has an incentive to act in such a way that global throughput is maximized. Mechanism 
design can also be used to construct intelligent multiagent systems that solve complex 
problems in a distributed fashion. 

PLAYER 

ACTION 

PA)OFF  RECTOR  

STRATEGIC FORM 

17.5.1 Single-move games 

We start by considering a restricted set of games: ones where all players take action simulta-
neously and the result of the game is based on this single set of actions. (Actually, it is not 
crucial that the actions take place at exactly the same time; what matters is that no player has 
knowledge of the other players' choices.) The restriction to a single move (and the very use 
of the word "game") might make this seem trivial, but in fact, game theory is serious busi-
ness_ It is used in decision-making situations including the auctioning of oil drilling rights 
and wireless frequency spectrum rights, bankruptcy proceedings, product development and 
pricing decisions, and national defense situations involving billions of dollars and hundreds 
of thousands of lives. A single-move game is defined by three components: 

• Players or agents who will be making decisions. Two-player games have received the 
most attention, although n-player games for n > 2 are also common. We give players 
capitalized names, like Afire and Bob or 0 and E. 

• Actions that the players can choose. We will give actions lowercase names, like one or 
testify. The players may or may not have the same set of actions available. 

• A payoff function that gives the utility to each player for each combination of actions 
by all the players. For single-move games the payoff function can be represented by a 
matrix, a representation known as the strategic form (also called normal form). The 
payoff matrix for two-finger Morra  is as follows: 

0:  one 0: two 
E: one E = +2,0  = — 2 E = — 3, U  = +3 
E:  rwo  E = —3,0 = +3 E = +4,0 = —4 

STRATEGY 

FIRE  STRATEGY 

MIXED STRATEGY 

S  I  HALF  WY PHDFILE  

OUTCOME 

For example, the lower-right corner shows that when player 0 chooses action two and 
E also chooses two, the payoff is +4 for E and 4 for O.  

Each player in a game must adopt and then execute a strategy (which is the name used in 
game theory for a policy). A pure strategy is a deterministic policy; for a single-move game, 
a pure strategy is just a single action. For many games an agent can do better with a mixed 
strategy, which is a randomized policy that selects actions according to a probability distri-
bution.  The mixed strategy that chooses action a with probability p and action b otherwise 
is written [p: a; (1 — p): b].  For example, a mixed strategy for two-finger Morra might be 
[0.5: one:  011:  two]. A strategy profile is an assignment of a strategy to each player: given 
the strategy profile, the game's outcome is a numeric value for each player. 
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SOLUTION 

PRISONER'S 
ILHOMA  

A solution to a game is a strategy profile in which each player adopts a rational strategy. 
We will sec that the most important issue in game theory is to define what "rational" means 
when each agent chooses only part of the strategy profile that determines the outcome. It is 
important to realize that outcomes are actual results of playing a game, while solutions are 
theoretical constructs used to analyze a game. We will see that some games have a solution 
only in mixed strategies. But that does not mean that a player must literally be adopting a 
mixed strategy to be rational. 

Consider the following story: Two alleged burglars, Alice and Bob, are caught red- 
handed near the scene of a burglary and are interrogated separately.  A prosecutor offers each 
a deal: if you testify against your partner as the leader of a burglary ring, you'll go free for 
being the cooperative one, while your partner will serve 10 years in prison. However, if you 
both testify against each other, you'll both get 5 years. Alice and Bob also know that if both 
refuse to testify they will serve only 1 year each for the lesser charge of possessing stolen 
property. Now Alice and Bob face the so-called prisoner's dilemma: should they testify 
or refuse? Being rational agents, Alice and Bob each want to maximize their own expected 
utility. Let's assume that Alice is callously unconcerned about her partner's fate, so her utility 
decreases in proportion to the number of years she will spend in prison, regardless of what 
happens to Bob. Bob feels exactly the same way. To help reach a rational decision, they both 
construct the following payoff matrix: 

Alice:testify  Alice:refuse 
Bub: testify A = —5, B = —5 A = —10, B = 0 
Bob:quse  A = 0,B = —10 A = —1, B = —1 

DOMINANT  
STRATEGY 
EGIIILIARWM  
EOUILIHRI  LIM  

Alice analyzes the payoff matrix as follows: "Suppose Bob testifies. Then I get 5 years if I 
testify and 10 years if I don't, so in that case testifying is better. On the other hand, if Bob 
refuses, then I get 0 years if I testify and 1 year if I refuse, so in that case as well testifying is 
better. So in either case, it's better for me to testify, so that's what I must do." 

Alice has discovered that test*  is a dominant strategy for the game,  We say that a 
strategy s for player p strongly dominates strategy s'  if the outcome for a is better for p than 
the outcome for a', for every choice of strategies by the other player(s).  Strategy a weakly 
dominates a 1  if a is better than s'  on at least one strategy profile and no worse on any other. 
A dominant strategy is a strategy that dominates all others. It is irrational to play a dominated 
strategy, and irrational not to play a dominant strategy if one exists. Being rational, Alice 
chooses the dominant strategy We need just a hit more terminology: we say that an outcome 
is Pareto  optimal5  if there is no other outcome that all players would prefer. An outcome is 
Pareto dominated by another outcome if all players would prefer the other outcome. 

If Alice is clever as well as rational, she will continue to reason as follows: Bob's 
dominant strategy is also to testify. Therefore, he will testify and we will both get five years. 
When each player has a dominant strategy, the combination of those strategies is called a 
dominant strategy equilibrium. In general, a strategy profile forms an equilibrium if no 
player can benefit by switching strategies, given that every other player sticks with the same 

Pareto optimality is named after the economist Vilf-redo  Pareto (1848-1923). 

DOMINANT 
STRATEGY 
STRONG 
DOMINATION 

WEAK  DOMINATION 

PAFETO  OPTIMAL 

PAF  ETD DOMINATED  
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strategy. An equilibrium is essentially a local optimum in the space of policies; it is the top 
of a peak that slopes downward along every dimension, where a dimension corresponds to a 
player's strategy choices. 

The mathematician John Nash (1928–)  proved that every game has at least one equi- 
librium. The general concept of equilibrium is now called Nash equilibrium in his honor. 
Clearly, a dominant strategy equilibrium is a Nash equilibrium (Exercise 17.16), but some 
games have Nash equilibria but no dominant strateeies.  

The dilemma in the prisoner's dilemma is that the equilibrium outcome is worse for 
both players than the outcome they would get if they both refused to testify. In other words. 
(testify, testify) is Pareto dominated by the (-1, -1) outcome of (refuse, refuse). Ls there any 
way for Alice and Bob to arrive at the (-1,  -1) outcome? It is certainly an allowable option 
for both of them to refuse to testify, but is is hard to see how rational agents can get there, 
given the definition of the game, Either player contemplating playing refuse will realize that 
he or she would do better by playing testify. That is the attractive power of an equilibrium 
point. Game theorists agree that being a Nash equilibrium is a necessary condition for being 
a solution—although they disagree whether it is a sufficient condition. 

It is easy enough to get to the (refuse, refuse) solution if we modify the game. For 
example. we could change to a repeated game in which the players know that they will meet 
again. Or the agents might have moral beliefs that encourage cooperation and fairness. That 
means they have a different utility function, necessitating a different payoff matrix, making 
it a different game. We will see later that agents with limited computational powers, rather 
than the ability to reason absolutely rationally, can reach non-equilibrium outcomes, as can an 
agent that knows that the other agent has limited rationality. In each case, we are considering 
a different game than the one described by the payoff matrix above. 

Now let's look at a game that has no dominant strategy. Acme, a video game console 
manufacturer, has to decide whether its next game machine will use 31u-ray  discs or DVDs. 
Meanwhile, the video game software producer Best needs to decide whether to produce its 
next game on Blu-ray or DVD. The profits for both will be positive if they agree and negative 
if they disagree, as shown in the following payoff matrix: 

Aerne:bluray  Aente:dtd  
Best:bluray  A = +9, B = +9 A = –4, B = –1 
Best:dvd  A = –3, B = –1 A = +5, B = +5 

There is no dominant strategy equilibrium for this game, but there are two Nash equilibria: 
(bluray, bluray)  and (dvii,  dvd).  We know these are Nash equilibria because if either player 
unilaterally moves to a different strategy, that player will be worse off. Now the agents have 
a problem: there are multiple acceptable solutions, but if  each agent aims for a different 
solution, then both agents will  suffer. How can they agree on a solution? One answer is 
that both should choose the Pareto-optimal solution (bluray, bluray);  that is, we can restrict 
the definition of "solution" to the unique Pareto-optimal Nash equilibrium provided that one 

exists. Every game has at least one Pareto-optimal solution, but a game might have several, 
or they might not be equilibrium points. For example, if (bluffly,  bluray) had payoff (5, 
5), then there would be two equal Pareto-optimal equilibrium points. To choose between 
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them the agents can either guess or communicate, which can be done either by establishing 
a convention that orders the solutions before the game begins or by negotiating to reach a 
mutually beneficial solution during the game (which would mean including communicative 
actions as part of a sequential game). Communication thus arises in game theory for exactly 
the same reasons that it arose in multiagent planning in Section 11.4. Games in which players 
need to communicate like this are called coordination games 

A game can have more than one Nash equilibrtunt,  how do we know that every game 
must have at least one? Some games have no pure-strategy Nash equilibria. Consider, for 
example, any pure-strategy profile for two-finger Morra  (page 666). If the total number of 
fingers is even. then 0 will want to switch, on the other hand (so to speak), if the total is odd. 
then E will want to switch. Therefore, no pure strategy profile can be an equilibrium and we 
must look to mixed strategies instead. 

But which mixed strategy? In 1928, von Neumann developed a method for finding the 
optimal mixed strategy for two-player, zero-stun  games—games in which the sum of the 
payoff's  is always zero. 6  Clearly, Morra is such a game. For two-player, zero-sum games, we 
know that the payoffs are equal and opposite, so we need consider the payoffs of only one 
player, who will be the maximizer (just as in Chapter 5). For Morra, we pick the even player 
E to be the maximizer, so we can define the payoff matrix by the values UF:(e,  o)—the payoff 
to E if E does e and 0 does o. (For convenience we call player E "her" and 0 "hirn.'')  Von 
Neumann's  method is called the the rnaximin  technique, and it works as follows: 

■ Suppose we change the rules as follows: first E picks her strategy and reveals it to 
0. Then 0 picks his strategy. with knowledge of E's strategy. Finally, we evaluate 
the expected [layoff  of the game based on the chosen strategies. This gives us a turn-
taking game to which we can apply the standard minimax algorithm from Chapter 5. 
Let's suppose this gives an outcome ETE,o.  Clearly, this game favors 0, so the true 
utility U of the original game (from E's point of view) is at least UE,O.  For example. 
if we just look at pure strategies, the minimax game tree has a root value of —3 (see 
Figure 17.12(a)), so we know that U >  —3. 

• Now suppose we change the rules to force 0 to reveal his strategy first, followed by E. 
Then the minimax value of this game is U0 ,E,  and because this game favors E we know 
that U is at most U0 , E.  With pure strategies, the value is +2 (see Figure 17.12(b)),  so 
we know 1../  < 12. 

Combining these two arguments, we see that the true utility U of the solution to the original 
game must satisfy 

UE,0  C 
 U  C Uo,E or in this case, —3< U< 2.  C   

To pinpoint  the value of U, we need to turn our analysis to mixed strategies. First, observe the 
following: once the, first  player has revealed  his  or her strategy, the second player might as 
well choose a pure strategy. The reason is simple: if the second player plays a mixed strategy, 
[p: one; (1— p): two], its expected utility is a linear combination (p • u,,„e  (1—  p) • u t,,,,)  of 
6  or a constant—see page 162  
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Figure 17.12  (a) and (b)•  Minimax game trees for two -finger Marra if the players take 
turns playing pure strategies. (c) and (d): Parameterized game trees where the first player 
plays a mixed strategy. The payoffs depend on the probability  parameter (p or q) in the 
mixed strategy. (e) and (f):  For any particular value of the probability parameter, the second 
player will choose the "better" of the two actions, so the value of the first player's mixed 
strategy is given by the heavy lines. The first  player will choose the probability parameter for 
the mixed strategy at the intersection point. 
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the utilities of the pure strategies, ti o„,  and n t„,„.  This linear combination can never be better 
than the better of it,„,  and u. t.,„,  so the second player can just choose the better one. 

With this observation in mind, the minimax trees can be thought of as having infinitely 
many branches at the root, corresponding to the infinitely many mixed strategies the first 
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player can choose. Each of these leads to a node with two branches corresponding to the 
pure strategics for the second player. We can depict thcsc infinite trees finitely by having one 
"parameterized" choice at the mot: 

• If E chooses first, the situation is as shown in Figure 17.12(c). E chooses the strategy 
[p:  one; (1 — p): two] at the root, and then 0  chooses a pure strategy (and hence a move) 
given the value of p.  If 0 chooses one, the expected payoff (to E) is 2/1  3(1 p) = hp 
3; if 0 chooses two, the expected payoff is 3p  I 4(1  p) = 4 7p.  We can draw 

these two payoffs as straight lines on a graph, where p ranges from 0 to 1 on the z-axis. 
EIS  shown in Figure 17.12(e).  0, the minimizer, will always choose the lower of the two 
lines, as shown by the heavy lines in the figure.  Therefore, the best that E can do at the 
root is to choose p to be at the intersection point, which is where 

5p — 3 = 4 — 7p p = 7/12 . 
The utility for E at this point is CTE0  = — 1/12. 

• If 0  moves lust, the situation is as shown in Figure 17.12(d). 0  chooses the strategy 
lip  one; (1 — q):  two] at the root, and then E chooses a move given the value of q. The 
payoffs are 2 q  — 3(1 q) = 5 q 3 and 3q  ±  4(1  q) = 4— 7 q  . 7  Again, Figure 17.12(f)  
shows that the best 0 can do at the root is to choose the intersection point: 

5q — 3 = 4 —  7q = q  =7112  . 

The utility for E at this point is UG , E  = — 1/12. 
Now we know that the true utility of the original game lies between —1/12 and —1/12, that 
is, it is exactly —1/12!  (The moral is that it is better to be 0 than E if you are playing this 
game.) Furthermore, the true utility is attained by the mixed strategy 17/12:  one; 5/12: two], 
which should be played by both players. This strategy is called the maximin  equilibrium of 
the game, and is a Nash equilibrium. Note that each component strategy in an equilibrium 
mixed strategy has the same expected utility.  In this case, both one and two have the same 
expected utility, —1/12, as the mixed strategy itself. 

Our result for two-finger Morra is an example of the general result by von Neumann: 
even' two -player zero -sum game has a maximin  equilibrium when you allow mixed strategies. 
Furthermore, every Nash equilibrium in a zero-sum game is a maximin  for both players. A 
player who adopts the maximin strategy has two guarantees: First, no other strategy can do 
better against an opponent who plays well (although some other strategies might be better at 
exploiting an opponent who makes irrational mistakes). Second, the player continues to do 
just as well even if the strategy is revealed to the opponent. 

The general algorithm for finding maximin equilibria in zero-sum games is somewhat 
more involved than Figures 17.12(e) and (t)  might suggest. When there are 7e  possible actions. 
a mixed strategy is a point in ri-dimensicnal  space and the lines become hyperplanes.  It's 
also possible for some pure strategies for the second player to be dominated by others, so 
that they are not optimal against any strategy for the first player. After removing all such 
strategies (which might have to be done repeatedly), the optimal choice at the root is the 
7  II is a coincidence that these equations are the same as those for p,  the coincidence arises because 
U.8  ( one, two) = UE (iuo,  one) = —3. This also explains why the optimal strategy is the same for both players. 
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highest (or lowest) intersection point of the remaining hyperplanes. Finding this choice is 
an example of a linear programming problem: maximizing an objective function subject to 
linear constraints. Such problems can be solved by standard techniques in time polynomial 
in the number of actions (and in the number of hits used to specify the reward function, if you 
want to get technical). 

The question remains, what should a rational agent actually do in playing a single game 
of Marra? The rational agent will have derived the fact that [7/12: one; 5/12: two] is the 
maximin equilibrium strategy, and will assume that this is mutual knowledge with a rational 
opponent. The agent could use a 12-sided die or a random number generator to pick randomly 
according to this mixed strategy, in which case the expected payoff would be -1/12 for E. Or 
the agent could just decide to play one, or two. In either case, the expected payoff remains 
-1/12 for E. Curiously, unilaterally choosing a particular action does not harm one's expected 
payoff, but allowing the other agent to know that one has made such a unilateral decision doe,s  
affect the expected payoff, because then the opponent can adjust his strategy accordingly. 

Finding equilibria in non-zero-sum games is somewhat more complicated. The general 
approach has two steps: (1) Enumerate all possible subsets of actions that might form mixed 
strategies. For example, first try all strategy profiles where each player uses a single action, 
then those where each player uses either one or two actions, and so on. This is exponential 
in the number of actions, and so only applies to relatively small games. (2) For each strategy 
profile enumerated in (1), check to see if it is an equilibrium. This is done by solving a set of 
equations and inequalities that are similar to the ones used in the zero-sum case. For two play-
ers these equations are linear and can be solved with basic linear programming techniques, 
but for three or more players they are nonlinear and may be very difficult to solve. 

17.5.2 Repeated games 

So far we have looked only at games that last a single move. The simplest kind of multiple- 
RPEATED  GAME  move game is the repeated game, in which players face the same choice repeatedly, but each 

time with knowledge of the history of all players' previous choices. A strategy profile for a 
repeated game specifies an action choice for each player at each time step for every possible 
history of previous choices. As with MDPs, payoffs are additive over time. 

Let's consider the repeated version of the prisoner's dilemma. Will Alice and Bob work 
together and refuse to testify, knowing they will meet again? The answer depends on the 
details of the engagement. For example, suppose Alice and Bob know that they must play 
exactly 100 rounds of prisoner's dilemma. Then they both know that the 100th  round will not 
be a repeated game—that is, its outcome can have no effect on future rounds—and therefore 
they will both choose the dominant strategy, testify, in that round. But once the 100th round 
is determined, the 99th round can have no effect on subsequent rounds, so it too will have 
a dominant strategy equilibrium at (testify, testify). By induction, both players will choose 
testify on every round, earning a total jail sentence of 500 years each. 

We can get different solutions by changing the rules of the interaction. For example, 
suppose that after each round Were is a 99% chance that [he players will meet again. Then 
the expected number of rounds is still 100, but neither player knows for sure which round 
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will be the last. Under these conditions, more cooperative behavior is possible. For example, 
one equilibrium strategy is for each player to refuse unless the other player has ever played 
testify. This strategy could be called perpetual punishment. Suppose both players have 
adopted this strategy, and this is mutual knowledge. Then as long as neither player has played 
testify, then at any point in time the expected future total payoff for each player is 

DO 

0.99t  • (-1) = —100 . 
t=o  

A player who deviates from the strategy and chooses testify will gain a score of 0 rather than 
—1 on the very next move, but from then on both players will play testify and the player's 
total expected funire  payoff becomes 

DO 

0 0.99 t  •  (-5) = —495 .  
t=i  

Therefore, at every step, there is no incentive to deviate from (refuse, refuse). Perpetual 
punishment is the "mutually assured destruction" strategy of the prisoner's dilemma: once 
either player decides to testify, it ensures that both players suffer a great deal. But it works 
as a deterrent only if the other player believes you have adopted this strategy—or at least that 
you might have adopted it. 

Other strategies are more forgiving. The most famous, called tit-for- tat, calls for start-
ing with refuse and then echoing the other player's previous move on all subsequent moves. 
So Alice would refuse as long as Roh  refuses and would testify the move after fob testified, 
but would go back to refusing if Bob did. Although very simple, this strategy has proven to 
be highly robust and effective against a wide variety of strategies. 

We can also get different solutions by changing the agents, rather than changing the 
rules of engagement. Suppose the agents are finite-state machines with n states and they 
are playing a game with m.  > n total steps. The agents are thus incapable of representing 
the number of remaining steps. and must treat it as an unknown. Therefore, they cannot do 
the induction, and are free to arrive at the more favorable (refuse, refuse) equilibrium. In 
this case, ignorance is bliss—or rather, having your opponent believe that you are ignorant is 
bliss. Your success in these repeated games depends on the other player's perception of you 
as a bully or a simpleton, and not on your actual characteristics. 

17.5.3 Sequential games 

In the general case, a game consists of a sequence of turns that need not be all the same. Such 
games are best represented by a game tree, which game theorists call the extensive form. The 
tree includes all the same information we saw in Section 5.1: an initial state So, a function 
PLAYER (s)  that tells which player has the move, a function ACTIONS (a) enumerating the 
possible actions, a function REstiLT(s,  a) that defines the transition to a new state, and a 
partial function LITHATY(s,  p),  which is defined only on terminal  states, to give the payoff 
for each player. 

To represent stochastic games, such as backgammon, we add a distinguished player, 
chance, that can take random actions. Chance's "strategy" is part of the definition of the 
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game, specified as a probability distribution over actions (the other players get to choose 
their own strategy). To represent games with nondeterministie  actions, such as billiards, we 
break the action into two pieces: the player's action itself has a deterministic result, and then 
chance has a turn to react to the action in its own capricious way. To represent simultaneous 
moves, as in the prisoner's dilemma or two-finger Mona,  we impose an arbitrary order on the 
players, but we have the option of asserting that the earlier player's actions are not observable 
to the subsequent players: e.g., Alice must choose refuse or testify first, then Bob chooses, 
but Bob does not know what choice Alice made at that time (we can also represent the fact 
that the move is revealed later). However, we assume the players always remember all their 
own previous  actions; this assumption is called perfect recall. 

The key idea of extensive form that sets it apart from the game trees of Chapter 5 is 
the representation of partial observability. We saw in Section 5.6 that a player in a partially 
observable game such as Kriegspiel can create a game tree over the space of belief stales. 
With that tree, we saw that in some cases a player can find a sequence of moves (a strategy) 
that leads to a forced checkmate regardless of what actual state we started in, and regardless of 
what strategy the opponent uses. However, the techniques of Chapter 5 could not tell a player 
what to do when there is no guaranteed checkmate. If the player's best strategy depends 
on the opponent's strategy and vice versa, then minimax {or alpha—beta) by itself cannot 
find a solution. The extensive form does allow us to find solutions because it represents the 

INFORMATIM  SETS  belief states (game theorists call them information sets) of all players at once. From that 
representation we can find equilibrium solutions, just as we did with normal-form games. 

As a simple example of a sequential game, place two agents in the 4 x 3 world of Fig- 
ure 17.1 and have them move simultaneously until one agent reaches an exit square, and gels 
the payoff for that square. If we specify that no movement occurs when the two agents try 
to move into the same square simultaneously (a common problem at many traffic intersec-
tions), then certain pure strategies can get stuck forever. Thus, agents need a mixed strategy 
to perform well in this game: randomly choose between moving ahead and staying put. This 
is exactly what is done to resolve packet collisions in Ethernet networks. 

Next we'll consider a very simple variant of poker. The deck has only four cards, two 
aces and two kings. One card is dealt to each player. The first player then has the option 
to raise the stakes of the game from 1 point to 2, or to check. If player 1 checks, the game 
is over.  If he raises. then player 2 has the option to call, accepting that the game is worth 2 
points, or fold, conceding the I point. If the game does not end with a fold, then the payoff 
depends on the cards: it is zero for both players if they have the same card; otherwise the 
player with the king pays the stakes to the player with the ace. 

The extensive-form tree for this game is shown in Figure 17.13. Nonterminal  stales are 
shown as circles, with the player to move inside the circle; player 0 is chance. Each action is 
depicted as an arrow with a label, corresponding to a raise, check, call, orfoId,  or, for chance, 
the four possible deals ("AK" means that player 1 gets an ace and player 2 a king). Terminal 
states are rectangles labeled by their payoff to player 1 and player 2. Information sets are 
shown as labeled dashed boxes; for example, /1 , 1  is the information set where it is player 
1's turn, and he knows he has an ace (but dues nut know what player 2 has). In information  
set /2_1,  it is player 2's turn and she knows that she has an ace and that player I has raised, 



Figure 1713  Extensive form of a simplified ver ion of poker. 
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but does not know what card player 1 has. (Due to the limits of two-dimensional paper, this 
information set is shown as two boxes rather than one.) 

One way to solve an extensive game is to convert it to a normal-form game. Recall that 
the normal form is a matrix, each row of which is labeled with a pure strategy for player 1,  and 
each column by a pure strategy for player 2. In an extensive game a pure strategy for player 

corresponds to an action for each information set involving that player. So in Figure 17.13, 
one pure strategy fur player 1 is "raise when in /1,1  (that is, when I have an ace), and check 
when in 11 2 (when I have a king)." In the payoff matrix below, this strategy is called rk. 
Similarly, strategy cf for player 2 means "call when 1  have an ace and fold when I have a 

king." Since this is a zero-sum game, the matrix below gives only the payoff for player 1;  
player 2 always has the opposite payoff: 

2:cc 2:cf  2;ff  2:fc 
1:rr  0 -1/6 1 7/6 
1:kr  -1/3 -1/6 5/6 2/3 
1:rk 1/3 0 1/6 1/2 
I  Ick  0 0 0 0 

This game is so simple that 't  has two pure-strategy equilibria, shown in bold: cf  for player 
2 and rk or kk for player 1. But in general we can solve extensive games by converting 
to normal form and then finding a solution (usually a mixed strategy) using standard linear 
programming methods. That works in theory. But if a player has I information sets and 
u actions per set, then that player will have u-1  pure strategies.  hr mire'  words. the size of 
the normal-form matrix is exponential in the number of information sets, so in practice the 



Section 17.5, Decisions with Multiple Agents: Game Theory 677 

SFOUFNC  E FORM 

ABSTRACTION 

approach works only for very small game trees, on the order of a dozen states. A game like 
Texas hold'ern  poker has about 10 18  states, making this approach completely infeasible. 

What are the alternatives? In Chapter 5 we saw how alpha–beta search could handle 
games of perfect information with huge game trees by generating the tree incrementally, by 
pruning some branches, and by heuristically evaluating nonterminal nodes. But that approach 
does not work well for games with imperfect information, for two reasons: first, it is harder 
to prune, because we need to consider mixed strategies that combine multiple branches, not a 
pure strategy that always chooses the best branch. Second, it is harder to heuristically evaluate 
a nonterminal node, because we are dealing with information sets, not individual states. 

Koller et al. (1996) come to the rescue with an alternative representation of extensive 
games, called the sequence form, that is only linear in the size of the tree, rather than ex-
ponential. Rather than represent strategies, it represents paths through the tree; the number 
of paths is equal to the number of terminal nudes. Standard linear programming methods 
can again be applied to this representation. The resulting system can solve poker variants 
with 25,000 states in a minute or two. This is an exponential speedup over the normal-form 
approach, but still falls far short of handling full poker, with 10 18  states. 

If we can't handle 1018  states, perhaps we can simplify the problem by changing the 
game to a simpler form. For example, if I hold an ace and am considering the possibility that 
the next card will give me a pair of aces, then I don't care about the suit of the next card; any 
suit will do equally well. This suggests forming an abstraction of the game, one in which 
suits are ignored. The resulting game tree will be smaller by a factor of 4! = 24. Suppose 
can solve this smaller game; how will the solution to that game relate to the original game? 
If no player is going for a flush (9r  bluffing so), then the suits don't matter to any player, and 
the solution for the abstraction will also be a solution for the original game. However. if any 
player is contemplating a flush, then the abstraction will be only an approximate solution (but 
it is possible to compute bounds on the error). 

There are many opportunities for abstraction. For example,  at the point in a game where 
each player has two cards, if I hold a pair of queens. then the other players' hands could be 
abstracted into three classes: better (only a pair of kings or a pair of aces), same (pair of 
queens) or worse (everything else). However, this abstraction might be too coarse. A better 
abstraction would divide worse into, say, medium pair (nines through jacks), low pair, and 
no pair. These examples are abstractions of states; it is also possible to abstract actions. For 
example, instead of having a bet action for each integer from 1  to 1000, we could restrict the 
bets to 10° , 10 1 , 102  and 103 . Or we could cut out one of the rounds of betting altogether. 
We can also abstract over chance nodes, by considering only a subset of the possible deals. 
This is equivalent to the rollout technique used in Go programs. Putting all these abstractions 
together, we can reduce the 1018  states of poker to 10 7  states, a size that can be solved with 
current techniques. 

Poker programs based on this approach can easily defeat novice and some experienced 
human players, but are not yet at the level of master players. Part of the problem is that 

the solution these programs approximate—the equilibrium solution—is optimal only against 
an opponent who also plays the equilibrium strategy. Against fallible human players it is 
important to be able to exploit an opponent's deviation from the equilibrium strategy. As 
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Gautam Rao (aka "The Count"), the world's leading online poker player, said (Billings et al., 
2003), "You have a very strong program. Once you add opponent modeling to it, it will kill 
everyone." However, good models of human fallability  remain elusive. 

In a sense, extensive game form is the one of the most complete representations we have 
seen so far: it can handle partially observable, multiagent, stochastic, sequential, dynamic 
environments—most of the hard cases from the list of environment properties on page 42. 
However, there are two limitations of game theory. First, it does not deal well with continuous 
states and actions (although there have been some extensions to the continuous case; for 
example, the theory of Cournot competition uses game theory to solve problems where two 
companies choose prices for their products from a continuous space). Second, game theory 
assumes the game is known. Parts of the game may be specified as unobservable to some of 
the players, but it must be known what parts are unobservable. In cases in which the players 
learn the unknown structure of the  game over Lime, the model begins to break down. Let's 
examine each source of uncertainty, and whether each can be represented in game theory. 

Actions! There is no easy way to represent a game where the players have to discover 
what actions are available. Consider the game between computer virus writers and security 
experts. Part of the problem is anticipating what action the virus writers will try next. 

Strategies: Game theory is very good at representing the idea that the other players' 
strategies are initially unknown—as long as we assume all agents are rational. The theory 
itself does not say what to do when the other players are less than fully rational. The notion 

of a Bayes—Nash equilibrium partially addresses this point: it is an equilibrium with respect 
to a player's prior probability distribution over the other players' strategies—in other words, 
it expresses a player's beliefs about the other players' likely strategies. 

Chance: If a game depends on the roll of a die, it is easy enough to model a chance node 
with uniform distribution over the outcomes. But what if it is possible that the die is unfair? 
We can represent that with another chance node, higher up in the tree, with two branches for 
"die is fair" and "die is unfair," such that the corresponding nodes in each branch are in the 
same information set (that is, the players don't know if the die is fair or non. And what if we 
suspect the other opponent does know? Then we add another chance node, with one hranch 
representing the case where the opponent does know, and one where he doesn't. 

Utilities: What if we don't know our opponent's utilities? Again, that can be modeled 
with a chance node, such that the other agent knows its own utilities in each branch, but we 
don't. But what if we don't know our own utilities? For example, how do I know if it is 
rational to order the Chef's salad if I don't know how much I will like it? We can model that 
with yet another chance node specifying an unobservable "intrinsic  quality" of the salad. 

Thus, we see that game theory is good at representing most sources of uncertainty—but 
at the cost of doubling the size of the tree every time we add another node; a habit which 
quickly leads to intractably large trees.  Because of these and other problems, game theory 
has been used primarily to analyze environments that are at equilibrium, rather than to control 
agents within an environment. Next we shall see how it can help design environments. 
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In the previous section, we asked, -Given  a game, what is a rational strategy?" In this sec-
tion, we ask, "Given that agents pick rational strategies, what game should we design?" More 
specifically, we would like to design a game whose solutions, consisting of each agent pursu-
ing its own rational strategy, result in the maximization of some global utility fiinction_  This 
problem is called mechanism design, or sometimes inverse game theory. Mechanism de- 
sign is a staple of economics and political science_ Capitalism 101 says that if everyone tries 
to get rich, the total wealth of society will increase. But the examples we will discuss show 
that proper mechanism design is necessary to keep the invisible hand on track. For collections 
of agents, mechanism design allows us to construct smart systems out of a collection of more 
limited systems—even uncooperative systems—in much the same way that teams of humans 
can achieve goals beyond the reach of any individual. 

Examples of mechanism design include auctioning off cheap airline tickets, routing 
TCP packets between computers, deciding how medical interns will be assigned to hospitals, 
and deciding how robotic soccer players will cooperate with their teammates. Mechanism 
design became more than an academic subject in the 1990s  when several nations, faced with 
the problem of auctioning off licenses to broadcast in various frequency bands, lost hundreds 
of millions of dollars in potential revenue as a result of poor mechanism design. Formally, 
a mechanism consists of (1) a language for describing the set of allowable strategies that 
agents may adopt, (2) a distinguished agent, called the center, that collects reports of strategy 
choices from the agents in the game, and (3) an  outcome rule, known to all agents, that the 
center uses to determine the payoffs to each agent, given their strategy choices. 

17.6.1 Auctions 

ALM  EON Let's consider auctions first. An auction is a mechanism for selling some goods to members 
of a pool of bidders. For simplicity, we concentrate on auctions with a single item for sale. 
Each bidder i has a utility value vi  for having the item. In some cases, each bidder has a 
private value for the item. For example, the first item sold on eBay was a broken laser 
pointer, which sold for $14.83 to a collector of broken laser pointers. Thus, we know that the 
collector has tri  > $14.83, but most other people would have v.,  << $14.83. In other cases, 
such as auctioning drilling rights for an oil tract, the item has a common value—the tract 
will produce some amount of money, X, and all bidders value a dollar equally—but there is 
uncertainty as to what the actual value of X is. Different bidders have different information, 
and hence different estimates of the item's true value. In either case, bidders end up with their 
own u i .  G iven  v„  each bidder gets a chance, at the appropriate time or times in the auction, 
to make a bid bi.  The highest bid, br„,,,  wins the item, but the price paid need not be ban„;  
that's part of the mechanism design. 

ASCENDING-BID The best-known auction mechanism is the ascending -bid,'  or English auction, in 
ENGLISH  AUCTION which the center starts by asking for a minimum (or reserve) bid brain .  If some bidder is 

H  The word "auction" comes from the Latin augere,  to increase. 
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willing to pay that amount, the center then asks for bn,i„ d, for some increment d, and 
continues up from there. The auction ends when nobody is willing to bid anymore; then the 
last bidder wins the item, paying the price he bid. 

How do we know if this is a good mechanism? One goal is to maximize expected 
revenue for the seller. Another goal is to maximize a notion of global utility. These goals 
overlap to some extent, because one aspect of maximizing global utility is to ensure that the 
winner of the auction is the agent who values the item the most (and thus is willing to pay 
the most). We say an auction is efficient if the goods go to the agent who values them most. 
The ascending-bid auction is usually both efficient and revenue maximizing, but if the reserve 
price is set too high, the bidder who values it most may not bid, and if the reserve is set too 
low, the seller loses net revenue. 

Probably the most important things that an auction mechanism can do is encourage a 
sufficient number of bidders to enter the game and discourage them from engaging in eau- 
sion.  Collusion is an unfair or illegal agreement by two or more bidders to manipulate prices. 
It can happen in secret backroom deals or tacitly, within the rules of the mechanism. 

For example, in 1999, Germany auctioned ten blocks of cell-phone spectrum with a 
simultaneous auction (bids were taken on all ten blocks at the same time), using the rule that 
any bid must be a minimum of a 10% raise over the previous bid on a block. There were only 
two credible bidders, and the first, Mannesman,  entered the bid of 20 million deutschmark 
on blocks 1-5 and 18.18 million on blocks 6-10. Why 18.18M? One of T-Mobile's managers 
said they "interpreted Mannesman's first bid as an offer." Both parties could compute that 
a 10% raise on 113.18M  is 19.99M; thus Mannesman's bid was interpreted as saying "we 
can each get half the blocks for 2CM; let's not spoil it by bidding the prices up higher." 
And in fact T-Mobile  bid 20141  on blocks 6-10 and that was the end of the bidding. The 
German government got less than they expected, because the two competitors were able to 
use the bidding mechanism to come to a tacit agreement on how not to compete. From 
the government's point of view, a better result could have been obtained by any of these 
changes to the mechanism: a higher reserve price; a sealed-bid first-price auction, so that 
the competitors could not communicate through their hits;  or incentives to bring in a third 
bidder. Perhaps the 10% rule was an en-or  in mechanism design, because it facilitated the 
precise signaling from Mannesman to T-Mobile. 

In general, both the seller and the global utility function benefit if there are more bid-
ders, although global utility can suffer if you count the cost of wasted time of bidders that 
have no chance of winning. One way to encourage more bidders is to make the mechanism 
easier for them. After all. if it requires too much research or computation on the part of the 
bidders, they may decide to take their money elsewhere. So it is desirable that the bidders 
have a dominant strategy. Recall that "dominant" means that the strategy works against all 
other strategies, which in turn means that an agent can adopt it without regard for the other 
strategies. An agent with a dominant strategy can just bid, without wasting time contemplat- 
ing other agents' possible strategies. A mechanism where agents have a dominant strategy 
is called a strategy-proof mechanism. If, as is usually the case, that strategy involves the 
bidders revealing their true value,  then it is called a truth- revealing,  or truthful, auction; 
the term incentive compatible is also used. The revelation principle states that any mecha- 
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nism  can be transformed into an equivalent truth-revealing mechanism, so part of mechanism 
design is finding these equivalent mechanisms. 

It turns out that the ascending-bid auction has most of the desirable properties. The 
bidder with the highest value vi  gets the goods at a price of bc,  +  (1,  where bo  is the highest 
bid among all the other agents and d  is the auctioneer's increment. 9  Bidders have a simple 
dominant strategy: keep bidding as long as the current cost is below your  The mechanism 
is not quite truth-revealing, because the winning bidder reveals only that his vi  > b,  + d:  we 
have a lower bound on 14  but not an exact amount. 

A disadvantage (from the point of view of the seller) of the ascending-bid auction is 
that it can discourage competition, Suppose that in a bid for cell-phone spectrum there is 
one advantaged company that everyone agrees would be able to leverage existing customers 
and infrastructure, and thus can make a larger profit than anyone else. Potential competitors 
can see dial they have no chance in an ascending-bid  auction, because the advantaged com-
pany can always bid higher. Thus, the competitors may not enter at all, and the advantaged 
company ends up winning at the reserve price. 

Another negative property of the English auction is its high communication costs. Either 
the auction takes place in one room or all bidders have to have high-speed, secure communi-
cation lines; in either case they have to have the time available to go through several rounds of 
bidding. An alternative mechanism, which requires much less communication, is the sealed- 
bid auction. Each bidder makes a single bid and communicates it to the auctioneer, without 
the other bidders seeing it. With this mechanism, there is no longer a simple dominant strat-
egy If your value is vi  and you believe that the maximum of all the other agents' bids will 
be bo ,  then you should bid b0  + E.,  for some small E,  if that is less than vi.  Thus, your bid 
depends on your estimation of the other agents' bids, requiring you to do more work. Also, 
note that the agent with the highest v,  might not win the auction. This is offset by the fact 
that the auction is more competitive, reducing the bias toward an advantaged bidder. 

A small change in the mechanism for sealed-bid auctions produces the sealed-bid 
second-price auction, also known as a Vickrey auction. ln  In such auctions, the winner pays 
the price of the .cerond-highest  hid , ho ,  rather than paying his own hid. This simple modifi-
cation completely eliminates the complex deliberations required for standard (or first-price) 
sealed-bid auctions, because the dominant strategy is now simply to bid v,.;  the mechanism is 
truth-revealing. Note that the utility of agent i in terms of his bid b„  his value v„  and the best 
bid among the other agents, bp,  is 

—  /1„)  if hi  5 ho  

To see that bi  = Vi  is a dominant strategy, note that when (vi  — /90 )  is positive, any bid 
that wins the auction is optimal, and bidding IA  in particular wins the auction. On the other 
hand, when (a.,  — bo )  is negative, any bid that loses the auction is optimal, and bidding vi  in 

9  There is actually a small chance that the agent with highest ts;  fails to get the goods, in the case in which 
b„  < ty,  < + d. The chance of this can be made arbitrarily small by decreasing the increment d.  

Named after William Vickrey  (191L-1996),  who won the 1996 Nobel Prize in economics for this work and 
died of a heart attack three days later. 

1  tti  = 
0 otherwise. 
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particular loses the auction. So bidding vi  is optimal for all possible values of b0 , and in fact, 
th  is the only bid that has this property. Because of its simplicity and the minimal computation 
requirements for both seller and bidders, the Vickrey auction is widely used in constructing 
distributed AI systems. Also, Internet search engines conduct over a billion auctions a day 
to sell advertisements along with their search results, and online auction sites handle $100 
billion a year in goods, all using variants of the Vickrey auction. Note that the expected value 
to the seller is b„,  which is the same expected return as the limit of the English auction as 
the increment d goes to zero. This is actually a very general result: the revenue equivalence 
theorem states that, with a few minor caveats, any auction mechanism where risk-neutral 
bidders have values vi  known only to themselves (but know a probability distribution from 
which those values are sampled), will yield the same expected revenue. This principle means 
that the various mechanisms are not competing on the basis of revenue generation, but rather 
on other qualities. 

Although the second-price  auction is truth-revealing, it turns out that extending the idea 
to multiple goods and using a next-price auction is not truth-revealing.  Many Internet search 
engines use a mechanism where they auction k slots for ads on a page. The highest bidder 
wins the top spot, the second highest gets the second spot, and so on, Each winner pays the 
price bid by the next-lower bidder, with the understanding that payment is made only if the 
searcher actually clicks on the ad. The top slots are considered more valuable because they 
are more likely to be noticed and clicked on. Imagine that three bidders, b 1 , b2  and b3 , have 
valuations for a click of v i  = 200, v2 =  180, and v3 = 100, and thatk = 2 slots are available, 
where it is known that the top spot is clicked on 5% of the time and the bottom spot 2%. If 
all bidders bid truthfully, then bi  wins the top slot and pays 180, and has an expected return 
of (200 — 180) x 0.05 = 1. The second slot goes to b2. But b1 can see that if she were to bid 
anything in the range 101-179, she would concede the top slot to b2, win the second slot, and 
yield an expected return of (200— 100) x .02 = 2. Thus, b1 can double her expected return by 
bidding less than her true value in this case. In general, bidders in this multislot auction must 
spend a lot of energy analyzing the bids of others to determine their best strategy; there is no 
simple dominant strategy_  Aggarwal it al. (2006) show that there is a unique truthful auction 
mechanism for this multislot problem, in which the winner of slot j  pays the full price for 
slot j just for those additional clicks that are available at slot :J.  and not at slot j 1 1. The 
winner pays the price for the lower slot for the remaining clicks. In our example, b1 would 
bid 200 truthfully, and would pay 180 for the additional .05 — .02 = .03 clicks in the top slot, 
but would pay only the cost of the bottom slot, 100, for the remaining .02 clicks. Thus, the 
total return to b1 would be (200 — 180) x .03 + (200 — 100) x .02 = 2.6. 

Another example of where auctions can come into play within AI is when a collection 
of agents are deciding whether to cooperate on a joint plan. Hunsberger and Grosz (2000) 
show that this can be accomplished efficiently with an auction in which the agents bid for 
roles in the joint plan. 
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17.6.2 Common goods 
Now let's consider another type of game, in which countries set their policy for controlling 
air pollution. Each country has a choice: they can reduce pollution at a cost of -10 points for 
implementing the necessary changes, or they can continue to pollute, which gives them a net 
utility of -5 (in added health costs, etc.) and also contributes -1 points to every other country 
(because the air is shared across countries). Clearly, the dominant strategy for each country 
is "continue to pollute," but if there are 100 countries and each follows this policy, then each 
country gets a total utility of -104, whereas if every country reduced pollution, they would 
each have a utility of -10. This situation is called the tragedy of the commons: if nobody 
has to pay for using a common resource, then it tends to be exploited in a way that leads to 
a lower total utility for all agents. It is similar to the prisoner's dilemma: there is another 
solution to the game that is better for all parties, but there appears to be no way for rational 
agents to arrive at that solution. 

The standard approach for dealing with the tragedy of the commons is to change the 
mechanism to one that charges each agent for using the commons. More generally, we need 
to ensure that all externalities—effects on global utility that arc not recognized in the in-
dividual agents' transactions—are made explicit. Setting the prices correctly is the difficult 
par. In the limit, this approach amounts to creating a mechanism in which each agent is 
effectively required to maximize global utility, but can do so by making a local decision. For 
this example, a carbon tax would be an example of a mechanism that charges for use of the 
commons in a way that, if implemented well, maximizes global utility. 

As a final example, consider the problem of allocating some common goods. Suppose a 
city decides it wants to install some free wireless Internet transceivers. However. the number 
of transceivers they can afford is less than the number of neighborhoods that want them. The 
city wants to allocate the goods efficiently, to the neighborhoods that would value them the 
most. That is, they want to maximize the global utility V =  The problem is that if 
they  just ask each neighborhood council "how much du you value this free gift?" they would 
all have an incentive to lie, and report a high value. It turns out there is a mechanism, known 
as the Vickrey-Clarke-Groves, or VCG,  mechanism, that makes it a dominant strategy for 
each agent to report its true utility and that achieves an efficient allocation of the goods. The 
trick is that each agent pays a tax equivalent to the loss in global utility that occurs because 
of the agent's presence in the game. The mechanism works like this: 

1. The center asks each agent to report its value for receiving an item. Call this 
2. The center allocates the goods to a subset of the bidders. We call this subset A, and use 

the notation b,  (A) to mean the result to i under this allocation: th  if i is in A (that is, i 
is a winner), and 0 otherwise. The center chooses A to maximize total reported utility 
B = bi  (A).  

3. The center calculates (for each 1) the sum of the reported utilities for all the winners 
except  We use the notation = (A). The center also computes (for each 
i) the allocation that would maximize total global utility if i were not in the game; call 
that sum W_ i .  

4. Each agent i  pays a tax equal to W_t  — B_i.  
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In this example, the VCG rule means that each winner would pay a tax equal to the highest 
reported value among the losers. That is, if I report my value as 5, and that causes someone 
with value 2 to miss out on an allocation, then 1  pay a tax of 2. All winners should be happy 
because they pay a tax that is less than their value, and all losers are as happy as [hey can be, 
because they value the goods less than the required tax. 

Why is it that this mechanism is truth-revealing? First, consider the payoff to agent 
which is the value of getting an item, minus the tax: 

v,(A)  —  (TV_,  —  B_,)  . (17.14) 
Here we distinguish the agent's true utility, vi,  from his reported utility b,  (but we are trying 
to show that a dominant strategy is b i =.a.i ).  Agent i knows that the center will maximize 
global utility using the reported values, 

Ebi(A ) =  bi(A)  +  Ebi(A )  
JoE  

whereas agent i wants the center to maximize (17.14), which can be rewritten as 

vi  (A) +  

Since agent i cannot affect the value of W_,  (it depends only on the other agents), the only 
way i can make the center optimize what i wants is to report the true utility, b i  vi .  

17.7 SUMMARY 

This chapter shows how to use knowledge about the world to make decisions even when the 
outcomes of an action are uncertain and the rewards for acting might not be reaped until many 
actions have passed. The main points are as follows: 

• Sequential decision problems in uncertain environments, also called Markov decision 
processes, or MDPs,  are defined by a transition model specifying the probabilistic 
outcomes of actions and a reward function specifying the reward in each state. 

■ The utility of a state sequence is the sum of all the rewards over the sequence, possibly 
discounted over time. The solution of an MDP is a policy that associates a decision 
with every stale that the agent might reach. An optimal policy maximizes the utility of 
the state sequences encountered when it is executed. 

■ The utility of a state is the expected utility of the state sequences encountered when 
an optimal policy is executed, starting in that state. The value iteration  algorithm for 
solving MDPs works by iteratively solving the equations relating the utility of each state 
to those of its neighbors. 

• Policy iteration alternates between calculating the utilities of states under the current 
policy and improving the current policy with respect to the current utilities. 

• Partially observable MDPs,  or POMDPs, are much more difficult to solve than are  
MDPs. They can be solved by conversion to an MOP in the continuous space of belief 
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states; both value iteration and policy iteration algorithms have been devised. Optimal 
behavior in POMDPs includes information gathering to reduce uncertainty and there- 
fore make better decisions in the future. 

• A decision-theoretic agent can be constructed for POMDP  environments. The agent 
uses a dynamic decision network to represent the transition and sensor models, to 
update its belief state, and to project forward possible action sequences. 

• Game theory describes rational behavior for agents in situations in which multiple 
agents interact simultaneously. Solutions of games are Nash equilibria—strategy pro-
files in which no agent has an incentive to deviate from the specified strategy. 

• Mechanism design can be used to set the rules by which agents will interact, in order 
to maximize some global utility through the operation of individually rational agents. 
Sometimes, mechanisms exist that achieve this goal without requiring each agent to 
consider the choices made by other agents. 

We shall return to the world of MDPs and POMDP in Chapter 21, when we study rein-
forcement  learning methods that allow an agent to improve its behavior from experience in 
sequential, uncertain environments. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Richard Bellman  developed the ideas underlying the modern approach to sequential decision 
problems while working at the RAND Corporation beginning in 1949. According to his au-
tobiography (Bellman, 1984), he coined the exciting term "dynamic programming" to hide 
from a research-phobic Secretary of Defense, Charles Wilson, the fact that his group was 
doing mathematics. (This cannot be strictly true, because his first paper using the term (Bell-
man, 1952) appeared before Wilson became Secretary of Defense in 1953.) Bellman's  book, 
Dynamic Programming (1957), gave the new field a solid foundation and introduced the basic 
algorithmic approaches. Ron Howard's Ph.D.  thesis (1960) introduced policy iteration and 
the idea of average reward for solving infinite-horizon problems. Several additional results 
were introduced by Bellman  and Dreyfus (1962). Modified policy iteration is due to van 
Nunen  (1976) and Puterman  and Shin (1978).  Asynchronous policy iteration was analyzed 
by Williams and Baird (1993), who also proved the policy loss bound in Equation (17.9). The 
analysis of discounting in terms of stationary preferences is due to Koopmans (1972). The 
texts by Bertsekas (1987),  Puterman (1994), and Bertsekas and Tsiisiklis (1996) provide a 
rigorous introduction to sequential decision problems. Papadimitriou and Tsitsiklis (1987) 
describe results on the computational complexity of MDPs. 

Seminal work by Sutton (1988)  and Waticins  (1989) on reinforcement learning methods 
for solving MDPs  played a significant role in introducing MDPs into the Al community, as 
did the later survey by Ratio er al. (1995). (Earlier work by Werbos (1977) contained many 
similar ideas, but was not taken up to the same extent.) The connection between MDPs and 
Al  planning problems was made first by Sven Koenig (1991), who showed how probabilistic 
STRIPS operators provide a compact  representation for transition models (see also Wellman, 
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FACTORED LOP  

R ELATIONAL  MDP  

1990b). Work by Dean et al. (1993) and Tash  and Russell (1994) attempted to overcome 
the combinatorics  of large state spaces by using a limited search  horizon and abstract states. 
Heuristics based on the value of information can be used to select areas of the state space 
where a local expansion of the horizon will yield a significant improvement in decision qual-
ity. Agents using this approach can tailor their effort to handle time pressure and generate 
some interesting behaviors such as using familiar "beaten paths" to find their way around the 
state space quickly without having to recompute optimal decisions at each point. 

As one might expect, AI researchers have pushed MDPs in the direction of more ex-
pressive representations that can accommodate much larger problems than the traditional 
atomic representations based on transition matrices. The use of a dynamic Bayesian network 
to represent transition models was an obvious idea, but work on factored MDPs  (Boutilier  
el aL,  2000; Koller and Parr, 2000; Guestrin  et al., 2003b) extends the idea to structured 
representations of the value function with provable improvements in complexity. Relational 
MDPs (Boutilier  et aL,  2001; Guestrin et al., 2003a) go one step further, using structured 
representations to handle domains with many related objects. 

The observation that a partially observable MDP can be transfonned into a regular MDP 
over belief states is due to Astrom  (1965) and Aoki (1965). The first complete algorithm for 
the exact solution of POMDPs—essentially the value iteration algorithm presented in this 
chapter—was proposed by Edward Sondik (1971) in his Ph.D. thesis. (A later journal paper 
by Smallwood and Sondik (1973) contains some errors, but is more accessible.) Lovejoy 
(1991) surveyed the first twenty-five years of POMDP research, reaching somewhat pes-
simistic conclusions about the feasibility of solving large problems. The first significant 
contribution within AI was the Witness algorithm (Cassandra et aL,  1994; Kaelbling et al.. 
1998), an improved version of POMDP  value iteration. Other algorithms soon followed, in-
cluding an approach due to Hansen (1998) that constructs a policy incrementally in the form 
of a finite-state automaton. In this policy representation, the belief state corresponds directly 
to a particular state in the automaton. More recent work in Al has focused on point-based  
value iteration methods that, at each iteration, generate conditional plans and o-vectors  for 
a finite set of helief  states rather than for the entire belief space. Lovejoy (1991) proposed 
such an algorithm for a fixed grid of points, an approach taken also by Bonet (2002). An 
influential paper by Pineau et al. (2003) suggested generating reachable points by simulat-
ing trajectories in a somewhat greedy fashion; Spam and Vlassis (2005) observe that one 
need generate plans for only a small, randomly selected subset of points to improve on the 
plans from the previous iteration for all points in the set. Current point-based methods—
such as point-based policy iteration (Ji et al., 2007)—can generate near-optimal solutions for 
POMDPs with thousands of states. Because POMDPs are PSPACE-hard (Papadimitriou and 
Tsitsiklis, 1987), further progress may require taking advantage of various kinds of structure 
within a factored representation. 

The online approach—using look-ahead search to select an action for the current belief 
state—was first examined by Satia and Lave (1973). The use of sampling at chance nodes 
was explored analytically by Kearns et al. (2000) and Ng and Jordan (2000). The basic 
ideas for an agent architecture using dynamic decision networks were proposed by Dean 
and Kanazawa (1989a). The book Planning and Control by Dean and Wellman (1991) goes 
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into much greater depth, making connections between DBN/DDN  models and the classical 
control literature on filtering. Tatman and Shachtcr (1990) showed how to apply dynamic 
programming algorithms to DDN models. Russell (1998) explains various ways in which 
such agents can be scaled up and identifies a number of open research issues. 

The roots of game theory can be traced back to proposals made in the 17th century 
by Christiaan Huygens and Gottfried Leibniz to study competitive  and cooperative human 
interactions scientifically and mathematically. Throughout the 19th century, several leading 
economists created simple mathematical examples to analyze particular examples of com-
petitive situations. The first formal results in game theory are due to Zermelo (1913) who 
had, the year before, suggested a form of minimax search for games, albeit an incorrect one). 
Emile Borel  (1921) introduced the notion of a mixed strategy. John von Neumann (1928)  
proved that every two-person, zero-sum game has a maximin equilibrium in mixed strategies 
and at well-defined value. Von Neunnuui's  collaboration with the economist Oskar Morgen- 
stern  led to the publication in 1944 of the Theory of Games and Economic Behavior, the 
defining book for game theory. Publication of the hook was delayed by the wartime paper 
shortage until a member of the Rockefeller family personally subsidized its publication_ 

In 1950, at the age of 21, John Nash published his ideas concerning equilibria in general 
(non-zero-sum) games. His definition of an equilibrium solution, although originating in the 
work of Cournot (1838), became known as Nash equilibrium. After a long delay because 
of the schizophrenia he suffered from 1959 onward, Nash was awarded the Nobel Memorial 
Prize in Economics (along with Reinhart Selten and John Harsanyi) in 1994. The Bayes—Nash 
equilibrium is described by Harsanyi  (1967) and discussed by Kadane and Larkey (1982).  
Some issues in the use of game theory for agent control are covered by Binmore (1982). 

The prisoner's dilemma was invented as a classroom exercise by Albert W. Tucker in 
1950 (based on an example by Merrill Flood and Melvin Dresher) and is covered extensively 
by Axelrod (1985) and Poundstone (1993). Repeated games were introduced by Luce and 
Raiffa (1957), and games of partial information in extensive form by Kuhn (1953). The first 
practical algorithm for sequential, partial-information  games was developed within AI by 
Koller et al. (1996); the paper by Koller and Pfeffer (1997) provides a readable introduction 
to the field and describe a working system for representing and solving sequential games. 

The use of abstraction to reduce a game tree to a size that can be solved with Koller's 
technique is discussed by Billings et al. (2003). Bowling et al. (2008) show how to use 
importance sampling to get a better estimate of the value of a strategy. Waugh et al. (2009) 
show that the abstraction approach is vulnerable to making systematic errors in approximating 
the equilibrium solution, meaning that the whole approach is on shaky ground: it works for 
some games but not others.  Korb et al. (1999) experiment with an opponent model in the 
form of a Bayesian network. It plays five-card stud about as well as experienced humans. 
(Zinkevich et al., 2008)  show how an approach that minimizes regret can find approximate 
equilibria for abstractions with 10 12  states, 100 times more than previous methods. 

Game theory and MbPs  are combined in the theory of Markov games, also called 
stochastic games (Littman, 1994; Hu and Wellman, 1998). Shapley (1953) actually described 
the value iteration algorithm independently of Bellman, but his results were not widely ap- 
preciated, perhaps because they were presented in the context of Markov games. Evolu- 
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tionary game theory (Smith, 1982; Weibull, 1995) looks at strategy drift over time: if your 
opponent's strategy is changing, how should you react? Textbooks on game theory from 
an economics point of view include those by Myerson (1991), Fudenberg and Tirole (1991), 
Osborne (2004), and Osborne and Rubinstein (1994); Mailath and Samuelson (2006) concen- 
trate on repeated games. From an AI perspective we have Nisan et al. (2007), Leyton-Brown 
and Shoham (2008) ;  and Shoham and Leyton-Brown (2009). 

The 2007 Nobel Memorial Prize in Economics went to Hurwicz, Maskin,  and Myerson 
for having laid the foundations of mechanism design theory" (Hurwicz,  1973). The tragedy 

of the commons, a motivating problem for the field, was presented by Hardin (1968). The rev-
elation principle is due to Myerson (1986), and the revenue equivalence theorem was devel- 
oped independently by Myerson (1981) and Riley and Samuelson (1981). Two economists, 
Milgrom (1997) and Klemperer (2002), write about the multibillion-dollar spectrum auctions 
they were involved in. 

Mechanism design is used in multiagent planning (Hunsberger and Grosz, 2000; Stone 
et al. , 2009) and scheduling (Rassenti et ai. ,  19E). Varian (1995) gives a brief overview with 
connections to the computer science literature, and Rosenschein  and Zlotkin  (1994) present a 
bock-length treatment with applications to distributed AI. Related work on distributed AI also 
goes under other names, including collective intelligence (Turner and Wolpert, 2000; Segaran. 
2007) and market-based control (Clearwater, 1996). Since 2001 there has been an annual 
Trading Agents Competition (TAC), in which agents try to make the best profit on a series 
of auctions (Wellman et al., 2001; Arunachalam and Sadeh, 2005). Papers on computational 
issues in auctions often appear in the ACM Conferences on Electronic Commerce.  

EXERCISES 

17.1 For the 4 x 3 world shown in Figure 17.1,  calculate which squares can be reached 
from (1,1) by the action sequence [ Up, Up, Right, Right, Right] and with what probabilities. 
Explain how this computation is related to the prediction task (see Section 15.2.1) for a hidden 
Markov model. 

17.2 Select a specific member of the set of policies that are optimal for R(s)  > 0 as shown 
in Figure 17.2(b), and calculate the fraction of time the agent spends in each state, in the limit. 
if the policy is executed forever. (Hint: Construct the state-to-state transition probability 
matrix corresponding to the policy and see Exercise 15.2.) 

17.3 Suppose that we define the utility of a state sequence to he the maximum reward oh-
rained  in any state in the sequence_ Shnw that this utility function does not result in stationary 
preferences between state sequences. Is it still possible to define a utility function on states 
such that MEU decision making gives optimal behavior? 

17.4 Sometimes MDPs are formulated with a reward function R(s,  a) that depends on the 
action taken or with a reward function R(.ti  n. , s') that also depends on the outcome state_ 

a. Write the Hellman  equations for these formulations. 
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b. Show how an MDP with reward function R(s, a, a') can be transformed into a different 
MDP with reward function R(8,  a), such that optimal policies in the new MDP corre-
spond exactly to optimal policies in the original MDP. 

c. Now do the same to convert MDPs with R(s, a) into MDPs with R(s ).  

Jw i$  17.5 For the environment shown in Figure 17.1, find all the threshold values for R(8)  such 
that the optimal policy changes when the threshold is crossed. You will need a way to calcu-
late the optimal policy and its value for fixed R(s). (Hint Prove that the value of any fixed 
policy varies linearly with R(s).) 

17.6 Equation (17.7) on page 654 states that the Bellman operator is a contraction. 

a. Show that, for any functions f and 9,  

i max  f(a)  —  max 9(a)  
C 

 max If (1 )  g(a)i  -  a a 

b. Write out an expression for (B Uq — B [1:)(s)1  and then apply the result from (a) to 
complete the proof that the Bellman operator is a contraction. 

17.7 This exercise considers two-player MDPs that correspond to zero-sum, tum-taldng  
games like those in Charter 5. Let the players be A and B, and let R(a)  be the reward for 
player A in state a. (The reward for B is always equal and opposite.) 

a. Let UA(3)  be the utility of state a when it is A's turn to move in .s,  and let t/B(s)  be the 
utility of states when it is B's turn to move in s.  All rewards and utilities are calculated 
from A's point of view (just as in a minimax game tree). Write down Bellman equations 
defining U A(.9)  and U  B(3).  

b. Explain how to do two-player value iteration with these equations, and define a suitable 
termination criterion. 

c_  Consider the game described in Figure 5_17  on page l97  Draw the state space (rather 
than the game tree), showing the moves by A as solid lines and moves by B as dashed 
lines. Mark each state with R(s).  You will find it helpful to arrange the states (h it .  s B )  

on a two-dimensional grid, using sA  and 3B  as "coordinates." 
d. Now apply two-player value iteration to solve this game, and derive the optimal policy. 

17.8 Consider the 3 x 3 world shown in Figure 17.14(a). The transition model is the same 
as in the 4 x 3 Figure 17.1: 80%  of the time the agent goes in the direction it selects; the rest 
of the time it moves at right angles to the intended direction. 

Implement value iteration for this world for each value of r below, Use discounted 
rewards with a discount factor of 0.99. Show the policy obtained in each case. Explain 
intuitively why the value of 3'  leads to each policy. 

a. r = 100 
b. 1'  = —3 
c. r = 0 
d. r = +3 



+50 

Start 

+1 +I +I  +I +I +I 

(a) 

Figure 17.14  (a) 3 x 3 world for Exercise 17.8. The reward for each state is indicated. 
The upper right square is a terminal state. (b) 101 x 3 world for Exercise 17.9 (omitting 93 
identical columns in the middle). The start state has reward 0. 
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17.9 Consider the 101 x 3 world shown in Figure 17.14(b).  In the start state the agent has 
a choice of two deterministic actions, Up or Down, but in the other states the agent has true  
deterministic action, Right. Assuming a discounted reward function, for what values of the 
discount  should the agent choose Up and for which Down? Compute the utility of each 
action as a function of I,.  (Note that this simple example actually reflects many real-world 
situations in which one must weigh the value of an immediate action versus the potential 
continual long-term consequences, such as choosing to dump pollutants into a lake.) 

17.10 Consider an undiscounted MDP having three states, (1, 2, 3). with rewards —1, —2, 
0, respectively. State 3 is a terminal state. In states 1 and 2 there are two possible actions: a 
and b. The transition model is as follows: 

■ In state 1, action a moves the agent to state 2 with probability 0.8 and makes the agent 
stay put with probability 0.2. 

• In state 2, action a moves the agent to state I with probability 0.8 and makes the agent 
stay put with probability 0.2. 

• In either state 1 or state 2, action b moves the agent to state 3 with probability 0.1 and 
makes the agent stay put with probability 0.9. 

Answer the following questions: 

a. What can be determined qualitatively about the optimal policy in states I and 2? 
b. Apply policy iteration, showing each step in full, to determine the optimal policy and 

the values of states l and 2.  Assume that the initial policy has action b in both states. 
c. What happens to policy iteration if the initial policy has action a in both states? Does 

discounting help? Does the optimal policy depend on the discount factor? 

17.11 Consider the 4 x 3 world shown in Figure 17.1. 

a. Implement an environment simulator for this environment, such that the specific geog-
raphy of the environment is easily altered. Some code for doing this is already in the 
online code repository. 
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b. Create an agent that uses policy iteration, and measure its performance in the environ-
ment simulator from various starting states. Perform several experiments from each 
starting state, and compare the average total reward received per run with the utility of 
the state, as determined by your algorithm. 

c. Experiment with increasing the size of the environment. How does the run time for 
policy iteration vary with the size of the environment? 

17.12 How can the value deteimination  algorithm be used to calculate the expected loss 
experienced by an agent using a given set of utility estimates Er  and an estimated model P,  
compared with an agent using correct values? 

17.13 Let the initial belief state bo  for the 4 x 3 POMDP on page 658 be the uniform dis-
tribution over the nontenninal  states, i.e., ( 1 ,  91 ,  91 ,  9

1 ,  9
1 ,  1

9 .  1
9 ,  91 ,  91 , 0,0).  Calculate the exact 

belief state I)/ after the agent moves Left and its sensor reports 1 adjacent wall. Also calculate 
b2  assuming that the same thing happens again. 

17.14 What is the time complexity of d steps of POMDP value iteration for a sensorless 
environment? 

17_15  Consider a version of the two-state POMDP on page 661 in which the sensor is 
90% reliable in state 0 but provides no information in state I (that is, it reports 0 or 1  with 
equal probability). Analyze, either qualitatively or quantitatively, the utility function and the 
optimal policy for this problem. 

17.16  Show that a dominant strategy equilibrium is a Nash equilibrium, but net vice versa. 

17.17  In the children's game of rack–paper–scissors each player reveals at the same time 
a choice of rock, paper, or scissors. Paper wraps rock, rock blunts scissors, and scissors cut 
paper. In the extended version rock–paper–scissors—fire–water, fire beats rock, paper, and 
scissors; rock. paper, and scissors beat water; and water beats fire. Write out the payoff 
matrix and find a mixed-strategy solution to this game. 

17.18 The fallowing payoff matrix, from Blinder (1983) by way of Bernstein (1996), shows 
a game between politicians and the Federal Reserve. 

Fed: contract Fed: do nothing Fed: expand 
Pol:  contract F = 7, P = 1 F = 9, P = 4 F =  6,P  = 6 
Pol:  do nothing F = 8, P = 2 F = 5, P  = 5 F = 4,P = 9 
Poi!  expand F = 3,P = 3 F =  2, P = 7 F = 1, P  = 8 

Politicians can expand or contract fiscal policy, while the Fed can expand or contract mon- 
etary policy. (And of course either side can choose to do nothing.) Each side also has pref- 
erences for who should do what—neither side wants to look like the bad guys. The payoffs 
shown are simply the rank orderings: 9 for first choice through 1 for last choice. Find the 
Nash equilibrium of the game us pure strategies. Is this a Pareto-optimal solution? You might 
wish to analyze the policies of recent administrations in this light. 



692 Chapter 17. Making Complex Decisions 

17.19 A Dutch auction is similar in an English auction, but rather than starting the bidding 
at a low pricc and increasing, in a Dutch auction the seller starts at a high price and gradually 
lowers the price until some buyer is willing to accept that price. (If multiple bidders accept 
the price, one is arbitrarily chosen as the winner.) More formally, the seller begins with a 
price p and gradually lowers p by increments of d until at least one buyer accepts the price. 
Assuming all bidders act rationally, is it true that for arbitrarily small d, a Dutch auction will 
always result in the bidder with the highest value for the item obtaining the item? If so, show 
mathematically why. If not, explain how it may be possible for the bidder with highest value 
for the item not to obtain it. 

17.20 Imagine an auction mechanism that is just like an ascending-bid auction, except that 
at the end, the winning bidder, the one who bid borax,  pays only hmar  /2 rather than brna„  

Assuming all agents are rational, what is the expected revenue to the auctioneer for this 
mechanism, compared with a standard ascending-bid auction? 

17.21 Teams in the National Hockey League historically received 2 points for winning a 
game and 0 for losing. If the game is tied, an overtime period is played; if nobody wins in 
overtime. the game is a tie and each team gets 1 point. But league officials felt that teams 
were playing too conservatively in overtime (to avoid a loss), and it would be more exciting 
if overtime produced a winner. So in 1999 the officials experimented in mechanism design: 
the rules were changed, giving a team that loses in overtime 1 point, not 0. It is still 2 points 
for a win and I for a tie. 

a. Was hockey a zero-sum  game before the rule change? After? 

b. Suppose that at a certain time t.  in a game, the home team has probability p of winning 
in regulation time, probability 0.78 — p of losing, and probability 0.22 of going into 
overtime, where they have probability q of winning, _9 —  q of losing, and .1 of tying 
Give equations for the expected value for the home and visiting teams. 

c. Imagine that it were legal and ethical for the two teams to enter into a pact where they 
agree that they will skate to a tie in regulation time, and then both try in earnest to win 
in overtime. Under what conditions, in terms of p and q, would it be rational for both 
teams to agree to this pact? 

d. Longley and Sankaran (2005) report that since the rule change, the percentage of games 
with a winner in overtime went up 18.2%,  as desired, but the percentage of overtime 
games also went up 16%. What does that suggest about possible collusion or conser-
vative play after the rule change? 



18  LEARNING FROM 
EXAMPLES 

In which we describe agents that can improve thew behavior through diligent 
study of their own experiences. 

LEARNING An agent is learning if it improves its performance on future tasks after making observations 
about the world. Learning can range from the trivial, as exhibited by jotting down a phone 
number, to the profound, as exhibited by Albert Einstein, who inferred a new theory of the 
universe. In this chapter we will concentrate on one class of learning problem, which seems 
restricted but actually has vast applicability: from a collection of input—output pairs, learn a 
function that predicts the output for new inputs. 

Why would we want an agent to learn? If the design of the agent can be improved, 
why wouldn't the designers just program in that improvement to begin with? There are three 
main reasons_ First, the designers cannot anticipate all possible situations that the agent 
might find itself in. For example, a robot designed to navigate mazes must learn the layout 
of each new maze it encounters. Second, the designers cannot anticipate all changes over 
time; a program designed to predict tomorrow's stock market prices must learn to adapt when 
conditions change from boom to bust. Third, sometimes human programmers have no idea 
how to program a solution themselves. For example, most people are good at recognizing the 
faces of family members. but even the best programmers are unable to program a computer 
to accomplish that task, except by using learning algorithms. This chapter first gives an 
overview of the various forms of learning, then describes one popular approach, decision- 
tree learning, in Section IR  3, followed by a theoretical analysis of learning in Sections 184 
and 18.5. We look at various learning systems used in practice: linear models, nonlinear 
models (in particular, neural networks), nonparametric models, and support vector machines. 
Finally we show how ensembles of models can outperform a single model. 

18.1 FORMS 01-:  LEARNING 

Any component of an agent can be improved by learning from data. The improvements, and 
the techniques used to make them, depend on four major factors: 

• Which component is to be improved. 

693 
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■ What prior knowledge the agent already has. 
■ What representation  is used for  the data and the component. 
■ What feedback is available to learn from. 

Components to be learned 

Chapter 2 described several agent designs. The components of these agents include: 
1. A direct mapping from conditions on the current state to actions. 
2. A means to infer relevant properties of the world from the percept sequence. 
3. Information about the way the world evolves and about the results of possible actions 

the agent can take. 
4. Utility information indicating the desirability of world states. 
5. Action-value information indicating the desirability of actions. 
6. Goals that describe classes of states whose achievement maximizes the agent's utility. 

Each of these components can be learned. Consider, for example, an agent training to become 
a taxi driver. Every time the instructor shouts 'Brake!" the agent might learn a condition–
action rule for when to brake (component 1); the agent also learns every time the instructor 
does not shout. By seeing many camera images that it is told contain buses, it can learn 
to recognize them (2). By trying actions and observing the results—for example, braking 
hard on a wet road—it can learn the effects of its actions (3). Then, when it receives no tip 
from passengers who have been thoroughly shaken up during the trip, it can learn a useful 
component of its overall utility function (4). 

INDUCTIVE 
LEARNING  
Ll  ERIK  I IVE  
LEARNING 

Representation and prior knowledge 

We have seen several examples of representations for agent components: propositional and 
first-order logical sentences for the components in a logical agent; Bayesian networks for 
the inferential components of a decision-theoretic agent, and so on. Effective learning algo-
rithms have been devised for all of these representations. This chapter (and most of current 
machine learning research) covers inputs that form a factored representation—a vector of 
attribute values—and outputs that can be either a continuous numerical value or a discrete 
value. Chapter 19 covers functions and prior knowledge composed of first-order logic sen-
tences, and Chapter 20 concentrates on Bayesian networks. 

There is another way to look at the various types of learning. We say that learning 
a (possibly incorrect) general function or rule from specific input–output pairs is called in-
ductive learning. We will see in Chapter 19 that we can also do analytical or deductive 
learning going from a known general rule to a new rule that is logically entailed, but is 
useful because it allows more efficient processing. 

UNSUPERVISED 
LEARNI  NG 

CLUSTERING 

Feedback to learn from 

There are three types of feedback that determine the three main types of learning: 
In unsupervised learning the agent learns patterns in the input even though no explicit 

feedback is supplied. The most common unsupervised learning task is clustering: detecting 
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RE NFORCENENT  
LEARNING 

SIPERVISED  trioNING  

SEMI-SUPER/2ED  
LEARNING 

potentially useful clusters of input examples. For example, a taxi agent might gradually 
develop a concept of "good traffic days" and "bad traffic days" without ever being given 
labeled examples of each by a teacher. 

In reinforcement learning the agent learns from a series of reinforcements—rewards 
or punishments. For example, the lack of a tip at the end of the journey gives the taxi agent an 
indication that it did something wrong. The two points for a win at the end of a chess game 
tells the agent it did something tight. It is up to the agent to decide which of the actions prior 
to the reinforcement were most responsible for it. 

In supervised learning the agent observes some example input–output pairs and learns 
a function that maps from input to output In component I above, the inputs are percepts and 
the output are provided by a teacher who says "Brake!" or "Turn left" In component 2, the 
inputs are camera images and the outputs again come from a teacher who says "that's a bus." 
In 3, the theory of braking is a function from slates and braking actions to stopping distance 
in feet. In this case the output value is available directly from the agent's percepts (after the 
fact); the environment is the teacher. 

In practice, these distinction are not always so crisp. In semi-supervised learning we 
are given a few labeled examples and must make what we can of a large collection of un-
labeled examples. Even the labels themselves may not be the oracular truths that we hope 
for. Imagine that you are trying to build a system to guess a person's age from a photo. You 
gather some labeled examples by snapping pictures of people and asking their age. That's 
supervised learning. But in reality some of the people lied about their age. It's not just 
that there is random noise in the data; rather the inaccuracies are systematic, and to uncover 
them is an unsupervised learning problem involving images, self-reported ages, and true (un-
known) ages. Thus, both noise and lack of labels create a continuum between supervised and 
unsupervised learning. 

8.2 SUPERVISED LEARNING 

The task of supervised learning is this: 
TRAINING SET Given a training set of N example input–output pairs 

yi),  (x21Y2),  -  •  -  (xN,  YN) 
where each yj  was generated by an unknown function y  = f  (xi, 
discover a function h that approximates the true function f 

EfOCNHESIS Here at  and y  can be any value; they need not be numbers, The function h.  is a hypothesis. 1  
Learning is a search through the space of possible hypotheses for one that will perform well, 
even on new examples beyond the training set. To measure the accuracy of a hypothesis we 

TEST SET give it a test set of examples that are distinct from the training set. We say a hypothesis 

A note on notation: except where noted, we will use j to index the N examples;  will always be the input and 
the output. In cases where the input is specifically a vector of attribute values (beginning with Section 18.3),  

we will use It)  for the jth example and we will use i to index then attributes of each example. The elements of 
are written xj,t,  x3 ,2.  . , x),„.  
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Figure 18.1 (a) Example (a , f (I)) pairs and a consistent. linear hypothesis. (b) A con- 
sistent, degree-7 polynomial hypothesis for the same data set. (c) A different data set, which 
admits an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple, exact 
sinusoidal fit to the same data set. 
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GENERALIZKION generalizes well if it correctly predicts the value of y for novel examples, Sometimes the 
function f is stochastic—it is not strictly a function of r ,  and what we have to learn is it 
conditional probability distribution, P( x). 

When the output y is one of a finite set of values (such as sunny, cloudy or rainy). 
C LiSSIFICAT  ON the learning problem is called classification, and is called Boolean or binary classification 

if there are only two values. When y is a number (such as tomorrow's temperature), the 
REGRESSION learning problem is called regression. (Technically, solving a regression problem is finding 

a conditional expectation or average value of y, because the probability that we have found 
exactly the right real-valued number for y is 0.) 

Figure 18.1 shows a familiar example: fitting a function of a single variable to some data 
points. The examples are points in the (x, y) plane, where y = f (x). We don't know what 

HYPOTHESIS SPACE  is, but we will approximate it with a function it, selected from a hypothesis space, 7i, which 
for this example we will take to be the set of polynomials, such as X5 +3X 2  +2. Figure 18.1(a) 
shows some data with an exact fit by a straight line (the polynomial 0 4x + 3). The line is 

CONSISTENT called a consistent hypothesis because it agrees with all the data Figure 18.1(b)  shows a high- 
degree polynomial that is also consistent with the same data. This illustrates a fundamental 
problem in inductive learning: how do we choose from among multiple consistent hypotheses? 
One answer is to prefer the simplest hypothesis consistent with the data. This principle is 

Of,-!AV  S RAZOR  called Ockham's  razor, after the 14th-century English philosopher William of Ockham, who 
used it to argue sharply against all sorts of complications. Defining simplicity is not easy, but 
it seems clear that a degree-1  polynomial is simpler than a degree-7 polynomial, and thus (a) 
should be preferred to (b). We will make this intuition more precise in Section 8.4.3. 

Figure 18.1(c) shows a second data set. There is no consistent straight line for this 
data set: in fact.  it requires a degree-6 polynomial for an exact fit. There are just 7 data 
points, so a polynomial with 7 parameters does not seem to be finding any pattern in the 
data and we do not expect it to generalize well. A straight line that is not consistent with 
any of the data points, but might generalize fairly well for unseen values of x, is also shown 

[Irk 
in (c). hI  general, there is a tradeoff between complex hypotheses that fit the training data 
well  and simpler hypotheses that may generalize better in Figure 18.1(d) we expand the 
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REALEABLE  

hypothesis space 7-i  to allow polynomials over both x and sin(x),  and find that the data in 
(c) can be fitted exactly by a simple function of the form ax  +b  + csiii(x).  This shows the 
importance of the choice of hypothesis space. We say that a learning problem is realizable if 
the hypothesis space contains the true function. Unfortunately, we cannot always tell whether 
a given learning problem is realizable, because the true function is not known. 

In some cases, an analyst looking at a problem is willing to make more fine-grained 
distinctions about the hypothesis space, to say—even before seeing any data—not just that a 
hypothesis is possible or impossible, but rather how probable it is. Supervised learning can 
be done by choosing the hypothesis h* that is most probable given the data: 

h,*  = argmax  P{h  data) . 
FtErt  

By Bayes' rule this is equivalent to 

h* = argnmx  P(datalh)  P (h) 
F1 E7-I  

Then we can say that the prior probability P(h)  is high for a degree-I or -2 polynomial, 
lower for a degree-7 polynomial, and especially low for degree-7 polynomials with large, 

sharp spikes as in Figure 18.1(b).  We allow unusual-looking  functions when the data say we 
really need them, but we discourage them by giving them a low prior probability. 

Why not let 7-f  be the class of all Java programs, or Turing machines? After all, every 
computable function can be represented by some Turing machine, and that is the hest we 
can do. One problem with this idea is that it does not take into account the computational 
complexity of learning. There is a tradeoff between the expressiveness of a hypothesis space 
and the complexity nf  ,finding  a good hypothesis within that space_  For example, fitting a 
straight tine to data is an easy computation; fitting high-degree polynomials is somewhat 
harder; and fitting Turing machines is in general undecidable. A second reason to prefer 
simple hypothesis spaces is that presumably we will want to use h  after we have learned it, 
and computing h(x)  when h  is a linear function is guaranteed to be fast, while computing 
an arbitrary Turing machine program is not even guaranteed to terminate. For these reasons, 
most work on learning has focused on simple representations. 

We will see that the expressiveness—complexity tradeoff is not as simple as it first seems: 
it is often the case, as we saw with first-order logic in Chapter 8, that an expressive language 
makes it possible for a simple hypothesis to fit the data. whereas restricting the expressiveness 
of the language means that any consistent hypothesis must be very complex. For example, 
the rules of chess can be written in a page or two of first-order logic, but require thousands of 

pages when written in propositional logic. 

18.3 LEARNING DECISION TREES 

Decision tree induction is one of the simplest and yet most successful forms of machine 
learning.  We first describe  the representation—the hypothesis space—and then show how to 
learn a good hypothesis. 
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DECISION TREE 

r;n..0  PRFDICATF  

18.3.1 The decision tree representation 
A decision tree represents a function that takes as input a vector of attribute values and 
returns a "decision"—a single output value. The input and output values can be discrete or 
continuous. For now we will concentrate on problems where the inputs have discrete values 
and the output has exactly two possible values; this is Boolean classification, where each 
example input will be classified as true (a positive example) or false (a negative example). 

A decision tree reaches its decision by performing a sequence of tests. Each internal 
node in the tree corresponds to a test of the value of one of the input attributes, A„  and 
the branches from the node are labeled with the possible values of the attribute, Ai =  
Each leaf node in the tree specifies a value to be returned by the function. The decision tree 
representation is natural for humans; indeed, many "How  To" manuals (e.g., for car repair) 
are written entirely as a single decision tree stretching over hundreds of pages. 

As an example, we will build a decision tree to decide whether to wait for a table at a 
restaurant_ The aim here is to learn a definition for the goal predicate Will Wait_  First we 
list the attributes that we will consider as part of the input: 

Alternate: whether there is a suitable alternative restaurant nearby. 
2. Bar: whether the restaurant has a comfortable bar area to wait in. 
3. Fri I Sat: true on Fridays and Saturdays. 
4. II:angry:  whether we are hungry. 

S.  Patrons: how many people are in the restaurant (values are None, Some, and Frill). 
6. Price: the restaurant's price range ($, $$, $$$). 
7. Raining: whether it is raining outside. 
8. Reservation: whether we made a reservation. 
9. Type: the kind of restaurant (French, Italian, Thai, or burger). 

10. WaitEstirnate:  the wait estimated by  the host (0-10  minutes, 10-30, 30-60, or >60). 
Note that every variable has a small set of possible values; the value of WaitEstimate,  for 
example, is not an integer, rather it is one of the four discrete values 0-10, 10-30, 30-60,  or 
>60. The decision tree usually used by one of us (SR) for this domain is shown in Figure 18.2. 
Notice that the tree ignores the Price and Type attributes. Examples are processed by the tree 
starting at the root and following the appropriate branch until a leaf is reached. For instance, 
an example with Patrons = Full and WaitEstimate  = 0-10 will be classified as positive 
(i.e., yes, we will wait for a table). 

18.3.2 Expressiveness of decision trees 
A Boolean decision tree is logically equivalent to the assertion that the goal attribute is true 
if and only if the input attributes satisfy one of the paths leading to a leaf with value true. 
Writing this out in propositional logic, we have 

Goal ( Path1  V Path2  V • ..)  ,  

where each Path. is a conjunction of attribute-value tests required to follow that path. Thus. 
the whole expression is equivalent to disjunctive normal form (see page 283), which means 

POSITIVE 

NEGATIVE 
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Figure 18.2  A decision tree for deciding whether to wait for a table, 
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that any function in propositional logic can be expressed as a decision tree. As an example, 
the rightmost path in Figure 18.2 is 

Path = (Patrons = Full A WaitEstimate =0-10) . 

For a wide variety of problems, the decision tree format yields a nice, concise result. But 
some functions cannot be represented concisely. For example, the majority function, which 
returns true if and only if more than half of the inputs are true, requires an exponentially 
large decision tree. In other words, decision trees are good for some kinds of functions and 
bad for others. Is there any kind of representation that is efficient for all kinds of functions? 
Unfortunately, the answer is no. We can show this in a general way. Consider the set of all 
Boolean functions on n, attributes_ I-low  many different functions are in this set? This is just 
the number of different truth tables that we can write down, because the function is defined 
by its truth table. A truth table over n attributes has 2°  rows, one for each combination of 
values of the attributes. We can consider the "answer" column of the table as a 2n-bit  number 
that defines the function. That means there are 2 2'  different functions (and there will be more 
than that number of trees, since more than one tree can compute the same function). This is 
a scary number. For example, with just the ten Boolean attributes of our restaurant problem 
there are 2 1"d or about 10308  different functions to choose from, and for 20 attributes there 
are over 10

300,000
.  We will need some ingenious algorithms to find good hypotheses in such 

a large space. 

Inducing decision trees from examples 

An example for a Boolean decision tree consists of an (x,  y) pair.  where x is a vector of values 
for the input attributes, and y is a single Boolean output value. A training set of 12 examples 
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Example Input Attributes Goal 
Wi Malt  Alt Ear 14'i Hun Pat Price Rain Res Type Est 

xi  Yes No No Yes Some $$$ No Yes French 0 10 g  1  = Yes 

x2 Yes No No Yes Full $ No No Thai 30-60 y2  = No 
x i  No Yes No No Some $ No No Burger 0-10 y3  = Yes 
X4  Yes No Yes Yes Full $ Yes No Thai 10-30 y4  = Yes 
x„  Yes No Yes No Frill  $$$ No Yes French >60 y5  =No 
X6 No Yes No Yes Same $$  Yes Yes Italian 0-10 g6  = Yes 
x7 No Yes No No None $  Yes No Burger 0-10 y7  = No 
Xs  No No No Yes Some $$ Yes Yes Thai 0-10 A  = Yes 
Xy  No Yes Yes No Full $  Yes No Burger >60 yu  = No 
x io  Yes Yes Yes Yes Full $$$ No Yes Italian 10-30 y in  = No 

X1 7 No No No No None $  No No Thai 0-10 en = No 
x12 Yes Yes Yes Yes Full $ No No Burger 30-60 y 12  = Yes 

Figure 18.3 Examples for the restaurant domain. 

is shown in Figure 18.3. The positive examples are the ones in which the goal Will Wail is 
true (x 1 , x3 ,  ...);  the negative examples are the ones in which it is false (x 2 , x5 ,  .).  

We want a tree that is consistent with the examples and is as small as possible. Un- 
fortunately, no matter how we measure size, it is an intractable problem to find the smallest 
consistent tree:  there is no way to efficiently search through the 2 2' trees. With some simple 
heuristics, however, we can find a good approximate solution: a small (but not smallest) con-
sistent tree. The DECISION-TREE-LEARNING  algorithm adopts a greedy divide-and-conquer 
strategy: always test the most important attribute first. This test divides the problem up into 
smaller subproblems that can then be solved recursively. By "most important  attribute," we 
mean the one that makes the most difference to the classification of an example. That way, we 
hope to get to the correct classification with a small number of tests, meaning that all paths in 
the tree will be short and the tree as a whole will be shallow. 

Figure 18.4(a) shows that Type is a poor attribute, because it leaves us with four possible 
outcomes, each of which has the same number of positive as negative examples. On the other 
hand, in (b) we see that Patrons is a fairly important attribute, because if the value is None or 
Some, then we are left with example sets for which we can answer definitively ( No and Yes, 
respectively). If the value is Full, we are left with a mixed set of examples. In general, after 
the first attribute test splits up the examples, each outcome is a new decision tree learning 
problem in itself, with fewer examples and one less attribute. There are four cases to consider 
for these recursive problems: 

I. If the remaining examples are all positive (or all negative), then we are done: we can 
answer Yes or No. Figure 18.4(b) shows examples of this happening in the None and 
Some branches. 

2. If there are some positive and some negative examples, then choose the best attribute to 
split them. Figure 18A(b)  shows Hungry being used to split the remaining examples. 

3. If there are no examples left, it means that no example has been observed for this corn- 
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Figure 18.4 Splitting the examples by testing on attributes_ At each node we show the 
positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on Type 
brings us no nearer to distinguishing between positive and negative examples. (h) Splitting 
on Patrons does a good job of separating positive and negative examples. After splitting on 
Patrons. Hungry  is a fairly good second test. 
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bination of attribute values, and we return a default value calculated from the plurality 
classification of all the examples that were used in constructing the node's parent. These 
arc passed along in the variable parent _examples. 

4_  If there are no attributes left, but both positive and negative examples, it means that 
these examples have exactly the same description, but different classifications. This can 

NOSE 
 happen because there is an error or noise in the data; because the domain is nondetcr-

ministic;  or because we can't observe an attribute that would distinguish the examples. 
The best we can do is return the plurality classification of the remaining examples. 

The DErISION-TRF.F.-LEARNING  algorithm is shown in Figure 18_5_  Note that the set of 
examples is crucial for constructing the tree, but nowhere do the examples appear in the tree 
itself. A tree consists of just tests on attributes in the interior nodes, values of attributes on 
the branches, and output values on the leaf nodes. The details of the IMPORTAIS  CE function 
are given in Section 18.3.4. The output of the learning algorithm on our sample training 
set is shown in Figure 18.6. The tree is clearly different from the original tree shown in 
Figure 18.2. One might conclude that the learning algorithm is not doing a very good job 
of learning the correct function. This would be the wrong conclusion to draw, however. The 
learning algorithm looks at the examples, not at the correct function, and in fact, its hypothesis 
(see Figure 18.6)  not only is consistent with all the examples. but is considerably simpler 
than the original tree! The learning algorithm has no reason to include tests for Raining and 
Res ervation., because it can classify all the examples without them. It has also detected an 
interesting and previously unsuspected pattern: the first author will wait for Thai food on 
weekends. It is also bound to make some mistakes for cases where it has seen no examples. 
For example, it has never seen a case where the wait is 0-10 minutes but the restaurant is full. 
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LEMPENii  LEIVE  

function D EC I SI 0  N-TREE-LE AR NING ( examples, attribut  E  9 ,  parcnt_example.$)  rc  turns 
a tree 

if examples is empty then return PLURALITY-VALLIE(parent  _examples) 
else if all exampes  have the same classification then return the classification 
else if attributes is empty then return PLURALITY-VALUE( examples) 
else 

A t—  argmax a  e  ,dtr,bute.,  IMPORTANCE(a,  examples) 
tree  a new decision tree with root lest A 
for each value rk  of A do 

era —  {e.  e E examples and e.A  = vk}  
subtree  DECISION-TREE-LEARNING(exs.  attributes — A, examples) 
add a branch to tree with label (A = vk)  and subtree subtme  

return tree 

Figure 18.5 The decision-tree learning algorithm. The function IMPORTANCE is de- 
scribed in Section 18.3.4. The function PLURALITY-VALUE selects the most common output 
value among a set of examples, breaking ties randomly. 

Figure 18.6 The decision tree induced from the 12-example training set. 

In that case it says not to wait when Hungrp  is false, but 1 (SR) would certainly wait. With 
more training examples the learning program could correct this mistake. 

We note there is a danger of over-interpreting the tree that the algorithm selects. When 
there are several variables of similar importance. the choice between them is somewhat arbi-
trary: with slightly different input examples, a different variable would be chosen to split on 
first, and the whole tree would look completely different The function computed by the tree 
would still be similar, but the structure of the tree can vary widely. 

We can evaluate the accuracy of a learning algorithm with a learning curve,  as shown 
in Figure 18.7. We have 100 examples at our disposal, which we split into a training set and 
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Figure 18.7 A learning curve for the decision tree learning algorithm on 100 randomly 
generated examples in the restaurant domain. Each data point is the average of 20 trials. 
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a test set. We learn a hypothesis h with the training set and measure its accuracy with the test 
set. We do this starting with a training set of size 1 and increasing one at a time up to size 
99.  For each size we actually repeat the process of randomly splitting 20 times, and average 
the results of the 20 trials. The curve shows that as the training set size grows, the accuracy 
increases. (For this reason, learning curves are also called happy graphs.) In this graph we 
reach 95% accuracy, and it looks like the curve might continue to increase with more data. 

18.3.4 Choosing attribute tests 

The greedy search used in decision tree learning is designed to approximately minimize the 
depth of the final tree. The idea is to pick the attribute that goes as far as possible toward 
providing an exact classification of the examples. A perfect attribute divides the examples 
into sets, each of which are all positive or all negative and thus will be leaves of the tree. The 
Patrons attribute is not perfect, but it is fairly good. A really useless attribute, such as Type, 
leaves the example sets with roughly the same proportion of positive and negative examples 
as the original set. 

All we need, then, is a formal measure of "fairly good" and "really useless" and we can 
implement the IMPORTANCE function of Figure 18.5. We will use the notion of information 

MRCP'?  gain, which is defined in terms of entropy, the fundamental quantity in information theory 
(Shannon and Weaver, 1949). 

Entropy is a measure of the uncertainty of a random variable; acquisition of information 
corresponds to a reduction in entropy. A random variable with only one value—a coin that 
always comes up heads—has no uncertainty and thus its entropy is defined as zero; thus, we 
gain no information by observing its value. A flip of a fair coin is equally likely to come up 
heads or tails, 0 or 1, and we will soon show that this counts as "I bit" of entropy. The roll 
of a fair four-sided die has 2 bits of entropy, because it takes two bits to describe one of four 
equally probable choices. Now consider an unfair coin that comes up heads 99% of the time. 
Intuitively, this coin has less uncertainty than the fair coin—if we guess heads we'll be wrong 
only 1 %  of the time—so we would like it to have an entropy measure that is close to zero, but 
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positive. In general, the entropy of a random variable V with values vk,  each with probability 
P(rk ),  is defined as 

Entropy: H(V)  = E p(,)  log2   
_F%Vk) EPoiolog,,P(vo  

INFORMATION GAN  

We can check that the entropy of a fair coin flip is indeed 1 bit: 

H Wair)  = (0.5 log2  0.5 10.5log 2  0.5) = 1 . 

If the coin is loaded to give 99% heads, we get 

HG  Loaded) = —(0.99 log2  0.99 +  0.01 log 2  0.01)  0.08 bits. 

It will help to define B(q) as the entropy of a Boolean random variable that is true with 
probability q: 

B(q)= —(q log2  q+  (1— q) log2 (1  — q)) 

Thus, H(Loaded)  = B(0.99) 0.08. Now let's get back to decision tree learning. If a 
training set contains p positive examples and n negative examples, then the entropy of the 
goal attribute on the whole set is 

H(Goal)  = B(  P  .  
P  +  n 

The restaurant training set in Figure 18.3 has p = n = 6, so the corresponding entropy is 
2(0.5) or exactly 1 bit. A test on a single attribute A might give us only part of this 1 bit, We 
can measure exactly how much by looking at the entropy remaining after the attribute test 

An attribute A with d distinct values divides the training set E into subsets Ek,  
Each subset Fik  has pk  positive examples and Ti.k  negative examples, so if we go along that 
branch, we will need an additional B(pkl(pk  +nk))  bits of information to answer the ques- 
tion. A randomly chosen example from the training set has the kth  value for the attribute with 
probability (pk + nk)I(p  + n), so the expected entropy remaining after testing attribute A is 

Remainder(A)  =  E P ‘ +nk B( Pk  )  
P+n Pk  +al<  

k=1 

The information gain from the attribute test on A is the expected reduction in entropy: 

Gain(A)  = B(*)—  Remainder(A)  .  

In fact Gain(A) is just what we need to implement the IMPORTANCE function. Returning to 
the attributes considered in Figure 18.4, we have 

Gain(Patrons)  = 1 — [1.22 B (3)  + 1.42B(1)  + 162.-E°N1  k  6 0.541 bits, 

Gain(Type)  =1— [AB(2)  + AB(i)  + 12  B(4)+  12  B(4)]  = 0 bits, 

confirming our intuition that Patrons is a better attribute to split on. In fact, Patrons has 
the maximum  gain of any of the attributes and would be chosen by the decision-free learning 
algorithm as the root. 
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183.5 Generalization and overfitting 

On some problems. the DECISION-TREE-LEARNING algorithm will generate a large tree 
when there is actually no pattern to  be found. Consider the problem of trying to predict 
whether the roll of a die will come up as 6 or not Suppose that experiments are carried out 
with various dice and that the attributes describing each training example include the color 
of the die, its weight, the time when the roll was done, and whether the experimenters had 
their fingers crossed. If the dice are fair, the right thing to learn is a tree with a single node 
that says "no," But the DECISION-TREE-LEARNING algorithm will seize on any pattern it 
can find in the input. If it turns out that there are 2 rolls of a 7-gram blue die with fingers 
crossed and they both come out 6, then the algorithm may construct a path that predicts 6 in 
that case. This problem is called overfitting.  A general phenomenon, overfitting occurs with 
all types of learners. even when the target function is not at all random. In Figure 18.1(b)  and 

(c), we saw polynomial functions overfitting the data. Overfitting becomes more likely as the 
hypothesis space and the number of input attributes grows, and less likely as we increase the 
number of training examples. 

For decision trees, a technique called decision tree pruning combats overfitting.  Prun-
ing works by eliminating nodes that are not clearly relevant. We start with a full tree, as 
generated by DECISION-TREE-LEARNING. We then look at a test node that has only leaf 
nodes as descendants_ If the test appears to be irrelevant—detecting only noise in the data—
then we eliminate the test, replacing it with a leaf node. We repeat this process, considering 
each test with only leaf descendants, until each one has either been pruned or accepted as is. 

The question is, how do we detect that a node is testing an irrelevant attribute? Suppose 
we are at a node consisting of p positive and n negative examples. If the attribute is irrelevant, 
we would expect that it would split the examples into subsets that each have roughly the same 
proportion of positive examples as the whole set, p/(p  n), and so the information gain will 
be close to zero.2  Thus, the information gain is a good clue to irrelevance. Now the question 
is, how large a gain should we require in order to split on a particular attribute? 

We can answer this question by using a statistical significance test. Such a test begins 
by assuming that there is no underlying pattern (the so-called null hypothesis). Then the ac-
tual data are analyzed to calculate the extent to which they deviate from a perfect absence of 
pattern. If the degree of deviation is statistically unlikely (usually  taken to mean a 5% prob-
ability or less), then that is considered to be good evidence fur the presence of a significant 
pattern in the data. The probabilities are calculated from standard distributions of the amount 
of deviation one would expect to see in random sampling. 

In this case, the null hypothesis is that the attribute is irrelevant and, hence, that the 
information gain for an infinitely large sample would be zero. We need to calculate the 
probability that, under the null hypothesis, a sample of size v =  p would exhibit the 
observed deviation from the expected distribution of positive and negative examples. We can 
measure the deviation by comparing the actual numbers of positive and negative examples in 

2  The gain will be strictly positive except for the unlikely case where all the proportions are exactly the same. 
(See Exercise 18.5.) 

OVERFITTING  

DECISION TREE 
PRUNING 

SIGNIFICANCE TEST 

NULL HYPOTHESES 
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each subset, pk  and nk,  with the expected numbers, fik  and rik,  assuming true irrelevance: 

fik  =  P X  p+rt  
Pk ±  nk  

—  11  X 
p+ n  

Pk nk  

A convenient measure of the total deviation is given by 

A  _  E  (Pk -130
2  

(nk  nic)
2  

23A.  k=1.  

Under the null hypothesis, the value of A is distributed according to the )( 2  (chi-squared) 
distribution with v — 1 degrees of freedom. Vv'e  can use a x 2  table or a standard statistical 
library routine to see if a particular A value confirms or rejects the null hypothesis. For 
example, consider the restaurant type attribute, with four values and thus three degrees of 
freedom. A value of A = 7.82 or more would reject the null hypothesis at the 5% level (and a 
value of A = 11.35 or more would reject at the 1% level). Exercise 18.8 asks you to extend the 
DECISION-TREE-LEARNING algorithm to implement this form of pruning, which is known 

X2 
 PUNK; as x

2 
pruning. 
With pruning, noise in the examples can be tolerated. Errors in the example's label (e.g.. 

an example (x, Yes) that should be (x, No)) give a linear increase in prediction error, whereas 
errors in the descriptions of examples (e.g., Price =8  when it was actually Price =$$)  have 
an asymptotic effect that gets worse as the tree shrinks down to smaller sets. Pruned trees 
perform significantly better than unpruned trees when the data contain a large amount of 
noise. Also, the pruned trees are often much smaller and hence easier to understand. 

One final warning: You might think that x2  pruning and information gain look similar, 
um STOPPING  so why not combine them using an approach called early stopping—have the decision tree 

algorithm stop generating nodes when there is no good attribute to split on, rather than going 
to all the trouble of generating nodes and then pruning them away. The problem with early 
stopping is that it stops us from recognizing situations where there is no one good attribute, 
but there are combinations of attributes that are informative_  For example, consider the XOR 
function of two binary attributes_ If there are roughly equal number of examples for all four 
combinations of input values, then neither attribute will be informative, yet the correct thing 
to do is to split on one of the attributes (it doesn't matter which one), and then at the second 
level we will get splits that are informative. Early stopping would miss this, but generate-
and-then-prune handles it correctly. 

18.3.6 Broadening the applicability of decision trees 

In order to extend decision tree induction to a wider variety of problems, a number of issues 
must be addressed. We will briefly mention several, suggesting that a full understanding is 
best obtained by doing the associated exercises: 

■ Missing data: In many domains, not all the attribute values will be known for every 
example. The values might have gone unrecorded, or they might be too expensive to 
obtain. This gives rise to two problems: First, given EL  complete decision tree, how 
should one classify an example that is missing one of the test attributes? Second, how 
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should one modify the information-gain formula when some examples have unknown 
values for the attribute? These questions are addressed in Exercise 18.9. 

GAIN RATIO 

SPLIT POINT 

REGRESSION TREE 

• Multivalued attributes: When an attribute has many possible values, the information 
gain measure gives an inappropriate  indication of the attribute's usefulness. In the ex-
treme case, an attribute such as ExactTime has a different value for every example, 
which means each subset of examples is a singleton with a unique classification, and 
the information gain measure would have its highest value for this attribute. But choos-
ing this split first is unlikely to yield the best tree. One solution is to use the gain ratio 
(Exercise 18.10). Another possibility is to allow a Boolean test of the form A = v,  that 
is, picking out just one of the possible values for an attribute, leaving the remaining 
values to possibly be tested later in the tree. 

• Continuous and integer-valued input attributes: Continuous or integer-valued at-
tributes such as Ilmght  and Weight, have an infinite set of possible values. Rather than 
generate infinitely many branches, decision-tree learning algorithms typically find the 
split point that gives the highest information gaim.  For example, at a given node in 
the tree, it might be the case that testing on Weight > 160 gives the most informa-
tion. Efficient methods exist for finding good split points: start by sorting the values 
of the attribute, and then consider only split points that are between two examples in 
sorted order that have different classifications, while keeping track of the running totals 
of positive and negative examples on each side of the split point. Splitting is the most 
expensive part of real-world decision tree learning applications. 

• Continuous-valued output attributes: If we are trying to predict a numerical output 
value, such as the price of an apartment, then we need a regression tree rather than a 
classification tree. A regression tree has at each leaf a linear function of some subset 
of numerical attributes, rather than a single value. For example, the branch for two-
bedroom apartments might end with a linear function of square footage, number of 
bathrooms, and average income for the neighborhood. The learning algorithm must 
decide when to stop splitting and begin applying linear regression (see Section 18.6) 
over the attributes. 

A decision-tree learning system for real-world applications must be able to handle all of 
these problems. Handling continuous-valued variables is especially important, because both 
physical and financial processes provide numerical data. Several commercial packages have 
been built that meet these criteria, and they have been used to develop thousands of fielded 
systems. In many areas of industry and commerce, decision trees are usually the first method 
tried when a classification method is to be extracted from a data set. One important property 
of decision trees is that it is possible for a human to understand the reason for the output of the 
learning algorithm. (Indeed, this is a legal requirement for financial decisions that are subject 
to anti-discrimination laws.) This is at property nut shared by some other representations, 
such as neural networks. 
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18.4 EVALUATING AND CHOOSING THE BEST HYPOTHESIS 

STArIONARITf  
ASSUMPTION 

Lill  

ERROR RATE 

HOIDOUT  
C ROSS-VALIDATION  

K-F]LS  
C ROSS-VALIDATION  

LEAVE-ONE-OUT 
C ROSS-VALIDATION  

LDOCV  

PEEKING  

We want to learn a hypothesis that fits the future data best. To make that precise we need 
to define "future data" and "best." We make the stationarity assumption: that there is a 
probability distribution over examples that remains stationary over time. Each example data 
point (before we see it) is a random variable EJ  whose observed value e;  = (.rj ,  is is sampled 
from that distribution, and is independent of the previous examples: 

P(EilE-1,-Ei–1 ,  •  •  •)  = P(E3 )  
and each example has an identical prior probability distribution: 

P(.Ej)  = P(Ei_i)  = P(E3_2)  = .  

Examples that satisfy these assumptions are called independent and identically distributed ur  
i.i.d..  An i.i.d.  assumption connects the past to the future; without some such connection, all 
bets are off—the  future could be anything, (We will see later that learning can still occur if 
there are slow changes in the distribution.) 

The next step is to define "best fit." We define the error rate of a hypothesis as the 
proportion of mistakes it makes—the proportion of times that h(r)  g  for an (x,  y) example. 
Now, just because a hypothesis h has a low error rate on the training set does not mean that 
it will generalize well. A professor knows that an exam will not accurately evaluate students 
if they have already seen the exam questions. Similarly, to get an accurate evaluation of a 
hypothesis, we need to test it on a set of examples it has not seen yet. The simplest approach is 
the one we have seen already: randomly split the available data into a training set from which 
the teaming algorithm produces h and a test set on which the accuracy of h is evaluated. This 
method, sometimes called holdout cross-validation, has the disadvantage that it fails to use 
all the available data; if we use half the data for the test set, then we are only training on half 
the data, and we may get a poor hypothesis. On the other hand, if we reserve only 10% of 
the data for the test set, then we may, by statistical chance, get a poor estimate of the actual 
accuracy_  

We can squeeze more out of the data and still get an accurate estimate using a technique 
called k-fold cross-validation. The idea is that each example serves double duty—as training 
data and test data. First we split the data into k equal subsets. We then perform k rounds of 
teaming;  on each round 1/k of the data is held out as a test set and the remaining examples 
are used as training data. The average test set score of the k rounds should then be a better 
estimate than a single scare. Popular values for k are 5 and 10—enough to give an estimate 
that is statistically likely to be accurate, at a cast of 5 to 10 times longer computation time. 
The extreme is k = ix, also known as leave-one-out cross-validation or LOOCV.  

Despite the best efforts of statistical methodologists. users frequently invalidate their 
results by inadvertently peeking at the test data. Peeking can happen like this: A learning 
algorithm has various "knobs" that can be twiddled to tune its behavior—for example, various 
different criteria for choosing the next attribute in decision tree learning. The researcher 
generates hypotheses for various different settings of the knobs, measures their 011111-  rates on 
the test set, and reports the error rate of the best hypothesis. Alas, peeking has occurred! The 
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reason is that the hypothesis was selected on the basis of its test set error rate, so information 
about the test set has leaked into the learning algorithm. 

Peeking is a consequence of using test-set performance to both choose a hypothesis and 
evaluate it  The way to avoid this is to really hold the test set out—lock it away until you 
are completely done with learning and simply wish to obtain an independent evaluation of 
the final hypothesis. (And then, if you don't like the results ...  you have to obtain, and lock 
away, a completely new test set if you want to go back and find a better hypothesis.) If the 
test set is locked away, but you still want to measure performance on unseen data as a way of 
selecting a good hypothesis, then divide the available data (without the test set) into a training 

VALIDATION  SET 

	

	set and a validation set. The next section shows how to use validation sets to find a good 
tradeoff between hypothesis complexity and goodness of fit. 

18.4.1 Model selection: Complexity versus goodness of fit 

MODEL SELECTION 

OPTIMIZATION 

VVEAPPER  

In Figure 18.1 (page 696) we showed that higher-degree polynomials can fit the training data 
better, but when the degree is too high they will overfit,  and perform poorly on validation data. 
Choosing the degree of the polynomial is an instance of the problem of model selection. You 
can think of the task of finding the best hypothesis as two tasks•  model selection defines the 
hypothesis space and then optimization finds the best hypothesis within that space. 

In this section we explain how to select among models that are parameterized by size. 
For example, with polynomials we have size =  1 for linear functions, size = 2 for quadratics, 
and so on. For decision trees, the size could be the number of nodes in the tree. In all cases 
we want to find the value of the size parameter that best balances underfitting  and overfitting 
to give the best test set accuracy, 

An algorithm to perform model selection and optimization is shown in Figure 18.8. It 
is a wrapper that takes a learning algorithm as an argument (DECISION-TREE-LEARNING,  
for example). The wrapper enumerates models according to a parameter, size_ POT  each size, 
it uses cross validation on Learner to compute the average error rate on the training and 
test sets. We start with the smallest, simplest models (which probably underfit the data), and 
iterate, considering more complex models at each step, until the models start to overfit. In 
Figure 18.9 we see typical curves: the training set error decreases monotonically (although 
there may in general be slight random variation), while the validation set error decreases at 
first, and then increases when the model begins to overfit. The cross-validation procedure 
picks the value of size with the lowest validation set error; the bottom of the U-shaped curve. 
We then generate a hypothesis of that size, using all the data (without holding out any of it). 
Finally, of course, we should evaluate the returned hypothesis on a separate test set. 

This approach requires that the learning algorithm accept a parameter, size, and deliver 
a hypothesis of that size. As we said, for decision tree learning, the size can be the number of 
nodes. We can modify DECISION-TREE-LEARNER so that it takes the number of nodes as 
an input, builds the tree breadth-first rather  than depth-first  (bul  at each level it still chooses 
the highest gain attribute first), and stops when it reaches the desired number of nodes. 
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function CROSS-VALIDATION-WRAPPER(Learrker,  lc, examples) returns a hypothesis 

local variables: errT, an array, indexed by size, storing training-set error rates 
err V, an array, indexed by size, storing validation-set error rates 

fur size = l to CC  do 
errThizel,  erTV  [size] 4—  CROSS-VALIDArtori(Lcarner,  size, k, examples) 
if errT has converged then do 

best size4—  the value of size with minimum err V [size] 
return Learner (  best _size examples) 

function CROSS-VALIDATION  (Learner ,  size, k, examples) returns two values: 
average training set error rate, average validation set error rate 

fold _err T  0; fold _err V  0 
for fold = 1 to k do 

training _set, validation _set (—  PAR7ITION(eTarapleg,  fold, k) 
Is Learner(size,  training _set) 
fnid_errT  fold_PrrT  -I-  FR RcR-R  ATE(h,  training  _set) 
fold_err V 4— fold _errV  +ERROR-RATE(h,  validation_set)  

return fold _errT  k. fold_errV  lk  

Figure 18.8  An algorithm to select the mode] that has the lowest error rate on validation 
data by building models of increasing complexity, and choosing the one with best empir-
ical error rate on validation data. Here errT means error rate on the training data. and 
err V means error rate on the validation data. Learner(size,  examples) returns a hypoth-
esis whose complexity is set by the parameter size, and which is trained  on the ezcarVes.  
PARTITION(exampies,  fold, k) splits examples into two subsets: a validation set of size Nik  
and a training set with all the other examples. The split is different for each value of fold. 

18.4.2 From error rates to loss 

LOSS FUNCTON 

So far, we have been trying to minimize error rate. This is clearly better than maximizing 
error rate, but it is not the full story. Consider the problem of classifying email messages 
as spam or non-spam. It is worse to classify non-spam as spam (and thus potentially miss 
an important message) then to classify spam as non-spam (and thus suffer a few seconds of 
annoyance). So a classifier with a 1% error rate, where almost all the errors were classifying 
spam as non-spam,  would be better than a classifier with only is 0.5% error rate, if most of 
those errors were classifying non-spam as spam. We saw in Chapter 16 that decision-makers 
should maximize expected utility, and utility is what learners should maximize as well. In 
machine learning it is traditional to express utilities by means of a loss function. The loss 
function L(x  , y,  is defined as the amount of utility lost by predicting h(x)  = fj  when the 
correct answer is f (x)  = y: 

Lcr,  y, = (result of using y given an input s) 

— Utility (result of using I)  given an input x) 
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Figure 18.9 Error rates on training data (lower, dashed line) and validation data (upper, 
solid line) for different size decision trees. We stop when the training set error rate asymp-
totes, and then choose the tree with minimal error on the validation set; in this case the tree 
of size 7 nodes. 
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This is the most general formulation of the loss function_ Often a simplified version is used, 
L(y, 9), that is independent of x. We will use the simplified version for the rest of this 
chapter, which means we can't say that it is worse to misclassify a letter from Mom than it 
is to misclassify a letter from our annoying cousin, but we can say it is 10 times worse to 
classify non-spam  as spam than vice-versa: 

L(spam,  nospam)  = 1, L(nospam  ,  spam)  = 10. 
Note that L(y,  y) is always zero; by definition there is no loss when you guess exactly right. 
For functions with discrete outputs, we can enumerate a loss value for each possible mis-
classification, but we can't enumerate all the possibilities for real-valued data, If f(x)  is 
137.035999, we would be fairly happy with ii(z)  = 137.06,  but just how happy should we 
be? In general small errors are better than large ones: two functions that implement that idea 
are the absolute value of the difference (called the Li loss), and the square of the difference 
(called the L2 loss). If we are content with the idea of minimizing error rate, we can use 
the Lo/ i  loss function, which has a loss of 1 for an incorrect answer and is appropriate for 
discrete-valued outputs: 

Absolute value loss: Li (y,  y)  =  y — 
Squared error loss:  L2(Y, id) = (Y — 

GENERALIZATION 
LOSS 

Oil loss L0/2  (y 0)  = 0  if y = y ,  else 1  
The learning agent can theoretically maximize its expected utility by choosing the hypoth-
esis that minimizes expected loss over all input—output pairs it will see. It is meaningless 
to talk about this expectation without defining a prior probability distribution, P(X, Y)  over 
examples. Let 6'  be the set of all possible input—output examples. Then the expected gene' 

alization  loss for a hypothesis h (with respect to loss function L) is 
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GenLoss  L(h)  = E  L(y,  h(x))  P(x ,y)  , 

(=,Y)EE  

and the best hypothesis, h*, is the one with the minimum expected generalization loss; 

12.*  = arginin  GenLoss L (h) 
h€71  

Because P(x,y)  is not known, the learning agent can only estimate generalization loss with 
Emmen  Loss empirical loss on a set of examples, E: 

EntpLoss  L,E ffi)  = E  L(y,h(s))  . 
(i,v)EE  

The estimated best hypothesis it* is then the one with minimum empirical loss: 

it*  = argininErnpLoss yE (h  )  . 
hE71  

There are four reasons why h*  may differ from the true function. f  : unrealizability,  variance,  
noise, and computational complexity. First, f may not be realizable—may not be in 71—or  
may be present in such a way that other hypotheses are preferred_  Second, a learning algo- 
rithm will return different hypotheses for different sets of examples, even if those sets are 
drawn from the same true function f , and those hypotheses will make different predictions 
on new examples. The higher the variance among the predictions, the higher the probability 
of significant error. Note that even when the problem is realizable, there will still be random 
variance, but that variance decreases towards zero as the number of training examples in-

NOISE  creases_ Third, f may he tit-indeterministic  nr  nnisy—it  may return different values for f 
each time x occurs. By definition, noise cannot be predicted; in many cases, it arises because 
the observed labels y are the result of attributes of the environment not listed in x. And finally, 
when is complex, it can be computationally intractable to systematically search the whole 
hypothesis space. The best we can do is a local search (hill climbing or greedy search) that 
explores only part of the space. That gives us an approximation error. Combining the sources 
of error, we're left with an estimation of an approximation of the true function f . 

Traditional methods in statistics and the early years of machine learning concentrated 
on small-scale learning, where the number of training examples ranged from dozens to the 
low thousands. Here the generalization error mostly comes from the approximation error of 
not having the true j in the hypothesis space, and from estimation error of not having enough 
training examples to limit variance. In recent years there has been more emphasis on large-
scale learning, often with millions of examples. Here the generalization error is dominated 
by limits of computation: there is enough data and a rich enough model that we could find an 
h that is very close to the true f,  but the computation to find it is too complex, so we settle 
for a sub-optimal approximation. 

18.4.3  Regularization 

In Section 18.4.1,  we saw how to do model selection with cross-validation  on model size.  An 
alternative approach is to search for a hypothesis that directly minimizes the weighted sum of 

SMALL-SCALE  
LEARNING 

LARGE-SCALE 
LEPRNLNG  
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empirical loss and the complexity of the hypothesis, which we will call the total cost: 

Cost(h)  = EmpLoss(h)  + A Complexity(h)  

= argrnin  Cosi-  ( h) . 
hE7-t  

Here A is a parameter, a positive number that serves as a conversion rate between loss and 
hypothesis complexity (which after all are not measured on the same scale). This approach 
combines kiss and complexity into one  metric, allowing us to find the hest hypothesis all al 
once. Unfortunately we still need to do a cross -validation search to find the hypothesis that 
generalizes best, but this time it is with different values of A rather than size_  We select the 
value of A that gives us the best validation set score. 

This process of explicitly penalizing complex hypotheses is called regularization (be-
cause it looks for a function that is more regular, or less complex). Note that the cost function 
requires us to make two choices: the loss function and the complexity measure, which is 
called a regularization function_ The choice of regularization function depends on the hy-
pothesis space. For example, a good regularization function for polynomials is the sum of 
the squares of the coefficients—keeping the sum small would guide us away from the wiggly 
polynomials in Figure l8.1(b)  and (c). We will show an example of this type of regularization 
in Section 18.6. 

Another way to simplify models is to reduce the dimensions that the models work with. 
A process of feature selection can be performed to discard attributes that appear to be irrel-
evant. X2  pruning is a kind of feature selection. 

It  is in fact possible to have the empirical loss and the complexity measured on the 
same scale, without the conversion factor A: they can both be measured in bits. First encode 
the hypothesis as a Turing machine program, and count the number of bits. Then count 
the number of bits required to encode the data, where a correctly predicted example costs 
zero bits and the cost of an incorrectly predicted example depends on how large the error  is. 
The minimum description length or MDL hypothesis minimizes the total number of bits 
required. This works well in the limit, but for smaller problems there is a difficulty in that 
the choice of encoding for the program—for example, how best to encode a decision tree 
as a bit string—affects the outcome In Chapter 20 (page 805), we describe a probabilistic 
interpretation of the MDL  approach. 

18.5 THE THEORY OF LEARNING 

REGLILARIZATION  

FEATURE SELECTION 

MINIMUM 
DES'CRIPTICEI  
LENGTH 

The main unanswered question in learning is this: How can we be sure that our learning 
algorithm has produced a hypothesis that will predict the correct value for previously unseen 
inputs? In formal terms, how do we know that the hypothesis h is close to the target function 
f if we don't know what f  is? These questions have been pondered for several centuries. 
In more recent decades, other questions have emerged: how many examples do we need 
to get a good it? What hypothesis space should we use? If the hypothesis space is very 
complex, can we even find the best It, or do we have to settle for a local maximum in the 
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COMPUTATIONAL 
LEARAII  NG THEORY 

PROBABLY 
A1, 11-10XIMAI,LY  
CORRECT 
PAC LEARNING 

space of hypotheses? How complex should h be? flow  do we avoid overfining? This section 
examines these questions. 

We'll start with the question of how many examples are needed for learning. We saw 
from the learning curve for decision tree learning on the restaurant problem (Figure 18.7  on 
page 703) that improves with more training data. Learning curves are useful, but they are 
specific to a particular learning algorithm on a particular problem.  Are there some more gen-
eral principles governing the number of examples needed in general? Questions like this are 
addressed by computational learning theory, which lies at the intersection of AI, statistics, 
and theoretical computer science. The underlying principle is that any hypothesis that is seri-
ously wrong will almost certainly be 'found out" with high probability after a small number 
of examples, because it will make an incorrect prediction. Thus, any hypothesis that is consis-
tent with a sufficiently large set of training examples is unlikely to be seriously wrong: that is, 
it must be probably approximately correct. Any learning algorithm  that returns hypotheses  
that are probably approximately correct is called a PAC learning algorithm; we can use this 
approach to provide bounds on the performance of various learning algorithms. 

PAC-learning theorems, like all theorems, are logical consequences of axioms, When 
a theorem (as opposed to, say, a political pundit) states something about the future based on 
the past, the axioms have to provide the "juice" to make that connection. For PAC learning, 
the juice is provided by the stationarity assumption introduced on page 708, which says that 
future examples are going to be drawn from the same fixed distribution P(E)=P(X,Y)  
as past examples. (Note that we do not have to know what distribution that is, just that it 
doesn't change.) In addition, to keep things simple, we will assume that the true function f  
is deterministic and is a member of the hypothesis class  that is being considered. 

The simplest PAC theorems deal with Boolean functions, for which the WI loss is ap-
propriate. The error rate of a hypothesis h,  defined informally earlier, is defined formally 
here as the expected generalization error for examples drawn from the stationary distribution: 

error(h)  = GenLossL„, i (h)  = ELO/ i(y,  14x))  P(x  ,  y)  .  

In other words, error (h) is the probability that h  misclassifies a new example. This is the 
same quantity being measured experimentally by the learning curves shown earlier_ 

A hypothesis It  is called approximately correct if error(t)  < e,  where c is a small 
constant. We will show that we can find an N such that, after seeing N examples, with high 
probability, all consistent hypotheses will be approximately correct. One can think of an 
approximately correct hypothesis as being "close" to the true function in hypothesis space: it 
lies inside what is called the c-ball  around the true function f. The hypothesis space outside 
this ball is called 74

bad  • 

We can calculate the probability that a "seriously wrong" hypothesis ha  E 7-ibad  is 
consistent with the first N examples as follows. We know that error (h b )  > c. Thus, the 
probability that it agrees with a given example is at most 1 —  e.  Since the examples are 
independent, the bound for N examples is 

P(hb  agrees with N examples) <  (1 — .  
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SAMPLE 
COMPLEXITY  

DECISION LISTS 

The probability that Nbad  contains at least one consistent hypothesis is bounded by the sum 
of the individual probabilities: 

P(7-it  contains a consistent hypothesis) <  iRbad  (1 <  

where we have used the fact that 17-(5 ,,d  <  11-1.  We would like to reduce the probability of 
this event below some small number 5: 

INK'—O
N

Cb.  
Given that 1 — f  <  e — E,  we can achieve this if we allow the algorithm to see 

N>  1  (  
—

6 

I) (18.1) 

examples. Thus, if a learning algorithm returns a hypothesis that is consistent with this many 
examples, then with probability at least 1 — 5, it has error at most E.  In other words, it is 
probably approximately correct. The number of required examples, as a function of e and 
is called the sample complexity of the hypothesis space. 

As we saw earlier, is the set of all Boolean functions on n attributes, then 7-1 = 
2 2".  Thus, the sample complexity of the space grows as 2'. Because the number of possible 
examples is also 2n, this suggests that PAC-learning in the class of all Boolean functions 
requires seeing all, or nearly all, of the possible examples. A moment's thought reveals the 
reason for this: 7-i contains enough hypotheses to classify any given set of examples in all 
possible ways. In particular, for any set of N examples, the set of hypotheses consistent with 
those examples contains equal numbers of hypotheses that predict fr.N _Fi  to he positive and 
hypotheses that predict TN+ 1  to be negative. 

To obtain real generalization to unseen examples, then, it seems we need to restrict 
the hypothesis space  in some way; but of course, if we do restrict the space, we might 
eliminate the true function altogether. There are three ways to escape this dilemma. The first, 
which we will cover in Chapter l9, is to bring prior knowledge to bear on the problem. The 
second, which we introduced in Section 18.4.3, is to insist that the algorithm return not just 
any consistent hypothesis, but preferably a simple one (as is done in decision tree learning). In 
cases where finding simple consistent hypotheses is tractable, the sample complexity results 
are generally better than for analyses based only on consistency. The third escape, which 
we pursue next, is to focus on learnable subsets of the entire hypothesis space of Boolean 
functions. This approach relies on the assumption that the restricted language contains a 
hypothesis h that is close enough to the true function f; the benefits are that the restricted 
hypothesis space allows for effective generalization and is typically easier to search. We now 
examine one such restricted language in more detail. 

18.5.1 PAC learning example: Learning decision lists 

We now show how to apply PAC learning to a new hypothesis space: decision lists.  A 
decision list consists of a series of tests, each of which is a conjunction of literals. If a 
test succeeds when applied to an example description, the decision list specifies the value 
to be returned. If the test fails, processing cuninues  with the next test in the list. Decision 
lists resemble decision trees, but their overall structure is simpler: they branch only in one 



No Par1-ons(x4Some)  Parrons(r,kFulf)  A Fri/Sot(x)  

Yes Yes 

No 

Figure 18.10 A decision list for the restaurant problem. 

716 Chapter 18. Learning from Examples 

direction. In contrast, the individual tests are more complex. Figure 18.10 shows a decision 
list that represents the following hypothesis: 

WillWait <4  (Patrons  = Some) V (Patrons = Full A Fri/Sat)  

If we allow tests of arbitrary size, then decision lists can represent any Boolean function 
(Exercise 18.14). On the other hand, if we restrict the size of each test to at most k literals, 
then it is possible for the learning algorithm to generalize successfully from a small number 
of examples. We call this language  The example in Figure 18.10 is in 2-DL. It is easy to 
show (Exercise 18.14) that k-DL  includes as a subset the language k-nT,  the set of all decision 
trees of depth at most k. It is important to remember that the particular language referred to 
by k. DL depends on the attributes used to describe the examples. We will use the notation 
k-DL(n)  to denote a k-DL  language using n Boolean attributes. 

The first task is to show that Vol_  is learnable—that is, that any function in k-oi.  can 
be approximated accurately after training on a reasonable number of examples. To do this, 
we need to calculate the number of hypotheses in the language. Let the language of tests—
conjunctions of at most k literals using .n attributes—be Conj (n, k). Because a decision list 
is constructed of tests, and because each test can be attached to either a Yes or a No outcome 
or can be absent from the decision list, there are at most 31c"i(" , ")1  distinct sets of component 
tests. Each of these sets of tests can be in any order, so 

<  31Coni  (n.k  Conj  (n, k)I!  .  

The number of conjunctions of k literals from n attributes is given by 

Conj  (n, k)I  = E  
2n. 

 

1-knee,  after some w20o (m  rkk, ::2(r  obtain  

lk-D1-(n)i  = 
We can plug this into Equation (18.1) to show that the number of examples needed for PAC-
learning a k-ot.  function is polynomial in is: 

N7  -  1  (In  --  1  1  Oink  log2 (n k )))  
—  

Therefore, any algorithm that returns a consistent decision list will PAC-learn a k DL function 
in a reasonable number of examples, for small k. 

The next task is to find an efficient algorithm that returns  a consistent decision list. 
We will use a greedy algorithm called DECISION-LIST-LEARNING that repeatedly finds a 

km_  
k -DT 
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function DECISION-LIST-LEARNING(  examples) returns a decision list, or failure 

if examples is empty then return the trivial decision list No 
t  — a test that matches a nonempty subset examples. of examples 

such that the members of examples, are all positive or all  negative 
if there is no such t  then return failure 
if the examples in examples, are positive then o ,—  Yes else o — No 
return a decision list with initial test t and outcome o and remaining tests given by 

DECISION-LIST-LEARNING(exampies  — examples t )  

Figure 18.11 An algorithm for learning decision lists. 
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Figure 18.12 Learning curve for DECISION-LIST-LEARNING algorithm on the restaurant 
data. The curve for DECISION-TREE-LEARNING is shown for comparison. 

test that agrees exactly with some subset of the training set. Once it finds such a lest, it 
adds it to the decision list under construction and removes the corresponding examples. It 
then constructs the remainder of the decision list, using just the remaining examples. This is 
repeated until there are no examples left. The algorithm is shown in Figure 18.11. 

This algorithm does not specify the method for selecting the next test to add to the 
decision list. Although the formal results given earlier do not depend on the selection method, 
it would seem reasonable to prefer small tests that match large sets of uniformly classified 
examples, so that the overall decision list will be as compact as possible. The simplest strategy 
is to find the smallest test I that matches any uniformly classified subset, regardless of the size 
of the subset. Even this approach works quite well, as Figure 18.12 suggests. 

18.6 REGRESSION AND CLASSIFICATION WITH LINEAR MODELS 

Now it is time to move on from decision trees and lists to  a different hypothesis space, one 
LINEAR FUNCI-RON that has been used for hundred of years: the class of linear functions of continuous-valued 



500 1000 1500  2000 2500 3001.1  3500 w, 
House  size in square feet 

(a) (b) 

Figure 18.13  (a) Data points of price versus floor space of houses for sale in Berkeley, 
CA, in July 2009, along with the linear function hypothesis that minimizes squared en-or  
loss: y = 0.232a.  246.  (b) Plot of the loss function y_:,(w l yj  + wo  — 11 )2  for various 
values of wo,  till,  Note that the loss function is convex, with a single global minimum. 

c  

c.7.7  
.5  
i6  

i  

1001  

901.1  

8011  

709  

5OG  

400  

300  

(396  
09,,  

ci3t9,.   Q  °  
e8  

,Sb  -ou  

,. AO  

LOSS  

1,0  

  

718 Chapter 18. Learning from Examples 

WEIGHT 

LINEAR REGRESSION 

inputs. We'll start with the simplest case: regression with a univariate linear function, oth-
erwise known as "fitting a straight line." Section 18.6.2 covers the multivariate  case. Sec-
tions 18.6.3 and 18.6.4 show how to turn linear functions into classifiers by applying hard 
and soft thresholds. 

18.6.1 Univariate linear regression 

A univariate linear function (a straight line) with input '37  and output y has the form y = wix  —  
at)°,  where wo  and ani  are real-valued coefficients to he learned_  We use the letter 70  because 
we think of the coefficients as weights; the value of y is changed by changing the relative 
weight of one term or another. We'll define w to be the vector [rug ,  /p i ],  and define 

hw (x)=  wix  

Figure 18.13(a) shows an example of a training set of ri points in the x,  y plane, each point 
representing the size in square feet and the price of a house offered for sale. The task of 
finding the h,,  that best fits these data is called linear regression, To fit a line to the data, all 
we have to do is find the values of the weights [wo,  WI] that minimize the empirical loss. It is 
traditional (going back to Gauss 3 )  to use the squared loss function, L2, summed over all the 
training examples: 

■■  2 Loss(h,)  = E  L2(yi,Fzw(si))  = — hw(xi))2  = Eob  — (tvizi  + won  
j =i J=1 J=1  

3  Gauss showed that if they values have normally distributed noise, then the most likely values of Wi  and we 
are obtained by minimizing the sum of the squares of the errors. 
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We would like to fmd  w*  = aignnin,,,,  Loss (h w ).  The sum Ei
N_ 1 (yi  — (wixi  + wo)) 2  is 

minimized when its partial derivatives with respect to wo  and ivt  arc zero!  

a 
-  

(yi  —  (wixi  woW  = 0  and —  L(y •  —  ( 71.1  7  •  + W  '1) 2  =  0 (18.2)  
.1 =1  

atop 
j=1 

—  

These equations have a unique solution: 

NE  TA) zi)()  Yi )  wo  (E  yj  —  tui(  x.i))/N  •  N(Exj)  (Ezi) 2  

For the example in Figure 18.13(a), the solution is out =tl_232,  ino  = 246, and the line with 
those weights is shown as a dashed line in the figure,  

Many forms of learning involve adjusting weights to minimize a loss, so it helps to 
WEGHTSWE  have a mental picture of what's going on in weight space—the space defined by all possible 

settings of the weights. For univariate  linear regression, the weight space defined by wo  and 
ikri  is two-dimensional, so we can graph the loss as a function of wo  and ID,  in a 3D plot (see 
Figure 18.13(b)). We see that the loss function is convex, as defined on page 133; this is true 
for every  linear regression problem with an L2 loss function, and implies that there are no 
local minima. In some sense that's the end of the story for linear models; if we need to fit 
lines to data, we apply Equation (18.3).4  

To go beyond linear models, we will need to face the fact that the equations defining 
minimum loss (as in Equation (18.2)) will often have no closed-form solution. Instead, we 
will face a general optimization search problem in a continuous weight space. As indicated 
in Section 4.2 (page 129), such problems can be addressed by a hill-climbing algorithm that 
follows the gradient of the function to be optimized. In this case, because we are trying to 

GRADIENT  DESCENT  minimize the loss, we will use gradient descent. We choose any starting point in weight 
space—here, a point in the ( 4,  Wl)  plane—and then move to a neighboring point that is 
downhill, repeating until we converge on the minimum possible loss!  

w <—  any point in the parameter space 
loop until convergence do 

for each wi  in w do 

iEIRNING  RATE 

/1'  Loss(w) (18.4) 

The parameter a, which we called the step size in Section 4.2, is usually called the learning 
rate when we are trying to minimize loss in a learning problem.  It can be a fixed constant, or 
it can decay over time as the learning process proceeds. 

For univariate regression, the loss function is a quadratic function, so the partial deriva- 
tive will be a linear function. (The only calculus you need to know is that 12:2 =  2x and 

=1.) Let's first work out the partial derivatives—the slopes—in the simplified case of 

 

4  With some caveats: the  L2  loss function is appropriate when there is normally-distribuled  noise that is  inde-
pendent of z;  all results rely on the stalionarity  assumption; etc. 

= (18.3) 



a  
8111,(Y 

11W(X))  

^wa
(y — (wlx+w0)) ,  

ate, 
 Lass(w) = —2(y — hw (x)) x x 

(18.5)  
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only one training example, (x,  y): 

—,‘ Lass(w)  = (y—  hw (x))2  
,  ow, ow  

= 2(y  —  /2„(x))  x 

=  2(y  — ft„(x))  x  

applying this to both wo  and w i  we get: 

o  
Loss(w) = —2(y — hw (x));  

aw  
Then, plugging this back into Equation (18.4),  and folding the 2 into the unspecified learning 
rate a, we get the following learning rule for the weights: 

wo Ito  + (/  — 11w(x));  wi wi  +  (y  —  /4(x))  x  

These updates make intuitive sense: if 13.,,(x)  7 y, i.e.,  the output of the hypothesis is too 
large, reduce wo  a bit, and rcducc w i  if x was a positive input but increase w i  if x was a 
negative input. 

The preceding equations cover one training example. For N training examples, we want 
to minimize the sum of the individual losses for each example. The derivative of a sum is the 
suns of the derivatives, so we have: 

wo (yj  — h„.  (xi)) ; + E(141 hw(xj)) x xi 
a 

These updates constitute the batch gradient descent learning rule for univariate linear re-
gression. Convergence to the unique global minimum is guaranteed (as long as we pick a 
small enough) but may be very slow: we have to cycle through all the training data for every 
step, and there may be many steps. 

There is another possibility, called stochastic gradient descent, where we consider 
only a single training point at a time, raking a step after each one using Equation (18_1)  
Stochastic gradient descent can be used in an online setting, where new data are coming in 
one at a time, or offline, where we cycle through the same data as many times as is neces-
sary, taking a step after considering each single example. It is often faster than batch gradient 
descent. With a fixed learning rate a, however, it does not guarantee convergence; it can os-
cillate around the minimum without settling down. In some cases, as we see later, a schedule 
of decreasing learning rates (as in simulated annealing) does guarantee convergence. 

18.6.2 Multivariate  linear regression 

We can easily extend to multivariate linear regression problems, in which each example x i  
is an n-element vector. 5  Our hypothesis space is the set of functions of the form 

hs„,(x.i)  = wo  + wixj,1  +  •  •  •  + = + wisi,i  .  

The reader may wish to consult Appendix A for a brief summary of linear algebra. 
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DA-A  MATRIX 

SPARSE MODEL 

The wo  term, the intercept, stands out as different from the others. We can fix that by inventing 
a dummy input attribute, x3 0,  which is defined as always equal to 1. Then h is simply the 
dot product of the weights and the input vector (or equivalently, the matrix product of the 
transpose of the weights and the input vector): 

(xi ) = w • xi  = w
T  

= E  •  •  

The best vector of weights, w*,  minimizes squared-error  loss over the examples: 

W*  = argmiri L2 (yi ,w  • xi ).  
.  

3  

Multivariate linear regression is actually not much more complicated than the univariate case 
we just covered. Gradient descent will reach the (unique) minimum of the loss function; the 
update equation for each weight w,  is 

cr — Aw (x.j))  . (18.6) 

It is also possible to solve analytically for the w that minimizes loss. Let y be the vector of 
outputs for the training examples, and X be the data matrix, i.e., the matrix of inputs with 
one n-dimensional example per row. Then the solution 

w *  = (XTX) -1XTY  

minimizes the squared error. 

With univariate linear regression we didn't have to worry about overfitting. But with 
multivariate linear regression in high-dimensional spaces it is possible that some dimension 
that is actually irrelevant appears by chance to be useful, resulting in overfilling. 

Thus, it is common to use regularization on multivariate linear functions to avoid over-
fitting. Recall that with regularization we minimize the total cost of a hypothesis, counting 
both the empirical loss and the complexity of the hypothesis: 

Cost = EmpLoss(h)  + A Complexzty .  

For linear functions the complexity can be specified as a function of the weights. We can 
consider a family of regularization functions: 

Comp16:rity(h w )  = L q (w)  = E I wi  4  .  

As widi  loss functions, 6  with q = 1 we have L. regularization, which minimizes the suni  of 
the absolute values; with q = 2, L2 regularization minimizes the sum of squares. Which reg-
ularization function should you pick? That depends on the specific problem, but L1 regular-
ization has an important advantage: it tends to produce a sparse model. That is, it often sets 
many weights to zero, effectively declaring the corresponding attributes to be irrelevant—just  
as DECISION-TREE-LEARNING  does (although by a different mechanism). Hypotheses that 
discard attributes can be easier for a human to understand, and may be less likely to overfit.  

6  It is perhaps confusing that LI  and L2 are used for both loss functions and regularization functions. They need 
not be used in pairs: you could use L2 loss with L 1  regularization, or vice versa. 



Figure 18.14  Why L 1  regularization tends to produce a sparse model. (a) With L1  regu-
larization (box), the minimal achievable loss (concentric contours) often occurs on an axis, 
meaning a weight of zero. (b)  With L2 regularizatien (circle), the minimal loss is likely to 
occur anywhere on the circle, giving no preference to zero weights. 
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Figure 18.14 gives an intuitive explanation of why Li regularization leads to weights of 
zero, while L2 regularization does not. Note that minimizing Loss (w) +  A Complexity (w) 
is equivalent to minimizing Loss (w) subject to the constraint that Complexity(w)  <  c, for 
some constant c that is related to A. Now, in Figure 18.14(a) the diamond-shaped box repre- 
sents the set of points w in two-dimensional weight space that have Li complexity less than 
c; our solution will  have to be somewhere inside this box. The concentric ovals represent 
contours of the loss function, with the minimum loss at the center. We want to find the point 
in the box that is closest to the minimum; you can see from the diagram that, for an arbitrary 
position of the minimum and its contours, it will be common for the corner of the box to find 
its way closest to the minimum. just because the corners are pointy. And of course the corners 
are the points that have a value of zem  in some dimension_ In Figure I 8_14(h), we've done 
the same for the L2 complexity measure, which represents a circle rather than a diamond. 
Here you can see that, in general, there is no reason for the intersection to appear on one of 
the axes; thus L2 regularization does not tend to produce zero weights. The result is that the 
number of examples required to find a good 1t is linear in the number of irrelevant features for 
L2 regularization, but only logarithmic with L i  regularization. Empirical evidence on many 
problems supports this analysis. 

Another way to look at it is that Li regularization takes the dimensional axes seriously, 
while L2 treats them as arbitrary. The L2 function is spherical, which makes it rotationally 
invariant: Imagine a set of points in a plane, measured by their x and y  coordinates. Now 
imagine rotating the axes by 45°. You'd get a different set of (x',  V)  values representing 
the same points. If you apply L2 regularization before and after rotating, you get exactly 
the same point as the answer (although the point would be described with the new (x',  y')  
coordinates). That is appropriate when the choice of axes really is arbitrary—when it doesn't 
matter whether your two dimensions are distances north and east; or distances north-east and 
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south-east. With L1 regularization you'd get a different answer, because the L1 function is not 
rotationally invariant. That is appropriate whcn the axes arc not interchangeable; it doesn't 
make sense to rotate "number of bathrooms" 45° towards "lot size." 

DECISION  
ACJNDARY  

LINEAR SEPARATOR 

LINEAR 
SEPARABILITY 

18.6.3 Linear classifiers with a hard threshold 

Linear functions can he used to do classification as well as regression. For example, Fig- 
ure 11  .15(a) shows data points of two classes: earthquakes (which are of interest to seismolo 

gists) and underground explosions (which are of interest to arms control experts). Each point 
is defined by two input values, x i  and x 2 , that refer to body and surface wave magnitudes 
computed from the seismic signal. Given these training data, the task of classification is to 
learn a hypothesis T2  that will take new (x1, x2) points and return either 0 for earthquakes or 
1 for explosions. 
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Figure 18.15  (a) Plot of two seismic data parameters, body wave magnitude x i  and sur- 
face wave magnitude .r2 ,  for earthquakes (white circles) and nuclear explosions (black cir-
cles) occurring between 1982 and 1990 in Asia and the Middle East (Kebeasy et al., 1998). 
Also shown is a decision boundary between the classes. (b) The same domain with more data 
points. The earthquakes and explosions are no longer linearly separable. 

A decision boundary is a line (or a surface, in higher dimensions) that separates the 
two classes. In Figure 18.15(a), the decision boundary is a straight line. A linear decision 
boundary is called a linear separator and data that admit such a separator are called linearly 
separable. The linear separator in this case is defined by 

= — 4.9 or —19 +  1.7x],  — x2 = . 
The explosions, which we want to classify with value 1, are to the right of this line with higher 
values of x 1  and lower values of x2, so they are points for which —4.9 +  1.7xi  — x2 > 0, 
while earthquakes have —4.9 + 1.727i — x2 < 0. Using the convention of a dummy input 
xo  = 1, we can write the classification hypothesis as 

(x) = 1 if w • x >  0 and 0 otherwise. 
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FUNGTfON  

Alternatively, we can think of h as the result of passing the linear function w • x through a 
th reshold function: 

hy,(x)  = Threshold(w .x)  where Threshold(z)= 1  if z >  0  and 0  otherwise. 
The threshold function is shown in Figure 18.17(a). 

Now that the hypothesis hw (x)  has a well-defined mathematical form, we can think 
about choosing the weights w to minimize the loss.  In Sections 18.6.1  and 18,6.2, we did 
this both in closed form (by setting the gradient to zero and solving for the weights) and 
by gradient descent in weight space. Here, we cannot do either of those things because the 
gradient is zero almost everywhere in weight space except at those points where w • x = O.  
and at those points the gradient is undefined. 

There is, however, a simple weight update rule that converges to a solution—that is, a 
Linear separator that classifies the data perfectly—provided the data are linearly separable. For 
a single example (x,  9),  we have 

wi  <— +  (y  — h y,(x))  x xi (18.7) 

which is essentially identical to the Equation (18.6), the update rule for linear regression! This 
rule is called the perceptron learning rule, for reasons that will become clear in Section 18.7. 
Because we are considering a 0/1 classification problem, however, the behavior is somewhat 
different. Both the true value y  and the hypothesis output hW  (x) are either 0 or 1, so there are 
three possibilities: 

• If the output is correct, i.e., y  = li  (x), then the weights are not changed. 
• If 9  is 1 but h„  (x)is 0, then wi  is increased when the corresponding input xi is positive 

and decreased when x i  is negative_ This makes sense, because we want to make w • x  
bigger so that h,,,(x)  outputs a 1, 

■ IF y  is 0 but h i,, (x)  is I, then mi  is decreased when the corresponding input xi is positive 
and increased when xi  is negative. This makes sense, because we want to make w x 
smaller so that h yd (x)  outputs a O.  

Typically the learning nile is applied one example at a time, choosing examples at random 
TRAINING CURVE  (as in stochastic gradient descent). Figure 18.16(a) shows a training curve for this learning 

rule applied to the earthquake/explosion data shown in Figure 18.15(a). A training curve 
measures the classifier performance on a fixed training set as the learning process proceeds 
on that same training set. The curve shows the update rule converging to a zero-error linear 
separator The "convergence" process isn't exactly pretty, but it always works. This particular 
run takes 657 steps to converge. for a data set with 63 examples, so each example is presented 
roughly 10 times on average. Typically, the variation across runs is very large. 

We have said that the perceptron  learning rule converges to a perfect linear separator 
when the data points are linearly separable, but what if they are not? This situation is all 
too common in the real world, For example, Figure 18.15(b) adds back in the data points 
left out by Kebeasy  et al. (1998) when they plotted the data shown in Figure 18.15(a).  In 
Figure 18.16(b), we show the perceptron learning rule failing to converge even after 10,000 
steps: even though it hits the minimum-error solution (three errors) many times, the algo- 
rithm keeps changing the weights. In general, the perceptron rule may not converge to a 

PERCEPTFiON  
LEARNING RULE 
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Figure 18.16 (a) Plot of total training-set accuracy vs. number of iterations through the 
training set for the perceptron  learning rule, given the earthquake/explosion  data in Fig-
ure I8.15(a).  (b) The same plot for the noisy, non-separable data in Figure 18.15(b); note 
the change in scale of the x-axis. (c) The same plot as in (b), with a learning rate schedule 
ci(0=  1000/(1000+ 0. 
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stable solution for fixed learning rate a, but if a decays as ()(1/t)  where t is the iteration 
number, then the rule can be shown to converge to a minimum-error solution when examples 
are presented in a random sequence. 7  It can also be shown that finding the minimum-error 
solution is NF-hard.  so  one expects that many presentations of the examples will be required 
for convergence to be achieved. Figure 18.16(b) shows the training process with a learning 
rate schedule a(t)  = 1000/(1000 ± 0!  convergence is not perfect after 100,000 iterations, 
but it is much better than the fixed-a  case. 

18.6.4 Linear classification with logistic regression 

We have seen that passing the output of a linear function through the threshold function 
creates a linear classifier; yet the hard nature of the threshold causes some problems: the 
hypothesis h,(x)  is not differentiable and is in fact a discontinuous function of its inputs and 
its weights; this makes learning with the perceptron rule a very unpredictable adventure. Fur-
thermore, the linear classifier always announces a completely confident prediction of 1 or 0, 
even for examples that are very close to the boundary; in many situations, we really need 
more gradated predictions. 

All of these issues can he resolved to a large extent by softening the threshold function—
approximating the hard threshold with a continuous, differentiable function. In Chapter 14 
(page 522), we saw two functions that look like soft thresholds: the integral of the standard 
normal distribution (used for the probit model) and the logistic function (used for the logit 
model). Although the two functions are very similar in shape, the logistic function 

Logislic(z)  =  1 +

1

e_z  

7  Technically, we require that E—i = cc and E.7_  a2(t)  < Do.  The decay tat;t) =0(1/t)  satisfies 
these conditions. 
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Figure 18.17  (a) The hard threshold function Threshold(z) with 0/1  output. Note 
that the function is nondifferentiable  at z = CI. (b)  The logistic function, Logistic(z)  = 

1  also known as the sigmoid function. (c) Plot of a logistic regression hypothesis 1-1-e- .  
h w  (x)  = Logistie(w  • x)  for the data shown in Figure 18.15(3).  
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has more convenient mathematical properties. The function is shown in Figure 18.17(b).  
With the logistic function replacing the threshold function, we now have 

1  
= Lagzstic(w  • x) —  

1  +  e -w . x  

An example of such a hypothesis for the two-input earthquake/explosion problem is shown in 
Figure 18.17(c). Notice that the output, being a number between 0 and 1,  can be interpreted 
as a probabithy  of belonging to the class labeled 1. The hypothesis forms a soft boundary 
in the input space and gives a probability of 0.5 for any input at the center of the boundary 
region, and approaches 0 or l as we move away from the boundary 

The process of fitting the weights of this model to minimize loss on a data set is called 
logistic regression. There is no easy closed-form solution to find the optimal value of w with 

this model, but the gradient descent computation is straightforward. Because our hypotheses 
no longer output just 0 or 1,  we will use the L2 loss function; also, to keep the formulas 
readable, we'll use g to stand for the logistic function, with g'  its derivative. 

For a single example (x, y), the derivation of the gradient is the same as for linear 
regression (Equation (18.5)) up to the point where the actual form of h is inserted. (For this 
derivation, we will need the chain rule: Og(f  (r))  /6a  = (f (x))(9  f x)  /6x.)  We have 

,
6 

Loss(w) „
0  

ow, 
(y  h,.,(x)) 2  

orw   

2(y  — fiw (x))  x (p h,,,(x))  

—2(y — h.(x))  x gl (w  •  x) x w x 

—2(y — h,,(x))  x gl (w  x)  x xi . 
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Figure MIS Repeat of the experiments in Figure 1$.16  using logistic regression and 
squared error. The plot in (a) covers 5000 iterations  rather linos 1000, while (b) and (c) use 
the same scale. 

The derivative g' of the logistic function satisfies g'(z)  = g(z)(1 —  g(z)), so we have 

g'(w  • x)  = y(w  • x)(1 — y(w • x)) = it„„.(x)(1 —  h,w(x))  

so the weight update for minimizing the loss is 

±  (y  —  12,,,(x))  x 11,,(x)(1  —  hw (x))  x T.,  . (18.i3) 

Repeating the experiments of Figure 18.16  with logistic regression instead of the linear 
threshold classifier, we obtain the results shown in Figure 18.18. In (a), the Linearly sep- 
arable case, logistic regression is somewhat slower to converge, but behaves much more 
predictably. In (b) and (c),  where the data are  noisy and nonseparable, logistic regression 
converges far more quickly and reliably. These advantages tend to carry over into real-world 
applications and logistic regression has become one of the most popular classification tech-
niques for problems in medicine, marketing and survey analysis, credit scoring, public health, 
and other applications. 

18.7  ARTIFICIAL NEURAL NETWORKS 

We turn now to what seems to be a somewhat unrelated topic: the brain. In fact, as we 
will see, the technical ideas we have discussed so far in this chapter rum  out to be useful in 
building mathematical models of the brain's activity; conversely, thinking about the brain has 
helped in extending the scope of the technical ideas. 

Chapter 1  touched briefly on the basic findings of neuroscience—in particular, the hy-
pothesis that mental activity consists primarily of electrochemical activity in networks of 
brain cells called neurons. (Figure 1.2 on page 11 showed a schematic diagram of a typical 
neuron.) Inspired by this hypothesis, some of the earliest AI work aimed to create artificial  

NEJRAL  NE1WORK neural networks. (Other names for the field include eonnectionism,  parallel distributed 
processing, and neural computation.) Figure 18.19 shows a simple mathematical model 
of the neuron devised by McCulloch and Pitts (1943). Roughly speaking, it "fires"  when a 
linear combination of its inputs exceeds some (hard or soft) threshold—that is, it implements 
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Figure 18.19 A simple mathematical model for a neuron. The unit's output activation is 
ai  =g(K1

=0 wij ai ),  where ai  is the output activation of unit i and Ir  i  j  is the weight on the 
link from unit i. to this unit. 

a linear classifier of the kind described in the preceding section. A neural network is just a 
collection of units connected together; the properties of the network are determined by its 
topology and the properties of the "neurons." 

Since 1943, much more detailed and realistic models have been developed, both for 
neurons and for larger systems in the brain, leading to the modem field of computational 
neuroscience. On the other hand, researchers in Al and statistics became interested in the 
more abstract properties of neural networks, such as their ability to perform distributed com-
putation, to tolerate noisy inputs, and to learn. Although we understand now that other kinds 
of systems—including Bayesian networks—have these properties, neural networks remain 
one of the most popular and effective forms of learning system and are worthy of study in 
their own right. 

18.7.1 Neural network structures 
Neural networks are composed of nodes or units (see Figure 18.19) connected by directed 
links_ A link from unit i  to unit j serves to propagate the activation ai  from i to j_g  Each link 
also has a numeric weight w i ,j  associated with it, which determines the strength and sign of 
the connection. Just as in linear regression models, each unit has a dummy input a u  =1 with 
an associated weight tv0j .  Each unit j first computes a weighted sum of its inputs: 

rt  
in = wi  jai . 

i  =0 
Then it applies an activation function g to this sum to derive the output: 

(   a j  =  g (  ini  )  =  g uti  jai  . (18.9) 

i  =0 

s A note on notation: for this section, we are forced to suspend our usual conventions. Input attributes are still 
indexed by 1 , so that an "external" activation a,  is given by input x„;  but index j  will refer to internal units 
rather than examples. Throughout this section, the mathematical derivations concern a single generic example x, 
omitting the usual summations over examples to obtain results for the whole data set. 
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The activation function g is typically either a hard threshold (Figure 18.17(a)), in which case 
the unit is called a perceptron, or a logistic function (Figure 18.17(b)), in which case the term 
sigmoid perceptron is sometimes used. Both of these nonlinear activation function ensure 
the important property that the entire network of units can represent a nonlinear function (see 
Exercise 18.22). As mentioned in the discussion of logistic regression (page 725), the logistic 
activation function has the added advantage of being differentiable. 

Having decided on the mathematical model for individual "neurons," the next task is 
to connect them together to form a network. There are two fundamentally distinct ways to 
do this. A feed-forward network has connections only in one direction—that is, it forms a 
directed acyclic graph. Every node receives input from "upstream" nodes and delivers output 
to 'downstream"  nodes; there are no loops. A feed-forward network represents a function of 
its current input; thus, it has no internal state other than the weights themselves. A recurrent 
network, on the other hand, feeds lb  outputs back into its own inputs. This means that 
the activation levels of the network form a dynamical system that may reach a stable state or 
exhibit oscillations or even chaotic behavior. Moreover, the response of the network to a given 
input depends on its initial state, which may depend on previous inputs. Hence, recurrent 
networks (unlike feed-forward networks) can support short-term memory. This makes them 
more interesting as models of the brain, but also more difficult to understand. This section 
will concentrate on feed-forward networks; some pointers for further reading on recurrent 
networks are given at the end of the chapter. 

Feed-forward networks are usually arranged in layers, such that each unit receives input 
only from units in the immediately preceding layer. In the next two subsections, we will look 
at single-layer networks, in which every unit connects directly from the network's inputs to 
its outputs, and multilayer  networks, which have one or more layers of hidden emits that are 
not connected to the outputs of the network. So far in this chapter, we have considered only 
learning problems with a single output variable y, but neural networks are often used in cases 
where multiple outputs are appropriate. For example, if we want to train a network to add 
two input bits, each a 0 or a 1, we will need one output for the sum bit and one for the carry 
hit, Also, when the learning problem involves classification into more  than two classes—for 
example, when learning to categorize images of handwritten digits—it is common to use one 
output unit for each class. 

18.7.2 Single-layer feed-forward neural networks (perceptrons)  

A network with all the inputs connected directly to the outputs is called a single-layer neural 
network, or a perceptron network. Figure 18.20 shows a simple two-input, two-output 
perceptron network_ With such a network, we might hope to learn the two-hit  adder function, 
for example_ Here are all the training data we will need: 

xi  x2  ys  (carry) y4 (sum) 
0 

0
  
-
.
 
-
,
 CD  

0 

•■■,  

cn  0 
1 
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(a) x i  and x, (b) x i  or 

Figure 18.20  (a) A perception network with two inputs and two output units. (b) A neural 
network with two inputs, one hidden layer of two units, and one output unit. Not shown are 
the dummy inputs and their associated weights. 

Figure 18.21 Linear separability in threshold perceptions. Black dots indicate a point in 
the input space where the value of the function is 1, and white dots indicate a point where the 
value is 0. The perceptron returns ] on the region on the non-shaded side of the line. In (c),  
no such line exists that correctly classifies the inputs. 
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The first thing to notice is that a perceptron network with m outputs is really rrr, separate 
networks, because each weight affects only one of the outputs. Thus, there will be m sepa-
rate training processes. Furthermore, depending on the type of activation function used, the 
training processes will be either the perceptron learning rule (Equation (18.7)  on page 724) 
or gradient descent rule for the logistic regression (Equation (18.8) on page 727). 

If you try either method on the two-bit-adder data, something interesting happens. Unit 
3 learns the carry function easily, but unit 4 completely fails to learn the sum function. No. 
unit 4 is not defective! The problem is with the sum function itself. We saw in Section 18.6  
that linear classifiers (whether hard or soft) can represent linear decision boundaries in the in-
put space. This works fine for the carry function, which is a logical AND (see Figure 18.21(a)), 
The sum function, however, is an XOR (exclusive oR)  of the two inputs. As Figure 18.21(c)  
illustrates, this function is not linearly separable so the perceptron cannot learn it. 

The linearly separable functions constitu[e  just a small fraction of all Boolean func-
tions; Exercise 18.20 asks you to quantify this fraction. The inability of perceptrons  to learn 
even such simple functions as NOR was a significant setback to the nascent neural network 
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Figure 18.22  Comparing the performance of perceptions and decision trees. (a) Percep-
Lruns  are belief at teaming  die majority function of 11 inputs, (b)  Decision trees are better at 
learning the Will Wail predicate in the restaurant example. 
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community in the 1960s. Perceptrons are far from useless, however. Section 18.6.4  noted 
that logistic regression (i.e., training a sigmoid  perceptron) is even today a very popular and 
effective tool. Moreover, a perceptron can represent some quite "complex" Boolean func-
tions very compactly. For example, the majority function, which outputs a 1  only if more 
than half of its n inputs are 1, can be represented by a perceptron with each wi  = 1 and with 

=  — r1/2.  A decision tree would need exponentially many nodes to represent this function. 
Figure 18.22  shows the teaming curve for a perceptron on two different problems. On 

the left, we show the curve for learning the majority function with 11 Boolean inputs (i.e., 
the function outputs a 1 if 6 or more inputs are 1). As we would expect, the perceptron  learns 
the function quite quickly, because the majority function is linearly separable. On the other 
hand, the decision-tree learner makes no progress, because the majority function is very hard 
(although not impossible) to represent as a decision tree. On the right, we have the restaurant 
example. The solution problem is easily represented as a decision tree, but is not linearly 
separable. The best plane through the data correctly classifies only 65%. 

18.7.3 Multilayer feed -forward neural networks 

(McCulloch and Pins, 1943) were well aware that a single threshold unit would not solve all 
their problems. In fact, their paper proves that such a unit can represent the basic Boolean 
functions AND, OR, and NOT and then goes on to argue that any desired functionality can be 
obtained by connecting large numbers of units into (possibly recurrent) networks of arbitrary 
depth. The problem was that nobody knew how to train such networks. 

This turns out to be an easy problem if we think of a network the right way: as a 
function h„,  (x)  parameterized by the weights w. Consider the simple network shown in Fig- 
ure 18.20(b), which has two input units, two hidden units, and Iwo output unit. (In addition, 
each unit has a dummy input fixed at 1.) Given an input vector x = xi , x2),  the activations 



(a) (b) 

Figure 18.23  (a) The result of combining two opposite-facing soft threshold functions to 
produce a ridge. (b) The result of combining two ridges to produce a bump. 
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of the input units are set to (al . a2) = (xi, x2). The output at unit 5 is given by 

a5  = g(w0,5,+u)3,5  aa.  + w4,5  a4) 
= g(w0,5 .+  w3,6  g(wa,3  2/01,3 Q1 + w2,3 a2)  +1E4,5 9( 1104 +  w1,4 al  -I- W2,4 a2)) 
= g(wn,5,+w3,5  g(tuo,3  x1 +11)2,3  x2)  +  g(w04+  W1,4 X1 +  W2,4  X2)) ,  

Thus, we have the output expressed as a function of the inputs and the weights. A similar 
expression holds for unit 6. As long as we can calculate the derivatives of such expressions 
with respect to the weights, we can use the gradient-descent loss-minimization  method to 
train the network. Section 183.4 shows exactly how to do this. And because the function 
represented by a network can be highly nonlinear—composed, as it is, of nested nonlinear soft 
threshold functions—we can see neural networks as a tool for doing nonlinear regression. 

Before delving into learning rules, let us look at the ways in which networks generate 
complicated functions. First, remember that each unit in a sigmoid network represents a soft 
threshold in its input space, as shown in Figure 18.17(c) (page 726). With one hidden layer 
and one output layer, as in Figure 18.20(b), each output unit computes a soft-thresholded 
linear combination of several such functions_ For example, by adding two opposite-facing 
soft threshold functions and thresholding the result, we can obtain a "ridge" function as shown 
in Figure 18.23(a). Combining two such ridges at right angles to each other (i.e., combining 
the outputs from four hidden units), we obtain a "bump" as shown in Figure 18.23(b). 

With more hidden units, we can produce more bumps of different sizes in more places. 
In fact, with a single, sufficiently large hidden layer, it is possible to represent any continuous 
function of the inputs with arbitrary accuracy; with two layers, even discontinuous functions 
can be represented. 9  Unfortunately, for any particular network structure, it is harder to char-
acterize exactly which functions can be represented and which ones cannot. 

g  The proof is complex, but the main point is that the required number of hidden units grows exponentially with 
[he cumber  of inputs. For example, 2"/n. hidden units are needed to encode all Boolean functions of n inputs. 
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18.7.4 Learning in multilayer  networks 

First, let us dispense with one minor complication arising in multilayer networks: interactions 
among the learning problems when the network has multiple outputs. In such cases, we 
should think of the network as implementing a vector function h w  rather than a scalar function 
hw ; for example, the network in Figure 18.20(b)  returns a vector 1a5 ,  ad. Similarly, the 
target output will be a vector y. Whereas a perceptron network decomposes into nt  separate 
learning problems for an m-output  problem, this decomposition fails in a multilayer network. 
For example, both as and as in Figure 18.20(b)  depend on all of the input-layer weights, so 
updates to those weights will depend on errors in both a5  and a6.  Fortunately, this dependency 
is very simple in the case of any loss function that is additive across the components of the 
error vector y — 11,(x).  For the L2 loss, we have, for any weight w,  

 
Ow  

Loss(w)  = y —14,00  2 bl  N7,  
=  Vtu  Z_d lYk  ak) 2  = —(yk  — a k )2  (18.10) 

k  

where the index k ranges over nodes in the output layer. Each term in the final summation 
is just the gradient of the loss for the kth output, computed as if the other outputs did not 
exist Hence, we can decompose an m-output  learning problem into m learning problems, 
provided we remember to add up the gradient contributions from each of them when updating 
the weights. 

The major complication comes from the addition of hidden layers to the network. 
Whereas the error y —  hw  at the output layer is clear, the error at the hidden layers seems 
mysterious because the training data do not say what value the hidden nodes should have. 

SACK PROPAGATION  Fortunately, it turns out that we can back-propagate the error from the output layer to the 
hidden layers. The back-propagation process emerges directly from a derivation of the overall 
error gradient. First, we will describe the process with an intuitive justification; then, we will 
show the derivation. 

At the output layer, the weight-update rule is identical to Equation (18.8). We have 
multiple output units, so let Errk  be the kth component of the error vector y  hw .  We will 
also find it convenient to define a modified error Ak  = Errs. X 9 1 (ink),  so that the weight-
update rule becomes 

(18.11) 

To update the connections between the input units and the hidden units, we need to define a 
quantity analogous to the error term for output nodes. Here is where we do the error back-
propagation. The idea is that hidden node j is "responsible" for some fraction of the error Ak  
in each of the output nodes to which it connects. Thus, the O k values are divided according 
to the strength of the connection between the hidden node and the output node and are prop-
agated back to provide the Ai  values for the hidden layer. The propagation rule for the A 
values is the following: 

= :O E k • (18.12) 
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function BACK -PROP -LEARNING(ezwripies,  network) returns a neural network 
inputs: examples, a set of examples, each with input vector x and output vector y 

network, a multilayer network with L layers, weights j ,  activation function g 
local variables: A, a vector of errors, indexed by network node 

repeat 
for each weight w.,,  in network do 

a small random number 
for each example (x, y) in examples do 

/ * Propagate the inputs forward to compute the outputs * / 
for each node i in the input layer do 

(Li Xi  
for i=2  to L do 

for each node j in layer I  do 
ini  

a) g(ini)  
/ * Propagate deltas backward from output layer to input layer * / 
for each node j in the output layer do 

A[  i] g'(i72.j)  x (XI  — 
fur f = L — 1 to 1 du 

for each node i in layer t  do 
P[i] g' (ini ) Ei j]  

1* Update every weight in network using deltas *1 
for each weight w, , Z  in network  do 

es x at  x A[j]  
until some stopping criterion is satisfied 
return network 

Figure 18.24  The back-propagation algorithm for learning in multilayer networks. 

Now the weight-update rule fur the weights between she inputs and the hidden layer is essen-
tially identical to the update rule for the output layer: 

uti,j  ±  x (Li X Ai  .  

The back-propagation process can be summarized as follows: 

• Compute the A values fur the output units, using the observed error. 
■ Starting with output layer, repeat the following for each layer in the network, until the 

earliest hidden layer is reached: 

—Propagate the A  values back to the previous layer. 
—Update the weights between the two layers. 

The detailed algorithm is shown in Figure 18.24. 
For the mathematically inclined, we will now derive the hack-propagation  equations 

from first principles. The derivation is quite similar to the gradient calculation for logistic 
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regression (leading up to Equation (18.8) on page 727), except that we have to use the chain 
rule more than once. 

Following Equation (18.10), we compute just the gradient for Lossk = (wk.  — ak)2  at 
the kth output. The gradient of this Loss  with respect to weights connecting the hidden layer 
to the output layer will be zero except for weights wi,k  that connect to the kth  output unit. 
For those weights, we have 

aLossk Ba k.  
— 2(yk  ak), = —2(yk  ak)  39,.!  in. 

 k)   
awjk aw, k k  

— —2(yk  —  ak)g  (zak)  Oink  
aivi,k  = —  ak)9 ) (ink'   wj,ka3  

Wj,k  

= —2(7/k  — ak)g r (ink)a,  = ,  

with Ok  defined as before. To obtain the gradient with respect to the weights connecting 
the input layer to the hidden ilayer,  we have to expand out the activations aj  and reapply the 
chain rule. We will show the derivation in gory detail because it is interesting to see how the 
derivative operator propagates hack through the network: 

❑ Loss, actx N(ink)   
 —  2(yk  ak) c, =  2(yk  

awi,j owi,i "wz,/  

= —2(yk  — ak)g f (  k) 
Oink 

=  —2Ak  ow  
0  

aaj 89( 2ni)   —2Akwik = Intkw'  k  
•  

Oin  
— 2AkWjAd(i913  )  Sala  

 E a.)  io  

=  —2,A.kwi,kgi (irti)a 2  = 
where Da  is defined as before. Thus, we obtain the update rules obtained earlier from intuitive 
considerations. It is also clear that the process can be continued for networks with more than 
one hidden layer, which justifies the general algorithm given in Figure 18.24. 

Having made it through (or skipped over) all the mathematics, let's see how a single-
hidden-layer network performs on the restaurant problem. First, we need to determine the 
structure of the network. We have 10 attributes describing each example, so we will need 
10 input units. Should we have one hidden layer or two? How many nodes in each layer? 
Should they be fully connected? There is no good theory that will tell us the answer. (See the 
next section.) As always, we can use cross-validation: try several different structures and see 
which one works best. It turns out that a network with one hidden layer containing four nodes 
is about tight for this problem. In Figure 18.25,  we show two curves. The first is a training 
curve showing the mean squared error on a given training set of 100 restaurant examples 
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Figure 18.25 (a) Training curve showing the gradual reduction in error as weights are 
modified  over several epochs, fur a given  set of examples us the restaurant domain.  (b) 
Comparative learning curves showing that decision-tree learning does slightly better on the 
restaurant problem than back-propagation in a multilayer  network. 
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during the weight-updating process_ This demonstrates that the network does indeed converge 
to a perfect fit to the training data. The second curve is the standard learning curve for the 
restaurant data. The neural network does learn well, although not quite as fast as decision-
tree learning; this is perhaps nut surprising, because the data were generated  from a simple 
decision tree in the first place. 

Neural networks are capable of tar more complex learning tasks of course, although it 
must be said that a certain amount of twiddling is needed to get the network structure right 
and to achieve convergence to something close to the global optimum in weight space. There 
are literally tens of thousands of published applications of neural networks. Section 18.11.1 
looks at one such application in more depth. 

18.7.5  Learning neural network structures 

So far, we have considered the problem of learning weights, given a fixed network structure; 
just as with Rayesian  networks, we also need to understand how to find the best network 

structure. If we choose a network that is too big, it will be able to memorize all the examples 
by forming a large lookup table, but will not necessarily generalize well to inputs that have 

not been seen before. 10  In other words, like all statistical models, neural networks are subject 
to overfitting  when there are too many parameters in the model. We saw this in Figure 18.1 
(page 696), where the high-parameter models in (b) and (c) fit all the data, but might not 
generalize as well as the low-parameter models in (a) and (d). 

If we stick to fully connected networks, the only choices to be made concern the number 

It has been observed that very large networks do generalize  well as long es the weights are kept smell. This 
restriction keeps the activation values in the linear region of the sigmoid function g(x)  where x is close to zero. 
This, in turn, means that the network behaves like a Linear function (Exercise 18.22) with far fewer parameters. 
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of hidden layers and their sizes. The usual approach is to try several and keep the best. The 
cross-validation techniques of Chapter 18  are needed if we arc to avoid peeking at the test 
set. That is, we choose the network architecture that gives the highest prediction accuracy on 
the validation sets. 

If we want to consider networks that are not fully connected, then we need to find 
some effective search method through the very large space of possible connection topologies. 
The optimal brain damage algorithm begins with a fully connected network and removes 
connections from it. After the network is trained for the first time, an information-theoretic 
approach identifies an optimal selection of connections that can be dropped. The network 
is then retrained, and if its performance has not decreased then the process is repeated. In 
addition to removing connections, it is also possible to remove units that are not contributing 
much to the result. 

Several algorithms have been proposed fur growing a larger network from a smaller one. 
One, the tiling algorithm, resembles decision-list  learning.  The idea is to start with a single 
unit that does its best to produce the correct output on as many of the training examples as 
possible. Subsequent units are added to take care of the examples that the first unit got wrong. 
The algorithm adds only as many units as are needed to cover all the examples. 

18.8 NONPARAMETRIC MODELS 

Linear regression and neural networks use the training data to estimate a fixed set of param-
eters w. That defines our hypothesis hw (x),  and at that point we can throw away the training 
data, because they are all summarized by w. A learning model that summarizes data with a 
set of parameters of fixed size (independent of the number of training examples) is called a 

PARAMETRIC MODEL  parametric model. 
No matter how much data you throw at a parametric model, it won't change its mind 

about how many parameters it needs. When data sets are small, it makes sense to have a strong 
restriction on the allowable hypotheses, to avoid overfitting. But when there are thousands or 
millions or billions of examples to learn from, it seems like a better idea to let the data speak 
for themselves rather than forcing them to speak through a tiny vector of parameters. If the 
data say that the correct answer is a very wiggly function, we shouldn't restrict ourselves to 
linear or slightly wiggly functions. 

NMPARAMETRIG  
MCDEL A nonparametric model is one that cannot be characterized by a bounded set of param- 

eters. For example, suppose that each hypothesis we generate simply retains within itself all 
of the training examples and uses all of them to predict the next example. Such a hypothesis 
family would be nonparametric  because the effective number of parameters is unbounded— 

INSTANCE  BASED it grows  with the number of examples, This approach is called instance-based learning or LEARNING 
TABLE LOOKUP memory-based  learning. The simplest instance-based learning method is table lookup: take 

all the training examples, put them in a lookup table, and then when asked for ii,(x),  see if x is 
in the table; if it is, return the corresponding y. The problem with this method is that it does 
not generalize well: when x is not in the table all it can do is return some default value. 



75 
f  

65  
6 

45 5 5.5 6 6.5 7 

x 

(ig  =1) 

73  
7 

65 
6  

0  
oRo.  

5_5  o  b  
o'  

5 
4.5  

4 
i. 5  

3 
25   

4.5 5 5.5 6 6i 7 

= 5) 

Figure 18.26  (a) A k-nearest-neighbor model showing the extent of the explosion class for 
the data in Figure 18.15, with k =1 Overfitting  is apparent. (b) With k  = 5,  the overfitting  
problem goes away for this data set. 
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18.8.1  Nearest neighbor models 

We can improve on table lookup with a slight variation: given a query xq ,  find the k  examples 
that are nearest to xq .  This is called k.nearest  neighbors lookup. We'll use the notation 
NN(k, xg )  to denote the set of k  nearest neighbors. 

To do classification, first find NAT(k  x,),  then take the plurality vote of the neighbors 
(which is the majority vote in the case of binary classification). To avoid ties, k  is always 
chosen to be an odd number. To do regression, we can take the mean or median of the k 
neighbors, or we can solve a linear regression problem on the neighbors_ 

In Figure 18.26,  we show the decision boundary of k-nearest-neighbors classification 
for k=  I and 5 on the earthquake data set from Figure 18.15. Nonparametric  methods are 
still subject to underfitting  and overfitting, just like parametric methods. In this case 1-nearest 
neighbors is overfitting; it reacts too much to the black outlier in the upper right and the white 
outlier at (5.4, 3.7). The 5-nearest-neighbors decision boundary is good; higher k  would 
underfit.  As usual. cross-validation can be used to select the hest value of k.  

The very word "nearest" implies a distance metric. How do we measure the distance 
from a query point xq  to an example point x3 ? Typically, distances are measured with a 

Minkowski distance or LP norm, defined as 

= (El J5I 
P)1/1,  

With p =2 this is Euclidean distance and with p=  1 it is Manhattan distance. With Boolean 
attribute values, the number of attributes on which the two points differ is called the Ham-
ming distance. Often p= 2 is used if the dimensions are measuring similar properties, such 
as the width, height and depth of parts on a conveyor belt, and Manhattan distance is used if 
they are dissimilar, such as age, weight, and gender of a patient. Note that if we use the raw 
numbers from each dimension then the total distance will be affected by a change in scale 
in any dimension. That is, if we change dimension i from measurements in centimeters to 
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miles while keeping the other dimensions the same, we'll get different nearest neighbors. To 
avoid this, it is common to apply normalization to the measurements in each dimension. Onc 
simple approach is to compute the mean µi and standard deviation cr  of the values in each 
dimension, and rescale them so that xj,i  becomes (..rj,,  — A more complex metric 
known as the Mabalanohis  distance takes into account the covariance between dimensions. 

In low-dimensional spaces with plenty of data, nearest neighbors works very well: we 
are likely to have enough nearby data points to get a good answer. But as the number of 
dimensions rises we encounter a problem: the nearest neighbors in high-dimensional spaces 
are usually not very near! Consider k-nearest-neighbors on a data set of N points uniformly 
distributed throughout the interior of an n-dimensional  unit hypercube.  We'll define the k- 
neighborhood of a point as the smallest hypercube that contains the k-nearest neighbors. Let 
e  be the average side length of a neighborhood. Then the volume of the neighborhood (which 
contains k points) is i"  and the volume of the full cube (which contains N points) is 1. So, 
on average, in= kIN.  Taking nth roots of both sides we get F = (k/N) 1 /11 .  

To be concrete, let k  = 10 and N  =1, ()00,  000. In two dimensions (n = 2; a unit 
square), the average neighborhood has f = 0.003, a small fraction of the unit square, and 
in 3 dimensions f  is just 2% of the edge length of the unit cube. But by the time we get to 17 
dimensions, f  is half the edge length of the unit hypercube, and in 200 dimensions it is 94%. 
This problem has been called the curse of dimensionality. 

Another way to look at it: consider the points that fall within a thin shell making up the 
outer 1 % of the unit hypercube. These are outliers; in general it will be hard to find a good 
value for them because we will be extrapolating rather than interpolating. In one dimension, 
these outliers are only 2% of the points on the unit line (those points where  < .01 or 
or;  > .99), but in 200 dimensions, over 98% of the points fall within this thin shell—almost 
all the points are outliers. You can see an example of a poor nearest-neighbors fit on outliers 
if you look ahead to Figure 18.28(b).  

The NN(k,x,)  function is conceptually trivial: given a set of N examples and a query 
xg ,  iterate through the examples, measure the distance to rr,  from each one, and keep the best 
k.  If we are satisfied with an implementation that takes 0(N) execution time, then that is the 
end of the story. But instance-based methods are designed for large data sets, so we would 
like an algorithm with sublinear run time. Elementary analysis of algorithms tells us that 
exact table lookup is 0(N) with a sequential table, 0(log N) with a binary tree, and 0(1) 
with a hash table. We will now see that binary trees and hash tables are also applicable for 
finding nearest neighbors, 

18.8.2  Finding nearest neighbors with k-d trees 

A balanced binary tree over data with an arbitrary number of dimensions is called a k-d tree, 
for k-dimensional tree. (In our notation, the number of dimensions is n,  so they would be 
tt.-cl  trees. The construction of a k-d tree is similar to the construction of a one-dimensional 
balanced binary tree. We start with a set of examples and at the root node we split them along 
the ith dimension by testing whether xi < trt.  We chose the value Trt  to be the median of the 
examples along the ith dimension; thus half the examples will be in the left branch of the tree 
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Figure 18.27  The curse of dimensionality: (a) The length of the average neighborhood for 
10-nearest-neighbors  in a Linn  hypercube  with 1,000,000 points, As  a function of the number 
of dimensions. (b) The proportion of points that fall within a thin shell consisting of the 
outer 1% of the hypercube,  as a function of the number of dimensions. Sampled from 10,000 
randomly distributed points. 
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and half in the right. We then recursively make a tree for the left and right sets of examples, 
stopping when there are fewer than two examples left. To choose a dimension to split on at 
each node of the tree, one can simply select dimension i mod n at level i  of the tree_  (Note 
that we may need to split on any given dimension several times as we proceed down the tree.) 
Another strategy is to split on the dimension that has the widest spread of values, 

Exact lookup from a k-d tree is just like lookup from a binary tree (with the slight 
complication that you need to pay attention to which dimension you are testing at each node). 
But nearest neighbor lookup is more complicated. As we go down the branches, splitting 
the examples in half, in some cases we can discard the other half of the examples But not 
always. Sometimes the point we are querying for falls very close to the dividing boundary. 
The query point itself might be on the left hand side of the boundary, but one or more of 
the k nearest neighbors might actually be on the right-hand side. We have to test for this 
possibility by computing the distance of the query point to the dividing boundary, and then 
searching both sides if we can't find k examples on the left that are closer than this distance. 
Because of this problem, k-d trees are appropriate only when there are many more examples 
than dimensions, preferably at least 2" examples. Thus, k-d trees work  well with up to 10 
dimensions with thousands of examples or up to 20 dimensions with millions of examples. If 
we don't have enough examples, lookup is no faster than a linear scan of the entire data set. 

18.5.3  Locality-sensitive hashing 

Hash tables have the potential to provide even faster lookup than binary trees. But how can 
we find nearest neighbors using a hash table, when hash codes rely on an exact match? Hash 
codes randomly distribute values among the bins, but we want to have near points grouped 
together in the same bin; we want a locality-sensitive hash (LSH). 
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We can't use hashes to solve .VN(k,  x,)  exactly, but with a clever use of randomized 
algorithms, we can find an approximate solution. First we dcfinc  the approximate near-
neighbors  problem: given a data set of example points and a query point xq ,  find, with high 
probability, an example point (or points) that is near  To To be more precise, we require that 
if there is a point K.,:  that is within a radius r of xg ,  then with high probability the algorithm 
will find a point xi , that is within distance cr  of q. If there is no point within radius r then the 
algorithm is allowed to report failure. The values of r, and "high probability" are parameters 
of the algorithm. 

To solve approximate near neighbors, we will need a hash function g(x)  that has the 
property that, for any two points xi  and xy,  , the probability that they have the same hash code 
is small if their distance is more than r_  r, and is high if their distance is less than r. For 
simplicity we will treat each point as a bit string. (Any features that are not Boolean can be 
encoded into a set of Boolean features.) 

The intuition we rely on is that if two points are close together in an n-dimensional 
space, then they will necessarily be close when projected down onto a one-dimensional space 
(a line). In fact, we can discretize the line into bins—hash buckets—so that, with high prob-
ability, near points project down to exactly the same bin. Points that are far away from each 
other will tend to project down into different bins for most projections, but there will always 
be a few projections that coincidentally project far-apart points into the same bin. Thus, the 
bin for point xu  contains many (but not all) points that are near to xg ,  as well as some points 
that are far away. 

The trick of LSI I is to create multiple random projections and combine them. A random 
projection is just a random subset of the bit-string representation. We choose  different 
random projections and create E hash tables, 91(x), ...  g@  (x). We then enter all the examples 
into each hash table. Then when given a query point xq ,  we fetch the set of points in bin 9k (Q)  
for each k, and union these sets together into a set of candidate points, C. Then we compute 
the actual distance to xq  for each of the points in C and return the k closest points. With high 
probability, each of the points that are near to xf,  will show up in at least one of the bins, and 
although some  far-away points will show up as well, we can ignore those. With large real-
world problems, such as finding the near neighbors in a data set of 13 million Web images 
using 512 dimensions (Torralba et al., 2003), locality-sensitive hashing needs to examine only 
a few thousand images out of 13 million to find nearest neighbors; a thousand-fold speedup 
over exhaustive or k-d tree approaches. 

18.8.9 Nonparametric regression 

Now we'll look at nonparametric approaches to regression rather than classification. Fig-
ure 18.28 shows an example of some different models. In (a), we have perhaps the simplest 
method of all, known informally as "connect-the-dots," and superciliously as "piecewise-
linear nonparametric regression." This model creates a function hix)  that, when given a 
query r q ,  solves the ordinary linear regression problem with just two points: the training 
examples immediately to the left and right of xq .  When noise is low, this trivial method is 
actually not too bad. which is why it is a standard feature of charting software in spreadsheets. 
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Figure 18.28 Nonparametric regression models: (a) connect the dots, (b) 3 -nearest neigh- 
bors average, (c)  3 -nearest- neighbors linear regression, id) locally weighted regression with 
a quadratic kernel of width k = 10.  

But when the data are noisy, the resulting function is spiky, and does not generalize well. 
k-nearest.neighbors  regression (Figure 1828(b))  improves on connect-the-dots. In-

stead of using just the two examples to the left and right of a query point x q ,  we use the 
k nearest neighbors (here 3). A larger value of k tends to smooth out the magnitude of 
the spikes, although the resulting function has discontinuities. In (b), we have the k-nearest-
neighbors average: h(x) is the mean value of the k points, E  ;lb  I k. Notice that at the outlying 
points, near x= 0 and x =  14, the estimates are poor because all the evidence comes from one 
side (the interior), and ignores the trend. In (c), we have k-nearest-neighbor linear regression, 
which finds the best line through the k examples. This does a better job of capturing trends at 
the outliers, but is still discontinuous. In both (b) and (c),  we're left with the question of how 
to choose a good value for k. The answer, as usual, is cross -validation. 

Locally weighted regression (Figure 18.28(d))  gives us the advantages of nearest neigh- 
bors, without the discontinuities. To avoid discontinuities in h(x), we need to avoid disconti- 
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Figure 18.29  A quadratic kernel, K(d).  max(0,  1 — (240) 2 ),  with kernel width 
k = 10, centered on the query point x  = O.  
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nuities in the set of examples we use to estimate h(o).  The idea of locally weighted regression 
is that at each query point x,,  the examples that arc close to x,  arc weighted heavily, and the 
examples that are farther away are weighted less heavily or not at all. The decrease in weight 
over distance is always gradual, not sudden. 

KERNEL We decide how much to weight each example with a function known as a kernel. A 
kernel function looks like a bump; in Figure 18.29 we see the specific kernel used to generate 
Figure 18.28(d).  We can see that the weight provided by this kernel is highest in the center 
and reaches zero at a distance of ±5.  Can we choose just any function for a kernel? No. First, 
note that we invoke a kernel function IC with k(Distance(xi,  x,)),  where Xq  is a query point 
that is a given distance from xi ,  and we want to know how much to weight that distance. 
So k  should be symmetric around 0 and have a maximum at 0. The area under the kernel 
must remain bounded as we go to ±oo.  Other shapes, such as Gaussians, have been used for 
kernels, but the latest research suggests that the choice of shape doesn't matter much. We 
do have to be careful about the width of the kernel. Again, this is a parameter of the model 
that is best chosen by cross-validation. Just as in choosing the k for nearest neighbors, if the 
kernels are too wide we'll get underlining and if they are too narrow we'll get overfitting. In 
Figure 18.29(d),  the value of k = 10 gives a smooth curve that looks about right—but  maybe 
it does not pay enough attention to the outlier at x = 6; a narrower kernel width would be 
more responsive to individual points. 

Doing locally weighted regression with kernels is now straightforward. For a given 
query point 14,  we solve the following weighted regression problem using gradient descent: 

= argmin E  /C(Distance(x,,x i ))  (yi  — w • xj } 2  

where Distance is any of the distance metrics discussed for nearest neighbors. Then the 
answer is h(x,)  —  

Note that we need to solve a new regression problem for every query point—that's what 
ii means to be local. (In ordinary linear regression, we solved the regression problem once, 
globally, and then used the same h w  for any query point.) Mitigating against this extra work 
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is the fact that each regression problem will be easier to solve, because it involves only the 
examples with nonzero weight—thc  examples whose kernels overlap the query point. When 
kernel widths are small, this may be just a few points. 

Most nonparametric  models have the advantage that it is easy to do leave-one-out cross-
validation without having to recompute everything. With a k-nearest-neighbors model, for 
instance, when given a test example (x, y) we retrieve the k nearest neighbors once, compute 
the per-example loss L.(v,  Tt(x))  from them, and record that as the leave-one-out result for 
every example that is not one of the neighbors. Then we retrieve the k +  1 nearest neighbors 
and record distinct results for leaving out each of the k neighbors. With N examples the 
whole process is 0(k), not 0(kN). 

18.9 SUPPORT VECTOR MACHINES 

SUPPORT VECTOR  
MACFPNE  The support vector machine or SVM framework is currently the most popular approach for 

"off-the-shelf" supervised learning: if you don't have any specialized prior knowledge about 
a domain, then the SVM is an excellent method to try first, There are three properties that 
make SVMs attractive: 

1. SVMs construct a maximum margin separator—a decision boundary with the largest 
possible distance to example points. This helps them generalize well. 

2. SVMs create a linear separating hyperplane, but they have the ability to embed the 
data into a higher-dimensional space, using the so-called kernel trick. Often, data that 
are not linearly separable in the original input space are easily separable in the higher-
dimensional space. The high-dimensional linear separator is actually nonlinear in the 
original space. This means the hypothesis space is greatly expanded over methods that 
use strictly Linear representations, 

3. SVMs are a nonparametric method—they retain training examples and potentially need 
to store them all. On the other hand, in practice they often end up retaining only a 
small fraction of the number of examples—sometimes as few as a small constant times 
the number of dimensions. Thus SVMs combine the advantages of nonparametric  and 
parametric models: they have the flexibility to represent complex functions, but they 
are resistant to overtitting.  

You could say that SVMs are successful because of one key insight and one neat trick. We 
will cover each in turn. In Figure 18.30(a), we have a binary classification problem with three 
candidate decision boundaries, each a linear separator. Each of them is consistent with all 
the examples, so from the point of view of 0/1 loss, each would be equally good. Logistic 
regression would find some separating line; the exact location of the line depends on all the 
example points. The key insight of SVMs is that some examples are more important than 
others, and that paying attention to them can lead to better generalization. 

Consider the lowest of the three separating lines in (a). It curries very close to 5 of the 
black examples Although it classifies all the examples correctly, and thus minimizes loss, it 
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(a ) (b) 

Figure 18.30 Support vector machine classification: (a) Two classes of points (black and 
white circles) and three candidate linear separators. (b) The maximum margin separator 
(heavy line), is at the midpoint of the margin (area between dashed lines), The support 
vectors (points with large circles) are the examples closest to the separator. 

should make you nervous that so many examples are close to the line; it may be that other 
black examples will turn out to fall on the other side of the line. 

SVMs address this issue: Instead of minimizing expected empirical loss on the training 
data, SVMs attempt to minimize expected generalization loss. We don't know where the 
as-yet-unseen points may fall, but under the probabilistic assumption that they are drawn 
from the same distrihution  as the previously seen examples, there are some arguments from 
computational learning theory (Section 18.5)  suggesting that we minimize generalization loss 
by choosing the separator that is farthest away from the examples we have seen so far. We 
call this separator, shown in Figure 18.30(b)  the maximum margin separator. The margin 
is the width of the area bounded by dashed lines in the figure—twice the distance from the 
separator to the nearest example point. 

Now, how do we find this separator? Before showing the equations, some notation: 
Traditionally SVMs use the convention that class labels are +1 and -1, instead of the +1 and 
0 we have been using so far. Also, where we put the intercept into the weight vector w (and 
a corresponding dummy 1 value into T20 ), SVMs do not do that; they keep the intercept 
as a separate parameter, b. With that in mind, the separator is defined as the set of points 
tx  w +  b—  0}.  We could search the space of  and 6  with gradient descent to find the 
parameters that maximize the margin while correctly classifying all the examples. 

However, it turns out there is another approach to solving this problem. We won't 
show the details, but will just say that there is an alternative representation called the dual 

WSIMUM  MARGIN 
SEPARATOR 

MARGIN 
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representation, in which the optimal solution is found by solving 
1 

argmax . 3  _  2 ckiceouk(xi  xj,)  (18.13) 

OUADRATIC  
PROGRAMMING subject to the constraints cri  >  1) and Ej =  0. This is a quadratic programming 

optimization problem, for which there are good software packages. Once we have found the 
vector rr  we can get hack to w with the equation w= Ei or we can stay in the dual 
representation. There are three important properties of Equation (18.13). First, the expression 
is convex; it has a single global maximum that can be found efficiently Second, the data enter 

the expression only m the form of dot products of pairs of  points. This second property is also 
true of the equation for the separator itself; once the optimal ni  have been calculated, it is 

h(x) = sign E  aii  y (x .  x j  )  —  b  .  ( (18.14) 
2  

SUPPORT VEZTOP1  

A final  important property is that the weights ca associated with each data point are zero ex-
cept for the support vectors—the points closest to the separator. (They are called "support" 
vectors because they "hold up" the separating plane.) Because there are usually many fewer 
support vectors than examples, S VMs  gain some of the advantages of parametric models. 

What if the examples are not linearly separable? Figure 18.31(a) shows an input space 
defined by attributes x = x2), with positive examples (y = +  1) inside a circular region 
and negative examples (y — —1) outside. Clearly, there is no linear separator for this problem. 
Now, suppose we re-express the input data—i.e., we map each input vector x to a new vector 
of feature values, Ff,x).  In particular, let us use the three features 

2 2 
= X I f2 = X2 7 fa =  2271:x2. (18.15) 

We will sec shortly where these came from, but for now. just look at what happens. Fig- 
ure 18.31(b) shows the data in the new, three-dimensional space defined by the three features; 
the data are linearly separable in this space! This phenomenon is actually fairly general: if 
data are mapped into a space of sufficiently high dimension, then they will almost always be 
linearly separable—if you look at a set of points from enough directions, you'll find a way to 
make them line up. Here, we used only three dimensions; II  Exercise 18.16 asks you to show 
that four dimensions suffice for linearly separating a circle anywhere in the plane (not just at 
the origin), and five dimensions suffice to linearly separate any ellipse. In general (with some 
special cases excepted) if we have N data points then they will always be separable in spaces 
of N — 1 dimensions or more (Exercise 18.25).  

Now, we would not usually expect to find a linear separator in the input space x, but 
we can Gad  linear separators in the high-dimensional feature space F(x) simply by replacing 
xi  -xk  in Equation (18.13) with F(xj )• F(x r,).  This by itself is not remarkable—replacing x by 
F(x)  in any learning algorithm has the required effect—but the dot product has some special 
properties. It turns out that F(xi )  • F(xk )  can often be computed without first computing F 

 

The reader may notice that we could  have used just ,f1 and f  2 ,  but the 3D mapping illustrates the idea better. 
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Figure 18.31 (a) A two dimensional training set with positive examples as black cir 
des and negative examples as white circles. The true decision boundary, x  + 4  <  1, 
is also shown. (6)  The same data after mapping into a three-dimensional input space 
(x  Ox.x2).  The circular decision boundary in (a) becomes a linear decision boundary 
in three dimensions_  Figure 18.30(b)  gives a closeup  of the separator in (b). 
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for each point In our three-dimensional feature space defined by Equation (18.15),  a little bit 
of algebra shows that 

F(xi)  • F(xk)  = (xi • xk)2  .  
KERNEL FUNCTION (That's why the 0  is in fa.) The expression (xi xk  )2  is called a kernel function, L2  and 

is usually written as K(xi ,  xk ).  The kernel function can be applied to pairs of input data to 
evaluate dot products in some corresponding feature space. So, we can find linear separators 
in the higher-dimensional feature space F(x) simply by replacing xi xk  in Equation (18.13) 
with a kernel function K  (x  .  xk ).  Thus, we can learn in the higher-dimensional  space, but we 
compute only kernel functions rather than the full list of features for each data point. 

The next step is to see that there's nothing special about the kernel K(xj ,  xk )  = (xi •xk )  2 . 
It corresponds to a particular higher-dimensional feature space, but other kernel functions 
correspond to other feature spaces. A venerable result in mathematics, Mercer's then.  

MERCER'S  THEOREM  rem (1909), tells us that any "reasonable ."13  kernel function corresponds to some feature 
space. These feature spaces can be very large, even for innocuous-looking kernels. For ex- 

POYNOMIAL  
IIERNEL ample, the polynomial kernel, IC(xj ,  xk) = (1 + xk) d ,  corresponds to a feature space 

whose dimension is exponential in el.  

12  This usage of "kernel function" is slightly different from the kernels in locally weighted regression. Some 
SVM kernels are distance metrics, but not all are. 
"  Here, "reasonable" means that the matrix Kik  = K  (xj,x4  is positive definite. 
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This then is the clever kernel trick: Plugging these kernels into Equation (18.13), 
optimal linear separators can be found efficiently  in feature spaces with billions of (or, in 
some cases, infinitely many) dimensions. The resulting linear separators, when mapped back 
to the original input space, can correspond to arbitrarily wiggly, nonlinear decision bound- 
aries between the positive and negative examples. 

In the case of inherently noisy data, we may not want a linear separator in some high-
dimensional space. Rather, we'd like a decision surface in a lower-dimensional space that 
does not cleanly separate the classes, but reflects the reality of the noisy data. That is pos-
sible with the soft margin classifier, which allows examples to fall on the wrong side of the 
decision boundary, but assigns them a penalty proportional to the distance required to move 
them back on the correct side. 

The kernel method can be applied not only with learning algorithms that find optimal 
Linear separators, but also with any other algorithm that can be reformulated  to work only 
with dot products of pairs of data points, as in Equations 18.13 and 18.14. Once this is 
done, the dot product is replaced by a kernel function and we have a kernelized version 
of the algorithm. This can be done easily for k-nearest-neighbors and perceptron learning 
(Section 18.7.2), among others. 

18.10 ENSEMBLE LEARNING 

So far we have looked at learning methods in which a single hypothesis, chosen from a 
hypothesis space, is used to make predictions. The idea of ensemble learning methods is 
to select a collection, or ensemble, of hypotheses from the hypothesis space and combine 
their predictions.  For example, during cross-validation we might generate twenty different 
decision trees, and have them vote on the best classification for a new example. 

The motivation for ensemble learning is simple. Consider an ensemble of K =5 hy- 
potheses and suppose that we combine their predictions using simple majority voting. For the 
ensemble to misclassify a new example, at least three of the five hypotheses have to misclas- 
sify  it. The hope is that this is much less likely than a misclassification by a single hypothesis. 
Suppose we assume that each hypothesis irk  in the ensemble has an error of p—that is. the 
probability that a randomly chosen example is misclassified  by hk is p. Furthermore, suppose 
we assume that the errors made by each hypothesis are independent. In that case, ifp is small. 
then the probability of a large number of misclassifications occurring is minuscule. For ex-
ample, a simple calculation (Exercise 18.18) shows that using an ensemble of five hypotheses 
reduces an error rate of I in 1a  down to an error rate of less than 1 in 100. Now, obviously 
the assumption of independence is unreasonable. because hypotheses are likely to be misled 
in the same way by any misleading aspects of the training data. But if the hypotheses are at 
least a little bit different, thereby reducing the correlation between their errors, then ensemble 
teaming  can be very useful. 

Another way to think about the ensemble idea is as a generic way of enlarging the 
hypothesis space. That is, think of the ensemble itself as a hypothesis and the new hypothesis 

EMSCIABLE  
LEARNING 
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Figure 18.32 Illustration of the increased expressive power obtained by ensemble learn- 
ing. We take three linear threshold hypotheses, each of which classifies positively on the 
unshaded side, and classify as positive any example classified positively by all three. The 
resulting triangular region is a hypothesis not expressible in the original hypothesis space. 

space as the set of all possible ensembles constructable from hypotheses in the original space. 
Figure 18.32  shows how this can result in a more expressive hypothesis space. If the original 
hypothesis space allows for a simple and efficient learning algorithm, then the ensemble 
method provides a way to team  a much more expressive class of hypotheses without incurring 
much additional computational or algorithmic complexity. 

The most widely used ensemble method is called boosting. To understand how it works, 
we need first to explain the idea of a weighted training set. In such a training set, each 
example has an associated weight WI  > O.  The higher the weight of an example, the higher 
is the importance attached to it during the learning of a hypothesis. It is straightforward to 
modify the learning algorithms we have seen so far to operate with weighted training sets. 14  

Boosting starts with toj  =  1 for all the examples (i.e., a normal training set). From this 
set, it generates the first hypothesis, hi. This hypothesis will classify some of the training ex- 
amples correctly and some incorrectly. We would like the next hypothesis to do better on the 
misclassified examples, so we increase their weights while decreasing the weights of the cor- 
rectly classified examples. From this new weighted training set, we generate hypothesis h2. 
The process continues in this way until we have generated Fs  hypotheses, where K is an input 
to the boosting algorithm. The final ensemble hypothesis is a weighted-majority combination 
of all the K hypotheses, each weighted according to how well it performed on the training set 
Figure 18.33 shows how the algorithm works conceptually. There arc many variants of the ba- 
sic boosting idea, with different ways of adjusting the weights and combining the hypotheses. 
One specific algorithm, called ADA BOOS T, is shown in Figure 18.34. A DA B 00  ST  has a very 
important property: if the input learning algorithm L is a weak learning algorithm—which 

"  For learning algorithms in which this is not possible, one can instead create a replicated training set where 
the jth example appears in,  times, uslng  randomization to handle fractional weights. 
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Figure 18.33  How the boosting algorithm works. Each shaded recut  ogle  corresponds to 
an example; the height of the rectangle corresponds to the weight. The checks and crosses 
indicate whether the example was classified correctly by the current hypothesis. The sire of 
the decision tree indicates the weight of that hypothesis in the final ensemble. 
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means that L always returns a hypothesis with accuracy on the training set that is slightly 
better than random guessing (i.e., 50%±e  for Boolean classification)—then ADA1300sT  will 
return a hypothesis that classifies the training data perfectly for large enough K. Thus, the 
algorithm boosts the accuracy of the original learning algorithm on the training data. This 
result holds no matter how inexpressive the original hypothesis space and no matter how 
complex the function being learned. 

Let us see how well boosting does on the restaurant  data. We will choose as our original 
D  ECJS1ON  STUMP hypothesis space the class of decision stomps, which are decision trees with just one test, at 

the root. The lower curve in Figure 18.35(a)  shows that unboosted decision stumps are not 
very effective for this data set, reaching a prediction performance of only 81% on 100 training 
examples. When boosting is applied (with K = 5), the performance is better, reaching 93% 
after 100 examples. 

An interesting thing happens as the ensemble size K increases. Figure 18.35(b)  shows 
the training set performance (on 100 examples) as a function of K. Notice that the error 
reaches zero when K is 20; that is, a weighted-majority combination of 20 decision stumps 
suffices to fit the 100 examples exactly. As more stumps are added to the ensemble, the error 

Iffr 
 remains at zero. The graph also shows that the test set performance continues to increase 

long after the training set error has reached zero. At K = 20, the test performance is 0.95 
(or 0.05 error), and the performance increases to 0.98  as late as K — 137, before gradually 
dropping to 0.95. 

This finding, which is quite robust aci-oss  data sets and hypothesis spaces, came as quite 
a surprise when it was first noticed. Ockham's razor tells us not to make hypotheses more 
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Figure 18.35  (a) Graph showing the performance of boosted decision stumps with K = 5 
versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the 
training set and the test set as a function of K, the number of hypotheses in the ensemble. 
Notice that the test set accuracy improves slightly even after the training accuracy reaches 1, 
i.e., after the ensemble tits the data exactly. 

function A DAB OOST(  examples, L, K) returns a weighted-majority hypothesis 
inputs: examples, set of N labeled examples (xi,  pa) . ......... (xN,  Y  N) 

L, a learning algorithm 
K, the number of hypotheses in the ensemble 

local variables: w, a vector of N example weights, initially 1/N 
h, a vector of K hypotheses 
z, a vector of K hypothesis weights 

fork=itoKdo  
h [k]  L( examples ,w) 
error 4-- 0 
for j =1 to N do 

if h  [4-1(rri)  # 9],  then emir (—  error + w[j] 
for j  1 to N do 

if ti  [kl  (xj )  = D.;  then w[j] ■—  w[j]  error/ (1 — error) 
w NORMALIZE(W)  
2[k] log (1 — error)/  error 

return WEIGHTED-MAJoRITY(h,z)  

Figure 18.34  The ADABOOST  variant of the boosting method for ensemble learning. The 
algorithm generates hypotheses by successively reweighting the training examples. The func-
tion WE[GHTED-MAJORITY  generates a hypothesis that returns the output value with the 
highest vote from the hypotheses in h, with votes weighted by a. 
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complex than necessary, but the graph tells us that the predictions improve as the ensemble 
hypothesis gets more complex! Various explanations have bccn proposed for this. One view 
is that boosting approximates Bayesian learning (see Chapter 20), which can be shown to 
be an optimal learning algorithm, and the approximation improves as more hypotheses are 
added. Another possible explanation is that the addition of further hypotheses enables the 
ensemble to be more definite in its distinction between positive and negative examples, which 
helps it when it comes to classifying new examples. 

18.10.1 Online Learning 

So far, everything we have done in this chapter has relied on the assumption that the data are 
i.i.d.  (independent and identically distributed). On the one hand, that is a sensible assumption: 
if the future bears no resemblance to the past, then how can we predict anything? On the other 
hand, it is too strong an assumption: it is rare that our inputs have captured all the information 
that would make the future truly independent of the past. 

In this section we examine what to do when the data are not i.i.d.;  when they can change 
over time. In this case, it matters when we make a prediction, so we will adopt the perspective 
called online learning: an agent receives an input r,  from nature, predicts the corresponding 
yi,  and then is told the correct answer. Then the process repeats with xj + i,  and so on. One 
might think this task is hopeless—if nature is adversarial, all the predictions may be wrong, 
It turns out that there are some guarantees we can make. 

Let us consider the situation where our input consists of predictions front a panel of 
experts. For example, each day a set of K pundits predicts whether the stock market will go 
up or down, and our task is to pool those predictions and make our own. One way to do this 
is to keep track of how well each expert performs, and choose to believe them in proportion 
to their past performance_ This is called the randomized weighted majority algorithm_ We 
can described it more formally: 

1. Initialize a set of weights {wi, , wA-}  all to 1. 
2. Receive the predictions _  . , yid  from the experts. 
3. Randomly choose an expert , in proportion to its weight: P(k) = I ( Ek?  wk , )•  

4. Predict Are  

5. Receive the correct answer y. 
6. For each expert k such that Rik  y, update wk fitok  

Here /3 is a number, 0 < ;3  < 1, that tells how much to penalize an expert for each mistake. 
We measure the success of this algorithm in terms of regret, which is defined as the 

number of additional mistakes we make compared to the expert who, in hindsight, had the 
best prediction record. Let  be the number of mistakes made by the best expert. Then the 
number of mistakes, M, made by the random weighted majority algorithm, is bounded by 15  

M 
In(1/0)  ±  K  

•  1  

15  See (Blum, 1996) for the proof. 
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This bound holds for any sequence of examples, even ones chosen by adversaries trying to 
do their worst. To be specific, whcn thcrc arc K =10 experts, if we choose /3  = 1/2  then 
our number of mistakes is bounded by 1.39M  + 4.6, and if /1 =  3/4  by 1.15.21.1*  +  9.2. In 
general, if 0  is close to 1  then we are responsive to change over the long run; if the best expert 
changes, we will pick up on it before too long. However, we pay a penalty at the beginning, 
when we start with all experts trusted equally; we may accept the advice of the bad experts 
for too long. When .3is  closer to 0, these two factors are reversed. Note that we can choose 3  
to get asymptotically close to AV in the long run; this is called no-regret  learning (because 
the average amount of regret per trial tends to 0 as the number of trials increases). 

Online learning is helpful when the data may be changing rapidly over time, It is also 
useful for applications that involve a large collection of data that is constantly growing, even 
if changes are gradual. For  example, with a database of millions of Web images, you wouldn't 
want to train, say, a linear regression model on all the data, and then retrain from scratch every 
time a new image is added. It would be more practical to have an online algorithm that allows 
images to be added incrementally. For most learning algorithms based on minimizing loss, 
there is an online version based on minimizing regret. It is a bonus that many of these online 
algorithms come with guaranteed bounds on regret. 

To some observers, it is surprising that there are such tight bounds on how well we can 
do compared to a panel of experts. To others, the really surprising thing is that when panels 
of human experts congregate—predicting stock market prices, sports outcomes, or political 
contests—the viewing public is so willing to listen to them pontificate and so unwilling to 
quantify their error rates. 

18.11 PRACTICAL MACHINE LEARNING 

We have introduced a wide range of machine learning techniques, each illustrated with simple 
learning tasks. In this section, we consider two aspects of practical machine learning. The first 
involves finding algorithms capable of learning to recognize handwritten digits and squeezing 
every last drop of predictive performance out of them. The second involves anything but—
pointing out that obtaining, cleaning, and representing the data can be at least as important as 
algorithm engineering. 

18.11.1 Case study: Handwritten digit recognition 

Recognizing handwritten digits is an important problem with many applications, including 
automated sorting of mail by postal code. automated reading of checks and tax returns, and 
data entry for hand-held computers. It is an area where rapid progress has been made, in part 
because of better learning algorithms and in part because of the availability of better training 
sets. The United States National Institute of Science and Technology (NIST)  has archived a 
database of 60,000 labeled digits, each 20  x  20= 400 pixels with 8-bit grayscale  values. It 
has become one of the standard benclunaik  problems for comparing new teaming  algonthms.  
Some example digits are shown in Figure 18.36. 
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Figure 18.36  Examples from the NIST database of handwritten digits. Top row: examples 
of digits 0 9 that are easy to identify. Bottom row: more difficult examples of the same digits. 

Many different learning approaches have been tried. One of the first, and probably the 
simplest, is the 3-nearest-neighbor  classifier, which also has the advantage  of requiring no 
training time. As a memory-based algorithm, however, it must store all 60,000 images, and 
its run time performance is slow. It achieved a test error rate of 2.4%. 

A sing,le•hidden-layer  neural network was designed for this problem with 400 input 
units (one per pixel) and 10 output units (one per class). Using cross-validation, it was found 
that roughly 300 hidden units gave the best performance. With full interconnections between 
layers, there were a total of 123,300 weights. This network achieved a 1.6% error rate, 

A series of specialized neural networks called LeNet were devised to take advantage 
of the structure of the problem—that the input consists of pixels in a two—dimensional array, 
and that small changes in the position or slant of an image are unimportant. Each network 
had an input layer of 32 x 32 units, onto which the 20 x 20 pixels were centered so that each 
input unit is presented with a local neighborhood of pixels. This was followed by three layers 
of hidden units. Each layer consisted of several planes of ri  x n arrays, where n is smaller 
than the previous layer so that the network is down-sampling the input and where the weights 
of every unit in a plane are constrained to be identical, so that the plane is acting as a feature 
detector: it can pick out a feature such as a long vertical line or a short semi-circular arc. The 
output layer had 10 units_ Many versions of this architecture were tried; a representative one 
had hidden layers with 768, 192, and 30 units, respectively. The training set was augmented 
by applying affine transformations to the actual inputs: shifting, slightly rotating, and scaling 
the images. (Of course, the transformations have to be small, or else a 6 will be transformed 
into a 9!) The best error rate achieved by LeNet was 0.9%. 

A boosted neural network combined three copies of the LeNet architecture, with the 
second one trained on a mix of patterns that the first one got 50% wrong, and the third one 
trained on patterns for which the first two disagreed. During testing, the three nets voted with 
the majority ruling. The test error rate was 0.7%. 

A support vector machine (see Section 18.9) with 25,000 support vectors achieved an 
error rate of 1.1%. This is remarkable because the SVM technique, like the simple nearest-
neighbor approach, required ahnost no thought or iterated experimentation on the part of the 
developer, yet it still came close to the perfonnance  of LeNet,  which had had years of devel-
opment. Indeed, the support vector machine makes no use of the structure of the problem,  
and would perform just as well if the pixels were presented in a permuted order. 
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VECTOR MACHINE A virtual support vector machine starts with a regular SVM and then improves it 

with a technique that is designed to rake advantage of the structure of the problem. Instead of 
allowing products of all pixel pairs, this approach concentrates on kernels formed from pairs 
of nearby pixels. It also augments the training set with transformations of the examples, just 
as LeNet did. A virtual SVM achieved the best error rate recorded to date, 0.56%. 

Shape matching is a technique from computer vision used to align corresponding parts 
of two different images of objects (Belungie  et al., 2002). The idea is to pick out a set 
of points in each of the two images, and then compute, for each point in the first image, 
which point in the second image it corresponds to. From this alignment, we then compute a 
transformation between the images. The transformation gives us a measure of the distance 
between the images. This distance measure is better motivated than just counting the number 
of differing pixels, and it turns out that a 3—nearest neighbor algorithm using this distance 
measure performs very well. Training on only 20,000 of the 60,000 digits, and using 100 
sample points per image extracted from a Canny edge detector, a shape matching classifier 
achieved 0.63% test error. 

Humans are estimated to have an error rate of about 0.2% on this problem_ This figure 
is somewhat suspect because humans have not been tested as extensively as have machine 
learning algorithms. On a similar data set of digits from the United States Postal Service, 
human errors were at 2.5%. 

The following figure summarizes the error rates, run time performance, memory re-
quirements, and amount of training time for the seven algorithms we have discussed. It also 
adds another measure, the percentage of digits that must be rejected to achieve 0.5% error. 
For example, lithe  SVM is allowed to reject 1.8% of the inputs—that is, pass them on for 
someone else to make the final judgment—then its error rate on the remaining 98.2% of the 
inputs is reduced from 1.1% to 0.5%. 

The following table summarizes the error rate and some of the other characteristics of 
the seven techniques we have discussed. 

3 
NN 

300 
Hidden LeNet 

Boosted 
LeNet SVM 

Virtual 
SVM 

Shape 
Match 

Error rate (pct.)  
Run time (millisec/digit)  
Memory requirements (Mbyte ) 
Training time (days) 
% rejected to reach 0.5% CHOI  

2.4 
1000 
12 
0 

8.1 

L6  
10 
.49  
7 

3.2  

0.9  
30 

.012 
14 
1.8  

0.7 
50 
.21 
30 
0.1  

L  1  
2000 

11  
10 
1.8 

0.56  
200 

0.63 

18.11.2 Case study: Word senses and house prices 

hi a textbook we need to deal with simple, toy data to get the ideas across: a small data set, 
usually in two dimensions. But in practical applications of machine learning, the data set 
is usually large, multidimensional, and messy. The data are not handed to the analyst in a 
prepackaged set of (x, y) values: rather the analyst needs to go out and acquire the right data. 
There is a task to be accomplished, and most of the engineering problem is deciding what 
data are necessary to accomplish the task; a smaller part is choosing and implementing an 
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Figure 18.37  Learning curves for five learning algorithms on a common task. Note that 
there appears to be more room for improvement in the horizontal direction (more training 
data) than in the vertical direction (different machine learning algorithm). Adapted from 
Banko and Brill (2001). 
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appropriate machine learning method to process the data. Figure 18.37 shows a typical real-
world example, comparing five learning algorithms on the task of word-sense classification 
(given a sentence such as "The bank folded," classify the word "bank" as "money-bank" or 
"river-bank"). The point is that machine learning researchers have focused mainly on the 
vertical direction: Can I invent a new learning algorithm that performs better than previously 
published algorithms on a standard training set of 1 million words? But the graph shows 
there is more room for improvement in the horizontal direction: instead of inventing a new 
algorithm, all I need to do is gather 10 million words of training data; even the worst algorithm 
at 10 million words is performing better than the best algorithm at 1 million. As we gather 
even more data, the curves continue to rise, dwarfing the differences between algorithms. 

Consider another problem: the task of estimating the true value of houses that are for 
sale_ Tn Figure 1/3_13  we showed a toy version of this problem, doing linear regression of 
house size to asking price. You probably noticed many limitations of this model. First, it is 
measuring the wrong thing: we want to estimate the selling price of a house, not the asking 
price. To solve this task we'll need data on actual sales. But that doesn't mean we should 
throw away the data about asking price—we can use it as one of the input features. Besides 
the size of the house, we'll need more information: the number of rooms, bedrooms and 
bathrooms; whether the kitchen and bathrooms have been recently remodeled; the age of 
the house; we'll also need information about the lot, and the neighborhood. But how do 
we define neighborhood? By zip code? What if part of one zip code is on the "wrong" 
side of the highway or train tracks, and the other part is desirable? What about the school 
district? Should the name of the school district be a feature, or the average test scores? In 
addition to deciding what features to include, we will have to deal with missing data; different 
areas have different customs on what data are reported, and individual cases will always be 
missing some data. If the data you want are not available, perhaps you can set up a social 
networking site to encourage people to share and correct data. In the end, this process of 
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deciding what features to use, and how to use them, is just as important as choosing between 
linear regression, decision trees, or some other form of learning. 

That said, one does have to pick a method (or methods) for a problem. There is no 
guaranteed way to pick the best method, but there are some rough guidelines. Decision 
trees are good when there are a lot of discrete features and you believe that many of them 
may be irrelevant. Nonparametric  methods are good when you have a lot of data and no prior 
knowledge, and when you don't want to worry too much about choosing just the right features 
(as long as there are fewer than 20 or so). However, nonparametric  methods usually give you 
a function h that is more expensive to run. Support vector machines are often considered the 
best method to try first, provided the data set is not too large. 

18.12 SUMMARY 

This chapter has concentrated on inductive learning of functions from examples. The main 
points were as follows!  

• Learning takes many forms, depending on the nature of the agent, the component to be 
improved, and the available feedback. 

• If the avail a.hle  feedback provides the correct answer for example inputs, then the learn-
ing problem is called supervised learning. The task is to learn a function y = h(z).  
Learning a discrete-valued function is called classification; learning a continuous func-
tion is called regression. 

• Inductive learning involves finding a hypothesis that agrees well with the examples. 
Ockham's  razor suggests choosing the simplest consistent hypothesis. The difficulty 
of this task depends on the chosen representation. 

• Decision trees can represent all Boolean fractions_  The information-gain heuristic 
provides an efficient method for finding a simple, consistent decision tree. 

• The performance of at learning algoriihm  is measured by the learning curve, which 
shows the prediction accuracy on the test set as a function of the training-set size. 

• When there are multiple models to choose from, cross-validation can be used to select 
a model that will generalize well 

• Sometimes not all errors are equal. A loss function tells us how bad each error is; the 
goal is then to minimize loss over a validation set. 

• Computational learning theory analyzes the sample complexity and computational 
complexity of inductive learning. There is a tradeoff between the expressiveness of the 
hypothesis language and the ease of learning. 

• Linear regression is a widely used model. The optimal parameters of a linear regres-
sion model can he found by gradient descent search, or computed exactly. 

• A linear classifier with a hard threshold—also known as a perceptron—can be trained 
by a simple weight update rule to fit data that are linearly separable. In other cases, 
the rule fails to converge. 
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■ Logistic regression replaces the perceptron's hard threshold with a soft threshold de-
fined by a logistic function. Gradient descent works well even for noisy data that are  
not Linearly separable. 

■ Neural networks represent complex nonlinear functions with a network of Linear-
threshold units. termMultilayer feed-forward neural networks can represent any func-
tion, given enough units. The back-propagation algorithm implements a gradient de-
scent in parameter space to minimize the output error 

• Nonparametric models use all the data to make each prediction, rather than trying to 
summarize the data first with a few parameters. Examples include nearest neighbors 
and locally weighted regression. 

■ Support vector machines find linear separators with maximum margin to improve 
the generalization performance of the classifier. Kernel methods implicitly transform 
the input data into a high-dimensional space where a linear separator may exist, even if 
the original data are non-separable. 

• Ensemble methods such as boosting often perform better than individual methods. In 
online learning we can aggregate the opinions of experts to come arbitrarily close to the 
best expert's performance, even when the distribution of the data is constantly shifting. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Chapter 1  outlined the history of philosophical investigations into inductive learning. William 
of Ockham 16  (1280-1349), the most influential philosopher of his century and a major con-
tributor to medieval epistemology, logic, and metaphysics, is credited with a statement called 
"Ockham's Razor"—in Latin, aria  non sunt  )naltiplicanda  praeter  necessitatem,  and in En-
glish, "Entities are not to be multiplied beyond necessity." Unfortunately, this laudable piece 
of advice is nowhere to be found in his writings in precisely these words (although he did 
say "Pluralitas  non est ponenda sine necessitate," or "plurality shouldn't be posited without 
necessity"). A similar sentiment was expressed by Aristotle in 350 B.C. in Physics book 1, 
chapter VI: "For the more limited, if adequate, is always preferable." 

The first notable use of decision trees was in EPAM, the "Elementary Perceiver And 
Memorizer" (Feigenbaum, 1961),  which was a simulation of human concept learning_ IT)1  
(Quinlan, 1979) added the crucial idea of choosing the attribute with maximum entropy; it is 
the basis for the decision tree algorithm in this chapter. Information theory was developed by 
Claude Shannon to aid in the study of communication (Shannon and Weaver, 1949). (Shan-
non also contributed one of the earliest examples of machine learning, a mechanical mouse 
mimed Theseus that  learned to navigate through a maze by trial and  error.) The 

x2 
 method 

of tree pruning was described by Quinlan (1986). C4.5, an industrial-strength decision tree 
package, can be found in Quinlan (1993). An independent tradition of decision tree learning 
exists in the statistical literature. Classification and Regression Trees (Breiman  et al., 1984). 
known as the "CART book," is the principal reference. 
16  The name is often misspelled as "Occam,"  perhaps  from the French rendering, "Guillaume d'Occam."  
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Cross validation was first introduced by Larson (1931), and in a form close to what 
we show by Stone (1974) and Golub et al. (1979). The regularization procedure is due to 
Tikhonov (1963). Guyon and Elisseeff (2003) introduce a journal issue devoted to the prob- 
lem of feature selection. Banko and Brill (2001) and Halevy et al. (2009) discuss the advan 
tages of using large amounts of data. It was Robert Mercer, a speech researcher who said 
in 1985 "There is no data like more data." (Lyman and Varian, 2003) estimate that about 5 
exabytes (5 x 10 18  bytes) of data was produced in 2002, and that the rate of production is 
doubling every 3 years. 

Theoretical analysis of learning algorithms began with the work of Gold (1967) on 
identification in the limit. This approach was motivated in part by models of scientific 
discovery from the philosophy of science (Popper, 1962), but has been applied mainly to the 
problem of learning grammars from example sentences (Osherson et al., 1986).  

Whereas the  identification-in-the-limit  approach concentrates on eventual convergence, 
the study of Kolmogomv  complexity or algorithmic complexity, developed independently 
by Solomonoff (1964, 2009) and Kolmogorov (1965), attempts to provide a formal definition 
for the notion of simplicity used in Ockham's razor. To escape the problem that simplicity 
depends on the way in which information is represented. it is proposed that simplicity be 
measured by the length of the shortest program for a universal Turing machine that correctly 
reproduces the observed data. Although there are many possible universal Turing machines, 
and hence many possible "shortest" programs, these programs differ in length by at most a 
constant that is independent of the amount of data. This beautiful insight, which essentially 
shows that any initial representation bias will eventually be overcome by the data itself, is 
marred only by the undecidability of computing the length of the shortest program. Approx-
imate measures such as the minimum description length, or MDL (Rissanen, 1984, 2007) 
can be used instead and have produced excellent results in practice. The text by Li and Vi-
tanyi  (1993) is the best source for Kolmogorov complexity.  

The theory of PAC-learning was inaugurated by Leslie Valiant (1984). His work stressed 
the importance of computational and sample complexity. With Michael Kearns (1990), Valiant 
showed that several concept classes cannot he PAC-learned tractably even though sufficient 
information is available in the examples. Some positive results were obtained for classes such 
as decision lists (Rivest, 1987). 

An independent tradition of sample-complexity analysis has existed in statistics, begin-
ning with the work on uniform convergence theory (Vapnik  and Chervonenkis. 1971). The 
so-called VC dimension provides a measure roughly analogous to, but more general than, the 
In IHI  measure obtained from PAC analysis. The VC dimension can be applied to continuous 
function classes, to which standard PAC analysis does not apply. PAC-learning theory and 
VC theory were first connected by the "four Germans" (none of whom actually is German): 
Blurrier, Ehrenfeucht, Haussler, and Warmuth (1989). 

Linear regression with squared error loss goes back to Legendre  (1805)  and Gauss 
(1809), who were both working on predicting orbits around the sun. The modem use of 
multivariate regression for machine learning is covered in texts such as Bishop (2007). Ng 
(2004) analyzed the differences between L1 and L2 regularization. 
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The term logistic function comes from Pierre-Francois  Verhulst  (1804-1849), a statis-
tician who used the curve to model population growth with limited resources, a more realis-
tic model than the unconstrained geometric growth proposed by Thomas Malthus. Verhulst  
called it the caurbe  logistique, because of its relation to the logarithmic curve. The term re•  
gression is due to Francis Galton,  nineteenth century statistician, cousin of Charles Darwin, 
and initiator of the fields of meteorology, fingerprint analysis, and statistical correlation, who 
used it in the sense of regression to the mean. The term curse of dimensionality comes from 
Richard Be llman  (1961). 

Logistic regression can be solved with gradienr  descent, or with the Newton-Raphson  
method (Newton, 1671; Raphson, 1690). A variant of the Newton method called L-BFGS is 
sometimes used for large-dimensional problems; the L stands for "limited memory," meaning 
that it avoids creating the full matrices all at once, and instead creates parts of them on the 
fly. BFGS are authors' initials (Byrd et al., 1995). 

Nearest-neighbors models date back at least to Fix and Hodges (1951) and have been a 
standard tool in statistics and pattern recognition ever since. Within Al, they were popularized 
by Stanfill and Waltz (1986), who investigated methods for adapting the distance metric to the 
data. Hastie and Tibshirani (1996) developed a way to localize the metric to each point in the 
space, depending on the distribution of data around that point. Gionis et al. (1999) introduced 
locality-sensitive hashing, which has revolutionized the retrieval of similar objects in high-
dimensional spaces,  particularly in computer vision. Andoni and Indyk (2006) provide a 

recent survey of LSH and related methods. 
The ideas behind kernel machines come from Aizerman et at (1964) (who also in-

troduced the kernel trick), but the full development of the theory is due to Vapnik and his 
colleagues (Buser et al., 1992). SVMs were made practical with the introduction of the 
soft-margin classifier for handling noisy data in a paper that won the 2008 ACM Theory 
and Practice Award (Cortes and Vapnik,  1995), and of the Sequential Minimal Optimization 
(SMO) algorithm for efficiently solving SVM problems using quadratic programming (Platt, 
1999). SVMs have proven to be very popular and effective for tasks such as text categoriza-
tion (Thachims,  2001), computational genomics  (Cristianini and Hahn, 2007),  and natural lan-
guage processing, such as the handwritten digit recognition of DeCoste and Scholkopf  (2002), 
As part of this process, many new kernels have been designed that work with strings. trees, 
and other nonnumerical  data types. A related technique that also uses the kernel trick to im-
plicitly represent an exponential feature space is the voted perceptron (Freund and Schapire, 
1999; Collins and Duffy, 2002). Textbooks on SVMs include Cristianini and Shawe-Taylor 
(2000) and Scholkopf  and Smola (2002). A friendlier exposition appears in the Al Magazine 
article by Cristianini  and Schdkopf  (2002). Bengio and LeCun (2007) show some of the 
limitations of SVMs and other local, nonparametric methods for learning functions that have 
a global structure but do not have local smoothness. 

Ensemble learning is an increasingly popular technique for improving the performance 
BAGGING 
 of learning algorithms. Bagging (Breiman, 1996), the first effective method, combines hy-

potheses learned from multiple bootstrap data sets, each generated by subsampling the orig-
inal data set. The boosting method described in this chapter originated with theoretical work 
by Schapire (1990). The ADABOOST algorithm was developed by Freund and Schapire 
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(1996) and analyzed theoretically by Schapire (2003). Friedman es  al. (2000) explain boost-
ing from a statistician's viewpoint. Online learning is covered in a survey by Mum (1996) 
and a book by Cesa-Bianchi and Lugosi (2006). Dredze  et al. (2008) introduce the idea of 
confidence-weighted online learning for classification: in addition to keeping a weight for 
each parameter, they also maintain a measure of confidence, so that a new example can have 
a large effect on features that were rarely seen before (and thus had low confidence) and a 
small effect on common features that have already been well-estimated. 

The literature on neural networks is rather too large (approximately 150,000 papers to 
date) to cover in detail. Cowan and Sharp (1988b, 1988a) survey the early history, beginning 
with the work of McCulloch and Pitts (1943). (As mentioned in Chapter 1, John McCarthy 
has pointed to the work of Nicolas Rashevsky (1936, 1938) as the earliest mathematical model 
of neural learning.)  Norbert Wiener, a pioneer of cybernetics and control theory (Wiener, 
1948), worked with McCulloch and Pitts and influenced a number of young researchers in-
cluding Marvin Minsky, who may have been the first to develop a working neural network in 
hardware in 1951 (see Minsky and Papert,  1988, pp. ix—x). Turing (1948) wrote a research 
report titled Intelligent Machinery that begins with the sentence "I propose to investigate the 
question as to whether it is possible for machinery to show intelligent behaviour" and goes on 
to describe a recurrent neural network architecture he called "B-type unorganized machines" 
and an approach to training them. Unfortunately, the report went unpublished until 1969, and 
was all but ignored until recently.  

Frank Rosenblatt (1957) invented the modern "perceptron" and proved the percep-
tron  convergence theorem (1960), although it had been foreshadowed by purely mathemat-
ical work outside the context of neural networks (Agmon, 1954; Motzkin and Schoenberg, 
1954). Some early work was also done on multilayer networks, including Gamba percep-
trons  (Gamba et aL,  1961) and madalines (Widrow,  1962). Learning Machines (Nilsson, 
1965) covers much of this early work and more. The subsequent demise of early perceptron  
research efforts was hastened (or, the authors later claimed, merely explained) by the book 
Perceptrons  (Minsky and Papert, 1969), which lamented the field's lack of mathematical 
rigor_ The honk pointed out that single-layer perceptrons  could represent only linearly sepa-
rable concepts and noted the lack of effective learning algorithms for multilayer networks.  

The papers in (Hinton and Anderson, 1981), based on a conference in San Diego in 
1979, can be regarded as marking a renaissance of connectionism. The two-volume "PDP"  
(Parallel Distributed Processing) anthology (Rumelhart  et al., 1986a) and a short article in 
Nature (Rumelhart et al.. 1986b) attracted a great deal of attention—indeed, the number of 
papers on "neural networks" multiplied by a factor of 200 between 1980-84 and 1990-94. 
The analysis of neural networks using the physical theory of magnetic spin glasses (Amit  
et aL,  1985) tightened the links between statistical mechanics and neural network theory—
providing not only useful mathematical insights but also respectability_  The back-propagation 
technique had been invented quite early (Bryson and Ho, 1969) but it was rediscovered several 
times (Werbos, 1974; Parker, 1985).  

The probabilistic interpretation of neural networks has several sources, including Baum 
and Wilczek  (1988) and Bridle  (1990). The role of the sign-told  function is discussed by 
Jordan (1995). Bayesian parameter learning for neural networks was proposed by MacKay 
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(1992) and is explored further by Neal (1996). The capacity of neural networks to represent 
functions was investigated by Cybcnko  (  1988,  1989), who showed that two hidden layers are 
enough to represent any function and a single layer is enough to represent any continuous 
function. The "optimal brain damage" method for removing useless connections is by LeCun 
et al. (1989), and Sietsma and Dow (1988) show how to remove useless units. The tiling 
algorithm for growing larger structures is due to Mezard  and Nadal (1989). LeCun  et al. 
(1995) survey a number of algorithms for handwritten digit recognition. Improved error rates 
since then were reported by Belongie et al. (2002) for shape matching and DeCoste and 
SchOlkopf  (2002) for virtual support vectors. At the time of writing, the best test error rate 
reported is 039% by Ranzato  et al. (2007) using a convolutional neural network. 

The complexity of neural network learning has been investigated by researchers in com-
putational learning theory.  Early computational results were obtained by Judd (1990), who 
showed that the general problem of finding a set of weights consistent with a set of examples 
is NP-complete, even under very restrictive assumptions. Some of the first sample complexity 
results were obtained by Baum and Haussler (1989), who showed that the number of exam-
ples required for effective learning grows as roughly W log W, where W is the number of 
weights. 17  Since then, a much more sophisticated theory has been developed (Anthony and 
Bartlett, 1999), including the important result that the representational capacity of a network 
depends on the size of the weights as well as on their number, a result that should not be 
surprising in the light of our discussion of regularization. 

The most popular kind of neural network that we did not cover is the radial basis 
function, or RBF, network. A radial basis function combines a weighted collection of kernels 
(usually Gaussians, of course) to do function approximation. RBF  networks can be trained in 
two phases: first, an unsupervised clustering approach is used to train the parameters of the 
Gaussians—the  means and variances—are trained, as in Section 20.3.1. In the second phase. 
the relative weights of the Gaussians are determined. This is a system of linear  equations, 
which we know how to solve directly. Thus, both phases of RBF training have a nice benefit: 
the first phase is unsupervised, and thus does not require labeled training data, and the second 
phase, although supervised, is efficient. See Bishop (1995) for more details. 

Recurrent networks, in which units are linked in cycles, were mentioned in the chap-
ter but not explored in depth. Hopfield  networks (Hopfield, 1982) are probably the best-
understood class of recurrent networks. They use bidirectional connections with symmetric 
weights (i.e., wi  = urj,i),  all of the units are both input and output units, the activation 
function g is the sign function, and the activation levels can only be +1. A Hopfield network 
functions as an associative memory: after the network trains on a set of examples, a new 
stimulus will cause it to settle into an activation pattern corresponding to the example in the 
training set that most closely resembles the new stimulus. For example, if the training set con-
sists of a set of photographs, and the new stimulus is a small piece of one of the photographs, 
then the network activation levels will reproduce the photograph from which the piece was 
taken. Notice that the original photographs are not stored separately in the network; each 

17  This approximately confirmed "Uncle Bernie's rule." The rule was named after Bernie Widrow,  who recom-
mended usaig  roughly ten times as many examples as weights. 
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weight is a partial encoding of all the photographs. One of the most interesting theoretical 
results is that Hopficld  networks can reliably store up to 0.138N  training examples, where N 
is the number of units in the network. 

Boltzmann machines (Hinton and Sejnowski, 1983, 1986) also use symmetric weights, 
but include hidden units. In addition, they use a stochastic activation function, such that 
the probability of the output being 1 is some function of the total weighted input. Boltz-
mann machines therefore undergo state transitions that resemble a simulated annealing search 
(see Chapter 4) for the configuration that best approximates the training set. It turns out that 
Boltzmann machines are very closely related to a special case of Bayesian networks evaluated 
with a stochastic simulation algorithm. (See Section 14.5.) 

For neural nets, Bishop (1995), Ripley (1996), and Haykin (2008) are the leading texts. 
The field of computational neuroscience is covered by Dayan and Abbott (2001). 

The approach taken in this chapter was influenced by die excellent course notes of David 
Cohn, Tom Mitchell, Andrew Moore, and Andrew Ng. There are several top-notch textbooks 
in Machine Learning (Mitchell, 1997;  Bishop, 2007) and in the closely allied and overlapping 
fields of pattern recognition (Ripley. 1996; Duda et al., 2001), statistics (Wasserman, 2004; 
Hastie et al., 2001), data mining (Hand et al., 2001; Witten and Frank, 2005), computational 
learning theory (Kearns and Vazirani, 1994; Vapnik.  1998) and information theory (Shannon 
and Weaver, 1949; MacKay, 2002; Cover and Thomas, 2006).  Other books concentrate on 
implementations (Segaran,  2007; Marsland, 2009) and comparisons of algorithms (Michie 
et al., 1994). Current research in machine learning is published in the annual proceedings 
of the International Conference on Machine Learning (1CML)  and the conference on Neural 
Information Processing Systems (NIPS), in Machine Learning and the Journal of Machine 
Learning Research, and in mainstream Al journals. 

EXERCISES 

18.1 Consider the problem faced by an infant learning to speak and understand a language. 
Explain how this process fits into the general learning model, Describe the percepts and 
actions of the infant, and the types of learning the infant must do. Describe the subfunctions 
the infant is trying to learn in terms of inputs and outputs, and available example data. 

18.2 Repeat Exercise 18.1  for the case of learning to play tennis (or some other sport with 
which you are familiar). Is this supervised learning or reinforcement learning? 

18.3 Suppose we generate a training set from a decision tree and then apply decision-tree 
learning to that train'uig  set. Is it the case that the learning algorithm  will eventually return 
the correct tree as the training-set size goes to infinity? Why or why not? 

18.4 In the recursive construction of decision trees, it sometimes happens that a mixed set 
of positive and negative examples remains at a leaf node, even after all the attributes have 
been used. Suppose that we have p positive examples and n negative examples. 
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CUSS PROBABILJTY  

lwi 

a. Show that the solution used by DECISION-TREE-LEARNING, which picks the majority 
classification, minimizes the absolute error over the set of examples at the leaf. 

b. Show that the class probability pl  (p  n) minimizes the sum of squared errors. 

18.5 Suppose that an attribute splits the set of examples E into subsets Ek and that each 
subset has pk  positive examples and 7/k  negative examples. Show that the attribute has strictly 
positive information gain unless the ratio pki(pk.  nk)  is the same for all k. 

18.6 Consider the following data set comprised of three binary input attributes (Al, A2, and 
A3 )  and one binary output: 

Example Al  A2 A3 Output y  
xi 
x2  
xa  

-,  
-
 0
  

0
  
C

 -
  

0
  
-
 C

r  

O
  

C
  
C

  
..-  

Xi 
x5  

Use the algorithm in Figure 18.5 (page 702) to learn a decision tree for these data. Show the 
computations made to determine the attribute to split at each node. 

18.7 A decision graph is a generalization of a decision tree that allows nodes (i.e., attributes 
used for splits) to have multiple parents, rather than just a single parent. The resulting graph 
must still be acyclic. Now, consider the XOR function of three binary input attributes, which 
produces the value I if and only if an odd number of the three input attributes has value 1. 

a. Draw a minimal-sized decision tree for the three-input XOR function. 
b. Draw a minimal-sized decision graph for the three-input XOR function. 

18.8 This exercise considers x 2  pruning of decision trees (Section 18.3.5). 
a. Create a data set with two input attributes, such that the information gain at the root of 

the tree for both attributes is zero, but there is a decision tree of depth 2 that is consistent 
with all the data. What would N 2  pruning do an this data set if applied bottom up? if  
applied top down? 

b. Modify DECISION-TREE-LEARNING to include x2 -pruning.  You might wish to con-
sult Quinlan (1986) or Kearns and Mansour (1998) for details. 

18.9 The standard DECISION-TREE-LEARNING algorithm described in the chapter does 
not handle cases in which some examples have missing attribute values. 

a. First, we need to find a way to classify such examples, given a decision tree that includes 
tests on the attributes for which values can be missing. Suppose that an example x has 
a missing value for attribute A and that the decision tree tests for A at a node that x 
reaches. One way to handle this case is to pretend that the example has //II  possible 
values for the attribute, but to weight each value according to its frequency among all 
of the examples that teach that node  in the decision tree.  The classification algorithm  
should follow all branches at any node for which a value is missing and should multiply 
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the weights along each path. Write a modified classification algorithm for decision trees 
that has this behavior.  

b. Now modify the information-gain calculation so that in any given collection of exam-
ples C at a given node in the tree during the construction process, the examples with 
missing values for any of the remaining attributes are given "as-if" values according to 
the frequencies of those values in the set C. 

18.10 In Section 18.3.6, we noted that attributes with many different possible values can 
cause problems with the gain measure. Such attributes tend to split the examples into numer- 
ous small classes or even singleton classes, thereby appearing to be highly relevant according 
to the gain measure. The gain-ratio criterion selects attributes according to the ratio between 
their gain and their intrinsic information content—that  is, the amount of information con-
tained in the answer to the question, "What is the value of this attribute?" The gain-ratio crite-
rion therefore tries to measure how efficiently an attribute provides information on the correct 
classification of an example. Write a mathematical expression for the information  content of 
an attribute, and implement the gain ratio criterion in DECISION-TREE-LEARNING.  

18.11 Suppose you are running a learning experiment on a new algorithm for Boolean clas- 
sification. You have a data set consisting of 100 positive and 100 negative examples. You 
plan to use leave-one-out cross-validation and compare your algorithm to a baseline function, 
a simple majority classifier. (A majority classifier is given a set of training data and then 
always outputs the class that is in the majority in the training set, regardless of the input.) 
You expect the majority classifier to score about 50% on leave-onc-out  cross-validation, but 
to your surprise, it scores zero every time. Can you explain why? 

18.12 Construct a decision list to classify the data below. Select tests to be as small as 
possible (in terms of attributes), breaking ties among tests with the same number of attributes 
by selecting the one that classifies the greatest number of examples correctly,  If multiple tests 
have the same number of attributes and classify the same number of examples, then break the 
tie using attributes with lower index numbers (e.g., select A n  over A2 ). 

Example A 1  A2 A3 A4 y 
xi 

- - - a
 - c:,  - a 

X2 
X3 

X4 

a ._,  -  a 

X5 

X6  

X7 

Xs 

18.13 Prove that a decision list can represent the same function as a decision tree while 
using at most as many rules as there are leaves in the decision tree for that function. Give an 
example of a function represented  by a decision list using strictly fewer rules than the number 

of leaves in a minimal-sized decision tree for that same function. 
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18.14 This exercise concerns the expressiveness of decision lists (Section 18.5). 
a. Show that decision lists can represent any Boolean function, if the size of the tests is 

not limited. 
b. Show that if the tests can contain at most k literals each, then decision lists can represent 

any function that can be represented by a decision tree of depth k. 

18.15 Suppose a 7-nearest-neighbors  regression search  returns {7, 6, 8, 4, 7, 11,100} as the 
7 nearest y  values for a given x value. What is the value of y that minimizes the L i  loss 
function on this data? There is a common name in statistics for this value as a function of the 
y values; what is it? Answer the same two questions for the L2 loss function. 

18.16 Figure 18.31 showed how a circle at the origin can be linearly separated by mapping 
from the features  ) to the two dimensions (x . ,  TD.  Rut what if the circle is not located 
at the origin? What if it is an ellipse, not a circle? The general equation for a circle (and 
hence the decision boundary) is (x. 1  —  0 2 + (x2  —  b)2  —  / 2 =  0, and the general equation fat  
an ellipse is c(ri  — a) 2  d(x2  — b) 2  — 1=0. 

a. Expand out the equation for the circle and show what the weights w,  would be for the 
decision boundary in the four-dimensional feature space (x 1 , T2 , xi, 4) Explain why 
this means that any circle is linearly separable in this space. 

b. Do the same for ellipses in the five-dimensional feature space (xi, x2,4,  x2, xi  r2)- 

18.17 Construct a support vector machine that computes the XOR function. Use values of 
+1 and —1 (instead of 1 and 0) for both inputs and outputs, so that an example looks like 

11,  1) or ([-1, —11,  — 1). Map the input 'xi,  x2] into a space consisting of xi and xi x2. 
Draw the four input points in this space, and the maximal margin separator. What is the 
margin? Now draw the separating line back in the original Euclidean input space. 

18.18 Consider an ensemble learning algorithm that uses simple majority voting among 
K learned hypotheses. Suppose that each hypothesis has error c  and that the errors made 
by each hypothesis are independent of the others'. Calculate a formula for the error of the 
ensemble algorithm in terms of K and r, and evaluate it for the cases where K= 5, 10, and 
20 and e = 0.1. 0.2, and 0.4. If the independence assumption is removed, is it possible for the 
ensemble error to he worse than e9  

18.19 Construct by hand a neural network that computes the XOR function of two inputs. 
Make sure to specify what sort of units you are using. 

18.20 Recall from Chapter 18 that there are 22' distinct Boolean functions of n inputs. how 
many of these are representable by a threshold perceptron? 

18.21 Section 18.6.4 (page 725) noted that the output of the logistic function could be in- 
terpreted as a probability  p assigned by the model to the proposition that f (x) — 1; the prob- 
ability that f (x) = 0 is therefore 1 — p. Write down the probability p as a function of x 
and calculate the derivative of log p with respect to each weight wa. Repeat the process for 
log(1  —p). These calculations give a learning rule for minimizing the negative-log-likelihood  
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loss function for a probabilistic hypothesis. Comment on any resemblance to other learning 
rules in the chapter. 

18.22 Suppose you had a neural network with linear activation functions. That is, for each 
unit the output is some constant c times the weighted sum of the inputs. 

a. Assume that the network has one hidden layer. For a given assignment to the weights 
w, write down equations for the value of the units in the output layer as a function of 
w and the input layer x, without any explicit mention of the output of the hidden layer. 
Show that there is a network with no hidden units that computes the same function. 

b. Repeat the calculation in part (a), but this time do it for a network with any number of 
hidden layers_ 

c. Suppose a network with one hidden layer and linear activation functions has n input 
and output nodes and h hidden nodes. What effect does the transformation in part (a) 
to a network with no hidden layers have on the total number of weights? Discuss in 
particular the case h CC n. 

18.23 Suppose that a training set contains only a single example, repeated 100 times. In 
80 of the 100 cases, the single output value is 1; in the other 20, it is 0. What will a back-
propagation network predict for this example, assuming that it has been trained and reaches 
a global optimum? (Hint:  to find the global optimum, differentiate the error function and set 
it to zero.) 

18.24  The neural network whose learning performance is measured in Figure 18.25 has four 
hidden nodes. This number was chosen somewhat arbitrarily. Use a cross-validation method 
to find the best number of hidden nodes. 

18.25 Consider the problem of separating N data points into positive and negative examples 
using a linear separator. Clearly, this can always he done for N =2 points on a line of 
dimension d= 1, regardless of how the points are labeled or where they are located (unless 
the points are in the same place). 

a. Show that it can always be done for 1■T  = 3 points on a plane of dimension d= 2, unless 
they are collinear. 

b. Show that it cannot always be done for N =4 points on a plane of dimension d= 2. 
c. Show that it can always be done for N = 4 points in a space of dimension d= 3, unless 

they are coplanar. 
d. Show that it cannot always be done for N = 5 points in a space of dimension d= 3.  
e. The ambitious student may wish to prove that N points in general position (but not 

N 1) are linearly separable in a space of dimension N —1. 



19  KNOWLEDGE IN 
LEARNING 

In which we examine the problem of learning when you know something already. 

F'1113H  KNOINLELKi  

In all of the approaches to learning described in the previous chapter, the idea is to construct 
a function that has the input—output behavior observed in the data. In each case, the learning 
methods can be understood as searching a hypothesis space to find a suitable function, starting 
from only a very basic assumption about  the form of the function, such as "second-degree  
polynomial" or "decision tree" and perhaps a preference for simpler hypotheses. Doing this 
amounts to saying that before you can learn something new, you must first forget (almost) 
everything you know. In this chapter, we study learning methods that can take advantage 
of prior knowledge about the world. In most cases, the prior knowledge is represented 
as general first-order logical theories; thus for the first time we bring together the work on 
knowledge representation and learning. 

19.1 A LOGICAL FORMULATION OF LEARNING 

Chapter 18 defined pure inductive learning as a process of finding a hypothesis that agrees 
with the observed examples. Here, we specialize this definition to the case where the hypoth-
esis is represented by a set of logical sentences. Example descriptions and classifications will 
also be logical sentences, and a new example can be classified by inferring a classification 
sentence from the hypothesis and the example description. This approach allows for incre  
mental construction of hypotheses, one sentence at a time. It also allows for prior knowledge, 
because sentences that are already known can assist in the classification of new examples 
The logical formulation of learning may seem like a lot of extra work at first, but it turns out 
to clarify many of the issues in learning. It enables us to go well beyond the simple learning 
methods of Chapter 18 by using the full power of logical inference in the service of learning. 

19.1.1 Examples and hypotheses 

Recall from Chapter 18 the restaurant learning problem: learning a rule for deciding whether 
to wait for  a table. Examples were described by attributes such as Alternate, Bar, Fri I Sat, 
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and so on. In a logical setting, an example is described by a logical sentence; the attributes 
become unary predicates. Lct us generically call the ith example X,. For instance, the first 
example from Figure 18.3 (page 700) is described by the sentences 

Atternote  ( Xi ) A –13  ar (Xi) A –.Fri I Sat (Xi) A Hungry(X  1) A .  .  

We will use the notation Di(X,)  to refer to the description of Xi ,  where Di can be any logical 
expression taking a single argument. The classification of the example is given by a literal 
using the goal predicate, in this case 

WillWait(X1) or WillWait(X  1 ) .  

The complete training set can thus be expressed as the conjunction of all the example descrip-
tions and goal literals. 

The aim of inductive learning in general is to find a hypothesis that classifies the ex-
amples well and generalizes well to new examples. Here we are concerned with hypotheses 
expressed in logic; each hypothesis hi  will have the form 

V x  Goal(x)  <=>  C;(x)  

where ci  (x) is a candidate definition—some expression involving the attribute predicate& 
For example, a decision tree can be interpreted as a logical expression of this form. Thus, the 
tree in Figure 18.6 (page 702) expresses the following logical definition (which we will call 
it,  for future reference): 

dr Wi/iWait(r)  4=>  Patroris(r,  Some) 
✓ Patrons (r, Fuld) A Hnngry(r)  A Type(r,  French) 
✓ Patrons (r, Full) A lliingry(r)  A Type(r, Thai) (19.1) 

A Fri /  Sat (r) 
✓ Patxons(r,  Full) A Hangry(r)  A Type(r,  Burger) . 

Each hypothesis predicts that a certain set of examples—namely, those that satisfy its candi- 
EXTENSION 
 date definition—will be examples of the goal predicate. This set is called the extension of 

the predicate. Two hypotheses with different extensions are therefore logically inconsistent 
with each other, because they disagree on their predictions for at least one example. If they 
have the same extension, they are logically equivalent. 

The hypothesis space  is the set of all hypotheses { h 1 , [  that the learning algo- 
rithm is designed to entertain. For example, the DECISION-TREE-LEARNING algorithm can 
entertain any decision tree hypothesis defined in terms of the attributes provided; its hypoth-
esis space therefore consists of all these decision trees. Presumably, the learning algorithm 
believes that one of the hypotheses is correct; that is. it believes the sentence 

hi V h2 V ft3  V ...  V itr, (19.2) 

As the examples arrive, hypotheses that are net consistent with the examples can be ruled 
out. Let us examine this notion of consistency more carefully. Obviously, if hypothesis hj  is 

consistent with the entire training set, it has to be consistent with each example in the training 
set. What would it mean for it to be inconsistent with an example"' There are  two possible 

ways that this can happen: 
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■ An example can be a false negative for the hypothesis, if the hypothesis says it should 
be negative but in fact it is positive. For instance, the new example Xis described by 
Pcttratis(X13, )  A —.Ifurtgry(X13)  A... A WillWait(X  13)  
would be a false negative for the hypothesis h r  given earlier. From lir  and the example 
description, we can  deduce both WillWait(Xrj),  which is what the example says, 
and Will Wait (X13), which is what the hypothesis predicts. The hypothesis and the 
example are therefore logically inconsistent. 

• An example can be a false positive for the hypothesis, if the hypothesis says it should 
be positive but in fact it is negative.' 

If an example is a false positive or false negative for a hypothesis, then the example and the 
hypothesis are logically inconsistent with each other. Assuming that the example is a correct 
observation of fact, then the hypothesis can be ruled out. Logically, this is exactly analogous 
to the resolution rule of inference (see Chapter 9), where the disjunction of hypotheses car-
responds  to a clause and the example corresponds to a literal that resolves against one of the 
literals in the clause. An ordinary logical inference system therefore could, in principle, learn 
from the example by eliminating one or more hypotheses. Suppose, for example, that the 
example is denoted by the sentence h,  and the hypothesis space is hi V h2 V h3 V hi. Then if 
/1  is inconsistent with ft2  and h3,  the logical inference system can deduce the new hypothesis 
space hi V 44.  

We therefore can characterize inductive learning in a logical setting as a process of 
gradually eliminating hypotheses that are inconsistent with the examples, narrowing down 
the possibilities. Because the hypothesis space is usually vast (or even infinite in the case of 
first-order logic), we do not recommend trying to build a learning system using resolution-
based theorem proving and a complete enumeration of the hypothesis space. Instead, we will 
describe two approaches that find logically consistent hypotheses with much less effort. 

19.1.2  Current-best-hypothesis search 

The idea behind current.best-hypothesis  search is to maintain a single hypothesis, and to 
adjust it as new examples arrive in order to maintain consistency. The basic algorithm was 
described by John Stuart Mill (1843), and may well have appeared even earlier. 

Suppose we have some hypothesis such as hr , of which we have grown quite fond, 
As long as each new example is consistent, we need do nothing. Then along comes a false 
negative example, Xis. What do we do? Figure 19.1(a) shows lir  schematically as a region: 
everything inside the rectangle is part of the extension of hr . The examples that have actually 
been seen so far are shown as "+"  or "—",  and we see that h,  correctly categorizes all the 
examples as positive or negative examples of Will ait. in Figure 19.1(b), a new example 
(circled) is a false negative: the hypothesis says it should be negative but it is actually positive. 
The extension of the hypothesis must be increased to include it. This is called generalization; 
one possible generalization is shown in Figure I9A  (c).  Then in Figure 19.1(d), we see a false 
positive: the hypothesis says the new example (circled) should be positive, but it actually is 

The terms "false positive" and "false negative" are used in medicine to describe erroneous results from lab 
tests. A result is a false positive if it indicates that the patient has the disease when in fact no disease is present. 
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Figure 19.1 (a) A consistent hypothesis. (6) A false negative. ie)  The hypothesis is gen- 
eralized. (d) A false positive. (e) The hypothesis is specialized. 

function CURRENT-BEST-LEAPNING(examples,  h) returns a hypothesis or fail 

if examples  is empty then 
return h 

e  FIRST( examples) 
if e is consistent with is then 

return CURRENT-BEST-LEARNING(REST(ezanyies),  Fs)  
else if e is a false positive for 1s then 

for each h' in specializations of h. consistent with examples  seen so far do 
h" CURRENT-BEST-LEARNING  (REST(extunpies).  h') 
if Is"  0  fail then return Is" 

else if e  is a false negative for is then 
for each is' in generalizations of h consistent with examples  seen so far do 

"4—  CURRENT-BEST-LEARNING  (REST( examples). h') 
if h" # fail then return Is" 

return fail 

Figure 19.2 The current-hest-hypothesis  learning algorithm. It searches for a consis- 
tent hypothesis that fits all the examples and backtracks when no consistent specializa-
tion/generalization  can be found. To start the algorithm, any hypothesis can be passed in; 
it will be specialized or gneratized  as needed. 

negative. The extension of the hypothesis must be decreased to exclude the example. This is 
called specialization; in Figure 19.1(e) we see one possible specialization of the hypothesis. 
The "more general than" and "more specific than" relations between hypotheses provide the 
logical structure on the hypothesis space that makes efficient search possible. 

We can now specify the CURRENT-REST-LEARNING  algorithm, shown in Figure 19.2.  
Notice that each time we consider generalizing or specializing the hypothesis, we must check 
for  consistency with the other examples, because an arbitrary  increase/decrease  in the exten- 
sion might include/exclude previously seen negative/positive examples. 
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We have defined generalization and specialization as operations that change the exten- 
sion of a hypothesis. Now we need to determine exactly how they can be implemented as 
syntactic operations that change the candidate definition associated with the hypothesis, so 
that a program can carry them out. This is done by first noting that generalization and special- 
ization are also logical relationships between hypotheses. If hypothesis hi, with definition 

is a generalization of hypothesis h.2  with definition C2,  then we must have 
dx  C2 (x)  

Therefore in order to construct a generalization of h2,  we simply need to find a defini-
tion Ci  that is logically implied by C2. This is easily done. For example, if C2(a)  is 
Alternate(x)  A Patrons(x  , Some), then one possible generalization is given by Ci(x) 
P atrons  ( x ,  Some). This is called dropping conditions. Intuitively, it generates a weaker 
definition and therefore allows a larger set of positive examples. There are a number of other 
generalization operations. depending on the language being operated on. Similarly, we can 
specialize a hypothesis by adding extra conditions to its candidate definition nr by removing 
disjuncts from a disjunctive definition. Let us see how this works on the restaurant example, 
using the data in Figure 1 U.  

• The first example, Xi , is positive. The attribute Alternate(X i ) is true, so let the initial 
hypothesis be 

h i  V x WillWait(x)  H Alternate(x)  

■ The second example, X2, is negative. h i  predicts it to be positive, so it is a false positive. 
Therefore, we need to specialize hi. This can be done by adding an extra condition that 
will rule  out X2, while continuing to classify Xi as positive. One possibility is 

h2  :  V x <=>  Alternate(x)  I1 Patron,s(x,  Some) .  

■ The third example, X3, is positive. la g  predicts it to be negative, so it is a false negative. 
Therefore, we need to generalize h 2 . We drop the Alternate condition, yielding 

h3 : Vx  WillWait(x) P citrons (x,  Some) . 

■ The fourth example, X4, is positive. it,:s  predicts it to be negative, so it is a false negative. 
We therefore need to generalize h3.  We cannot drop the Patrons condition, because 
that would yield an all-inclusive hypothesis that would be inconsistent with X2.  One 
possibility is to add a disjunct: 

h4  :  V x  WillWait(s)  <=>  Patrons(x,  Some) 
V  {Patrons  (3  7,  Fv11)  A Fri  I gni(T))  

Already, the hypothesis is starting to look reasonable.  Obviously, there are other possibilities 
consistent with the first four examples; here are two of them: 

h4  :  V x  WzilWait(x)  .<=>  —, WaitEstimate(:x  ,  30-60) . 

• :  V x WallWait(x) Patrons(r,  Some) 
V ( Patrons(x,  Full) A WaitEstimate(x10-30))  .  

The CURRENT-BEST-LEARNING algorithm is described nondeterministically,  because at any 
point, there may be several possible specializations or generalizations that can be applied. The 
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function VERSION-SPACE-LEARNING(  camnspies)  returns a version space 
local variables: V, the version space: the set of all hypotheses 

V the set of all hypotheses 
for each example e  in examples do 

if V is not empty then V — VERSION-SPACE-UPDATE( V, e) 
return V 

function VERSION-SPACE-UPDATE( V, e) returns an updated version space 

V 4-  {h E V h is consistent with e} 

Figure 19,3 The version space learning algorithm. It finds a subset of V that is consistent 
with all the examples. 

choices that are made will not necessarily lead to the simplest hypothesis, and may lead to an 
unrecoverable situation where no simple modification of the hypothesis is consistent with  all 
of the data. In such cases, the program must backtrack to a previous choice point. 

The CURRENT-BEST-LEARNING algorithm and its variants have been used in many 
machine learning systems, starting with Patrick Winston's (1970) "arch-learning" program.  
With a large number of examples and a large space, however, some difficulties arise: 

1. Checking all the previous examples over again for each modification is very expensive_ 
1 The search process may involve a great deal of backtracking. As we saw in Chapter 18, 

hypothesis space can be a doubly exponentially large place. 

19.1.3 Least-commitment  search 

VERSION SPACE  

CAV^ IDATE  
ELIMINATION 

Backtracking arises because the current-best-hypothesis approach has to choose a particular 
hypothesis as its best guess even though it does not have enough data yet to be sure of the 
choice. What we can do instead is to keep around all and only those hypotheses that are 
consistent with all the data so far. Each new example will either have no effect or will get 
rid of some of the hypotheses, Recall that the original hypothesis space can be viewed as a 
disjunctive sentence 

hi V h2 V ha ...  V h, .  

As various hypotheses are found to be inconsistent with the examples, this disjunction shrinks, 
retaining only those hypotheses not ruled out. Assuming that the original hypothesis space 
does in fact contain the right answer, the reduced disjunction must still contain the right an-
swer because only incorrect hypotheses have been removed. The set of hypotheses remaining 
is called the version space, and the learning algorithm (sketched in Figure 19.3) is called the 
version space learning algorithm (also the candidate elimination algorithm). 

One important property of this approach is that it is incremental: one never has to 
go back and =examine the old examples. All remaining hypotheses are guaranteed to be 
consistent with them already. But there is an obvious problem. We already said that the 
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BOUNDARY SET  

G-SET  

B-SET  

This region all inconsistent 

Figure 19.4 The version space contains all hypotheses consistent with the examples. 

hypothesis space is enormous, so how can we possibly write down this enormous disjunction? 
The following simple analogy is very helpful. How do you represent all the real num-

bers between 1  and 2? After all, there are an infinite number of them! The answer is to use 
an interval representation that just specifies the boundaries of the set: [1,2].  It works because 
we have an ordering on the real numbers. 

We also have an ordering on the hypothesis space, namely, generalization/specialization. 
This is a partial ordering, which means that each boundary will not be a point but rather a 
set of hypotheses called a boundary set. The great thing is that we can represent the entire 
version space using just two boundary sets: a most general boundary (the G-set) and a most 
specific boundary (the S-set).  Everything in between is guaranteed to he consistent with the 
examples. Before we prove this, let us recap: 

• The current version space is the set of hypotheses consistent with all the examples so 
far. It is represented by the S-set and G-set, each of which is a set of hypotheses. 

■ F.very  member of the S -set is consistent with all observations so far, and there are nn  

consistent hypotheses that are more specific. 
■ Every member of the G-set  is consistent with all observations so far, and there are no 

consistent hypotheses that are more general. 

We want the initial version space (before any examples have been seen) to represent all possi-
ble hypotheses. We do this by setting the G-set  to contain True (the hypothesis that contains 

everything), and the S-set to contain False (the hypothesis whose extension is empty). 
Figure 19.4  shows the general stiuctine  of the boundary-set representation of the version  

space. To show that the representation is sufficient, we need the following two properties: 
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I.  Every consistent hypothesis (other than those in the boundary sets) is more specific than 
some member of the G-set,  and more general than some member of the S -set.  (That is, 
there are no "stragglers" left outside.) This follows directly from the definitions of S 
and G. If there were a straggler Is,  then it would have to be no more specific than any 
member of G, in which case it belongs in G;  or no more general than any member of 
5, in which case it belongs in 5'. 

2. Every hypothesis more specific than some member of the G-set  and more general than 
some member of the S-set is a consistent hypothesis. (That is, there are no "holes" be-
tween the boundaries.) Any Ti between S and C must reject all the negative examples 
rejected by each member of G (because it is more specific), and must accept all the pos-
itive examples  accepted by any member of 5' (because it is more general). Thus, h must 
agree with all the examples, and therefore cannot be inconsistent. Figure 19.5 shows 
the situation: there are no known examples outside S but inside G, so any hypothesis 
in the gap must be consistent. 

We have therefore shown that if .5  and G are maintained according to their definitions, then 
they provide a satisfactory representation of the version space. The only remaining problem 
is how to update S and G for a new example (the job of the VERS1ON-SPACE-UPDATE  
function). This may appear rather complicated at first, but from the definitions and with the 
help of Figure 19.4, it is not too hard to reconstruct the algorithm. 

We need to worry about the members S i  and G,  of the S- and G-sets.  For each one, the 
new example may be a false positive or a false negative. 

1. False positive for Si: This means .5,  is too general, but there are no consistent special-
izations of Si  (by definition), so we throw it out of the S-set. 

2. False negative for S i : This means S i  is too specific, so we replace it by all its immediate 
generalizations, provided they are more specific than some member of G. 

3. False positive for  G i :  This means is too general,  so we replace it by all its immediate 
specializations, provided they are more general than some member of S. 
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4. False negative for Gi:  This means Gi  is too specific, but there are no consistent gener-
alizations of Gi  (by definition) so we throw it out of the G-set.  

We continue these operations for each new example until one of three things happens: 

1. We have exactly one hypothesis left in the version space, in which case we return it as 
the unique hypothesis. 

2. The version space collapses—either  S or G  becomes empty, indicating  that then: are 
no consistent hypotheses for the training set. This is the same case as the failure of the 
simple version of the decision tree algorithm. 

3. We run out of examples and have several hypotheses remaining in the version space. 
This means the version space represents a disjunction of hypotheses. For any new 
example, if all the disjuncts agree, then we can return their classification of the example. 
If they disagree, one possibility is to take the majority vote. 

We leave as an exercise the application of the VERSION - SPACE -LEARNING algorithm to the 
restaurant data 

There are two principal drawbacks to the version-space approach: 

• If the domain contains noise or insufficient attributes for exact classification, the version 
space will always collapse. 

• If we allow unlimited disjunction in the hypothesis space, the S-set will always contain 
a single most-specific hypothesis, namely, the disjunction of the descriptions of the 
positive examples seen to date. Similarly, the G-set will contain just the negation of the 
disjunction of the descriptions of the negative examples. 

■ For some hypothesis spaces, the number of elements in the S-set or G-set may grow 
exponentially in the number of attributes, even though efficient learning algorithms exist 
for those hypothesis spaces. 

To date, no completely successful solution has been found for the problem of noise. The 
problem of disjunction can be addressed by allowing only limited forms of disjunction or by 
including a generalization hierarchy of more general predicates. For example, instead of 
using the disjunction WctitEstimate(x,30-60)  V WaitEstirnate(x,  >60), we might use the 
single literal LongWait(x).  The set of generalization and specialization operations can be 
easily extended to handle this. 

The pure version space algorithm was first applied in the Meta - DENDRAL system. 
which was designed to learn rules for predicting how molecules would break into pieces in 
a mass spectrometer (Buchanan and Mitchell, 1978). Meta-DENDRAL was able to generate 
rules that were sufficiently novel to warrant publication in a journal of analytical chemistry—
the first real scientific knowledge generated by a computer program. It was also used in the 
elegant LEX  system (Mitchell et al., 1983), which was able to learn to solve symbolic integra- 

tion problems by studying its own successes and failures. Although version space methods 
are probably not practical in most real-world learning problems, mainly because of noise, 
they provide a good deal of insight into the logical structure of hypothesis space. 
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knowledge over time. 

19,2 KNOWLEDGE IN LEARNING 

ENTAILMENT 
CrINSTFIAINT  

The preceding section described the simplest setting for inductive learning. To understand the 
role of prior knowledge, we need to talk about the logical relationships among hypotheses, 
example descriptions, and classifications. Let Descriptions denote the conjunction of all the 
example descriptions in the training set, and let  ClassOcations  denote the conjunction of all 
the example classifications. Then a Hypothesis that "explains the observations" must satisfy 
the following property (recall that =  means "logically entails"): 

Hypothesis A Descriptions nossifications (19.3) 

We call this kind of relationship an entailment constraint, in which Hypothesis is the "un- 
known." Pure inductive learning means solving this constraint, where Hypothesis is drawn 
from some predefined hypothesis space. For example, if we consider a decision tree as a 
logical formula (see Equation (19.1) on page 769), then a decision tree that is consistent with 
all the examples will satisfy Equation (19.3). If we place no  restrictions on the logical form 
of the hypothesis, of course, then Hypothesis = Classifications also satisfies the constraint. 
Ocicham's  razor tells us to prefer small, consistent hypotheses. so we try to do better than 
simply memorizing the examples. 

This simple knowledge-free picture of inductive learning persisted until the early 1980s. 
The modern approach is to design agents that already know something and are trying to learn 
some more. This may not sound like a terrifically deep insight, but it makes quite a difference 
to the way we design agents. It might also have some relevance to our theories about how 
science itself works. The general idea is shown schematically in Figure 19.6. 

An autonomous learning agent that uses background knowledge must somehow obtain 
the background knowledge in the first place, in order for it to be used in the new learning 
episodes. This method must itself be a learning process. The agent's life history will there-
fore be characterized by cumulative, or incremental, development. Presumably, the agent 
could start out with nothing, performing inductions in vacua  like a good little pure induc- 

tion program. But once it has eaten from the Tree of Knowledge. it can no longer pursue 
such naive speculations and should use its background knowledge to learn more and more 
effectively. The question is then how to actually do this. 
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19.2.1 Some simple examples 

Let us consider some commonsense examples of learning with background knowledge. Many 
apparently rational cases of inferential behavior in the face of observations clearly do not 
follow the simple principles of pure induction. 

• Sometimes one leaps to general conclusions after only one observation. Gary Larson 
once drew a cartoon in which a bespectacled caveman, Zog, is roasting his lizard on 
the end of a pointed stick. He is watched by an amazed crowd of his less intellectual 
contemporaries, who have been using their bare hands to hold their victuals over the fire. 
This enlightening experience is enough to convince the watchers of a general principle 
of painless cooking_  

• Or consider the case of the traveler to Brazil meeting her first Brazilian. On hearing him 
speak Portuguese, she immediately concludes that Brazilians speak Portuguese, yet on 
discovering that his name is Fernando, she does not conclude that all Brazilians are 
called Fernando. Similar examples appear in science. For example, when a freshman 
physics student measures the density and conductance of a sample of copper at a par-
ticular temperature, she is quite confident in generalizing those values to all pieces of 
copper. Yet when she measures its mass, she does not even consider the hypothesis that 
all pieces of copper have that mass. On the other hand, it would be quite reasonable to 
make such a generalization over all pennies. 

• Finally, consider the case of a pharmacologically ignorant but diagnostically sophisti-
cated medical student observing a consulting session between a patient and an expert 
internist. After a series of questions and answers, the expert tells the patient to take a 
course of a particular antibiotic. The medical student infers the general rule that that 
particular antibiotic is effective for a particular type of infection. 

These are all cases in which the use of background knowledge allows much faster learning 
than une  might expect from a pure induction program.  

19.2.2 Some general schemes 

In each of the preceding examples, one can appeal to prior knowledge to try to justify the 
generalizations chosen. We will now look at what kinds of entailment constraints are operat-
ing in each case. The constraints will involve the Background knowledge, in addition to the 
Hypothesis and the observed Descriptions and Classifications. 

In the case of lizard toasting, the cavemen generalize by explaining the success of the 
pointed stick: it supports the lizard while keeping the hand away from the fire. From this 
explanation, they can infer a general rule: that any long, rigid, sharp object can be used to toast 
small, soft-bodied  edibles. This kind of generalization process has been called explanation-
based learning, or ESL. Notice that the general rule follows logically from the background 
knowledge possessed by the cavemen. Hence, the entailment constraints satisfied by EBL are 
the following :  

Hypothesis A Descriptions Classifications 
Background  Hypothesis .  
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Because EBL  uses Equation (19.3), it was initially thought to be a way to learn from ex- 
amples. But because it requires that the background knowledge be sufficient to explain the 
Hypothesis, which in turn explains the observations, the agent does not actually learn any- 
thing factually new from the example. The agent could have derived the example from what 
it already knew, although that might have required an unreasonable amount of computation. 
EBL is now viewed as a method for converting first-principles theories into useful, special-
purpose knowledge. We describe algorithms for EBL in Section 19.3. 

The situation of our traveler in Brazil is quite different, for she cannot necessarily ex-
plain why Fernando speaks the way he does, unless she knows her papal bulls. Moreover. 
the same generalization would be forthcoming from a traveler entirely ignorant of colonial 
history. The relevant prior knowledge in this case is that, within any given country, most 
people tend to speak the same language; on the other hand, Fernando is not assumed to be 
the name of all Brazilians  because this kind of regularity does 1101 hold fur names. Similarly, 
the freshman physics student also would be hard put to explain the particular values that she 
discovers for the conductance and density of copper. She does know, however, that the mate-
rial of which an object is composed and its temperature together determine its conductance. 
In each case, the prior knowledge Background concerns the relevance of a set of features to 
the goal predicate.  This knowledge, together with the observations. allows the agent to infer 
a new, general rule that explains the observations: 

Hypothesis A Descriptions H  Classifications ,  

Backgrou  nd  A Descriptions A Classifications if Hypothesis _  
(19.4) 

 
We call this kind of generalization relevance-based learning, or RBL  (although the name is 
not standard). Notice that whereas RBL does make use of the content of the observations, it 
does not produce hypotheses that go beyond the logical content of the background knowledge 
and the observations. It is a deductive form of learning and cannot by itself account for the 
creation of new knowledge starting from scratch. 

In the case of the medical student watching the expert, we assume that the student's 
prior knowledge is sufficient to infer the patient's disease D from the symptoms. This is 
not, however, enough to explain the fact that the doctor prescribes a particular medicine Al.  
The student needs to propose another rule, namely, that M generally is effective against D. 
Given this rule and the student's prior knowledge, the student can now explain why the expert 
prescribes M in this particular case. We can generalize this example to come up with the 
entailment constraint 

Background A Hypothesis A Descriptions = Classifications . (19.5)  

Iffr 
That is, the background knowledge and the new hypothesis combine to explain the examples. 
As with pure inductive learning, the learning algorithm should propose hypotheses that are as 
simple as possible, consistent with this constraint. Algorithms that satisfy constraint (19.5) 

KNOWLEDGE EASED 
INDUCTIVE are called knowledge-based inductive learning, or KBIL,  algorithms. 
LEARNING 

KBIL algorithms, which are described in detail in Section 19.5, have been studied 
IND

OG
UC

RAMMING  
TIVE  LOGIC mainly in the field of inductive logic programming, of [LP.  ILP  systems, prior knowl- PR 

edge plays two key roles in reducing the complexity of learning: 
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1. Because any hypothesis generated must be consistent with the prior knowledge as well 
as with the new observations, the effective hypothesis space size is reduced to include 
only those theories that are consistent with what is already known. 

2. For any given set of observations, the size of the hypothesis required to construct an 
explanation for the observations can be much reduced, because the prior knowledge 
will be available to help out the new rules in explaining the observations. The smaller 
the hypothesis, the easier it is to find 

In addition to allowing the use of prior knowledge in induction, ILP systems can formulate 
hypotheses in general first-order logic, rather than in the restricted attribute-based language 
of Chapter 18. This means that they can learn in environments that cannot be understood by 
simpler systems. 

19.3 EXPLANATION-BASED LEARNING 

MELIOIZATION  

Explanation-based learning is a method for extracting general rules from individual obser-
vations. As an example, consider the problem of differentiating and simplifying algebraic 
expressions (Exercise 9.17). If we differentiate an expression such as X 2  with respect to 
X,  we obtain 2X. We use a capital letter for the arithmetic unknown X, to distinguish it 
from the logical variable x.) In a logical reasoning system, the goal might be expressed as 
ASK ( Derivative(X2  , X) — d, KB), with solution d — 2X. 

Anyone who knows differential calculus can see this solution "by inspection" as a result 
of practice in solving such problems. A student encountering such problems for the first time ;  
or a program with no experience, will have a much more difficult job. Application of the 
standard rules of differentiation eventually yields the expression 1 x (2 x (X ',2-1 ))),  and 
eventually this simplifies to 2X. In the authors' logic programming implementation, this 
takes 136 proof steps, of which 99 are on dead-end branches in the proof. After such an 
experience, we would like the program to solve the same problem much more quickly the 
next time it arises. 

The technique of memoization has long been used in computer science to speed up 
programs by saving the results of computation. The basic idea of memo functions is to 
accumulate a database of input—output pairs; when the function is called, it first checks the 
database to see whether it can avoid solving the problem from scratch Explanatinn-based  
learning takes this a good deal further, by creating general rules that cover an entire class 
of cases. In the case of differentiation, memoization would remember that the derivative of 
X2  with respect to X is 2X, but would leave the agent to calculate the derivative of 2 2  with 
respect to Z from scratch. We would like to be able to extract the general rule that for any 
arithmetic unknown u,  the derivative of u2  with respect to u is 2u.  (An even more general 
rule for um  can also be produced, but the current example suffices to make the point.) In 
logical terms, this is expressed by the rule 

Arithmetic LI  nlma  wn(u)  = D  erivative(u 2  , u) = 2u . 
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If the knowledge base contains such a rule, then any new case that is an instance of this rule 
can be solved immediately. 

This is, of course, merely a trivial example of a very general phenomenon. Once some-
thing is understood, it can be generalized and reused in other circumstances. It becomes an 
"obvious" step and can then be used as a building block in solving problems still more com-
plex. Alfred North Whitehead (1911), co-author with Bertrand Russell of Principia idathe-
malica,  wrote "Civilization advances by extending the number of important operations that 
we can dry without thinking about them," perhaps himself applying EBL to his understanding 
of events such as Zog's  discovery. If you have understood the basic idea of the differenti-
ation example, then your brain is already busily trying to extract the general principles of 
explanation-based learning from it. Notice that you hadn't already invented EBL before you 
saw the example. Like the cavemen watching Zog, you (and we) needed an example before 
we could generate the basic principles. This is because explaining why something is a good 
idea is much easier than coming up with the idea in the first place. 

19.3.1 Extracting general rules from examples 

The basic idea behind EBL is first to construct an explanation of the observation using prior 
knowledge, and then to establish a definition of the class of cases for which the same expla-
nation structure can be used. This definition provides the basis for a rule covering all of the 
cases in the class. The "explanation" can be a logical proof, but more generally it can be any 
reasoning or problem-solving process whose steps are well defined. The key is to be able to 
identify the necessary conditions for those same steps to apply to another case. 

We will use for our reasoning system the simple backward-chaining theorem prover 
described in Chapter 9. The proof tree for Derivalive.(X 2 ,  X) = 2X is too large to use as an 
example ;  so we will use a simpler problem to illustrate the generalization method. Suppose 
our problem is to simplify 1 x (0  + X),  The knowledge base includes the following rules: 

Rewrite(u,v)  A .%mplif9(v,w)  = Simplify(u,  w)  
Prtimitive(u) Simplif  yeu,.u)  .  
ArithmeticUnknown(n)  = Primitive (n)  . 
Nwmitcr(u) Princitive(a)  .  
Rewrite(1  x u,u)  .  
Rewrite (0 . 

The proof that the answer is X is shown in the top half of Figure 19.7. The EBL  method 
actually constructs  two proof trees simultaneously. The second proof tree uses a variahilized  
goal in which the constants from the original goal are replaced by variables.  As the original 
proof proceeds, the variabilized  proof proceeds in step, using exactly the same rule applica-
tions. This could cause some of the variables to become instantiated, For example, in order 
to use the rule Rewrite(lx  u),  the variable x  in the subgoal Rewrite(x  x (y z),v)  must 
be bound to 1. Similarly, y musi  be bound to 0 in the subgual  fiewrite(y  .z,'u')  in order to 
use the rule Hslecite(0  u,  u).  Once we have the generalized proof tree, we take the leaves 



Rewrite(]  (0+X),v)  
YES,  IVA@  +.*  

Rewrife(xfk(y+  2),v)  

Yes, 1,0/1,100-1-4  

Arithmetic Unknown(;)  

Yes, {  } 

Figure 19.7 Proof trees for the simplification problem. The first tree shows the proof for 
the original problem instance, from which we can derive 

ArithmeticUnknoum(z) Simplify(1  x (0 +2), .  

The second tree shows the proof for a problem instance with all constants replaced by vari-
ables, from which we can derive a variety of other rules. 
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(with the necessary bindings) and form a general rule for the goal predicate: 
Rewrite(1  x (0  + 2.),0  z) A RAloritf,:(r1  + z, z) A An:farnetwUnkn.nalin(z)  

Simplify(1  x (0 + z),  z) .  
Notice that the first two conditions on the left-hand side are true regardless of the value of z. 
We can therefore drop them from the rule, yielding 

Arithmetic Unknown(z)  = Simplify(1  x (0+ z), z) 
In general, conditions can be dropped from the final rule if they impose no constraints on the 
variables on the right-hand side of the rule, because the resulting rule will still be true and 
will be more efficient. Notice that we cannot drop the condition ArahmeticUriknown(z),  
because not all possible values of z are arithmetic unknowns. Values other than arithmetic 
unknowns might require different forms of simplification: for example, if 2 were 2 x 3, then 
the correct simplification of 1 x (0 + (2 x 3)) would be 6 and not 2 x 3. 

To recap, the basic EBL process works as follows: 
I. Given an example, construct a proof that the goal predicate applies to the example using 

the available background knowledge. 
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2. In parallel, construct a generalized proof tree for the variabilized goal using the same 
inference steps as in the original proof. 

3. Construct a new rule whose left-hand side consists of the leaves of the proof tree and 
whose right-hand side is the variabilized goal (after applying the necessary bindings 
from the generalized proof). 

4. Drop any conditions from the left-hand side that are true regardless of the values of the 
variables in the goal. 

OPERATIONALITY  

193.2 Improving efficiency 

The generalized proof tree in Figure 19.7 actually yields more than one generalized rule. For 
example, if we terminate, or prune, the growth of the right-hand branch in the proof tree 
when it reaches the Primitive step. we get the rule 

Primitive(z) Simplify(1  x (0 z), z) .  

This rule is as valid as, but more general than, the rule using Arithmetic Unknown, because 
it covers cases where z is a number_ We can extract a still more general nile  by pruning after 
the step Simplify(y  z, to), yielding the rule 

Simplify (y + z,w) Sirnplify(1  x (y+ z),w) .  

In general, a rule can be extracted from any partial stabtree  of the generalized proof tree. Now 
we have a problem: which of these rules do we choose? 

The choice of which rule to generate comes down to the question of efficiency. There 
are three factors involved in the analysis of efficiency gains from EBL: 

Adding large numbers of rules can slow down the reasoning process, because the in- 
ference mechanism must still check those rules even in cases where they do not yield a 
solution. In other words, it increases the branching factor in the search space. 

2. To compensate fur the slowdown in reasoning, the derived rules must offer significant 
increases in speed for the cases that they do cover. These increases come about mainly 
because the derived rules avoid dead ends that would otherwise be taken, but also be-
cause they shorten the proof itself. 

3. Derived rules should be as general as possible, so that they apply to the largest possible 
set of eases_  

A common approach to ensuring that derived rules are efficient is to insist on the operational- 
ity of each subgoal in the rule. A subgoal is operational if it is "easy" to solve. For example, 
the subgoal Primitive(z)  is easy to solve, requiring at most two steps, whereas the subgoal  
Simplify(y  z, w) could lead to an arbitrary amount of inference, depending on the values 
of y and z. If a test for operationality  is carried out at each step in the construction of the 
generalized proof, then we can prune the rest of a branch as soon as an operational subgoal is 
found, keeping just the operational subgoal as a conjunct of the new rule. 

Unfortunately, there is usually a tradeoff between operationality and generality. More 
specific subgoals are  generally easier to solve but cover fewer cases. Also, operationality  

is a matter of degree: one or two steps is definitely operational, but what about 10 or 100? 
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Finally, the cost of solving a given subgoal depends on what other rules are available in the 
knowledge base. It can go up or down as more rides  arc added, Thus, EBL  systems really 
face a very complex optimization problem in trying to maximize the efficiency of a given 
initial knowledge base. It is sometimes possible to derive a mathematical model of the effect 
on overall efficiency of adding a given rule and to use this model to select the best rule to 
add_ The analysis can become very complicated, however, especially when recursive rules 
are involved. One promising approach is to address the problem of efficiency empirically. 
simply by adding several rules and seeing which ones are useful and actually speed things up. 

Empirical analysis of efficiency is actually at the heart of EBL. What we have been 
calling loosely the "efficiency of a given knowledge base" is actually the average-case  com- 
plexity an a distribution of problems. By generalizing ,from  past example pmblems,  EBL 
makes the knowledge base mare efficient  for the kind of problems that it is reasonable to 
expect. This works as long as the distribution of past examples is roughly the same as fur 
future examples—the same assumption used for PAC-leaming in Section 18.5. If the EBL 
system is carefully engineered, it is possible to obtain significant speedups. For example, a 
very large Prolog-based natural language system designed for speech-to-speech translation 
between Swedish and English was able to achieve real-time performance only by the appli-
cation of EBL to the parsing process (Samuelsson  and Rayner, 1991). 

19.4 LEARNING USING RELEVANCE INFORMATION 

Our traveler in Brazil seems to be able to make a confident generalization concerning the lan-
guage spoken by other Brazilians. The inference is sanctioned by her background knowledge, 
namely, that people in a given country (usually) speak the same language. We can express 
this in first-order logic as follows: 2  

NCh011ahty(  71.)  A Nattonaizty(y,  n) A Language(x,  I) = Language (g  , I) . (19.6) 

(Literal translation: "If .T  and g  have the same nationality n  and y.  speaks language 1, then 2)  
also speaks it.") It is not difficult to show that, from this sentence and the observation that 

Nationality (Fernando Brazil) A Language(Fernando  ,  Portuguese) .  

the following conclusion is entailed (see Exercise 19.1): 

Nationality(e,  Brazil) = Language(x,  Portuguese) .  

Sentences such as (19.6) express a strict form of relevance: given nationality, language 
is fully determined. (Put another way: language is a function of nationality.) These sentences 
are called functional dependencies or determinations. They occur so commonly in certain 
kinds of applications (e.g., defining database designs) that a special syntax is used to write 
them. We adopt the notation of Davies (1985): 

Nationality (T,  n) Language(or  ,  .  

2  We assume for the sake of simplicity that a person speaks only one ]anguage.  Clearly, the rule would have to 
be amended for countries such as Switzerland and India. 

FUNCTIONAL 
DEPENDENCY 

!EMMA!  UN  
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As usual, this is simply a syntactic sugaring, but it makes it clear that the determination is 
really a relationship between the predicates!  nationality determines language. The relevant 
properties determining conductance and density can be expressed similarly: 

Material (x ,  m) A Temprature(x  , t) Conductance(x,  p) ;  
Materiai(a  ,  an)  Tempo -etre(a:,t) Density(z,  ti)  .  

The corresponding generalizations  follow logically from the determinations and observations. 

19.4.1 Determining the hypothesis space 

Although the determinations sanction general conclusions concerning all Brazilians,  or all 
pieces of copper at a given temperature, they cannot, of course, yield a general predictive 
theory for all nationalities, or for all temperatures and materials, from a single example. 
Their main effect can be seen as limiting the space of hypotheses that the learning agent need 
consider. In predicting conductance, for example, one need consider only material and tem-
perature and can ignore mass, ownership, day of the week, the current president, and so on. 
Hypotheses can certainly include terms that are in turn determined by material and temper-
ature, such as molecular structure, thermal energy, or free-electron density. Determinations 
specify a sufficient basis vocabulary from which to construct hypotheses concerning the target 
predicate. This statement can be proven by showing that a given determination is logically 
equivalent to a statement that the correct definition of the target predicate is one of the set of 
all definitions expressible using the predicates on the left-hand side of the determination. 

Intuitively, it is clear that a reduction in the hypothesis space size should make it eas-
ier to learn the target predicate. thing the basic results of computational learning theory 
(Section I S.9),  we can quantify the possible gains. First, recall that far Boolean functions, 
log(17-0  examples are required to converge to a reasonable hypothesis, where 17-/1  is the 
size of the hypothesis space. If the learner has n Boolean features with which to construct 
hypotheses, then, in the absence of further restrictions,  = 0 (22 '),  so the number of ex-
amples is 0(2"). 11  the determination contains d predicates in the left-hand side, the learner 
will require only 0(2 d ) examples, a reduction of 0(2° -d ).  

19.4.2 Learning and using relevance information 

As we stated in the introduction to this chapter, prior knowledge is useful in learning; but 
it too has to be learned. In order to provide a complete story of relevance-based learning, 
we must therefore provide a learning algorithm for determinations. The learning algorithm 
we now present is based on a straightforward attempt to find the simplest determination con-
sistent with the observations. A determination P Q says that if any examples match on 
P, then they must also match on Q. A determination is therefore consistent with a set of 
examples if every pair that matches on the predicates on the left-hand side also matches on 
the goal predicate. For example, suppose we have the following examples of conductance 
measurements on material samples: 
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function MINIMAL-CONSISTENT-DET(E,  A) returns a set of attributes 
inputs: E,  a set of examples 

A, a set of attributes, of size n 

fur i  = 0 tondo 
for each subset A,  of A of size i do 

if CONSISTENT-DET?(A„E)  then return A, 

function CONS ISTENT-DET?(A, E) returns a truth value 
inputs: A, a set of attributes 

E,  a set of examples 
local variables: H,  a hash table 

for each example a in E do 
if some example in H  has the same values as e  for the attributes A 

but a different classification then return false 
store the class of e in H,  indexed by the values for attributes A of the example e  

rehirn trate  

Figure 19.8 An algorithm for finding a minimal consistent determination. 

Sample Mass Temperature Material Size Conductance 

51  12 26 Copper 

N
  

'1
'  

❑ .59 
S1  12 100 Copper 0.57 
S2 24 26  Copper 0.59 
S3 12 26  Lead 0.05 
S3 12 100 Lead 0.04 
54  24 26 Lead 0.05 

The minimal consistent determination is Material A Temperatare.  Y Condnetorir.e.  There 
is a nonminimal  but consistent determination, namely, Mass A Size A Temperature >- 
Conductance. This is consistent with the examples because mass and size determine density 
and, in our data set, we do not have two different materials with the same density. As usual. 
we would need a larger sample set in order to eliminate a nearly correct hypothesis. 

There are several possible algorithms for finding minimal consistent determinations. 
The most obvious approach is to conduct a search through the space of determinations, check-
ing all determinations with one predicate, two predicates, and so on, until a consistent deter-
mination is found. We will assume a simple attribute-based representation, like that used for 
decision tree learning in Chapter 18. A determination d will be represented by the set of 
attributes on the left-hand side, because the target predicate is assumed to be fixed. The basic 
algorithm is outlined in Figure 19.8. 

The time complexity of this algorithm depends on the size of the smallest consistent 
determination. Suppose this determination has p attributes out of the a total attributes, Then 
the algorithm will not find it tuna  searching the subsets of A of size p. There are ()  = O(nP)  
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DECLARATNE  BIAS 

Figure 19.9  A performance comparison between DECISION-TREE-LEARNING and 
RBDTL an randomly generated data for a target function that depends on only 5 of 16 
attributes,  

such subsets; hence the algorithm is exponential in the size of the minimal determination. It 
turns out that the problem is NP-complete, so we cannot expect to do better in the general 
case. In most domains, however, there will be sufficient local structure (see Chapter 14 for a 
definition of locally structured domains) that p will be small. 

Given an algorithm for learning determinations, a learning agent has a way to construct 
a minimal hypothesis within which to learn the target predicate. For example, we can combine 
MINIMAL-CONSISTENT-DET  with the DECISION-TREE-LEARNING algorithm. This yields 
a relevance-based decision-tree learning algorithm RBDTL that first identifies a minimal 
set of relevant attributes and then passes this set to the decision tree algorithm for learning. 
Unlike DECISION-TREE-LEARNING, RBDTL simultaneously learns and uses relevance in-
formation in order to minimize its hypothesis space. We expect that RBDTL will learn faster 
than DECISION-TREE-LEARNING, and this is in fact the case. Figure 19.9 shows the learning 
performance for the two algorithms on randomly generated data for a function that depends 
on only 5 of 16 attributes. Obviously, in cases where all the available attributes are relevant, 
RBDTL will show no advantage. 

This section has only scratched the surface of the field of declarative bias, which aims 
to understand how prior knowledge can be used to identify the appropriate hypothesis spat.  
within which to search for the correct target definition, There are many unanswered questions: 

• How can the algorithms be extended to handle noise? 

• Can we handle continuous-valued variables? 

• How can other kinds of prior knowledge be used, besides determinations? 

• How can the algorithms he generalized to cover any first-order theory, rather than just 
an attribute-based representation? 

Some of these questions are addressed in the next section. 
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19.5 INDUCTIVE LOGIC PROGRAMMING 

Inductive logic programming (ILP) combines inductive methods with the power of first-order 
representations, concentrating in particular on the representation of hypotheses as logic pro- 
grams. 3  It has gained popularity for three reasons. First, ILP  offers a rigorous approach to 
the general knnwledge -hased  inductive learning problem_  Second, it offers complete algo- 

rithms for inducing general, first-order theories from examples, which can therefore learn 
successfully in domains where attribute-based algorithms are hard to apply. An example is 
in learning how protein structures fold (Figure 19.10). The three-dimensional configuration 
of a protein molecule cannot be represented reasonably by a set of attributes, because the 
configuration inherently refers to relationships between objects, not to attributes of a single 
object. First-order logic is an appropriate language for describing the relationships. Third, 
inductive logic programming produces hypotheses that are (relatively) easy for humans to 
read. For example, the English translation in Figure 19.10 can be scrutinized and criticized 
by working biologists. This means that inductive logic programming systems can participate 
in the scientific cycle of experimentation, hypothesis generation, debate, and refutation Such 
participation would not be possible for systems that generate "black-box" classifiers, such as 
neural networks. 

19.5.1 An example 

Recall from Equation (19.5) that the general knowledge-based induction problem is to "solve" 
the entailment constraint 

Background Hypothesis A Descriptions  Classifications 

for the unknown Hypothesis,  given the Background knowledge and examples described by 
Descriptions and Classifications. To illustrate this, we will use the problem of learning 
family relationships from examples. The descriptions will consist of an extended family 
tree, described in terms of Mother, Father, and Married relations and Male and Femals  
properties. As an example, we will use the family tree from Exercise 8.14, shown here in 
Figure 19.11. The corresponding descriptions are as follows: 

Father ;Philip , Charles)  Fether(Philip,  Anne) ..  .  
Mother(Mum,  Margaret) Mother(Mum, Elizabeth) .  
Married(Diana,  Charles) Married (Elizabeth, Philip) .. .  

Male(Philip) Male(Charles) 
Female(Beatrice) Fentale(Margaret)  

The sentences in Classifications depend on the target concept being learned. We might want 
to learn Grandparent, BrotlierinLaw,  , or Ancestor, for example. For Grandparent, the 

3  It might be appropriate at this point for the reader to refer to Chapter 7 for some of the underlying concepts. 
including Horn clauses, conjunctive normal form, unification, and resolution. 



(a) (b) 

Figure 19.10  (a) and (b) show positive and negative examples, respectively, of the 
"four-helical up-and-down bundle" concept in the domain of protein folding.  Each 
example structure is coded into a logical expression of about 1110  conjuncts such as 
Tot alLength(D2nihr  118) A NumberHelicesiD2  mhr  , 6) A. . .. From these descriptions and 
from classifications such as Fold(F  aux-HELICAL-UP-AND-DOWN-BUNDLE,  D2 iniir),  
the ILP system PROGOL (Muggleton,  1995) learned the following rule: 

FoH(FOUR-HELICAL-UP-AND-DOWN-BUNDLE,p)  
Helix (p,  hi) A Length(h i ,  HIGH) A Position)), h i . n) 
A (1 < n < 3) A Adjacent(p,  hi, h2 )  A lielk(p,  ha) -  

This kind of rule could not be learned, or even represented. by an attribute-based mechanism 
such as we saw in previous chapters. The rule can be translated into English as "  Protein p 
has fold class "Four-helical up-and-down-bundle" if it contains a long helix h i  at a secondary 
structure position between 1 and 3 and h i  is next to a second helix." 
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complete set of Classifications contains 20 x 20 =400 conjuncts of the form 

Grandparent (Mum, Charles) Grandparent (Elizabeth, Beatrice 
— , Grandparent  ( Mum, Harry) Grandparent (Spencer, Peter) . .  .  

We could of course learn from a subset of this complete set. 
The object of an inductive learning program is to come up with a set of sentences for 

the H  ypothesis  such that the entailment constraint is satisfied. Suppose, for the moment, that 
the agent has no background knowledge: Background is empty. Then one possible solution 



George IA  Main 

Spenceril4  Kydd Elizaserh  P4 Ph lip Margaret 

Diana 71  Charles  AnnaN  Mark Andrew e<  Sarah Edward  N Sophie 

/  A A 
William Harry  Peter Zara Beatrice Eugenie Loui.ge  Tames  

Figure 19.11  A typical family tree. 
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for Hypothesis is the following: 
Grandparent (3c,  p) r  [d  2 _Mother (x ,  z)  A Mother (z pi] 

V [J  z Mother (x ,  zj A Father (2 ,  
V 2 Father (x z) A Motheriz  

Father (x  ,  z) A Father (z ,  y)] . 

Notice that an attribute-based learning algorithm, such as DECISION-TREE-LEARNING, will 
get nowhere in solving this problem. In order to express Grandparent as an attribute (i.e., a 
unary predicate), we would need to make pairs of people into objects: 

Grandparent ((Muni,  Charles)) ..  .  

Then we get stuck in trying to represent the example descriptions. The only possible attributes 
are horrible things such as 

FirstElementisMatherOfElizabeth((Marn,  Charles)) .  

The definition of Grandparent in terms of these attributes simply becomes a large disjunc-
tion of specific cases that does not generalize to new examples at all. Attribute-bated learning 
algorithms are incapable of learning relational predicates. Thus, one of the principal advan-
tages of ILP algorithms is their applicability to a much wider range of problems, including 
relational problems. 

The reader will certainly have noticed that a little bit of background knowledge would 
help in the representation of the Grandparent definition. For example, if Background in- 
cluded the sentence 

Parent(x ,  g)  <=>  [Mother (x ,  g) V Father (x ,g)1  ,  

then the definition of Grandparent  would be reduced to 

Grandparent(x,y) t [A 2  PCLTell*  z) A Parent(z,v)]  .  

This shows how background knowledge can dramatically reduce the size of hypotheses re- 
quired to explain the observations. 

It is also possible for ILP  algorithms to create new predicates in order to facilitate the 
expression of explanatory hypotheses. Given the example data shown earlier, it is entirely 
reasonable for the 1LP program to propose an additional predicate, which we would call 
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CONSTRUCTIVE 
INDUCTION 

" Parent," in order to simplify the definitions of the target predicates. Algorithms that can 
generate new predicates arc called constructive induction algorithms. Clearly, constructive 
induction is a necessary part of the picture of cumulative learning. It has been one of the 
hardest problems in machine learning, but sonic ILP techniques provide effective mechanisms 
for achieving it. 

In the rest of this chapter, we will study the two principal approaches to 1LP. The first 
uses a generalization of decision tree methods, and the second uses techniques based on 
inverting a resolution proof. 

19.5.2 Top-down inductive learning methods 

The first approach to ILP works by starting with a very general rule and gradually specializing 
it so that it fits the data. This is essentially what happens in decision-tree learning, where a 
decision tree is gradually grown until it is consistent with the observations. To do ILP we 
use first-order literals instead of attributes, and the hypothesis is a set of clauses instead of a 
decision tree. This section describes FOIL (Quinlan, 1990), one of the first ILP programs. 

Suppose we are trying to learn a definition of the Crand✓ nthor(fr,  ti)  predicate, using 
the same family data as before. As with decision-tree learning, we can divide the examples 
into positive and negative examples. Positive examples are 

( George, Anne), Peter), (Spencer, Harry), ...  

and negative examples are 
( George, Elizabeth), (Harry, Zara), Charles, .  .  

Notice that each example is a pair of objects, because Grandfather is a binary predicate. In 
all, there are 12 positive examples in the family tree and 388 negative examples tall  the other 
pairs of people). 

FOIL constructs a set of clauses, each with Grandfather(x,  y) as the head. The clauses 
must classify the 12 positive examples as instances of the Grandfather (x  y) relationship, 
while ruling out the 388 negative examples. The clauses are Horn clauses, with the extension 
that negated literals are allowed in the body of a clause and are interpreted using negation as 
failure, as in Prolog. The initial clause has an empty body: 

4-  Grandfather,  (x,  y) •  

This clause classifies every example as positive, so it needs to be specialized. We do this by 
adding literals one at a time to the left-hand side. Here are three potential additions: 

Father (x,  y) = Grandfather(x,  y)  .  
Parenax,  z) Grandfather (x,  y) .  
Father,  (x,  z) Grandfather (x y)  .  

(Notice that we are assuming that a clause defining Parent is already part of the background 
knowledge.) The first of these three clauses incorrectly classifies all of the 12 positive exam- 

ples as negative and can thus be ignored. The second and third agree with all of the positive 
examples, but the second is incorrect on a larger fraction of the negative examples—twice as 
many, because it allows mothers as well as fathers. Hence, we prefer the third clause, 
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Now we need to specialize this clause further, to rule out the cases in which r is the 
father of some z, but z is not a parent of y. Adding the single literal Parent (z, y) gives 

Father(x ,  z) A Parent (z y) = Grandfather (x, y) ,  

which correctly classifies all the examples. FOIL will find and choose this literal, thereby 
solving the learning task, In general. the solution is a set of Horn clauses, each of which 
implies the target predicate. For example, if we didn't have the Parent predicate in our 
vocabulary, then the solution might be 

Father(x,  z)  Father(z,y) Grandfather(x,  y) 
Father(x,  z) A Mother(z,y) = Grandfather(x,  y) 

Note that each of these clauses covers some of the positive examples, that together they cover 
all the positive examples, and that NEW-CLAUSE is designed in such a way that no clause 
will incorrectly cover a negative example.  In general FOIL will have to search through many 
unsuccessful clauses before finding a correct solution 

This example is a very simple illustration of how FOIL operates- A sketch of the com- 
plete algorithm is shown in Figure 1 9. 12_  Essentially, the algorithm repeatedly constructs a 
clause, literal by literal, until it agrees with some subset of the positive examples and none of 
the negative examples. Then the positive examples covered by the clause are removed from 
the training set, and the process continues until no positive examples remain. The two main 
subroutines to be explained are NEW-LITERALS, which constructs all possible new literals to 
add to the clause, and CHOOSE-LITERAL. which selects a literal to add. 

NEW-LITERALS takes a clause and constructs all possible "useful" literals that could 
be added to the clause. Let us use as an example the clause 

Father(gc,  z) Grandfalher(x,  

There are three kinds of literals that can be added: 
1. Literals using predicates: the literal can be negated or unnegated, any existing predicate 

(including the goal predicate) can be used, and the arguments must all be variables. Any 
variable can be used fur any argument of the predicate, with one restriction: each literal 
must include at least one variable from an earlier literal or from the head of the clause. 
Literals such as Mother(z,u),  Murried(z,  z), —Mate(y),  and Grandfatker(v,x)  are 
allowed, whereas Married(u,v)  is not. Notice that the use of the predicate from the 
head of the clause allows FOIL to learn recursive definitions. 

2. Equality and inequality literals!  these relate variables already appearing in the clause_ 
For example, we might add 2 # X.  These literals can also include user-specified con-
stants. For learning arithmetic we might use 0 and 1, and for learning list functions we 
might use  the empty list [].  

3. Arithmetic comparisons: when dealing with functions of continuous variables, literals 
such as x > y  and y z can be added. As in decision-tree learning, a constant 
threshold value can be chosen to maximize the discriminatory power of the test. 

The resulting branching factor in this search space is very large (see Exercise 19.6), but FOIL 
can also use type information to reduce it For example, if the domain included numbers as 
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function FOIL(examples,  target) returns a set of Horn clauses 
inputs: examples, set of examples 

target, a literal for the goal predicate 
local variables: clauses, set of clauses, initially empty 

while examples contains positive examples do 
clause (—  NEW-CLALi  sE(examples,  target) 
remove positive examples covered by clause from examples 
add clause to clauses 

return clauses 

function NEW-CLAUS E(exam*s,  target) returns a Horn clause 
local variables: clause, a clause with target as head and an empty body 

I, a literal to be added to the clause 
extended_examples,  a set of examples with values for new variables 

extender  Lexamples  4—  examples 
while P211.077dPII_P_TrallrdeN  contains negative examples do 

I  CHOOSE-LITERAL(NEW-LITERALS(  clause), extended_examples)  
append /  to the body of clause 
extended_examples 4—  set of examples created by applying EXTEND-EXAMPLE 

to each example in extende  it  _examples 
return clause 

function EXTEND-ExAmPLE(exampie,  literal) returns a set of examples 
if example  satisfies literal 

then return the set of examples created by extending example with 
each possible constant value for each new variable in literal 

else return the empty set 

Figure 19.12 Sketch of the FOIL algorithm for learning sets of first-order Horn clauses 
from examples. NEW LITERALS and CHOOSE LITERAL are explained in the text. 

well as people, type restrictions would prevent NEW-LITERALS  from generating literals such 
as Parent(x, n.),  where x is a person and n is a number. 

CHOOSE-LITERAL uses a heuristic somewhat similar to information gain (see page 704) 
to decide which literal to add. The exact details are not important here, and a number of 
different variations have been tried. One interesting additional feature of FOIL is the use of 
Ockham's razor to eliminate some hypotheses. If a clause becomes longer (according to some 
metric) than the total length of the positive examples that the clause explains, that clause is 
not considered as a potential hypothesis. This technique provides a way to avoid overcomplex  
clauses that fit noise in the data. 

FOIL and  its relatives have been used to learn a wide variety of definitions. One of the 
most impressive demonstrations (Quinlan and Cameron-Jones,  1993) innvolved solving a long 
sequence of exercises on list-processing functions from Bratko's (1986) Prolog textbook. In 
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INVERSE 
RESOLUTION 

each case, the program was able to learn a correct definition of the function from a small set 
of examples, using the previously learned functions as background knowledge. 

19.5.3 Inductive learning with inverse deduction 

The second major approach to ILP  involves inverting the normal deductive proof process. 
Inverse resolution is based on the observation that if the example Classifications follow 
from Background A Hypothesis A Descriptions, then one must be able to prove this fact by 

resolution (because resolution is complete). if we can "run the proof backward," then we can 
find a Hypothesis such that the proof goes through. The key, then, is to find a way to invert 
the resolution process. 

We will show a backward proof process for inverse resolution that consists of individual 
backward steps. Recall that an ordinary resolution step takes two clauses CI  and C2 and 
resolves them to produce the resolvent C. An inverse resolution step takes a resolvent C 
and produces two clauses CI and C2, such that C is the result of resolving CI  and C2.  
Alternatively, it may take a resolvent C and clause Cl  and produce a clause C2 such that C 
is the result of resolving CI and C2. 

The early steps in an inverse resolution process are shown in Figure 19.13,  where we 
focus on the positive example Grandparent (George, Anne). The process begins at the end 
of the proof (shown at the bottom of the figure). We take the resolvent C to be empty 
clause (i.e.  a contradiction) and C2 to be  Grandparent (George, Anne), which is the nega-
tion of the goal example. The first inverse step takes C and C2 and generates the clause 
Grandparent (George, Anne) for Cl . The next step takes this clause as C and the clause 
Parent ( Elizabeth, Anne) as C2, and generates the clause 

Parent(Elizabeth,  y) V  Grandparent (George, y)  

as Cr. The final step treats this clause as the resolvent. With Parent (George, Elizabeth) as 
C2, one possible clause Ci  is the hypothesis 

Parent (x.  ) A P arent (z , y) = Grandparent (s  ,  y)  . 

Now we have a resolution proof that the hypothesis, descriptions, and background knowledge 
entail the classification Grandparent ( George , Anne). 

Clearly, inverse resolution involves a search. Each inverse resolution step is nonde-
tertainistic,  because fur any C, there can be many or even an infinite number of clauses 
CI  and C2 that resolve to C. For example, instead of choosing —43  arent(Elizabetli  , y) V 
Grundparent  ( George, y) for Ci  in the last step of Figure 19.13, the inverse resolution step 
might have chosen any of the following sentences: 

—Tarent(Elizabeth  ,  Anne) V Grandparent (G e.orge  , Anne) .  
—LParent(z  ,  Anne) V Grandparent ( George, Anne) 

arent(z,y)  V Grandparent (George ,y)  . 

(See Exercises 19.4 and 19.5.) Furthermore, the clauses that participate in each step can be 
chosen from the Background knowledge, from the example Descriptions, from the negated 
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INVERSE 
ENTAILMENT 

Classifications, or from hypothesized clauses that have already been generated in the inverse 
resolution tree.  The large number of possibilities means a large branching factor (and there 

fore an inefficient search) without additional controls. A number of approaches to taming the 
search have been tried in implemented [LP systems: 

1. Redundant choices can be eliminated—for example. by generating only the most spe-
cific hypotheses possible and by requiring that all the hypothesized clauses he consistent 
with each other, and with the observations. This last criterion would rule out the clause 
—1Parent(z,:g)  V Grandparent (George, y), listed before. 

2. The proof  strategy can be restricted. Fur example, we saw in Chapter 9 that linear 
resolution is a complete, restricted strategy. Linear resolution produces proof trees that 
have a linear branching structure—the whole tree follows one line, with only single 
clauses branching off that line (as in Figure 19A3). 

3. The representation language can be restricted, for example by eliminating function sym-
bols or by allowing only Ham clauses. For instance, PROGOL operates with Horn 
clauses using inverse entailment. The idea is to change the entailment constraint 

Background A Hypothesis A Descriptions Classifications 

to the logically equivalent form 
Background A Descriptions A Classifications = —Hypothesis.  

From this, one can use a process similar to the normal Prolog Horn-clause deduction, 
with negation-as-failure to derive Hypothesis. Because it is restricted to Horn clauses, 
this is an incomplete method, but it can be more efficient than full resolution. It is also 
possible to apply complete inference with inverse entailment (Inoue, 2001). 

4. Inference can be done with model checking rather than theorem proving, The PitOGOL  
system (Ivluggleton,  1995) uses a form of model checking to limit the search. That 

Figure 19.13 Early steps in an inverse resolution process. The shaded clauses are 
generated by inverse resolution steps from the clause to the right and the clause below. 
The unshaded clauses are from the Descriptions and Classifications {including negated 
Clcosifications).  
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is, like answer set programming, it generates possible values for logical variables, and 
chocks  for consistency. 

5. Inference can be done with ground propositional clauses rather than in first-order logic. 
The LINUS  system (Lavrauc and Duzeroski, 1994) works by translating first-order the-
ories into propositional logic, solving them with a propositional learning system, and 
then translating back. Working with propositional formulas can be more efficient on 
some problems,  as we saw with SATPLAis  in Chapter 10. 

19.5.4 Making discoveries with inductive logic programming 

An inverse resolution procedure that inverts a complete resolution strategy is, in principle, a 
complete algorithm for learning first-order theories. That is, if some unknown Hypothesis 
generates a set of examples, then an inverse resolution procedure can  generate Hypothesis 
from the examples This observation suggests an interesting possibility: Suppose that the 
available examples include a variety of trajectories of falling bodies. Would an inverse reso-
lution program be theoretically capable of inferring the law of gravity? The answer is clearly 
yes, because the law of gravity allows one to explain the examples, given suitable background 
mathematics. Similarly, one can imagine that electromagnetism, quantum mechanics, and the 
theory of relativity are also within the scope of ILP programs. Of course, they are also within 
the scope of a monkey with a typewriter, we still need better heuristics and new ways to 
structure the search space. 

One thing that inverse resolution systems wilt do for you is invent new predicates. This 
ability is often seen as somewhat magical, because computers are often thought of as "merely 
working with what they are given." In fact, new predicates fall directly out of the inverse 
resolution step. The simplest case arises in hypothesizing two new clauses Cl and C2,  given 
a clause C. The resolution of CI and C2 eliminates a literal that the two clauses share; hence, 
it is quite possible that the eliminated literal contained a predicate that does not appear in C. 
Thus, when working backward, one possibility is to generate a new predicate from which to 
reconstmct  the missing literal_ 

Figure 19.14 shows an example in which the new predicate P is generated in the process 
of learning a definition for Ancestor. Once generated, P can be used in later inverse resolu-
tion steps. For example, a later step might hypothesize that Mother (x, y) = P(x, y).  Thus. 
the new predicate P has its meaning constrained by the generation of hypotheses that involve 
it. Another example might lead to the constraint Father,  (x,  y) = P(x, y).  In other words, 
the predicate P is what we usually think of as the Parent relationship. As we mentioned 
earlier, the invention of new predicates can significantly reduce the size of the definition of 
the goal predicate. Hence, by including the ability to invent new predicates, inverse resolution 
systems can often solve learning problems that are infeasible with other techniques. 

Some of the deepest revolutions in science come from the invention of new predicates 
and functions—for example, Galileo's invention of acceleration or Joule's invention of ther- 
mal energy. Once these terms are available, the discovery of new laws becomes (relatively) 
easy. The difficult part lies in realizing ihat  some new entity, with a specific relationship 
to existing entities, will allow an entire body of observations to be explained with a much 
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simpler and more elegant theory than previously existed. 
As yet, ILP systems have not made discoveries on the level of Galileo or Joule, but their 

discoveries have been deemed publishable in the scientific literature. For example, in the 
Journal r?fMolecular  Biology, Turcotte  et al. (2001) describe the automated discovery of rules 
for protein folding by the ILP program PROGOL.  Many of the rules discovered by PROGOL  
could have been derived from known principles, but most had not been previously published 
as part of a standard biological database. (See Figure 19.10 for an example.). In related 
work, Srinivasan et al. (1994) dealt with the problem of discovering molecular-structure-
based rules for the mutagenicity  of nitroaromatic  compounds. These compounds are found in 
automobile exhaust fumes. For 80% of the compounds in a standard database, it is possible to 
identify four important features, and linear regression on these features outperforms ILP.  For 
the remaining 20%, the features alone are not predictive, and ILP  identifies relationships that 
allow it to outperform linear regression, neural nets, and decision trees. Most impressively, 
King et al_  (2009) endowed a robot with the ability to perform molecular biology experiments 
and extended ILP  techniques to include experiment design, thereby creating an autonomous 
scientist that actually discovered new knowledge about the functional genomics of yeast. For 
all these examples it appears that the ability both to represent relations and to use background 
knowledge contribute to 1LP's  high performance. The fact that the rules found by ILP  can be 
interpreted by humans contributes to the acceptance of these techniques in biology journals 
rather than just computer science journals. 

1LP has made contributions to other sciences besides biology. One of the most impor-
tant is natural language processing, where ILP has been used to extract complex relational 
information from text. These results are summarized in Chapter 23. 

19.6 SUMMARY 

This chapter has investigated various ways in which prior knowledge can help an agent to 
learn from new experiences. Because much prior knowledge is expressed in terms of rela-
tional models rather than attribute-based models, we have also covered systems that allow 
learning of relational models. The important points are: 

■ The use of prior knowledge in learning leads to a picture of cumulative learning, in 
which learning agents improve their learning ability as they acquire more knowledge. 

• Prior knowledge helps learning by eliminating otherwise consistent hypotheses and by 
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"filling in" the explanation of examples, thereby allowing for shorter hypotheses. These 
contributions often result in faster teaming from fewer examples. 

■ Understanding the different logical roles played by prior knowledge, as expressed by 
entailment constraints, helps to define a variety of learning techniques. 

• Explanation-based learning (EBL) extracts general rules from single examples by ex-
plaining the examples and generalizing the explanation. It provides a deductive method 
for turning  first-principles  knowledge into useful, efficient, special -purpose expertise_ 

■ Relevance-based learning (RBL) uses prior knowledge in the form of determinations 
to identify the relevant attributes, thereby generating a reduced hypothesis space and 
speeding up learning. RBL also allows deductive generalizations from single examples. 

■ Knowledge-based inductive learning (KBIL)  finds inductive hypotheses that explain 
sets of observations with the help of background knowledge. 

• Inductive logic programming (ILP) techniques perform KBIL  on knowledge that is 
expressed in first-order logic. ILP methods can learn relational knowledge that is not 
expressible in attribute-based systems, 

• 1LP can be done with a top-down approach of refining a very general rule or through a 
bottom-up approach of inverting the deductive process. 

• 1LP methods naturally generate new predicates with which concise new theories can be 
expressed and show promise as general-purpose scientific theory formation systems. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Although the use of prior knowledge in learning would seem to be a natural topic for philoso-
phers of science, little formal work was done until quite recently, Fact, Fiction, and Forecast. 
by the philosopher Nelson Goodman (1954), refuted the earlier supposition that induction 
was simply a matter of seeing enough examples of some universally quantified proposition 
and then adopting it as a hypothesis_ Consider, for example, the hypothesis "All emeralds are 
grue," where grue means "green if observed before time t, but blue if observed thereafter." 
At any time up to t, we might have observed millions of instances confirming the rule that 
emeralds are grue, and no disconfirming  instances, and yet we are  unwilling to adopt the rule. 
This can be explained only by appeal to the role of relevant prior knowledge in the induction 
process. Goodman proposes a variety of different kinds of prior knowledge that might be use-
ful, including a version of determinations called overhypotheses. Unfortunately, Goodman's 
ideas were never pursued in machine learning. 

The current -best-hypothesis approach is an old idea in philosophy (Mill, 1843). Early 
work in cognitive psychology also suggested that it is a natural form of concept learning in 
humans (Bruner et al., 1957). In AI, the approach is most closely associated with the work 
of Patrick Winston, whose Ph.D. thesis (Winston, 1970)  addressed the problem of learning 
descriptions of complex objects. The version space method (Mitchell, 1977, 1982)  takes 
a different approach, maintaining the set of all consistent hypotheses and eliminating those 
found to be inconsistent with new examples. The approach was used in the Meta-DENDRAL 
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expert system for chemistry (Buchanan and Mitchell, 1978), and later in Mitchell's (1983)  
LEX system, which learns to solve calculus problems. A third influential thread was formed 
by the work of Michalski and colleagues on the AQ series of algorithms, which learned sets 
of logical rules (Michalski, 1969; Michalski et al., 1986). 

EBL had its roots in the techniques used by the STRIPS planner (Pikes et  al., 1972). 
When a plan was constructed, a generalized version of it was saved in a plan library and 
used in later planning as a macro-operator. Similar ideas appeared in Anderson's ACT* 
architecture, under the heading of knowledge compilation (Anderson, 1983), and in the 
SOAR architecture, as chunking (Laird et al., 1986). Schema acquisition (DeJong, 19811, 
analytical generalization (Mitchell, 1982), and constraint-based generalization (Minton, 
1984) were immediate precursors of the rapid growth of interest in EBL stimulated by the 
papers of Mitchell el al. (1986) and DeJong and Mooney (1986). Hirsh (1987) introduced 
the EBL algorithm described in the text, showing how it could be incorporated directly into a 
logic programming system. Van Harmelen  and Bundy (1988) explain EBL as a variant of the 
partial evaluation method used in program analysis systems (Jones et al., 1993). 

Initial enthusiasm for EBL was tempered by Minton's finding (1988) that, without ex-
tensive extra work, EBL could easily slow down a program significantly. Formal probabilistic 
analysis of the expected payoff of EBL can be found in Greiner (1989) and Subramanian  and 
Feldman (1990). An excellent survey of early work on EBL appears in Dietterich (1990). 

Instead of using examples as foci for generalization, one can use them directly to solve 
new problems, in a process known as analogical reasoning. This form of reasoning ranges 
from a form of plausible reasoning based on degree of similarity (Gentner, 1983), through 
a form of deductive inference based on determinations but requiring the participation of the 
example (Davies and Russell, 1987), to a form of "lazy-  EBL that tailors the direction of 
generalization of the old example to fit the needs of the new problem. This latter form of 
analogical reasoning is found most commonly in case-based  reasoning (Kolodner, 1993) 
and derivational analogy (Veloso and Carbonell, 1993). 

Relevance information in the form of functional dependencies was first developed in 
the database community, where it is used to stmcrure  large sets of attributes into manage-
able subsets. Functional dependencies were used for analogical reasoning by Carbonell 
and Collins (1973) and rediscovered and given a full logical analysis by Davies and Rus-
sell (Davies, 1985; Davies and Russell, 1987). Their role as prior knowledge in inductive 
learning was explored by Russell and Grosof (1987). The equivalence of determinations to 
a restricted-vocabulary hypothesis space was proved in Russell (1988). Learning algorithms 
for determinations and the Unproved  performance obtained by RBDTL were first shown in 
the Focus algorithm, due to Almuallim  and Dietterich (1991). Tadepalli (1993) describes a 
very ingenious algorithm for learning with determinations that shows large improvements in 
learning speed. 

The idea that inductive learning can be performed by inverse deduction can be traced 
to W. S. Jevons (1874), who wrote, "The study both of Formal Logic and of the Theory of 
Probabilities has led me to adopt the opinion that there is no such thing as a distinct method 
of induction as contrasted with deduction, but that induction is simply an inverse employ-
ment of deduction." Computational investigations began with the remarkable Ph.D. thesis by 



800 Chapter 19. Knowledge in Learning 

C IS:OVERY  SYSTEM 

Gordon Plotkin (1971) at Edinburgh. Although Plotkin developed many of the theorems and 
methods that arc in current use in ILP, he was discouraged by some undccidability  results for 
certain subproblems in induction. MIS (Shapiro, 1981) reintroduced the problem of learning 
logic programs, but was seen mainly as a contribution to the theory of automated debug-
ging. Work on rule induction, such as the ID3  (Quinlan, 1986) and CN2 (Clark and Niblett, 
1989) systems, led to FOIL (Quinlan, 1990), which for the first time allowed practical induc-
tion of relational rules. The field of relational learning was reinvigorated by Muggleton and 
Buntine (1988), whose CIGOL  program incorporated a slightly incomplete version of inverse 
resolution and was capable of generating new predicates. The inverse resolution method also 
appears in (Russell, 1986), with a simple algorithm given in a footnote. The next major sys-
tem was GOLRM  (Muggleton and Feng, 1990), which uses a covering algorithm based on 
Plotkin's concept of relative least general generalization. ITOU  (Rouveirol  and Puget, 1989) 
and CLINT (De Raedt,  1992) were other systems of that era. More recently, PROGOL  (Mug-
gleton,  1995)  has taken a hybrid (top-down and bottom-up) approach to inverse entailment 
and has been applied to a number of practical problems, particularly in biology and natural 
language processing. Muggleton (2000)  describes an extension of PROGOL to handle uncer-
tainty in the form of stochastic logic programs. 

A formal analysis of ILP methods appears in Muggleton (1991), a large collection of 
papers in Muggleton (1992), and a collection of techniques and applications in the book 
by Lavrauc and Duzeroski (1994). Page and Srinivasan  (2002) give a more recent overview of 
the field's history and challenges for the future. Early complexity results by Haussler (1989) 
suggested that learning first-order sentences was intractible. I lowever,  with better understand-
ing of the importance of syntactic restrictions on clauses, positive results have been obtained 
even for clauses with recursion (Duzeroski et al., 1992). Leamability  results for 1LP are 
surveyed by Kietz and Duzeroski  (1994) and Cohen and Page (1995). 

Although ILP now seems to be the dominant approach to constructive induction, it has 
not been the only approach taken. So-called discovery systems aim to model the process 
of scientific discovery of new concepts, usually by a direct search in the space of concept 
definitions. Doug 1.enat's  Automated Mathematician, or AM (Davis and Lena',  1982), used 
discovery heuristics expressed as expert system rules to guide its search for concepts and 
conjectures in elementary number theory. Unlike most systems designed for mathematical 
reasoning, AM lacked a concept of proof and could only make conjectures. It rediscovered 
Goldbach's conjecture and the Unique Prime Factorization theorem. AM's architecture was 
generalized in the EURISKO system (Lenat, 1983) by adding a mechanism capable of rewrit-
ing the system's own discovery heuristics. EURISKO  was applied in a number of areas other 
than mathematical discovery, although with less success than AM. The methodology of AM 
and EURESKO has been controversial (Ritchie and Hanna, 1984; Lenat  and Brown, 1984). 

Another class of discovery systems aims to operate with real scientific data to find new 
laws. The systems DALTON, GLAUBER,  and STAHL (Langley et al., 1987) are rule-based 
systems that look for quantitative relationships in experimental data from physical systems; 
in each case, the system has been able to recapitulate a well-known discovery from the his-
tory of science. Discovery systems based on probabilistic techniques—especially  clustering 
algorithms that discover new categories—are discussed in Chapter 20. 
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EXERCISES 

19.1 Show, by translating into conjunctive normal form and applying resolution, that the 
conclusion drawn on page 784 concerning Brazilians is sound. 

19i  For each of the following determinations, write down the logical representation and 

explain why the determination is true (if it is): 
a. Design and denomination determine the mass of a coin. 
h. For a given program, input determines  output. 
c. Climate, food intake, exercise, and metabolism determine weight gain and loss. 
d. Baldness is determined by the baldness (or lack thereof) of one's maternal grandfather. 

193 Would a probabilistic version of determinations be useful? Suggest a definition. 

19.4 Fill in the missing values for the clauses Cl  or C2 (or both) in the following sets of 
clauses, given that C is the resolvent of Cl  and C2: 

a. C = Trite = P(A,  B), Ct = P(2, y) y), C2 = 7 ?. 

b. C = True P(A, B), Ct =??, C2 =??.  

c. C = P (x y) = P(T,  f ( 0), C1 =??,  C2 =7?. 

If there is more than one possible solution, provide one example of each different kind_ 

19.5 Suppose one writes a logic program that carries out a resolution inference step. That 
is, let Resolve(e i ,  c) succeed if r is the result of resolving el  and 02 . Normally, Resolve 
would be used as part of a theorem prover by calling it with el  and c2  instantiated to par-
ticular clauses, thereby generating the resolvent c. Now suppose instead that we call it with 
e  instantiated and of  and 02  uninstantiated.  Will this succeed in generating the appropriate 
results of an inverse resolution step? Would you need any special modifications to the logic 
programming system for this to work? 

19.6 Suppose that FOIL is considering adding a literal to a clause using a binary predicate 
P and that previous literals (including the head of the clause) contain five different variables. 

a_ How many fiinctionally  different literals can be generated? Two literals are functionally 
identical if they differ only in the names of the new variables that they contain. 

b. Can you find a general formula for the number of different literals with a predicate of 
arity  r when there are rt  variables previously used? 

c. Why does FOIL not allow literals that contain no previously used variables? 

19.7 Using the data from the family tree in Figure 19.11, or a subset thereof, apply the FOIL 
algorithm to learn a definition for the Ancestor predicate. 



20  LEARNING 
PROBABILISTIC MODELS 

In which we view learning as a form of uncertain reasoning fmm  observations. 

Chapter 13 pointed out the prevalence of uncertainty in real envirorunents.  Agents can handle 
uncertainty by using the methods of probability and decision theory, but first they must learn 
their probabilistic theories of the world from experience. This chapter explains how they 
can do that, by formulating the learning task itself as a process of probabilistic inference 
(Section 20.1). We will see that a Bayesian view of  learning is extremely powerful, providing 
general solutions to the problems of noise, overfitting, and optimal prediction. It also takes 
into account the fact that a less-than-omniscient agent can never be certain about which theory 
of the world is correct, yet must still make decisions by using some theory of the world. 

We describe methods for learning probability models—primarily Bayesian networks—
in Sections 20.2  and 20.3.  Some of the material in this chapter is fairly mathematical, al-
though the general lessons can be understood without plunging into the details.  It may benefit 
the reader to review Chapters 13 and 14 and peck at Appendix A. 

20. 1  STATISTICAL LEARNING 

The key concepts in this chapter, just as in Chapter 18, are data and hypotheses_  Here, the 
data are evidence—that is, instantiations of some or all of the random variables describing the 
domain. The hypotheses in this chapter arc probabilistic theories of how the domain works, 
including logical theories as a special case. 

Consider a simple example. Our favorite  Surprise candy comes in two flavors: cherry 
(yum)  and lime (ugh). The manufacturer has a peculiar sense of humor and wraps each piece 
of candy in the same opaque wrapper, regardless of flavor. The candy is sold in very large 
bags, of which there are known to be five kinds—again, indistinguishable from the outside: 

h i : 100% cherry, 
h2 : 75% cherry +  25% lime, 
1/3 :  50% cherry + 50% lime, 
h.4 :  25% cherry + 75% lime, 
h5:  100% lime .  

802 
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DAYESIAN  LEARNING 

Given  a new bag of candy, the random variable H (for hypothesis) denotes the type of the 
bag, with possible values h1 through ha. H is not directly observable, of course. As the 
pieces of candy are opened and inspected, data are revealed—D1, D2, ...,  DN, where each 
Di  is a random variable with possible values cherry and dime. The basic task faced by the 
agent is to predict the flavor of the next piece of candy.' Despite its apparent triviality, this 
scenario serves to introduce many of the major issues. The agent really does need to infer a 
theory of its world, albeit a very simple one. 

Bayesian learning simply calculates the probability of each hypothesis, given the data, 
and makes predictions on that basis. That is, the predictions are made by using all the hy-
potheses, weighted by their probabilities, rather than by using just a single "best" hypothesis. 
In this way, learning is reduced to probabilistic inference. Let D represent all the data, with 
observed value d; then the probability of each hypothesis is obtained by Bayes' rule: 

PUli = cEP(d  hi)P(//2)  • (20.1) 

Now, suppose we want to make a prediction about an unknown quantity X. Then we have 

P(X = E P(X d, hi)rh,  d) = E  P(X h,)P(hi  d) , (20.2) 

where we have assumed that each hypothesis determines a probability distribution over X. 
This equation shows that predictions are weighted averages over the predictions of the indi-
vidual hypotheses. The hypotheses themselves are essentially "intermediaries" between the 
raw data and the predictions. The key quantities in the Bayesian approach are the hypothesis 

hY,DTHESS  PRIOR  prior, P(h,),  and the likelihood of the data under each hypothesis, P(d I ). 

LIKELIHOOD For our candy example, we will assume for the time being that the prior distribution 
over h 1 , ,  /15  is given by (0.1, 0.2,  0.4.0.2 ;  0.1), as advertised by the manufactures. The 
likelihood of the data is calculated under the assumption that the observations are lid. (see 
page 708), so that 

P(d I h,)  = 

For example, suppose the bag is really an all-lime bag (h5) and the first 10 candies are all 
lime; then P(d ha)  is 0.51° ,  because half the candies in an h3 bag are  lime. 2  Figure 20.1(a) 
shows how the posterior probabilities of the five hypotheses change as the sequence of 10 
lime candies is observed. Notice that the probabilities start out at their prior values, so h3  
is initially the most likely choice and remains so after 1 lime candy is unwrapped. After 2 
lime candies are unwrapped, h4  is most likely; after 3 or more, 115  (the dreaded all-lime bag) 
is the most likely. After 10 in a row, we are fairly certain of our fate. Figure 20.1(b) shows 
the predicted probability that the next candy is lime, based on Equation (20.2). As we would 
expect, it increases monotonically toward 1. 

'  Statistically sophisticated readers wdl recognize this scenario as a variant of the urn-and-ball setup. We find 
urns and balls less compelling than candy; furthermore, candy tends itself to other tasks, such as deciding whether 
to trade the bag with a friend—see  Exercise 20.2. 
2  We stated earlier that the bags of candy are very large; otherwise, the i.i.d. assumption fails to hold. Technically, 
it is more correct  (but less hygienic) to rewrap each candy after inspection and return it to the bag. 

II  Poi  h1) -  (20.3) 
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Figure 20.1 (a) Posterior probabilities P(?., , ) faun Equation (20.1).  The 
number of observations N ranges from 1 to 10, and each observation is of a lime candy. 
(b) Bayesian  prediction P(d,v+r  = d i , .  . , dN) from Equation (20.2). 
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MAXIMUM A 
POSTERIORI 

The example shows that the Bayesian  prediction eventually agrees with the true hy- 
pothesis. This is characteristic of Bayesian learning. For any fixed prior that does not rule 
out the true hypothesis, the posterior probability of any false hypothesis will, under certain 
technical conditions, eventually vanish. This happens simply because the probability of gen- 
erating "uncharacteristic-  data indefinitely is vanishingly small. (This point is analogous to 
one made in the discussion of PAC learning in Chapter 18.) More important, the Bayesian 
prediction is optimal, whether the data set be small or large. Given the hypothesis prior, any 
other prediction is expected to be correct less often. 

The optimality of Bayesian learning comes at a price, of course. For real learning 
problems, the hypothesis space is usually very large nr infinite, as we saw in Chapter 18.  In 
some cases, the summation in Equation (20.2) (or integration, in the continuous case) can be 
carried out tractably, but in most cases we must resort to approximate or simplified methods. 

A very common approximation—one that is usually adopted in science—is to make pre- 
dictions based on a single most probable hypothesis—that is, an ft,  that maximizes P(fti  I d). 
This is often called a maximum a posteriori or MAP (pronounced "em-ay-pee")  hypothesis. 
Predictions made according to an MAP hypothesis hmAp  are approximately Bayesian to the 
extent that P(X d)  P(X hmAp),  In our candy example, hmAp  = 1/5  after three lime can- 
dies in a row, so the MAP learner then predicts that the fourth candy is lime with probability 
I.0—a  much more dangerous prediction than the Bayesian prediction of 0.8 shown in Fig- 
ure 20.1(b).  As more data arrive, the MAP and Bayesian predictions become closer, because 
the competitors to the MAP hypothesis become less and less probable. 

Although our example doesn't show it, finding MAP hypotheses is often much easier 
than Bayesian learning, because it requires solving an optimization problem instead of a large 
summation (or integration) problem. We will see examples of this later in the chapter. 
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MMINUM-
LIELIHOOD  

In both Bayesian learning and MAP learning, the hypothesis prior P(hi)  plays an im-
portant role.  We saw in Chapter 18 that overfitting  can occur when the hypothesis space 
is too expressive, so that it contains many hypotheses that fit the data set well. Rather than 
placing an arbitrary limit on the hypotheses to be considered, Bayesian and MAP learning 
methods use the prior to penalize complexity. Typically, more complex hypotheses have a 
lower prior probability—in part because there are usually many more complex hypotheses 
than simple hypotheses. On the other hand, mere complex hypotheses have a greater capac-
ity to fit the data. (In the extreme case, a lookup table can reproduce the data exactly with 
probability 1.) Hence, the hypothesis prior embodies a tradeoff between the complexity of a 
hypothesis and its degree of fit to the data. 

We can see the effect of this tradeoff most clearly in the logical case, where H contains 
only deterministic hypotheses. In that case, P(d I hi) is 1 if h,  is consistent and 0 otherwise. 
Looking at Equation (20.1), we see that iimAp  will then be the simplest logical theory that 
is consistent with the data. Therefore, maximum a posteriori learning provides a natural 
embodiment of Ockham's  razor. 

Another insight into the tradeoff between complexity and degree of fit is obtained by 
taking the logarithm of Equation (20.1). Choosing hmAp  to maximize P(d hi)P(hi)  is 
equivalent to minimizing 

— log 2  P(d I h,) — log2  P(hi)  . 

Using the connection between information encoding and probability that we introduced in 
Chapter l g.3.4, we see that the — log 2  P( h ,)  term equals the number of bits required to spec-
ify the hypothesis hi. Furthermore, — log2  P(d hi ) is the additional number of bits required 
to specify the data, given the hypothesis. (To see this, consider that no bits are required 
if the hypothesis predicts the data exactly—as with h5 and the string of lime candies—and 
log 2  =  0.) Hence, MAP learning is choosing the hypothesis that provides maximum com-
pression of the data. The same task is addressed more directly by the minimum description 
length, or MDL, learning method. Whereas MAP learning expresses simplicity by assigning 
higher probabilities to simpler hypotheses, MDL expresses it directly by counting the bits in 
a binary encoding of the hypotheses and data 

A final simplification is provided by assuming a uniform prior over the space of hy-
potheses. In that case, MAP learning reduces to choosing an h i  that maximizes P(d I h i ). 
This is called a maximum-likelihood  (ML) hypothesis, km , Maximum-likelihood teaming 
is very common in statistics, a discipline in which many researchers distrust the subjective 
nature of hypothesis priors. It is a reasonable approach whcn  there is no reason to prefer one 
hypothesis over another a priori—for example, when all hypotheses are equally complex. It 
provides a good approximation to Bayesian and MAP learning when the data set is large, 
because the data swamps the prior distribution over hypotheses, but it has problems as we 
shall see) with small data sets. 
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20.2 LEARNING WITH COMPLETE DATA 

The general task of learning a probability model, given data that are assumed to be generated 
DENSITY ESTIMATION  from that model, is called density estimation. (The term applied originally to probability 

density functions for continuous variables, but is used now for discrete distributions too.) 
COMPLETE DATA 

	

	 This section covers the simplest case, where we have complete data. Data are com- 
plete when each data point contains values for every variable in the probability model being 

PAFAMETER  
LEPTIFIING learned. We focus on parameter learning—finding the numerical parameters for a proba- 

bility model whose structure is fixed. For example, we might be interested in learning the 
conditional probabilities in a Bayesian network with a given structure. We will also look 
briefly at the problem of learning structure and at nonparametric density estimation. 

LOG LIKELIHOOD 

20.2.1 Maximum-likelihood parameter learning: Discrete models 

Suppose we buy a bag of lime and cherry candy from a new manufacturer whose lime—cherry  
proportions are completely unknown; the fraction could he anywhere between 0 and 1. In 

that case, we have a continuum of hypotheses. The parameter in this case, which we call 
0, is the proportion of cherry candica,  and the hypothesis is 1 3 .  (The proportion of limes is 
just 1 — 0.)  If we assume that all proportions are equally likely a priori, then a maximum-
likelihood approach is reasonable. If we model the situation with a Bayesian network, we 
need just one random variable, Flavor (the flavor of a randomly chosen candy from the bag). 
It has values cherry and lime, where the probability of cherry is 0 (see Figure 20.2(a)). Now 

suppose we unwrap N candies, of which c are cherries and = N — c are limes. According 
to Equation (20.3), the likelihood of this particular data set is 

P(411  Ito)  = f.13(d,  I ha)  =  6`  •  (1 — 61)  . 

—  

The maximum-likelihood hypothesis is given by the value of 0  that maximizes this expres-
sion. The same value is obtained by maximizing the log likelihood, 

,v  
.L(d  h.8 )  = log P  (di  ho )  = log P(di  I ho )  = log 0  +  log(1 — 6)  . 

=  

(By taking logarithms, we reduce the product to a sum over the data, which is usually easier 
to maximize.) To find the maximum-likelihood value of 0, we differentiate L with respect to 
0 and set the resulting expression to zero: 

dL(d I 110) c —0  0  =  
de 8  1 — 0 c + N  

In English, then, the maximum-likelihood hypothesis hML  asserts that the actual proportion 
of cherries in the bag is equal to the observed proportion in the candies unwrapped so far! 

It appears that we have done a lot of work to discover the obvious. In fact, though, 
we have laid oat one standard method for  maximmn-likelihood  pal-at-nem  learning, a method 
with broad applicability: 



P(F=cherry)  

tt  

   

 

P(F=e1rFrry)  

 

 

B  

 

(a) 0:0  

Figure 20.2  (a) Bayesian network model for the case of candies with an unknown propor-
tion of cherries and limes. (b)  Model for the case where the wrapper color depends (proba-
bilistically) on the candy flavor.  
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I.  Write down an expression for the likelihood of the data as a function of the parameter(s). 
2. Write down the derivative of the log likelihood with respect to each parameter. 
3. Find the parameter values such that the derivatives are zero. 

The trickiest step is usually the last In our example, it was trivial, but we will see that in 
many cases we need to resort to iterative solution algorithms or other numerical optimization 
techniques, as described in Chapter 4.  The example also illustrates a sigtificant  problem 
with maximum-likelihood learning in general: when the data set is small enough that some 
seems  have not  yet been ohserverl for  instance, na cherry rah  dies—the mayimum-likeirihand  

hypothesis assigns zero probability to those events. Various tricks are used to avoid this 
problem, such as initializing the counts for each event to 1 instead of O.  

Let us look at another example. Suppose this new candy manufacturer wants to give a 
little hint to the consumer and uses candy wrappers colored red and green. The Wrapper for 
each candy is selected probabilistically, according to some unknown conditional distribution, 
depending on the flavor. The corresponding probability model is shown in Figure 20.2(b).  
Notice that it has three parameters: 0, 01,  and 02. With these parameters, the likelihood of 
seeing, say, a cherry candy in a green wrapper can be obtained from the standard semantics 
for B ayesi an networks (page 513): 

P(Flavar  = cherry, Wrapper = green IN y) ,,,92 )  

= P (Flavor = cherry Ihtp,o,,02 ) P(  Wrapper = green I Flavor = cherry, ho,o,,o,  ) 

= 0  -  :1  — 01 )  .  

Now we unwrap N candies, of which c are cherries and are limes. The wrapper counts are 
as follows: r,  of the cherries have red wrappers and g,  have green, while rt  of the limes have 
red and gt  have green. The likelihood of the data is given by 

P(d = 0'(1  — 0) 1  •  0N1  — 0i)g'  •  02'(1  —  02)  .  
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This looks pretty horrible, but taking logarithms helps: 
L = [c  log B + 2 log(1 - 0)] tog 0r  + gr  log (1 - o r )] + [rt  log 02 + gf  log(1  - 02)] •  

The benefit of raking logs is clear the log likelihood is the sum of three terms, each of which 
contains a single parameter. When we take derivatives with respect to each parameter and set 
them to zero, we get three independent equations, each containing just one parameter. 

L = 1  t =  
CIL _ _  0 as, si i—a, 19  = 1  =  

re_ 0  rz   

/-162 62 1-92 82 
 — - 

The solution for 0 is the same as before. The solution for Eli,  the probability that a cherry 
candy has a red wrapper, is the observed fraction of cherry candies with red wrappers, and 
similarly for 02. 

These results are very comforting, and it is easy to see that they can be extended to any 
Hayes i an network whose conditional probabilities are represented as tables_ The most impor- 
tant point is that, with complete data, the maximum-likelihood parameter learning problem 
for a Bayesian network decomposes into separate learning problems, one, for each parameter: 
(See Exercise 20.6 for the nontabulated case, where each parameter affects several conditional 
probabilities.) The second point is that the parameter values for a variable, given its parents, 
are just the observed frequencies of the variable values for each setting of the parent values. 
As before, we must be careful to avoid zeroes when the data set is small. 

20.2.2 Naive Bayes models 

Probably the most common Bayesian network model used in machine learning is the naive 
Bayes model first introduced on page 499. In this model, the "class" variable C (which is to 
be predicted) is the root and the "attribute" variables X. are the leaves. The model is "naive' 
because it assumes that the attributes are conditionally independent of each other, given the 
class. (The model in Figure 20.2(b) is a naive Bayes model with class Flavor and just one 
attribute, Wrapper.) Assuming Boolean variables, the parameters are 

6  = _13 (C = true), litit = P(Xi  = true  C = true), His = P(X; = traeIC = false). 

The maximum-likelihood parameter values are found in exactly the same way as for Fig-
ure 20.2(b). Once the model has been trained in this way, it can be used to classify new exam-
ples for which the class variable C is unobserved. With observed attribute values . 
the probability of each class is given by 

P(C  I xi,-  - =  P(c)11P(rt.  I C)  

A deterministic prediction can be obtained by choosing the most likely class. Figure 20.3 
shows the learning curve for this method when it is applied to the restaurant problem from 
Chapter 18. The method learns fairly well but not as well as decision-tree learning; this is 
presumably because the true hypothesis—which is a decision tree—is not representable ex-
actly using a naive Bayes model. Naive Bayes learning turns out to do surprisingly well in a 
wide range of applications; the boosted version (Exercise 20.4) is one of the most effective 
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Figure 20,3  The learning curve for naive Bayes learning applied to the restaurant problem 
from Chapter 18; the learning curve for decision-tree  learning is shown for comparison. 

general-purpose learning algorithms. Naive Bayes learning scales well to very large prob- 
lems•  with rt  Boolean attributes. there are just 2n + 1  parameters, and no search is required 
to find hka,  the maximum-likelihood naive Bayes  hypothesis. Finally, naive Bayes learning 
systems have no difficulty with noisy or missing data and can give probabilistic predictions 
when appropriate. 

20.2.3 Maximum -likelihood parameter learning: Continuous models 
Continuous probability models such as the linear Gaussian model were introduced in Sec-
tion 14.3. Because continuous variables are ubiquitous in real-world applications, it is impor-
tant to know how to learn the parameters of continuous models from data. The principles for 
maximum-likelihood  learning are identical in the continuous and discrete cases 

Let us begin with a very simple case: learning the parameters of a Gaussian density 
function on a single variable. That is, the data are generated as follows: 

1 (=-.0  2 
 

The parameters  of this model axe the mean ix,  and the standard deviation a. (Notice that the 
normalizing "constant" depends on a, so we cannot ignore it.) Let the observed values be 

........ aN .  Then the log likelihood is 

i 2   L = E  log e  -  2. 9  =  N( log V2ir  log a) E  
tire-  2a-2  

r  =1 =  
Setting the derivatives to zero as usual, we obtain 

?DryLL E.r=1(.1 11 ) °  
1 N  .0 )2  _  0  

That is, the maximum-likelihood value of the mean is the sample average and the maximum- 
likelihood value of the standard  deviation is the square loot  of the sample variance. Again, 
these are comforting results that confirm 'commonsense"  practice. 

P(r)  —  



x 
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Figure 20.4  (a) A linear Gaussian model described as y =0i x  + 02  plus Gaussian noise 
with fixed variance. (b) A set of 50 data points generated  from this mudel.  
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Now consider a linear Gaussian model with one continuous parent X and a continuous 
child Y As explained on page 520, Y has a Gaussian distribution whose mean depends 
linearly on the value of X and whose standard deviation is fixed. To learn the conditional 
distribution PT  X), we can maximize the conditional likelihood 

I (Y - (61  .. + 5`,T  2  
P(Y  I \/Trcr 

 

Here, the parameters are 01,  92, and a. The data are a collection of (27.3 ,  9j)  pairs, as illustrated 
in Figure 20.4. Using the usual methods (Exercise 20.5), we can find the maximum -likelihood 
values of the parameters. The point here is different. If we consider just the parameters di 
and 02 that define the linear relationship between x and y, it becomes clear that maximizing 
the log likelihood with respect to these parameters is the same as minimizing the numerator 
(y — (Oir  62)) 2  in the exponent of Equation (205). This is the L2 loss, the squared er-
ror between the actual value p and the prediction Oix  +  02 . This is the quantity minimized 
by the standard linear regression procedure described in Section 18.6. Now we can under-
stand why: minimizing the sum of squared errors gives the maximum-likelihood  straight-Line  
model, provided that the data are generated with Gaussian noise of fixed  variance. 

20.2.4 Bayesian parameter learning 

Maximum-likelihood learning gives rise to some very simple procedures, but it has some 
serious deficiencies with small data sets. For example, after seeing one cherry candy, the 
maximum-likelihood hypothesis is that the bag is 100% cherry (i.e., 0= 1.0). Unless one's 
hypothesis prior is that bags must be either all cherry or all lime, this is not a reasonable 
conclusion. It is more likely that the bag is a mixture of lime and cherry. The Bayesian 
approach to parameter learning starts by defining a prior probability distribution over the 

HYPOTHESIS PRIOR  possible hypotheses. We call this the hypothesis prior. Then, as data arrives, the posterior 
probability distribution is updated. 

(20.5) 
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Figure 20.5 Examples of the beta[a, b]  distribution for different values of [a, h]  
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SETA DISTRIBUTION 

HY.ERPARAYEER  

The candy example in Figure 20.2(a) has one parameter, 0: the probability that a ran-
domly selected piece of candy is cherry-flavored.  In the Bayesian view, 0 is the (unknown) 
value of a random variable e that defines the hypothesis space; the hypothesis prior is just 
the prior distribution Pe). Thus, P(()  = 0) is the prior probability that the bag has a fraction 
6  of cherry candies. 

If the parameter 0 can be any value between 0 and 1,  then P(0)  must be a continuous 
distribution that is nonzero only between 0 and 1 and that integrates to 1. The uniform density 
P(6)  = Uniform[O,  1](0)  is one candidate.  (See Chapter 13.)  It turns out that the uniform 
density is a member of the family of beta distributions Each beta distribution is defined by 
two hyperparameters3  a and b  such that 

beta[a,  b]  (0)  =  Ba- 1(1 — 
0/ - 1 , (20.6) 

for 0 in the range [0, 1].  The normalization constant a , which makes the distribution integrate 
to 1,  depends on a and b.  (See Exercise 20.7)  Figure 20.5 shows what the distribution looks 
like for various values of a and b.  The mean value of the distribution is al(u,  +  b),  so larger 
values of et suggest a belief that e  is closer to 1 than to 0 ,  l l arger values of a. h make the 
distribution more peaked, suggesting greater certainty about the value of O.  Thus, the beta 
family provides a useful range of possibilities for the hypothesis prior. 

Besides its flexibility, the beta family has another wonderful property: if e has a prior 
bet*, 6], then, after a data point is observed, the posterior distribution for e is also a beta 
distribution. In other words, beta is closed under update. The beta family is called the 

CONJUGATE PRIOR 

	

	conjugate prior for the family of distributions for a Boolean variable. 4  Let's see how this 
works. Suppose we observe a cherry candy; then we have 

They are  called hyperparameters  because they parameterize a distribution over 6,  which is itself a parameter. 
4  Other conjugate priors include the Dirichlet  family for the parameters of a discrete multivalued distribution 
and the Normal—Wishart family for the parameters of a Gaussian distribution. See Bernardo and Smith (1994). 



•  •  •  

Figure 20.6  A Bayesian network that corresponds to a Bayesian  learning process. Poste-
rior distributions for the parameter variables 6,  6 1 ,  and 02 can be inferred from their prior 
distributions and the evidence in the Flavor i  and Wrapper i  variables. 
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VIRTUAL COUNTS 

PAFAMETER 
INDEPENDENCE 

P(0 D1 = cherry) = cx P(Dj  = cherry  

= cti 0 • beta[a,  b1(0)  = c.x 1 (1 0)h-I 
 

= 0a (1—  0) 6-1  = beta[a  + 1,14(0)  .  

Thus, after seeing a cherry candy, we simply increment the a parameter to get the posterior, 
similarly, after seeing a lime candy, we increment the b parameter. Thus, we can view the a 
and b hyperparameters as virtual counts, in the sense that a prior beta[a,  b] behaves exactly 
as if we had started out with a uniform prior beta11,  11  and seen a —  1 actual cherry candies 
and b — 1 actual lime candies. 

By examining a sequence of beta distributions for increasing values of a and b, keeping 
the proportions fixed, we can see vividly how the posterior distribution over the parameter 

changes as data arrive. For example, suppose the actual bag of candy is 75% cherry. Fig- 
ure 20.5(b) shows the sequence beta[3,  1], beta[6,  2], beta[30,  10]. Clearly, the distribution 
is converging to a narrow peak around the true value of 8. For large data sets, then, Bayesian 
learning (at least in this case) converges to the same answer as maximum-likelihood  learning. 

Now let us consider a more complicated case. The network in Figure 20.2(b) has three 
parameters, 0, 01, and 02, where 01 is the probability of a red wrapper on a cherry candy and 
02 is the probability of a red wrapper on a lime candy. The Bayesian hypothesis prior must 
cover all three parameters—that is, we need to specify P(8, 01,  82).  Usually, we assume 
parameter independence: 

P(8, 01,82)  = P(0)P(01)P(92)  .  
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With this assumption, each parameter can have its own beta distribution that is updated sep-
arately as data arrive. Figure 20.6 shows how we can incorporate the hypothesis prior and 
any data into one Bayesian network. The nodes 0, Br,  e2 have no parents. But each time 
we make an observation of a wrapper and corresponding flavor of a piece of candy, we add a 
node Flavor„  which is dependent on the flavor parameter e: 

P(Flavori  = cherry le = 0) = B . 

We also add a node Wrapper which is dependent on k.-..) 1  and k92:  

P( Wrapper;  = red Rayon=  cherry, e1= 01) = Bt  
P( Wrapperi  = red Flavor;  = lime, 02 = 02) = 02 

Now, the entire Bayesian learning process can be formulated as an inference problem. We 
add new evidence nodes, then query the unknown nodes (in this case, O.  8 1;  8 2 ).  This for-
mulation of learning and prediction makes it clear that Bayesian  learning requires no extra 
"principles of learning." Furthermore, there is, in essence, just one learning  algorithm —the 
inference algorithm for Bayesian networks. Of course, the nature of these networks is some-
what different from those of Chapter 14 because of the potentially huge number of evidence 
variables representing the training set and the prevalence of continuous-valued parameter 
variables. 

20.2.5 Learning Bayes net structures 

So far, we have assumed that the structure of the Bayes net is given and we are just trying to 
learn the parameters. The structure of the network represents basic causal knowledge about 
the domain that is often easy for an expert, or even a naive user, to supply. In some cases, 
however, the causal model may be unavailable or subject to dispute—for example, certain 
corporations have long claimed that smoking does not cause cancer—so it is important to 
understand how the structure of a Bayes net can be learned from data. This section gives a 
brief sketch of the main ideas. 

The most obvious approach is to search for a good model. We can start with a model 
containing no links and begin adding parents for each node, fitting the parameters with the 
methods we have just covered and measuring the accuracy of the resulting model. Alterna-
tively, we can start with an initial guess at the structure and use hill-climbing or simulated 
annealing search to make modifications. retuning the parameters after each change in the 
structure. Modifications can include reversing, adding, or deleting links. We must not in-
troduce cycles in the process, so many algorithms assume that an ordering is given for the 
variables, and that a node can have parents only among those nodes that come earlier in the 
ordering (just as in the construction process in Chapter 14). For full generality, we also need 
to search over possible orderings. 

There are two alternative methods for deciding when a good structure has been found. 
The first is to test whether the conditional independence assertions implicit in the structure are 
actually satisfied in the data. For example, the use of a naive Bayes model for the restaurant 
problem assumes that 

P(Fri  I Sat, Bar Will Wait) = P(Fri  I Sat I  Will Wait)P(Bar WillWait) 
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and we can check in the data that the same equation holds between the corresponding condi-
tional frequencies. But even if the structure describes the true causal nature of the domain, 
statistical fluctuations in the data set mean that the equation will never be satisfied exactly. 
so  we need to perform a suitable statistical test to see if there is sufficient evidence that the 
independence hypothesis is violated. The complexity of the resulting network will depend 
on the threshold used for this test—the stricter the independence test, the more links will be 
added and the greater the danger of merfltting.  

An approach more consistent with the ideas in this chapter is to assess the degree to 
which the proposed model explains the data (in a probabilistic sense). We must be careful 
how we measure this, however. If we just try to find the maximum-likelihood hypothesis, 
we will end up with a fully connected network, because adding more parents to a node can-
not decrease the likelihood (Exercise 20.8).  We are forced to penalize model complexity in 
some way. The MAP (or MDL) approach simply subtracts a penalty from the likelihood of 
each structure (after parameter tuning) before comparing different structures. The Bayesian 
approach places a joint prior over structures and parameters. There are usually far too many 
structures to sum over (superexponential in the number of variables), so most practitioners 
use MCMC to sample over structures. 

Penalizing complexity (whether by MAP or Bayesian methods) introduces an important 
connection between the optimal structure and the nature of the representation for the condi- 
tional distributions in the network. With tabular distributions, the complexity penalty for a 
node's distribution grows exponentially with the number of parents, but with, say, noisy-OR 
distributions, it grows only linearly. This means that learning with noisy-OR (or other com-
pactly parameterized) models tends to produce learned structures with more parents than does 
learning with tabular distributions. 

NON PARAMETRIC 
DENSITY  ESTIMATION 

20.2.6 Density estimation with nonparametric  models 

It is possible to learn a probability model without making any assumptions about its structure 
and parameterization by adopting the nonparametric  methods of Section I 8.8.  The task of 
nonparametric density estimation is typically done in continuous domains, such as that 
shown in Figure 20.7(a). The figure shows a probability density function on a space defined 
by two continuous variables. hi Figure 20.7(b)  we see a sample of data points from this 
density function. The question is, can we recover the model from the samples? 

First we will consider k-nearest-neighbors  models. (In Chapter 18  we saw nearest-
neighbor models for classification and regression; here we see them for density estimation.) 
Given a sample of data points, to estimate the unknown probability density at a query point x 
we can simply measure the density of the data points in the neighborhood of x. Figure 20.7(b) 
shows two query points (small squares). For each query point we have drawn the smallest 
circle that encloses 10 neighbors—the 10-nearest-neighborhood. We can see that the central 
circle is large, meaning there is a low density there, and the circle on the right is small, 
meaning there is a high density there. In Figure 20.8 we show three plots of density estimation 
using k-nearest-neighbors,  for different values of k.  It seems clear that (b) is about right,  
while (a) is too spiky (k is too small) and (c) is too smooth (k is too big). 

http://exactly.so
http://exactly.so
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Figure 20.7 (a) A 3D plot of the mixture of Gaussians from Figure 20.11(a). (b)  A 128- 
point sample of points from the mixture, together with two query points (small squares) and 
their 10-nearest-neighborhoods (medium and large circles). 
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Figure 20.8 Density estimation using k-nearest-neighbors, applied to the data in Fig- 
ure 20.7(b), for k = 3, 10, and 40 respectively. k = 3 is too spiky, 40 is too smooth, and 
10 is just about right. The best value for k can be chosen by cross-validation. 
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Figure 20.9 Kernel density estimation for the data in Figure 20.7(b),  using Gaussian ker- 
nels with Iti  = 0.32,  0.07, and 0.20 respectively. ui  = 0.117  is about right. 
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Another possibility is to use kernel functions, as we did for locally weighted regres-
sion. To apply a kernel model to density estimation, assume that each data point generates its 
own Little density function, using a Gaussian kernel. The estimated density at a query point x 
is then the average density as given by each kernel function: 

1 
P(x) = —  E ic(x,  xj )  .  

We will assume spherical Gaussians with standard deviation w along each axis: 

1 nocx,!2  
IC(x,  xj )  —  e 2u 2  

(W2  Trr)d  

where d is the number of dimensions in x and D is the Euclidean distance function.  We 
still have the problem of choosing a suitable value for kernel width w;  Figure 20,9 shows 
values that are too small, just right, and too large. A good value of tv  can be chosen by using 
cross-validation. 

20.3 LEARNING WITH HIDDEN VARIABLES: THE EM ALGORITHM 

LATENT VARIABLE 

IXPECIATION-
MAXIMIZAI1CV  

The preceding section dealt with the fully observable case. Many real-world problems have 
hidden variables (sometimes called latent variables), which are not observable in the data 
that are available for learning. For example, medical records often include the observed 
symptoms, the physician's diagnosis, the treatment applied, and perhaps the outcome of the 
treatment, but they seldom contain a direct observation of the disease itself! (Note that the 
diagnosis is not the disease; it is a causal consequence of the observed symptoms, which are in 
turn caused by the disease.) One might ask, "If the disease is not observed, why not construct 
a model without it?" The answer appears in Figure 20.10, which shows a small, fictitious 
diagnostic model for heart disease_  There are three observable predisposing factors and three 
observable symptoms (which are too depressing to name). Assume that each variable has 
three possible values (e.g., none, moderate, and severe). Removing the hidden variable 
from the network in (a) yields the network in (b); the total number of parameters increases 
from 78 to 708. Thus, latent variables can dramatically reduce the number of parameters 
required to specify. a Bayesian network. This, in turn, can dramatically reduce the amount of 
data needed to learn the parameters. 

Hidden variables are important, but they do complicate the learning problem. In Fig-
ure 20.10(a), for example, it is not obvious how to team  the conditional distribution for 
HeartDisease,  given its parents, because we do not know the value of HeartDisecese  in each 
case; the same problem arises in learning the distributions for the symptoms. This section 
describes an algorithm called expectation—maximization,  or EM, that solves this problem 
in a very general way. We will show three examples and then provide a general description. 
The alga:id-nil  seems  like magic at fist, but once the intuition has been developed, one can 
find applications for EM in a huge range of learning problems. 
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Figure 20.10  (al A simple diagnostic network for heart disease, which is assumed to be 
a hidden variable. Bach variable has three possible values and is labeled with the number 
of independent parameters in its conditional distribution; the total number is 78 (b)  The 
equivalent network with HeartDisease  removed. Note that the symptom variables are no 
longer conditionally independent given their parents. This network requires 708 parameters. 
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UNSUPERVISED 
CLUSTERING 
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20.3.1 Unsupervised clustering: Learning mixtures of Gaussians 

Unsupervised clustering is the problem of discerning multiple categories in a collection of 
objects. The problem is unsupervised because the category labels are not given. For example, 
suppose we record the spectra of a hundred thousand stars; are there different types of stars 
revealed by the spectra, and, if so, how many types and what are their characteristics? We 
are all familiar with terms such as "red giant" and "white dwarf," but the stars do not carry 
these labels on their hats—astronomers had to perform unsupervised clustering to identify 
these categories. Other examples include the identification of species, genera, orders, and 
so on in the Linnean  taxonomy and the creation of natural kinds for ordinary objects (see 
Chapter 12). 

Unsupervised clustering begins with data. Figure 20.11(b)  shows 500 data points, each 
of which specifies the values of two continuous attributes. The data points might correspond 
to stars, and the attributes might correspond to spectral intensities at two particular frequen-
cies. Next, we need to understand what kind of probability distribution might have generated 
the data. Clustering presumes that the data are generated from a mixture distribution, P. 
Such a distribution has k components, each of which is a distribution in its own right. A 
data point is generated by first choosing a component and then generating a sample from that 
component Let the random variable C denote the component, with values 1,  k; then the 
mixture distribution is given by 

P x) = P(C=i)  P(x C=i), 

where x refers to the values of the attributes for a data point. For continuous data, a natural 
choice for the component distributions is the multivariaie  Gaussian, which gives the so-called 
mixture of Gaussians family of distributions. The parameters of a mixture of Gaussians  are 
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Figure 20.11  (a) A Gaussian mixture model with three components; the weights (left-to-
right) are 0.2, 0.3, and 0.5. (b) 500 data points sampled from the model in (a). (c) The model 
reconstructed by EM from the data in (b). 
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w i =  P(C  = i)  (the weight of each component), p. mean of each component), and E i  
(the covariance of each component). Figure 20.11(a) shows a mixture of three Gaussians; 
this mixture is in fact the source of the data in (b) as well as being the model shown in 
Figure 20.7(a) on page 815. 

The unsupervised clustering problem, then, is to recover a mixture model like the one 
in Figure 20.11(a) from raw data like that in Figure 20.I 1(b). Clearly, if we knew which com-
ponent generated each data point, then it would be easy to recover the component Gaussians:  
we could just select all the data points from a given component and then apply (a multivariate 
version of) Equation (20.4) (page 809) for fitting the parameters  of a Gaussian to a set of data. 
On the other hand, if we knew the parameters of each component, then we could, at least in 
a probabilistic sense, assign each data point to a component. The problem is that we know 
neither the assignments nor the parameters. 

The basic idea of EM in this context is to pretend that we know the parameters of the 
model and then to infer the probability that each data point belongs to each component. After 
that, we refit the components to the data, where each component is fitted to the entire data set 
with each point weighted by the probability that it belongs to that component. The process 
iterates until convergence. Fssentially,  we are "completing" the data by inferring probability 
distributions over the hidden variables-which component each data point belongs to-based 
on the current model For the mixture of Gaussians,  we initialize the mixture-model parame-
ters arbitrarily and then iterate the following two steps: 

1. E-step:  Compute the probabilities pi, =P(C  = i xi), the probability that datum xi  
was generated by component i. By Bayes' rule, we have p,i  = orP(xi  C = i)P(C = 
The term P(xj  C = i) is just the probability at xj  of the ith Gaussian, and the term 
P(C =i)  is just the weight parameter for the ith Gaussian. Define = the 
effective number of data points currently assigned to component i. 

2. M-step: Compute the new mean, covariance, and component weights using the follow-
ing steps in sequence: 
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Figure 20.12  Graphs showing the log likelihood of the data, L,  as a function of the EM 
iteration. The horizontal line shows the log likelihood according to the true model. (a) Graph 
for the Gaussian mixture model in Figure 20.11. ib)  Graph for the Bayesian network in 
Figure 20.13(a). 
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where N is the total number of data points. The F.-step,  or Privrtation  step, can he viewed 
INDICATOR VARIABLE  as computing the expected values pj, of the hidden indicator variables Zia,  where Zij  is l if 

datum xj  was generated by the ith  component and 0 otherwise. The M-step,  or maximization 

step, finds the new values of the parameters that maximize the log likelihood of the data, 
given the expected values of the hidden indicator variables. 

The final model that EM learns when it is applied to the data in Figure 20.11(a) is shown 
in Figure 20.11(c); it is virtually indistinguishable from the original model from which the 
data were generated. Figure 20.12(a)  plots the log likelihood of the data according to the 
current model as EM progresses, 

There are two points to notice. First, the log likelihood for the final learned model 
slightly exceeds that of the original model, from which the data were generated. This might 
seem surprising, but it simply reflects the fact that the data were generated randomly and 
might not provide an exact reflection of the underlying model. The second point is that FM 
increases the log likelihood of the data at every iteration. This fact can be proved  in general. 
Furthermore, under certain conditions (that hold in ost cases), EM can be proven to reach 
a local maximum in likelihood. (In rare cases, it could reach a saddle point or even a local 
minimum.) In this sense, EM resembles a gradient-based hill-climbing algorithm, but notice 
that it has no "step size" parameter. 
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Figure 20.13  (a) A mixture model for candy. The proportions of different flavors. wrap-
pers, presence of holes depend on the bag, which is not observed. (b) Bayesian network for 
a Gaussian mixture. The mean and covariance of the observable variables X depend on the 
component C. 

Things do not always go as well as Figure 20.12(a) might suggest_ It can happen, for 
example, that one Gaussian component shrinks so that it covers just a single data point. Then 
its variance will go to zero and its likelihood will go to infinity! Another problem is that 
two components can "merge," acquiring identical means and variances and sharing their data 
points. These kinds of degenerate local maxima are serious problems, especially in high 
dimensions. One solution is to place priors on the model parameters and to apply the MAP 
version of EM. Another is to restart a component with new random parameters if it gets too 
small or too close to another component. Sensible initialization also helps. 

20.3.2 Learning Bayesian networks with hidden variables 

To learn a Bayesian network with hidden variables, we apply the same insights that worked 
for mixtures of Gaussians. Figure 20.13 represents a situation in which there are two bags of 
candies that have been mixed together. Candies are described by three features: in addition 
to the Flavor and the Wrapper, some candies have a Hole in the middle and some do not. 
The distribution of candies in each bag is described by a naive Bayes model: the features 
are independent, given the bag, but the conditional probability distribution for each feature 
depends on the bag. The parameters are as follows: B is the prior probability that a candy 
comes from Bag I; OF] and 9  F2 are the probabilities that the flavor is cherry, given that the 
candy comes from Bag 1 or Bag 2 respectively; Owl_  and 91472  give the probabilities that the 
wrapper is red; and 9H1  and 9H2 give the probabilities that the candy has a hole. Notice that 
the overall model is a mixture model. (In fact, we can also model the mixture of Gaussians 

as a Bayesian network, as shown in Figure 20.13(b).) In the figure, the bag is a hidden 
variable because, once the candies have been mixed together, we no longer know which bag 
each candy came from. In such a case, can we recover the descriptions of the two bags by 
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observing candies from the mixture? Let us work through an iteration of EM for this problem. 
First, let's  look at the data. We generated 1000 samples from a model whose truc parameters 
are as follows: 

8=0.5,  0  F1=  61  W  1  = 8141 =  0.8,  8F2  = Ovir2  = 61112  = 0.3 . (20.7) 
That is, the candies are equally likely to come from either bag; the first is mostly cherries 
with red wrappers and holes; the second is mostly limes with green wrappers and no holes. 
The counts for the eight possible kinds of candy are as follows: 

till  = red W= green 

H = 1 H = 0 II —  1 H —  0 

F = cherry 273 93 104 90 
F = lime 79 100 94 167  

We start by initializing the parameters. Fur numerical simplicity, we arbitrarily choose 

Bhp —  0,6, on -9;.,0), -0(iipi -  0.6, 0 (A —  0.4 . (20.8) 

First, let us work on the 0 parameter. In the fully observable case, we would estimate this 
directly from the observed counts of candies from bags 1  and 2. Because the bag is a hidden 
variable, we calculate the expected counts instead. The expected mint  N (Bag = l',  is the 
sum, over all candies, of the probability that the candy came from bag 1: 

0 (1)  = (Bag =1)1  N  = E  P(Bal  = 11  flavor',  wrapper ,  holes j)/  N 
_ 1  

These probabilities can be computed by any inference algorithm for Bayesian networks. For 
a naive Bayes model such as the one in our example, we can do the inference "by hand." 
using Bayes' rule and applying conditional independence:

N 0 ( 1 ) 1 vk  P (flavor  Bag =1)P  (wrappEr  I Bag =1)P(hoIes  I Bag = 1)P  (Bag  =1)  

P(flauer;  I Bag = i)  P (wrapper I Bag =  i) P(hoies,  I Bag= i)P(Bag =i)  
=  1  

Applying this formula to, say, the 273 rcd-wrappcd  cherry candies with holes, we get a con-
tribution of 

273 00)010  0(0 )  0(0)  
Ft  W1  H1   0.22797 

1  000  414210  0(°)  +  0A426(12 ( 1—  Go) )  
Continuing with the other seven kinds of candy in the table of counts, we obtain 0( 1)  = 0,6124.  

Now let us consider the other parameters, such as 8F1.  In the fully observable case, we 
would estimate this directly from the observed  counts of cherry and lime candies from hag 1_ 
The expected count of cherry candies from bag I is given by 

E  P(Bag  =1 
j:Flavorj  = cherry 

Flavor'  = cherry, wrapperj ,  holes j )  .  

   

5  It is better in practice to choose them randomly, to avoid local maxima due to symmetry. 
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Again, these probabilities can be calculated by any Bayes net algorithm. Completing this 
process, we obtain the new values of all the parameters: 

0 1)  = 0.6124, 19A  = 0.6684, 6q.i11=  0.6483, fil,R  = 0.6558, 
= 0.3887, (a)

2 =  0.3817, 02  =  0.3 827 . 
(20.9) 

The log likelihood of the data increases from about —2044 initially to about —2021 after 
the first iteration, as shown in Figure 20.12(b). That is, the update improves the likelihood 
itself by a factor of about e 23  10 1° .  By the tenth iteration, the learned model is a better 
fit than the original model (L = — 1982.214).  Thereafter, progress becomes very slow. This 
is not uncommon with EM, and many practical systems combine EM with a gradient-based 
algorithm such as Newton—Raphson (see Chapter 4) for the last phase of learning. 

The general lesson from this example is that the parameter updates for Dayesian  net-
work learning with hidden variables are directly available from the results of Inference on 
each example. Moreover; only local posterior probabilities are needed for each parame-
ter. Here, "local" means that le CPT fur each variable Xi can be learned from posterior 
probabilities involving just Xi and its parents Ui.  Defining aiik  to he the CPT parameter 

= = uik  ), the update is given by the normalized expected counts as follows: 
Ow, !Ci(Xi= ITi  =uik)/ST(Ili  =trek)  

The expected counts are obtained by summing over the examples, computing the probabilities 
P(X,=x ii , Ui =u,k)  for each by using any Bayes net inference algorithm. For the exact 
algorithms—including variable elimination—all these probabilities are obtainable directly as 
a by-product of standard inference, with no need for extra computations specific to learning. 
Moreover, the information needed for learning is available locally for each parameter. 

20.3.3 Learning hidden Markov models 

Our final application of EM involves learning the transition probabilities in hidden Markov 
models (1-11MMs).  Recall from Section 15,3 that a hidden Markov  model can be represented 
by a dynamic Bayes net with a single discrete state variable, as illustrated in Figure 20.14. 
Each data point consists of an observation sequence of finite length, so the problem is to 
learn the transition probabilities from a set of observation sequences (or from just one long 
sequence). 

We have already worked out haw to learn Bayes  nets, but there is one complication: 
in Bayes nets, each parameter is distinct; in a hidden Markov model, on the other hand, the 
individual transition probabilities from state i  to state j at time t, Out  = P(X t+i =j1Xt =i),  
are repeated across time—that is, Oii t  = Hza for all 1. To estimate the transition probability 
from state i to state j, we simply calculate the expected proportion of times that the system 
undergoes a transition to state j when in state 1: 

E gp(t+1.=  _Kt  =0/E k(Xt  =i)  

The expected counts are computed by an 11MM inference algorithm. The forward—backward 
algorithm shown in Figure 15A can be modified very  easily to compute the necessary prob- 
abilities.  One important point is that the probabilities required are obtained by smoothing 
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rather than filtering; that is, we need to pay attention to subsequent evidence in estimating 
the probability that a particular transition occurred. The evidence in a murder case is usually 
obtained after the crime (i.e.,  the transition from state to state j) has taken place. 

20.3.4 The general form of the EM algorithm 

We have seen several instances of the EM algorithm. Each involves computing expected 
values of hidden variables for each example and then recomputing the parameters, using the 
expected values as If  they were observed values. Let x be all the observed values in all the 
examples, let Z denote all the hidden variables for all the examples, and let 0  be all the 
parameters for thc  probability model. Then thc  EM algorithm is 

0 (41)  = arginax P(Z  = z I x, 0 (.0  )L(x,  Z  = z  0) . 

This equation is the EM algorithm in a nutshell. The E-step is the computation of the summa-
tion, which is the expectation of the log likelihood of the "completed" data with respect to the 
distribution PrZ  = z  I x, 0 (1) ),  which is the posterior over the hidden variables, given the data. 
The M-step is the maximization of this expected log likelihood with respect to the parame-
ters.  For mixtures of Gaussians, the hidden variables are the Zii s,  where 7,j  is 1  if example j  
was generated by component i..  For Bayes  nets, Z,a  is the value of unobserved variable X, in 
example j.  For HMMs, Zi t  is the state of the sequence in example j  at time t. Starting from 
the general form, it is possible to derive an EM algorithm for a specific application once the 
appropriate hidden variables have been identified. 

As soon as we understand the general idea of EM, it becomes easy to derive all sorts 
of variants and improvements. For example, in many cases the E-step—the  computation of 
posteriors over the hidden variables—is intractable, as in large B  ayes nets. It turns out that 
one can use an approximate E-step  and still obtain an effective learning algorithm. With a 
sampling algorithm such as MCMC (see Section 14.5), the learning process is very inruitive:  
each state (configuration of hidden and observed variables) visited by MCMC is treated ex-
actly as if it were a complete observation. Thus, the parameters can be updated directly after 
each MCMC transition. Other forms of approximate inference, such as variational and loopy 
methods, have also proved effective for learning very large networks. 
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STRUCTURAL EM 

20.3.5 Learning Bayes net structures with hidden variables 

In Section 20.2.5, we discussed the problem of learning Bayes net structures with complete 
data. When unobserved variables may be influencing the data that are observed, things get 
more difficult. In the simplest case, a human expert might tell the learning algorithm that cer-
tain hidden variables exist, leaving it to the algorithm to find a place for them in the network 
structure. For example, an algorithm might try to learn the structure shown in Figure 20.10(a) 
on page 817, given the information that HeartDisease, (a three-valued variable) should be in-
cluded in the model. As in the complete-data case, the overall algorithm has an outer loop that 
searches over structures and an inner loop that fits the network parameters given the structure.  

If the learning algorithm is not told which hidden variables exist, then there are two 
choices: either pretend that the data is really complete—which may force the algorithm to 
learn a parameter-intensive  model such as the one in Figure 20.1.0(b)—or  invent new hidden 
variables in order to simplify the model. The latter approach can be implemented by including 
new modification choices in the structure search: in addition to modifying links, the algorithm 
can add or delete a hidden variable or change its arity. Of course, the algorithm will not know 
that the new variable it has invented is called HeartDisease; nor will it have meaningful 
names for the values. Fortunately, newly invented hidden variables will usually be connected 
to preexisting variables, so a human expert can often inspect the local conditional distributions 
involving the new variable and ascertain its meaning. 

As in the complete-data case, pure maximum-likelihood structure learning will result in 
a completely connected network (moreover, one with no hidden variables), so some form of 
complexity penalty is required. We can also apply MCMC to sample many possible network 
structures, thereby approximating Bayesian learning. For example, we can learn mixtures of 
Gaussian with an unknown number of components by sampling over the number; the approx-
imate posterior distribution for the number of Gaussians  is given by the sampling frequencies 
of the MCMC process. 

For the complete-data case, the inner loop to learn the parameters is very fast—just  a 
matter of extracting conditional frequencies from the data set. When there are hidden vari-
ables, the inner loop may involve many iterations of EM or a gradient-based algorithm, and 
each iteration involves the calculation of posteriors in a Bayes net, which is itself an NP-hard 
problem. To date, this approach has proved impractical for learning complex models. One 
possible improvement is the so-called structural EM algorithm, which operates in much the 
same way as ordinary (parametric) EM except that the algorithm can update the structure 
as well as the parameters. Just as ordinary EM uses the current parameters to compute the 
expected counts in the E-step  and then applies those counts in the M-step to choose new 
parameters, structural EM uses the current structure to compute expected counts and then ap-
plies those counts in the M-step  to evaluate the likelihood for potential new structures. (This 
contrasts with the outer-loop/inner-loop method, which computes new expected counts for 
each potential structure.) In this way, structural EM may make several structural alterations 
to the network without once recomputing the expected counts, and is capable of learning non- 
trivial Bayes net structures. Nonetheless, much work remains to be done before we can say 
that the structure-learning problem is solved. 
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20.4 SUMMARY 

Statistical learning methods range from simple calculation of averages to the construction of 
complex models such as Bayesian networks. They have applications throughout computer 
science, engineering, computational biology, neuroscience, psychology, and physics. This 
chapter has presented some of the basic ideas and given a flavor of the mathematical under-
pinnings. The main points are as follows: 

■ Bayesian learning methods formulate learning as a form of probabilistic inference, 
using the observations to update a prior distribution over hypotheses. This approach 
provides a good way to implement Ockham's razor, but quickly becomes intractable for 
complex hypothesis spaces. 

• Maximum a posteriori (MAP) learning selects a single most likely hypothesis given 
the data. The hypothesis prior is still used and the method is often more tractable than 
full Bayesian learning. 

• Maximum-likelihood learning simply selects the hypothesis that maximizes the likeli-
hood of the data; it is equivalent to MAP learning with a uniform prior. In simple cases 
such as linear regression and fully observable Bayesian networks, maximum-likelihood 
solutions can be found easily in closed form. Naive Bayes learning is a particularly 
effective technique that scales well. 

■ When some -variables are hidden, local maximum likelihood solutions can be found 
using the EM algorithm. Applications include clustering using mixtures of Gaussians, 
learning Bayesian networks, and learning hidden Markov models. 

• Learning the structure of Bayesian networks is an example of model selection. This 
usually involves a discrete search in the space of structures. Some method is required 
for trading off model complexity against degree of fit_ 

• Nonparametric  models represent a distribution using the collection of data points. 
Thus, the number of parameters grows with the training set. Nearest-neighbors methods 
look at the examples nearest to the point in question, whereas kernel methods form a 
distance-weighted combination of all the examples. 

Statistical learning continues to be a very active area of research. Enormous strides have been 
made in both theory and practice, to the point where it is possible to learn almost any model 
for which exact or approximate inference is feasible. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The application of statistical teaming  techniques in AI was an active area of research in the 
early years (see Duda and Hart, 1973) but became separated from mainstream AI as the 
latter field concentrated on symbolic methods. A resurgence of interest occurred shortly after 
the introduction of Bayesian network models in the late 1980s; at roughly the same time, 
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a statistical view of neural network learning began to emerge. In the late 1990s, there was 
a noticeable convergence of interests in machine learning, statistics, and neural networks, 
centered on methods for creating large probabilistic models from data. 

The naive Bayes model is one of the oldest and simplest forms of Bayesian network ;  
dating back to the 1950s. Its origins were mentioned in Chapter 13. Its surprising success is 
partially explained by Domingos and Pazzani (1997). A boosted form of naive Bayes learn-
ing won the first KDD Cup data mining competition (Elan, 1997). Beckerman  (1998) gives 
an excellent introduction to the general problem of Bayes net learning. Bayesian parame-
ter learning with Dirichlet priors for Bayesian networks was discussed by Spiegelhalter et al. 
(1993). The BUGS software package (Gilks  et aL,  1994) incorporates many of these ideas and 
provides a very powerful tool for formulating and learning complex probability models. The 
first algorithms for learning Bayes net structures used conditional independence tests (Pearl. 
1988; Pearl and Venna,  1991), Spines  et  a/.  (1993) developed a comprehensive approach 
embodied in the TETRAD package for Bayes net learning. Algorithmic improvements since 
then led to a clear victory in the 2001 KDD Cup data mining competition for a Bayes net 
learning method (Cheng et al., 2002). (The specific task here was a bioinformatics  prob-
lem with 139,351 features!) A structure-learning approach based on maximizing likelihood 
was developed by Cooper and Herskovits (1992) and improved by Heckennan  et al. (1994). 
Several algorithmic advances since that time have led to quite respectable performance in 
the complete-data case (Moore and Wong, 2003; Teyssier and Koller, 2005),  One important 
component is an efficient data structure, the AD-tree, for caching counts over all possible 
combinations of variables and values (Moore and Lee, 1997). Friedman and Goldszmidt 
(1996) pointed out the influence of the representation of local conditional distributions on the 
learned structure. 

The general problem of learning probability models with hidden variables and miss-
ing data was addressed by Hartley (1958), who described the general idea of what was later 
called EM and gave several examples. Further impetus came from the Baum—Welch algo-
rithm for HMM learning (Baum and Petrie, 1966), which is a special case of EM. The paper 
by Dempster, Laird. and Rubin (1977), which presented the FM algorithm in general form 
and analyzed its convergence, is one of the most cited papers in both computer science and 
statistics. (Dempster himself views EM as a schema rather than an algorithm, since a good 
deal of mathematical work may be required before it can be applied to a new family of dis-
tributions.) McLachlan and Krishnan (1997) devote an entire book to the algorithm and its 
properties. The specific problem of learning mixture models, including mixtures of Gaus-
sians,  is covered by Titterington et al. (1985). Within AI, the first successful system that used 
EM for mixture modeling was AUTOCLASS (Cheeseman et al., 1988; Cheeseman and Stutz, 
1996). AUTOCLASS has been applied to a number of real-world scientific classification tasks. 
including the discovery of new types of stars from spectral data (Goebel et al., 1989) and new 
classes of proteins and introns in DNA/protein sequence databases (Hunter and States, 1992), 

For maximum-likelihood parameter learning in Bayes  nets with hidden variables, EM 
and gradient-based methods were introduced around the same time by Lauritzen (1995), Rus-
sell et at.  (1995), and Binder et al. (1997a). The structural EM algorithm was developed by 
Friedman (1998) and applied to maximum-likelihood learning of Bayes net structures with 
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latent variables. Friedman and Koller (2003). describe Bayesian structure learning. 
The ability to learn the structure of Bayesian  networks is closely connected to the issue 

of recovering causal information from data. That is, is it possible to learn Bayes nets in 
such a way that the recovered network structure indicates real causal influences? For many 
years, statisticians avoided this question, believing that observational data (as opposed to data 
generated from experimental trials) could yield only correlational information—after all, any 
two variables that appear related might in fact be influenced by a third unknown causal 
factor rather than influencing each other directly. Pearl (2000) has presented convincing 
arguments to the contrary, showing that there are in fact many cases where causality can be 

CAUSAL  NETNORK 

	

	ascertained and developing the causal network formalism to express causes and the effects 
of intervention as well as ordinary conditional probabilities. 

Nonparametric  density estimation, also called Parsers window density estimation, was 
investigated initially by Rosenblatt (1956) and Parzen  (1962). Since that time, a huge litera- 
ture has developed investigating the properties of various estimators. Devroye (1987) gives a 
thorough introduction. There is also a rapidly growing literature on nonparametric  Bayesian 

DIRISHLET  PRPCESS  methods. originating with the seminal work of Ferguson (1973) on the Dirichlet process, 
Mitch  can be thought of as a distribution over Dirichlet distributions. These methods are par- 
ticularly useful for mixtures with unknown numbers of components. Ghahramani  (2005) and 
Jordan (2005) provide useful tutorials on the many applications of these ideas to statistical 

GA_ISSIAN  PROCESS  learning.  The text by Rasmussen and Williams (2006) covers the Gaussian process, which 
gives a way of defining prior distributions over the space of continuous functions. 

The material in this chapter brings together work from the fields of statistics and pattern 
recognition, so the story has been told many times in many ways. Good texts on Bayesian 
statistics include those by DeGroot (1970), Berger (1985), and Gelman et al. (1995).  Bishop 
(2007) and Hastie at al. (2009) provide an excellent introduction to statistical machine learn-
ing. For pattern classification, the classic text for many years has been Duda and Hart (1973),  
now updated (Duda et al., 2001). The annual NIPS (Neural Information Processing Confer-
ence) conference, whose proceedings are published as the series Advances in Neural Informa-
tion Processing Systems, is now dominated by Bayesian papers. Papers on learning Bayesian  
networks also appear in the Uncertainty in Aland Machine Learning conferences and in sev-
eral statistics conferences. Journals specific to neural networks include Neural Computation, 
Neural Networks,  and the IEEE Transactions on Neural Networks. Specifically Bayesian 
venues include the Valencia International Meetings on Bayesian Statistics and the journal 
Bayesian  Analysis_ 

EXERCISES 

20.1 The data used for Figure 20.1 on page 804  can be viewed as being generated by h5 .  
For each of the other four hypotheses, generate a data set of length 100 and plot the cor-
responding graphs for P(hi  I di,  tiN)  and P(DN+1  = lime di, .. A).  Comment on 
your results. 
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GAMMA FUNCTION 

20.2 Suppose that Ann's utilities for cherry and lime candies are CA and in, whereas Bob's 
utilities arc CB and L B .  (But once Ann has unwrapped a piece of candy, Bob won't buy 
it.) Presumably, if Bob likes lime candies much more than Ann, it would be wise for Ann 
to sell her bag of candies once she is sufficiently sure of its lime content. On the other hand, 
if Ann unwraps too many candies in the process, the bag will be worth less. Discuss the 
problem of determining the optimal point at which to sell the hag.  Determine the expected 
utility of the optimal procedure, given the prior distribution from Section 20.1. 
20.3 Two statisticians go to the doctor and are both given the same prognosis: A 40%  
chance that the problem is the deadly disease _4,  and a 60% chance of the fatal disease B. 
Fortunately, there are anti-A and anti-B drugs that are inexpensive, 100% effective, and free 
of side-effects. The statisticians have the choice of taking one drug, both, or neither. What 
will the first statistician (an avid Bayesian) do? How about the second statistician, who always 
uses the maximum likelihood hypothesis? 

The doctor does some research and discovers that disease B actually comes in two 
versions, dextro-B  and levo-B, which are equally likely and equally treatable by the anti-B 
drug_ Now that there are three hypotheses, what will the two statisticians do? 

20.4 Explain how to apply the boosting method of Chapter 18 to naive Bayes learning.  Test 
the performance of the resulting algorithm on the restaurant learning problem. 

20.5 Consider N data points (xi, yi),  where the y j  s are generated from the xis  according to 

the linear Gaussian model in Equation (20.5). Find the values of 01, 02, and a that maximize 
the conditional log likelihood of the data.  

20.6 Consider the noisy-OR model for fever described in Section 14.3. Explain how to 
apply maximum-likelihood leaming to fit the parameters of such a model to a set of complete 
data. (Hint: use the chain rule for partial derivatives.) 
20.7 This exercise investigates properties of the Beta distribution defined in Equation (20.6). 

a. By integrating over the range [0, 1], show that the normalization constant for the dis-
tribution beta[a, b] is given by a = r(ci  b)/F(a)P(b)  where F(x)  is the Gamma 
function, defined by T(T  + 1) = x • r(x)  and f ( 1) = 1. (For integer x,  F (.r  1)= x!.)  

b. Show that the mean is a/(a  
c. Find the mode(s) (the most likely value(s) of O.  
d. Describe the distribution betra[e,  el  for very small e  What happens as such a distribution 

is updated? 

20.8 Consider an arbitrary Bayesian network, a complete data set for that network, and the 
likelihood for the data set according to the network. Give a simple proof that the likelihood 
of the data cannot decrease if we add a new link to the network and recompute the maximum-
likelihood parameter values. 

20.9 Consider a single Boolean random variable Y (the "classification"). Let the prior 
probability P(Y = true) be 7r. Let's try to find 7r,  given a training set D= (y i ,  yA-)  with 
N independent samples of Y. Furthermore, suppose p of the N are positive and ri  of the /V  

are negative. 
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a. Write down an expression for the likelihood of D (i.e., the probability of seeing this 
particular sequence of examples, given a fixed value of 7) in terms of rr ,  p,  and n.  

b. By differentiating the log likelihood  L,  find the value of it that maximizes the likelihood. 
c. Now suppose we add in k Boolean random variables Xi, X2, ,  Xk  (the "attributes'')  

that describe each sample. and suppose we assume that the attributes are conditionally 
independent of each other given the goal Y. Draw the Bayes net corresponding to this 
assumption. 

d. Write down the likelihood for the data including the attributes, using the following 
additional notation: 

• a i  is P(Xi =trueY  =true). 
• ,3i  is P(Xi  = truelY  = false). 
• pt  is the count of samples for which Xi = true and Y = true. 
• n.±  is the count of samples for which Xi = false  and Y = true. 
• pi  is the count of samples for which A i  = true and Y = false. 
• n7  is the count of samples for which Xi = f al se and Y = false. 

[Hint: consider first the probability of seeing a single example with specified values for 
Xi , X2,  ...  Xk and Y.]  

e. By differentiating the log likelihood L, find the values of cEi  and  (in terms of the var-
ious counts) that maximize the likelihood and say in words what these values represent. 

f. Let k = 2, and consider a data set with 4 all four possible examples of theXOR  function. 
Compute the maximum likelihood estimates of '7,  rat , a2,  01,  and 112.  

g. Given these estimates of ir,  al, 0,2,  01,  and /32 ,  what are the posterior probabilities 
P(Y = truelx1 ,x2  for each example? 

MILO  Consider the application of EM to learn the parameters for the network in Fig-
ure 20.13(a),  given the true parameters in Equation (20.7). 

a. Explain why the EM algorithm would not work if there were just two attributes in the 
model rather than three. 

b. Show the calculations for the first itcration of EM starting from Equation (20.8). 
c. What happens if we start with all the parameters set to the same value p'.)  (Hun:  you 

may find it helpful to investigate this empirically before deriving the general result.) 
d. Write out an expression for the log likelihood of the tabulated candy data on page S21  in 

terms of the parameters, calculate the partial derivatives with respect to each parameter, 
and investigate the nature of the fixed point reached in part (c)_  



21  REINFORCEMENT 
LEARNING 

In which we examine how an agent can learn from success and failure, from re-
ward and punishment. 

21.1 INTRODUCTION 

n13 ,11-0110END4T  

Chapters 18, 19, and 20 covered methods that learn functions, logical theories, and probability 
models from examples. In this chapter, we will study how agents can learn what to de)  in the 
absence of labeled examples of what to do. 

Consider, for example, the problem of learning to play chess. A supervised learning 
agent needs to be told the correct move for each position it encounters, but such feedback is 
seldom available. In the absence of feedback from a teacher, an agent can learn a transition 
model for its own moves and can perhaps learn to predict the opponent's moves, but without 
some feedback about what is good and what is bad, the agent will have no grounds for decid-
ing whirh  rnove  to snake. The agent needs to know that something good has happened when 
it (accidentally) checkmates the opponent, and that something had has happened when it is 
checkmated—or vice versa, if the game is suicide chess. This kind of feedback is called a 
reward, or reinforcement. In games like chess, the reinforcement is received only at the end 
of the game. In other environments, the rewards come more frequently. In ping-pong,  each 
point scored can be considered a reward; when learning to crawl, any forward motion is an 
achievement. Our framework for agents regards the reward as part of the input percept, but 
the agent must be "hardwired" to recognize that part as a reward rather than as just another 
sensory input. Thus, animals seem to be hardwired to recognize pain and hunger as negative 
rewards and pleasure and food intake as positive rewards. Reinforcement has been carefully 
studied by animal psychologists for over 60 years. 

Rewards were introduced in Chapter 17, where they served to define optimal policies 
in Markov decision processes ( MDPs).  An optimal policy is a policy that maximizes the 
expected total reward. The task of reinforcement learning is to use observed rewards to learn 
an optimal (or neatly optimal) policy for the environment. Whereas in Chapter 17 the agent 
has a complete model of the environment and knows the reward function, here we assume no 

830 
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prior knowledge of either. Imagine playing a new game whose rules you don't know; after a 
hundred or so moves, your opponent announces, "You lose." This is reinforcement learning 
in a nutshell. 

In many complex domains, reinforcement learning is the only feasible way to train a 
program to perform at high levels. For example, in game playing, it is very hard for a human 
to provide accurate and consistent evaluations of large numbers of positions, which would be 
needed to train an evaluation function directly from examples. Instead, the program can be 
told when it has won or lost, and it can use this information to learn an evaluation function 
that gives reasonably accurate estimates of the probability of winning from any given position. 
Similarly, it is extremely difficult to program an agent to fly a helicopter; yet given appropriate 
negative rewards for crashing, wobbling, or deviating from a set course, an agent can learn to 
fly by itself. 

Reinforcement learning might be considered to encompass all of Al: an agent is placed 
in an environment and must learn to behave successfully therein.  To keep the chapter man-
ageable, we will concentrate on simple environments and simple agent designs. For the most 
part, we will assume a fully observable environment, so that the current state is supplied by 
each percept. On the other hand, we will assume that the agent does not know how the en-
vironment works or what its actions do, and we will allow for probabilistic action outcome& 
Thus, the agent faces an unknown Markov decision process. We will consider three of the 
agent designs first introduced in Chapter 2: 

• A utility-based agent learns a utility function on stales and uses it to select actions that 
maximize the expected outcome utility. 

• A Q-learning agent learns an action-utility function. or Q-function.  giving the ex-
pected utility of taking a given action in a given state. 

• A reflex agent learns a policy that maps directly from states to actions. 

A utility-based agent must also have a model of the environment in order to make decisions, 
because it must know the states to which its actions will lead. For example, in order to make 
use of a backgammon evaluation function, a backgammon program must know what its legal 
moves are and how they affect the board position. Only in this way can it apply the utility 
function to the outcome states. A Q-learning  agent, on the other hand, can compare the 
expected utilities for its available choices without needing to know their outcomes, so it does 
not need a model of the environment. On the other hand, because they do not know where 
their actions lead, Q-learning  agents cannot look ahead; this can seriously restrict their ability 
to learn, as we shall see. 

We begin in Section 21.2 with passive learning, where the agent's policy is fixed and 
the task is to learn the utilities of states (or state—action pairs); this could also involve learning 
a model of the environment. Section 21.3 covers active learning, where the agent must also 
learn what to do. The principal issue is exploration: an agent must experience as much as 
possible of its environment in order to learn how to behave in it. Section 21A discusses how 
an agent can use inductive learning to learn much faster from its experiences. Section 21.5 
covers methods for learning direct policy representations in reflex agents,  An understanding 
of Markov decision processes (Chapter 17) is essential for this chapter. 
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Figure 21.1 (a) A policy ar  for the 4 x 3 world; this policy happens to be optimal with 
rewards of R(s)=  — 0.114  in the nonterniinal  states and no discounting. (b) The utilities of 
the states in the 4 x 3 world, given policy ir  
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21.2  PASSIVE REINFORCEMENT LEARNING 

To keep things simple, we start with the case of a passive learning agent using a state-based 
representation in a fully observable environment. In passive learning, the agent's policy 7r  
is fixed: in state s, it always executes the action ir(s).  Its goal is simply to learn how good 
the policy is—that is, to learn the utility function /7 1- (g)_  We will use as our example the 
4 x 3 world introduced in Chapter 17. Figure 21.1 shows a policy for that world and the 
corresponding utilities. Clearly, the passive learning task is similar to the policy evaluation 
task, part of the policy iteration algorithm described in Section 17.3. The main difference 
is that the passive learning agent does not know the transition model P(s)  Is,  a), which 
specifies the probability of reaching state .9'  from state s after doing action a; nor does it 
know the reward function R(s), which specifies the reward for each state. 

TRIM_ The agent executes a set of trials in the environment using its policy 7r. In each trial, the 

agent starts in state (1,1) and experiences a sequence of state transitions until it reaches one 
of the terminal  states, (4,2) or (4,3). Its percepts supply both the current state and the reward 
received in that state. Typical trials might look like this: 

(1, 1)..04---,(  2).,,04 -4(1, (3, 3)-.04 —(4,  3) +1  
(1, 1)...04--q  1, 2)..04—(1,  3).,04  —4(2,  3)..04—q3, 3)...04^-  (4, 3)+ 1  
{1, 2).,04 ,-4(4,  2)4 .  

Note that each state percept is subscripted with the reward received. The object is to use the 
information about rewards to learn the expected utility /Pr (s) associated with each nontermi- 
nal state s. The utility is defined to be the expected sum of (discounted) rewards obtained if 
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policy or  is followed. As in Equation (17.2) on page 650, we write 

Ur (s)  = E [L  ltR(st ;1  
t = 

(21.1) 

where R(s) is the reward for a state, St  (a random variable) is the state reached at time t  when 
executing policy  and So = s.  We will include a discount factor 7  in all of our equations, 
but for the 4 x 3 world we will set ^y  = L  

L31-1  

21.2.1 Direct utility estimation 

A simple method for direct utility estimation was invented in the late 1950s in the area of 
adaptive control theory by Widrow and Hoff (1960). The idea is that the utility of a state 
is the expected total reward from that state onward (called the expected reward -to -go),  and 
each trial provides a sample of this quantity for each state visited. For example, the first trial 
in the set of three given earlier provides a sample total reward of 0.72  for state (1.1), two 
samples of 0.76 and 0.84 for (1,2), two samples of 0.80  and 0.88 for (1,3), and so on. Thus, 
at the end of each sequence, the algorithm calculates the observed reward-to-go for each state 
and updates the estimated utility for that state accordingly, just by keeping a running average 
for each state in a table. In the limit of infinitely many trials, the sample average will converge 
to the true expectation in Equation (21.1). 

It is clear that direct utility estimation is just an instance of supervised learning where 
each example has the state as input and the observed reward-to-go as output. This means 
that we have reduced reinforcement learning to a standard inductive learning problem, as 
discussed in Chapter 18. Section 21.4 discusses the use of more powerful kinds of represen-
tations for the utility function. Learning techniques for those representations can be applied 
directly to the observed data. 

Direct utility estimation succeeds in reducing the reinforcement learning problem to 
an inductive framing  problem, about which much is known. Unfortunately, it misses a very 
important source of information, namely, the fact that the utilities of states are not indepen-
dent! The utility of each state equals its own reward plus the expected utility of its successor 
states. That is, the utility values obey the Bellman  equations for a fixed policy (see also 
Equation ( 17 . 1 0)): 

UT (3)  = +  
7  E  P(s' s, ,r(s))u-(s')  - (21.2) 

By ignoring the connections between states, direct utility estimation misses opportunities for 
learning. For example, the second of the three trials given earlier reaches the state (3,2),  
which has not previously been visited. The next transition reaches {3,3),  which is known 
from the first trial to have a high utility. The Bel  man equation suggests immediately that 
(3,2) is also likely to have a high utility, because it leads to (3,3), but direct utility estimation 
learns nothing until the end of the trial. More broadly, we can view direct utility estimation 
as searching for U in a hypothesis space that is much larger than it needs to be, in that it 
includes many functions that violate the Bellman  equations.  For this reason, the algorithm 
often converges very slowly. 

DIRECT UTELTY  
ESTIMATION 
DDAPTFVE  CONTROL 
THEORY 

RENARD-TO-GO  
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function PASSIVE-ADP-AGENT(percept)  returns an action 
inputs: percept, a percept indicating the current state a' and reward signal r' 
persistent: 7r, a fixed policy 

rndp,  an MDP with model P, rewards R, discount -y  
U, a table of utilities, initially empty 
N,„,  a table of frequencies for state—action pairs, initially zero 
Ns , i ,„„  a table of outcome frequencies given state—action pairs, initially zero 

s, a, the previous state and action, initially null 

if s' is new then Uisil  4—  r'; Rrs'l r' 
if s is not null then 

increment Ns „.[s,  al  and N  ,,i,„[s'  ,  s, 
for each t  such that Ns ,l,„[t,s,  a] is nonzero do 

P( t a, a) al /  Arsas,  al  
U r—  POLICY-EVALUATION(7,  U,tndP)  
if s'.TERMINAL?  then s, null else a, a I-  a', 
return a 

Figure 21.2  A passive reinforcement learning agent based on adaptive dynamic program-
ming. The POLICY-EVALUATION function solves the fixed-policy  Hellman equations, as 
described on page 657. 

ADATTNE  mimic  
PROGRAMMING 

21.2.2 Adaptive dynamic programming 

An adaptive dynamic progranuning  (or ADP) agent takes advantage of the constraints 
among the utilities of states by learning the transition model that connects them and solv-
ing the corresponding Markov decision process using a dynamic programming method. For 
a passive learning agent, this means plugging the learned transition model P(s r  a, 7r(6))  and 
the observed rewards R(s)  into the Bellman equations (21.2) to calculate the utilities of the 
states_  As we remarked in our discussion of policy iteration in Chapter 17, these equations 
are linear (no maximization involved) so they can be solved using any linear algebra pack-
age. Alternatively, we can adopt the approach of modified policy iteration (see page 657). 
using a simplified value iteration process to update the utility estimates after each change to 
the learned model. Because the model usually changes only slightly with each observation, 
the value iteration process can use the previous utility estimates as initial values and should 
converge quite quickly. 

The process of learning the model itself is easy, because the environment is fully ob-
servable. This means that we have a supervised learning task where the input is a state—action 
pair and the output is the resulting state. In the simplest case, we can represent the tran-
sition model as a table of probabilities. We keep track of how often each action outcome 
occurs and estimate the transition probability P(..9 1  a, a) from the frequency with which .9'  
is reached when executing a in s. For example, in the three trials given on page 832, Right 
is executed three times in (1,3) and two out of tlu-ee  times the resulting state is (2,3), so 
PO2,  3) (1, 3), Right) is estimated to be 2/3. 
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Figure 21.3  The passive ADP learning curves for the 4 x 3 world, given the optimal policy 
shown in Figure 21.1. (a) The utility estimates for a selected subset of states, as a function 
of the number of trials. Notice the large changes occurring around the 78th  trial—this is the 
first time that the agent falls into the — 1 terminal state at (4,2). (b) The root -mean -square 
error (see Appendix Af  in the estimate for U(1, 1), averaged over 20 runs of 100  trials each. 
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INVESIAN  
RENFORCELENT  
LEARNING 

The full agent program for a passive ADP agent is shown in Figure 21.2. Its perfor-
mance on the 4 x 3 world is shown in Figure 21.3. In terms of how quickly its value es-
timates improve, the ADP agent is limited only by its ability to learn the transition model. 
In this sense, it provides a standard against which to measure other reinforcement learning 
algorithms. It is, however, intractable for large state spaces. In backgammon, for example, it 
would involve solving roughly 105° equations in 105 '3  unknowns. 

A reader familiar with the Bayesian learning ideas of Chapter 20 will have noticed that 
the algonthm in Figure 21.2 is using maximum-likelihood  estimation to learn the transition 
model; moreover, by choosing a policy based solely on the estimated model it is acting as 
if the model were correct. This is not necessarily a good idea! For example, a taxi agent 
that didn't know about how traffic lights might ignore a red light once or twice without no 
ill effects and then formulate a policy to ignore red lights from then on. Instead, it might 
be a good idea to choose a policy that, while not optimal for the model estimated by maxi-
mum  likelihood, works reasonably well for the whole range of models that have a reasonable 
chance of being the true model. There are  two mathematical approaches that have this flavor. 

The first approach, Bayesian reinforcement learning, assumes a prior probability 
P(h) for each hypothesis h about what the true model is; the posterior probability P(h I e) is 
obtained in the usual way by B ayes' rule given the observations to date. Then, if the agent has 
decided to stop learning, the optimal policy is the one that gives the highest expected utility. 
Let 24,1  be the expected utility, averaged over all possible start states, obtained by executing 
policy 2t  in model h. Then we have 

= argmax  E  P(h e)/Lihr  
7r- 

 to 
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ROBUST CONTROL 
TkRIIRY  

TEMPORAL 
D IFzERENCE  

In some special cases, this policy can even be computed? If the agent will continue learning 
in the future, however, then finding an optimal policy becomes considerably more difficult, 
because the agent must consider the effects of future observations on its beliefs about the 
transition model. The problem becomes a POMDP whose belief states are distributions over 
models. This concept provides an analytical foundation for understanding the exploration 
problem described in Section 2L3. 

The second approach, derived from robust control theory, allows for a set of possible 
models N and defines an optimal robust policy as one that gives the best outcome in the worst 
case over N: 

= argmax  min u/
71,  . 

Often, the set  will be the set of models that exceed some likelihood threshold on P(h e).  
so the robust and Bayesian approaches are related. Sometimes, the robust solution can be 
computed efficiently. There are, moreover, reinforcement learning algorithms that tend to 
produce robust solutions, although we do not cover them here. 

21.2.3 Temporal -difference learning 

Solving the underlying MDP as in the preceding section is not the only way to bring the 
Bellman equations to bear on the learning problem. Another way is to use the observed 
transitions to adjust the utilities of the observed states so that they agree with the constraint 
equations. Consider, for example, the transition from (1.3) to (2,3) in the second trial on 
page 832,  Suppose that, as a result of the first trial, the utility estimates are  U"(1, 3) = 0.84 
and L7(2,  3) = 0.92. Now, if this transition occurred all the time, we would expect the utili-
ties to obey the equation 

V(1,  3) = —0.04 + U"(2, 3) , 

so U"(1,  3) would be 0.88. Thus, its current estimate of 0.84  might be a little low and should 
be increased. More generally, when a transition occurs from state s to state s', we apply the 
following update to U"(s):  

Wr (s) U7s)  a(R(s)  -F-yErr :s r )  — "(s)) (2 13) 

Here, a is the learning rate parameter. Because this update rule uses the difference in utilities 
between successive states, it is often called the temporal-difference, or TD, equation. 

All temporal-difference methods work by adjusting the utility estimates towards the 
ideal equilibrium that holds locally when the utility estimates are correct. In the case of pas-
sive learning, the equilibrium is given by Equation (21.2). Now Equation (21.3) does in fact 
cause the agent to reach the equilibrium given by Equation (21.2), but there is some subtlety 
involved. First, notice that the update involves only the observed successor si ,  whereas the 
actual equilibrium conditions involve all possible next states. One might think that this causes 
an improperly large change in U7r(s)  when a very rare transition occurs; but, in fact, because 
rare transitions occur only rarely, the average value of Ur(s)  will converge to the correct 
value.  Furthermore, if we change a from a fixed parameter to a function that decreases as 
the number of times a state has been visited increases, then U'r  (s) itself will converge to the 
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function PASSIVE -TD-AGENT(percept)  returns an action 
inputs: percept, a percept indicating the current state s'  and reward signal r' 
persistent 7r,  a fixed policy 

U, a table of utilities, initially empty 
N,,  a table of frequencies for states, initially zero 
a, a, r, the previous state, action, and reward, initially null 

if s'  is new then U[s'] r'  
if a is not null then 

increment N,[8]  
U[s]  – U[s]  + a(Ns [a])(r  + y U[s']  – U[a])  

if s t .TERMINAL?  then s,  a, r  null else a, a, r s', r' 
return a 

Figure 21.4 A passive  reinforcement learning agent that learns utility estimates using tem- 
poral differences. The step-size  function a (n) is chosen to ensure convergence, as described 
in the text. 

correct value) This gives us the agent program shown in Figure 21A,  Figure 21.5  illustrates 
the performance of the passive TD agent on the 4 x 3 world. It does not learn quite as fast as 
the ADP agent and shows much higher variability, but it is much simpler and requires much 
less computation per observation. Notice that TD  does not need a transition model to perform 
its updates.  The environment supplies the connection between neighboring states in the form 
of observed transitions_ 

The ADP approach and the TD approach are actually closely related. Both try to make 
local adjustments to the utility estimates in order to make each state "agree" with its succes-
sors. One difference is that TV adjusts a state to agree with its observed successor (Equa-
tion (21.3)), whereas ADP adjusts the state to agree with all of the successors that might 
occur, weighted by their probabilities (Equation (21.2)). This difference disappears when 
the effects of TD adjustments are averaged over a large number of -transitions, because the 
frequency of each successor in the set of transitions is approximately proportional to its prob-
ability. A more important difference is that whereas TD makes a single adjustment per ob- 
served transition, ADP makes as many as it needs to restore consistency hetween the utility 
estimates U and the environment model P. Although the observed transition makes only a 
local change in P, its effects might need to be propagated throughout U. Thus, TD  can be 
viewed as a crude but efficient first approximation to ADP. 

Each adjustment made by ADP could be seen, from the TD  point of view, w  a re-
sult of a "pseudoexperience"  generated by simulating the current environment model. It 
is possible to extend the TD  approach to use an environment model to generate several 
pseudoexperiences—transitions that the TD  agent can imagine might happen, given its current 
model. For each observed transition, the TD agent can generate a large number of imaginary 

The technical conditions are  given on page 725. In Figure 21.5  we have used n(n)  = 60/(59 + sill, which 
satisfies the conditions. 
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PRIDPITIZED  
SWEEPING 

Figure 21.5 The TD learning curves for the 4 x 3 world. (a) The utility estimates for a 
selet  Led subset of states, as a fur tetiun  of [lie number of trials. (b) The run [-me  tu  usquare  errui  
in the estimate for U(1, 1), averaged over 20 runs of 500 trials each. Only the first 100 trials 
are shown to enable comparison with Figure 21.3. 

transitions. In this way, the resulting utility estimates will approximate more and more closely 
those of ADP—of course, at the expense of increased computation time. 

In a similar vein, we can generate more efficient versions of ADP by directly approxi-
mating the algorithms for value iteration or policy iteration. Even though the value iteration 
algorithm is efficient, it is intractable if we have, say, 10100  states. However, many of the 
necessary adjustments to the state values on each iteration will be extremely tiny. One pos-
sible approach to generating reasonably good answers quickly is to bound the number of 
adjustments made after each observed transition. One can also use a heuristic to rank the pos-
sible adjustments so as to carry out only the most significant ones. The prioritized sweeping 
heuristic prefers to make adjustments to states whose likely successors have just undergone a 
large adjustment in their own utility estimates. Using heuristics like this, approximate ADP 
algorithms usually can learn roughly as fast as full ADP, in terms of the number of training se-
quences, but can be several orders of magnitude more efficient in terms of computation. (See 
Exercise 21.3.) This enables them to handle state spaces that are far too large for full ADP. 
Approximate ADP algorithms have an additional advantage: in the early stages of learning a 

new environment, the environment model P often will be far from coned, so there is little 
point in calculating an exact utility function to match it. An approximation algorithm can use 
a minimum adjustment size that decreases as the environment model becomes more accurate. 
This eliminates the very long value iterations that can occur early in learning due to large 
changes in the model. 
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21.3 ACTIVE REINFORCEMENT LEARNING 

A passive learning agent has a fixed policy that determines its behavior.  An active agent must 
decide what actions to take. Let us begin with the adaptive dynamic programming agent and 
consider how it must be modified to handle this new freedom. 

First, the agent will need to learn a complete model with outcome probabilities for all 
actions, rather than just the model for the fixed policy. The simple learning mechanism used 
by PASSTVP-ADP-ACMNT  will do just fine for this. Next, we need to take into account the 
fact that the agent has a choice of actions, The utilities it needs to learn are those defined by 
the optimal policy; they obey the Bellman equations given on page 652, which we repeat here 
for convenience: 

U(s)  = R(s) EP(si  s,  a)U(s')  . (21.4) 

These equations can be solved to obtain the utility function U using the value iteration or 
policy iteration algorithms from Chapter 17_  The final issue is what to do at each step.  Having 
obtained a utility function U that is optimal for the learned model, the agent can extract an 
optimal action by one-step look-ahead to maximize the expected utility; alternatively, if it 
uses policy iteration, the optimal policy is already available, so it should simply execute the 
action the optimal policy recommends. Or should it? 

21.3.1 Exploration 

Figure 21.6  shows the results of one sequence of trials for an ADP agent that follows the 
recommendation of the optimal policy for the learned model at each step. The agent does 
not learn the true utilities or the true optimal policy! What happens instead is that, in thc  
39th trial, it finds a policy that reaches the +1  reward along the lower route via (2,1), (3,1), 
(3,2), and (3,3). (See Figure 21.6(b).) After experimenting with minor variations, from the 
276th trial onward it sticks to that policy, never learning the utilities of the other states and 

GREEDY AGENT  never finding the optimal route via (1,2), (1,3), and (2,3). We call this agent the greedy agent. 
Repeated experiments show that the greedy agent very seldom converges to the optimal policy 
for this environment and sometimes converges to really horrendous policies. 

How can it he that choosing the optimal action leads to suhoptimal  results? The answer 
is that the learned model is not the same as the true environment; what is optimal in the 
learned model can therefore be suboptimal in the true environment. Unfortunately, the agent 
does not know what the true environment is, so it cannot compute the optimal action for the 
true environment. What, then, is to be done? 

What the greedy agent has overlooked is that actions du more than provide rewards 
according to the current learned model; they also contribute to learning the true model by af-
fecting the percepts that are received. By improving the model, the agent will receive greater 

EXPLOITATION rewards in the futute. 2  An agent therefore must make a tradeoff between exploitation to 
EXPLORATICN maximize its reward—as reflected in its current utility estimates—and exploration to maxi- 

2  Notice the direct analogy to the theory of information value in Chapter 16.  
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Figure 21.6  Performance of a greedy ADP agent that executes the action recommended 
by the optimal policy for the learned model. (a) RMS  error in the utility estimates averaged 
over the nine nonterminal squares. (b) The suboptimal policy to which the greedy agent 
converges in this particular sequence of trials. 
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mine  its long-term well-being. Pure exploitation risks getting stuck in a rut. Pure exploration 
to improve one's knowledge is of no use if one never puts that knowledge into practice. In the 
real world, one constantly has to decide between continuing in a comfortable existence and 
striking out into the unknown in the hopes of discovering a new and better life. With greater 
understanding, less exploration is necessary. 

Can we be a little more precise than this? Is there an optimal exploration policy? This 
question has been studied in depth in the subfield of statistical decision theory that deals with 

BANDIT PROBLEM so-called bandit problems. (See sidebar.) 
Although bandit problems are extremely difficult to.solve  exactly to obtain an optima  

exploration method. it is nonetheless possible to come up with a reasonable scheme that 
will eventually lead to optimal behavior by the agent. Technically, any such scheme needs 

GLIE  to be greedy in the limit of infinite exploration, or GLIE.  A GLIE scheme must try each 
action in each state an unbounded number of times to avoid having a finite probability that 
an optimal action is missed because of an unusually bad series of outcomes. An ADP agent 
using such a scheme will eventually learn the true environment model. A GLIE scheme must 
also eventually become greedy, so that the agent's actions become optimal with respect to the 
learned (and hence the true) model. 

There are several. GLIE schemes; one of the simplest is to have the agent choose a ran-
dom action a fraction 1/t  of the time and to follow the greedy policy otherwise. While this 
does eventually converge to an optimal policy, it can be extremely slow. A more sensible 
approach would give some weight to actions that the agent has not tried very often, while 
tending in avoid actions ihat  are believed to be of low utility.  This can be implemented by 
altering the constraint equation (21.4) so that it assigns a higher utility estimate to relatively 
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EXPLORATION AND BANDITS 

In Las Vegas, a one-armed bandit is a slot machine A gambler can insert a coin, 
pull the lever, and collect the winnings (if any). An n-armed bandit has n levers. 
The gambler must choose which lever to play on each successive coin—the one 
that has paid off best, or maybe one that has not been tried? 

The Tx-armed  bandit problem is a formal model for real problems in many vi- 

tally important areas, such as deciding on the annual budget for Al research and 
development. Each arm corresponds to an action (such as allocating $20 million 
for the development of new AI textbooks), and the payoff from pulling the aim cor-
responds  to the benefits obtained from taking the action (immense). Exploration, 
whether it is exploration of a new research field or exploration of a new shopping 
mall, is risky, is expensive, and has uncertain payoffs; on the other hand, failure to 
explore al all means that one never discovers any actions that are worthwhile. 

To formulate a bandit problem properly, one must define exactly what is meant 
by optimal behavior Most definitions in the literature assume that the aim is to 
maximize the expected total reward obtained over the agent's lifetime. These defi-
nitions require that the expectation be taken over the possible worlds that the agent 
could be in, as well as over the possible results of each action sequence in any given 
world. Here, a "world" is defined by the transition model P (s'  ,  o).  Thus, in or-
der to act optimally, the agent needs a prier distribution over the possible models 
The resulting optimization problems are usually wildly intractable. 

In some cases—for example, when the payoff of each machine is independent 
and discounted rewards are used—it is possible to calculate a Gittins index for 
each slot machine (Gittins,  1989). The index is a function only of the number of 
times the slot machine has been played and how much it has paid off. The index for 
each machine indicates how worthwhile it is to invest more; generally speaking, the 
higher the expected return and the higher the uncertainty in the utility of a given 
choice, the better. Choosing the machine with the highest index value gives an 
optimal exploration policy. Unfortunately, no way has been found to extend Gittins 
indices to sequential decision problems. 

One can use the theory of n-armed  bandits to argue for the reasonableness 
of the selection strategy in genetic algorithms. (See Chapter 4.) If you consider 
each arm in an n-armed bandit problem to be a possible string of genes, and the 
investment of a coin in one arm to be the reproduction of those genes, then it can 
he proven that genetic algorithms allocate coins optimally, given an appropriate set 
of independence assumptions_  
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EXPLORATION  
FUNCTION 

unexplored state—action pairs. Essentially, this amounts to an optimistic prior over the possi- 
ble environments and causes the agent to behave initially as if there were wonderful rewards 
scattered all over the place. Let us use U+ (s) to denote the optimistic estimate of the utility 
(i.e., the expected reward-to-go) of the state s, and let N (s, a) be the number of times action 
a has been tried in state .s. Suppose we are using value iteration in an ADP learning agent; 
then we need to rewrite the update equation (Equation (17,6)  on page 652) to incorporate the 
optimistic estimate. The following equation does this: 

U+(s) R(3)+1,  max P(s' s, a)U+  (81 ),  N (s, a)) . (21.5) 

Here, f {a, n)  is called the exploration function.  It  determines how greed (preference for 
high values of a) is traded off against curiosity (preference for actions that have not been 
tried often and have low n.). The function f n) should be increasing in u  and decreasing 
in n. Obviously, there are many possible functions that tit these conditions. One particularly 
simple definition is 

NI,
=  R+ if 71 [ Ne  

ra  u otherwise 

where _R+  is an optimistic estimate of the best possible reward obtainable in any state and N,  
is a fixed parameter. This will have the effect of making the agent try each action—state pair 
at least 11c  times. 

The fact that U+ rather than U appears on the right-hand side of Equation (21.5) is 
very important. As exploration proceeds, the states and actions near the start state might well 
be tried a large number of times_  If we used U, the more pessimistic utility estimate, then 
the agent would soon become disinclined to explore further afield. The use of U+ means 
that the benefits of exploration arc propagated back from thc  edges of unexplored regions, 
so that actions that lead toward unexplored regions are weighted more highly, rather than 
just actions that are themselves unfamiliar. The effect of this exploration policy can be seen 
clearly in Figure 21.7, which shows a rapid convergence toward optimal performance, unlike 
that of the greedy approach. A very nearly optimal policy is found after just 18 trials. Notice 
that the utility estimates themselves do not converge as quickly-  This is because the agent 
stops exploring the unrewarding parts of the state space fairly soon, visiting them only "by 
accident" thereafter. However, it makes perfect sense for the agent not to care about the exact 
utilities of states that it knows are undesirable and can be avoided. 

21.3.2 Learning an action-utility function 
Now that we have an active ADP agent, let us consider how to construct an active temporal- 
difference learning agent. The most obvious change from the passive case is that the agent 
is no longer equipped with a fixed policy, so, if it learns a utility function U, it will need to 
learn a model in order to he able to choose an action based on U via one-step look-ahead. 
The model acquisition problem for the TD agent is identical to that for the ADP agent. What 
of Lhe  TD update rule itself? Perhaps  surprisingly, the update rule (21,3) remains unchanged.  
This might seem odd, for the following reason: Suppose the agent takes a step that normally 
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leads to a good destination, but because of nondcterministri  in the environment the agent cnds 
up in a catastrophic state. The TD  update rule will take this as seriously as if the outcome had 
been the normal result of the action, whereas one might suppose that, because the outcome 
was a fluke, the agent should not worry about it too much. In fact, of course, the unlikely 
outcome will occur only infrequently in a large set of training sequences; hence in the long 
run its effects will be weighted proportionally to its probability, as we would hope. Once 
again, it can be shown that the TD algorithm will converge to the same values as ADP as the 
number of training sequences tends to infinity. 

There is an alternative TD method, called Q-learning,  which learns an action-utility 
representation instead of learning utilities. We will use the notation Q(s,  a) to denote the 
value of doing action a in state s.  Q-values are directly related to utility values as follows: 

U(s)  = maxQ(s, a) .  
a 

Q-functions  may seem like just another way of storing utility information, but they have a 

rfr 
 very important property:  a TD agent that learns a Q-function  does not need a model of the 

form P(s`  s,a),  either for learning or for action selection. For this reason, Q-learning  is 
called a model-free  method. As with utilities, we can write a constraint equation that must 

MODEL-FREE hold at equilibrium when the Q-values  are correct: 

Q(s, a) = R(s) +  y E  P(s'  a, a) max C2(.s t ,  a') . (21.7) 

As in the ADP teaming agent, we can use this equation directly as an update equation for 
an iteration process that calculates exact Q-values,  given an estimated model. This does, 
however, requite that a model also he teamed, because the equation uses P(s'  s,  a). The 
temporal-difference approach, on the other hand, requires no model of state transitions—all 

(21.6)  
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function Q-LEARNING-AGENT(pereept)  returns an action 
inputs: percept, a percept indicating the current state s' and reward signal r' 
persistent: Q, a table of action values indexed by state and action, initially zero 

N,“,  a table of frequencies for state—action pairs, initially zero 
a, e, r, the previous state, action, and reward, initially null 

if TERmiNAL1(s)  then Q[s. None] 
if s is not null then 

increment N,„[s,  a] 

Q[s, Q Is , al + c, ( 2‘ .1s,  all(r max.' Q15', a'] Qs, al) 
s, a, r s', argmax,„,  f (Q Is', al Ars,,, [8 1  ,  ail),  r' 

return a 

Figure 21.8 An exploratory Q-learning agent. It is an active learner that learns the value 
Q (.s, n. )  of each action in each situation_  It uses the same exploration function f as the ex-
ploratory ADP agent, but avoids having to learn the transition model because the Q-value of 
a state can be related directly to those of its neighbors. 

it needs are the Q values. The update equation for TD Q-learning  is 
Q(s,  a) Os,  a) + a(R(s)  +  'y  max Q(8 ',  a') — Q(s,  a)) , (21.8) 

which is calculated whenever action a is executed in state s leading to state a'. 
The  complete agent design for an exploratory Q-Icaming  agent using TD is shown in 

Figure 21.8. Notice that it uses exactly the same exploration function f as that used by the 
exploratory ADP agent—hence the need to keep statistics on actions taken (the table N). If 
a simpler exploration policy is used—say, acting randomly on some fraction of steps, where 
the fraction decreases over time—then  we can dispense with the statistics. 

aknsx Q-learning has a close relative called SARSA (for State-Action-Reward-State-Action). 
The update rule for SARSA is very similar to Equation (21.8): 

Q(s, a) +—  (2(s,  a) +  cr(R(s)  + ry Q(s' ,  a') —  Q(s, a)) , (21.9) 
where a' is the action actually taken in state .a'.  The rule is applied at the end of each 
a, a, r,  , ct!  quintuplet—hence the name. The difference from Q-learning is quite subtle: 
whereas Q-learning backs up the best Q-value from the state reached in the observed transi-
tion, SARSA waits until an action is actually taken and backs up the Q-value for that action. 
Now, for a greedy agent that always takes the action with best Q-value, the two algorithms 
are identical. When exploration is happening, however, they differ significantly. Because 
Q-learning  uses the best Q-value, it pays no attention to the actual policy being followed—it 

OFF-POLICY is an off-policy learning algorithm, whereas SARSA is an on-policy algorithm. Q-learning is 
ON-POLICY more flexible than SARSA, in the sense that a Q-learning agent can learn how to behave well 

even when guided by a random or adversarial exploration policy On the other hand, SARSA 
is more realistic: for example, if the overall policy is even partly controlled by other agents, it 
is better to learn  a Q-function for what will actually happen lather  than what the agent would 

like to happen. 
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Both Q-learning and SARSA learn the optimal policy for the 4 x 3 world, but do so 
at a much slower ratc than the ADP agent. This is because the local updates do not enforce 
consistency among all the Q-values via the model. The comparison raises a general question: 
is it better to learn a model and a utility function or to learn an action-utility function with 
no model? In other words, what is the best way to represent the agent function? This is 
an issue at the foundations of artificial intelligence. As we stated in Chapter I, one of the 
key historical characteristics of much of Al research is its (often unstated) adherence to the 
knowledge-based approach. This amounts to an assumption that the best way to represent 
the agent function is to build a representation of some aspects of the environment in which 
the agent is situated. 

Some researchers, both inside and outside Al, have claimed that the availability of 
model-free methods such as Q-learning means that the knowledge-based approach is unnec-
essary. There is, however, little to go on but intuition. Our intuition, for what it's worth, is that 
as the environment becomes more complex, the advantages of a knowledge-based approach 
become more apparent. This is borne out even in games such as chess, checkers (draughts), 
and backgammon (see next section), where efforts to learn an evaluation function by means 
of a model have met with more success than Q-learning methods. 

21.4 GENERALIZATION IN REINFORCEMENT LEARNING 

So far, we have assumed that the utility functions and Q-functions  learned by the agents are 
represented in tabular form with one output value for each input tuple. Such an approach 
works reasonably well for small state spaces, but the time to convergence and (for ADP) the 
time per iteration increase rapidly as the space gets larger. With carefully controlled, approx-
imate ADP methods, it might be possible to handle 10,000 states or more. This suffices for 
two-dimensional maze-like environments, but more realistic worlds are out of the question. 
Backgammon and chess are tiny subsets of the real world, yet their state spaces contain on 
the order of 10 2°  and 1040  states, respectively. It would be absurd to suppose that one must 
visit all these states many times in order to learn how to play the game? 

FUNCTION  
APPROXIMATION One way to handle such problems is to use function approximation, which simply 

means using any sort of representation for the Q-function other than a lookup table. The 
representation is viewed as approximate because it might not be the case that the true utility 
function or Q-function can be represented in the chosen form. For example, in Chapter 5 we 
described an evaluation function for chess that is represented as a weighted linear function 

RASA  FlINCTTIN of a set of features (or basis functions) ft ,  _  _  

tre(s)  = 9).  f1(s)  + 0
2 f2(8 )  +  •  •  '  On  fn(3)  •  

A reinforcement learning algorithm can learn values for the parameters 0 = 0 1 , , 6„  such 
that the evaluation function Ue,  approximates the true utility function. Instead of, say, 10 40  
values in a table, this function approximator  is characterized by, say, n = 20 parameters— 
an e rrortrwus  compression. Although no one knows the true utility function for chess, no 
one believes that it can be represented exactly in 20 numbers. If the approximation is good 
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enough, however, the agent might still play excellent chess .3  Function approximation makes 
it practical to represent utility functions for very large state spaces, but that is not its principal 
benefit. The compression achieved by a function approximator  allows the learning agent to 
generalize from stales it has visited to states  it has not visited. That is, the most important 
aspect of function approximation is not that it requires less space, but that it allows for induc-
tive generalization over input states. To give you some idea of the power of this effect: by 
examining only one in every 10 12  of the possible backgammon states, it is possible to learn a 
utility function that allows a program to play as well as any human (Tesauro, 1992).  

On the flip side, of course, there is the problem that there could fail to be any function 
in the chosen hypothesis space that approximates the true utility function sufficiently well. 
As in all inductive learning, there is a tradeoff between the size of the hypothesis space and 
the time it takes to learn the function. A larger hypothesis space increases the likelihood that 
a good approximation can be found, but also means that convergence is likely to be delayed. 

Let us begin with the simplest case, which is direct utility estimation. (See Section 21.2.) 
With function approximation, this is an instance of supervised learning. For example, sup-
pose we represent the utilities for the 4 x 3 world using a simple linear function. The features 
of the squares are just their x and y coordinates. so  we have 

Cle(:r7Y)  = 01x 626  - (21.10) 
Thus, if (Oil,  91, 92) = (0.5, 0.2, 0.1), then (10(1,  1) = 0.8. Given a collection of trials, we ob-
tain a set of sample values of 6-0(.x,  y). and we can find the best fit, in the sense of minimizing 
the squared error, using standard linear regression. (See Chapter 18.) 

For reinforcement learning, it makes more sense to use an online learning algorithm 
that updates the parameters after each trial. Suppose we run a trial and the total reward 
obtained starting at (1,1) is 0.4. This suggests that 00 (1,  1), currently 0.8, is too large and 
must he reduced_ How should the parameters he adjusted to achieve this? As with neural-
network learning, we write an error function and compute its gradient with respect to the 
parameters. If • 2  (s) is the observed total reward from state e onward in the jth trial, then 
the error is defined as (half) the squared difference of the predicted total and the actual total: 
Ei(s)  = (s) —  .a2(3)) 2/2.  The rate of change of the error with respect to each parameter 
0i is 0.E2/00i,  so to move the parameter in the direction of decreasing the error, we want 

(90g(s)   
(—  0, a 

OE
.1

•  (s)  

—  0, 0.11 (s) o(n)) (21.11) ao, 86, 
This is called the Widrow—Eluff  rule, or the delta rule, for online least-squares. For the 
linear function approximator U5 (s)  in Equation (21.10), we get three simple update rules: 

Bp ea  +  (uri  (8 ) —  00(s))  ,  
61  <—  61 +(ui —  0-

0 (s))x  ,  
92 62  +  ("1(8

)  — (3 )):7  
3  We do know that the exact utility function can he represented in a page or two of Lisp. Java. or C++. That is, 
it can be represented by a program that solves the game exactly every time it is called. We are interested only in 
function approximators that use a reasonable  amount of computation, h might in fact be better :o Iearn  a Very 
simple function approximator  and combine it with a certain amount of look-ahead  search. The tradeoffs involved 
are currently not well understood. 

WI DROW-110±  RULE 

DELTA RULE 
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We can apply these rules to the example where 0.0(1,  1) is 0.8 and uj(1,  1) is 0.4. On, Oa, 
and 92  arc all decreased by 0.4o,  which reduces the crror for (1,1). Notice that changing the 
parameters 0  in response to an observed transition between two states also changes the values 
of U0  for every other state! This is what we mean by saying that function approximation 
allows a reinforcement learner to generalize from its experiences. 

We expect that the agent will learn faster if it uses a function approximator, provided 
that the hypothesis space is not too large, but includes some functions that are a reasonably 
good fit to the true utility function. Exercise 21.5 asks you to evaluate the performance of 
direct utility estimation, both with and without function approximation. The improvement in 
the 4 x 3 world is noticeable but not dramatic, because this is a very small state space to begin 
with. The improvement is much greater in a 10 x 10 world with a +1 reward at (10,10).  This 
world is well suited for a linear utility function because the true utility function is smooth 
and nearly linear. (See Exercise 21.8.) If we put the +1 reward at (5,5), the true utility is 
more like a pyramid and the function approximator in Equation (21.10) will fail miserably. 
All is not lost, however! Remember that what matters for linear function approximation 
is that the function be linear in the parameters—the  features themselves can be arbitrary 
nonlinear functions of the state variables. Hence, we can include a term such as 03/3(X.,  y) = 
03  —  g )  2  ±  (I/  —  ij,) 2  that measures the distance to the goal. 

We can apply these ideas equally well to temporal-difference learners. All we need do is 
adjust the parameters to try to reduce the temporal difference between successive states, The 
new versions of the TD and Q-learning  equations (21.3 on page 836 and 21.8 on page 844) 
are given by 

o,  —  + En(  8)  ±  ei-g  )  06  (6  )1  
o(s)  

SBt  
for uti  I  i ties and 

2(s  
0i Oi 021-13(R)  +1,  max 09(st,  0. 1 )  — 019(s:  a)]

0  ,a) 
(21.13) 

00i  
for Q-values.  For passive TD learning, the update rule can be shown to converge to the closest 
possible4  approximation to the true function when the function approximator is linear in the 
parameters. With active learning and nonlinear functions such as neural networks, all bets 
are off: There are some very simple cases in which the parameters can go off to infinity 
even though there are good solutions in the hypothesis space There are more sophisticated 
algorithms that can avoid these problems, but at present reinforcement learning with general 
function approximators  remains a delicate art. 

Function approximation can also be very helpful for learning a model of the environ-
ment. Remember that learning a model fur an obserra.b/e  environment  is a supervised learn-
ing problem, because the next percept gives the outcome state. Any of the supervised learning 
methods in Chapter 18 can be used, with suitable adjustments for the fact that we need to pre-
dict a complete state description rather than just a Boolean classification or a single real value. 
For a partially observable environment, the learning problem is much more difficult. If we 
know what the hidden variables are and how they are causally related to each other and to the 

The definition of distance  between utility  functions is rather technical: see Tsitsildis  and Van Roy (19g7).  

(21.12) 
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observable variables, then we can fix the structure of a dynamic Bayesian network and use the 
EM algorithm to learn the parameters, as was described in Chapter 20. Inventing the hidden 
variables and learning the model structure are still open problems. Some practical examples 
are descnbed in Section 21.6. 

21.5 POLICY SEARCH 

The final approach we will consider for reinforcement learning problems is called policy  
search. In some ways, policy search is the simplest of all the methods in this chapter: the 
idea is to keep twiddling the policy as long as its performance improves, then stop. 

Let us begin with the policies themselves. Remember that a policy 7r is a function that 
maps states to actions. We are interested primarily in parameterized representations of 7r that 
have far fewer parameters than there are states in the state space (just as in the preceding 
section). For example, we could represent it by a collection of parameterized Q-functions,  
one for each action, and take the action with the highest predicted value: 

7r(s)  =  unax.  Q6(8, a) . (21.14) 

Each Q-function could be a linear function of the parameters 6,  as in Equation (21.10). 
or it could be a nonlinear function such as a neural network. Policy search will then ad-
just the parameters B to improve the policy. Notice that if the policy is represented by Q-

111:fr 
 functions, then policy search results in a process that learns Q-functions. This process is 

not the some as Q-learning!  In Q-learning  with function approximation, the algorithm finds 
a value of 6  such that Qa  is "close" to QV, the optimal Q-function.  Policy search, on the 
other hand, finds a value of 6  that results in grind  performance; the values found by the two 
methods may differ very substantially. (For example, the approximate Q-function  defined 
by Q 6 (8, a) = Cr(s,  o)  /10 gives optimal performance, even though it is not at all close to 
Q*.)  Another clear instance of the difference is the case where IT(s)  is calculated using, say. 
depth-10 look-ahead search with an approximate utility function U0 . A value of 0 that gives 
good results may be a long way from making U0 resemble the true utility function. 

One problem with policy representations of the kind given in Equation (21.14) is that 
the policy is a discontinuous function of the parameters when the actions are discrete. (For a 
continuous action space, the policy can be a smooth function of the parameters.) That is, there 
will be values of B such that an infinitesimal change in fl  causes the policy to switch from one 
action to another. This means that the value of the policy may also change discontinuously, 
which makes gradient-based search difficult. For this reason, policy search methods often use 

STOCHASTIC POLICY  a stochastic policy representation 7r0 (  9,  a), which specifies the probability of selecting action 
SOFTMA%  FUNCTION  a in state s. One popular representation is the softmax  function: 

Tro s  a) e46(s,a)/ 0, (s.d )  

a' 

Softniax  becomes nearly deterministic if one action is much better than the others, but it 
always gives a differentiable function of 8; hence, the value of the policy (which depends in 

POLICY SEARCH 
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a continuous fashion on the action selection probabilities) is a differentiable function of O.  
Softmax  is a generalization of the logistic function (page 725) to multiple variables.  

Now let us look at methods for improving the policy. We start with the simplest case: a 
deterministic policy and a deterministic environment. Let p(0)  be the policy value, i.e.,  the 
expected reward-to-go when r6  is executed. If we can derive an expression for p(0)  in closed 
form, then we have a standard optimization problem, as described in Chapter 4. We can follow 
the policy gradient vector Vo(0)  provided p(0)  is differentiable. Alternatively, if o(0)  is 
not available in closed form, we can evaluate rre  simply by executing it and observing the 
accumulated reward. We can follow the empirical gradient by hill climbing—i.e.,  evaluating 
the change in policy value for small increments in each parameter. With the usual caveats, 
this process will converge to a local optimum in policy space. 

When the environment (or the policy) is stochastic, things get more difficult. Suppose 
we are trying to do hill climbing, which requires comparing p(0)  and p(e  + AO) for some 
small AO.  The problem is that the total reward on each trial may vary widely, so estimates 
of the policy value from a small number of trials will be quite unreliable; trying to compare 
two such estimates will be even more unreliable. One solution is simply to run lots of trials, 
measuring the sample variance and using it to determine that enough trials have been run 
to get a reliable indication of the direction of improvement for p(0).  Unfortunately, this is 
impractical for many real problems where each trial may be expensive, time-consuming, and 
perhaps even dangerous. 

For the case of a stochastic policy r9(s,  a), it is possible to obtain an unbiased estimate 
of the gradient at 0, V II  p',0),  directly from the results of trials executed at IL For simplicity, 
we will derive this estimate for the simple case of a nonsequential environment in which the 
reward R(a) is obtained immediately after doing action a in the start state so. In this case, 
the policy value is just the expected value of the reward, and we have 

V p(0)  v,E76(s o ,a)R(a)  E(v,,,(s o ,a))R(a)  .  

Now we perform a simple trick so that this summation can be approximated by samples 
generated from the probability distribution defined by Tr6(s  0 , a). Suppose that we have N 
trials in all and the action taken on the jth trial is a,. Then 

( Voro (so,  a )).1i(  a) 1  \--‘1v  ( Vorar(s(o,:r ia)))/i(  a,  )   
Vsp(0)  = E  ffe(so,  a) 

/1- ( 0,  a =  1  

Thus, the true gradient of the policy value is approximated by a sum of terms involving 
the gradient of the action-selection probability in each trial. For the sequential case, this 
generalizes to 

V p(0)  
,7..„  

—
1  E  (vo„,r,s,  ai ))Rj (s)   

Tro(s,ai)  
=1  

for each state .s  visited, where ai  is executed in .s  on the jth trial and Ri (s)  is the total 
reward received from state a onwards in the jth  trial. The resulting algorithm is called 
REINFORCE (Williams, 1992); it is usually much more effective than bill climbing using 
lots of trials at each value of O.  It is still much slower than necessary, however. 

PC_ICY  VALUE 

PCLICY  C  RACIENT  
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Consider the following task: given two blackjack s  programs, determine which is best. 
Onc way to do this is to have each play against a standard "dealer" for a certain number of 
hands and then to measure their respective winnings. The problem with this, as we have seen. 
is that the winnings of each program fluctuate widely depending on whether it receives good 
or bad cards. An obvious solution is to generate a certain number of hands in advance and 
have each program play the same set  of hands. In this way, we eliminate the measurement 
error due to differences in the cards received. This idea, called correlated sampling, un-
derlies a policy-search algorithm called PEGASUS (Ng and Jordan, 2000). The algorithm is 
applicable to domains for which a simulator is available so that the "random" outcomes of 
actions can be repeated. The algorithm works by generating in advance N sequences of ran- 
dom numbers, each of which can be used to run a trial of any policy. Policy search is carried 
out by evaluating each candidate policy using the same set of random sequences to determine 
the action outcomes, It can be shown that the number of random sequences required to ensure 
that the value of every policy is well estimated depends only on the complexity of the policy 
space, and not at all on the complexity of the underlying domain. 

21.6 APPLICATIONS OF REINFORCEMENT LEARNING 

We now rum to examples of large-scale applications of reinforcement learning. We consider 
applications in game playing, where the transition model is known and the goal is to learn the 
utility function, and in robotics, where the model is usually unknown. 

21.6.1 Applications to game playing 

The first significant application of reinforcement learning was also the first significant learn-
ing program of any kind—the checkers program written by Arthur Samuel (1959, 1967). 
Samuel first used a weighted linear function for the evaluation of positions, using up to 16 
terms at any one time. He applied a version of Equation (21.12) to update the weights. There 
were some significant differences, however, between his program and current methods. First, 
he updated the weights using the difference between the current state and the backed-up value 
generated by full look-ahead in the search tree. This works fine, because it amounts to view-
ing the state space at a different granularity. A second difference was that the program did 
not use any observed rewards! That is, the values of terminal states reached in self-play were 
ignored. This means that it is theoretically possible for Samuel's program not to converge, or 
to converge on a strategy designed to lose rather than to win. He managed to avoid this fate 
by 'misting  that the weight for material advantage should always be positive. Remarkably, 
this was sufficient to direct the program into areas of weight space corresponding to good 
checkers play. 

Gerry Tesauro's backgammon program TD-GAMMON  (1992) forcefully illustrates the 
potential of reinforcement learning techniques. In earlier work (Tesauro and Sejnowski, 
1989), Tesauro tried learning a neural network representation of Q(s,  a) directly from ex- 

Also known as twenty-one or pontoon. 
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HANG-BANG  
GCNTROL  

Figure 21,9  Setup for the problem of balancing a long pole on top of a moving cart. The 
can can be jerked left or right by a controller that observes 2.,  0,1,  and B.  

amples of moves labeled with relative values by a human expert. This approach proved 
extremely tedious for the expert. It resulted in a program, called NEUROCIAMMON,  that was 
strong by computer standards, but not competitive with human experts. The TD-GAMMON  
project was an attempt to learn from self-play alone. The only reward signal was given at 
the end of each game. The evaluation function was represented by a fully connected neural 
network with a single hidden layer containing 40 nodes. Simply by repeated application of 
Equation (21.12), TD-GAMMON learned to play considerably better than N EU ROG AM M ON, 
even though the input representation contained just the raw board position with no computed 
features. This took shout  20000  training games and two weeks of computer time. Although 
that may seem like a lot of games, it is only a vanishingly small fraction of the state space. 
When precomputed  features were added to the input representation, a network with 80 hidden 
nodes was able, after 300,000 training games, to reach a standard of play comparable to that 
of the top three human players worldwide. Kit Woolsey, a top player and analyst, said that 
"There is no question in my mind that its positional ,judgment is far better than mine." 

21.6.2 Application to robot control 

The setup for the famous cart—pole  balancing problem, also known as the inverted pendu-
lum, is shown in Figure 21.9. The problem is to control the position x of the cart so that 
the pole stays roughly upright ( 0 ,̂-2  2r/2), while staying within the limits of the can track 
as shown. Several thousand papers in reinforcement learning and control theory have been 
published on this seemingly simple problem. The cart—pole problem differs from the prob-
lems described earlier in that the state variables x,  0,  •,  and 0 are continuous. The actions are 
usually discrete: jerk left or jerk right, the so-called bang-bang control regime. 

The earliest work on learning for this problem was carried out by Michie  and Cham-
bers (1968),  Their BOXES algorithm was able to balance the pole for over an hour after only 
about 30 trials. Moreover, unlike many subsequent systems, BOXES was implemented with a 

CART-POLE  

110  EATED  
PENDULUM 



Figure 21.10  Superimposed time-lapse images of an autonomous helicopter performing 
a very difficult "nose-in  circle" maneuver. The helicopter is under the control of a policy 
developed by the PEGASUS policy -search algorithm. A simulator model was developed by 
observing the effects of various control manipulations on the real helicopter; then the algo-
rithm was run on the simulator model overnight A variety of controllers were developed fur 
different maneuvers. In all cases, performance far exceeded that of an expert human pilot 
using remote control. (Image courtesy of Andrew Ng.) 
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real cart and pole, not a simulation. The algorithm first discretized the four-dimensional state 
space into boxes—hence  thc  name. It then ran trials until the pole fell over or the cart hit thc  
end of the track. Negative reinforcement was associated with the final action in the final box 
and then propagated hack through the sequence. It was found that the discretization  caused 
some problems when the apparatus was initialized in a position different from those used in 
training, suggesting that generalization was not perfect Improved generalization and faster 
learning can be obtained using an algorithm that adaptively partitions the state space accord-
ing to the observed variation in the reward, or by using a continuous-state, nonlinear function 
approximator such as a neural network. Nowadays, balancing a triple inverted pendulum is a 
common exercise—a feat far beyond the capabilities of most humans. 

Still more impressive is the application of reinforcement learning to helicopter flight 
(Figure 21.10). This work has generally used policy search (Bagnell and Schneider, 2001) 
as well as the PEGASUS algoridun  with simulation based on a learned transition model (Ng 
et al., 2004). Further details are given in Chapter 25. 
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21.7 SUMMARY 

This chapter has examined the reinforcement learning problem: how an agent can become 
proficient in an unknown environment, given only its percepts and occasional rewards. Rein-
forcement learning can be viewed as a microcosm for the entire AI problem, but it is studied 
in a number of simplified settings to facilitate progress. The major points are: 

• The overall agent design dictates the kind of information that must be learned. The 
three main  designs we covered were the model-based  design, using a model P and a 
utility function U; the model-free design, using an action-utility function Q; and the 
reflex design, using a policy r.  

• Utilities can be learned using three approaches: 
I. Direct utility estimation uses the total observed reward-to-go for a given state as 

direct evidence for learning its utility. 
2. Adaptive dynamic programming (ADP) learns a model and a reward function 

from observations and then uses value or policy iteration to obtain the utilities or 
an optimal policy. ADP makes optimal use of the local constraints on utilities of 
states imposed through the neighborhood structure of the environment 

1  Temporal-difference (TD) methods update utility estimates to match those of suc-
cessor states. They can be viewed as simple approximations to the ADP approach 
that can learn without requiring a transition model. Using a learned model to gen-
erate pseudoexperiences can, however, result in faster learning. 

• Action-utility functions, or Q-functions, can be learned by an ADP approach or a TD 
approach. With TD, Q-learning requires no model in either the learning or action-
selection phase. This simplifies the learning problem but potentially restricts the ability 
to learn in complex environments, because the agent cannot simulate the results of 
possible courses of action. 

• When the learning agent is responsible for selecting actions while it learns, it must 
trade off the estimated value of those actions against the potential for learning useful 
new information. An exact solution of the exploration problem is infeasible, but some 
simple heuristics do a reasonable job. 

• In large state spaces, reinforcement learning algorithms must use an approximate func-
tional representation in order to generalize over states. The temporal-difference signal 
can be used directly to update parameters in representations such as neural networks. 

• Policy-search methods operate directly on a representation of the policy, attempting 
to improve it based on observed performance. The variation in the performance in a 
stochastic domain is a serious problem; for simulated domains this can be overcome by 
fixing the randomness in advance. 

Because of its potential for eliminating hand coding of control strategies, reinforcement learn- 
ing continues to be one of the most active areas of machine learning lesearch.  Applications 
in robotics premise to be particularly valuable; these will require methods for handling con- 
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tinuous, high-dimensional, partially observable environments in which successful behaviors 
may consist of thousands or even millions of primitive actions. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Turing (1948, 1950) proposed the reinforcement-learning approach, although he was not con-
vinced of its effectiveness, writing, "the use of punishments and rewards can at best be a pan  
of the teaching process." Arthur Samuel's work (1959) was probably the earliest successful 
machine learning research. Although this work was informal and had a number of flaws, 
it contained most of the modem ideas in reinforcement learning, including temporal differ-
encing and function approximation. Around the same time, researchers in adaptive control 
theory (Widrow and Hoff, 1960), building on work by Hebb (1949), were training simple net-
works using the delta rule. (This early connection between neural networks and reinforcement 
learning may have led to the persistent misperception that the latter is a subfield of the for-
mer.) The cart—pole work of Michie and Chambers (1968) can also be seen as a reinforcement 
learning method with a function approximator. The psychological literature on reinforcement 
learning is much older; Hilgard and Bower (1975) provide a good survey. Direct evidence for 
the operation of reinforcement learning in animals has been provided by investigations into 
the foraging behavior of bees; there is a clear neural correlate of the reward signal in the form 
of a large neuron mapping from the nectar intake sensors directly to the motor cortex (Mon- 
tague et al., 1995). Research using single-cell recording suggests that the dopamine system 
in primate brains implements something resembling value function learning (Schultz et al_  
1997). The neuroscience text by Dayan and Abbott 2001) describes possible neural imple- 
mentations of temporal-difference learning, while Dayan and Niv (2008) survey the latest 
evidence from neuroscientific and behavioral experiments. 

The connection between reinforcement learning and Markov decision processes was 
first made by Werbos (1977), but the development of reinforcement learning in AI stems 
from work at the lIniversity  of Massachusetts in the early 1980s (Ratio  it al_ 19}11).  The 
paper by Sutton (1988) provides a good historical overview. Equation (21 3) in this chapter 
is a special case for A = 0 of Sutton's general TD(A) algorithm. TD(A)  updates the utility 
values of all states in a sequence leading up to each transition by an amount that drops off as 
A for states t steps in the past. TD(1) is identical to the Widrow—Hoff or delta rule. Boyan 
(2002), building on work by Bradtke and Barto (1996), argues that TD (A) and related algo-
rithms make inefficient use of experiences; essentially, they are online regression algorithms 
that converge much more slowly than offline regression. His L STD (least-squares temporal 
differencing) algorithm is an online algorithm for passive reinforcement learning that gives 
the same results as offline regression. Least-squares policy iteration, or LSPI (Lagoudakis 
and Parr, 2003), combines this idea with the policy iteration algorithm, yielding a robust, 
statistically efficient, model-free algorithm for learning policies. 

The combination of temporal-difference learning with the model-based generation of 
simulated experiences was proposed in Sutton's DYNA architecture (Sutton, 1990). The idea 
of prioritized sweeping was introduced independently by Moore and Atkeson (1993) and 
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Peng and Williams (1993). Q-learning  was developed in Watkins's Ph.D. thesis (1989), while 
SARSA appcarcd in a technical report by Rurrunery  and Niranjan (1994). 

Bandit problems, which model the problem of exploration for nonsequential decisions, 
are analyzed in depth by Berry and Fristedt (1985).  Optimal exploration strategies for several 
settings are obtainable using the technique called Gittins indices (Gittins,  1989). A vari-
ety of exploration methods for sequential decision problems are discussed by Barto et al. 
(1995). Kearns and Singh (1998) and Brafman  and Tennenholtz (2000) describe algorithms 
that explore unknown environments and are guaranteed to converge an near-optimal policies 
in polynomial time. Bayesian reinforcement learning (Dearden et al., 1998, 1999) provides 
another angle on both model uncertainty and exploration. 

Function approximation in reinforcement learning goes back to the work of Samuel, 
who used both linear and nonlinear evaluation functions and also used feature-selection meth- 

GAME.  ods to reduce the feature space. Later methods include the CMAC (Cerebellar -  Model Artic-
ulation Controller) (Albus, 1975), which is essentially a sum of overlapping local kernel 
functions, and the associative neural networks of Barto et al. (1983). Neural networks are 
currently the most popular form of function approximator. The best-known application is 
TD-Gammon  (Tesauro, 1992, 1995), which was discussed in the chapter. One significant 
problem exhibited by neural-network-based TD  learners is that they tend to forget earlier ex-
periences, especially those in parts of the state space that are avoided once competence is 
achieved. This can result in catastrophic failure if such circumstances reappear. Function ap-
proximation based on instance-based learning can avoid this problem (Ormoneit and Sen, 
201112;  Forbes, 2002).  

The convergence of reinforcement learning algorithms using function approximation is 
an extremely technical subject. Results for TD  learning have been progressively strength-
ened for the case of linear function approximators (Sutton, 1988; Dayan, 1992; Tsitsiklis and 
Van Roy, 1997), but several examples of divergence have been presented for nonlinear func-
tions (see Tsitsiklis and Van Roy, 1997, for a discussion). Papavassiliou and Russell (1999) 
describe a new type of reinforcement learning that converges with any form of function ap-
proximator,  provided that a hest-fit  approximation can he found for the observed data. 

Policy search methods were brought to the fore by Williams (1992), who developed the 
REINFORCE family of algorithms. Later work by Marbach and Tsitsiklis (1998), Sutton et al. 

(2000), and Baxter and Bartlett (2090)  strengthened and generalized the convergence results 
for policy search. The method of correlated sampling for comparing different configurations 
of a system was described formally by Kahn and Marshall (1953), but seems to have been 
known long before that. Its use in reinforcement learning is due to Van Roy (1998) and Ng 
and Jordan (2000); the latter paper also introduced the PEGASUS algorithm and proved its 
formal properties. 

As we mentioned in the chapter, the performance of a stochastic policy is a continu-
ous function of its parameters, which helps with gradient-based search methods, This is not 
the only benefit: Jaakkola  et al. (1995) argue that stochastic policies actually work better 
than deterministic policies in partially observable environments, if both are limited to act-
ing based on the current percept. (One reason is that the stochastic policy is less likely to 
get "stuck" because of some unseen hindrance.) Now, in Chapter 17 we pointed out that 
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optimal policies in partially observable MDPs are deterministic functions of the belief slate 
rather than the current percept, so we would expect still better results by keeping track of the 
belief state using the filtering methods of Chapter 15. Unfortunately, belief-state space is 
high-dimensional and continuous, and effective algorithms have not yet been developed for 
reinforcement learning with belief states. 

Real-world environments also exhibit enormous complexity in terms of the number 
of primitive actions required to achieve significant reward. For example, a robot playing 
soccer might make a hundred thousand individual leg motions before scoring a goal. One 

R EWARO  SHAPING common method, used originally in animal training, is called reward shaping. This involves 
PHNOM  DIMAS supplying the agent with additional rewards, called pseudorewards, for "making progress. 

For example, in soccer the real reward is for scoring a coal, but pseudorewards  might be 
given for making contact with the ball or for kicking it toward the goal. Such rewards can 
speed up learning enormously and are simple to provide, but there is a risk that lie agent 
will learn to maximize the pseudorewards rather than the true rewards; for example, standing 
next to the ball and "vibrating" causes many contacts with the ball. Ng et al. (1999) show 
that the agent will still learn the optimal policy provided that the pseudoreward F(s,  a, si )  
satisfies F(s, a, si )  =y  1(s')  — 0(s), where (11  is an arbitrary function of the state. €1,  can be 
constructed to reflect any desirable aspects of the state, such as achievement of subgoals or 
distance to a goal state. 

The generation of complex behaviors can also he facilitated by hierarchical reinforce- 
HIERARCHICAL  
P  FORCEAIENT ment  learning methods, which attempt to solve problems at multiple levels of abstraction- 
LEARN4NG  

much like the IITN  planning methods of Chapter 11. For example, "scoring a goal" can be 
broken down into "obtain possession," "dribble towards the goal," and "shoot;" and each of 
these can be broken down further into lower-level motor behaviors. The fundamental result 
in this area is due to Forestier and Varaiya (1978), who proved that lower-level behaviors 
of arbitrary complexity can be treated just like primitive actions (albeit ones that can take 
varying amounts of time) from the point of view of the higher-level behavior that invokes 
them. Current approaches (Parr and Russell, 1998; Dietterich, 2000; Sutton et al., 2000; 
Andre and Russell, 2002) build on this result to develop methods for supplying an agent 

PAFTIAL  PROGRAM  with a partial program that constrains the agent's behavior to have a particular hierarchical 
structure. The partial-programming language for agent programs extends an ordinary pro-
gramming language by adding primitives for unspecified choices that must be filled in by 
teaming.  Reinforcement learning is then applied to learn the best behavior consistent with 
the partial program. The combination of function approximation, shaping, and hierarchical 
reinforcement learning has been shown to solve large-scale problems—for example, policies 
that execute for 104  steps in state spaces of 10100' states with branching factors of 10 l0  (Marthi  
et al., 2005). One key result (Dietterich,  2000) is that the hierarchical structure provides a 
natural additive decomposition of the overall utility function into terms that depend on small 
subsets of the variables defining the state space. This is somewhat analogous to the represen-
tation theorems underlying the conciseness of Bayes nets (Chapter 14). 

The topic of distributed and multiagent reinforcement learning was not touched upon in 
the chapter but is of great current interest. In distributed RL, the aim is to devise methods by 
which multiple, coordinated agents learn to optimize a common utility function. For example. 
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can we devise methods whereby separate subagents for robot navigation and robot obstacle 
avoidance could cooperatively achieve a combined control system that is globally optimal? 
Some basic results in this direction have been obtained (Guestrin et al., 2002; Russell and 
Zirndars,  2003).  The basic idea is that each subagent learns its own Q-function from its 
own stream of rewards. For example, a robot-navigation component can receive rewards for 
making progress towards the goal, while the obstacle-avoidance component receives negative 
rewards for every collision. Each global decision maximizes the sum of Q-functions and the 
whole process converges to globally optimal solutions. 

Multiagent RL is distinguished from distributed RL  by the presence of agents who 
cannot coordinate their actions (except by explicit communicative acts) and who may not 
share the same utility function. Thus, multiagent RL deals with sequential game-theoretic 
problems or Markov games, as defined in Chapter 17. The consequent requirement for ran-
domized policies is nut a significant complication, as we saw on page 848. What does cause 
problems is the fact that, while an agent is learning to defeat its opponent's policy, the op-
ponent is changing its policy to defeat the agent. Thus, the environment is nonstationary  
(see page 568). Littman (1994) noted this difficulty when introducing the first RL algorithms 
for zero-sum Markov games. Hu and Wellman (2003) present a Q-learning  algorithm for 
general-sum games that converges when the Nash equilibrium is unique; when there are mul-
tiple equilibria, the notion of convergence is not so easy to define (Shoham et al., 2004). 

Sometimes the reward function is not easy to define. Consider the task of driving a car. 
There are extreme states (such as crashing the car) that clearly should have a large penalty. 
But beyond that, it is difficult to be precise about the reward function. I Iowever,  it is easy 
enough for a human to drive for a while and then tell a robot "do it like that." The robot then 
has the task of apprenticeship learning; learning from an example of the task done right, 
without explicit rewards. Ng et al. (2004) and Coates et al. (2009) show how this technique 
works for learning to fly a helicopter; see Figure 25.25 on page 1002 for an example of the 
acrobatics the resulting policy is capable of. Russell (1998) describes the task of inverse 
reinforcement learning—figuring out what the reward function must be from an example 
path through that state space_  This is useful as a part of apprenticeship learning, or as a pan 
of doing science—we can understand an animal or robot by working backwards from what it 
does to what its reward function must be. 

This chapter has dealt only with atomic states—all the agent knows about a state is the 
set of available actions and the utilities of the resulting states (or of state-action pairs). But 
it is also possible to apply reinforcement learning to structured representations rather than 
atomic ones; this is called relational reinforcement learning (Tadepalli et al., 2004). 

The survey by Kaelbling et al. (1996) provides a good entry point to the literature. The 
text by Sutton and B  arto (1998), two of the field's pioneers, focuses on architectures and algo-
rithms, showing how reinforcement learning weaves together the ideas of learning, planning, 
and acting. The somewhat more technical work by Bertsekas and Tsitsiklis  (1996) gives a 
rigorous grounding in the theory of dynamic programming and stochastic convergence. Re-
inforcement learning papers are published frequently in Machine Learning, in the Journal nf  
Machine Learning Research, and in the hitemational  Conferences on Machine Learning and 
the Neural Information Processing Systems meetings. 
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EXERCISES 

ft-t=r1;  

21.1 Implement a passive learning agent in a simple environment, such as the 4  x 3 world. 
For the case of an initially unknown environment model, compare the learning performance 
of the direct utility estimation, TD,  and ADP algorithms. Do the comparison for the optimal 
policy and for several random policies For which do the utility estimates converge faster')  

What happens when the size of the environment is increased? (Try environments with and 
without obstacles.) 

21.2 Chapter 17 defined a proper policy for an MDP as one that is guaranteed to reach a 
terminal state. Show that it is possible for a passive ADP agent to learn a transition model 
for which its policy it is improper even if tr  is proper for the true MDP;  with such models, 
the POLICY-EVALUATION step may fail if y = 1. Show that this problem cannot arise if 
POLICY-EVALUATION is applied to the learned model only at the end of a trial. 

21.3 Starting with the passive ADP agent, modify it to use an approximate ADP algorithm 
as discussed in the text. Do this in two steps: 

a. Implement a priority queue for adjustments to the utility estimates. Whenever a statc is 
adjusted, all of its predecessors also become candidates for adjustment and should be 
added to the queue. The queue is initialized with the state from which the most recent 
transition took place. Allow only a fixed number of adjustments. 

b. Experiment with various heuristics for ordering the priority queue, examining their ef-
fect on learning rates and computation time. 

21.4 Write out the parameter update equations for TD  learning with 

0(x,  y)  = 6o  +  
BIa 

 + 021)  + 83 \/(X  —  20 2  + —
,ys ) 2 .  

21.5 Implement an exploring reinforcement learning agent that uses direct utility estima-
tion. Make two versions—one with a tabular representation and one using the function ap-
proximator  in Equation (21.10).  Compare their performance in three environments: 

a. The 4 x 3 world described in the chapter. 
b. A 10  x 10  world with no obstacles and a +1 reward at (10,10). 
c. A 10 x 10 world with no obstacles and a +1  reward at (5,5). 

21.6 Devise suitable features for reinforcement learning in stochastic grid worlds (general-
izations of the 4 x 3 world) that contain multiple obstacles and multiple terminal states with 
rewards of +1 or —1.  

21.7 Extend the standard game-playing environment (Chapter 5) to incorporate a reward 
signal. Put two reinforcement teaming agents into the environment (they may, of course, 
share the agent program) and have them play against each other. Apply the generalized TD 
update rule (Equation (21.12))  to update the evaluation function. You might wish to start with 
a simple linear weighted evaluation function and a simple game. such as tic-tac-toe. 
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2L8 Compute the true utility function and the best linear approximation in x  and y  (as in 
Equation (21.10)) for the following environments: 

a. A 10 x 10 world with a single +1 terminal state at (10,10). 
b. As in (a), but add a —1 terminal state at (10,1). 
c. As in (b), but add obstacles  in 10 randomly selected squares. 
d. As in (b), but place a wall stretching from (5,2) to (5,9). 
e. As in (a), but with the terminal state at (5.5). 

The actions are deterministic moves in the four directions. In each case, compare the results 
using three-dimensional plots. For each environment, propose additional features (besides x  
and y) that would improve the approximation and show the results. 

21_9  Implement the REINFORCE and PFGASIJS  algorithms and apply them to the 4 x 3 
world, using a policy family of your own choosing. Comment on the results. 

21.10 Is reinforcement learning an appropriate abstract model for evolution? What connec-
tion exists, if any, between hardwired reward signals and evolutionary fitness? 



22  NATURAL LANGUAGE 
PROCESSING 

In which we see how to make use of the copious knowledge that is expressed in 
natural language. 

Homo sapiens is set apart from other species by the capacity for language. Somewhere around 
100,000 years ago, humans learned how to speak, and about 7,000 years ago learned to write. 
Although chimpanzees, dolphins, and other animals have shown vocabularies of hundreds of 
signs, only humans can reliably communicate an unbounded number of qualitatively different 
messages on any topic using discrete signs. 

Of course, there are other attributes that are uniquely human: no other species wears 
clothes, creates representational art, or watches three hours of television a day. Rut when 
Alan Turing proposed his Test (see Section 1.1.1), he based it on language, not art or TV. 
There are two main reasons why we want our computer agents to be able to process natural 
languages: first, to communicate with humans, a topic we take up in Chapter 23, and second, 
to acquire information from written language, the focus of this chapter. 

There are over a trillion pages of information on the Web, almost all of it in natural 
language, An agent that wants to do knowledge acquisition needs to understand (at least 
partially) the ambiguous, messy languages that humans use. We examine the problem from 
the point of view of specific information-seeking tasks: text classification, information re-
trieval, and information extraction. One common factor in addressing these tasks is the use of 
language models: models that predict the probability distribution of language expressions. 

22.1 LANGUAGE MODELS 

Formal languages, such as the programming languages Java or Python, have precisely defined 
LANGUAGE 
 language models. A language can be defined as a set of strings; "print ( 2 + 2 ► " is a 

legal program in the language Python, whereas "2 )+( 2 print" is not. Since there are an 
infinite number of legal programs, they cannot be enumerated; instead they are specified by a 

GRAMMAR set of rules called a grammar. Formal languages also have rules that define the meaning or 
SLIM  I semantics of a program; for example, the Riles say that the "meaning" of "2 + 2" is 4, and 

the meaning of "1 / Cl"  is that an error is signaled. 

860 
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Natural languages, such as English or Spanish, cannot be characterized as a definitive 
act of sentences. Everyone agrees that "Not to be invited is sad" is a sentence of English, 
but people disagree on the grammaticality of "To be not invited is sad." Therefore, it is more 
fruitful to define a natural language model as a probability distribution over sentences rather 

than a definitive set. That is, rather than asking if a string of words is or is not a member of 
the set defining the language, we instead ask for P(S = words)—what is the probability that 
a random sentence would be words. 

ALEIGUITY Natural languages are also ambiguous. "He saw her duck" can mean either that he saw 
a waterfowl belonging to her, or that he saw her move to evade something. Thus, again, we 
cannot speak of a single meaning for a sentence, but rather of a probability distribution over 
possible meanings. 

Finally, natural languages are difficult to deal with because they are very large, and 
constantly changing. Thus, our language models are, at best, an approximation. We start 
with the simplest possible approximations and move up from there. 

22.1.1 N-gram character models 
CHARACTERS Ultimately, a written text is composed of characters—letters, digits, punctuation, and spaces 

in English (and more exotic characters in some other languages).  Thus, one of the simplest 
language models is a probability distribution over sequences of characters. As in Chapter 15, 
we write P(ci , N)  for the probability of a sequence of N characters, ei  through c isr .  In one 
Web collection, P("the")  =  0.027 and P("zgq")  = 0.00UU00002.  A sequence of written sym-
bols of length n  is called an n-gram  (from the Greek root for writing or letters), with special 
case "unigram" for l-gram,  "bigram" for 2-gram, and "trigram" for 3-gram. A model of the 

N-GRAM  LIO➢EL 
 probability distribution of n-letter sequences is thus called an n-gram model. (But be care-

ful: we can have n-gram models over sequences of words, syllables, or other units; not just 
over characters.) 

An n,-gram  model is defined as a Markov chain of order n  — 1. Recall from page 568 
that in a Markov chain the probability of character ci  depends only on the immediately pre-
ceding characters, not on any other characters. So in a trigram model (Markov chain of 
order 2) we have 

P(c  I cr:i-i)  = P(ei  I ei-2:i-i)  • 
We can define the probability of a sequence of characters P(ci , /y )  under the trigram model 

by first factoring with the chain rule and then using the Markov assumption: 

N  P (Cl:  N) =  11  P(ci = Ph I ei-2:i-1)  
=t i  =1  

For a trigram  character model in a language with 100 characters, Pr,  C,  _2.,_  1)  has a million 
entries, and can be accurately estimated by counting character sequences in a body of text of 

CLHELJS 10 million characters or more. We call a body of text a corpus {plural corposu), from the 

Latin word for body. 
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IDEVTIFFCATIDN  

What can we do with n-gram character models? One task for which they are well suited 
is language identification: given a text, determine what natural language it is written in. This 
is a relatively easy task; even with short texts such as "Hello, world" or "Wie geht es dir," it 
is easy to identify the first as English and the second as German. Computer systems identify 
languages with greater than 99% accuracy; occasionally, closely related languages, such as 
Swedish and Norwegian, are confused. 

One approach to language identification is to first build a trigram character model of 
each candidate language, P(c i  1), where the variable .E  ranges over languages. Fm 
each f the model is built by counting trigrams in a corpus of that language. (About 100,000 
characters of each language are needed.) That gives us a model of P, TextText Language.), but 
we want to select the most probable language given the text, so we apply Bayes' rule followed 
by the Markov assumption to get the most probable language: 

r  = argrnax  P(i  ci,N)  

= argmax  P(/)P(ci:N  I t)  

= argmax  P(1) ft P(ci  Ci-2N-1,  
=1 

The trigram model can be learned from a corpus, but what about the prior probability P(P)?  
We may have some estimate of these values; for example, if we are selecting a random Web 
page we know that English is the most likely language and that the probability of Macedonian 
will be less than 1%. The exact number we select for these priors is not critical because the 
trigram model usually selects one language that is several orders of magnitude more probable 
than any other. 

Other tasks for character models include spelling correction, genre classification, and 
named-entity recognition. Genre classification means deciding if a text is a news story, a 
legal document, a scientific article, etc. While many features help make this classification, 
counts of punctuation and other character n-gram features go a long way (Kessler et aL,  
1997). Named-entity recognition is the task of finding names of things in a document and 
deciding what class they belong to. For example, in the text "Mr. Sopersteen was prescribed 
aciphex,"  we should recognize that "Mr. Sopersteen" is the name of a person and "aciphex" is 
the name of a drug. Character-level models are good for this task because they can associate 
the character sequence "ex_"  ("ex" followed by a space) with a drug name and "steen_"  with 
a person name, and thereby identify words that they have never seen before. 

22.1.2 Smoothing n -gram models 

The major complication of n-gram models is that the training corpus provides only an esti-
mate of the true probability distribution. For common character sequences such as "-th"  any 
English corpus will give a good estimate: about 1.5% of all trigrams.  On the other hand, ".ht"  
is very uncommon—no dictionary words start with ht. It is likely that the sequence would 
have a count of zero in a training corpus of standard English. Does that mean we should as-
sign P("-th")  = 0? If we did, then the text "The program issues an http request" would have 
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an English probability of zero, which seems wrong. We have a problem in generalization: we 
want our language models to generalize well to texts thcy haven't seen yet. Just because we 
have never seen "imp" before does not mean that our model should claim that it is impossi-
ble. Thus, we will adjust our language model so that sequences that have a count of zero in 
the training corpus will be assigned a small nonzero probability (and the other counts will be 
adjusted downward slightly so that the probability still sums to O.  The process od adjusting 
the probability of low-frequency counts is called smoothing. 

The simplest type of smoothing was suggested by Pierre-Simon Laplace in the 18th cen-
tury: he said that, in the lack of further information, if a random Boolean variable X has been 
false in all n observations so far then the estimate for P(X = true) should be 1 gn  ±  2).  That 
is, he assumes that with two more trials, one might be true and one false. Laplace smoothing 
(also called add-one smoothing) is a step in the right direction, but performs relatively poorly. 
A better approach is a backoff model, in which we start by estimating n-gram  counts, but fur 
any particular sequence that has a low (or zero) count, we back off to (n – 1)-grams. Linear 
interpolation smoothing is a backotf  model that combines trgram,  bigram, and unigram 
models by linear interpolation. It defines the probability estimate as 

P(e-i = A.3P(ci  I et-2:z  –  +  A2P(ei  e—  1)  +  Ai P(C2)  7  

where A3  +  )12  +  =  1. The parameter values Ai can be fixed, or they can be trained with 
an expectation–maximization algorithm. It is also possible to have the values of Ai  depend 
on the counts: if we have a high count of trigrams, then we weigh them relatively more; if 
only a low count, then we put more weight on the bigram and !migrant  models. One camp of 
researchers has developed ever more sophisticated smoothing models, while the other camp 
suggests gathering a larger corpus so that even simple smoothing models work well. Both are 
getting at the same goal: reducing the variance in the language model. 

One complication: note that the expression P(ci asks for P(ci  c-1 :0)  when 
a. = 1, but there are no characters before Cl.  We can introduce artificial characters, for 
example, defining ro  to be a space character or a special "begin text" character. Or we can 
fall back on lower-order Markov models, in effect defining C O_1,  to be the empty sequence 
and thus P(ci  c_ iro ) =  P(ci ).  

PERPLIXJTY  

22.1.3 Model evaluation 

With so many possible n-gram models—unigram,  bigram, trigrann,  interpolated smoothing 
with different values of A, etc.—how do we know what model to choose? We can evaluate a 
model with cross-validation. Split the corpus into a training corpus and a validation corpus. 
Determine the parameters of the model from the training data. Then evaluate the model on 
the validation corpus. 

The evaluation can be a task-specific metric, such as measuring accuracy on language 
identification. Alternatively we can have a task-independent model of language quality: cal- 
culate the probability assigned to the validation corpus by the model; the higher the proba-
bility the better. This metric is inconvenient because the probability of a large corpus will 
be a very small number, and floating-point andel-Row  becomes an issue. A different way of 
describing the probability of a sequence is with a measure called perplexity, defined as 

SLCOTHING  

EACK01-1-  MDL]1L  

I INFAR  
INTERPOLATION  
SI0011-413  
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Perplexity(ei,N)=  P(ci :N)  

Perplexity can be thought of as the reciprocal of probability, normalized by sequence length. 
It can also be thought of as the weighted average branching factor of a model. Suppose there 
are 100 characters in our language, and our model says they are all equally likely. Then for 
a sequence of any length, the perplexity will be 100. If some characters are more likely than 
others, and the model reflects that, then the model will have a perplexity less than 100. 

22.1.4 N-gram word models 

Now we turn to n-gram models over words rather than characters. All the same mechanism 
applies equally to word and character models. The main difference is that the vocabulary—
the set of symbols that make up the corpus and the model—is larger. There are only about 
100 characters in most languages, and sometimes we build character models that are even 
more restrictive, for example by treating "A" and "a" as the same symbol or by treating all 
punctuation as the same symbol. But with word models we have at least tens of thousands of 
symbols, and sometimes millions. The wide range is because it is not clear what constitutes a 
word. In English a sequence of letters surrounded by spaces is a word, but in some languages, 
like Chinese, words are not separated by spaces, and even in English many decisions must be 
made to have a clear policy on word boundaries: how many words are in "ne'er-do-well"? Or 
in "(Te1:1-800-960-5660x123)"?  

Word n-gram models need to deal with out of vocabulary words. With character mod-
els, we didn't have to worry about someone inventing a new letter of the alphabet. 1  But 
with word models there is always the chance of a new word that was not seen in the training 
corpus, so we need to model that explicitly in our language model. This can be done by 
adding just one new word to the vocabulary: <UNK>,  standing for the unknown word. We 
can estimate n-gram counts for <UNK> by this trick: go through the training corpus, and 
the first lime any individual word appears it is previously unknown, so replace it with the 
symbol <UNK>.  All subsequent appearances of the word remain unchanged. Then compute 
n-gram  counts for the corpus as usual, treating <UNK>  just like any other word. Then when 
an unknown word appears in a test set, we look up its probability under <UNK>.  Sometimes 
multiple unknown-word symbols are used, for different classes. For example, any string of 
digits might be replaced with <NUM>, or any email address with <EMAIL>. 

To get a feeling for what word models can do, we built unigram, bigram, and trigrarn  
models over the words in this book and then randomly sampled sequences of words from the 
models. The results are 

Unigram:  logical are as are contusion a may right tries agent goal the was . . 
Bigram: systems are very similar computational approach would be represented ..  
Trigram: planning and scheduling are integrated the success of naive bayes  model is ...  

Even with this small sample, it should be clear that the unigram model is a poor approximation 
of either English or the content of an AI textbook, and that the bigram and trigrarn  models are 

With the possible exception of the groundbreaking work of T. Geisel (1955). 



Section 22.2. Text Classification 865 

much better. The models agree with this assessment: the perplexity was 891 for the unigram 
model, 142 for the bigram model and 91 for thc  trigram  model. 

With the basics of n-gram  models—both character- and word-based—established, we 
can turn now to some language tasks. 

22.2 TEXT CLASSIFICATION 

TEXT 
CLASSIR  CAPON 

SPAM  DETECTION 

We now consider in depth the task of text classification, also known as categorization: given 
a text of some kind, decide which of a predefined set of classes it belongs to. Language iden-
tification and genre classification are examples of text classification, as is sentiment analysis 
(classifying a movie or product review as positive or negative) and spam detection (classify-
ing an email message as spam or not-spam). Since "not-spam" is awkward, researchers have 
coined the term ham for not-spam.  We can treat spam detection as a problem in supervised 
learning. A training set is readily available: the positive (spam)  examples are in my spun 
folder, the negative (ham) examples are in my inbox_  Here is an excerpt: 

Spam: Wholesale Fashion Watches -57% today. Designer watches for cheap ...  
Spam: You can buy ViagraFt$1.85  All Medications at unbeatable prices! ...  
Spam: WE CAN TREAT ANYTHING YOU SUFFER FROM JUST TRUST US ...  
Spam:  Start eam*ing the salary yo,u d-eserve  by obtaining  the prope,r erede'ntials!  

Ham: The practical significance of hypertree width in identifying more 
Ham: Abstract: We will motivate the problem of social identity clustering: ...  
Ham: Good to see you my friend. Hey Peter, It was good to hear from you.... 
Ham: PDS implies convexity of the resulting optimization problem (Kernel Ridge ...  

From this excerpt we can start to get an idea of what might be good features to include in 
the supervised learning model. Word n-grams such as "for cheap" and "You can buy" seem 
to be indicators of spam (although they would have a nonzero probability in ham as well). 
Character-level features also seem important: spam is more likely to be all uppercase and to 
have punctuation embedded in words. Apparently the spammers thought that the word bigram  
"you deserve" would be too indicative of spam, and thus wrote "yo,u d-eserve" instead. A 
character model should detect this. We could either create a full character n-gram model 
of spam  and ham, or we could handcraft features such as "number of punctuation marks 
embedded in words " 

Note that we have two complementary ways of talking about classification. In the 
language-modeling  approach, we define one n-gram language model for P(Message  spam)  
by training on the spam  folder, and one model for P(Message  hare) by training on the inbox. 
Then we can classify a new message with an application of Hayes' rule: 

arginax  P(c  I message)  = argrnax  P(message c) P(c) .  
cE(spam.harril cEisparn,ham}  

where. P( c) is estimated just by counting the total number of Spam and ham messages. This 
approach works well for spam  detection, just as it did for language identification. 
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In the machine-learning approach we represent the message as a set of feature/value 
pairs and apply a classification algorithm h to thc  feature vector X. We can make thc  
language-modeling and machine-learning approaches compatible by thinking of the n-grams  
as features. This is easiest to see with a unigram  model. The features are the words in the 
vocabulary: "a," "aardvark," ...,  and the values are the number of times each word appears 
in the message. That makes the feature vector large and sparse. If there are 100,000 words in 
the language model, then the feature vector has length 100,000, but for a short email message 
almost all the features will have count zero. This unigram  representation has been called the 

BAC  OF WORDS 
 bag of words model. You can think of the model as putting the words of the training corpus 

in a bag and then selecting words one at a time. The notion of order of the words is lost; a 
unigram model gives the same probability to any permutation of a text. Higher-order n-gram 
models maintain some local notion of word order. 

With bigrams and !lignin's  the number of features is squared or cubed, and we can add 
in other, non-'n-gram features: the time the message was sent, whether a URL or an image 
is part of the message, an ID number for the sender of the message, the sender's number of 
previous spam  and ham messages, and so on. The choice of features is the most important part 
of creating a good scam  detector—more important than the choice of algorithm for processing 
the features. In part this is because there is a lot of training data, so if we can propose a 
feature, the data can accurately determine if it is good or not. It is necessary to constantly 
update features, because spam  detection is an adversarial task; the spammers  modify their 
spam  in response to the span]  detector's changes. 

It can be expensive to run algorithms on a very large feature vector, so often a process 
FEATURE SELECTION 

 of feature selection is used to keep only the features that best discriminate between spam and 
ham. For example, the bigram "of the" is frequent in English, and may be equally frequent in 
spam  and ham, so there is no sense in counting it. Often the top hundred or so features do a 
good job of discriminating between classes. 

Once we have chosen a set of features, we can  apply any of the supervised learning 
techniques we have seen; popular ones for text categorization include k-nearest-neighbors, 
support vector machines, decision trees, naive Hayes, and logistic regression_ All of these 
have been applied to spam  detection, usually with accuracy in the 98%-99% range. With a 
carefully designed feature set, accuracy can exceed 99.9%. 

DATA COMPRESSION 

22.2.1 Classification by data compression 

Another way to think about classification is as a problem in data compression. A lossless 
compression algorithm takes a sequence of symbols, detects repeated patterns in it, and writes 
a description of the sequence that is more compact than the original. For example, the text 
"0.142857142857142857" might be compressed to "0.[142857]*3."  Compression algorithms 
work by building dictionaries of subsequences of the text, and then referring to entries in the 
dictionary. The example here had only one dictionary entry, "142857." 

In effect, compression algorithms are creating a language model. The LZW algorithm 
in particular directly models a maximum-entropy probability distribution. To do classification 
by compression, we first lump together all the spam training messages and compress them as 
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a unit. We do the same for the ham. Then when given a new message to classify, we append 
it to the spam  messages and compress the result. We also append it to the ham and compress 
that. Whichever class compresses better—adds the fewer number of additional bytes for the 
new message—is the predicted class. The idea is that a spam  message will tend to share 
dictionary entries with other spam messages and thus will compress better when appended to 
a collection that already contains the spam dictionary. 

Experiments with compression-based classification on some of the standard corpora for 
text classification—the 20-Newsgroups data set, the Reuters-10 Corpora, the Industry Sector 
corpora—indicate that whereas running off-the-shelf compression algorithms like gzip,  RAR,  
and LZW can be quite slow, their accuracy is comparable to traditional classification algo-
rithms. This is interesting in its own right, and also serves to point out that there is promise 
for algorithms that use character n-grams  directly with no preprocessing of the text or feature 
selection: they seem to be captiring  some real patterns. 

22.3 INFORMATION RETRIEVAL 

INFITIRLIATITIN  
RETRIEVAL 

in 

QUERY LANGUAGE 

TIETULF  SE!  

RE_EVANT  

PFaENTATON  

BODLEAN  KEYWORD 
MODEL 

Information retrieval is the task of finding documents that are relevant to a user's need for 
information. The best-known examples of information retrieval systems are search engines 
on the World Wide Web. A Web user can type a query such as [AI book]Z  into a search engine 
and see a list of relevant pages. In this section, we will see how such systems are built. An 
information retrieval (henceforth IR) system can be characterized by 

A corpus of documents. Each systcm must dccidc what it wants to treat as a document: 
a paragraph, a page, or a multipage text. 

2. Queries posed in a query language. A query specifies what the user wants to know. 
The query language can be just a list of words, such as [AI book]; or it can specify 
a phrase of words that must be adjacent, as in ("Al  book"];  it can contain Boolean 
operators as in [AI AND book]; it can include non-Boolean operators such as [AI NEAR 
book] or [AI book site:www.aaai.org].  

3. A result set. This is  the subset of documents that the IR system judges to be relevant to 
the query. By relevant, we mean likely to be of use to the person who posed the query, 
for the particular information need expressed in the query. 

4. A presentation of the result set. This can be as simple as a ranked list of document 
titles or as complex as a rotating color map of the result set projected onto a three-
dimensional space, rendered as a two-dimensional display. 

The earliest IR systems worked on a Boolean keyword model. Each word in the document 
collection is treated as a Boolean feature that is true of a document if the word occurs in the 
document and false if it does not. So the feature "retrieval" is true for the current chapter 
but false for Chapter 15. The query language is the language of Boolean expressions over 
2  We denote a search query as [query]. Square brackets are used rather than quotation marks so that we can 
distinguish the query ["two  words"]  from [two words]. 
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features. A document is relevant only if the expression evaluates to true. For example, the 
quay [information AND retrieval] is true for the current chapter and false for Chapter 15. 

This model has the advantage of being simple to explain and implement. However. 
it has some disadvantages.  First, the degree of relevance of a document is a single bit, so 
there is no guidance as to how to order the relevant documents for presentation. Second, 
Boolean expressions are unfamiliar to users who are not programmers  or logicians. Users 
find it unintuitive that when they want to know about farming in the states of Kansas and 
Nebraska they need to issue the query [farming (Kansas OR Nebraska)]. Third, it can be 
hard to formulate an appropriate query, even for a skilled user. Suppose we try [information 
AND retrieval AND models AND optimization] and get an empty result set.  We could try 
[information OR retrieval OR models OR optimization], but if that returns too many results, 
it is difficult to know what to try next. 

13525  SCORI  NG 
FUNCTION 

22.3.1 IR scoring functions 

Most IR systems have abandoned the Boolean model and use models based on the statistics of 
word counts. We describe the BM25 scoring function, which comes from the Okapi project 
of Stephen Robertson and Karen Sparck  Jones  at London's City College, and has been used 
in search engines such as the open-source Lucene project. 

A scoring function takes a document and a query and returns a numeric score; the most 
relevant documents have the highest scores. In the BM25 function, the score is a linear 
weighted combination of scores for each of the words that make up the query. Three Factors 
affect the weight of a query term: First, the frequency with which a query term appears in 
a document (also known as IF for term frequency). For the query [farming in Kansas], 
documents that mention "farming" frequently will have higher scores. Second, the inverse 
document frequency of the term, or IDF. The word "in" appears  in almost every document, 
so it has a high document frequency, and thus a low inverse document frequency, and thus it 
is not as important to the query as "farming" or "Kansas." Third, the length of the document. 
A million-word  document will probably mention all the query words, but may not actually be 
about the query. A short document that mentions all the words is a much better candidate. 

The BM25 function takes all three of these into account. We assume we have created 
an index of the N documents in the corpus so that we can look up TF(ai.  di), the count of 
the number of times word q,  appears in document di. We also assume a table of document 
frequency  counts, DP  (q,),  that gives the number of documents that contain the word rli  
Then, given a document dj  and a query consisting of the words we have 

BlvI25(dj : qi,N)  =  L/DF(qi)  
i=1 TF(qi,  di)  k —  b  b ) 

where 1(13 1  is the length of document di  in words, and L is the average document length 
in the corpus: L = I d i  I N. We have two parameters,  Jr  and b, that can be tuned by 
cross-validation; typical values are k = 2.0 and b = 0.75. IDF  (qi)  is the inverse document 



Section 22.3. Information Retrieval 869 

frequency of word qi,  given by 
N — DE(%) 0.5   

IDF(qi)  =  log 
DF(qi)  ±  0.5 

Of course, it would be impractical to apply the BM25  scoring function to every document 
INDEX in the corpus. Instead, systems create an index ahead of time that lists, for each vocabulary 
HIT LIST word, the documents that contain the word. This is called the hit list for the word. Then when 

given a query, we intersect the hit lists of the query words and only score the documents in 
the intersection. 

22.3.2 IR system evaluation 

How do we know whether an IR  system is performing well? We undertake an experiment in 
which the system is given a set of queries and the result sets are scored with respect to human 
relevance judgments. Traditionally, there have been two measures used in the scoring: recall 
and precision. We explain them with the help of an example. Imagine that an IR system has 
returned a result set for a single query, for which we know which documents are and are not 
relevant, out of a corpus of 100 documents. The document counts in each category are given 
in the following table: 

In result set Not in result set 
Relevant 

Not relevant 
30 
10 

20 
40 

PR=rIRICIN Precision measures the proportion of documents in the result set that are actually relevant 
In our example, the precision is 30/(30  +  10) = .75. The false positive rate is 1 —  .75 = .25. 

RECALL 
 Retail measures the proportion of all the relevant documents in the collection that arc in 

the result set. In our example, recall is 30/(30  + 20) = .60. The false negative rate is 1 — 
.60 = .40. In a very large document collection, such as the World Wide Web, recall is difficult 
to compute, because there is no easy way to examine every page on the Web for relevance. 
All we can do is either estimate recall by sampling or ignore recall completely and just judge 
precision. In the case of a Web search engine, there may be thousands of documents in the 
result set, so it makes more sense to measure precision for several different sizes, such as 
"P@10"  (precision in the top 10 results) or "P@50,"  rather than to estimate precision in the 
entire result set. 

It is possible to trade off precision against recall by varying the size of the result set 
returned. In the extreme, a system that returns every document in the document collection is 
guaranteed a recall of 100%, but will have low precision. Alternately, a system could return 
a single document and have low recall, but a decent chance at 100% precision. A summary 
of both measures is the Ft  score, a single number that is the harmonic mean of precision and 
recall, 2P RI (P R). 

22.3.3 IR refinements 
There are many possible refinements to the system described here, and indeed Web search 
engines arc continually updating their algorithms as they discover new approaches  and as the 
Web grows and changes. 
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SYNONYM 

PAGEFIANN  

One common refinement is a better model of the effect of document length on relevance. 
Singhal et al. (1996) observed that simple document length normalization schemes tend to 
favor short documents too much and long documents not enough. They propose a pivoted 
document length normalization scheme; the idea is that the pivot is the document length at 
which the old-style normalization is correct; documents shorter than that get a boast and 
longer ones get a penalty. 

The BM25 scoring function uses a word model that treats all words as completely in-
dependent, but we know that some words are correlated: "couch" is closely related to both 
"couches" and "sofa." Many IR systems attempt to account for these correlations. 

For example, if the query is [couch], it would he a shame to exclude from the result set 
those documents that mention "COUCH" or "couches" but not "couch." Most IR systems 
do case folding of "COUCH" to "couch." and some use a stemming algorithm to reduce 
"couches" to the stern  form "couch," both in the query and the documents. This typically 
yields a small increase in recall (on the order of 2% for English). However, it can harm 
precision. For example, stemming "stocking" to "stock" will tend to decrease precision for 
queries about either foot coverings or financial instruments, although it could improve recall 
for queries about warehousing. Stemming algorithms based on rules (e.g., remove "-ing")  
cannot avoid this problem, but algorithms based on dictionaries (don't remove "-ing"  if the 
word is already listed in the dictionary) can. While stemming has a small effect in English, 
it is more important in other languages. In German, for example, it is not uncommon to 
see words like "Lebensversicherungsgesellschaftsangestellter"  (life insurance company em-
ployee). Languages such as Finnish, Turkish, Inuit, and Yupik have recursive morphological 
rules that in principle generate words of unbounded length. 

The next step is to recognize synonyms, such as "sofa" for "couch." As with stemming_ 
this has the potential for small gains in recall, but can hurt precision. A user who gives the 
query [Tim Couch] wants to see results about the football player, not sofas. The problem is 
that "languages abhor absolute synonyms just as nature abhors a vacuum" (Cruse, 1986). That 
is, anytime there are two words that mean the same thing, speakers of the language conspire 
to evolve the meanings to remove the confusion_  Related words that are not synonyms also 
play an important role in ranking—terms like "leather", "wooden," or "modem" can serve 
to confirm that the document really is about "couch." Synonyms and related words can be 
found in dictionaries or by looking for correlations in documents or in queries—if we find 
that many users who ask the query [new sofa] follow it up with the query [new couch], we 
can in the future alter [new sofa] to be [new sofa OR new couch]. 

As a final refinement, IR can be improved by considering metadata—data outside of 
the text of the document. Examples include human-supplied keywords and publication data. 
On the Web, hypertext links between documents are a crucial source of information. 

22.3.4 The PageRank algorithm 

PageRank3  was one of the two original ideas that set Google's search apart from other Web 
search engines when it was introduced in 1997. (The other innovation was the use of anchor 

3  The name stands both for Web pages and for coinventor  Lan)  Page (Brie and Page, 1998). 

CASE FOLDING 

SI t-MAIIPILi  

METADATA  

LINKS 
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RANDOM  SURFER MODEL  

function HITS(query)  returns pages with hub and authority numbers 

pages 4-  EXPAND-PAGES(RELEVANT-PAGESS  query)) 
for each p in pages do 

p.AUTHORITY  1  
p.HUB  0—  1  

repeat until convergence do 
for each p in pages do 

p.AurnonITY  4—E,  INLINK,(p).HUB  
p.HUB  4- 1.:„  OUTLINK.(p).ALITUORITY  

NORMALIZE(pages)  
return pages 

Figure 221  The HITS algorithm for computing hubs and authorities with respect to a 
query. RFLEVANT-PAGES  fetches the pages that match the query, and F.  XPA  NM- PA GF  S  adds 
in every page that links to or is linked from one of the relevant pages. NORMALIZE divides 
each page's score by the sum of the squares of all pages' scores (separately for both the 
authority and hubs scores). 

text—the  underlined text in a hyperlink—to index a page, even though the anchor text was on 
a dfferetn  page than the one being indexed.) PageRank was invented to solve the problem of 
the tyranny of TF scores: if the query is [IBM], how do we make sure that IBM's home page, 
ibm. corn, is the first result, even if another page mentions the term "IBM" more frequently? 
The idea is that ibm.  comhas  many in-links (links to the page), so it should he ranked higher: 
each in-link is a vote for the quality of the linked-to page. But if we only counted in-links, 
then it would be possible for a Web spanimer  to create a network of pages and have them all 
point to a page of his choosing, increasing the score of that page. Therefore, the PageRank 
algorithm is designed to weight links from high-quality sites more heavily. What is a high-
quality site? One that is linked to by other high-quality sites. The definition is recursive, but 
we will see that the recursion bottoms out properly. The PageRank for a page p is defined as: 

1 — d  
PR(p)  = N  +  dE  c(ini)   

where PR(p) is the PageRank of page p, N is the total number of pages in the corpus, in 
are the pages that link in to p ;  and C(in t )  is the count of the total number of out-links on 
page in,. The constant d is a damping factor. It can be understood through the random 
surfer model: imagine a Web surfer who starts at some random page and begins exploring. 
With probability d (we'll assume d= 0.85) the surfer clicks on one of the links on the page 
(choosing uniformly among them), and with probability 1 — d she gets bored with the page 
and restarts on a random page anywhere on the Web. The PageRank of page p is then the 
probability that the random surfer will be at page p at any point in time. PageRank can be 
computed by an iterative procedure: start with all pages having EMI))  = 1, and iterate the 

algorithm, updating ranks until they converge. 
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AINHORITT  

HUB 

GUESRON  
ANSWERING 

22.3.5 The HITS algorithm 
The Hyperlink-Induced Topic Search algorithm, also known as "Hubs and Authorities" or 
HITS, is another influential link-analysis algorithm (see Figure 22.1). HITS differs from 
PageRank in several ways. First, it is a query-dependent  measure: it rates pages with respect 
to a query. That means that it must be computed anew for each query—a computational 
burden that most search engines have elected not to take on. Given a query, HITS first finds 
a set of pages that are relevant to the query. It does that by intersecting hit lists of query 
words, and then adding pages in the link neighborhood of these pages—pages that link to or 
are linked from one of the pages in the original relevant set. 

Each page in this set is considered an authority on the query to the degree that other 
pages in the relevant set point to it. A page is considered a hub to the degree that it points 
to other authoritative pages in the relevant set. Just as with PageRank, we don't want to 
merely count the number of links; we want to give more value to the high-quality hubs and 
authorities. Thus, as with PageRank, we iterate a process that updates the authority score of 
a page to be the sum of the hub scores of the pages that point to it, and the hub score to be 
the sum of the authority scores of the pages it points to. If we then normalize the scores and 
repeat k times, the process will converge. 

Both PageRank and HITS played important roles in developing our understanding of 
Web information retrievaL These algorithms and their extensions are used in ranking billions 
of queries daily as search engines steadily develop better ways of extracting yet finer signals 
of search relevance. 

22.3.6 Question answering 
Information retrieval is the task of finding documents that are relevant to a query, where the 
query may be a question, or just a topic area or concept. Question answering is a somewhat 
different task, in which the query really is a question, and the answer is not a ranked list 
of documents but rather a short response—a sentence, or even just a phrase. There have 
been question-answering NLP (natural language processing) systems since the 1960s, but 
only since 2001 have such systems used Web information retrieval to radically increase their 
breadth of coverage. 

The AsKMSR  system (Banko el al., 2002) is a typical Web-based question-answering 
system. It is based on the intuition that most questions will be answered many limes on the 
Web, so question answering should be thought of as a problem in precision, not recall. We 
don't have to deal with all the different ways that an answer might be phrased—we only 
have to find one of them. For example, consider the query [Who killed Abraham Lincoln?]  
Suppose a system had to answer that question with access only to a single encyclopedia, 
whose entry on Lincoln  said 

John Wilkes Booth altered history with a bullet. He will forever be known as the man 
who ended Abraham Lincoln's life. 

To use this passage to answer the question, the system would have to know that ending a life 
can be a killing, that "He" refers to Booth, and several other linguistic and semantic facts. 
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ASKMSR  does not attempt this kind of sophistication—it knows nothing about pronoun 
reference, or about killing, or any other verb. It does know 15 different kinds of questions, and 
how they can be rewritten as queries to a search engine. It knows that [Who killed Abraham 
Lincoln] can be rewritten as the query [ 4.-  killed Abraham Lincoln] and as [Abraham Lincoln 
was killed by 1.  It issues these rewritten queries and examines the results that come back—
not the full Web pages, just the short summaries of text that appear near the query terms. 
The results are broken into 1-, 2-, and 3-grams and tallied for frequency in the result sets and 
for weight: an  is-gram  that came back from a very specific query rewrite (such as the exact 
phrase match query [`Abraham Lincoln was killed by *"]l  would get more weight than one 
from a general query rewrite, such as [Abraham OR Lincoln OR killed]. We would expect 
that "John Wilkes Booth" would be among the highly ranked n-grams retrieved, but so would 
"Abraham Lincoln" and "the assassination of and "Ford's Theatre." 

Once the n-grams are scored, they are filtered by expected type. If the original query 
starts with "who," then we filter on names of people; for "how many" we filter on numbers, for 
"when," on a date or time. There is also a filter that says the answer should not be part of the 
question:  together these should allow us to return "John Wilkes Booth" (and not "Abraham 
Lincoln') as the highest-scoring response. 

In some cases the answer will be longer than three words: since the components re- 
sponses only go up to 3-grams. a longer response would have to be pieced together from 
shorter pieces. For example, in a system that used only bigrams, the answer "John Wilkes 
Booth" could be pieced together from high-scoring pieces "John Wilkes" and "Wilkes Booth." 

At the Text Retrieval Evaluation Conference (TREC), ASKMSR  was rated as one of 
the top systems, beating out competitors with the ability to do far more complex language 
understanding. ASKMSR relies upon the breadth of the content on the Web rather than on 
its own depth of understanding. It won't be able to handle complex inference patterns like 
associating "who killed" with "ended the life of." But it knows that the Web is so vast that it 
can afford to ignore passages like that and wait for a simple passage it can handle. 

22,4 INFORMATION EXTRACTION 

INFORMATICII  
ECTRACTICHI  Information extraction is the process of acquiring knowledge by skimming a text and look-

ing for occurrences of a particular class of object and for relationships among objects. A 
typical task is to extract instances of addresses from Web pages, with database fields for 
street, city, state, and zip code; or instances of storms from weather reports, with fields for 
temperature, wind speed, and precipitation. In a limited domain, this can be done with high 
accuracy. As the domain gets more general, more complex linguistic models and more com-
plex learning techniques are necessary. We will see in Chapter 23 how to define complex 
language models of the phrase structure (noun phrases and verb phrases) of English. But an  
far there are no complete models of this kind, so for the limited needs of information ex-
traction, we define limited models that approximate the full English model, and concentrate 
on just the parts that are needed for the task at hand. The models we describe in this sec- 



874 Chapter 22. Natural Language Processing 

Lion  are approximations in the same way that the simple 1-CNF  logical model in Figure 7.21 
(page 271) is an approximations of the full, wiggly, logical model. 

In this section we describe six different approaches to information extraction, in order 
of increasing complexity on several dimensions: deterministic to stochastic, domain-specific 
to general, hand-crafted to learned, and small-scale to large-scale. 

ATTRIBUTE-BASED  
EXTRACTION 

R ELATIONAL  
EXTRACTION 

22.4.1 Finite-state automata for information extraction 

The simplest type of information extraction system is an attribute-based extraction system 
that assumes that the entire text refers to a single object and the task is to extract attributes of 
that object. For example, we mentioned in Section 12.7 the problem of extracting from the 
text "IBM ThinkBook 970. Our price: $399.00" the set of attributes { Manufactmer=IBM,  
Model=ThinkI3ook970,  Price=$399.00}.  We can address this problem by defining a tem- 
plate (also known as a pattern) for each attribute we would like to extract The template is 
defined by a finite state automaton, the simplest example of which is the regular expression_  
or regex. Regular expressions are used in Unix commands such as grep, in programming 
languages such as Peri,  and in word processors such as Microsoft Word. The details vary 
slightly from one tool to another and so are best learned from the appropriate manual, but 
here we show how to build up a regular expression template for prices in dollars; 

matches any digit from 0 to 9 
matches one or more digits 
matches a period followed by two digits 
matches a period followed by two digits, or nothing 

)  ? matches $249.99 or $1.23 or $1000000 or ... 
Templates are often defined with three parts: a prefix regex, a target regex, and a postfix regex. 
For prices, the target regex is as above, the prefix would look for strings such as "price:" and 
the postfix could be empty. The idea is that some clues about an attribute come from the 
attribute value itself and some come from the surrounding text. 

If a regular expression for an attribute matches the text exactly once, then we can pull 
out the portion of the text that is the value of the attribute. If there is no match, all we can do 
is give a default value or leave the attribute missing; but if there are several matches, we need 
a process to choose among them. One strategy is to have several templates for each attribute, 
ordered by priority. So, for example, the top-priority template for price might look for the 
prefix "our price:"; if that is not found, we look for the prefix "price:" and if that is not found, 
the empty prefix. Another strategy is to take all the matches and find some way to choose 
among them. For example, we could take the lowest price that is within 50% of the highest 
price. That will select $78.00 as the target from the text "List price $99.00, special sale price 
$78.00, shipping $3.00." 

One step up from attribute-based extraction systems are relational extraction systems, 
which deal with multiple objects and the relations among them. Thus, when these systems 
see the text "$249.99," they need to determine not just that it is a price, but also which object 
has that price. A typical relational-based extraction system is FASTUS, which handles news 
stories about corporate mergers and acquisitions. It can read the story 

TEMPLATE 

REGULAR 
EX PRESSION 

r  0-9 
[0-9 

[ • 1 [ 
I  • 1 

[ [ 

1 
]+  
0-9 ] [G -9 ] 
[ 0 -9 ] [ 0-9 ] 
0-9 ] + [ . ] [  

)? 
0-9 ] [ 0-9 
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Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local 
concern and a Japanese trading house to produce golf clubs to be shipped to Japan. 

CAnGASED  
FINITE STATE 
TRANSDUCERS 

and extract the relations: 
e E Joint Ventures A Product(e,"golf  clubs") A Date(e."Friday")  

A Member(6,"Bridgestone  Sports Co") A Mernber(e,"a  local concern")  
A Mentber(e,"a  Japanese trading house") . 

A relational extraction system can be built as a series of cascaded finite-state transducers. 
That is, the system consists of a series of small, efficient finite-state automata (FSAs), where 
each automaton receives text as input, transduces  the text into a different format, and passes 
it along to the next automaton. FASTUS consists of five stages: 

1. Tokenization 
2. Complex-word handling 
3. Basic-group handling 
4. Complex-phrase handling 
5. Structure merging 

FASTUS 's  first stage is tokcniztition,  which segments the stream of characters into tokens 
(words, numbers, and punctuation). For English, tokenization can be fairly simple; just sep-
arating characters at white space or punctuation does a fairly good job. Some tokenizers also 
deal with markup languages such as HTML, SGML, and XML. 

The second stage handles complex words, including collocations such as "set up" and 
"joint venture," as well as proper names such as "Bridgestone Sports Co." These are rec-
ognized by a combination of lexical entries and finite-state grammar rules. For example, a 
company name might be recognized by the rule 

Capitalized Word+ ("Company" "Co" "Inc" "Ltd") 

The third stage handles basic groups, meaning noun groups and verb groups. The idea is 
to chunk these into units that will be managed by the later stages. We will see how to write 
a complex description of noun and verb phrases in Chapter 23, but here we have simple 
rules that only approximate the complexity of English, but have the advantage of being rep-
resentable by finite state automata. The example sentence would emerge from this stage as 
the following sequence of tagged groups: 

a local concern 
and 
a Japanese trading house 
to produce 
golf clubs 
to be shipped 
to 
Japan 

1 NG:  Bridgestone Sports Co. 10 NG:  
2 VC: said 11 CJ:  
3 NG:  Friday 12 NG: 
4 NG!  it 13 VG: 
5 VG: had set up 14 NG:  
6 NG:  a joint venture 15 VG: 
7 PR: in 16 PR: 
8 NG:  Taiwan 17 NG:  
9 PR: with 

Here NG means noun group, VG is verb group, PR is preposition, and Cl  is conjunction. 
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The fourth stage combines the basic groups into complex phrases. Again, the aim 
is to have rules that arc finite-state  and thus can be processed quickly, and that result in 
unambiguous for nearly unambiguous) output phrases. One type of combination rule deals 
with domain-specific events. For example, the rule 

Company+ SetUp JointVenture ("with" Company+)? 

captures one way to describe the formation of a joint venture. This stage is the first one in 
the cascade where the output is placed into a database template as well as being placed in the 
output stream. The final stage merges structures that were built up in the previous step. If 
the next sentence says "The joint venture will start production in January," then this step will 
notice that there are two references to a joint venture, and that they should be merged into 
one This is an instance of the identity, uncertainty problem discussed in Section 14.6.3. 

In general, finite-state template-based  information extraction works well for a restricted 
domain in which it is possible to predetermine what subjects will be discussed, and how they 
will be mentioned. The cascaded transducer model helps modularize the necessary knowl-
edge, easing construction of the system.  These systems work especially well when they are 
reverse-engineering text that has been generated by a program. For example, a shopping site 
on the Web is generated by a program that takes database entries and formats them into Web 
pages; a template-based extractor then recovers the original database. Finite-state informa-
tion extraction is less successful at recovering information in highly variable format, such as 
text written by humans on a variety of subjects. 

22.4.2 Probabilistic models for information extraction 

When information extraction must be attempted from noisy or varied input, simple finite-state 
approaches fare poorly. It is too hard to get all the rules and their priorities right; it is better 
to use a probabilistic model rather than a rule-based model. The simplest probabilistic model 
for sequences with hidden state is the hidden Marlow model, or HMM.  

Recall from Section 15.3  that an HMM  models a progression through a sequence of 
hidden states, xt ,  with an observation e t  at each step. To apply HMMs to information ex-
traction, we can either build one big HMM for all the attributes or build a separate HMM 
for each attribute. We'll do the second. The observations are the words of the text, and the 
hidden states are whether we are in the target, prefix, or postfix part of the attribute template, 
or in the background (not part of a template). For example, here is a brief text and the most 
probable (Viterbi) path for that text for two HMMs, one trained to recognize the speaker in a 
talk announcement, and one trained to recognize dates. The "-"  indicates a background state: 

Text: There will be a seminar by Dr. Andrew McCallum on Friday 
Speaker: - -  - PRE PRE TARGET TARGET TARGET POST - 
Date: - PRE TARGET 

HMMs have two big advantages over FSAs for extraction. First, HMMs are probabilistic, and 
thus tolerant to noise. In a regular expression, if a single expected character is missing, the 
regex fails to match; with HMMs there is graceful degradation with missing characters/words, 
and we get a probability indicating the degree of match, not just a Boolean match/fail. Second. 



dr  
professcr  
robert 
michael  
mx  

wire 
speaker 
speak 
5409 
appointment 

Target  Pustfix  

seminar 
reminder 
theater 
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Figure 22.2  Hidden Markav  model for the speaker of a talk announcement. The two 
square states are the target (note (he second target state has a self-loop, so the target can 
match a string of any length), the four circles to the left are the prefix, and the one on the 
right is the postfix. For each state, only a few of the high-probability words are shown. From 
Freitag and McCallum (2000).  
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HMV's  can be trained from data; they don't require laborious engineering of templates, and 
thus they can more easily be kept up to date as text changes over time. 

Note that we have assumed a certain level of structure in our HMM templates: they all 
consist of one or more target states. and any prefix states must precede the targets, postfix 
states most follow the targets, and other states must be background. This structure makes 
it easier to learn HMMs from examples. With a partially specified structure, the forward–
backward algorithm can be used to learn both the transition probabilities P(X t  X5 _ 1 ) be-
tween states and the observation model, P(E t  Xt ),  which says how likely each word is in 
each state. For example, the word "Friday" would have high probability in one or more of 
the target states of the date IIMM,  and lower probability elsewhere. 

With sufficient training data, the HMM automatically learns a structure of dates that we 
find intuitive: the date HMM  might have one target state in which the high-probability words 
are "Monday," "Tuesday," etc., and which has a high-probability transition to a target state 
with words "Jan", "January," "Feb," etc. Figure 22.2 shows the HMM for the speaker of a 
talk announcement, as learned from data. The prefix covers expressions such as "Speaker:" 
and "seminar by," and the target has one state that covers titles and first names and another 
state that covers initials and last names. 

Once the HMMs have been learned, we can apply them to a text, using  the Viterbi 
algorithm to find the most likely path through the HMM  states. One approach is to apply 
each attribute HMM separately; in this case you would expect most of the IIMMs  to spend 
most of their time in background states. This is appropriate when the extraction is sparse— 
when the number of extracted words is small compared to the length of the text. 
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The other approach is to combine all the individual attributes into one big HMM,  which 
would then find a path that wanders through different target attributes, first finding a speaker 
target, then a date target, etc. Separate HMMs are better when we expect just one of each 
attribute in a text arid one big HMM is better when the texts are more free-form and dense 
with attributes. With either approach, in the end we have a collection of target attribute 
observations, and have to decide what to do with them. If every expected attribute has one 
target filler then the decision is easy: we have an instance of the desired relation. If there 
are multiple fillers, we need to decide which to choose, as we discussed with template-based 
systems. HMMs have the advantage of supplying probability numbers that can help make 
the choice. If some targets are missing, we need to decide if this is an instance of the desired 
relation at all, or if the targets found are false positives. A machine learning algorithm can be 
trained to make this choice. 

COND1110NAL  
19APDOM  FIELD 

LINEAR-CHAIV  
CORDITIONAL  
RAKDOM  FIELD 

22.4.3 Conditional random fields for information extraction 

One issue with HMMs for the information extraction task is that they model a lot of prob-
abilities that we don't really need. An HMM  is a generative model; it models the full joint 
probability of observations and hidden states, and thus can be used to generate samples.  That 
is, we can use the HMM  model not only to parse a text and recover the speaker and date, 
but also to generate a random instance of a text containing a speaker and a date. Since we're 
not interested in that  task, it is natural to ask whether we might be better off with a model 
that doesn't bother modeling that possibility. All  we need in order to understand a text is a 
discriminative model, one that models the conditional probability of the hidden attributes 
given the observations (the text). Given a text ei,N,  the conditional model finds the hidden 
state sequence Xi,  N that maximizes P(X LN  ei ,N ).  

Modeling this directly gives us some freedom. We don't need the independence as-
sumptions of the Markov model—we can have an xt  that is dependent on x1. A framework 
for this type of model is the conditional random field, or CRF, which models a conditional 
probability distribution of a set of target variables given a set of observed variables. Like 
Bayesian  networks, CRFs can represent many different structures of dependencies among the 
variables. One common structure is the lineanchain  conditional random field for repre-
senting Markov dependencies among variables in a temporal sequence. Thus, HMMs  are the 
temporal version of naive Bayes  models, and linear-chain CRFs are the temporal version of 
logistic regression, where the predicted target is an entire state sequence rather than a single 
binary variable. 

Let ei,N  be the observations (e.g.,  words in a document), and xi , N  be the sequence of 
hidden states (e_g.,  the prefix, target. and pnstfix  states),  A linear-chain conditional random 
field defines a conditional probability distribution! 

P(xl:Nleniv)  =  e [E N  F (x, -nx,c,i )]  

where a is a normalization factor (to make sure the probabilities sum to 1), and F is a feature 
function defined as the weighted sum of a collection of k component feature functions: 

F(xj_i,xi,  e,i)  = fk(.,_„,  xi, e, i)  . 
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The Ak  parameter values are learned with a MAP (maximum a posteriori) estimation proce-
dure that maximizes thc  conditional likelihood of thc  training data. The feature functions arc 
the key components of a CRF. The function fa has access to a pair of adjacent states, xi_i  and 
xi, but also the entire observation (word) sequence e, and the current position in the temporal 
sequence, i. This gives us a lot of flexibility in defining features. We can define a simple 
feature function, for example one that produces a value of 1 if the current word is ANDREW 
and the current state is SPEAKER: 

I l  if xi = SPEAKER and ei  = ANDREW h(xi_ l ,  xi, e,  = I) otherwise 
How are features like these used? It depends on their corresponding weights. If Ai > 0, then 
whenever fi  is tore,  it increases the probability of the hidden state sequence xl ,Ar  .  This is 
another way of saying "the CRF model should prefer the target state SPEAKER for the word 
ANDREW." If on the other hand At <  O.  the CRF model will try to avoid this association, 
and if AI = 0, this feature is ignored. Parameter values can be set manually or can be learned 
from data. Now consider a second feature function: 

{  1 if  = SPEAKER and ei+i  = SAID xi.  e.  0 otherwise 
This feature is true if the current state is SPEAKER and the next word is "said." One would 
therefore expect a positive )12  value to go with the feature. More interestingly, note that both 
fi  and h  can hold at the same time for a sentence like "Andrew said ...."  In this case, the 
two features overlap each other and both boost the belief in x i  = SPEAKER.  Because  of the 
independence assumption, HMMs cannot use overlapping features; CRFs can. Furthermore, 
a feature in a CRF can use any part of the sequence ei ,N .  Features can also be defined over 
transitions between states. The features we defined here were binary, but in general, a feature 
function can be any real-valued function. For domains where we have some knowledge about 
the types of features we would like to include, the CRF formalism gives us a great deal of 
flexibility in defining them. This flexibility can lead to accuracies that are higher than with 
less flexible models such as HMMs. 

22.4.4 Ontology extraction from large corpora 

So far we have thought of information extraction as finding a specific set of relations (e.g., 
speaker, time, location) in a specific text (e.g., a talk announcement). A different applica-
tion of extraction technology is building a large knowledge base or ontology of facts from 
a corpus. This is different in three ways: First it is open-ended—we want to acquire facts 
about all types of domains, not just one specific domain. Second, with a large corpus, this 
task is dominated by precision, not recall—just  as with question answering on the Web (Sec-
tion 22.3.6). Third, the results can be statistical aggregates gathered from multiple sources, 
rather than being extracted from one specific text. 

For example, Hearst (1992) looked at the problem of  learning an ontology of concept 
categories and subcategories from a large corpus. (In 1992, a large corpus was a 1000-page  
encyclopedia; today it would be a 100-million-page  Web corpus.) The work concentrated on 
templates that are very general (not tied to a specific domain) and have high precision (are 
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almost always correct when they match) but low recall (do not always match). Here is one of 
the most productive templates: 

NP  such as NP (, NP)*  (,)?  ((and or) NP)`?  

Here the bold words and commas must appear literally in the text, but the parentheses are 
for grouping, the asterisk means repetition of zero or more, and the question mark means 
optional. NA is a variable standing for a noun phrase; Chapter 23 describes how to identify 
noun phrases; for now just assume that we know some words are nouns and other words (such 
as verbs) that we can reliably assume are not part of a simple noun phrase.  This template 
matches the texts "diseases such as rabies affect your dog" and "supports network protocols 
such as DNS," concluding that rabies is a disease and DNS is a network protocol. Similar 
templates can be constructed with the key words "including," "especially," and "or other." Of 
course these templates will fail to match many relevant passages, like "Rabies is a disease." 
That is intentional. The "NP  is a NP"  template does indeed sometimes denote a subcategory 
relation, but it often means something else, as in "There is a God" or "She is a little tired." 
With a large corpus we can afford to be picky; to use only the high-precision templates. We'll 
MISS  many statements of a subcategory relationship, but most likely we'll find a paraphrase 
of the statement somewhere else in the corpus in a form we can use. 

22.4.5 Automated template construction 
The subcategory relation is so fundamental that is worthwhile to handcraft a few templates to 
help identify instances of it occurring in natural language text. But what about the thousands 
of other relations in the world? There aren't enough AI grad students in the world to create 
and debug templates for all of them. Fortunately, it is possible to learn templates from a few 
examples, then use the templates to learn more examples, from which more templates can be 
learned, and so on. In one of the first experiments of this kind, Brin  (1999) started with a data 
set of just five examples: 

("Isaac Asirnov",  "The Robots of Dawn") 
("David Brin", "Startide  Rising") 
("James Gleick",  "Chaos—Making  a New Science") 
("Charles Dickens", "Great Expectations") 
("William Shakespeare", "The Comedy of Errors") 

Clearly these are examples of the author—title relation, but the learning system had no knowl-
edge of authors or titles. The words in these examples were used in a search over a Web 
corpus, resulting in 199 matches. Each match is defined as a tuple  of seven strings, 

(Author,  Title, Order;  Prefix, Middle, Posybc,  URL) ,  

where Order is true if the author came first and false if the title came first, Middle is the 
characters between the author and title, Prefix is the 10 characters before the match, Suffix is 
the 10  characters after the match, and URL  is the Web address where the match was made. 

Given a set of matches, a simple template-generation scheme can find templates to 
explain the matches. The language of templates was designed Lu  have a close mapping to the 
matches themselves, to be amenable to automated learning, and to emphasize high precision 
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(possibly at the risk of lower recall). Each template has the same seven components as a 
match. The Author and Title arc rcgcxcs  consisting of any characters (but beginning and 
ending in letters) and constrained to have a length from half the minimum length of the 
examples to twice the maximum length. The prefix, middle, and postfix are restricted to 
literal strings, not regexes. The middle is the easiest to learn: each distinct middle string in 
the set of matches is a distinct candidate template.  For each such candidate, the template's 
Prefix is then defined as the longest common suffix of all the prefixes in the matches, and the 
Postfix  is defined as the longest common prefix of all the postfixes in the matches. If either of 
these is of length zero, then the template is rejected. The URL of the template is defined as 
the longest prefix of the LIRLs  in the matches. 

In the experiment run by Brin,  the first 199 matches generated three templates. The 
most productive template was 

.<1,I><B>  Ede </B> by Author ( 
URL:  www.sff  . net/ locus /c 

The three templates were then used to retrieve 4047 more (author, title) examples. The exam-
ples were then used to generate more templates, and so on, eventually yielding over 15,000 
titles. Given a good set of templates, the system can collect a good set of examples. Given a 
good set of examples, the system can build a good set of templates. 

The biggest weakness in this approach is the sensitivity to noise. If one of the first 
few templates is incorrect, errors can propagate quickly. One way to limit this problem is to 
not accept a new example unless it is verified by multiple templates, and not accept a new 
template unless it discovers multiple examples that are also found by other templates. 

22.4.6 Machine reading 

Automated template construction is a big step up from handcrafted template construction, but 
it still requires a handful of labeled examples of each relation to get started. To build a large 
ontology with many thousands of relations, even that amount of work would be onerous; we 
would like to have an extraction system with no human input of any kind—a system that could 
read on its own and build up its own database. Such a system would he relation-independent; 
would work for any relation. In practice, these systems work on all relations in parallel, 
because of the I/O demands of large corpora_ They behave less like a traditional information-
extraction system that is targeted at a few relations and more like a human reader who learns 
from the text itself; because of this the field has been called machine reading. 

A representative machine-reading system is TEXTRUNNER (Banko and Etzioni, 2008). 
TEXTRUNNER  uses cotraining to boost its performance, but it needs something to bootstrap 
from. In the case of Hearst (1992), specific patterns (e.g., such as) provided the bootstrap, and 
for Brin  (1998), it was a set of five author–title pairs. For TEXTRUNNER, the original inspi-
ration was a taxonomy of eight very general syntactic templates, as shown in Figure 22.3. It 
was felt that a small number of templates like this could cover most of the ways that relation- 
ships are expressed in English. The actual bootsrapping starts from a set of labelled examples 
that are extracted  from the Penn Treebank, a corpus of parsed sentences. For example, from 
the parse of the sentence "Einstein received the Nobel Prize in 1921," TEXTRUNNER  is able 
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to extract the relation ("Einstein," "received," "Nobel Prize"). 
Given  a sct of labeled examples of this type, TEXTRUNNER trains a linear-chain CRF 

to extract further examples from unlabeled text. The features in the CRF include function 
words like "to-  and "of" and 'the," but not nouns and verbs (and not noun phrases or verb 
phrases). Because TEXTRUNNER  is domain-independent, it cannot rely on predefined lists 
of nouns and verbs. 

'ISrpe  Template Example Frequency 
Verb NP I  Verb NP2  X established Y  38% 
Noun—Prep NP 1  NP Prep NP 2  X settlement with Y 23% 
Verb—Prep NP I  Verb Prep NP2  X moved to Y  16% 
Infinitive NP 1  to Verb NP2  X plans to acquire Y 9% 
Modifier NP I  Verb NP2  Noun Xis Y  winner 5% 
Noun-Coordinate NP 1  (,  1  and - :) NP 2  NP X -Y deal 2% 
Verb-Coordinate NP 1  CI and) NP2  Verb X, Y merge 1 % 
Appositive NP 1  NP (: ,)? NP2  X hometown : Y I % 

Figure 22.3 Eight general templates that cover about 95% of the ways that relations are 
expressed in English. 

TEXTRUNNER  achieves a precision of 88% and recall of 45% (Ft  of 60%) on a large 
Web corpus. TEXTRUNNER has extracted hundreds of millions of facts from a corpus of a 
half-billion Web pages.  For example, even though it has no predefined medical knowledge, 
it has extracted over 2000 answers to the query [what kills bacteria];  correct answers include 
antibiotics, ozone, chlorine, Cipro, and broccoli sprouts. Questionable answers include "wa-
ter," which came from the sentence "Boiling water for at least ID minutes will kill bacteria." 
It would be better to attribute this to "boiling water" rather than just "water." 

With the techniques outlined in this chapter and continual new inventions, we are start-
ing to get closer to the goal of machine reading. 

22.5 SUMMARY 

The main points of this chapter are as follows: 

■ Probabilistic language models based on ti-grams  recover a surprising amount of infor-
mation about as language. They can perform well on such diverse tasks as language 
identification, spelling correction, genre classification, and named-entity recognition. 

■ These language models can have millions of features, so feature selection and prepro-
cessing of the data to reduce noise is important. 

■ Text classification can be done with naive Bayes n-gram  models or with any of the 
classification algorithms we have previously  discussed. Classification can also be seen 
as a problem in data compression. 
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• Information retrieval systems use a very simple language model based on bags of 
words, yct still manage to perform well in tcrms of recall and precision on very large 
corpora of text. On Web corpora, link-analysis algorithms improve performance. 

• Question answering can be handled by an approach based on information retrieval, for 
questions that have multiple answers in the corpus. When more answers are available 
in the corpus, we can use techniques that emphasize precision rather than recall. 

• Information-extraction  systems use a more complex model that includes limited no- 
tions of syntax and semantics in the form of templates. They can be built from finite- 
state automata, HMMs,  or conditional random fields, and can be learned from examples. 

• In building a statistical language system, it is best to devise a model that can make good 
use of available data, even if the model seems overly simplistic. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

N-gram letter models for language modeling were proposed by Markov (1913). Claude 
Shannon (Shannon and Weaver, 1949) was the first to generate n-gram word models of En- 
glish. Chomsky  (1956, 1957) pointed out the limitations of finite-state models compared with 
context-free models, concluding, "Probabilistic models give no particular insight into some 
of the basic problems of syntactic structure."  This is true, but probabilistic models do provide 
insight into some other basic problems—problems that context-free models ignore. Choir-
sky's remarks had the unfortunate effect of scaring many people away from statistical models 
for two decades, until these models reemerged for use in speech recognition (Jelinek, 1976). 

Kessler et al. (1997) show how to apply character n-gram models to genre classification, 
and Klein et al. (2003) describe named-entity recognition with character models. Franz and 
Brants (2006) describe the Google ti-gram  corpus of 13 million unique words from a trillion 
words of Weh  text; it is now publicly available. The hag of words model gets its name from 
a passage from linguist Zellig Harris (1954), "language is not merely a bag of words but 
a tool with particular properties." Norvig (2009) gives some examples of tasks that can be 
accomplished with a-gram  models. 

Add-one smoothing, first suggested by Pierre-Simon Laplace (1816), was formalized by 
Jeffreys (1948), and interpolation smoothing is due to Jelinek and Mercer (1980), who used 
it for speech recognition. Other techniques include Witten–Bell smoothing (1991), Good—
Turing smoothing (Church and Gale, 1991) and Kneser–Ney smoothing (1995). Chen and 
Goodman (1996) and Goodman (2001) survey smoothing techniques. 

Simple n-gram letter and word models are not the only possible probabilistic models. 
Blei et al. (2001) describe a probabilistic text model called latent Dirichlet allocation that 
views a document as a mixture of topics, each with its own distribution of words. This model 

can be seen as an extension and rationalization of the latent semantic indexing model of 
(Deerwester  et aL,  1990) (see also Papadimitriou  et al. (199S)) and is also related to the 
multiple-cause  mixture model of (Sahami et al., 1996). 
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Manning and Schiitze  (1999) and Sebastiani (2002) survey text-classification techniques. 
Joachims (2001) uses statistical learning theory and support vector machines to give a theo-
retical analysis of when classification will be successful. Apte  et al. (1994) report an accuracy 
of 96% in classifying Reuters news articles into the "Earnings" category. Koller and Sahami 
(1997) report accuracy up to 95% with a naive Bayes classifier, and up to 98.6% with a Bayes 
classifier that accounts far sonic dependencies among features. Lewis (1998) surveys forty 
years of application of naive Bayes techniques to text classification and retrieval. Schapire 
and Singer (2000) show that simple linear classifiers can often achieve accuracy almost as 
good as more complex models and are more efficient to evaluate. Nigam et al. (2000) show 
how to use the EM algorithm to label unlabeled documents, thus learning a better classifi-
cation model. Witten et al. (1999)  describe compression algorithms for classification, and 
show the deep connection between the LZW compression algorithm and maximum-entropy 
language models. 

Many of the n-gram  model techniques are also used in bioinformatics problems. Bio-
statistics  and probabilistic NLP are coming closer together, as each deals with long, structured 
sequences chosen from an alphabet of constituents. 

The field of information retrieval is experiencing a regrowth in interest, sparked by 
the wide usage of Internet searching. Robertson (1977) gives an early overview and intro-
duces the probability ranking principle. Croft et al. (2009) and Manning et al, (2008) are 
the first textbooks to cover Web-based search as well as traditional 1R. Hearst (2009) covers 
user interfaces for Web search. The TREC conference, organized by the U.S. government's 
National Institute of Standards and Technology (MIST), hosts an annual competition for ER  
systems and publishes proceedings with results. In the first seven years of the competition, 
performance roughly doubled. 

The most popular model for IR is the vector space model (Salton et al., 1975). Salton's 
work dominated the early years of the field. There are two alternative probabilistic models, 
one due to Polite  and Craft (1998) and one by Maron and Kuhns (1960) and Robertson and 
Sparck Jones (1976). Lafferty and Zhai (2001) show that the models are based on the same 
joint probability distribution, hut that the choice of model has implications for training the 
parameters. Craswell et al. (2005) describe the BM25  scoring function and Svore and Burges 
(2009) describe how BM25 can be improved with a machine learning approach that incorpo-
rates click data—examples of past search queies and the results that were clicked on. 

Brin  and Page (1998) describe the PageRank  algorithm and the implementation of a 
Web search engine. Kleinberg (1999)  describes the HITS algorithm. Silverstein et al. (1998) 
investigate a log of a billion Web searches. The journal Information Retrieval and the pro-
ceedings of the annual SIGIR conference cover recent developments in the field. 

Early information extraction programs include GUS  (Bobrow et al., 1977) and FRUMP 
(DeJong, 1982). Recent information extraction has been pushed forward by the annual Mes-
sage Understand Conferences (MUC),  sponsored by the U.S. government. The FASTUS 
finite-state system was done by Hobbs et al. (1997). It was based in part on the idea from 
Pereira and Wright (1991) of using FSAs as approximations to phrase-structure grammars. 
Surveys of template-based systems are given by Roche and Schabes (1997), Appelt (1999). 
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and Muslea (1999). Large databases of facts were extracted by Craven et al. (2000). Pasca 
et al. (2006), Mitchell (2007), and ❑urme  and Pasca (2008). 

Freitag and McCallum (2000) discuss HMMs for Information Extraction. CRFs were 
introduced by Lafferty et al. (2001); an example of their use for information extraction is 
described in (McCallum, 2003) and a tutorial with practical guidance is given by (Sutton and 
McCallum, 2007), Sarawagi (2007) gives a comprehensive survey. 

Danko er a/.  (2002) present the A sKMSR question-answering system; a similar sys-
tem is due to Kwok et al. (2001). Pasca and Harabagiu (2001) discuss a contest-winning 
question-answering system. Two early influential approaches to automated knowledge engi-
neering were by Riloff (1993), who showed that an automatically constructed dictionary per-
formed almost as well as a carefully handcrafted domain-specific dictionary, and by Yarowsky  
(1995), who showed that the task of word sense classification (see page 756) could be accom-
plished through unsupervised training on a corpus of unlabeled text with accuracy as good as 
supervised methods. 

The idea of simultaneously extracting templates and examples from a handtul  of labeled 
examples was developed independently and simultaneously by Blum and Mitchell 11998), 
who called it cotraining  and by Brin (1998), who called it DIPRE  (Dual Iterative Pattern 
Relation Extraction). You can see why the term cotraining has stuck. Similar early work. 
under the name of bootstrapping, was done by Jones et al. (1999). The method was advanced 
by the QXTRACT  (Agichtein and Gravano, 2003) and KNOwITALL  (Etzioni  et al., 2005) 
systems. Machine reading was introduced by Mitchell (2005) and Etzioni etal.  (2006) and is 
the focus of the TEXTRUNNER  project (Banko et al.. 2007; Banko and Etzioni, 2008). 

This chapter has focused on natural language text, but it is also possible to do informa-
tion extraction based on the physical structure or layout of text rather than on the linguistic 
structure. HTML  lists and tables in both HTML and relational databases are home to data 
that can be extracted and consolidated (Hurst, 2000; Pinto et al., 2003,  Cafarella et al., 2008). 

The Association for Computational Linguistics (ACL) holds regular conferences and 
publishes the journal Computational Linguistics. There is also an International Conference 
on Computational Linguistics  (COIING).  The textbook by Manning and Schiitze (1999) cov-
ers statistical language processing, while Iurafsky  and Martin (2008)  give a comprehensive 
introduction to speech and natural language processing. 

EXERCISES 

71.41'i+71  22.1 This exercise explores the quality of the n-gram model of language. Find or create a 
monolingual corpus of 100.000 words or more. Segment it into words, and compute the fre-
quency of each word. How many distinct words are there? Also count frequencies of bigrams  
(two consecutive words) and trigrams  (three consecutive words). Now use those frequencies 

to generate language: from the unigram,  bigram,  and trigram  models, in turn, generate a 100-
word  text by making random choices according to the frequency counts. Compare the three 
generated texts with actual language. Finally, calculate the perplexity of each model. 
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STY!  CMAFrFei  

22.2 Write a program to do segmentation of words without spaces. Given a string, such 
as the URL  "thelongcstlistofthelongeststuffatthelongestdornainnameatlonglast.corn,"  return a 
list of component words: ["the,"  "longest,"  "list," ...].  This task is useful for parsing URLs, 
for spelling correction when words =together, and for languages such as Chinese that  do 
not have spaces between words. It can be solved with a unigram  or bigram word model and 
a dynamic programming algorithm similar to the Viterbi algorithm. 

22.3 (Adapted from Jurafsky  and Martin (2000).) In this exercise you will develop a classi-
fier for authorship: given a text, the classifier predicts which of two candidate authors wrote 
the text. Obtain samples of text from two different authors. Separate them into training and 
test sets. Now train a language model on the training set. You can choose what features to 
use; n-grams of words or letters are the easiest, but you can add additional features that you 
think may help. Then compute the probability of the text under each language model and 
chose the most probable model. Assess the accuracy of this technique. How does accuracy 
change as you alter the set of features? This subfield of linguistics is called stylometry;  its 
successes include the identification of the author of the disputed Federalist Papers (Mosteller 
and Wallace, 1964) and some disputed works of Shakespeare (Hope, 1994). Khmclev  and 
Tweedie (2001) produce good results with a simple letter bigram model. 

22.4 This exercise concerns the classification of spam  email Create a corpus of spam email 
and one of non-spam mail. Examine each corpus and decide what features appear to be useful 
for classification: unigram words? bigrams?  message length, sender, time of arrival? Then 
train a classification algoritluu  idecision  tree, naive Bayes, SVM, logistic regression, or sonic 
other algorithm of your choosing) on a training set and report its accuracy on a test set, 

22.5 Create a test set of ten queries, and pose them to three major Web search engines. 
Evaluate each one for precision at 1, 3, and 10 documents. Can you explain the differences 
between engines? 

22.6 Try to ascertain which of the search engines from the previous exercise are using case 
folding, stemming, synonyms, and spelling correction. 

22.7 Write a regular expression or a short program to extract company names. Test it on a 
corpus of business news articles. Report your recall and precision. 

22.3  Consider the problem of trying to evaluate the quality of an IR system that returns a 
ranked list of answers (Like most Web search engines). The appropriate measure of quality 
depends on the presumed model of what the searcher is trying to achieve, and what strategy 
she employs. For each of the following models, propose a corresponding numeric measure. 

a. The searcher will look at the first twenty answers returned, with the objective of getting 
as much relevant information as possible. 

b. The searcher needs only one relevant document, and will go down the list until she finds 
the first one. 

c. The searcher has a fairly narrow query  and is able to examine all the answers retrieved. 
She wants to be sure that she has seen everything in the document collection that is 

Iw o   
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relevant to her query. (E.g., a lawyer wants to be sure that she has found all relevant 
precedents, and is willing to spend considerable resources on that.) 

d. The searcher needs just one document relevant to the query, and can afford to pay a 
research assistant for an hour's work looking through the results. The assistant can look 
through 100 retrieved documents in an hour. The assistant will charge the searcher for 
the full hour regardless of whether he finds it immediately or at the end of the hour. 

c. The searcher will look through all the answers. Examining a document has cost $A; 

finding a relevant document has value $B; failing to find a relevant document has cost 
$0 for each relevant document not found. 

f. The searcher wants to collect as many relevant documents as possible, but needs steady 
encouragement. She looks through the documents in order. If the documents she has 
looked at so far are mostly good, she will continue; otherwise, she will stop. 



23  NATURAL LANGUAGE 
FOR COMMUNICATION 

In which we see how humans communicate with one another in natural language, 
and how computer agents might join in the conversation. 

COMMUNICA1ON  

SIGN 

Communication is the intentional exchange of information brought about by the production 
and perception of signs drawn from a shared system of conventional signs. Most animals use 
signs to represent important messages: food here, predator nearby, approach, withdraw, let's 
mate. In a partially observable world, communication can help agents be successful because 
they can learn information that is observed or inferred by others. Humans are the most chatty 
of all species, and if computer agents are to be helpful, they'll need to learn to speak the 
language. In this chapter we look at language models for communication. Models aimed at 
deep understanding of a conversation necessarily need to be more complex than the simple 
models aimed at, say, span classification. We start with grammatical models of the phrase 
structure of sentences, add semantics to the model, and then apply it to machine translation 
and speech recognition. 

23.1 PHRASE STRUCTURE GRAMMARS 

LIDICAL  CATEGORY 

SYNTACTIC 
CATEGORIES 

PHRASE  SI HJG  I UHE  

The n-gram language models of Chapter 22 were based on sequences of words. The big 
issue for these models is data sparsity—with a vocabulary of, say, RP words, there are 10 15  
Ingram  probabilities to estimate, and so a corpus of even a trillion words will not be able to 
supply reliable estimates for all of them. We can address the problem of sparsity through 
generalization From the fact that "black dog" is more frequent than "dog black" and similar 
observations, we can form the generalization that adjectives tend to come before nouns in 
English (whereas they tend to follow nouns in French: "chien noir" is more frequent). Of 
course there are always exceptions; "galore" is an adjective that follows the noun it modifies. 
Despite the exceptions, the notion of a lexical category (also known as a part of speech) such 
as noun or adjective is a useful generalization—useful in its own right, but more so when we 
string together lexical categories to form syntactic categories such as noun phrase or verb 
phrase, and combine these syntactic categories into trees representing the phrase structure 

of sentences: nested phrases, each marked with a category. 

888 
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GENERATIVE CAPACITY 

Grammatical formalisms can be classified by their generative capacity: the set of 
languages they can represent. Chomsky  (1957) describes four classes of grammat-
ical formalisms that differ only in the form of the rewrite rules. The classes can 
be arranged in a hierarchy, where each class can be used to describe all the lan- 
guages that can be described by a less powerful class, as well as some additional 

languages. Here we list the hierarchy, most powerful class first: 
Recursively enumerable grammars use unrestricted rules: both sides of the 

rewrite rules can have any number of terminal and nonterminal  symbols, as in the 
rule A B C —s  D E.  These grammars are equivalent to Turing machines in their 
expressive power. 

Context-sensitive  grammars are restricted only in that the right-hand side 
must contain at least as many symbols as the left-hand side.  The name "context-
sensitive" comes from the fact that a rule such as A X B —s  A Y  B says that 
an .3(  can he rewritten as a 1.7  in the context of a preceding A and a fallowing R 
Context-sensitive grammars can represent languages such as an ton  en (a sequence 
of a copies of a followed by the same number of bs and then es). 

In context-free grammars (or CFGs), the left-hand side consists of a sin-
gle nonterminal symbol. Thus, each rule licenses rewriting the nonterminal  as 
the right-hand side in any context. CFGs are popular for natural-language and 
programming-language  grammars, although it is now widely accepted that at least 
some natural languages have constructions that are not context-free (Pullum, 1991),  
Context-free grammars can represent anbn,  but not ar  t"cn.  

Regular grammars are the most restricted class. Every rule has a single non-
temunal  on the left-hand side and a terminal symbol optionally followed by a non-
terminal on the right-hand side. Regular grammars are equivalent in power to finite-
state machines. They are poorly suited for programming languages, because they 
cannot represent constructs such as balanced opening and closing parentheses (a 
variation of the anb"  language). The closest they can come is representing a*b*, a 
sequence of any number of as followed by any number of bs. 

The grammars  higher up in the hierarchy have more expressive power, but 
the algorithms for dealing with them are less efficient. Up to the 1980s, linguists 
focused on context-free and context-sensitive languages. Since then, there has been 
renewed interest in regular grammars, brought about by the need to process and 
learn from gigabytes or terabytes of online text very quickly, even at the cost of 
a less complete analysis. As Fernando Pereira put it, "The older I get, the further 
down the Chomsky hierarchy I go:' To see what he means, compare Pereira and 
Warren (1980) with Mohri, Pereira, and Riley (2002) (and note that these three 
authors all now work on large text corpora at Google) 
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LE NICON  

OPEN CLASS 

CLOSED CLASS 

PAFSE  TREE 

There have been many competing language models based on the idea of phrase struc-
ture; we will describe a popular model called the probabilistic context-free grammar, or 
PCFG. I  A grammar is a collection of rules that defines a language as a set of allowable 
strings of words. "Context-free" is described in the sidebar on page 889,  and "probabilistic" 
means that the grammar assigns a probability to every string. Here is a PCFG rule: 

VP —>  Verb [0.70] 
VP NP [0.30] .  

Here VP (verb phrase) and AP (noun phrase) are non-terminal symbols. The grammar 
also refers to actual words, which are called terminal symbols. This rule is saying that with 
probability 0.70 a verb phrase consists solely of a verb, and with probability 0,30 it is a VP 
followed by an NP. Appendix B describes non-probabilistic context-free grammars. 

We now define a grammar for a tiny fragment of English that is suitable for communi-
cation between agents exploring the wumpus world. We call this language go .  Later sections 
improve on en  to make it slightly closer to real English_ We are unlikely ever to devise a 

complete grammar for English, if only because no two persons would agree entirely on what 
constitutes valid English. 

23.1.1 The lexicon of go  

First we define the lexicon, or list of allowable words. The words are grouped into the lexical 
categories familiar to dictionary users: nouns, pronouns, and names to denote things; verbs 
to denote events; adjectives to modify nouns; adverbs to modify verbs; and function words: 
articles (such as the), prepositions (in), and conjunctions (and), Figure 23.1  shows a small 
lexicon for the language et,.  

Each of the categories ends in ... to indicate that there are other words in the category. 
For nouns, names, verbs, adjectives, and adverbs, it is infeasible even in principle to list all 
the words. Not only are there tens of thousands of members in each class, but new ones–
like iPod  or biodiese!—are  being added constantly. These five categories are called open 
classes. For the categories of pronoun, relative pronoun, article, preposition, and conjunction 
we could have listed all the words with a little more work. These are called closed classes; 
they have a small number of words (a dozen  or so). Closed classes change over the course 
of centuries, not months. For example, "thee" and "thou" were commonly used pronouns in 
the 17th century, were on the decline in the 19th, and are seen today only in poetry and some 
regional dialects. 

23.1.2 The Grammar of 60  

The next step is to combine the words into phrases. Figure 23.2 shows a grammar for go, 
with rules  for each of the six syntactic categories and an example for each rewrite mle_ 2  
Figure 213 shows a parse tree for the sentence "Every wumpus smells!'  The parse tree 

PCFGs are also known as stochastic context-free grammars, or SCFGs. 
2  A relative clause follows and modifies a noun phrase. It consists of a relative pronoun such as "who" or 
"that") followed by a verb phrase. An example of a relative clause is that stinks in "The wumpus that stinks is in 
2 2.'  Another kind of relative clause has no reative pronoun, e.g., I knew in "the man I know." 

PROBABILISTIC 
CUFFED-FREE  
GRAMMAR 
GRAMMAR 

LANGUAGE 

NCB  -TERMINAL  
SYMBOLS 

TERMINAL SYMBOL 



Noun  -  
Verb 
Adjective 
Adverb 
Pronoun 
RelPro  
Name 
Article -r  
Prep -r  
Conj 
Digit 

stench [0.05] I breeze [0.10] I wumpus [0.15]  [ pits 10.05] .  
is [0.101 I feel [0.10] I  smells [0.10] I stinks [0.05] I  ..  
right :0.10]  dead [0.05] I  smelly [0.02] I breezy [0.02] ...  
here [0 05] I ahead [0.05] I nearby [0.02]  •  -  •  
me [0.10] I you l0.031  I I [0.10] I  it 10. 101  I •  •  -  
that [0.40] I which [0.15] I who [0.20] I whom [0.02] V ...  
John [0.01]  I Mary [0.01] Boston [0.01]  
the [0.40]  a [0.30] an [0.10] I every [0.05] I ...  
to [0.211]  I in [0.10]  I on [0.05] I near [0.10] I ...  
and [0.50] I or [0.10] I but [0.20] I yet [0.02] V  ... 
0 [0.20] I 1 [0.20] I 2 [0.20] I 3 [0.20] I 4 10.20] I ...  

Figure 23.1 The lexicon for ea . RelP-o  is short for relative pronoun, Prep for preposition, 
and Conj for conjunction_  The sum of the probabilities for each category is 1.  

NP VP 
S  Conj S 

Pronoun 
Name 
Noun 
Article Noun 
Article Adjs  Noun 
Digit Digit 
NP PP 
NP Redelause  

[0.90] I + feel a breeze 
[0.10] I fccl a breeze + and + It stinks 

[0.30] I 
[0.10] John 
[0.10] pits 
[0.25] the + wumpus 
[0.05] the + smelly dead + wumpus  
[0.05]  3 4 
[0. m]  the wumpus + in 1 3 
[0.05] the wumpus + that is smelly 

NP 

VP -#  Verb [0.40] stinks 
VP NP [0.35] feel + a breeze 
VP Adjective [0.05] smells + dead 
VP PP [0.10] is + in 1 3 

I  VP Adverb [0.10] go + ahead 

Adjs 

- 

Adjective [0.80] smelly 
Adjective Adjs [0.20] smelly + dead 

PP 

- 

Prep NP [1.00] to + the east 
RelClause ReiPro VP [1.00] that + is smelly 

Figure 23.2  The grammar for ED,  with example phrases for each rule. The syntactic cat-
egories are sentence (S),  noun phrase (NP),  verb phrase ( VP), list of adjectives (Adjs),  
prepositional phrase (PP), and relative clause ( RelClause).  

Section 23.1. Phrase Structure Grammars 891 
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S 

NP VP 
10.40 

Article Vniin Verb 
0•05 10.15 I°.1°  

Every wumpus smells 

Figure 23.3  Parse tree for the sentence "Every wumpus  smells" according to the grammar 
Cc .  Each interior node of the tree is labeled with its probability. The probability of the tree 
as a whole is 0.9 x 0.25 x 0.05 x 0.15 x 0.40 x 0.10= 0.0000675. Since this tree is the only 
parse of the sentence, that number is also the probability of the sentence. The tree can also 
be written in linear form as IS [NP _Article every] [Noun wumpus]][  VP [ Verb smells]_].  

gives a constructive proof that the string of words is indeed a sentence according to the rules 
of Ea. The eo  grammar generates a wide range of English sentences such as the following: 

John is in the pit 
The wumpus  that stinks is in 2 2 
Mary is in Boston and the wumpus is near 3 2 

NERGENER4T1ON Unfortunately, the grammar overgenerates: that is, it generates sentences that are not gram- 
UNDERGENERATION  marital,  such as "Me go Boston" and "I smell pits wumpus John." It also undergenerates:  

there are many sentences of English that it rejects, such as "I think the wumpus is smelly." 
We will see how to learn a better grammar later, for now we concentrate on what we can do 
with the grammar  we have. 

23.2 SYNTACTIC ANALYSIS (PARSING) 

PAPS  !NG Parsing is the process of analyzing a string of words to uncover its phrase structure, according 
to the rules of a grammar.  Figure 23.4 shows that we can start with the S symbol and search 
top down for a tree that  has the words as its leaves, or we can start with the words and search 
bottom up for a tree that culminates in an S. Both top-down and bottom-up parsing can be 
inefficient, however, because they can end up repeating effort in areas of the search space that 
lead to dead ends. Consider the following two sentences: 

Have the students in section 2 of Computer Science 101 take the exam. 
Have the students in section 2 of Computer Science 101 taken the exam? 

Even though they share the first 10 words, these sentences have very different parses, because 
the first is a command and the second is a question. A left-to-right parsing algorithm would 
have to guess whether the first word is part of a command or a question and will not be able 
to tell if the guess is correct until at least the eleventh word, take or taken. If the algorithm 
guesses wrong, it will have to backtrack all the way to the first word and reanalyze the whole 
sentence under the other interpretation. 
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CHART 

GY.S  ALGORITHM 

CHDMSKY  NORMAL 
FOIM  

List of items Rule 

S  
NP VP 
NP VP Adjective 
NP Verb Adjective 
NP Verb dead 
NP is dead 

Article Novo is dead 
Article wumpus  is dead 
the wumpus is dead 

S  NP VP 
VP VP Adjective 
VP  Verb 
Adjective dead 
Verb  
NP Article N OUTI  

Noun  wumpus  
Article the 

Figure 23.4  Trace of the process of finding a parse for the string "The wumpus  is dead" 
as a sentence, according to the grammar Cu.  Viewed as a top-down parse, we start with the 
list of items being S and, on each step, match an item  X with a rule of the form (X  )  
and replace X in the list of items with (...  ).  Viewed as a bottom up parse, we start with the 
list of items being the words of the sentence, and, on each step, match a string of tokens (...  ) 
in the list against a rule of the form (X  ...) and replace (... ) with X. 

To avoid this source of inefficiency we can use dynamic programming: every time we 
analyze a substring,  sum the results so we won't have to reanalyze it later. For example, 
once we discover that "the students in section 2 of Computer Science 101" is an NP, we can 
record that result in a data structure known as a chart. Algorithms that do this are called chart 
parsers. Because we are dealing with context-free grammars, any phrase that was found in 
the context of one branch of the search space can work just as well in any other branch of the 
search space. There are many types of chart parsers; we describe a bottom-up version called 
the CYK algorithm, after its inventors, John Cocke, Daniel Younger, and laden Kasami.  

The CYK algorithm is shown in Figure 23.5. Note that it requires a grammar with all 
rules in one of two very specific formats: lexical rules of the form X —  word, and syntactic 
rules of the form X —  Y Z. This grammar format, called Chomsky  Normal Form, may 
seem restrictive, but it is not: any context-free grammar can be automatically transformed 
into Chomsky Normal Form. Exercise 23.8 leads you through the process. 

The CYK algorithm uses space of 0(71 2n1)  for the P table, where •  is the number of 
words in the sentence, and rrr  is the number of nonterminal symbols in the grammar, and takes 
time 0(7/3m).  (Since rat•  is constant for a particular grammar, this is commonly described as 
0(n3 ).)  No algorithm can do better for general context-free  grammars, although there arc 
faster algorithms on more restricted grammars. In  fact, it is quite a trick for the algorithm to 
complete in 0(113 )  time, given that it is possible for a sentence to have an exponential number 
of parse trees. Consider the sentence 

Fall leaves fall and spring leaves spring. 
It is ambiguous because each word (except "and") can be either a noun or a verb, and "fall" 
and "spring" can be adjectives as well. (For example, one meaning of "Fall leaves fall" is 
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function CYK-PAusu(  words, grammar) returns P, a table of probabilities 
N LENGTH(mords)  
M the number of nonterminal symbols in grammar 
P an array of size [M,N,N(,  initially all 0 
/ * Insert lexical rules .far  each word * I 
for i = 1 to N do 

for each ,isle of form ( X words Ip1)  do 
P[X, i,  11,—p  

/ * Combine firs!  aril  secund  pares of right-hand sides of rules, from shun fu long * / 
for length = 2 to N do 

for start =  1 to N — length + 1 do 
for len1  =1 to N —  1 do 

lens ■—  length — tent 
for each rule of the form (X —r Y Z [p]) do 

F[X,  start, length] — NiAx(P(X]  ,  start, length], 
P[Y,  start, lenl]  x P[Z , start  len'  lent] x p) 

return P 

Figure 23.5  The CYK algorithm for parsing. Given a sequence of words, it finds the 
most probable derivation for the whole sequence and for each subsequence. It returns the 
whole table, P, m which an entry P (X , start, len]  is the probability of the most probable 
X of length ten starting at position start. If there is no X of that size at that location, the 
probability is 0,  

equivalent to "Autumn abandons autumn.) With So the sentence has four parses: 

[S [ S [NP Fall leaves] fall) and [ S [NP spring leaves] spring] 
[S [S [NP Fall leaves] fall] and [S spring [ VP leaves spring]] 
[S [S Fall [ VP leaves fall]] and [S [NP spring leaves] spring] 
[S [S Fall j  VP leaves fall]] and [S spring [ VP leaves spring]] 

If we had c two-ways-ambiguous conjoined subsentences, we would have 2C ways of choos-
ing parses for the subsentences. 3  How does the CYK algorithm process these 2'  parse trees 
in 0(0) time? The answer is that it doesn't examine all the parse trees; all it has to do is 
compute the probability of the most probable tree. The subtrees are all represented in the P 

table, and with a little work we could enumerate them all (in exponential time), but the beauty 
of the CYK algorithm is that we don't have to enumerate them unless we want to. 

In practice we are usually not interested in all parses; just the best one or best few. Think 
of the CYK algorithm as defining the complete state space defined by the "apply grammar 
rule" operator_ It is possible to search just part of this space using A'  search_ Each  state 
in this space is a list of items ,words or categories), as shown an the bottom-up parse table 
(Figure 23.4). The start state is a list of words, and a goal state is the single item S. The 
3  There also would be )(c!) ambiguity in the way the components conjoin—for example, (X and (Y and Z))  
versus ((X and Y) and Z). But that is another story, one told well by Church and Paul  (1982). 



[  [S [ NP-S13.1-2  Her eyes] 
[VP were 

I VP  glazed 
[NP *-2]  
[SBAR-ADV as if 

[S [NP-Sal  she] 
[VP did n't  

[VP [VP hear IN P *-1]]  
or 
[VP [ADVP even] see [NP  *-1]]  
[NP-1  

Figure 23.6  Annotated tree for the sentence "Her eyes were glazed as if she didn't hear 
or even see him." from the Penn Treebank. Note that in this grammar there is a distinction 
between an object noun phrase (N13)  and a subject noun phrase  (NP -SB.1).  Note also a gram 
matical phenomenon we have not covered yet; the movement of a phrase from one part of 
the tree to another,  This tree analyzes the phrase "hear or even see him" as consisting of two 
constituent VPs,  [VP hear [NP  * - 1]]  and [VP  [ADVP even] see [NP *- 1]],  both of which 
have a missing object, denoted *-1,  which refers to the NP labeled elsewhere in the tree as 
[NIP- l  him]. 
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cost of a state is the inverse of its probability as defined by the rules applied so far, and there 
are various heuristics to estimate the remaining distance to the goal; the best heuristics come 
from machine learning applied to a corpus of sentences. With the A* algorithm we don't have 
to search the entire state space, and we are guaranteed that the first parse found will be the 
most probable,  

23.2.1 Learning probabilities for PCFGs  

A PCFG has many rules, with a probability for each rule. This suggests that learning the 
grammar from data might be better than a knowledge engineering approach. Learning is eas- 

TREEBANK 
 iest if we are given a corpus of correctly parsed sentences, commonly called a treebank. The 

Penn Treebank (Marcus et al., 1993i is the best known; it consists of 3 million words which 
have been annotated with part of speech and parse-tree structure, using human labor assisted 
by some automated tools. Figure 23.6 shows an annotated tree from the Penn Treebank.  

Given a corpus of trees, we can create a PCFG just by counting and smoothing). In the 
example above, there arc two nodes of the form [S [ NP 1[VP  ...]].  We would count these, 
and all the other subtrccs  with root S in the corpus. If there arc 100,000 S  nodes of which 
60,000  are of this fonn,  then we create the rule: 

S NP VP [0.60]  . 
What if a treebank is not available, but we have a corpus of raw unlabeled sentences? It is 
still possible to Team  a grammar from such a corpus, but it is more difficult. First of all, 
we actually have two problems: learning the structure of the grammar rules and learning the 
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probabilities associated with each rule. (We have the same distinction in learning Bayes nets.) 
Well assume that we're given the lexical and syntactic category names. (lf  not, we can just 
assume categories Xi , ... X,  and use cross-validation to pick the best value of n.)  We can 
then assume that the grammar includes every possible (X Y Z) or (X > word) rule. 
although many of these rules will have probability 0 or close to 0. 

We can then use an expectation-maximization (EM) approach, just as we did in learning 
HMMs.  The parameters we are trying to learn are the rule probabilities; we start them off at 
random or uniform values. The hidden variables are the parse trees: we don't know whether 
a string of words w i  wi  is or is not generated by a rule (X . . .).  The E step estimates 
the probability that each subsequence is generated by each rule. The M step then estimates 
the probability of each rule. The whole computation can be done in a dynamic-programming 
fashion with an algorithm called the inside-outside algorithm in analogy to the forward-
backward algorithm fur HMMs. 

The inside-outside algorithm seems magical in that it induces a grammar from unparsed 
text. But it has several drawbacks. First, the parses that are assigned by the induced grammars 
are often difficult to understand and unsatisfying to linguists. This makes it hard to combine 
handcrafted knowledge with automated induction. Second, it is slow: 0(n3m3 ),  where n is 
the number of words in a sentence and m.  is the number of grammar categories. Third, the 
space of probability assignments is very large, and empirically it seems that getting stuck in 
local maxima is a severe problem. Alternatives such as simulated annealing can get closer to 
the global maximum, at a cost of even more computation. Lari  and Young {1990) conclude 
that inside-outside is "computationally intractable for realistic problems." 

However, progress can be made if we are willing to step outside the bounds of learning 
solely from unparsed text. One approach is to learn from prototypes: to seed the process with 
a dozen or two rules. similar to the rules in L.  From there, more complex rules can be learned 
more easily, and the resulting grammar parses English with an overall recall and precision for 
sentences of about 80% (Haghighi and Klein, 2006). Another approach is to use treebanks, 
but in addition to learning PCFG rules directly from the brae  ketings, also learning distinctions 
that are not in the treehank.  For example, not that the tree in Figure 216 makes the distinction 
between NP and NP  - SBJ. The latter is used for the pronoun "she," the former for the 
pronoun "her,"  We will explore this issue in Section 23.6;  for now let us just say that there 
are many ways in which it would be useful to split a category like NP—grammar induction 
systems that use treebanks but automatically split categories do better than those that stick 
with the original category set (Petrov and Klein, 2007c). The error rates for automatically 
learned grammars are still about 50% higher than for hand-constructed grammar, but the gap 
is decreasing. 

23.2.2 Comparing context-free and Markov models 
The problem with PCFGs is that they are context-free. That means that the difference between 
P("eat  a banana") and P("eat  a bandanna) depends only on P(Nowi  -r  "banana") versus 
P(Noun  "bandanna") and not on the relation between "eat" and the respective objects. 
A Markov model of order two or more, given a sufficiently large corpus, will  know that "eat 
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a banana" is more probable. We can combine a PCFG and Markov model to get the best of 
both. The simplest approach is to estimate the probability of a sentence with the geometric 
mean of the probabilities computed by both models. Then we would know that "eat a banana" 
is probable from both the grammatical and lexical point of view. But it still wouldn't pick up 
the relation between "eat" and "banana" in "eat a slightly aging but still palatable banana" 
because here the relation is more than two words away. Increasing the order of the Markov 
model won't get at the relation precisely; to do that we can use a lexicalized PCFG,  as 
described in the next section. 

Another problem with PCFGs is that they lend to have too strong a preference for shorter 
sentences. In a corpus such as the Wall Street Journal, the average length of a sentence 
is about 25 words. But a PCFG will usually assign fairly high probability to many short 
sentences, such as "He slept," whereas in the Journal we're more likely to see something like 
"It has been reported by a reliable source that the allegation that he slept is credible." It  seems 
that the phrases in the Journal really are not context-free; instead the writers have an idea of 
the expected sentence length and use that length as a soft global constraint on their sentences. 
This is hard to reflect in a PCFG. 

23.3 AUGMENTED GRAMMARS AND SEMANTIC INTERPRETATION 

In this section we see how to extend context-free grammars—to say that, for example, not 
every NI'  is independent of context, but rather, certain NPs are more likely to appear in one 
context, and others in another context. 

23.3.1 Lexicalized  PCFGs  

To get at the relationship between the verb "eat" and the nouns "banana" versus "bandanna," 
LEXICALILUJ  rcra  we can use a lexicalized  PCFG, in which the probabilities for a rule depend on the relation-

ship between words in the parse tree, not just on the adjacency of words in a sentence. Of 
course, we can't have the probability depend on every word in the tree, because we won't 
have enough training data to estimate all those probabilities. it is useful to introduce the no- 

HEAD Lion  of the head of a phrase—the most important word. Thus, "eat" is the head of the VP 
"eat a banana" and "banana" is the head of the NP "a banana." We use the notation VP(t)  
to denote a phrase with category VP whose head word is e. We say that the category VP 

AUGM
GRAM

ENTED is augmented with the head variable v. Here is an augmented grammar that describes the MAR  

verb—object relation: 

VP(v) —›  Verb(v) NP(n) [ Pi(v,t2 )]  
VP(v) Verb(v) [-P2(v):  
NP(n) Articte(a)  Adjsj)  Noun(n)  [P3(n,a)]  
Noun(banana) —>  banana [p,] 

•  •  
Here the probability P1 (v,  n) depends on the head words v and Ts.  We would set this proba- 
bility to be relatively high when v is "eat" and n is "banana," and low when n is "bandanna." 
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Note that since we are considering only heads, the distinction between "eat a banana" and 
"cat a rancid banana" will not be caught by these probabilities. Another issue with this ap 
proach is that, in a vocabulary with, say, 20,000 nouns and 5,000 verbs, Pi needs 100 million 
probability estimates. Only a few percent of these can come from a corpus; the rest will have 
to come from smoothing (see Section 22.1.2). For example, we can estimatePi(a,  n)  for a 
(v,  n) pair that we have not seen often (or at all) by backing off to a model that depends 
only on v.  These objectless probabilities are still very useful; they can capture the distinction 
between a transitive verb like "eat"—which will have a high value for Pi and a low value for 
P2—and  an intransitive verb like "sleep," which will have the reverse. It is quite feasible to 
learn these probabilities from a treebank.  

23.3.2 Formal definition of augmented grammar rules 

Augmented rules are complicated, so we will give them a formal definition by showing how 
an augmented rule can be translated into a logical sentence. The sentence will have the form 
of a definite clause (see page 256), so the result is called a definite clause grammar, or DCG. 
Well use as an example a version of a rule from the lexicalized grammar for NP with one 
new piece of notation: 

NP(n) Article(a)  Arlys(j)  Noun(n)  {Compatl.ble(),n)}  

The new aspect here is the notation {ronstraint}  to denote a logical constraint on  some of the 
variables; the rule only holds when the constraint is true. Here the predicate Compatible(j,n)  
is meant to test whether adjective j and noun n are compatible; it would be defined by a series 
of assertions such as Compatible (black, dog). We can convert this grammar rule into a def-
inite clause by (I) reversing the order of right- and left-hand sides, (2) making a conjunction 
of all the constituents and constraints, (3) adding a variable s i  to the list of arguments for each 
constituent to represent the sequence of words spanned by the constituent, (4) adding a term 
for the concatenation of words, Append(s  1,  .  .), to the list of arguments for the root of the 
tree. That gives us 

Article(a,  8  A Atijs(j,  32 )  A Noun (n.,  .9 3 )  A Compatible(j,n)  
NP(n, Append(si,s2,  83))  -  

This definite clause says that if the predicate Article is true of a head word a and a string si,  
and Arbs  is similarly true of a head word j  and a string 132 ,  and Noun is true of a head word 
n  and a string at, and if j and n are compatible, then the predicate NP is true of the head 
word n and the result of appending strings 3i ,  s2,  and g3_  

The DCG translation left out the probabilities, but we could put them back in: just aug-
ment each constituent with one more variable representing the probability of the constituent, 
and augment the root with a variable that is the product of the constituent probabilities times 
the rule probability. 

The translation from grammar rule to definite clause allows  us to talk about parsing 
as logical inference. This makes it possible to reason about languages and strings in many 
different ways. For example, it means we can do bottom-up parsing using forward chaining or 
top-down parsing using backward chaining. In fact, parsing natural language with DCGs was 
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Figure 23.7  Top: part of a grammar for the language £ 1 ,  which handles subjective and 
objective cases in noun phrases and thus does not overgenerate quite as badly as So. The 
portions that  are identical to fo  have been omitted. Bottom: part of an augmented grammar 
for C2 , with three augmentations: case agreement, subject—verb agreement, and head word. 
Sbj, Obj, 1s, 1P and 3? are constants,  and lowercase names are variables. 
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LANGUAGE 
GE VERATION  

one of the first applications of (and motivations for) the Prolog logic programming language. 
It is sometimes possible to run the process backward and do language generation as well as 
parsing. For example, skipping ahead to Figure 23.10 (page 903), a logic program could be 
given the semantic form Loves(Jolsn,  Mary) and apply the definite - clause rules to deduce 

S(Loves(John,  Mary), [John, loves, Mary]) 

This works for toy examples, but serious language-generation  systems need more control over 
the process than is afforded by the ❑CG rules alone. 

23.3.3 Case agreement and subject—verb agreement 

We saw in Section 23.1 that the simple grammar for Co  overgenerates, producing nonsen-
tences  such as "Me smell a stench." To avoid this problem, our grammar would have to know 
that "me" is not a valid NP when it is the subject of a sentence. Linguists say that the pronoun 
"I" is in the subjective case, and "me" is in the objective case.' We can account for this by 
4  The subjective case is also sometimes called the nominative case and the objectvc  case is sometimes called 

the accusative case. Many languages also have a dative case for words in the indirect object position. 
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splitting NP into two categories, NPs and NP0,  to stand for noun phrases in the subjective 
and objective case, respectively. We would also need to split the category Pronoun into the 
two categories Pronouns (which includes "I") and Pronoun° (which includes "me").  The 

CASE AGREEMENT  top part of Figure 233 shows the grammar for ease agreement; we call the resulting language 
El.  Notice that all the NP rules must be duplicated, once for NPs  and once for NP0.  

SITIMEC  
AGREEMEMT Unfortunately, E1  still overgenerates. English requires subject—verb agreement for 

person and number of the subject and main verb of a sentence. For example, if "I" is the 
subject, then "I smell" is grammatical, but "I smells' .  is not. If "it" is the subject, we get the 
reverse. In English, the agreement distinctions are minimal: most verbs have one form for 
third-person singular subjects (he, she, or it), and a second form for all other combinations 
of person and number. There is one exception: the verb "to be" has three forms, "I am / you 
are / he is." So one distinction (case) splits NP two ways, another distinction (person and 
number) splits NP three ways, and as we uncover other distinctions we would end up with an 
exponential number of subscripted NP forms if we took the approach of El.  Augmentations 
are a better approach: they can represent an exponential number of forms as a single rule. 

In the bottom of Figure 217 we see (part  of) an augmented grammar for the language 
e2 , which handles case agreement, subject—verb agreement, and head words. We have just 
one NP category, but NP{e,  in,  head) has three augmentations: c is a parameter for case. 
pn  is a parameter for person and number, and head is a parameter for the head word of 
the phrase.  The other categories also are augmented with heads and other arguments. Let's 
consider one rule in detail: 

S(head) NP(Sbj  ,  pn,  h) VP(pn,  head) . 

This rule is easiest to understand right-to-left: when an NP and a VP are conjoined they form 
an S, but only if the NP has the subjective (Sbj)  case and the person and number (pn) of the 
NP and VP are identical. If that holds, then we have an S whose head is the same as the 
head of the VP. Note the head of the NP, denoted by the dummy variable h, is not part of the 
augmentation of the S. The lexical rules for E2  fill in the values of the parameters and are also 
best read right-to-left. For example, the rule 

Pronoun(Sbj, ,I) I 
says that "I" can be interpreted as a Pronoun in the subjective case, tirst-person singular, with 
head "I." For simplicity we have omitted the probabilities for these rules, but augmentation 
does work with probabilities. Augmentation can also work with automated learning mecha-
nisms Petrov and Klein (2007c) show how a learning algorithm can automatically split the 
NP category into NP s  and NP0.  

23.3.4 Semantic interpretation 
To show how to add semantics to a grammar, we start with an example that is simpler than 
English: the semantics of arithmetic expressions. Figure 23.8 shows a grammar for arithmetic 
expressions, where each rule is augmented with a variable indicating the semantic interpreta-
tion of the phrase. The semantics of a digit such as "3" is the digit itself. The semantics of an 
expression such as "3 + 4" is the operator "+"  applied to the semantics of the phrase "3" and 
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Exp(x) Exp(xi)  Operator(op)  Exp(x2)  {,x  = APPIY(0P,  xi, T2)}  
Exp(x) —>  (  Exp(x))  
Exp(x) Number(x) 
Number(x)  —5  DigU(x)  
Number(x)  —5  Narrther(x l )  Digit(x2) {•  =10 x xi ±  x21  
Digit(x)  —5  z  {0  <  x  <  9}  
Operator (x) 5 x tx  c ( I , , :  , x}}  

Figure 23.8 A grammar fur arithmetic  expressions, augmented with sennuities.  Each  Vail- 
able  xi  represents the semantics of a constituent. Note the use of the { test} notation to define 
logical predicates that must be satisfied, but that are not constituents. 

Number(3)  

Digit( 

Exp(3)  

I 

I 
3) Operator(+)  

1  
3 + 

---------  

I 

Exp(5)  

Exp(4)  

I 
Number(4) 

I 
Digit(4) Operator( 

I 
4 

Exp(2) 

Exp(2)  

Exp(2) 

1  
Number-12)  

I 
) Digit(2)  

1 I 
÷ 2 

Figure 23.9 Parse tree with semantic interpretations for the string "3 + (4 ÷  2)".  

the phrase "4."  The rules obey the principle of compositional semantics—the semantics of 
a phrase is a function of the semantics of the subphrases. Figure 23.9 shows the parse tree for 
3 + (4 ±  2) according to this grammar. The root of the parse tree is Erp  (5), an expression 
whose semantic interpretation is 5. 

Now let's move on to the semantics of English, or at least of eo.  We start by determin-
ing what semantic representations we want to associate with what phrases. We use the simple 
example sentence "John loves Mary." The NP "John" should have as its semantic interpreta-
tion the logical term John, and the sentence as a whole should have as its interpretation the 
logical sentence Loves(John,  Mary). That much seems clear. The complicated part is the 
VP "loves Mary." The semantic interpretation of this phrase is neither a logical term nor a 
complete logical sentence. Intuitively, "laves Mary" is a description that might or might not 
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TIRE  AND TE1SE  

apply to a particular person. (In this case, it applies to John.) This means that "loves Mary" 
is a predicate that, when combined with a term that represents a person (the person doing 
the loving), yields a complete logical sentence. Using the A-notation  (see page 294), we can 
represent "loves Mary" as the predicate 

Ax Loves(x,  Mary) . 
Now we need a rule that says "an NP with semantics obj followed by a VP with semantics 
pred yields a sentence whose semantics is the result of applying pred  to obj:"  

S(pred(obj)) NP(obj) VP(pred) .  

The rule tells us that the semantic interpretation of "John loves Mary" is 
(Ax Love  ,  Mary))(John)  

which is equivalent to Loves(John, Mary). 
The rest of the semantics follows in a straightforward way from the choices we have 

made so far. Because VPs are represented as predicates, it is a good idea to be consistent and 
represent verbs as predicates as well. The verb "loves" is represented as Au  Ax  Loves(x,  y). 
the predicate that, when given the argument Mary, returns the predicate Ax Loves (x, Mary). 
We end up with the grammar shown in Figure 23.10 and the parse tree shown in Figure 23.11. 
We could just as easily have added semantics to 52; we chose to work with So so that the 
reader can focus on one type of augmentation at a time. 

Adding semantic augmentations to a grammar by hand is laborious and error prone. 
Therefore, there have been several projects to learn semantic augmentations from examples. 
CHILL (Zelle and Mooney, 1996) is an inductive logic programming (ILP) program that 
learns a grammar and a specialized parser for that grammar from examples. The target domain 
is natural language database queries. The training examples consist of pairs of word strings 
and corresponding semantic forms—for example; 

What is the capital of the state with the largest population? 
Answer(c, Capital (s, c) A Largest (p, State(s) A Population(s,  p))) 

CHILL's task is to learn a predicate Parse(words,  semantics) that is consistent with the ex-
amples and, hopefully, generalizes well to other examples. Applying 1LP  directly to learn 
this predicate results in poor performance: the induced parser has only about 20% accuracy 
Fortunately, TLP  learners can improve by adding knowledge_ In this case, most of the Parse  
predicate was defined as a logic program, and CHILL's  task was reduced to inducing the 
control rules that guide the parser to select one parse over another. With this additional back-
ground knowledge, CHILL can learn to achieve 70% to 85% accuracy on various database 
query tasks. 

23.3.5 Complications 

The grammar of real English is endlessly complex_ We will briefly mention some examples.  
Time anti tense: Suppose we want to represent the difference between "John loves 

Mary" and "John loved Mary." English uses verb tenses (past, present, and future) to indicate 
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S(pred(obj)) NP(obj)  VP(pred)  
VP(pred(obj)) —'  Verb(pred)  NP(obj)  
NP(obj) N arne(ob,  fl  

Name(John) John 
Narne(Mary) Mary 
Verb (Ay )ce  Loves (x, y)) ,  loves 

Figure 23.10 A granulite -  that can derive a parse tire  and semantic interpret  atiun  fur "Jinni  
loves Mary" (and three other sentences). Each category is augmented with a single argument 
representing the semantics. 

ALaves(lohn,Mary))  

V13(7,-,c,iLoves(x,Mary))  

NP(Jahn) NP(Nlaly)  

I  
Name(Jahn) Verb(7kytioriLoves(a,y)) Name(Mary)  

I I I 
John loves Mary 

Figure 23.11 A parse tree with semantic interpretations for the string "John loves Mary". 

the relative time of an event. One good choice to represent the time of events is the event 
calculus notation of Section 12.3. In event calculus we have 

John loves mary: Et C LoveN(John,  Mary) A During(Now,  Exten•(Ei))  
John loved mary: E2  E Loves(John,  Mary) A A fie;  ( Now , Extent(E2)) -  

This suggests that our two lexical rules for the words "loves" and "loved" should be these: 
Verh(Ay  Az eE  LrnyeA(T.  g)  A During( ;Vow , a)) —■  loves 
Verb()  Az E  E Love*. y) A After(Now,  ,e)) loved . 

Other than this change, everything else about the grammar remains the same, which is en-
couraging news; it suggests we are on the right track if we can so easily add a complication 
like the tense of verbs (although we have just scratched the surface of a complete grammar 
for time and tense). It is also encouraging that the distinction between processes and discrete 
events that we made in our discussion of knowledge  representation in Section 12.3.1 is actu-
ally reflected in language use. We can say "John slept a lot last night," where Sleeping is a 
process category, but it is odd to say "John found a unicorn a lot last night," where Finding 
is a discrete event category. A grammar would reflect that fact by having a low probability 
for adding the adverbial phrase "a lot" to discrete events. 

Quantification: Consider  the sentence "Every agent feels a breeze." The sentence has 
only one syntactic parse under Sty,  but it is actually semantically ambiguous; the preferred 



904 Chapter 23. Natural Language for Communication 

QUASI-LOGICAL 
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PRAGMATICS 

INDEXICAL  

SPEECH ACT 

AMBIG  uirr  

meaning is "For every agent there exists a breeze that the agent feels," but an acceptable 
alternative meaning is "There exists a breeze that every agcnt feels." 5  The two interpretations 
can be represented as 

Vu  aE  Agents 
]i)  be  Breezes A]e  e E Feed(a ;  b) A During(Notv,e);  

bE Breezes V a a E Agents 
e e F Feel(a,b)  During(Now,  e)  .  

The standard approach to quantification is for the grammar to define not an actual logical 
semantic sentence, but rather a quasi-logical form that is then turned into a logical sentence 
by algorithms outside of the parsing process. Those algorithms can have preference rules for 
preferring one quantifier scope over another—preferences that need not be reflected directly 
in the grammar. 

Pragmatics: We have shown how an agent can perceive a string of words and use a 
grammar to derive a set of possible semantic interpretations. Now we address the problem 
of completing the interpretation by adding context-dependent information about the current 
situation The most obvious need for pragmatic information is in resolving the meaning of 
indexicals, which are phrases that refer directly to the current situation. For example, in the 
sentence "I am in Boston today," both "I" and "today" are indexicals. The word "I" would be 
represented by the fluent Speaker, and it would be up to the hearer to resolve the meaning of 
the fluent—that  is not considered pan of the grammar but rather an issue of pragmatics; of 
using the context of the current situation to interpret Iluents. 

Another part of pragmatics is interpreting the speaker's intent The speaker's action is 
considered a speech act, and it is up to the hearer to decipher what type of action it is—a 
question, a statement, a promise, a warning, a command, and so on. A command such as 
"go to 2 2" implicitly refers to the hearer. So far, our grammar for S covers only declarative 
sentences. We can easily extend it to cover commands. A command can be formed from 
a VP, where the subject is implicitly the hearer. We need to distinguish commands from 
statements, so we alter the rules for S to include the type of speech act: 

S(5taternent(5peaker,pred(okf))y NP(okry)  VP(pred) 
S(Corntnand(Speaker,  pred(Hearer))) VP(pred)  . 

Long-distance dependencies: Questions introduce a new grammatical complexity. In 
"Who did the agent tell you to give the gold to?" the final word "to" should he parsed as 
[PP to -],  where the "2 denotes a gap or trace where an NP is missing, the missing NP 
is licensed by the first word of the sentence, "who." A complex system of augmentations is 
used to make sure that the missing NPs match up with the licensing words in just the right 
way, and prohibit gaps in the wrong places. Fur example, you can't have a gap in one branch  
of an NP conjunction: "What did he play [NP Dungeons and _]?"  is ungrammatical. But 
you can have the same gap in both branches of a VP conjunction: "What did you [ VP [VP 
smell  and [ VP shoot an arrow at _]]?"  

Ambiguity: In some cases, hearers are consciously aware of ambiguity in an utterance. 
Here are some examples taken from newspaper headlines: 
5  If this interpretation  seems unlikely, consider 'Every Protestant believes in a just God." 

LONG-DISTANCE  
0 EP END ENCIES  

TRACE 
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Squad helps dog bite victim. 
Police begin campaign to run down jaywalkers. 
Helicopter powered by human flies. 
Once-sagging cloth diaper industry saved by full dumps. 
Portable toilet bombed; police have nothing to go on. 
Teacher strikes idle kids. 
Include your children when baking cookies. 
Hospitals are sued by 7 foot doctors. 
Milk drinkers are turning to powder. 
Safety experts say school bus passengers should be belted .  

But most of the time the language we hear seems unambiguous. Thus, when researchers first 
began to use computers to analyze language in the 1960s, they were quite surprised to learn 
that almost every utterance is highly ambiguous, even though the alternative interpretations 
might not be apparent to a native speaker: A system with a large grammar and lexicon might 
find thousands of interpretations for a perfectly ordinary sentence. Lexical ambiguity, in 
which a word has more than one meaning, is quite common; "back" can be an adverb (go 
back), an adjective (back door), a noun (the back of the room) or a verb (back up your files). 
"Jack" can be a name, a noun (a playing card, a six-pointed metal game piece, a nautical flag, 
a fish, a socket, or a device for raising heavy objects), or a verb (to jack up a car, to hunt with 
a light, or to hit a baseball hard). Syntactic ambiguity refers to a phrase that has multiple 
parses: "I smelled a wumpus  in 2,2"  has two parses: one where the prepositional phrase "in 
2,2" modifies the noun and one where it modifies the verb. The syntactic ambiguity leads to a 
semantic ambiguity, because one parse means that the wumpus is in 2,2 and the other means 
that a stench is in 2,2. In this case, getting the wrong interpretation could be a deadly mistake 
for the agent. 

Finally, there can be ambiguity between literal and figurative meanings. Figures of 
speech are important in poetry. but are surprisingly common in everyday speech as well. A 
metonymy is a figure of speech in which one object is used to stand for another. When 
we hear "Chrysler announced a new model," we do not interpret it as saying that compa-
nies can talk; rather we understand that a spokesperson representing the company made the 
announcement. Metonymy is common and is often interpreted unconsciously by human hear-
ers. Unfortunately, our granunar as it is written is not so facile. To handle the semantics of 
metonymy properly, we need to introduce a whole new level of ambiguity. We do this by pro-
viding two objects for the semantic interpretation of every phrase in the sentence: one for the 
object that the phrase literally refers to (Chrysler) and one for the metonymic reference (the 
spokesperson), We then have to say that there is a relation between the two In our current 
grammar, "Chrysler announced" gets interpreted as 

= Chrysler A e E  Announce(x)  A After(Noto  , Extent(e))  .  

We need to change that to 

x =  Chrysler A e  E Announee(nr)  A After(Now,Extent(e))  
A Atetanymy(rn,  .  
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This says that there is one entity x that is equal to Chrysler, and another entity m that did 
the announcing, and that the two arc in a metonymy relation. The next step is to define what 
kinds of metonymy relations can occur. The simplest case is when there is no metonymy at 
all—the literal object x  and the metonymic object m are identical: 

Van, = Metonytny(in,  x) . 

For the Chrysler example, a reasonable generalization is that an organization can be used to 
stand for a spokesperson of that organization: 

V  nt,  x x  E  Organizations A Spok(sperson(m,  x) Ilfletonyrny(In,  x) . 

Other metonymies include the author for the works (I read Shakespeare) or more generally 
the producer for the product (I drive a Honda) and the part for the whole (The Red Sox need 
a strong arm). Some examples of metonymy, such as "The ham  sandwich on Table 4 wank  
another beer," are more novel and are interpreted  with respect to a situation. 

A metaphor is another figure of speech, in which a phrase with one literal meaning is 
used to suggest a different meaning by way of an analogy. Thus, metaphor can be seen as a 
kind of metonymy where the relation is one of similarity. 

Disambiguation is the process of recovering the most probable intended meaning of 
an utterance. In one sense we already have a framework for solving this problem: each rule 
has a probability associated with it, so the probability of an interpretation is the product of 
the probabilities of the rules that led to the interpretation. Unfortunately, the probabilities 
reflect how common the phrases are in the corpus from which the grammar was learned, 
and thus reflect general knowledge, not specific knowledge of the current situation. To do 
disambiguation properly, we need to combine four models: 

1. The world model: the likelihood that a proposition occurs in the world. Given what we 
know about the world, it is more likely that a speaker who says "I'm dead" means "1  
am in big trouble" rather than "My life ended, and yet I can still talk." 

2. The mental model: the likelihood that the speaker forms the intention of communicat-
ing a certain fact to the hearer. This approach combines models of what the speaker 
believes, what the speaker believes the hearer believes, and so on. For example. when 
a politician says, "1 am not a crook," the world model might assign a probability of 
only 50% to the proposition that the politician is not a criminal, and 99.999%  to the 
proposition that he is not a hooked shepherd's staff. Nevertheless, we select the former 
interpretation because it is a more likely thing to say. 

3. The language model: the likelihood that a certain string of words will be chosen, given 
that the speaker has the intention of communicating a certain fact. 

4. The acoustic model: for spoken communication, the likelihood that a particular se-
quence of sounds will be generated, given that the speaker has chosen a given string of 
words. Section 23.5 covers speech recognition. 
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23.4 MACHINE TRANSLATION 

Machine translation is the automatic translation of text from one natural language (the source) 
to another (the target). It was one of the first application areas envisioned for computers 
(Weaver, 1949), but it is only in the past decade that the technology has seen widespread 
usage. Here is a passage from page 1 of this book: 

AI is one of the newest fields in science and engineering. Work started in earnest soon 
after World War II, and the name itself was coined in 195b. Along with molecular biol-
ogy, Al is regularly cited as the 'field I would most like to be in" by scientists in other 
disciplines. 

And here it is translated from English to Danish by an online tool, Google Translate: 
Al er en of de nyeste ornrader  inden for videnskab og teknik. Arbejde startede for alvur 
lige after  Anden Verdenskrig,  og navnet i  sig selv  var opfundet  i 1956. Sammen med 
molekylmr  biologi,  er AI jrevnligt  nrevnt  sorn  "feltet leg vile de Neste genie were i" of 
forskere i andre discipliner. 

For those who don't read Danish, here is the Danish translated back to English. The words 
that came out different are in italics: 

AI is one of the newest fields of science and engineering. Work began in earnest just after 
the Second World War, and the name itself was invented in 1956. Together with molecular 
biology, AI is frequently mentioned as "field I would most like to be in" by researchers 
in other disciplines. 

The differences are all reasonable paraphrases, such as frequently mentioned for regularly 

cited. The only real error is the omission of the article the, denoted by the -  symbol. This is 
typical accuracy: of the two sentences, one has an error that would not be made by a native 
speaker, yet the meaning is clearly conveyed. 

Historically, there have been three main applications of machine translation. Rough 

translation, as provided by free online services, gives the "gist" of a foreign sentence or 
document, but contains errors. Pre- edited translation is used by companies to publish their 
documentation and sales materials in multiple languages. The original source text is written 
in a constrained language that is easier to translate automatically, and the results are usually 
edited by a human to correct any errors. Restricted-source translation works fully automati-
cally, but only on highly stereotypical language, such as a weather report. 

Translation is difficult because, in the fully general case, it requires in -depth understand-
ing  of the text. This is true even for very simple texts—even "texts" of one word. Consider 
the word "Open" on the door of a store. 6  It communicates the idea that the store is accepting 
customers at the moment. Now consider the same word "Open' on a large banner outside a 
newly constructed store. It means that the store is now in daily operation, but readers of this 
sign would not feel misled if the store closed at night without removing the banner. The two 
signs use the identical word to convey different meanings. In German the sign on the door 
would be "Offen" while the banner would read "Neu Erififfnet."  
6  This example is due to Marlin Kay. 
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The problem is that different languages categorize the world differently. For example, 
the French word "doux" covers a wide range of meanings corresponding approximately to 
the English words "soft," "sweet," and "gentle." Similarly, the English word "hard" covers 
virtually all uses of the German word "hart" (physically recalcitrant, cruel) and some uses 
of the word "schwierig" (difficult). Therefore, representing the meaning of a sentence is 
more difficult for translation than it is for single-language understanding. An English parsing 
system could use predicates like Ope,n(x),  but for translation, the representation language 
would have to make more distinctions, perhaps with Openi(x)  representing the "Offen" sense 
and Open 2 (x)  representing the "Neu Enliffnet"  sense. A representation language that makes 

INTERLINSLIA all the distinctions necessary for a set of languages is called an interlingua.  
A translator (human or machine) often needs to understand the actual situation de-

scribed in the source, not just the individual words. For example, to translate the English 
word "him," into Korean, a choice must be made between the humble and honorific form, a 
choice that depends on the social relationship between the speaker and the referent of "him." 
In Japanese, the honorifics are relative, so the choice depends on the social relationships be-
tween the speaker, the referent, and the listener. Translators (both machine and human) some-
times find it difficult to make this choice. As another example, to translate "The baseball hit 
the window. It broke." into French, we must choose the feminine "elle" or the masculine 
"il" for "it," so we must decide whether "it" refers to the baseball or the window. To get the 
translation right, one must understand physics as well as language. 

Sometimes there is no choice that can yield a completely satisfactory translation. For 
example, an Italian love poem that uses the masculine "il  sole" {sun) and feminine "la Luna"  
(moon) to symbolize two lovers will necessarily be altered when translated into German, 
where the genders are reversed, and further altered when translated into a language where the 
genders are the same. ?  

TRANSFER NUDEL  

23.4.1 Machine translation systems 

All translation systems must model the source and target languages, but systems vary in the 
type of models they use. Some systems attempt to analyze the source language text all the way 
into an interlingua knowledge representation and then generate sentences in the target lan-
guage from that representation. This is difficult because it involves three unsolved problems: 
creating a complete knowledge representation of everything; parsing into that representation; 
and generating sentences from that representation. 

Other systems are based on a transfer model. They keep a database of translation rules 
(or examples), and whenever the rule (or example) matches, they translate directly. Transfer 
can occur at the lexical, syntactic, or semantic level_  For example, a strictly syntactic rule 
maps English [Artier-rive  Art)un]  to French [NO1111  Adjective]_ A mixed syntactic and lexical 
rule maps French [Si  "et puis" S2 ]  to English [Si  "and then" S2].  Figure 23.12 diagrams the 
various transfer points. 

 

7  Warren Weaver (1949) reports that Max Zeldnet  points out that the great Hebrew poet H N Biala once said 
that translation "is like kissing [he bride through a veil."  



English Semantics   - - - French Semantics 
Lores(John,IMary) .Aime(fean  Afarie)  

English Syntax 
S(NP(John)AT(ltrves4NPfMary)))  

French Syntax 
S(NPVeani diT(aime4NP(Marie)))  

Inter-lingua  Semanics  
Attraclion(NamedJohn.INamedfrlary,iffigh)  

English Words 
John loves  Mary 

French Words 
Jean rime  Marie 

Figure 23.12  The Vauquois triangle: schematic diagram of the choices for a machine 
translation system (Vauquois, 1966).  We start with English text at the top. An interlingua-
based  system follows the solid lines, parsing English first into a syntactic form, then into 
a semantic representation and an interlingua representation, and then through generation to 
a semantic, syntactic, and lexical form in french. A transfer-based system uses the dashed 
lines as a shortcut. Different systems make the transfer at different points; some make it at 
multiple. points_ 
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23.4.2 Statistical machine translation 

Now that we have seen how complex the translation task can be, it should come as no sur- 
prise that the most successful machine translation systems are built by training a probabilistic 
model using statistics gathered from a large corpus of text. This approach does not need 
a complex ontology of interlingua concepts, nor does it need handcrafted grammars of the 
source and target languages, nor a hand -labeled treehank.  All it needs is data—sample trans- 
lations from which a translation model can be learned. To translate a sentence in, say, English 
(6)  into French (f ), we find the string of words f* that maximizes 

f*  = argmax  P( f e) = arginnx  P(e f) P(f) . 
f 

Here the factor P(f)  is the target language model for French; it says how probable a given 
sentence is in French. P(el  f ) is the translation model; it says how probable an English 
sentence is as a translation for a given French sentence. Similarly, P(f e) is a translation 
model from English to French. 

Should we work directly on P( f I e), or apply Bayes' rule and work on P(e f )P(f )? 
In diagnostic applications like medicine, it is easier to model the domain in the causal di-
rection: P(symptortis  I disease) rather than P(disease I symptoms). But in translation both 
directions are equally easy. The earliest work in statistical machine translation did apply 
Bayes' rule in part because the researchers had a good language model, P( f ), and wanted 
to make use of it, and in part because they came from a background in speech recognition, 
which is a diagnostic problem. We follow their lead in this chapter, but we note that re- 
cent work in statistical machine translation often optimizes P(f  e) directly, using a more 
sophisticated model that takes into account many of the features from the language model. 
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The language model, P( f), could address any level(s) on the right-hand side of Fig-
ure 23.12, but the easiest  and most common approach is to build an n-gram model from a 
French corpus, as we have seen before. This captures only a partial, local idea of French 
sentences; however, that is often sufficient for rough translation s  

The translation model is learned from a bilingual corpus—a collection of parallel texts, 
each an English/French pair. Now, if we had an infinitely large corpus, then translating a 
sentence would just be a lookup task: we would have seen the English sentence before in the 
corpus, so we could just return the paired French sentence. But of course our resources are 
finite, and most of the sentences we will be asked to translate will be novel. However, they 
will be composed of phrases that we have seen before (even if some phrases are as short as 
one word). For example, in this book, common phrases include "in this exercise we will," 
"size of the state space," "as a function of the" and "notes at the end of the chapters" If asked 
to translate the novel sentence "In this exercise we will compute the size of the state space as a 
function of the number of actions." into French, we should be able to break the sentence into 
phrases, find the phrases in the English corpus (this book), find the corresponding French 
phrases (from the French translation of the book), and then reassemble the French phrases 
into an order that makes sense in French. In other words, given a source English sentence, e. 
finding a French translation f is a matter of three steps: 

1. Break the English sentence into phrases e t , 
2. For each phrase e i ,  choose a corresponding French phrase f,.  We use the notation 

P( e i )  for the phrasal probability that f,  is a translation of e i ,  

3. Choose a permutation of the phrases ft, ,  f,.  We will specify this permutation in a 
way that seems a little complicated, but is designed to have a simple probability dis-
tribution: For each fi,  we choose a distortion d„  which is the number of words that 
phrase f,  has moved with respect to fi_a;  positive for moving to the right, negative for 
moving to the left, and zero if fi  immediately follows fi_t.  

Figure 23.13 shows an example of the process. At the top, the sentence "There is a smelly 
wumpus  sleeping in 2 2" is broken into five phrases, et,  ,  es. Each of them is translated 
into a corresponding phrase fi, and then these are permuted into the order ft,  f3,  f4,f2,  f .  
We specify the permutation in terms of the distortions di  of each French phrase, defined as 

di  = START(fi)  —END(f,_ 1 )  — 1 ,  
where START(L)  is the ordinal number of the first word of phrase ,fi  in the French sentence, 
and END(f,_ 1 )  is the ordinal number of the last word of phrase ft_ t .  In Figure 23.13 we see 
that f5,  "a 2 2," immediately follows lc "qui dort,"  and thus d5  = 0. Phrase f2,  however, has 
moved one words to the right of ft,  so d2  = 1. As a special case we have di  = 0, because ft 
starts at position 1 and END( fo)  is defined to be 0 (even though fo  does not exist). 

Now that we have defined the distortion, di, we can define the probability distribution 
for distortion, P(di).  Note that for sentences hounded by length n, we have <  n, , and 

g  For the finer points of translation. n-grams  are dearly not enough Marcel Proust's 4000-page novel A Is 
recherche  die temps pensu  begins and ends with the same  word (longtemps),  so some translators have decided to 

do the same, thus basing the translation of the  final word on one that appeared roughly 2 million words earlier. 



e, 

 

e
4 

  

=0 = -2 d, = +1 = +1 d5  = 0 

Figure 23.13  Candidate French phrases for each phrase of an English sentence, with dis-
tort- inn  (d) values for each French phrase. 

Section 23.4. Machine Translation 911 

so the full probability distribution P(di)  has only 2rt  +  1 elements, far fewer numbers to 
learn than the number of permutations, n!. That is why we cleaned  the permutation in this 
circuitous way. Of course, this is a rather impoverished model of distortion. It doesn't say 
that adjectives are usually distorted to appear after the noun when we are translating from 
English to French—that fact is represented in the French language model, P(f).  The distor-
tion probability is completely independent of the words in the phrases—it depends only on 
the integer value dA. The probability distribution provides a summary of the volatility of the 
permutations; how likely a distortion of P(d = 2) is, compared to P(d=  0), for example. 

We're ready now to put it all together: we can define P11, d I e), the probability that 
the sequence of phrases f with distortions d is a translation of the sequence of phrases e. We 
make the assumption that each phrase translation and each distortion is independent of the 
others, and thus we can factor the expression as 

13(f  ' =1113(f  'I)  P(61s)  

That gives us a way to compute the probability P(f ,d e) for a candidate translation f 
and distortion d. But to find the best f and d we can't just enumerate sentences; with maybe 
100 French phrases for each English phrase in the corpus. there are 100 5  different 5-phrase 
translations, and 5! reorderings for each of those. We will have to search for a good solution. 
A local beam search (see page 125) with a heuristic that estimates probability has proven 
effective at finding a nearly-most-probable translation. 

All that remains is to learn the phrasal and distortion probabilities. We sketch the pro-
cedure; see the notes at the end of the chapter for details_  

HAISAFU i. Find parallel texts: First, gather a parallel bilingual corpus. For example, a Hansard 9  
is a record of parliamentary debate. Canada, Hong Kong, and other countries pro-
duce bilingual Hansards, the European Union publishes its official documents in 11 
languages, and the United Nations publishes multilingual documents. Bilingual text is 
also available online; some Web sites publish parallel content with parallel URLs,  for 

9 Named after William Hansard, who first published the British parliamentary debates in 1811. 
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example, /en/ for the English page and / f r/ for the corresponding French page. The 
leading statistical translation systems train on hundreds of millions of words of parallel 
text and billions of words of monolingual text. 

2. Segment into sentences: The unit of translation is a sentence, so we will have to break 
the corpus into sentences. Periods are strong indicators of the end of a sentence, but 
consider "Dr. 1. R. Smith of Rodeo Dr. paid $29.99 on 9 9.09."; only the final period 
ends a sentence_ One way to decide if a period ends a sentence is to train a model 
that takes as features the surrounding words and their parts of speech. This approach 
achieves about 98%  accuracy. 

3. Align sentences: For each sentence in the English version, determine what sentence(s) 
it corresponds to in the French version. Usually, the next sentence of English corre-
sponds to the next sentence of French in a 1:1 match, but sometimes there is variation: 
one sentence in one language will be split into a 2:1 match, or the order of two sentences 
will be swapped, resulting in a 2:2 match. By looking at the sentence lengths alone (i.e. 
short sentences should align with short sentences), it is possible to align them (1:1, 1:2, 
nr  2:2, etc_)  with accuracy in the 90%  to 99%  range using a variation on the Viterhi  
algorithm. Even better alignment can be achieved by using landmarks that are common 
to both languages, such as numbers, dates, proper names, or words that we know from 
a bilingual dictionary have an unambiguous translation. For example, if the 3rd English 
and 4th French sentences contain the string "1989" and neighboring sentences do not, 
that is good evidence that the sentences should be aligned together. 

4. Align phrases: Within a sentence, phrases can be aligned by a process that is similar to 
that used for sentence alignment, but requiring iterative improvement. When we start, 
we have no way of knowing that "qui don" aligns with "sleeping," but we can arrive at 
that alignment by a process of aggregation of evidence. Over all the example sentences 
we have seen, we notice that "qui don" and "sleeping" co-occur with high frequency, 
and that in the pair of aligned sentences, no phrase other than "qui dort" co-occurs so 
frequently in other sentences with "sleeping." A complete phrase alignment over out 
corpus gives us the phrasal probabilities (after appropriate smoothing). 

5. Extract distortions: Once we have an alignment of phrases we can define distortion 
probabilities. Simply count how often distortion occurs in the corpus for each distance 
d = 0, ±1, ±2, ...,  and apply smoothing. 

6. Improve estimates with EM: Use expectation–maximization to improve the estimates 
of Purl  e) and P(d)  values. We compute the best alignments with the current values 
of these parameters in the E step, then update the estimates in the M step and iterate the 
process until convergence. 

23.5 SPEECH RECOGNITION 

SP EEC14  
RECOGNMOV  Speech recognition is the task of identifying a sequence of words  uttered by a speaker, given 

the acoustic signal. It has become one of the mainstream applications of AI—millions  of 
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people interact with speech recognition systems every day to navigate voice mail systems, 
search  the Wcb  from mobile phones, and other applications. Speech is an attractive option 
when hands-free operation is necessary, as when operating machinery. 

Speech recognition is difficult because the sounds made by a speaker are ambiguous 
and, well, noisy. As a well-known example, the phrase 'recognize speech" sounds almost 
the same as "wreck a nice beach" when spoken quickly. Even this short example shows 
several of the issues that make speech problematic. First, segmentation: written words in 
English have spaces between them, but in fast speech there are no pauses in "wreck a nice" 
that would distinguish it as a multiword phrase as opposed to the single word "recoglize."  
Second, coarticulation:  when speaking quickly the "s" sound at the end of "nice" merges 
with the "b" sound at the beginning of "beach," yielding something that is close to a "sp."  
Another problem that does not show up in this example is homophones—words like "to." 
"too," and "two" that sound the same but differ in meaning. 

We can view speech recognition as a problem in most-likely-sequence explanation. As 
we saw in Section 15.2, this is the problem of computing the most likely sequence of state 
variables, xi, t .  given a sequence of observations ell .  In this case the state variables are the 
words, and the observations are sounds. More precisely, an observation is a vector of features 
extracted from the audio signal. As usual, the most likely sequence can be computed with the 
help of B ayes' rule to be: 

argmaxP(word i:t  I sound i:t )  = argmaxP(sounciLt  word L OP(worcl i  t )  .  
word i: , ward i , t  

Here P(Aanrh, i lipord  1:0  is the acoustic model_ it describes the sounds of words—that 
"ceiling" begins with a soft "c" and sounds the same as "sealing." P(word i:i. )  is known as 
the language model. It specifies the prior probability of each utterance—for example, that 
"ceiling fan" is about 500 times more likely as a word sequence than "sealing fan." 

This approach was named the noisy channel model by Claude Shannon (1948). He 
described a situation in which an original message (the words in our example) is transmitted 
over a noisy channel (such as a telephone line) such that a corrupted message (the .sounds  
in our cxamplc) arc received at the other end. Shannon showed that no matter how noisy 
the channel, it is possible to recover the original message with arbitrarily small error, if we 
encode the original message in a redundant enough way. The noisy channel approach has 
been applied to speech recognition, machine translation, spelling correction, and other tasks. 

Once we define the acoustic and language models, we can solve for the most likely 
sequence of words using the Viterbi algorithm (Section 15.2.3 on page 576). Most speech 
recognition systems use a language model that makes the Markov assumption—that the cur-
rent state Word i  depends only on a fixed number 22  of previous states—and represent Word t  
as a single random variable taking on a finite set of values, which makes it a Hidden Markov 
Model (HMM).  Thus, speech recognition becomes a simple application of the HMM  method-
ology, as described in Section 15.3—simple that is, once we define the acoustic and language 
models. We cover them next. 
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Vowels Consonants B–N Consonants P–Z 
Phone Example Phone Example Phone Example 

[iy] bent  
[ih] bit 
[eh] bet 
[w] bat 
[ah] but 
[ao] bought 

[b] bet 
[ch] Chet 
ldl debt 
[f] fat 
[8] get 
[hit] hat 
[hv] high 
[jh] jet 
[k] kick 
[1] let 
[el] bottle 
Coll met 
[ern] bottom 
[n] net 
[en] button 
[og] sing 
[eng] washing 

[p] pet 
[r] rat 
isl set 
[sh] shoe 
[t] ten 
[th] thick 
phi that 
[dx] butter 
[v] vet 
[w] wet 
[wh] which 
[y] yet 
[z] zoo 
[zh] measure 

[- I silence 

[ow] boat 
[uh] book 
[ey] bait 
[er] Bert 
[ay] buy 
[oYi boy 
[axr] diner 
[aw] down 
[ax] about 
[ix] roses  
[aa] cot 

Figure 23.14 The ARPA phonetic alphabet, or ARPAbet, listing all the phones used in 
American English. There are several alternative notations, including an International Pho 
netic Alphabet (IPA), which contains the phones in all known languages. 

SAMPLING RATE 

QUANTIZATION  
FACTOR 

PHONE 

23.5.1 Acoustic model 

Sound waves are periodic changes in pressure that propagate through the air.  When these 
waves strike the diaphragm of a microphone, the back-and-forth movement generates an 
electric current An analog-to-digital  converter measures the size of the current—which ap-
proximates the amplitude of the sound wave—at discrete intervals called the sampling rate. 
Speech  sounds, which arc mostly in the range of 100 Hz (100 cycles per second) to 1000 Hz, 
are typically sampled at a rate of 8 kHz. (CDs and mp3 files are sampled at 44.1 kHz.) The 
precision of each measurement is determined by the quantization factor; speech recognizers 
typically keep 8 to 12 bits. That means that a low-end system, sampling at 8 kHz with 8-bit 
quantization, would require nearly half a megabyte per minute of speech. 

Since we only want to know what words were spoken, not exactly what they sounded 
like, we don't need to keep all that information. We only need to distinguish between differ-
ent speech sounds. Linguists have identified about 100 speech sounds, or phones, that can be 
composed to form all the words in all known human languages. Roughly speaking, a phone 
is the sound that corresponds to a single vowel or consonant, but there are some complica-
tions: combinations of letters, such as "th”  and "ng"  produce single phones, and some letters 
produce different phones in different contexts (e.g., the "a" in rat and rote. Figure 23A4 lists 
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Figure 23.15  Translating the acoustic signal into a sequence of frames. In this diagram 
each frame is described by the discretized values of three acoustic features; a real system 
would have dozens of features. 
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all the phones that are used in English, with an example of each. A phoneme is the smallest 
unit of sound that has a distinct meaning to speakers of a particular language. For example, 
the "t" in "stick" sounds similar enough to the "t" in "tick" that speakers of English consider 
them the same phoneme. But the difference is significant in the Thai language, so there they 
are two phonemes. To represent spoken English we want a representation that can distinguish 
between different phonemes, but one that need not distinguish the nonphonemic variations in 
sound: loud or soft, fast or slow, male or female voice, etc. 

First, we observe that although the sound frequencies in speech may be several kHz, 
the changes in the content of the signal occur much less often, perhaps at no more than 100 
Hz, Therefore, speech systems summarize the properties of the signal over time slices called 
frames. A frame length of about 10 milliseconds (i.e.,  80  samples at 8  kHz) is short enough 
to ensure that few short-duration phenomena will be missed. Overlapping frames are used to 
make sure that we don't miss a signal because it happens to fall on a frame boundary. 

Each frame is summarized by a vector of features. Picking out features from a speech 
signal is like listening to an orchestra and saying "here the French horns are playing loudly 
and the violins are playing softly." We'll give a brief overview of the features in a typical 
system. First, a Fourier transform is used to determine the amount of acoustic energy at 
about a dozen frequencies. Then we compute a measure called the mel frequency cepstral  
coefficient (MFCC)  or MFCC for each frequency. We also compute the total energy in 
the frame. That gives thirteen features; for each one we compute the difference between 

this frame and the previous frame, and the difference between differences, for a total of 39 
features. These are continuous-valued;  the easiest way to tit  them into the IIMISA  framework 
is to discretize the values. (It is also possible to extend the HMM model to handle continuous 
mixtures of Gaussian.) Figure 23.15 shows the sequence of transformations from the raw 
sound to a sequence of frames with discrete features. 

We have seen how to go from the raw acoustic signal to a series of observations, e t . 
Now we have to describe the (unobservable) states of the HMM and define the transition 
model, P{Xt  1X t _i ),  and the sensor model, P(Et  Xt)-  The transition model can be broken 
into two levels: word and phone. We'll start from the bottom!  the phone model describes 
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Figure 23.16  An HMM for the three-state phone [m]. Each state has several possible 
outputs, each with its own probability, The MFCC feature labels Ci  through Cr  are arbitrary, 
standing for some combination of feature values. 

(a) Word model with dialect variation: 
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1.0 

(b) Word model with coarticulatiou  and dialect variations 
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Figure 23.17  Two pronunciation models of the word "tomato." Each model is shown as 
a transition diagram with states as circles and arrows showing allowed transitions with their 
associated probabilities. (a) A model allowing for dialect differences. The 0.5 numbers are 
estimates based on the two authors' preferred pronunciations. (b) A model with a coarticula-
tion effect on the first vowel, allowing either the [ow] or the Fah] phone. 
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a phone as three states, the onset, middle, and end. For example, the [t] phone has a silent 
beginning, a small explosive burst of sound in the middle, and (usually) a hissing at the end. 
Figure 23.16 shows an example for the phone [m]. Note that in normal speech, an average 
phone has a duration of SO-100  milliseconds, or 5-10 frames. The self-loops in each state 
allows for variation in this duration. By taking many self-loops (especially in the mid state), 
we can represent a long "mmmmmninmunmm"  sound. Bypassing the self-loops yields a 
short "m" sound. 

In  Figure 23.17 the phone models are strung together to form a pronunciation model 
for a word. According to Gershwin (1937), you say [t ow m ey t ow] and I say It ow m as t 
ow]. Figure 23.17(a) shows a transition model that provides for this dialect variation. Each 
of the circles in this diagram represents a phone model like the one in Figure 23.16. 

In addition to dialect variation, words can have coarticulation  variation. For example, 
the [i]  phone is produced with the tongue at the top of the mouth, whereas the [ow] has the 
tongue near the bottom. When speaking quickly, the tongue doesn't have time to get into 
position for the [ow], and we end up with [t ah]  rather than [t ow]. Figure 23.17(b) gives 
a model for "tomato" that takes this coarticulation  effect into account. More sophisticated 
phone models take into account the context of the surrounding phones. 

There can be substantial variation in pronunciation for a word. The most common 
pronunciation of "because" is [b iy k ah z], but that only accounts for about a quarter of 
uses. Another quarter (approximately) substitutes [ix], [ih]  or [ax] for the first vowel, and the 
remainder substitute [ax] or [aa]  for the second vowel, [zh] or [s] for the final [z], or drop 
"be" entirely, leaving "cuz."  

23.5.2 Language model 

For general-purpose speech recognition, the language model can be an n-gram model of 
text learned from a corpus of written sentences. However, spoken language has different 
characteristics than written language, so it is better to get a corpus of transcripts of spoken 
language. For task-specific speech recognition, the corpus should be task-specific: to build 
your airline reservation system, get transcripts of prior calls. It also helps to have task-specific 
vocabulary, such as a list of all the airports and cities served, and all the flight numbers. 

Part of the design of a voice user interface is to coerce the user into saying things from a 
limited set of options, so that the speech recognizer will have a tighter probability distribution 
to deal with. For example, asking "What city do you want to go to?" elicits a response with 
a highly constrained language model, while asking "How can I help you?" does not. 

235.3 Building a speech recognizer 
The quality of a speech recognition system depends on the quality of all of its components—
the language model, the word-pronunciation models, the phone models, and the signal-
processing algorithms used to extract spectral features from the acoustic signal. We have 
discussed how the language model can be constructed from a corpus of written text, and we 
leave the details of signal processing to other textbooks. We are left with the pronunciation 
and phone models. The structure of the pronunciation models—such as the tomato models in 
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Figure 23.17—is usually developed by hand. Large pronunciation dictionaries are now avail-
able for English and other languages, although thcir accuracy varies greatly. The structure 
of the three-state phone models is the same for all phones, as shown in Figure 23.16. That 
leaves the probabilities themselves. 

As usual, we will acquire the probabilities from a corpus, this time a corpus of speech. 
The most common type of corpus to obtain is one that includes the speech signal for each 
sentence paired with a transcript of the words. Building a model from this corpus is more 
difficult than building an n-gram model of text, because we have to build a hidden Markov 
model—the phone sequence for each word and the phone state for each time frame are hidden 
variables. In the early days of speech recognition, the hidden variables were provided by 
laborious hand-labeling of spectrograms. Recent systems use expectation—maximization to 
automatically supply the missing data. The idea is simple: given an HMM and an observation 
sequence, we can use the smoothing algorithms from Sections 15.2 and 15.3 to compute the 
probability of each state at each time step and, by a simple extension, the probability of each 
state—state pair at consecutive time steps. These probabilities can be viewed as uncertain 
labels. From the uncertain labels, we can estimate new transition and sensor probabilities, 
and the EM procedure repeats. The method is guaranteed to increase the fit between model 
and data on each iteration, and it generally converges to a much better set of parameter values 
than those provided by the initial, hand-labeled estimates. 

The systems with the highest accuracy work by training a different model for each 

speaker, thereby capturing differences in dialect as well as maleffemale  and other variations. 
This training can require several hours of interaction with the speaker, so the systems with 
the most widespread adoption do not create speaker-specific models. 

The accuracy of a system depends on a number of factors. First, the quality of the signal 
matters: a high-quality directional microphone aimed at a stationary mouth in a padded room 
will do much better than a cheap microphone transmitting a signal over phone lines from a 
car in traffic with the radio playing. The vocabulary size matters: when recognizing digit 
strings with a vocabulary of 11 words (1-9 plus "oh" and "zero"), the word error rate will be 
below 0.5%,  whereas it rises to about 10% on news stories with a 20,000-word  vocabulary, 
and 20% on a corpus with a 64,000-word vocabulary. The task matters too: when the system 
is trying to accomplish a specific task—book a flight or give directions to a restaurant—the 
task can often be accomplished perfectly even with a word error rate of 10% or more. 

23.6 SUMMARY 

Natural language understanding is one of the most important subfields of Al. Unlike most 
other areas of Al, natural language understanding requires an empirical investigation of actual 
human behavior—which turns out to be complex and interesting. 

■ Formal language theory and phrase structure grammars (and in particular, context. 
free grammar) are useful tools for dealing with some aspects of natural language. The 
probabilistic context-free grammar (PCFG) formalism is widely used. 
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• Sentences in a context-free language can be parsed in 0(n 3 ) time by a chart parser 
such as the CYK algorithm, which requires grammar rules to be in Chomsky  Normal 
Form. 

• A treebank can be used to learn a grammar. It is also possible to learn a grammar from 
an unparsed corpus of sentences, but this is less successful. 

• A lexicalized PCFG allows us to represent that some relationships between words are 
mare common than others. 

• It is convenient to augment a grammar to handle such problems as subject–verb  agree-
ment and pronoun case. Definite clause grammar (DCG) is a formalism that allows for 
augmentations. With DCG, parsing and semantic interpretation (and even generation) 
can be done using logical inference. 

• Semantic interpretation can also be handled by an augmented grammar. 
• Ambiguity is a very important problem in natural language understanding; most sen-

tences have many possible interpretations, but usually only one is appropriate_ Disam-
biguation relies on knowledge about the world, about the current situation, and about 
language use. 

• Machine translation systems have been implemented using a range of techniques, 
from full syntactic and semantic analysis to statistical techniques based on phrase fre-
quencies. Currently the statistical models are most popular and most successful. 

• Speech recognition systems are also primarily based on statistical principles. Speech 
systems are popular and useful, albeit imperfect. 

• Together, machine translation and speech recognition are two of the big successes of 
natural language technology. One reason that the models perform well is that large 
corpora are available—both translation and speech are tasks that are performed in the 
wild" by people every day. In contrast, tasks like parsing sentences have been less 
successful, in part because no large corpora of parsed sentences are available in the 
wild" and in part because parsing is not useful in and of itself. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

ATTREITE  
GRAMMAR 

Like semantic networks, context-free grammars (also known as phrase structure grammars) 
are a reinvention of a technique first used by ancient Indian grammarians (especially Panini, 
ca. 350 n.c.)  studying Shastric Sanskrit (Ingerman, 19671. They were reinvented by loam 
Chomsky (1956) for the analysis of English syntax and independently by John Backus for 
the analysis of Algol-58  syntax. Peter Naur extended Backus's notation and is now credited 
(Backus, 1996) with the "N" in BNF,  which originally stood for "Backus Normal Form." 
Knuth (1968) defined a kind of augmented grammar called attribute grammar that is use-
ful for programming languages. Definite clause grammars were introduced by Calmer-

auer (1975) and developed and popularized by Pereira and Shieber (1987). 
Probabilistic context-free grammars were investigated by Booth (1969) and Salo-

maa (1969). Other algorithms for PCFGs are presented in the excellent short monograph by 
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Charniak (1993) and the excellent long textbooks by Manning and Schtitze  (1999) and Juraf-
sky and Martin (2008). Baker (1979) introduces the inside-outside  algorithm for teaming a 
PCFG, and Lari  and Young (1990) describe its uses and limitations. Stolcke and Dmohundro  
(1994) show how to learn  grammar mks with Bayesian model merging; Haghighi and Klein 
(2006) describe a learning system based on prototypes. 

Lexicalized PCFGs (Chamialc,  1997; Hwa, 1998) combine the best aspects of PCFGs  
and n-gram models. Collins (1999)  describes PCFG parsing that is lexicalized with head 
features. Petrov and Klein (2007a) show how to get the advantages of lexicalization without 
actual lexical augmentations by learning specific syntactic categories from a treebank that has 
general categories; for example, the treebank  has the category NP, from which more specific 
categories such as NP0  and NP s  can be learned. 

There have been many attempts to write formal grammars of natural languages, both 
in "pure"  linguistics and in computational linguistics. There arc several comprehensive but 
informal grammars of English (Quirk et aL,  1985; McCawley, 1988; Huddleston and Pullum, 
2002).  Since the mid-1980s, there has been a trend toward putting more information in the 
lexicon and less in the grammar. Lexical-functional grammar, or LFG (Bresnan, 1982) was 
the first major grammar formalism to be highly lexicalized. If we carry lexicalization to an 
extreme, we end up with categorial grammar (Clark and Curran, 2004), in which there can 
be as few as two grammar rules, or with dependency grammar (Smith and Eisner, 2008; 
Kiibler  el aL,  2009) in which there are no syntactic categories, only relations between words. 
Sleator and Temperley (1993) describe a dependency parser. Paskin (2001) shows that a 
version of dependency grammar is easier to team than PCFGs. 

The first computerized parsing algorithms were demonstrated by Yngve  (1955).  Ef-
ficient algorithms were developed in the late 1960s, with a few twists since then (Kasami,  
1965; Younger, 1967; Earley, 1970; Graham et al., 1980). Maxwell and Kaplan (1993) show 
how chart parsing with augmentations can be made efficient in the average case. Church 
and Patil (1982) address the resolution of syntactic ambiguity. Klein and Manning (2003) 
describe A*  parsing, and Pauls and Klein (2009) extend that to K-best A* parsing, in which 
the result is not a single parse but the !Chest  

Leading parsers today include those by Petrov and Klein (2007b).  which achieved 
90.6% accuracy on the Wall Street Journal corpus, Charniak  and Johnson (2005), which 
achieved 92.0%,  and Koo  et al (2008), which achieved 93.2% on the Penn treebank. These 
numbers are not directly comparable, and there is some criticism of the field that it is focusing 
too narrowly on a few select corpora, and perhaps overfitting on them. 

Formal semantic interpretation of natural languages originates within philosophy and 
formal logic, particularly Alfred Tarski's (1935) work on the semantics of formal languages. 
Bar-Hillel (1954) was the first to consider the problems of pragmatics and propose that they 
could be handled by formal logic. For example, he introduced C. S. Peirce's (1902) term 
indexical into linguistics. Richard Montague's essay "English as a formal language" (1970) 
is a kind of manifesto for the logical analysis of language, but the hooks by Dowty et al. 
(1991) and Portner and Partee (2002) are more readable. 

The first NLP system to solve an actual task was probably die BASEBALL question 
answering system (Green et aL,  1961), which handled questions about a database of baseball 
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statistics. Close after that was Woods's (1973) LUNAR, which answered questions about the 
rocks brought back from the moon by the Apollo program. Roger Schank  and his students 
built a series of programs (Schank and Abelson, 1977; Schank and Riesbeck, 1981) that 
all had the task of understanding language.  Modern approaches to semantic interpretation 
usually assume that the mapping from syntax to semantics will be learned from examples 
(Zelle  and Mooney, 1996; Zettlemoyer and Collins, 2005). 

Hobbs e: al. (1993) describes a quantitative nonprobabilistic framework for interpreta-
tion. More recent work follows an explicitly probabilistic framework (Charniak  and Gold-
man, 1992; Wu, 1993: Franz, 1996). In linguistics, optimality theory (Kager,  1999) is based 
on the idea of building soft constraints into the grammar, giving a natural ranking to inter-
pretations (similar to a probability distribution), rather than having the grammar generate all 
possibilities with equal rank. Norvig (1988) discusses the problems of considering multiple 
simultaneous interpretations, rather than settling fur a single maximam-likelihood  interpre-
tation. Literary critics (Empson,  1953; Hobbs, 1990) have been ambiguous about whether 
ambiguity is something to be resolved or cherished. 

Nunberg  (1979) outlines a formal model of metonymy. Lakoff  and Johnson (1980) give 
an engaging analysis and catalog of common metaphors in English. Martin (1990) and Gibbs 
(2006) offer computational models of metaphor interpretation. 

The first important result on grammar induction was a negative one: Gold (1967) 
showed that it is not possible to reliably learn a correct context -free grammar, given a set of 
strings from that grammar. Prominent linguists, such as Chomsky (1957) and Pinker (2003), 
have used Gold's result to argue that there must be an innate universal grammar that all 
children have from birth. The so-called Poverty of the Stimulus argument says that children 
aren't given enough input to learn a CFO, so they must already "know" the grammar and be 
merely tuning some of its parameters. While this argument continues to hold sway throughout 
much of Chomskyan linguistics, it has been dismissed by some other linguists (Pullum, 1996; 
Elman et al., 1997) and most computer scientists. As early as 1969, Homing showed that it 
is possible to learn, in the sense of PAC learning, a probabilistic context-free grammar. Since 
then, there have been many convincing empirical demonstrations of learning from positive 
examples alone, such as the ILP work of Mooney (1999) and Muggleton and De Raech  11994), 
the sequence learning of Nevill-Manning and Witten (1997), and the remarkable Ph.D.  theses 
of Schtitze  (1995) and de Marcken  (1996). There is an annual International Conference on 
Grammatical Inference (ICGI). It is possible to learn other grammar formalisms, such as 
regular languages (Denis, 2001) and finite state automata (Parekh and Honavar,  2001). Abney 
(2007) is a textbook introduction to semi-supervised learning for language models. 

Wordnet (Fellbaurn,  2001) is a publicly available dictionary of about 100,000 words and 
phrases, categorized into parts of speech and linked by semantic relations such as synonym, 
antonym, and part-of. The Penn Treebank (Marcus et aL,  1993) provides parse trees for a 
3-million-word corpus of English. Chamiak  (1996) and Klein and Manning (2001) discuss 
parsing with treebank grammars The British National Corpus (Leech et al.,  2001) contains 
100 million words, and the World Wide Web contains several trillion words; (Brants  et al.. 
2007) describe n-gram  models over a 2-trillion-word Web corpus. 
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In the 1930s Petr Troyanskii applied for a patent for a "translating machine," but there 
were  no computers available to implement his ideas. In March 1947, the Rockefeller Founda-
tion's Warren Weaver wrote to Norbert Wiener, suggesting that machine translation might be 
possible. Drawing on work in cryptography and information theory, Weaver wrote, "When I 
look at an article in Russian, I say: 'This is really written in English, but it has been coded in 
strange symbols,  I will now proceed to decode."' For the next decade, the community tried 
to decode in this way. IBM exhibited a rudimentary system in 1954. Bar-Hillel  (1960) de-
scribes the enthusiasm of this period.  However, the U.S. government subsequently reported 
(ALPAC, 1966) that "there is no immediate or predictable prospect of useful machine trans-
lation." However, limited work continued, and starting in the 1980s, computer power had 
increased to the point where the ALPAC findings were no longer correct. 

The basic statistical approach we describe in the chapter is based on early work by the 
IBM group (Brown et al., 1988, 1993) and the recent work by the ISI and Google  research 
groups (Och and Ney, 2004; Zollmann et al_  2008). A textbook introduction on statistical 
machine translation is given by Koehn (2009), and a short tutorial by Kevin Knight (1999) has 
been influential. Early work on sentence segmentation was done by Palmer and Hearst (1994), 
Och and Ney (2003) and Moore (2005) cover bilingual sentence alignment. 

The prehistory of speech recognition began in the 1920s with Radio Rex, a voice-
activated toy dog. Rex jumped out of his doghouse in response to the word "Rex!" (or 
actually almost any sufficiently loud word). Somewhat more serious work began after World 
War II. At AT&T Bell Labs, a system was built for recognizing isolated digits (Davis et al., 
1952)  by means of simple pattern matching of acoustic features_  Starting in 1971,  the Defense 
Advanced Research Projects Agency (DARPA) of the United States Department of Defense 
funded four competing five-year projects to develop high-performance speech recognition 
systems. The winner, and the only system to meet the goal of 90%  accuracy with a 1000-word 
vocabulary, was the HARPY system at CMU  (Lowerre and Reddy, 1980). The final version 
of HARPY was derived from a system called DRAGON built by CMU graduate student James 
Baker (1975); DRAGON was the first to use HMMs for speech. Almost simultaneously, le-
linek  (1976) at IBM had developed another HMM-based  system. Recent years have been 
characterized by steady incremental progress, larger data sets and models, and more rigor-
ous competitions on more realistic speech task& In 1997, Bill Gates predicted, 'The PC five 
years from now—you won't recognize it, because speech will come into the interface." That  
didn't quite happen, but in 2008  he predicted "In five years, Microsoft expects more Internet 
searches to be done through speech than through typing on a keyboard." History will tell if 
he is right this time around. 

Several good textbooks on speech recognition are available (Rabiner and Luang, 1993; 
Jelinek, 1997; Gold and Morgan, 2000; Huang et aL,  2001). The presentation in this chapter 
drew on the survey by Kay, Gawron, and Norvig (1994) and on the textbook by Jurafsky and 
Martin (2008). Speech recognition research is published in Computer Speech and Language, 
Speech Communications', and the IEEE Transactions on Acoustics, Speech, and Signal Pry- 
cessing  and at the DARPA Workshops on Speech and Natural Language Processing and the 
Eurospeech, ICSLP, and ASRU conferences. 
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Ken Church (2004) shows that natural language research has cycled between concen- 
trating on the data (empiricism) and concentrating on theories (rationalism). The linguist 
John Firth (1957) proclaimed "You shall know a word by the company it keeps," and linguis- 
tics of the 1940s and early 1950s was based largely on word frequencies, although without 
the computational power we have available today. Then Noam (Chomsky,  1956) showed 
the limitations of finite-state models, and sparked an interest in theoretical studies of syntax, 
disregarding frequency counts. This approach dominated for twenty years, until empiricism 
made a comeback based on the success of work in statistical speech recognition (Jelinek, 
1976). Today, most work accepts the statistical framework, but there is great interest in build-
ing statistical models that consider higher-level models, such as syntactic trees and semantic 
relations, not just sequences of words. 

Work on applications of language processing is presented at the biennial Applied Natu-
ral Language Processing conference (ANLP), the conference on Empirical Methods in Natu-
ral. Language Processing iEMNLP),  and the journal Natural Language Engineering.  A broad 
range of NLP work appears in the journal Computational Linguistics and its conference, ACL, 
and in the Computational Linguistics (COLING) conference. 

EXERCISE S 

23.1 Read the following text once for understanding, and remember as much of it as you 
can. There will be a test later. 

The  procedure is actually quite simple. First you arrange things into different groups. CA  
course, one pile may be sufficient depending on how much there is to do. If you have to go 
somewhere else due to lack of facilities that is the next step, otherwise you are pretty well 
set. It is important not to overdo things. That is, it is better  to do too few things at once 
than too many. In the short run this may not seem important but complications can easily 
arise. A mistake is expensive as well At first the whole procedure will seem complicated. 
Soon, however, it will become just another facet of life. It is difficult to foresee any end 
to the necessity for this task in the immediate future, but then one can never tell. After the 
procedure is completed one arranges the material into different groups again. Then the).  
can be put into their appropriate places. Eventually they will be used once more and the 
whole cycle will have to be repeated. llowever,  this is part of life. 

23.2 An HMM grammar is essentially a standard HMM whose state variable is 111  (nonter-
minal,  with values such as Det, Adjective, Noun and so on) and whose evidence variable is 
W (word, with values such as is, duck, and so on). The HMM  model includes a prior P(N0 ),  
a transition model P(Nt+ i  I Nt ),  and a sensor model P(Wt i Nt ).  Show that every 11MM  gram-
mar can be written as a PCFG. [Hint: start by thinking about how the HMM prior can be 
represented by PCFG rules for the sentence symbol. You may find it helpful to illustrate for 
the particular HMM with values A, B for N and values x, y for W.] 



924 Chapter 23. Natural Language for Communication 

23.3 Consider the following PCFG for supple  verb phrases: 

0.1 :  VP Verb 
0.2 : VP Copula Adjective 
0.5 : VP Verb the Noun 
0.2 :  VP VP Adverb 
0.5 Verb —■  is 
0.5 : Verb —  shoots 
0.8  :  Copula —  is 
0.2 : Copula  seems 
0.5 : Adjective unwell 
0.5 : Adjective —,  well 
0.5 : Adverb —■  well 
0.5 : Adverb y badly 
0.6 : Noun duck 
0.9  : N well 

a. Which of the following have a nonzero probability as a VP? (i)  shoots the duck well 
well well (iij  seems the well well (iii) shoots the unwell well badly 

b. What is the probability of generating "is well well"? 
c. What types of ambiguity are exhibited by the phrase in (b)? 
d. Given any PCFG, is it possible to calculate the probability that the PCFG generates a 

string of exactly 10 words? 

23_4 Outline the major differences between lava (or any other computer language with 
which you are familiar) and English, commenting on the "understanding" problem in each 
case. Think about such things as grammar, syntax, semantics, pragmatics, compositional-
ity, context-dependence, lexical ambiguity, syntactic ambiguity, reference finding (including 
pronouns), background knowledge, and what it means to "understand" in the first place. 

23.5 This exercise concerns grammars fur very simple languages. 

a. Write a context-free grammar for the language ambm.  
b. Write a context-free grammar for the palindrome language: the set of all strings whose 

second half is the reverse of the first half. 
c. Write a context-sensitive grammar for the duplicate language: the set of all strings 

whose second half is the same as the first half. 

23.6 Consider the sentence ''Someone  walked slowly to the supermarket" and a lexicon 
consisting of the following words: 

Pronoun —  someone Verb —  walked 
Adv  —■  slowly Prep to 
Article the Noun supermarket 

Which of the following three grammars, combined with the lexicon, generates the given sen-
tence? Show the corresponding parse treets).  
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(A): (B): (C): 
—11i-P  VP S —> NP VP S  NP VP 

NP —>  Pronoun NP —> Pronoun NP —> Pronoun 
NP —>  Article .Noun NP —> Noun NP —> Article NP 
VP —>  VP PP NP —> Article NP VP —> Verb Ado 
VP —>  VP Adv Ado VP —> Verb Voiod Adv  Adv Adv 
VP —>  Veld) Vmod —> Ado Vmod Ado —> PP 
PP —>  Prep NP Vmod —> Adv PP —> Prep NP 
NP —>  Nava. Ado —> PP NP —> Naun 

PP —>  Prep NP 
For each of the preceding three grammars, write down three sentences of English and three 
sentences of non-English generated by the grammar. Each sentence should be significantly 
different. should be at least six words long, and should include some new lexical entries 
(which you should define). Suggest ways to improve each grammar to avoid generating the 
non-English sentences. 

23.7 Collect some examples of time expressions, such as "two o'clock," "midnight," and 
"12:46." Also think up some examples that are ungrammatical, such as "thirteen o'clock" or 
"half past two fifteen." Write a grammar for the time language. 

23.8 In this exercise you will transform e,  into Chomsky Normal Form (CNF). There are 
five steps: (a) Add a new start symbol, (b) Eliminate e rules, (c) Eliminate multiple words 
on right-hand sides, (d) Eliminate rules of the form (X  Y), (e) Convert long right-hand 
sides into binary rules_ 

a. The start symbol, S, can occur only on the left-hand side in CNF. Add a new tole of the 
form S' S, using a new symbol S'.  

b. The empty string, c cannot appear on the right-hand side in CNF. e0 does not have any 
rules with e, so this is not an issue. 

e.  A word can appear on the right-hand side in a rule only of the form (X —>  word).  
Replace each rule of the form (X  ... word ...  ) with (X  W' ) and ( W' 

>  word), using a new symbol W'. 
d. A rule (X —>  Y) is not allowed in CNF; it must be (X —>  Y Z) or (X —>  word). 

Replace each rule of the form (X —>  Y) with a set of rules of the form (X ...),  
one for each role ( Y ), where (...  )  indicates one or more symbols. 

e. Replace each rule of the form (X —#  Y Z ...)  with two rules, (X —>  Y Z') and (Z' 
Z ...),  where Z' is a new symbol. 

Show each step of the process and the final set of rules. 

23.9 Using DCG notation, write a grammar for a language that is just like Si , except that 
it enforces agreement between the subject and verb of a sentence and thus does not generate 
ungrammatical sentences such as "1 smells the wumpus."  
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23.10 Consider the following PCFG:  
S NP VP [ LO]  
NP —.  Noun [0.6]  I Pronoun. [0.4] 
VP Verb AP [0.8]  I Modal Verb [0.2]  

Noun —+  can 10.11  I fish [0.31  I •  •  
Pranoun, I [0.4] ...  
Verb can [0.01]  I fishf0.1]  I ...  
Modal can [0.3]  ...  

The sentence "I can fish" has two parse trees with this grammar. Show the two trees, their 
prior probabilities, and their conditional probabilities, given the sentence. 

23.11 An augmented context-free grammar can represent languages that a regular context- 
free grammar cannot. Show an augmented context-free grammar for the language anbnc'.  
The allowable values for augmentation variables are 1 and S uccEss  OR (n), where al.  is a 
value. The rule for a sentence in this language is 

S(n) A(n.)  B(n.)  C,n)  

Show the rule(s) for each of A, B, and C. 

23.12 Augment the Ei  grammar so that it handles article—noun agreement. That is, make 
sure that "agents" and "an agent" are NPs, but "agent" and "an agents" are not. 

23.13 Consider the following sentence (from The New York Times, July 28, 2008): 

Banks struggling to recover from multibillion-dollar loans on real estate are cur-
tailing loans to American businesses. depriving even healthy companies of money 
for expansion and hiring. 

a. Which of the words in this sentence are lexically ambiguous? 

b. Find two cases of syntactic ambiguity in this sentence (there are more than two.) 
c. Give an instance of metaphor in this sentence. 
d. Can you find semantic ambiguity? 

23.14 Without looking hack at Exercise 23.1, answer the following questions: 

a. What are the four steps that are mentioned'? 
b. What step is left out? 
c. What is "the material" that is mentioned in the text? 
d. What kind of mistake would be expensive? 
e. Is it better to do too few things or too many? Why? 

23.15 Select five sentences and submit them to an online translation service. Translate 
them from English to another language and back to English. Rate the resulting sentences for 
grammaticality and preservation of meaning. Repeal the process; does the second round of 
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iteration give worse results or the same results? Does the choice of intermediate language 
make a difference to the quality of the results? If you know a foreign language, look at the 
translation of one paragraph into that language. Count and describe the errors made, and 
conjecture why these errors were made. 

23.16 The Di values for the sentence in Figure 23.13 sum to O.  Will that be true of every 
translation pair? Prove it or give a counterexample. 

23.17 (Adapted from Knight (1999).) Our translation model assumes that, after the phrase 
translation model selects phrases and the distortion model permutes them, the language model 
can unscramble the permutation. This exercise investigates how sensible that assumption is. 
Try to unscramble these proposed lists of phrases into the correct order: 

a. have, programming, a, seen, never, I, language, better 
b. loves, john, mary 
c. is the, communication, exchange of, intentional, information brought, by, about, the 

production, perception of, and signs, from, drawn, a, of, system, signs, conventional, 
shared 

d_  created, that, we hold these, to be, all men, truths, are, equal, self-evident 

Which ones could you do? What type of knowledge did you draw upon? Train a bigram 
model from a training corpus, and use it to find the highest-probability permutation of some 
sentences from a test corpus, Report on the accuracy of this model. 

23.18 Calculate the most probable path through the HIM in Figure 23,16 for the output 
sequence [CI  , C2, C3, C4, C4, C6, C7].  Also give its probability. 

23.19 We forgot to mention that the text in Exercise 23.1 is entitled "Washing Clothes." 
Reread the text and answer the questions in Exercise 23.14. Did you do better this time? 
Bransford and Johnson (1973) used this text in a controlled experiment and found that the title 
helped significantly. What does this tell you about how language and memory works? 



24 PERCEPTION 

In which we connect the computer to the raw, unwashed world. 

PERCEPTION Perception provides agents with information about the world they inhabit by interpreting the 
SENSOR response of sensors. A sensor measures some aspect of the environment in a form that can 

be used as input by an agent program. The sensor could be as simple as a switch, which gives 
one bit telling whether it is on or off, or as complex as the eye. A variety of sensory modalities 
are available to artificial agents. Those they share with humans include vision, hearing, and 
touch. Modalities that are not available to the unaided human include radio, infrared. GPS. 
and wireless signals. Some robots do active sensing, meaning they send out a signal, such as 
radar or ultrasound, and sense the reflection of this signal off of the environment. Rather than 
trying to cover all of these, this chapter will cover one modality in depth: vision. 

We saw in our description of POMDPs (Section 17.4, page 658) that a model-based 
decision-theoretic agent in a partially observable environment has a sensor model—a prob-
ability distribution P(E;  b') over the evidence that its sensors provide, given a state of the 
world. Bayes' rule can then be used to update the estimation of the state. 

DEtECT  MODEL For vision, the sensor model can be broken into two components! An object model 
describes the objects that inhabit the visual world—people, buildings, trees, cars, etc. The 
object model could include a precise 3D geometric model taken from a computer-aided design 
(CAD) system, or it could be vague constraints, such as the fact that human eyes are usually 5  

RENDERINO  MODEL 
 to 7 cm apart. A rendering model describes the physical, geometric, and statistical processes 

that produce the stimulus from the world. Rendering models are quite accurate, but they are  

ambiguous. For example, a white object under low light may appear as the same color as a 
black object under intense light. A small nearby object may look the same as a large distant 
object. Without additional evidence, we cannot tell if the image that fills the frame is a toy 
Godzilla or a real monster. 

Ambiguity can be managed with prior knowledge—we know Godzilla is not real, so 
the image must be a toy—or by selectively choosing to ignore the ambiguity. For example, 
the vision system for an autonomous car may not he able to interpret objects that are far in 
the distance, but the agent can choose to ignore the problem, because it is unlikely to crash 
into an object that is miles away. 

928 
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A decision-theoretic agent is not the only architecture that can make use of vision sen-
sors. For example, fruit Hies (Drosophila) arc in part reflex agents: they have cervical giant 
fibers that form a direct pathway from their visual system to the wing muscles that initiate an 
escape response—an immediate reaction, without deliberation. Flies and many other flying 
animals make used of a closed-loop control architecture to land on an object. The visual 
system extracts an estimate of the distance to the object, and the control system adjusts the 
wing muscles accordingly. allowing very fast changes of direction, with no need for a detailed 
model of the object. 

Compared to the data from other sensors (such as the single bit that tells the vacuum 
robot that it has bumped into a wall), visual observations are extraordinarily rich, both in 
the detail they can reveal and in the sheer amount of data they produce. A video camera 
for robotic applications might produce a million 24-bit  pixels at 60 Hz; a rate of 10 GB per 
minute. The problem for a vision-capable agent then is: Which aspects of the rich visual 
stimulus should be considered to help the agent make good action choices, and which aspects 
should be ignored? Vision—and all perception—serves to further the agent's goals, not as 
an end to itself. 

We can characterize three broad approaches to the problem. The feature extraction 
approach. as exhibited by Drosophila, emphasizes simple computations applied directly to 
the sensor observations. In the recognition approach an agent draws distinctions among the 
objects it  encounters based on visual and other information. Recognition could mean labeling 
each image with a yes or no as to whether it contains food that we should forage, or contains 
Grandma's face_  Finally, in the reconstruction approach an agent builds a geometric model 
of the world from an image or a set of images. 

The last thirty years of research have produced powerful tools and methods for ad-
dressing these approaches. Understanding these methods requires an understanding of the 
processes by which images are formed. Therefore, we now cover the physical and statistical 
phenomena that occur in the production of an image. 

24.1 IMAGE FORMATION 

Imaging distorts the appearance of objects. For example, a picture taken looking down a 
long straight set of railway tracks will suggest that the rails converge and meet. As another 
example, if you hold your hand in front of your eye, you can block out the moon, which is 
not smaller than your hand. As you move your hand back and forth or tilt it, your hand will 
seem to shrink and grow in the image, but it is not doing so in reality (Figure 24_1).  Models 
of these effects are essential for both recognition and reconstruction_ 

24.1.1 Images without lenses: The pinhole camera 
SC34E Image sensors gather light scattered from objects in a scene and create a two-dimensional 
IMAGE image. In the eye, the image is formed on the retina, which consists of two types of cells: 

about 100 million rods, which are sensitive to light at a wide range of wavelengths, and 5 



Figure 24.1 Imaging distorts geometry. Parallel Lines appear to meet in the distance, as 
in the image of the railway tracks on the left. In the center, a small hand blocks out most of 
a large moon. On the right is a foreshortening effect: the hand is tilted away from the eye, 
making it appear shorter than in the center figure. 

930 Chapter 24. Perception 

PIXEL 

PIMOLE  CAMERA 

PFRSPFCTIV=  
PROJECTION 

million cones. Cones, which are essential for color vision, are of three main types, each of 
which is sensitive to a different set of wavelengths. In cameras, the image is formed on an 
image plane, which can be a piece of film coated with silver halides or a rectangular grid 
of a few million photosensitive pixels, each a complementary metal-oxide semiconductor 
(CMOS) or charge-coupled device (CCD),  Each photon arriving at the sensor produces an 
effect, whose strength depends on the wavelength of the photon. The output of the sensor 
is the sum of all effects due to photons observed in somc timc window, meaning that image 
sensors report a weighted average of the intensity of light arriving at the sensor. 

To see a focused image, we must ensure that all the photons from approximately the 
same spot in the scene arrive at approximately the same point in the image plane. The simplest 
way to form a focused image is to view stationary objects with a pinhole camera, which 
consists of a pinhole opening, 0, at the front of a box, and an image plane at the back of the 
box (Figure 24.2). Photons from the scene must pass through the pinhole, so if it is small 
enough then nearby photons in the scene will he nearby in the image plane, and the image 

will be in focus. 
The geometry of scene and image is easiest to understand with the pinhole camera. We 

use a three-dimensional coordinate system with the origin at the pinhole, and consider a point 
P in the scene, with coordinates (X,y,  Z). P gets projected to the point P' in the image 
plane with coordinates (r, y, z). If f is the distance from the pinhole to the image plane, then 
by similar triangles, we can derive the following equations: 

—a;  X —y Y — f X — fY  
f 

—  =  
Z 
—  

f  Z 
=  x =  

 Z
,  y = 

These equations define an image-formation  process lurown  as perspective projection. Note 
that the Z in the denominator means that the farther away an object is, the smaller its image 



Figure 24.2 Each light -sensitive element in the image plane at the back of a pinhole cam- 
era receives light from a the small range of directions that passes through the pinhole. Mate  
pinhole is small enough, the result is a focused image at the hack of the pinhole. The process 
of projection means that large, distant objects look the same as smaller. nearby objects. Note 
that the image is projected upside down. 
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will be. Also, note that the minus signs mean that the image is inverted, both left—right  and 
up—down, compared with the scene. 

Under perspective projection, distant objects look small. This is what allows you to 
cover the moon with your hand (Figure 24,1). An important result of this effect is that parallel 
lines converge to a point on the horizon. (Think of railway tracks, Figure 2(I.1.)  A line in the 
scene in the direction (UT  V, W) and passing through the point (Xo,  Yo,  Zo)  can be described 
as the set of points (X0 —  AU, In  +  AV,  Zo  + AVV),  with A varying between — DO  and +cc. 
Different choices of (X0,  Yo,  Zo) yield different lines parallel to one another. The projection 
of a point PA  from this line onto the image plane is given by 

r Xfl+  AU Ya  + AV  
Zo  + AW f  Zo  + A147  

As A  oo  or A —'  —oo,  this becomes pp°,  = (fUlW,  fY/W)  if W O.  This means that 
two parallel lines leaving different points in space will converge in the image—for large A, 
the image points are nearly the same, whatever the value of (Xo  Yo,  Zo)  (again, think railway 

VANISHING PORN. 

	

	tracks, Figure 24.1). We call pc°  the vanishing point associated with the family of straight 
lines with direction ( U,  V, W). Lines with the same direction share the same vanishing point. 

MOTION  BLUR 

24.1.2 Lens systems 

The drawback of the pinhole camera is that we need a small pinhole to keep the image in 
focus. But the smaller the pinhole, the fewer photons get through, meaning the image will be 
dark. We can gather more photons by keeping the pinhole open longer, but then we will get 
motion blur—objects  in the scene that move will appear blurred because they send photons 
to multiple locations on the image plane. If we can't keep the pinhole open longer, we can 
try to make it bigger. More light will enter, but light from a small patch of object in the scene 

will now be spread over a patch on the image plane, causing a blurred image. 



Lens 
System 

Image plane 

Iris  

Cornea 

Figure 243 Lenses collect the light leaving a scene point in a range of directions, and steer 
it all to arrive at a single point on the image plane. Focusing works for points lying close to 
a focal plane in space: other points will not be focused properly. In cameras, elements of 
the lens system move to change the focal plane, whereas in the eye, the shape of the lens is 
changed by specialized muscles. 
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Vertebrate cycs and modem cameras use a lens system to gather sufficient light while 
keeping the image in focus. A large opening is covered with a lens that focuses light from 
nearby object locations down to nearby locations in the image plane. However, lens systems 
have a limited depth of field: they can focus light only from points that lie within a range 
of depths (centered around a focal plane) Objects outside this range will be out of focus in 
the image. To move the focal plane, the lens in the eye can change shape (Figure 24.3); in a 
camera, the lenses move back and forth. 

24.1.3 Scaled orthographic projection 

Perspective effects aren't always pronounced. For example, spots on a distant leopard may 
look small because the leopard is far away, but two spots that are next to each other will have 
about the same size. This is because the difference in distance to the spots is small compared 
to the distance to them, and so we can simplify the projection model. The appropriate model 
is sealed orthographic projection. The idea is as follows: If the depth Z of points on the 
object varies within some range Z0 ± AZ, with AZ 4 Z0, then the perspective scaling 
factor f /Z can be approximated by a constant s = f/Zo.  The equations for projection from 
the scene coordinates ( X, Y. 2) to the image plane become ir — .sX  and y — .sY.  Scaled 
orthographic projection is an approximation that is valid only for those parts of the scene with 
not much internal depth variation. For example, scaled orthographic projection can be a good 
model for the features on the front of a distant building. 

24.1.4 Light and shading 

The brightness of a pixel in the image is a function of the brightness of the surface patch in 
the scene that projects to the pixel. We  will assume a linear model (current cameras have non- 
linearities  at the extremes of light and dark, but are linear in the middle). Image brightness is 

DEPTH OF FIELD 

FOCAL PLANE 
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Figure 24.4  A variety of illumination effects.  There are specularities on the metal spoon 
and on the milk.  The bright diffuse surface is bright because it faces the light direction. The 
dark diffuse surface is dark because it is tangential to the illumination direction. The shadows 
appear at surface points that cannot see the light source. Photo by Mike Linksvayer (mlinksva  
on Ilickr),  

a strong, if ambiguous, cue to the shape of an object, and from there to its identity. People are 
usually able to distinguish the three main causes of varying brightness and reverse-engineer 
the object's properties. The first cause is overall intensity of the light. Even though a white 
object in shadow may be less bright than a black object in direct sunlight, the eye can distin- 
guish relative brightness well, and perceive the white object as white_ Second, different points 
in the scene may reflect more or less of the light. Usually, the result is that people perceive 
these points as lighter or darker, and so see texture or markings on the object. Third, surface 
patches facing the light are brighter than surface patches tilted away from the light, an effect 
known as shading. Typically, people can tell that this shading comes from the geometry of 
the object, but sometimes get shading and markings mixed up. For example, a streak of dark 
makeup under a cheekbone will often look like a shading effect, making the face look thinner. 

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scat- 
ters light evenly across the directions leaving a surface, so the brightness of a diffuse surface 
doesn't depend on the viewing direction. Most cloth. paints, rough wooden surfaces, vegeta- 
tion, and rough stone are diffuse. Mirrors are not diffuse, because what you see depends on 
the direction in which you look at the mirror. The behavior of a perfect mirror is known as 
specular reflection. Some surfaces—such as brushed metal, plastic, or a wet floor—display 
small patches where specular  reflection has occurred, called specularities.  These are easy to 
identify, because they are small and bright (Figure 24.4). For almost all purposes, it is enough 
to model all surfaces as being diffuse with specularities. 



Figure 24.5  Two surface patches are illuminated by a distant point source, whose rays are 
shown as gray arrowheads. Patch A is tilted away from the source (0  is close to 90° )  and 
collects less energy, because it cuts fewer light rays per unit surface area. Patch B,  facing the 
source (9 is close to Cr),  collects more energy. 
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The main source of illumination outside is the sun, whose rays all travel parallel to one 
another. We model this behavior as a distant paint light source. This is the most important 
model of lighting, and is quite effective for indoor scenes as well as outdoor scenes. The 
amount of light collected by a surface patch in this model depends on the angle C  between the 
illumination direction and the normal to the surface. 

A diffuse surface patch illuminated by a distant point light source will reflect some 
fraction of the light it collects; this fraction is called the diffuse albedo. White paper and 
snow have a high albedo, about 0.90, whereas flat black velvet and charcoal have a low albedo 
of about 0.05 (which means that 95% of the incoming light is absorbed within the fibers of 
the velvet or the pores of the charcoal). Lambert's cosine law states that the brightness of a 
diffuse patch is given by 

I = pIa  cos 0 

where p is the diffuse albedo, 1)  is the intensity of the light source and 0  is the angle between 
the light source direction and the surface normal (see Figure 24.5). Lampert's law predicts 
bright image pixels come from surface patches that face the light directly and dark pixels 
come from patches that see the light only tangentially, su  that the shading on a surface pro-
vides some shape information. We explore this cue in Section 24.4,5. if the surface is not 

SHADOW  reached by the light source, then it is in shadow. Shadows are very seldom a uniform black, 
because the shadowed surface receives some light from other sources. Outdoors, the most 
important such source is the sky, which is quite bright. Indoors, light reflected from other 

INIERREFLE-CTIOND  surfaces illuminates shadowed patches. These interreflections can have a significant effect 
on the brightness of other surfaces, too. These effects are sometimes modeled by adding a 

AMBIENT  
ILLUMINATION constant ambient illumination term to the predicted intensity. 

DISTANT POINT 
LIG-FT  SOURCE 

D  !FUSE  ALEFJ)D  

LAMBERTS COSINE 
LAW 
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24.1.5 Color 

Fruit is a bribe that a tree offers to animals to carry its seeds around. Trees have evolved to 
have fruit that turns red or yellow when ripe, and animals have evolved to detect these color 
changes. Light arriving at the eye has different amounts of energy at different wavelengths; 
this can be represented by a spectral energy density function. Human eyes respond to light in 
the 380-750nm wavelength region, with three different types of color receptor cells, which 
have peak receptiveness at 420mm (blue), 540ran  (green), and 570nrn  (red). The human eye 
can capture only a small fraction of the full spectral energy density function—but it is enough 
to tell when the fruit is ripe. 

The principle of trichromacy states that for any spectral energy density, no matter how 
complicated, it is passible to construct another spectral energy density consisting of a mixture 
of just three colors—usually red, green, and blue—such that a human can't tell the difference 
between the two. That means that our TVs and computer displays can get by with just the 
three red/green/blue (or R/G/B)  color elements_ It makes our computer vision algorithms 
easier, too. Each surface can be modeled with three different albedos for R/G/B.  Similarly, 
each light source can be modeled with three R/G/B  intensities. We then apply Lambert's  
cosine law to each to get three R/G13  pixel values. This model predicts, correctly, that the 
same surface will produce different colored image patches under different-colored lights. In 
fact, human observers are quite good at ignoring the effects of different colored lights and are 
able to estimate the color of the surface under white light, an effect known as color constancy. 
Quite accurate color constancy algorithms are now available; simple versions show up in the 
"auto white balance" function of your camera. Note that if we wanted to build a camera for 
mantis shrimp, we would need 12 different pixel colors, corresponding to the 12 types of 
color receptors of the crustacean. 

24.2 EARLY IMAGE-PROCESSING OPERATIONS 

PR NCIPLE OF 
TRICHROMA:Y  

CCI_OR  CONSTANCY 

We have seen how light reflects off objects in the scene to form an image consisting of, say, 
five million 3-hyte  pixels_ With all sensors there will he noise in the image, and in any case 
there is a lot of data to deal with. So how do we get started on analyzing this data? 

In this section we will study thee useful image-processing operations: edge detection, 
texture analysis, and computation of optical flow. These are called "early" or "low-level" 
operations because they are the first in a pipeline of operations. Early vision operations are 
characterized by their local nature (they can be carried out in one part of the image without 
regard for anything more than a few pixels away) and by their lack of knowledge: we can 
perform these operations without consideration of the objects that might be present in the 
scene. This makes the low-level operations good candidates for implementation in parallel 
hardware—either in a graphics processor unit (GPU) or an eye. We will then look at one 
mid-level operation: segmenting the image into regions. 



1 

Figure 24.6 Different kinds of edges: (1) depth discontinuities; (2) surface orientation 
discontinuities; (3) reflectance discontinuities; (4) illumination discontinuities (shadows), 
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24.2.1 Edge detection 
EDGE Edges are straight lines or curves in the image plane across which there is a ''significant" 

change in image brightness. The goal of edge detection is to abstract away from the messy, 
multimegabyte image and toward a more compact, abstract representation, as in Figure 24.6. 
The motivation is that edge contours m the image correspond to important scene contours. 
In the figure we have three examples of depth discontinuity, labeled 1; two surface-normal 
discontinuities, labeled 2; a reflectance discontinuity, labeled 3; and an illumination discon-
tinuity (shadow), labeled 4. Edge detection is concerned only with the image, and thus does 
not distinguish between these different types of scene discontinuities; later processing will. 

Figure 24.7(a) shows an image of a scene containing a stapler resting on a desk, and 
(b) shows the output of an edge-detection algorithm on this image. As you can see, there 
is a difference between the output and an ideal line drawing. There are gaps where no edge 
appears, and there are "noise" edges that do not correspond to anything of significance in the 
scene. Later stages of processing will have to correct for these errors. 

How do we detect edges in an image? Consider the profile of image brightness along a 
one-dimensional cross-section perpendicular to an edge—for example, the one between the 
left edge of the desk and the wall. It looks something like what is shown in Figure 24.8 (top). 

Edges correspond to locations in images where the brightness undergoes a sharp change, 
so a naive idea would he to differentiate the image and look for places where the magnitude 
of the derivative 11 (x) is large. That almost works. In Figure 24.8 (middle), we see that there 
is indeed a peak at x = 50, but there are also subsidiary peaks at other locations (e.g., x = 75). 
These arise because of the presence of noise in the image. If we smooth the image first, the 
spurious peaks are diminished, as we see in the bottom of the figure, 
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Figure 24.7 (a) Photograph of a stapler. (b) Edges computed from (a). 
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Figure 24.8 Top: Intensity profile /(r)  along a one-dimensional section across an edge at 
x = 50. Middle: The derivative of intensity, 11(x).  Large values of this function correspond 
to edges, but the function is noisy. Bottom: The derivative of a smoothed version of the 
intensity, (I 4.  G, )', which can be computed in one step as the convolution I * G. The noisy 
candidate edge at x = 75 has disappeared. 

The measurement of brightness at a pixel in a CCD camera is based on a physical 
process involving the absorption of photons and the release of electrons: inevitably there 
will be statistical fluctuations of the measurement—noise. The noise can be modeled with 



9'38 Chapter 24. Perception 

GALLSSAN  FILTER 

COVVOLLIFICN  

a Gaussian probability distribution, with each pixel independent of the others. One way to 
smooth an image is to assign to each pixel the average of its neighbors. This tends to caned 
out extreme values. But how many neighbors should we consider—one pixel away, or Iwo, or 
more? One good answer is a weighted average that weights the nearest pixels the most, then 
gradually decreases the weight for more distant pixels. The Gaussian filter does just that. 
(Users of Photoshop recognize this as the Gaussian blur operation.) Recall that the Gaussian 
function with standard deviation rr  and mean 0 is 

in two dimensions. 
Na (x)  =  -1  

o-  
e-x ,  /  

V2r
2,72 in one dimension, or 

Na(x , Y)  = 2÷,2e.-('•2  +P2)/2,,2  

The application of the Gaussian filter replaces the intensity /(xo,  ye) with the sum, over all 
(x, y)  pixels, of /(x,  y) Nc (d),  where d is the distance from (x o ,  yo )  to (x,  y). This kind of 
weighted sum is so common that there is a special name and notation for it We say that the 
function it is the convolution of two functions f and g (denoted f * g)  if we have 

+Lx.,  

= (f  .9)(x)=  E  f  (u)  g(x  -  u) in one dimension, or 
11 =-00  

+Do  +00 
12(x  ,  y)  =  (f  9)(x,  y)  =  E  E  f (a, v) g(x  -  11,  y  - e) in two. 

ORENTAROA  

So the smoothing function is achieved by convolving the image with the Gaussian, I * Na .  A 
o  of 1  pixel is enough to smooth over a small amount of noise, whereas 2 pixels will smooth a 
larger amount, but at the loss of some detail. Because the Gaussian's influence fades quickly 
at a distance, we can replace the +co in the sums with 13a.  

We can optimize the computation by combining smoothing and edge finding into a sin-
gle operation. It is a theorem that for any functions f and g, the derivative of the convolution, 
(f *  9) 1 ,  is equal to the convolution with the derivative, f * (91  So rather than smoothing 
the image and then differentiating, we can just convolve the image with the derivative of the 
smoothing function, N,,'  . We then mark as edges those peaks in the response that are above 
some threshold. 

There is a natural generalization of this algorithm from one-dimensional cross sections 
to general two-dimensional images. In two dimensions edges may be at any angle 0.  Consid-
ering the image brightness as a scalar function of the variables 2,  y,  its gradient is a vector 

al  
v  1 ax  )  (Ix)  

i)  in    

Edges correspond to locations in images where the brightness undergoes a sharp change, and 
so the magnitude of the gradient, 

II VIII, 
 should be large at an edge point. Of independent 

interest is the direction of the gradient 

(  VI cos 0  

1  WU sin 9  }  .  

This gives us a 0 = 0(x,  y) at every pixel, which defines the edge orientation at that pixel. 
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As in one dimension, to form the gradient we don't compute VI, but rather V (/  * Ni,,r  
the gradient after smoothing the image by convolving it with a Gaussian. And again, the 
shortcut is that this is equivalent to convolving the image with the partial derivatives of a 
Gaussian. Once we have computed the gradient, we can obtain edges by finding edge points 
and linking them together. To tell whether a point is an edge point, we must look at other 
points a small distance forward and back along the direction of the gradient. If the gradient 
magnitude at one of these points is larger, then we could get a better edge point by shifting 
the edge curve very slightly. Furthermore, if the gradient magnitude is too small, the point 
cannot be an edge point. So at an edge point, the gradient magnitude is a local maximum 
along the direction of the gradient, and the gradient magnitude is above a suitable threshold. 

Once we have marked edge pixels by this algorithm, the next stage is to link those pixels 
that belong to the same edge curves. This can be done by assuming that any two neighboring 
edge pixels with consistent orientations must belong to the same edge curve. 

TEXTURE 

ovricAt  FLDW  

24.2.2 Texture 

In everyday language, texture is the visual feel of a surface—what you see evokes what 
the surface might feel like if you touched it ("texture" has the same root as "textile'). In 
computational vision, texture refers to a spatially repeating pattern on a surface that can be 
sensed visually.  Examples include the pattern of windows on a building, stitches on a sweater, 
spots on a leopard, blades of grass on a lawn, pebbles on a beach, and people in a stadium. 
Sometimes the arrangement is quite periodic, as in the stitches on a sweater; in other cases, 
such as pebbles on a beach, the regularity is only statistical. 

Whereas brightness is a property of individual pixels, the concept of texture makes sense 
only for a multipixel patch. Given such a patch, we could compute the orientation at each 
pixel, and then characterize the patch by a histogram of orientations. The texture of bricks in 
a wall would have two peaks in the histogram (one vertical and one horizontal), whereas the 
texture of spots on a leopard's skin would have a more uniform distribution of orientations. 

Figure 24.9 shows that orientations are largely invariant to changes in illumination. This 
makes texture an important clue for object recognition, because other clues, such as edges, 
can yield different results in different lighting conditions. 

In images of textured objects, edge detection does not work as well as it does for smooth 
objects. This is because the most important edges can be lost among the texture elements. 
Quite literally, we may miss the tiger for the stripes. The solution is to look for differences in 
texture properties, just the way we look for differences in brightness. A patch on a tiger and 
a patch on the grassy background will have very different orientation histograms, allowing us 
to rind  the boundary curve between them. 

24.2.3 Optical flow  

Next, let us consider what happens when we have a video sequence, instead of just a single 
static image. When an object in the video is moving, or when the camera is moving relative 
to an object, the resulting apparent motion in the image is called optical flow. Optical flow 
describes the direction and speed of motion of features in the image—the optical flow of a 



(b) 

Figure 24.9 Two images of the same texture of crumpled rice paper, with different illumi- 
nation levels. The gradient vector held (at every eighth pixel) is plotted on top of each one. 
Notice that, as the light gets darker, all the gradient vectors get shorter. The vectors do not 
rotate, so the gradient orientations do not change. 
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SLIM OF SQUARED 
D IF-ERENQES  

video of a race car would be measured in pixels per second, not miles per hour. The optical 
flow encodes useful information about scene structure. For example, in a video of scenery 
taken from a moving train, distant objects have slower apparent motion than close objects; 
thus, the rate of apparent motion can tell us something about distance. Optical flow also 
enables us to recognize actions, In Figure 24.10(a) and (b), we show two frames from a video 
of a tennis player. In (c) we display the optical flow vectors computed from these images, 
showing that the racket and front leg are moving fastest. 

The optical flow vector field can he represented at any point (.r  , y)  by its components 
y) in the .r  direction and v,  (x,  y)  in the y  direction. To measure optical flow we need to 

find corresponding points between one time frame and the next. A simple-mindcd  technique 
is based on the fact that image patches around corresponding points have similar intensity 
patterns. Consider a block of pixels centered at pixel p,  (xo,y0),  at time to. This block 
of pixels is to be compared with pixel blocks centered at various candidate pixels at (xo  — 
D„  yo  Da ) at time to + Dt.  One possible measure of similarity is the sum of squared 
differences (SSD): 

SSD(D,„ =  E  (I (x.  ,  y,  t)  —  1(x  +  D,,,  y  D  t  D,))2  .  

( ,71)  

Here, (a7,  y) ranges over pixels in the block centered at (xo ,  yo ).  We find the (D DO that 
minimizes the SSD. The optical flow at (xo,  A) is then (v„  vy )  =  Dt,  D,1Dt ).  Note 
that for this to work, there needs to be some texture or variation in the scene. If one is looking 
at a uniform white wall, then the SSD is going to be nearly the same for the different can- 



Figure 24.10  Two frames of a video sequence. On the right is the optical flow field cor-
responding to the displacement from one frame to the other. Note how the movement of 
the tennis racket and the front leg is captured by the directions of the arrows. (Courtesy of 
Thomas Brox.) 
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didate matches, and the algorithm is reduced to making a blind guess. The best-performing 
algorithms for measuring optical flow rely on a variety of additional constraints when the 
scene is only partially textured. 

24.2A Segmentation of images 

SEGMENTAPON Segmentation is the process of breaking an image into regions of similar pixels. Each image 
REGIONS pixel can be associated with certain visual properties, such as brightness, color, and texture. 

Within an object, or a single part of an object, these attributes vary relatively little, whereas 
across an inter-object boundary there is typically a large change in one or more of these at-
tributes. There are two approaches to segmentation, one focusing on detecting the boundaries 
of these regions, and the other on detecting the regions themselves (Figure 24.11). 

A boundary curve passing through a pixel (x, y) will have an orientation 0, so one way 
to formalize the problem of detecting boundary curves is as a machine learning classification 
problem. Based on features from a local neighborhood, we want to compute the probability 
Pb {x,  y, 0) that indeed there is a boundary curve at that pixel along that orientation. Consider 
a circular disk centered at (x, y), subdivided into two half disks by a diameter oriented at 0. 
If there is a boundary at (x,  y, 0) the two half disks might be expected to differ significantly 
in their brightness, color, and texture. Martin, Fowlkes, and Malik (2004) used features based 
on differences in histograms of brightness, color, and texture values measured in these two 
half disks, and then trained a classifier. For this they used a data set of natural images where 
humans had marked the "ground truth" boundaries, and the goal of the classifier was to mark 
exactly those boundaries [narked by humans and no others. 

Boundaries detected by this technique turn out to be significantly better than those found 
using the simple edge-detection technique described previously. But still there are two limita-
tions.  (1) The boundary pixels formed by thresholding Pb(x, y, 0) are not guaranteed to form 
closed curves, so this approach doesn't deliver regions, and (2) the decision making exploits 
only local context and does not use global consistency constraints. 
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(a) (b) (c) (d) 

 

Figure 24.11 (a) Original image. (b)  Boundary contours, where the higher the Pb  value, 
the darker the contour. (c) Segmentation into regions, corresponding to a fine partition of 
the image. Regions are rendered in their mean colors. (d) Segmentation into regions, corre-
sponding to a coarser partition of the image, resulting in fewer regions. (Courtesy of Pablo 
Arbelaez, Michael Maire, Charles Fowlices,  and Jitendra Malik) 

SLIP ERP  NELS  

The alternative approach is based on trying to "cluster" the pixels into regions based on 
their brightness, color, and texture. Shi and Malik (2000) set this up as a graph partitioning 
problem. The nodes of the graph correspond to pixels, and edges to connections between 
pixel s_ The weight Wij  on the edge connecting a pair of pixels i and j is based on how similar 
the two pixels are in brightness, color, texture, etc. Partitions that minimize a normalized cut 
criterion are then found. Roughly speaking, the criterion for partitioning the graph is to 
minimize the sum of weights of connections across the groups of pixels and maximize the 
sum of weights of connections within the groups. 

Segmentation based purely on low-level, local attributes such as brightness and color 
cannot be expected to deliver the final correct boundaries of all the objects in the scene. To 
reliably find object boundaries we need high-level knowledge of the likely kinds of objects 
in the scene. Representing this knowledge is a topic of active research. A popular strategy is 
to produce an over-segmentation of an image, containing hundreds of homogeneous regions 
known as superpixels. From there, knowledge-based algorithms can take over; they will 
find it easier to deal with hundreds of superpixels rather than millions of raw pixels. How to 
exploit high-level knowledge of objects is the subject of the next section. 

24.3 OBJECT RECOGNITION BY APPEARANCE 

APPEARANCE Appearance is shorthand for what an object tends to look like. Some object categories—for 
example, baseballs—vary rather little in appearance; all of the objects in the category look 
about the same under most circumstances. In this case, we can compute a set  of features 
describing each class of images likely to contain the object, then test it with a classifier. 
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SLUING WINDOW 

Other object categories—for example, houses or ballet dancers—vary greatly. A house 
can have different size, color, and shape and can look different from different angles. A dancer 
looks different in each pose, or when the stage lights change colors. A useful abstraction is to 
say that some objects are made up of local patterns which tend to move around with respect to 
one another. We can then find the object by looking at local histograms of detector responses, 
which expose whether some part is present but suppress the details of where it is. 

Testing each class of images with a learned classifier is an important general recipe. 
It works extremely well for faces looking directly at the camera, because at low resolution 
and under reasonable lighting, all such faces look quite similar. The face is round, and quite 
bright compared to the eye sockets; these are dark, because they are sunken, and the mouth is 
a dark slash, as are the eyebrows Major changes of illumination can cause some variations in 
this pattern, but the range of variation is quite manageable. That makes it possible to detect 
face positions in an image that contains faces. Once a computational  challenge, this feature 
is now commonplace in even inexpensive digital cameras. 

For the moment, we will consider only faces where the nose is oriented vertically; we 
will deal with rotated faces below. We sweep a round window of fixed size over the image, 
compute features for it, and present the features to a classifier. This strategy is sometimes 
called the sliding window. Features need to be robust to shadows and to changes in brightness 
caused by illumination changes. One strategy is to build features out of gradient orientations. 
Another is to estimate and correct the illumination in each image window. To find faces of 
different sizes, repeat the sweep over larger or smaller versions of the image. Finally, we 
postprocess the responses across scales and locations to produce the final set of detection& 

Postprocessing is important, because it is unlikely that we have chosen a window size 
that is exactly the right size for a face (even if we use multiple sizes). Thus, we will likely 
have several overlapping windows that each report a match for a face. However, if we use 
a classifier that can report strength of response (for example, logistic regression or a support 
vector machine) we can combine these partial overlapping matches at nearby locations to 
yield a single high-quality match. That gives us a face detector that can search over locations 
and scales. To search rotations as well, we use two steps. We train a regression procedure 
to estimate the best orientation of any face present in a window. Now, for each window, we 
estimate the orientation, reorient the window, then test whether a vertical face is present with 
our classifier. All this yields a system whose architecture is sketched in Figure 24.12. 

Training data is quite easily obtained. There are several data sets of marked-up face 
images, and rotated face windows are easy to build (just rotate a window from a training 
data set). One trick that is widely used is to take each example window, then produce new 
examples by changing the orientation of the window, the center of the window, or the scale 
very slightly. This is an easy way of getting a bigger data set that reflects real images fairly 
well; the trick usually improves performance significantly. Face detectors built along these 
lines now perform very well for frontal faces (side views are harder). 
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Figure 24.12  Face finding systems vary, but most follow the architecture illustrated in 
two parts here. On the top. we gc  from images to responses, then apply non-maximum 
suppression to find the strongest local response. The responses are obtained by the process 
illustrated on the bottom. We sweep a window of fixed size over larger and smaller versions 
of the image, so as to find smaller or larger faces, respectively. The illumination in the 
window is corrected, and then a regression engine (quite often, a neural net) predicts the 
orientation of the face. The window is corrected to this orientation and then presented to a 
classifier. Classifier outputs are then postprocessed  to ensure that only one face is placed at 
each location in the image. 
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24.3.1 Complex appearance and pattern elements 

Many objects produce much more complex patterns than faces do. This is because several 
effects can move features around in an image of the object. Effects include (Figure 24.13) 

• Foreshortening, which causes a pattern viewed at a slant to be significantly distorted. 
■ Aspect. which causes objects to look different when sccn from different directions.  

Even as simple an object as a doughnut has several aspects; seen from the side, it looks 
like a flattened oval. but from above it is an annulus. 

■ Occlusion, where some parts are hidden from some viewing directions. Objects can 
occlude one another, or parts of an object can occlude other parts, an effect known as 
self-occlusion. 

■ Deformation, where internal  degrees of freedom of the object change its appearance. 
For example, people can move their arms and legs around, generating a very wide range 
of different body configurations. 

However, our recipe of searching across location and scale can still work. This is because 
some structure will be present in the images produced by the object. For example, a picture 
of a car is likely to show some of headlights, doors, wheels, windows, and hubcaps, though 
they may be in somewhat different arrangements in different pictures. This suggests modeling 
objects with pattern elements—collections of parts. These pattern elements may move around 
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Figure 24.13 Sources of appearance variation. First, elements can foreshorten, like the 
circular patch on the top left. This patch is viewed at a slant, and so is elliptical in the 
image. Second, objects viewed from different directions can change shape quite dramatically, 
a phenomenon known as aspect. On the top right are three different aspects of a doughnut. 
Occlusion causes the handle of the mug on the bottom left to disappear when the mti,  is 
rotated. in this case, because the body and handle belong to the same mug, we have self-
occlusion. Finally, on the bottom right, some objects can defomi dramatically. 
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with respect to one another, but if most of the pattern elements are present in about the right 
place, then the object is present. An object recognizer is then a collection of features that can 
tell whether the pattern elements are present, and whether they are in about the right place. 

The most obvious approach is to represent the image window with a histogram of the 
pattern elements that appear there. This approach does not work particularly well, because 
too many patterns get confused with one another. For example, if the pattern elements are 
color pixels, the French, UK, and Netherlands flags will get confused because they have 
approximately the same color histograms, though the colors are arranged in very different 
ways. Quite simple modifications of histograms yield very useful features. The trick is to 
preserve some spatial detail in the representation; for example, headlights tend to be at the 
front of a car and wheels tend  to be at the bottom. Histogram-based features have been 
successful in a wide variety of recognition applications; we will survey pedestrian detection. 

243.2 Pedestrian detection with HOG features 
The World Bank estimates that each year car accidents kill about 1.2 million people, of whom 
about two thirds are pedestrians. This means that detecting pedestrians is an important appli-
cation problem, because cars that can automatically detect and avoid pedestrians might save 
many lives. Pedestrians wear many different kinds of clothing and appear in many different 
configurations, but, at relatively low resolution, pedestrians can have a fairly characteristic 
appearance. The most usual cases are lateral or frontal views of a walk. In these eases,  
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Figure 24.14  Local orientation histograms are a powerful feature for recognizing even 
quite complex objects. On the left, an image of a pedestrian. On the center left, local orien- 
tation histograms for patches_  We then apply a classifier such as a support vector machine 
to find the weights for each histogram that best separate the positive examples of pedestrians 
from non-pedestrians. We see that the positively weighted components look like the outline 
of a person. The negative components are less clear; they represent all the patterns that are 
not pedestrians.  Figure from Dalai and Triggs (2005)  C)  IEEE. 
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we see either a "lollipop" shape — the torso is wider than the legs, which are together in 
thc  stance phase of the walk — or a "scissor" shape — where thc  legs arc swinging in the 
walk. We expect to see some evidence of arms and legs, and the curve around the shoulders 
and head also tends to visible and quite distinctive. This means that, with a careful feature 
construction, we can build a useful moving-window pedestrian detector_ 

There isn't always a strong contrast between the pedestrian and the background, so it 
is better to use orientations than edges to represent the image window, Pedestrians can move 
their arms and legs around, so we should use a histogram to suppress some spatial detail in 
the feature. We break up the window into cells, which could overlap, and build an orientation 
histogram in each cell. Doing so will produce a feature that can tell whether the head-and-
shoulders curve is at the top of the window or at the bottom, but will not change if the head 
moves slightly. 

One further trick is required to make a good feature. Because orientation features are 
not affected by illumination brightness, we cannot treat high-contrast edges specially. This 
means that the distinctive curves on the boundary of a pedestrian are treated in the same way 
as fine texture detail in clothing or in the background, and so the signal may be submerged 
in noise. We can recover contrast information by counting gradient orientations with weights 
that reflect how significant it gradient is compared to other gradients in the same cell. We 
will write  Vfx  for the gradient magnitude at point x in the image, write C for the cell 
whose histogram we wish to compute, and write wx ,c  for the weight that we will use for  the 



Figure 24.15  Another example of object recognition, this one using the SIFT feature 
(Scale Invariant Feature Transform), an earlier version of the HOG feature. On the left, im-
ages of a shoe and a telephone that serve as object models. In the center, a test image. On the 
right, the shoe and the telephone have been detected by: finding points in the image whose 
SIFT feature descriptions match a model; computing an estimate of pose of the model; and 
verifying that estimate. A strong match is usually verified with rare false positives. Images 
from Lowe (1999) ©  IEEE. 
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orientation at x for this cell. A natural choice of weight is 

11V-1;(11   
EnEc  II  Vio l 

This  compares the gradient magnitude to others in the cell, so gradients that are large com-
pared to their neighbors get a large weight. The resulting feature is usually called a HOG 

HCG  FEATURE feature (for Histogram Of Gradient orientations). 
This feature construction is the main way in which pedestrian detection differs from 

face detection. Otherwise, building a pedestrian detector is very like building a face detector. 
The detector sweeps a window across the image, computes features for that window, then 
presents it to a classifier. Non-maximum suppression needs to be applied to the output. In 
most applications, the scale and orientation of typical pedestrians is known. For example, in 
driving applications in which a camera is fixed to the car, we expect to view mainly vertical 
pedestrians, and we are interested only in nearby pedestrians. Several pedestrian data sets 
have been published, and these can be used for training the classifier. 

Pedestrians are nut the only type of object we can detect. In Figure 24.15 we see that  
similar techniques can be used to find a variety of objects in different contexts. 

24,4 RECONSTRUCTING THE 3D WORLD 

In this section we show how to go from the two-dimensional image to a three-dimensional 
representation of the scene. The fundamental question is this: Given that all points in the 
scene that fall along a ray to the pinhole are projected to the same point in the image, how do 
we recover three-dimensional information? Two ideas come to our rescue: 
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■ If we have two (or more) images from different camera positions, then we can triangu-
late to find the position of a point in the scene.  

■ We can exploit background knowledge about the physical scene that gave rise to the 
image Given an object model 13 (  Scene) and a rendering model P(Image  I Scene), we 
can compute a posterior distribution P(Sesne  Image). 

There is as yet no single unified theory for scene reconstruction. We survey eight commonly 
used visual cues: motion, binocular stereo psis, multiple views, texture, shading, contour. 
and familiar objects. 

24.4.1 Motion parallax 

If the camera moves relative to the three-dimensional scene, the resulting apparent motion in 
the image, optical flow, can be a source of information for both the movement of the camera 
and depth in the scene. To understand this, we state (without proof) an equation that relates 
the optical flow to the viewer's translational velocity T and the depth in the scene. 

The components of the optical flow field are 
—T  ±  xTz —Ty  + 

vx {;  x,y}  =   
Z(x,y) v '' (2 Z(x,y)  

where .Z(x,  y) is the z-coordinate of the point in the scene corresponding to the point in the 
image at (x, y).  

Note that both components of the optical flow, y) and v,i(x,  y),  are zero at the 
point x = 7VT,,g  = Try  I  This point is called the focus of expansion of the flow 
field. Suppose we change the origin in the x—y plane to lie at the focus of expansion; then 
the expressions for optical flow take on a particularly simple form. Let (x',  y') be the new 
coordinates defined by  = x  — Tx  /T,  ,  = y — T,/Tx .  Then 

x'T VT,  
vx (x' —   2),,(x 1  y 1 )  , —   

Z(T.' )' Z  (x'  ,  y')  
Note that there is a scale-factor ambiguity here. If the camera was moving twice as fast, and 
every object in the scene was twice as big and at twice the distance to the camera, the optical 
flow field would be exactly the same. But we can still extract quite useful information. 

1. Suppose you are a fly trying to land on a wall and you want to know the time-to-
contact at the current velocity. This time is given by Z/T.  Note that although the 
instantaneous optical flow field cannot provide either the distance Z or the velocity 
component T,  it can provide the ratio of the two and can therefore be used to control 
the landing approach. There is considerable experimental evidence that many different 
animal species exploit this cue. 

2. Consider two points at depths Z1 ,  Z2, respectively. We may not know the absolute 
value of either of these, but by considering the inverse of the ratio of the optical flow 
magnitudes at these points, we can determine the depth ratio Zi/Z2.  This is the cue of 
motion parallax, one we use when we look out of the side window of a moving car or 
train and infer that the slower moving parts of the landscape are farther away. 

Focus  or 
EKPANSFO4  
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Figure 24.16  Translating a camera parallel to the image plane causes image features to 
move in the camera plane. The disparity in positions that results is a cue to depth. If we 
superimpose left and right image, as in (b), we see the disparity. 
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BINOCULAR 
STEREOPSIS  

➢ IEPARFTI  

24.4.2 Binocular stereopsis 

Most vertebrates have two  eyes. This is useful for redundancy in case of a lost eye, but it 
helps in other ways too. Most prey have eyes on the side of the head to enable a wider field 
of vision. Predators have the eyes in the front, enabling them to use binocular stereopsis. 
The idea is similar iu  motion parallax, except that instead of using images over lime, we use 
two (or more) images separated in space. Because a given feature in the scene will be in a 
different place relative to the a-axis of each image plane. if we superpose the two images, 
there will be a disparity in the location of the image feature in the two images. You can see 
this in Figure 24.16, where the nearest point of the pyramid is shifted to the left in the right 
image and to the right in the left image. 

Note that to measure disparity we need to solve the correspondence problem, that is, 
determine for a point in the left image, the point in the right image that results from the 
projection of the same scene point. This is analogous to what one has to do in measuring 
optical flow, and the most simple-minded approaches are  somewhat similar and based on 
comparing blocks of pixels around corresponding points using the sum of squared differences. 
In practice, we use much more sophisticated algorithms, which exploit additional constraints. 

Assuming that we can measure disparity, how does this yield information about depth 
in the scene? We will need to work out the geometrical relationship between disparity and 
depth. First, we will consider the case when both the eyes (or cameras) are looking forward 
with their optical axes parallel. The relationship of the right camera to the left camera is then 
just a displacement along the r-axis by an amount b, the baseline_ We can use the optical 
flow equations from the previous section, if we think of this as resulting from a translation 



Left 
eye 

Right 
eye 

Figure 24.17  The relation between disparity and depth in stereopsis. The centers of pro-
jection of the two eyes are b apart, and the optical axes intersect at the fixation point PD.  The 
point P in the scene projects to points PL and PE  in the two eyes. In  angular terms, the 
disparity between these is JO.  See text. 
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vector T acting for time St, with Tx  = b/cit  and Ty  = Tx  = O.  The horizontal and vertical 
disparity are given by the optical flow components, multiplied by the time step St. H = vz  St, 
V = vy  St. Carrying out the substitutions, we get the result that H = b/  Z , V  = O.  In words, 
the horizontal disparity is equal to the ratio of the baseline to the depth, and the vertical 
disparity is zero. Given that we know b, we can measure H and recover the depth Z. 

Under normal viewing conditions, humans fixate; that is, there is some point in the 
scene at which the optical axes of the two eyes intersect. Figure 24.17 shows two eyes fixated 
at a point Po , which is at a distance Z from the midpoint of the eyes. For convenience, 
we will compute the angular disparity, measured in radians. The disparity at the point of 
fixation Po is zero. For some other point P in the scene that is SZ farther away, we can 
compute the angular displacements of the left and right images of P,  which we will Lan  PL  
and PR, respectively. If each of these is displaced by an angle SO/2  relative to Po, then the 
displacement between 1-1  and PR, which is the disparity of P,  is just 60.  From Figure 24.17, 
tan()  = 5aand  tan(0  — SO/2)  =  but for small angles, tan 0 ^ 0,  so 

b/2 br5Z  
SO  12  —  

Z
b/2  

Z  SZ  2Z2  
and, since the actual disparity is SO, we have 

bSZ 
disparity = . 

In humans, b (the baseline distance between the eyes) is about 6 cm_ Suppose that Z is about 
100  cm. If the smallest detectable SO (corresponding to the pixel size) is about 5 seconds 
of arc, this gives a SZ  of 0.4 mm. For Z = 30 cm, we get the impressively small value 
SZ  = 0.036 mm. That is, at a distance of 30 cm, humans can discriminate depths that differ 
by as little as 0.036 mm, enabling us to thread needles and the like. 

FIXATE 

BASELINE 



Figure 24.18  (a) Four frames from a video sequence in which the camera is moved and 
rotated relative to the object. (b) The first frame of the sequence, annotated with small boxes 
highlighting the features found by the feature detector. (Courtesy of Carlo Tomasi.)  
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24.4.3 Multiple views 

Shape from optical flow or binocular disparity are two instances of a more genera] framework, 
that of exploiting multiple views for recovering depth. In computer vision, there is no reason 
for us to be restricted to differential motion or to only use two cameras converging at a fixation 
point. Therefore, techniques have been developed that exploit the information available in 
multiple views, even from hundreds or thousands of cameras, Algorithmically, there are 
three subproblems that need to be solved: 

• The correspondence problem, i.e., identifying features in the different images that are 
projections of the same feature in the three-dimensional world. 

• The relative orientation problem, i.e., determining the transformation (rotation and 
translation) between the coordinate systems fixed to the different cameras. 

• The depth estimation problem, i.e., determining the depths of various points in the world 
for which image plane projections were available in at least two views 

The development of robust matching procedures for the correspondence problem, accompa-
nied by numerically stable algorithms for solving for relative orientations and scene depth, is 
one of the success stories of computer vision. Results from one such approach due to Tomasi 
and Kanade (1992) are shown in Figures 24.18 and 24.19. 

24.4.4 Texture 

Earlier we saw how texture was used for segmenting objects. It can also be used to estimate 
distances. In Figure 24.20 we see that a homogeneous texture in the scene results in varying 

TDEL 

	

	 texture elements, or texels, in the image. All the paving tiles in (a) are identical in the scene. 
They appear different in the image for two reasons: 
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Figure 24.19  (a) Three-dimensional reconstruction of the locations of the image features 
in Figure 24. 1  S,  shown from above. (b) The real house, taken from the same position. 
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1. Differences in the distances of the texels from the camera. Distant objects appear smaller 
by a scaling factor of 1/Z.  

2. Differences in the foreshortening of the texels.  If all the texels are in the ground plane 
then distance ones are viewed at an angle that is farther off the perpendicular, and so 
are more foreshortened. The magnitude of the foreshortening effect is proportional to 
cos en,  where c is the slant, the angle between the Z-axis and n,  the surface normal to 
the texel. 
Researchers have developed various algorithms that try to exploit the variation in the 

appearance of the projected texels as a basis for determining surface normals. However, the 
accuracy and applicability of these algorithms is not anywhere as general as those based on 
using multiple views. 

24.4.5 Shading 

Shading—variation in the intensity of light received from different portions of a surface in a 
scene—is determined by the geometry of the scene and by the reflectance properties of the 
surfaces. In computer graphics, the objective is to compute the image brightness I(a,  y),  
given the scene geometry and reflectance properties of the objects in the scene. Computer 
vision aims to invert the process—that is, to recover the geometry and reflectance properties, 
given the image brightness I(x,  y).  This has proved to be difficult to do in anything but the 
simplest cases, 

From the physical model of section 24.1.4, we know that if a surface normal points 
toward the light source, the surface is brighter, and if it points away, the surface is darker. 
We cannot conclude that a dark patch has its notmal  pointing away from the light; instead,  
it could have low albedo. Generally, albedo changes quite quickly in images, and shading 



(a) (b) 

Figure 24.20  (a) A textured scene. Assuming that the real texture is uniform allows recov-
ery of the surface orientation. The computed surface orientation is indicated by overlaying a 
black circle and pointer, transformed as if the circle were painted on the surface at that point. 
(b) Recovery of shape from texture for a curved surface (white circle and pointer this time). 
Images courtesy of litendra  Malik and Ruth Rosenholtz  (1994). 
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changes rather slowly, and humans seem to be quite good at using this observation to tell 
whether low illumination. surface orientation, or albedo caused a surface patch to be dark. 
To simplify the problem, let us assume that the albedo is known at every surface point. It 
is still difficult to recover the normal, because the image brightness is one measurement but 
the normal has two unknown parameters, so we cannot simply solve for the normal. The key 
to this situation seems to be that nearby normals  will be similar, because most surfaces are 
smooth—they do not have sharp changes. 

The real difficulty comes in dealing with interreflections.  If we consider a typical indoor 
scene, such as the objects inside an office, surfaces are illuminated not only by the light 
sources, but also by the light reflected from other surfaces in the scene that effectively serve 
as secondary light sources. These mutual illumination effects are quite significant and make 
it quite difficult to predict the relationship between the normal and the image brightness. Two 
surface patches with the same normal might have quite different brightnesses, because one 
receives light reflected from a large white wall and the other faces only a dark bookcase. 
Despite these difficulties. the problem is important. h umans  seem to be able to ignore the 
effects of interreflections and get a useful perception of shape from shading, but we know 
frustratingly little about algorithms to do this. 

24.4.6 Contour 

When we look at a line drawing. such as Figure 24.21, we get a vivid perception of three-
dimensional shape and layout. How? It is a combination of recognition of familiar objects in 
the scene and the application of generic constraints such as the following: 

■ Occluding contours, such as the outlines of the hills. One side of the contour is nearer 
to the viewer, the other side is farther away. Features such as local convexity and sym- 



Figure 24.21  An evocative line drawing. (Courtesy of Isha  
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GROUND PLANE 

metry provide cues to solving the figure-ground problem—assigning which side of the 
contour is figure (nearer), and which is ground (farther). At an occluding contour, the 
line of sight is tangential to the surface in the scene. 

• T-junctions. When one object occludes another, the contour of the farther object is 

interrupted, assuming that the nearer object is opaque. A T -junction results in the image. 
• Position on the ground plane_ Humans, like many other terrestrial animals are very 

often in a scene that contains a ground plane, with various objects at different locations 
on this plane. Because of gravity, typical objects don't float in air but are supported by 
this ground plane, and we can exploit the very special geometry of this viewing scenario. 

Let us work out the projection of objects of different heights and at different loca-
tions on the ground plane. Suppose that the eye, or camera, is at a height h,  above 
the ground plane. Consider an object of height SY  resting on the ground plane, whose 
bottom is at ( X, —he ,  Z)  and top is at (X, c5Y  — hc , Z).  The bottom projects to the 
image point (IXIZ,  —,f  he/Z)  and the top to (fX1Z,  f (SY  — h,)IZ).  The bottoms of 
nearer objects (small Z)  project to points lower in the image plane; farther objects have 
bottoms closer to the horizon. 

24.4.7 Objects and the geometric structure of scenes 

A typical adult human head is about 9 inches long. This means that for someone who is 43 
feet away, the angle subtended by the head at the camera is 1 degree. If we see a person whose 
head appears to subtend just half a degree, Bayesian inference suggests we are looking at a 
normal person who is 86 feet away, rather than someone with a half-size head. This line of 
reasoning supplies us with a method to check the results of a pedestrian detector, as well as a 
method to estimate the distance to an object. For example, all pedestrians are about the same 
height, and they tend to stand on a ground plane. If we know where the horizon is in an image, 
we can rank pedestrians by distance to the camera.  This works because we know where their 
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Figure 24.22  In an image of people standing on a ground plane, the people whose feet 
are closer to the horizon in the image must be farther away (top drawing). This means they 
must look smaller in the image (left lower drawing). This means that the size and location of 
real pedestrians in an image depend upon one another and on the location of the horizon. To 
exploit this, we need in identify the ground plane, which is done using share -from -textnre  
methods. From this information, and from some likely pedestrians, we can recover a horizon 
as shown in the center image. On the right, acceptable pedestrian boxes given this geometric 
context. Notice that pedestrians who are higher in the scene must be smaller. If they are not, 
then they are false positives. Images from Hoiem  ei al. (2008) IC  IEEE,  
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feet are, and pedestrians  whose feet are closer to the horizon in the image are farther away 
from the camera (Figure 24.22)_  Pedestrians who are farther away from the camera must also 
be smaller in the image. This means we can rule out some detector responses —if a detector 
finds a pedestrian who is large in the image and whose feet are close to the horizon, it has 
found an enormous pedestrian: these don't exist, so the detector is wrong. In fact, many or 
most image windows are not acceptable pedestrian windows, and need not even be presented 
to the detector. 

There are several strategies for finding the horizon, including searching for a roughly 
horizontal line with a lot of blue above it, and using surface orientation estimates obtained 
from texture deformation. A more elegant strategy exploits the reverse of our geometric 
constraints. A reasonably reliable pedestrian detector is capable of producing estimates of the 
horizon, if there are several pedestrians in the scene at different distances from the camera. 
This is because the relative scaling of the pedestrians is a cue to where the horizon is. So we 
can extract a horizon estimate from the detector, then use this estimate to prune the pedestrian 
detector's.  mistakes. 
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If the object is familiar, we can estimate more than just the distance to it, because what it 
looks like in the image depends very strongly on its pose, i.e., its position and orientation with 
respect to the viewer. This has many applications. For instance, in an industrial manipulation 
task, the robot arm cannot pick up an object until the pose is known. In the case of rigid 
objects, whether three-dimensional or two-dimensional, this problem has a simple and well-

ALIGNMENT METHOD 
 defined solution based on the alignment method, which we now develop. 

The object is represented by Ai features or distinguished points mi, m2, , mn,T  in 
three-dimensional space—perhaps the vertices of a polyhedral object These are measured 
in some coordinate system that is natural for the object. The points are then subjected to 
an unknown three-dimensional rotation R, followed by translation by an unknown amount t  
and then projection to give rise to image feature points Pr , P2,  -  -  PN  on the image plane. 
In general, N Al, because some model points may be occluded, and the feature detector 
could miss some features (or invent false ones due to noise). We can express this as 

pi = II(Rmi  t) = Q(m,)  

for a three-dimensional model point mi  and the corresponding image point pi. Here, R 
is a rotation matrix, t is a translation, and II  denotes perspective projection or one of its 
approximations, such as scaled orthographic projection. The net result is a transformation Q  
that will bring the model point m i  into alignment with the image point pi. Although we do 
not know Q initially, we do know (for rigid objects) that Q must be the same for all the model 
points. 

We can solve for Q, given the three-dimensional coordinates of three model points and 
their two-dimensional projections. The intuition is as follows: we can write down equations 
relating the coordinates of pi  to those of mi.  In these equations, the unknown quantities 
correspond to the parameters of the rotation matrix R and the translation vector t.  If we have 
enough equations, we ought to be able to solve for Q. We will not give a proof here; we 
merely state the following result: 

Given three noncollinear points mi,  m2, and nv in the model, and their scaled 
orthographic projections pi ,  p2 ,  and Ps  on the image plane, there exist exactly 
two transformations from the three-dimensional model coordinate frame to a two-
dimensional image coordinate frame. 

These transformations are related by a reflection around the image plane and can be computed 
by a simple closed-form solution. If we could identify the corresponding model features for 
three features in the image, we could compute Q,  the pose of the object. 

Let us specify position and orientation in mathematical terms. The position of a point P  
in the scene is characterized by three numbers, the (X, Y, 2) coordinates of P  in a coordinate 
frame with its origin at the pinhole and the Z-axis along the optical axis (Figure 24.2 on 
page 931). What we have available is the perspective projection (x, y) of the point in the 
image. This specifies the ray from the pinhole along which P lies; what we do not know is 
the distance. The term "orientation" could be used in two senses: 

1. The orientation of the object as a whole. This can be specified in terms of a three-
dimensional rotation relating its coordinate frame to that of the camera. 
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2. The orientation of the surface of the object at P. This can be specified by a normal 
vector, n—which is a vector specifying the direction that is perpendicular to the surface.  

SLANT Often we express the surface orientation using the variables slant and tilt. Slant is the 
TILT angle between the Z-axis and n. Tilt is the angle between the X-axis and the projection 

of n on the image plane. 
When the camera moves relative to an object, both the object's distance and its orientation 

Ett4PE change. What is preserved is the shape of the object. If the object is a cube, that fact is 
not changed when the object moves. Geometers have been attempting to formalize shape for 
centuries, the basic concept being that shape is what remains unchanged under some group of 
transformations—for example, combinations of rotations and translations. The difficulty lies 
in finding a representation of global shape that is general enough to deal with the wide variety 
of objects in the real world—not just simple forms like cylinders, cones, and spheres—and yet 
can be recovered easily from the visual input. The problem of characterizing the local shape 
of a surface is much better understood. Essentially, this can be done in terms of curvature: 
how does the surface normal change as one moves in different directions on the surface? For 
a plane, there is no change at all For a cylinder, if one moves parallel to the axis, there is 
no change, but in the perpendicular direction, the surface normal rotates at a rate inversely 
proportional to the radius of the cylinder, and so on. All this is studied in the subject called 
differential geometry. 

The shape of an object is relevant for some manipulation tasks (e.g., deciding where to 
grasp an object), but its most significant role is in object recognition, where geometric shape 
along with color and texture provide the most significant cues to enable us to identify objects, 
classify what is in the image as an example of some class one has seen before, and so on. 

24.5 OBJECT RECOGNITION FROM STRUCTURAL INFORMATION 

DFORMABLE  
TEMPLATE 

Putting a box around pedestrians in an image may well be enough to avoid driving into them. 
We have seen that we can find a box by pooling the evidence provided by orientations, using 
histogram methods to suppress potentially confusing spatial detail. If we want to know more 
about what someone is doing, we will need to know where their arms, legs, body, and head lie 
in the picture Individual body parts are quite difficult to detect no  their own using a moving 

window method, because their color and texture can vary widely and because they are usually 
small in images. Often, forearms and shins are as small as two to three pixels wide. Body 
parts do not usually appear on their own, and representing what is connected to what could 
be quite powerful, because purls that are easy to find might tell us where to look for parts that 
are small and hard to detect. 

Inferring the layout of human bodies in pictures is an import ant task in vision, because 
the layout of the body often reveals what people are doing. A model called a deformable 
template can tell us which configurations are acceptable: the elbow can bend but the head is 
never joined to the foot. The simplest deformable template model of a person connects lower 
arms to upper aims, upper arms to the torso, and so on. There are richer models: for example, 
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we could represent the fact that left and right upper arms tend to have the same color and 
texture, as do left and right legs. These richer models remain difficult to work with, however. 

24.5.1 The geometry of bodies: Finding arms and legs 

For the moment, we assume that we know what the person's  body parts look like (e.g., we 
know the color and texture of the person's clothing) We can model the geometry of the 
body as a tree of eleven segments (upper and lower left and right arms and legs respectively, 

a torso, a face, and hair on top of the face) each of which is rectangular. We assume that 
the position and orientation (pose) of the left lower arm is independent of all other segments 
given the pose of the left upper arm; that the pose of the left upper arm is independent of 
all segments given the pose of the torso; and extend these assumptions in the obvious way 
to include the right arm and the legs, the face, and the hair. Such models are often called 
"cardboard people" models. The model forms a tree, which is usually rooted at the torso. We 
will search the image for the best match to this cardboard person using inference methods for 
a tree-structured B ayes net (see Chapter l4).  

There are two criteria for evaluating a configuration. First, an image rectangle should 
Look like its segment. For the moment, we will remain vague about precisely what that means, 
but we assume we have a function cp,  that scores how well an image rectangle matches a body 
segment. For each pair of related segments, we have another function t/r  that scores how 
well relations between a pair of image rectangles match those to be expected from the body 
segments. The dependencies between segments form a tree, so each segment has only one 
parent, and we could write tpi pa(i).  All the functions will be larger if the match is better, 
so we can think of them as being like a log probability. The cast of a particular match that 
allocates image rectangle mi  to body segment i is then 

E ct,i(nii)+ E oi,pa ( i ) nipa(i)  ) • 

iEsegments iEsegments 
Dynamic programming can find the best match, because the relational model is a tree. 

It is inconvenient to search a continuous space, and we will discretize the space of image 
rectangles. We do so by discretizing the location and orientation of rectangles of fixed size 
(the sizes may be different for different segments). Because ankles and knees are different, 
we need to distinguish between a rectangle and the same rectangle rotated by 180 °.  One 
could visualize the result as a set of very large stacks of small rectangles of image, cut out at 
different locations and orientations. There is one stack per segment. We must now find the 
best allocation of rectangles to segments. This will be slow, because there are many image 
rectangles and, for the model we have given, choosing the right torso will be 0(M-6 )  if there 
are M image rectangles. However, various speedups are available for an appropriate choice 
of 0,  and the method is practical (Figure 24.23). The model is usually known as a pictorial 
structure model. 

Recall our assumption that we know what we need to know about what the person looks 
Like. If we are matching a person in a single image, the most useful feature for scoring seg-
ment matches turns out to be color. Texture features don't work well in most cases, because 
folds on loose clothing produce strong shading patterns that overlay the image texture. These 
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Figure 24.23  A pictorial structure model evaluates a match between a set of image rect-
angles and a cardboard person (shown on the left) by scoring the similarity in appearance 
between body segments and image segments and the spatial relations between the image seg-
ments. Generally, a match is better if the image segments have about the right appearance and 
are in about the right place with respect to one another. The appearance model uses average 
colors for hair, head, torso, and upper and lower arms and legs, The relevant relations are 
shown as arrows. On the right, the best match for a particular image, obtained using dynamic 
programming. The match is a fair estimate of the configuration of the body. Figure from 
Felzenszwalb and Huttenlocher  (2000) ©  IEEE. 

patterns are strong enough to disrupt the true texture of the cloth. In current work, /I)  typically 
reflects the need for the ends of the segments to be reasonably close together, but there are 
usually no constraints on the angles. Generally, we don't know what a person looks like, 
and must build a model of segment appearances. We call the description of what a person 
looks like the appearance model. If we must report the configuration of a person in a single 
image, we can start with a poorly tuned appearance model, estimate configuration with this, 
then re-estimate appearance, and so on. In video, we have many frames of the same person, 
and this will reveal their appearance. 

24.5.2 Coherent appearance: Tracking people in video 

Tracking people in video is an important practical problem. If we could reliably report the 
location of arms, legs, torso, and head in video sequences, we could build much improved 
game interfaces and surveillance systems. Filtering methods have not had much success 
with this problem, because people can produce large accelerations and move quite fast. This 
means that for 30 Hz video, the configuration of the body in frame 2.  doesn't constrain the 
configuration of the body in frame i + 1 all that strongly. Currently, the most effective methods 
exploit the fact that appearance changes very slowly from frame to frame. If we can infer an 
appearance model of an individual from the video, then we can use this information in a 
pictorial structure model to detect that person in each frame of the video. We can then link 
these locations across time to make a track. 
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Figure 24/4  We can track moving people with a pictorial structure model by first ob- 
taining an appearance model, then applying it. To obtain the appearance model, we scan the 
image to find a lateral walking pose. The detector does not need to be very accurate, but 
should produce few false positives. From the detector response, we can read off pixels that 
lie on each body segment, and others that do not lie on that segment. 'Ibis makes it possible to 
build a discriminative model of the appearance of each body part, and these are tied together 
into a pictorial structure model of the person being tracked. Finally, we can reliably track by 
detecting this model in each frame. As the frames in the lower part of the image suggest, this 
procedure can track complicated, fast -changing body configurations, despite degradation of 
the video signal due to motion blur. Figure from Ramanan  et al. 1,201171 ©  IEEE. 
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There are several ways to infer a good appearance model. We regard the video as a 
large stack of pictures of the person we wish to track. We can exploit this stack by looking 
for appearance models that explain many of the pictures. This would work by detecting 
body segments in each frame, using the fact that segments have roughly parallel edges. Such 
detectors are  not particularly reliable. but the segments we want to find are  special. They 
will appear at least once in most of the frames of video; such segments can be found by 
clustering the detector responses. It is best to start with the torso, because it is big and 
because torso detectors tend to be reliable. Once we have a torso appearance model, upper 
leg segments should appear near the torso, and so on. This reasoning yields an appearance 
model, but it can be unreliable if people appear against a near-fixed background where the 
segment detector generates lots of false positives. An alternative is to estimate appearance 
for many of the frames of video by repeatedly reestimating configuration and appearance; we 
then see if one appearance model explains many frames. Another alternative, which is quite 



Figure 24.25  Some complex human actions produce consistent patterns of appearance 
and motion.  Fur maniple, drinking involves  inuventeith  of the hand in fruuL  of the face. The 
first three images are correct detections of drinking; the fourth is a false-positive (the cook is 
looking into the coffee pot, but not drinking from it). Figure from Laptev and Perez (21}07)  
©  IEFF  
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reliable in practice, is to apply a detector for a fixed body configuration to all of the frames.  A 
good choice of configuration is one that is easy to detect reliably, and where there is a strong 
chance the person will appear in that configuration even in a short sequence (lateral walking 
is a good choice). We tune the detector to have a low false positive rate, so we know when it 
responds that we have found a real person; and because we have localized their torso, arms, 
legs, and head, we know what these segments look like. 

24.6 USING VISION 

EACKGROUHD  
5113TRACTION  

If vision systems could analyze video and understood what people are doing, we would be 
able to design buildings and public places better by collecting and using data about what 
people do in public; build more accurate, more secure, and less intrusive surveillance systems; 
build computer spons commentators; and build human-computer interfaces that watch people 
and react to their behavior. Applications for reactive interfaces range from computer games 
that make a player get up and move around to systems that save energy by managing heat and 
light in a building to match where the occupants are and what they are doing. 

Some problems are well understood. If people are relatively small in the video frame, 
and the background is stable, it is easy to detect the people by subtracting a background image 
from the current frame. If the absolute value of the difference is large, this background 
subtraction declares the pixel to be a foreground pixel; by linking foreground blobs over 
time, we obtain a track. 

Structured behaviors like ballet, gymnastics, or tai chi have specific vocabularies of ac-
tions. When performed against a simple background, videos of these actions are easy to deal 
with Background subtraction identifies the major moving regions, and we can build HOG 
features Ikeeping  track of flow rather than orientation) to present to a classifier. We can detect 
consistent patterns of action with a variant of our pedestrian detector, where the orientation 
features are collected into histogram buckets over time as well as space (Figure 24.25). 

More general problems remain open. The big research question is to link observations 
of the body and the objects nearby to the goals and intentions of the moving people. One 
source of difficulty is that we lack a simple vocabulary of human behavior. Behavior is a lot 
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like color, in that people tend to think they know a lot of behavior names but can't produce 
long lists of such words on demand. There is quite a lot of evidence that behaviors combine—
you can, for example, drink a milkshake while visiting an ATM—but we don't yet know 
what the pieces are, how the composition works, or how many composites there might be. 
A second source of difficulty is that we don't know what features expose what is happening. 
For example, knowing someone is close to an ATM may be enough to tell that they're visiting 
the ATM. A third difficulty is that the usual reasoning about the relationship between training 
and test data is untrustworthy. For example, we cannot argue that a pedestrian detector is 
safe simply because it performs well on a large data set, because that data set may well omit 
important, but rare, phenomena (for example, people mounting bicycles). We wouldn't want 
our automated driver to run over a pedestrian who happened to do something unusual. 

24.6.1 Words and pictures 

Many Web sites offer collections of images for viewing. How can we find the images we 
want? Let's suppose the user enters a text query, such as "bicycle race." Some of the images 
will have keywords or captions attached, or will come from Web pages that contain text near 
the image. For these, image retrieval can be like text retrieval: ignore the images and match 
the image's text against the query (see Section 22.3 on page 867). 

However, keywords are usually incomplete. For example, a picture of a cat playing in 
the street might be tagged with words like "cat" and "street," but it is easy to forget to mention 
the "garbage can" or the "fish bones." Thus an interesting task is to annotate an image (which 
may already have a few keywords) with additional appropriate keywords. 

In the most straightforward version of this task, we have a set of correctly tagged ex-
ample images, and we wish to tag some test images. This problem is sometimes known as 
auto-annotation. The most accurate solutions are obtained using nearest-neighbors methods. 
One finds the training images that are closest to the test image in a feature space metric that 
is trained using examples, then reports their tags. 

Another version of the problem involves predicting which tags to attach to which re-
gions in a test image. here  we do not blow  which regions produced which tags for the train-
ing data. We can use a version of expectation maximization to guess an initial correspondence 
between text and regions, and from that estimate a better decomposition into regions, and so 
on. 

24.6.2 Reconstruction from many views 

Binocular stereopsis works because for each point we have four measurements constraining 
three unknown degrees of freedom. The four measurements are the (x, y) positions of the 
point in each view, and the unknown degrees of freedom are the (x, y, z) coordinate values of 
the point in the scene. This rather crude argument suggests, correctly, that there are geometric 
constraints that prevent most pairs of points from being acceptable matches. Many images of 
a set of points should reveal their positions unambiguously. 

We don't always need a second picture to get a second view of a set of points. If we 
believe the original set of points comes from a familiar rigid 3D object, then we might have 
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an object model available as a source of information. If this object model consists of a set of 
3D points or of a set of pictures of the object, and if we can establish point correspondences, 
we can determine the parameters of the camera that produced the points in the original image. 
This is very powerful information. We could use it to evaluate our original hypothesis that 
the points come from an object model. We do this by using some points to determine the 
parameters of the camera, then projecting model points in this camera and checking to see 
whether there are image points nearby. 

We have sketched here a technology that is now very highly developed. The technology 
can be generalized to deal with views that are not orthographic; to deal with points that are 
observed in only some views; to deal with unknown camera properties like focal length; to 
exploit various sophisticated searches for appropriate correspondences; and to do reconstruc-
tion from very large numbers of points and of views. If the locations of points in the images 
are known with some accuracy and the viewing directions are reasonable, very high accuracy 
camera and point information can be obtained. Some applications are 

• Model-building: For example, one might build a modeling system that takes a video 
sequence depicting an object and produces a very detailed three-dimensional mesh of 
textured polygons for use in computer graphics and virtual reality applications. Models 
like this can now be built from apparently quite unpromising sets of pictures. For ex-
ample, Figure 24.26 shows a model of the Statue of Liberty built from pictures found 
on the Internet. 

• Matching moves: To place computer graphics characters into real video, we need to 
know how the camera moved for the real video, so that we can render the character 
correctly. 

• Path reconstruction: Mobile robots need to know where they have been. If they are 
moving in a world of rigid objects, then performing a reconstruction and keeping the 
camera information is one way to obtain a path. 

24.6.3  Using vision for controlling movement 

One of the principal uses of vision is to provide information both for manipulating objects—
picking them up, grasping them, twirling them, and so on—and for navigating while avoiding 
obstacles. The ability to use vision for these purposes is present in the most primitive of 
animal visual systems. In many cases, the visual system is minimal, in the sense that it 
extracts from the available light field just the information the animal needs to inform its 
behavior. Quite probably, modem vision systems evolved from early, primitive organisms 
that used a photosensitive spot at one end to orient themselves toward (or away from) the 
light. We saw in Section 24.4 that flies use a very simple optical flow detection system to 
land on walls. A classic study, What the Frog's Eye Tells the Frog's Brain (Lanvin  at al., 

1959), observes of a frog that, "He will starve to death surrounded by food if it is not moving. 
His choice of food is determined only by size and movement." 

Let us consider a vision system for an automated vehicle driving on a freeway. The 
tasks faced by the driver include the following: 
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Figure 2426  The state of the art in multiple-view  reconstruction is now highly advanced. 
This figure outlines a system built by Michael Goesele and colleagues from the University 
of Washington, TU  Darmstadt, and Microsoft Research. From  a collection of pictures of a 
monument taken by a large community of users and posted on the Internet (a), their system 
can determine the viewing directions for those pictures,  shown by the small black pyramids 
in (b) and a comprehensive 3D reconstruction shown in (c), 
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1. Lateral control—ensure that the vehicle remains securely within its lane or changes 
lanes smoothly when required. 

2. Longitudinal control—ensure that there is a safe distance to the vehicle in front_ 
3. Obstacle avoidance—monitor vehicles in neighboring lanes and be prepared for evasive 

maneuvers if one of them decides to change lanes. 

The problem for the driver is to generate appropriate steering, acceleration, and braking ac-
tions to best accomplish these tasks. 

For lateral control, one needs to maintain a representation of the position and orientation 
of the car relative to the lane. We can use edge-detection algorithms to find edges correspond-
ing to the lane-marker segments. We can then fit smooth curves to these edge elements. The 
parameters of these curves carry information about the lateral position of the car, the direc-
tion it is pointing relative to the lane, and the curvature of the lane. This information, along 
with information about the dynamics of the car, is all that is needed by the steering-control 
system. If we have good detailed maps of the road, then the vision system serves to confirm 
our position (and to watch for obstacles that are not on the map). 

For longitudinal control, one needs to know distances to the vehicles in front. This can 
be accomplished with binocular stereopsis or optical flow.  Using these techniques, vision-
controlled cars can now drive reliably at highway speeds. 

The more general case of mobile robots navigating in various indoor and outdoor envi-
ronments has been studied, too. One particular problem, localizing the robot in its environ-
ment, now has pretty good solutions.  A group at Samoff  has developed a system based on 

two cameras looking forward that track feature points in 313  and use that to reconstruct the 
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position of the robot relative to the environment. In fact, they have two stereoscopic camera 
systems, one looking front and one looking back—this gives greater robustness in case the 
robot has to go through a featureless patch due to dark shadows, blank walls, and the like. It is 
unlikely that there are no features either in the front or in the back. Now of course, that could 
happen, so a backup is provided by using an inertial motion unit (IMU) somewhat akin to the 
mechanisms for sensing acceleration that we humans have in our inner ears. By integrating 
the sensed acceleration twice, one can keep track of the change in position. Combining the 
data from vision and the IMU is a problem of probabilistic evidence fusion and can be tackled 
using techniques, such as Kalman filtering, we have studied elsewhere in the book. 

In the use of visual odometry (estimation of change in position), as in other problems 
of odometry, there is the problem of "drift," positional errors accumulating over time. The 
solution for this is to use landmarks to provide absolute position fixes: as soon as the robot 
passes a location in its  internal map, it can adjust its estimate of its  position appropriately. 
Accuracies on the order of centimeters have been demonstrated with the these techniques. 

The driving example makes one point very clear: for a specific task, one does not need 
to recover all the information that, in principle, can be recovered frem  an image. One does 
not need to recover the exact shape of every vehicle, solve for shape-from-texture on the grass 
surface adjacent to the freeway, and so on. Instead, a vision system should compute just what 
is needed to accomplish the task. 

24.7 SUMMARY 

Although perception appears to be an effortless activity for humans, it requires a significant 
amount of sophisticated computation. The goal of vision is to extract information needed for 
tasks such as manipulation, navigation, and object recognition. 

• The process of image formation is well understood in its geometric and physical as-
pects. Given a description of a three-dimensional scene, we can easily produce a picture 
of it from some arbitrary camera position (the graphics problem). Inverting the process 
by going from an image to a description of the scene is more difficult. 

• To extract the visual information necessary for the tasks of manipulation ;  navigation, 
and recognition, intermediate representations have to be constructed. Early vision 
image-processing algorithms extract primitive features from the image, such as edges 
and legions.  

• There are various cues in the image that enable one to obtain three-dimensional in- 
formation about the scene: motion, stereopsis, texture, shading, and contour analysis. 
Each of these cues relies en background assumptions about physical scenes to provide 
nearly unambiguous interpretations. 

• Object recognition in its full generality is a very hard problem. We discussed brightness-
based and feature-based approaches. We also presented a simple algorithm for pose 
estimation. Other possibilities exist. 
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BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The eye developed in the Cambrian explosion (530 million years ago), apparently in a com-
mon ancestor. Since then, endless variations have developed in different creatures, but the 
same gene, Pax-6, regulates the development of the eye in animals as diverse as humans, 
mice, and Drosophila. 

Systematic attempts to understand human vision can be traced back to ancient times, 
Euclid (ca. 300 B.c.) wrote about natural perspective—the mapping that associates, with 
each point P in the three-dimensional world, the direction of the ray OP joining the center of 
projection 0 to the point P. He was well aware of the notion of motion parallax. The use of 
perspective in art was developed in ancient Roman culture, as evidenced by art found in the 
ruins of Pompeii (A.D. 79), but was then largely lost for 1300 years. The mathematical under-
standing of perspective projection, this time in the context of projection onto planar surfaces, 
had its next significant advance in the 15th-century in Renaissance Italy. Brunelleschi (1413) 
is usually credited with creating the first paintings based on geometrically correct projection 
of a three-dimensional scene. In 1435, Alberti codified the rules and inspired generations of 
artists whose artistic achievements amaze us to this day. Particularly notable in their develop-
ment of the science of perspective, as it was called in those days, were Leonardo da Vinci and 
Albrecht Diirer.  Leonardo's late 15th century descriptions of the interplay of light and shade 
(chiaroscuro), umbra and penumbra regions of shadows, and aerial perspective are still worth 
reading in translation (Kemp, 1989). Stork (2004) analyzes the creation of various pieces of 
Renaissance art using computer vision techniques. 

Although perspective was known to the ancient Greeks, they were curiously confused 
by the role of the eyes in vision. Aristotle thought of the eyes as devices emitting rays, rather 
in the manner of modem laser range finders. This mistaken view was laid to rest by the work 
of Arab scientists, such as Abu All  Alhazen, in the 10th century. Alhazen also developed the 
camera obscura, a room (camera is Latin for "room" or "chamber") with a pinhole that casts 
an image on the opposite wall  Of course the image was inverted, which caused no end of 
confusion. If the eye was to be thought of as such an imaging device, how do we see right-
side up? This enigma exercised the greatest minds of the era (including Leonardo). Kepler 
first proposed that the lens of the eye focuses an image on the retina, and Descartes surgically 
removed an ox eye and demonstrated that Kepler was right. There was still puzzlement as to 
why we do not see everything upside down; today we realize it is just a question of accessing 
the retinal data structure in the right way. 

In the first half of the 20th century, the most significant research results in vision were 
obtained by the Gestalt school of psychology, led by Max Wertheimer. They pointed out the 
importance of perceptual organization: for a human observer, the image is not a collection 
of pointillist photoreceptor outputs (pixels in computer vision terminology); rather it is or-
ganized into coherent groups_ One could trace the motivation in computer vision of finding 
regions and curves back to this insight. The Gestaltists also drew attention to the "figure-
ground" phenomenon—a contour separating two image regions that, in the world, are at 
different depths, appears to belong only to the nearer region, the "figure," and not the farther 
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region, the "ground." The computer vision problem of classifying image curves according to 
their significance in the scene can be thought of as a generalization of this insight. 

The period after World War II was marked by renewed activity. Most significant was 
the work of J.  J.  Gibson (1950,  1979), who pointed out the importance of optical flow, as well 
as texture gradients in the estimation of environmental variables such as surface slant and tilt. 
He reemphasized the importance of the stimulus and how rich it was. Gibson emphasized the 
role of the active observer whose self-directed movement facilitates the pickup of information 
about the external environment. 

Computer vision was founded in the 1960s.  Roberts's (1963) thesis at MIT was one 
of the earliest publications in the field, introducing key ideas such as edge detection and 
model-based matching. There is an urban legend that Marvin Minsky assigned the problem 
of "solving" computer vision to a graduate student as a summer project. According to Minsky 
the legend is untrue—it  was actually an undergraduate student. But it was an exceptional 
undergraduate, Gerald Jay Sussman (who is now a professor at MIT) and the task was not to 
"solve" vision, but to investigate some aspects of it. 

In the 1960s and 1970s, progress was slow, hampered considerably by the lack of com-
putational and storage resources. Low-level visual processing received a lot of attention. The 
widely used Canny edge-detection technique was introduced in Canny (1986).  Techniques 
for finding texture boundaries based on multiscale, multiorientation filtering of images date to 
work such as Malik and Perona  (1990).  Combining multiple clues—brightness, texture and 
color—for finding boundary curves in a learning framework was shown by Martin, Fowlkes  
and Malik (2004) to considerably improve performance. 

The closely related problem of finding regions of coherent brightness, color, and tex-
ture, naturally lends itself to formulations in which finding the best partition becomes an 
optimization problem. Three leading examples are the Markov Random Fields approach of 
Geman and Geman (1984), the variational formulation of Mumford  and Shah (1989), and 
normalized cuts by Shi and Malik (2000). 

Through much of the 1960s, 1970s and 1980s, there were two distinct paradigms in 
which visual recognition was pursued, dictated by different perspectives on what was per-
ceived to be the primary problem. Computer vision research on object recognition largely fo-
cused on issues arising from the projection of three-dimensional objects onto two-dimensional 
images. The idea of alignment, also first introduced by Roberts, resurfaced in the 1980s  in the 
work of Lowe (1987) and Huttenlocher and Ullman (1990). Also popular was an approach 
based on describing shapes in terms of volumetric primitives, with generalized cylinders, 
introduced by Tom Binford  (1971), proving particularly popular. 

In contrast, the pattern recognition community viewed the 3D-to-2D  aspects of the prob-
lem as not significant. Their motivating examples were in domains such as optical character 
recognition and handwritten zip code recognition where the primary concern is that of learn-
ing the typical variations characteristic of a class of objects and separating them from other 
classes. See LeCun et al. (1995) for a comparison of approaches. 

In the late 1990s,  these two paradigms started to converge, as both sides adopted the 
probabilistic modeling and learning techniques that were becoming popular throughout AL 
Two lines of work contributed significantly. One was research on face detection, such as that 
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of Rowley, Baluja  and Kanade (1996), and of Viola and Jones (2002b) which demonstrated 
the power of pattern recognition techniques on clearly important and useful tasks. The other 
was the development of point descriptors, which enable one to construct feature vectors from 
pans of objects.  This was pioneered by Schmid and Mohr (1996). Lowe's (2004) SIFT 
descriptor is widely used. The HOG descriptor is due to Dalai  and Triggs (2005). 

Ullman (1979) and Longuet-Higgins  (1981) are influential early works in reconstruc-
tion from multiple images. Concerns about the stability of structure from motion were sig-
nificantly allayed by the work of Tomasi and Kanade (1992) who showed that with the use of 
multiple frames shape could be recovered quite accurately. In the 1990s, with great increase 
in computer speed and storage, motion analysis found many new applications. Building geo-
metrical models of real-world scenes for rendering by computer graphics techniques proved 
particularly popular, led by reconstruction algorithms such as the one developed by Debevec. 
Taylor, and Malik (1996). The books by Hartley and Zisserman  (2000) and Faugeras et al. 
(2001) provide a comprehensive treatment of the geometry of multiple views. 

For single images, inferring shape from shading was first studied by Horn (1970), and 
Horn and Brooks (1989) present an extensive survey of the main papers from a period when 
this was a much-studied problem. Gibson (1950) was the first to propose texture gradients 
as a cue to shape, though a comprehensive analysis for curved surfaces first appears in Card-
ing (1992) and Malik and Rosenholtz (1997). The mathematics of occluding contours, and 
more generally understanding the visual events in the projection of smooth curved objects ;  
owes much to the work of Koenderink and van Doom, which finds an extensive treatment in 
Koenderink's (1990) Solid Shape. In recent years, attention has turned to treating the problem 
of shape and surface recovery from a single image as a probabilistic inference problem, where 
geometrical cues are not modeled explicitly, but used implicitly in a learning framework. A 
good representative is the work of Hoiem,  Efros, and Hebert (2008). 

For the reader interested in human vision, Palmer (1999) provides the best comprehen-
sive treatment; Bruce et al. (2003) is a shorter textbook. The books by Hubel (1988) and 
Rock (1984) are friendly introductions centered on neurophysiology  and perception respec- 
tively_ David Man's hook Virian  (Marc, 1982) played a historical role in connecting computer 
vision to psychophysics and neurobiology. While many of his specific models haven't stood 
the test of time, the theoretical perspective from which each task is analyzed at an informa-
tional,  computational, and implementation level is still illuminating. 

For computer vision, the most comprehensive textbook is Forsyth and Ponce (2002). 
Trucco  and Verri (1998) is a shorter account. Horn (1986) and Faugeras (1993) are two older 
and still useful textbooks. 

The main journals for computer vision are IEEE Transactions en Pattern Analysis and 
Machine Intelligence and International Journal of Computer Vision. Computer vision con-
ferences include ICCV  (International Conference on Computer Vision), CVPR (Computer 
Vision and Pattern Recognition), and ECCV (European Conference on Computer Vision), 
Research with a machine learning component is also published in the NIPS (Neural Informa-
tion Processing Systems) conference, and work on the interface with computer graphics often 
appears at the ACM SIGGRAPH  (Special Interest Group in Graphics) conference. 



Exercises 969 

EXERCISES 

24.1 In the shadow of a tree with a dense, leafy canopy, one sees a number of light spots. 
Surprisingly, they all appear to be circular. Why? After all, the gaps between the leaves 
through which the sun shines are not likely to be circular. 

24.2 Consider a picture of a white sphere floating in front of a black backdrop. The im-
age curve separating white pixels from black pixels is sometimes called the "outline" of the 
sphere. Show that the outline of a sphere, viewed in a perspective camera, can be an ellipse.  
Why do spheres not look like ellipses to you? 

24.3 Consider an infinitely long cylinder of radius r oriented with its axis along the y-axis. 
The cylinder has a Lambertian surface and is viewed by a camera along the positive z-axis. 
What will you expect to see in the image if the cylinder is illuminated by a point source 
at infinity located on the positive x-axis? Draw the contours of constant brightness in the 
projected image. Are the contours of equal brightness uniformly spaced? 

24.4 Edges in an image can correspond to a variety of events in a scene. Consider Fig-
ure 24.4 (page 933),  and assume that it is a picture of a real three-dimensional  scene. identify 
ten different brightness edges in the image, and for each, state whether it corresponds to a 
discontinuity in (a) depth, (b) surface orientation, (c) reflectance, or (d) illumination. 

24.5 A stereoscopic system is being contemplated fur terrain mapping. It will consist of t wo 
CCD cameras. each having 512 x 512 pixels on a 10 cm x 10 cm square sensor. The lenses 
to be used have a focal length of 16 cm, with the focus fixed at infinity. For corresponding 
points (• i,  vi)  in the left image and (1/2,  v2) in the right image, /4  = v2  because the x-axes 
in the two image planes are parallel to the epipolar lines—the lines from the object to the 
camera.  The optical axes of the two cameras are parallel. The baseline between the cameras 
is 1  meter. 

a. If the nearest distance to be measured is 16 meters, what is the largest disparity that will 
occur (in pixels)? 

b. What is the distance resolution at 16 meters, due to the pixel spacing? 
c. What distance corresponds to a disparity of one pixel? 

24.6 Which of the following are tine, and which are false? 

a. Finding corresponding points in stereo images is the easiest phase of the stereo depth-
finding process. 

b. Shape-from-texture  can be done by projecting a grid of light-stripes onto the scene. 
c. Lines with equal lengths in the scene always project to equal lengths in the image 
d. Straight lines in the image necessarily correspond to straight lines in the scene. 
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Figure 24.27 Top view of a two-camera vision system observing a bottle with a wall 
behind it. 

24.7 (Courtesy of Pietro Perona.)  Figure 24.27  shows two cameras at X and Y observing a 
scene. Draw the image seen at each camera, assuming that all named points are in the same 
horizontal plane. What can be concluded from these two images about the relative distances 
of points A, B. C,  D, and E from the camera baseline, and on what basis? 



 

25 ROBOTICS 

In which agents are endowed with physical e ffectors with which to do mischief. 

25.1 INTRODUCTION 
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Robots are physical agents that perform tasks by manipulating the physical world. To do so, 
they are equipped with effectors such as legs, wheels, joints, and grippers. Effectors have 
a single purpose: to assert physical forces on the environment. 1  Robots are also equipped 
with sensors, which allow them to perceive their environment. Present day robotics em-
ploys a diverse set of sensors, including cameras and lasers to measure the environment, and 
gyroscopes and accelerometers to measure the robot's own motion. 

Most of today's robots fall into one of three primary categories. Manipulators, at robot 
arms (Figure 25.1(a)), are physically anchored to their workplace, for example in a factory 
assembly line or on the International Space Station. Manipulator motion usually involves 
a chain of controllable joints, enabling such robots to place their effectors in any position 
within the workplace. Manipulators are by far the most common type of industrial robots, 
with approximately one million units installed worldwide. Some mobile manipulators are 
used in hospitals to assist surgeons. Few car manufacturers could survive without robotic 
manipulators, and some manipulators have even been used to generate original artwork. 

The second category is the mobile robot. Mobile robots move about their environment 
using wheels, legs, or similar mechanisms. They have been put to use delivering food in 
hospitals, moving containers at loading docks, and similar tasks. Unmanned ground vehi-
cles, or UGVs, drive autonomously on streets, highways, and off-road.  The planetary rover 
shown in Figure 252(b) explored Mars for a period of 3 months in 1997. Subsequent NASA 
robots include the twin Mars Exploration Rovers (one is depicted on the cover of this book), 
which landed in 2003 and were still operating six years later. Other types of mobile robots 
include unmanned air vehicles (UAVs), commonly used for surveillance, crop-spraying, and 

In Chapter 2 we talked about actuators, not effectors. Here we distinguish the effector (the physical device) 
from the actuator (the control line lhal  communicates a command to the effector). 

971 
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military operations. Figure 25.2(a)  shows a UAV commonly used by the U.S. military. Au. 
tonomous underwater vehicles (AUVs)  are used in deep sea exploration. Mobile robots 
deliver packages in the workplace and vacuum the floors at home. 

The third type of robot combines mobility with manipulation, and is often called a 
mobile manipulator. Humanoid robots mimic the human torso. Figure 25.1(b)  shows two 
early humanoid robots, both manufactured by Honda Corp. in Japan,  Mobile manipulators 

MOBILE 
MAIN PULATOR  

HUMANOID ROBOT 

(a) (h) 

Figure 25.1 (a) An industrial robotic manipulator for stacking bags on a pallet. Image 
courtesy of Nachi Robotic Systems. (b) Honda's P3 and Asimo humanoid robots. 

(a) (b) 

Figure 25.2 (a) Predator, an unmanned aerial vehicle (11AV)  used by the U.S. Military. 
Image courtesy of General Atomics Aeronautical Systems. (h)  NASA's Sojourner, a mobile 
robot that explored the surface of Mars in July 097_  
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can apply their effectors further afield than anchored manipulators can, but their task is made 
harder because they don't have the rigidity that the anchor provides. 

The field of robotics also includes prosthetic devices (artificial limbs, ears, and eyes 
for humans), intelligent environments (such as an entire house that is equipped with sensors 
and effectors), and multibody systems, wherein robotic action is achieved through swarms of 
small cooperating robots. 

Real robots must cope with environments that are partially observable, stochastic, dy-
namic, and continuous. Many robot environments are sequential and multiagent as well. 
Partial observability and stochasticity are the result of dealing with a large, complex world. 
Robot cameras cannot see around corners, and motion commands are subject to uncertainty 
due to gears slipping, friction, etc. Also, the real world stubbornly refuses to operate faster 
than real time. In a simulated environment, it is possible to use simple algorithms (such as the 
Q-learning  algorithm described in Chapter 21) to learn in a few CPU hours from millions of 
trials_ In a real environment, it might take years to run these trials. Furthermore, real crashes 
really hurt, unlike simulated ones. Practical robotic systems need to embody prior knowledge 
about the robot, its physical environment, and the tasks that the robot will perform so that the 
robot can learn quickly and perform safely. 

Robotics brings together many of the concepts we have seen earlier in the book, in-
cluding probabilistic state estimation, perception, planning, unsupervised learning, and re-
inforcement learning. For some of these concepts robotics serves as a challenging example 
application. For other concepts this chapter breaks new ground in introducing the continuous 
version of techniques that we previously saw only in the discrete case. 

25.2 ROBOT HARDWARE 

So far in this book, we have taken the agent architecture—SO-ISMS,  effectors, and processors—

as given, and we have concentrated on the agent program. The success of real robots depends 
at least as much on the design of sensors and effectors that are appropriate for the task. 

25.2.1 Sensors 

PASSIVE SENSOR Sensors are the perceptual interface between robot and environment. Passive sensors, such 
as cameras, are true observers of the environment: they capture signals that are generated by 

ACTIVE SENSOR  other sources in the environment. Active sensors, such as sonar, send energy into the envi-
ronment. They rely on the fact that this energy is reflected back to the sensor. Active sensors 
tend to provide more information than passive sensors, but at the expense of increased power 
consumption and with a danger of interference when multiple active sensors are used at the 
same time. Whether active or passive, sensors can be divided into three types, depending on 
whether they sense the environment, the robot's location, or the robot's internal configuration. 

RAVGE  FSDER Range finders are sensors that measure the distance to nearby objects. In the early 
SONAR SENSORS days of robotics, robots were commonly equipped with sonar sensors. Sonar sensors emit 

directional sound waves, which are reflected by objects, with some of the sound making it 



(a) (b) 

Figure 25.3  (a) Time of flight camera; image courtesy of Mesa Imaging GmbH.  (b) 3D 
range image obtained with this camera. The range image makes it possible to detect obstacles 
and objects in a robot's vicinity. 
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back into the sensor. The time and intensity of the returning signal indicates the distance 
to nearby objects. Sonar is the technology of choice for autonomous underwater vehicles. 
Stereo vision (see Section 24.4.2) relies on multiple cameras to image the environment from 
slightly different viewpoints, analyzing the resulting parallax in these images to compute the 
range of surrounding objects. For mobile ground robots, sonar and stereo vision are now 
rarely used, because they are not reliably accurate. 

Most ground robots are now equipped with optical range finders. Just like sonar sensors, 
optical range sensors emit active signals (light) and measure the time until a reflection of this 
signal arrives back at the sensor. Figure 25.3(a) shows a time of flight camera. This camera 
acquires range images like the one shown in Figure 25.3(b) at up to 60 frames per second. 
Other range sensors use laser beams and.special  1-pixel cameras that can he directed using 
complex arrangements of mirrors or rotating elements. These sensors are called scanning 
lidars  (short for light detection and ranging). Scanning lidars tend to provide longer ranges 
than time of flight cameras, and tend to perform better in bright daylight, 

Other common range sensors include radar, which is often the sensor of choice for 
UAVs.  Radar sensors can measure distances of multiple kilometers. On the other extreme 
end of range sensing are tactile sensors such as whiskers, bump panels. and touch-sensitive 
skin. These sensors measure range based on physical contact, and can be deployed only for 
sensing objects very close to the robot. 

A second important class of sensors is location sensors. Most location sensors use 
range sensing as a primary component to determine location. Outdoors, the Global Position. 
ing  System (GPS)  is the most common solution to the localization problem. GPS measures 
the distance to satellites that emit pulsed signals. At present, there are 31 satellites in orbit, 
transmitting signals un  multiple frequencies. GPS receivers can recover the distance to these 
satellites by analyzing phase shifts. By triangulating signals from multiple satellites, GPS 
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receivers can determine their absolute location on Earth to within a few meters. Differential 
DIFFERENTIAL LIPS  GPS  involves a second ground receiver with known location, providing millimeter accuracy 

under ideal conditions. Unfortunately, GPS does not work indoors or underwater. Indoors, 
localization is often achieved by attaching beacons in the environment at known locations. 
Many indoor environments are full of wireless base stations, which can help robots localize 
through the analysis of the wireless signal. Underwater, active sonar beacons can provide a 
sense of location, using sound to inform AUVs of their relative distances to those beacons. 

SENSOR 
PROPROCENIVE 

	

	 The third important class is proprioceptive sensors, which inform the robot of its own 
motion. To measure the exact configuration of a robotic joint, motors are often equipped 

SHAFT DECODER 

	

	with shaft decoders that count the revolution of motors in small increments. On robot arms, 
shaft decoders can provide accurate information over any period of time. On mobile robots, 

OCOMETRY  shaft decoders that report wheel revolutions can be used for odometry—the measurement of 
distance traveled. Unfortunately, wheels tend to drift and slip, so odometry  is accurate only 
over short distances. External forces, such as the current for AUVs and the wind for UAVs, 

INE REAL SENSOR 

	

	increase positional uncertainty. Inertial sensors, such as gyroscopes, rely on the resistance 
of mass to the change of velocity. They can help reduce uncertainty. 

FO3C  E SENSOR Other important aspects of robot state are measured by force sensors and torque sen.  
TOROK SENSOR sots. These are indispensable when robots handle fragile objects or objects whose exact shape 

and location is unknown. Imagine a one-ton robotic manipulator screwing in a light bulb. It 
would be all too easy to apply too much force and break the bulb. Force sensors allow the 
robot to sense how hard it is gripping the bulb, and torque sensors allow it to sense how hard 
it is turning. Good sensors can measure forces in all three translational and three rotational 
directions. They do this at a frequency of several hundred times a second, so that a robot can 
quickly detect unexpected forces and correct its actions before it breaks a light bulb. 

25.2.2 Effectors 

Effectors are the means by which robots move and change the shape of their bodies. To 
understand the design of effectors, it will help to talk about motion and shape in the abstract, 

FREEDOM  
DEGFIEE  OF  using the concept of a degree of freedom (DOF)  We count one degree of freedom for each 

independent direction in which a robot, or one of its effectors, can move. For example, a rigid 
mobile robot such as an AUV has six degrees of freedom, three for its (x, y, 0  location in 
space and three for its angular orientation, known as yaw, roll, and pitch. These six degrees 

Fa E1W411C  ETATE define the kinematic state2  or pose of the robot The dynamic state of a robot includes these 
PCRF six plus an additional six dimensions for the rate of change of each kinematic dimension, that 
DYNAMIC STATE is, their velocities. 

For nonrigid bodies, there arc additional degrees of freedom within the robot itself. For 
example, the elbow of a human aim possesses two degree of freedom. It can flex the upper 
arm towards or away, and can rotate right or left. The wrist has three degrees of freedom. It 
can move up and down, side to side, and can also rotate. Robot joints also have one, two, 
or three degrees of freedom each. Six degrees of freedom are required to place an object, 
such as a hand, at a particular point in a particular orientation. The arm in Figure 25.4(a) 

2  "Kinematic" is from the Greek word for motion, as is "cinema."  
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(a) (b) 

Figure 25.4 (a) The Stanford Manipulator, an early robot arm with five revolute  joints (k) 
and one prismatic joint (P), for a total of six degrees of freedom. (b) Motion of a nonholo-
nomic four-wheeled vehicle with front-wheel  steering, 
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has exactly six degrees of freedom, created by five revolute joints that generate rotational 
motion and one prismatic joint that generates sliding motion. You can verify that the human 
arm as a whole has more than six degrees of freedom by a simple experiment: put your hand 
on the table and notice that you still have the freedom to rotate your elbow without changing 
the configuration of your hand. Manipulators that have extra degrees of freedom are easier to 
control than robots with only the minimum number of DOFs. Many industrial manipulators 
therefore have seven DOFs,  not six. 

For mobile robots, the DON are not necessarily the same as the number of actuated ele- 
ments. Consider, for example, your average car: it can move forward or backward, and it can 
turn, giving it two DOFs. In contrast, a car's kinematic configuration is three-dimensional: 
on an open flat surface, one can easily maneuver a car to any (x, y) point, in any orientation. 

EFFECTIVE DOF (See Figure 25.4(b).) Thus, the car has three effective degrees of freedom but two control.  
COVROLLABLE  DIY  table degrees of freedom. We say a robot is nonholonomic  if it has more effective DOFs 
NORHOLONCMIC  than controllable DOFs  and holonomic  if the two numbers are the same_ Holonomic  robots 

are easier to control—it would be much easier to park a car that could move sideways as well 
as forward and backward—but holonomic  robots are also mechanically more complex. Most 
robot arms are holonomic, and most mobile robots are nonholonomic, 

Mobile robots have a range of mechanisms for locomotion, including wheels, tracks, 
DIFERENTOL  DRIVE  and legs. Differential drive robots possess two independently actuated wheels (or tracks). 

one on each side, as on a military tank. If both wheels move at the same velocity, the robot 
moves on a straight line. If they move in opposite directions, the robot turns on the spot. An 

SYNCHRD  DRIVE  alternative is the synchro drive, in which each wheel can move and turn around its own axis. 
To avoid chaos, the wheels are tightly coordinated. When moving straight. for example, all 
wheels point in the same direction and move at the same speed. Both differential and synchro  
dines  are nonholonomic. Some more expensive robots use holonomic drives, which have 
three or more wheels that can be oriented and moved independently. 

Some mobile [pilots  possess aims. Figure 25.5(a) displays a two-armed what.  This 
robot's arms use springs to compensate for gravity, and they provide minimal resistance to 
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Figure 25.5 (a) Mobile manipulator plugging its charge cable into a wall outlet. Image 
courtesy of Willow Garage, © 2009. (b) One of Marc Raibert's legged robots in motion. 

external forces. Such a design minimizes the physical danger to people who might stumble 
into such a robot. This is a key consideration in deploying robots in domestic environments, 

Legs, unlike wheels, can handle rough terrain. However, legs are notoriously slow on 
flat surfaces, and they are mechanically difficult to build. Robotics researchers have tried de-
signs ranging from one leg up to dozens of legs. Legged robots have been made to walk, run, 
and even hop—as we see with the legged robot in Figure 25.5(h). This robot is dynamically 
stable, meaning that it can remain upright while hopping around. A robot that can remain 
upright without moving its legs is called statically stable. A robot is statically stable if its 
center of gravity is above the polygon spanned by its legs. The quadruped (four-legged) robot 
shown in Figure 25.6(a) may appear statically stable. However, it walks by lifting multiple 
legs at the same time, which renders it dynamically stable. The robot can walk on snow and 
ice, and it will not fall over even if you kick it (as demonstrated in videos available online). 
Two-legged robots such as those in Figure 25.6(b) are dynamically stable. 

Other methods of movement are possible: air vehicles use propellers or turbines; un-
derwater vehicles use propellers or thrusters, similar to those used on submarines. Robotic 
blimps rely on thermal effects to keep themselves aloft. 

Sensors and effectors alone do not make a robot. A complete robot also needs a source 
of power to drive its effectors. The electric motor is the most popular mechanism for both 
manipulator actuation and locomotion, but pneumatic actuation using compressed gas and 

hydraulic actuation using pressurized fluids also have their application niches. 

DYNAMICALLY 
STABLE 

STATICALLY .STABLE  

ELECTRIC MOTOR  

PNal1vIAT1C  
ACTUATION 
1-1YiFIAJLIC  
ACTUATION 
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(a) ( 3)  

Figure 25.6  (a) Four-legged dynamically-stable robot "Big Dog." Image courtesy Boston 
Dynamics, C)  2009.  (b) 2009 RoboCup Standard Platform League competition, showing the 
winning team, B-Human, from the DFKI  center at the University of Bremen. Throughout the 
match, B-Human outscored their opponents 64:1. Their success was built on probabilistic 
state estimation using particle filters and Kalman lifters;  on machine-learning models for gait 
optimization;  and on dynamic kicking moves. Image courtesy 1)14 K  I, (0  2009_  

25.3 ROBOTIC PERCEPTION 

Perception is the process by which robots map sensor measurements into internal representa-
tions  of the environment. Perception is difficult because sensors are noisy, and the environ-
ment is partially observable, unpredictable, and often dynamic. In other words, robots have 
all the problems of state estimation (or filtering) that we discussed in Section 15.2, As a 
rule of thumb, good internal representations for robots have three properties: they contain 
enough information for the robot to make good decisions, they are structured so that they can 
be updated efficiently, and they are natural in the sense that internal variables correspond to 
natural state variables in the physical world. 

In Chapter 15, we saw that Kalman filters, IIMMs,  and dynamic Bayes nets can repre-
sent the transition and sensor models of a partially observable environment, and we described 
both exact and approximate algorithms for updating the belief state—the posterior probabil-
ity distribution over the environment state variables. Several dynamic Bayes net models fox  
this process were shown in Chapter 15.  For robotics problems, we include the robot's own 
past actions as observed variables in the model. Figure 25.7 shows the notation used in this 
chapter: X, is the state of the envimiurent  {including the robot) at time t,  Zt  is the observation 
received at time t, and A t  is the action taken after the observation is received. 



Figure 25.7  Robot perception can be viewed as temporal inference from sequences of 
actions and measurements. as illustrated by this dynamic Bayes network. 
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MCTION  MODEL 

LODALIZATtOrl  

We would like to compute the new belief state, P(Xt-o.  I zi:t-o.,  aht),  from the current 
belief state P(Xt  1 ii, t ,  ai, t _i)  and the new observation zt+ 1.  We did this in Section 15.2, 
but here there are two differences: we condition explicitly on the actions as well as the ob-
servations, and we deal with continuous rather than discrete variables. Thus, we modify the 
recursive filtering equation (15.5 on page 572) to use integration rather than summation: 

P(Xt+t  Zl:f.-E-17al:f.)  

=  EIPZt+1  I Xt+1)  P(X  i t+1  I xt  T  at) P(Xt  Z11, al.:t  -1) Cht  . (25.1) 

This equation states that the posterior over the state variables X at time t  1 is calculated 
recursively from the corresponding estimate one time step earlier. This calculation involves 
the previous action a t  and the current sensor measurement zt+ 1.  For example, if our goal 
is to develop a soccer-playing robot, Xt,_F 1  might be the location of the soccer ball  relative 
to the robot. The posterior P(X,  I z i t , a r:  t–  ) is a probability distribution over all states that 
captures what we know from past sensor measurements and controls. Equation (25.1) tells us 
how to recursively estimate this location, by incrementally folding in sensor measurements 
(e.g., camera images) and robot motion commands. The probability P(Xt + -_  xt,  at) is called 
the transition model or motion model, and Nt _..1  I X t4.1)  is the sensor model. 

253.1 Localization and mapping 

Localization is the problem of finding out where things are—including the robot itself. 
Knowledge about where things are is at the core of any successful physical interaction with 
the environment. For example, robot manipulators must know the location of objects they 
seek to manipulate; navigating robots must know where they are to find their way around. 

To keep things simple, let us consider a mobile robot that moves slowly in a flat 213 
world. Let us also assume the robot is given an exact map of the environment. (An example 
of such a map appears in Figure 25.10.) The pose of such a mobile robot is defined by its 
two Cartesian coordinates with values 2;  and y and its heading with value 0, as illustrated in 
Figure 25.8(a). If we arrange those three values in a vector, then any particular state is given 
by Xt  = (.rt,  Ot) T .  So far so good. 
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Figure 25.8  (a) A simplified kinematic model of a mobile robot. The robot is shown as a 
circle with an interior line marking the forward direction. The state x t  consists of the (xt  , yt )  
position (shown implicitly) and the orientation O t .  The new state x t _hi  is obtained by an 
update in position of ut Al  and in orientation of wt d t .  Also shown is a lautdotark  at (xi, yi)  
observed at time t. (b) The range-scan sensor model. Two possible robot poses are shown for 
a given range scan (at , z2,  as, z4).  It is much more likely that the pose on the left generated 
the range scan than the pose on the right. 

In the kinematic approximation, each action consists of the "instantaneous" specifica-
tion of two velocities—a translational velocity ti t  and a rotational velocity wt .  For small time 
intervals At, a crude deterministic model of the motion of such robots is given by 

vtAt.  cos Ot  
Xftl  = ,f  (Xt ,  vt , wt )  = vtAt  sill t .  

at wt  At.  

The notation X  refers to a deterministic state prediction. Of course, physical robots are 
somewhat unpredictable. This is commonly modeled by a Gaussian distribution with mean 
f (Xt.,  vt,  u./ )  and covariance E z . (See Appendix A for a mathematical definition.) 

P(Xt-Fi.  I Xt:  vt,wt)  = Ex) - 
This probability distribution is the robot's  motion model. It models the effects of the motion 
a t  on the location of the robot. 

Next,  we need a sensor model. We will consider two kinds of sensor model. The 
rust  assumes that the sensors detect stable,  recognizable  features of the environment called 

LANUMAHK 
 landmarks. For each landmark, the range and bearing are reported. Suppose the robot's state 

is xt  = (a:t  ,  , Ut)7  and it senses a landmark whose location is known to be (xi, yi)  T .  Without 
noise, the range and bearing can be calculated by simple geometry. (See Figure 25.8(a).)  The 
exact prediction of the observed range and bearing would be 

=  h(x t )  =  arctan -Yr  
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MOOT  CAILO  
LOCALIZATION 

LINEARIZATION 

Again, noise distorts our measurements. To keep things simple, one might assume Gaussian 
noise with covariance Ex ,  giving us the sensor model 

P(zt  I  xt)  = Mit,Ez)  •  
A somewhat different sensor model is used for an array of range sensors, each of which 
has a fixed bearing relative to the robot. Such sensors produce a vector of range values 
z t  = (z1,  ,zAr) T .  Given a pose xt,  let zi be the exact range along the jth beam direction 
from xt  to the nearest obstacle. As before, this will be corrupted by Gaussian noise. Typically, 
we assume that the errors for the different beam directions are independent and identically 
distributed, so we have 

nr  
P(zt  I  xt) = H  

j = 1  
Figure 25.8(b) shows an example of a four-beam range scan and two possible robot poses, 
one of which is reasonably likely to have produced the observed scan and one of which is not. 
Comparing the range-scan model to the landmark model, we see that the range-scan model 
has the advantage that there is no need to identify a landmark before the range scan can be 
interpreted; indeed, in Figure 25.8(h),  the robot faces a featureless wall. On the other hand,  
if there are visible, identifiable landmarks, they may provide instant localization, 

Chapter 15 described the Kalman filter, which represents the belief state as a single 
multivariate Gaussian, and the particle filter, which represents the belief state by a collection 
of particles that correspond to states. Most modem localization algorithms use one of two 
representations of the robot's belief P(Xt  aizt-i)•  

Localization using particle filtering is called Monte Carlo localization, or MCL. The 
MCL alfgorithm is an instance of the particle-filtering algorithm of Figure 15.17 (page 598). 
All we need to do is supply the appropriate motion model and sensor model. Figure 25.9 
shows one version using the range-scan model. The operation of the algorithm is illustrated in 
Figure 25.10  as the robot finds out where it is inside an office building. In the first image, the 
particles are uniformly distributed based cm the prior, indicating global uncertainty about the 
robot's position. In the second image, the first set of measurements arrives and the particles 
form clusters in the areas of high posterior belief. In the third, enough measurements are 
available to push all the particles to a single location. 

The Kalman filter is the other major way to localize. A Kalman filter represents the 
posterior P(Xt  zi , t .  ai l_ ) by a Gaussian. The mean of this Gaussian will be denoted lit  and 
its covariance Et. The main problem with Gaussian beliefs is that they are only closed under 
linear motion models f and linear measurement models h. For nonlinear f  or h, the result of 
updating a filter is in general not Gaussian. Thus, localization algorithms using the Kalman 
filter linearize the motion and sensor models. Linearization is a local approximation of a 
nonlinear function by a linear function. Figure 25.11 illustrates the concept of linearization 
for a (one-dimensional) robot motion model. On the left, it depicts a nonlinear motion model 

f (xt ,  a t ) (the control a t  is omitted in this graph since it plays no role in the linearization). 
On the right, this function is approximated by a linear function f (xt ,  at ). This linear function 
is tangent to f at the point P t , the mean of our state estimate at time t. Such a linearization 
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TAYLOR aPPRISION  

SINIJLTANEOUS  LOCALIZATION AND MAPPING 

function MONTE-CARLO-LOCALIZATION(a, z, N. .13 (XIX,  v, w),  P(zie),  yn)  returns 
a set of samples for the next time step 

inputs: a, robot velocities ir  and 

z, range scan zi,  
P(X1X,  v, motion model 

P(z[2. *),  range sensor noise model 
at, 2D map of the environment 

persistent: S,  a vector of samples of size N 
local variables: W.  a vector of weights of size N 

,  a temporary vector of particles of size N 
W'.  a vector of weights of size N 

if S is empty then /*  initialization phase */  
fors = 1 toN do 

sample from P(  XL?  )  
for i  = 1 to N  do f4-  update cycle */ 

S'Iil  sample from P(Xf  K = v, Lo)  
w'ItJ 1 
for j 1  to 11,1  do 

z*  RAYCAs -r(j,  X = Sr[i],  so) 

•  P( 231  z . )  
3  — WEIGHTED-SAMPLE-WITH-REPLACEMENT(N,S',  W') 

return S 

Figure 25.9  A Monte Carlo localization algorithm using a range-scan sensor model with 
independent noise,  

is called (first degree) Taylor expansion. A Kalman filter that linearizes f and h,  via Taylor 
expansion is called an extended Kalman filter (or EKF). Figure 25.12  shows a sequence 
of estimates of a robot running an extended Kalman filter localization algorithm_ As the 
robot moves, the uncertainty  in its location estimate increases, as shown by the error ellipse& 
Its error decreases as it senses the range and bearing to a landmark with known location 
and increases again as the robot loses sight of the landmark,  EKF algorithms work well if 
landmarks are easily identified. Otherwise, the posterior distribution may be multimodal, as 
in Figure 25.10(b). The problem of needing to know the identity of landmarks is an instance 
of the data association problem discussed in Figure 15.6. 

In some situations, no map of the environment is available. Then the robot will have to 
acquire a map. This is a bit of a chicken-and-egg problem: the navigating robot will have to 
determine its location relative to a map it doesn't quite know, at the same time building this 
map while it doesn't quite know its actual location. This problem is important for many robot 
applications, and it has been studied extensively under the name simultaneous localization 
and mapping, abbreviated as SLAM. 

SLAM problems are solved using many different probabilistic techniques, including 
the extended Kalman filter discussed above. Using the EKF is straightforward: just augment 
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Figure 25.10 Mnnte  Carlo local  i7atinn,  a particle filtering algorithm fnr mnhile  robot  lo- 
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gating in the (symmetric) corridor. (c) lJnimodal  uncertainty after entering a room and finding 
it to be distinctive. 
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(a) (b) 

robot  

Figure 25.11  One-dimensional illustration of a linearized motion model: (a) The function 
f, and the projection of a mean p. and a covariance interval (based on E t )  into time t +1. 
(b) The linearized version is the tangent of f at p.. The projection of the mean µt  is correct. 
However, the projected covariance. Et_h i  differs from Et-hi- 

landmark 

Figure 25.12  Example of localization using the extended Kalman filter. The robot moves 
on a straight line. As it progresses, its uncertainty increases gradually, as illustrated by the 
error ellipses. When it observes a landmark with known position, the uncertainty is reduced. 
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the state vector to include the locations of the landmarks in the environment. Luckily, the 
EKF update scales quadratically,  so for small maps (e.g., a few hundred landmarks) the com-
putation is quite feasible. Richer maps are often obtained using graph relaxation methods, 
similar to the Bayesian network inference techniques discussed in Chapter 14. Expectation-
maximization is also used for SLAM. 

25.3.2 Other types of perception 

Not all of robot perception is about localization or mapping. Robots also perceive the tem-
perature, odors, acoustic signals, and so on. Many of these quantities can be estimated using 
variants of dynamic Bayes networks. All that is required for such estimators are conditional 
probability distributions that characterize the evolution of state variables over time, and sen- 
sor models that describe the relation of measurements to state variables. 

It is also possible to program a robot as a reactive agent, without explicitly reasoning 
about probability distributions over states. We cover that approach in Section 25.6.3. 

The trend in robotics is clearly towards representations with well-defined semantics. 
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LOW-DIMENSIONAL 
EM3EDDING  

(a) (b) (c) 

Figure 25.13 Sequence of "drivable surface" classifier results using adaptive vision. In 
(a) only the road is classified as drivable (striped area). The V-shaped dark line shows where 
the vehicle is heading. In (b) the vehicle is commanded to drive off the road, onto a grassy 
surface, and the classifier is beginning to classify some of the grass as drivable. In (c) the 
vehicle has updated its model of drivable surface to correspond to grass as well as road. 

Probabilistic techniques outperform other approaches in many hard perceptual problems such 
as localization and mapping. However, statistical techniques are sometimes too cumbersome,  
and simpler solutions may be just as effective in practice. To help decide which approach to 
take, experience working with real physical robots is your best teacher. 

25.3.3 Machine learning in robot perception 

Machine learning plays an important role in robot perception. This is particularly the case 
when the best internal representation is not known. One common approach is to map high-
dimensional sensor streams into lower-dimensional spaces using unsupervised machine team-
ing methods (see Chapter 18). Such an approach is called low- dimensional embedding. 
Machine learning makes it possible to learn sensor and motion models from data, while si-
multaneously discovering a suitable internal representations. 

Another machine learning technique enables robots to continuously adapt to broad 
changes in sensor measurements. Picture yourself walking from a sun-lit  space into a dark 
neon-lit room. Clearly things are darker inside. But the change of light source also affects all 
the colors: Neon light has a stronger component of green light than sunlight. Yet somehow 
we seem not to notice the change. If we walk together with people into a neon-Lit  room, we 
don't think that suddenly their faces turned green. Our perception quickly adapts to the new 
lighting conditions, and our brain ignores the differences. 

Adaptive perception techniques enable robots to adjust to such changes. One example 
is shown in Figure 25.13, taken from the autonomous driving domain. Here an unmanned 
ground vehicle adapts its classifier of the concept "drivable surface." How does this work? 
The robot uses a laser to provide classification for a small area right in front of the robot. 
When this area is found to be fiat  in the laser range scan, it is used as a positive training 
example for the concept "drivable surface." A mixture-of-Gaussians technique similar to the 
EM algorithm discussed in Chapter 20 is then trained to recognize the specific color and 
texture coefficients of the small sample patch. The images in Figure 25.13 are the result of 
applying this classifier to the full image. 
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SELF-SUPERVISED  
LEARNING 

Methods that make robots collect their own training data (with labels!) are called seff.  
supervised. In this instance, the robot uses machine learning to leverage a short-range sensor 
that works well for terrain classification into a sensor that can see much farther. That allows 
the robot to drive faster, slowing down only when the sensor model says there is a change in 
the terrain that needs to be examined more carefully by the short-range sensors. 

25.4 PLANNING TO MOVE 

POINT-TO  -PORT 
MOTION 

COMPLIANT  MOTION 

PATH PLANN  113  

WORKSPACE 
R EP RESENTATION  

LINKAGE 
CONSTRAINTS 

All of a robot's deliberations ultimately come down to deciding how to move effectors. The 
point-to-point motion problem is to deliver the robot or its end effector to a designated target 
location. A greater challenge is the compliant motion problem, in which a robot moves 
while being in physical contact with an obstacle. An example of compliant motion is a robot 
manipulator that screws in a light bulb, or a robot that pushes a box across a table top.  

We begin by finding a suitable representation in which motion-planning problems can 
be described and solved. It turns out that the configuration space—the  space of robot statcs 
defined by location, orientation, and joint angles—is a better place to work than the original 
3D space. The path planning problem is to find a path from one configuration to another in 
configuration space. We have already encountered various versions of the path-planning prob-
lem throughout this book; the complication added by robotics is that path planning involves 
continuous spaces. There are two main approaches: cell decomposition and skeletonization.  
Each reduces the continuous path-planning problem to a discrete graph-search problem. In 
this section, we assume that motion is deterministic and that localization of the robot is exact. 
Subsequent sections will relax these assumptions. 

25.4.1 Configuration space 

We will start with a simple representation for a simple robot motion problem. Consider the 
robot arm shown in Figure 25.14(a). Ti has two joints that move independently_  Moving 
the joints alters the (37,  y) coordinates of the elbow and the gripper. (The arm cannot move 
in the z direction.) This suggests that the robot's configuration can be described by a four-
dimensional coordinate: (x,,  y,)  for the location of the elbow relative to the environment and 
(acg ,  y9 ) for the location of the gripper. Clearly, these four coordinates characterize the full 
state of the robot. They constitute what is known as workspace representation, since the 
coordinates of the robot are specified in the same coordinate system as the objects it seeks to 
manipulate (or to avoid). Workspace representations are well-suited for collision checking, 
especially if the robot and all objects are represented by simple polygonal models. 

The problem with the workspace representation is that not all workspace coordinates 
are actually attainable, even in the absence of obstacles. This is because of the linkage con-
straints on the space of attainable workspace coordinates. For example, the elbow position 
(x,,  y,)  and the gripper position (x 2 , y9 ) are always a fixed distance apart, because they are 
joined by a rigid forearm. A robot motion planner defined over workspace coordinates faces 
the challenge of generating paths that adhere to these constraints. This is particularly tricky 



(a) (b) 

Figure 25.14  (a) Workspace representation of a robot arm with 2 DOFs. The workspace 
is a box with a flat obstacle hanging from the ceiling. (b) Configuration space of the same 
robot Only white regions in the space are configurations that are free of collisions. The dot 
in this diagram corresponds to the configuration of the robot shown on the left. 
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because the state space is continuous and the constraints are nonlinear. It turns out to be eas-
ier to plan with a configuration space representation. Instead of representing the state of the 
robot by the Cartesian coordinates of its elements, we represent the state by a configuration 
of the robot's joints. Our example robot possesses two joints. Hence, we can represent its 
state with the two angles y.1,  and ya,  for the shoulder joint and elbow joint, respectively. In 
the absence of any obstacles, a mbot could freely take on any value in configuration space. In 
particular, when planning a path one could simply connect the present configuration and the 
target configuration by a straight line. In following this path, the robot would then move its  
joints at a constant velocity, until a target location is reached. 

Unfortunately. configuration spaces have their own problems. The task of a robot is usu-
ally expressed in workspace coordinates, not in configuration space coordinates. This raises 
the question of how to map between workspace coordinates and configuration space. Trans-
forming configuration space coordinates into workspace coordinates is simple it involves 
a series of straightforward coordinate transfomiations. These transformations are linear fer 
prismatic joints and trigonometric for revolute joints. This chain of coordinate transformation 
is known as kinematics. 

The inverse problem of calculating the configuration of a robot whose effector location 
is specified in workspace coordinates is known as inverse kinematics. Calculating the inverse 
kinematics is hard, especially for robots with many DOFs. In particular, the solution is seldom 
unique_ Figure 25.14(a)  shows  one of two possible configurations that  put the gripper in the 
same location. (The other configuration would has the elbow below the shoulder.) 

KIN EMATIGS  

INVERSE 
lOA  ELIATICS  
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Figure 25.15 Three robot configurations, shown in workspace and configuration space. 

In general, this two-link robot arm has between zero and two inverse kinematic solu- 
tions for any set of workspace coordinates. Most industrial robots have sufficient degrees 
of freedom to find infinitely many solutions to motion problems. To see how this is possi- 
ble, simply imagine that we added a third revolute joint to our example robot, one whose 
rotational axis is parallel to the ones of the existing joints. In such a case, we can keep the 
location (but not the orientation!) of the gripper fixed and still freely rotate its internal joints, 
for most configurations of the robot. With a few more joints (how many?) we can achieve the 
same effect while keeping the orientation of the gripper constant as well. We have already 
seen an example of this in the "experiment" of placing your hand no the desk and moving 
your elbow. The kinematic constraint of your hand position is insufficient to determine the 
configuration of your elbow. In other words, the inverse kinematics of your shoulder–arm 
assembly possesses an infinite number of solutions. 

The second problem with configuration space representations arises from the obsta-
cles that may exist in the robot's workspace. Our example in Figure 25.14(a) shows several 
such obstacles, including a free-hanging obstacle that protrudes into the center of the robot's 
workspace. In workspace, such obstacles take on simple geometric forms—especially in 
most robotics textbooks, which tend to focus on polygonal obstacles. But how do they look 
in configuration space? 

Figure 25.14(6)  shows the configuration space for our example robot, under the specific 
obstacle configuration shown in Figure 25.14(a). The configuration space can be decomposed 
into two subspaces: the space of all configurations that a robot may attain, commonly called 
free space, and the space of unattainable configurations, called occupied space. The white 
area in Figure 25.14(b) corresponds to the free space. All other regions correspond to occu- 
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pied space. The different shadings of the occupied space corresponds to the different objects 
in the robot's workspace; the black region surrounding the entire free space corresponds to 
configurations in which the robot collides with itself. It is easy to see that extreme values of 
the shoulder or elbow angles cause such a violation. The two oval-shaped regions on both 
sides of the robot correspond to the table on which the robot is mounted. The third oval region 
corresponds to the left wall. Finally, the most interesting object in configuration space is the 
vertical obstacle that hangs from the ceiling and impedes the robot's motions. This object has 
a funny shape in configuration space: it is highly nonlinear and at places even concave. With 
a little bit of imagination the reader will recognize the shape of the gripper at the upper left 
end. We encourage the reader to pause for a moment and study this diagram. The shape of 
this obstacle is not at all obvious? The dot inside Figure 25.14(h)  marks the configuration of 
the robot, as shown in Figure 25.14(a).  Figure 25.15  depicts three additional configurations, 
both in workspace and in configuration space. In configuration conf-1, the gripper encloses 
the vertical obstacle. 

Even if the robot's workspace is represented by flat polygons, the shape of the free space 
can be very complicated. In practice, therefore, one usually probes a configuration space 
instead of constructing it explicitly. A planner may generate a configuration and then test to 
see if it is in free space by applying the robot kinematics and then checking for collisions in 
workspace coordinates, 

CE_L  
DECOMPOSITEGN  

25.4.2 Cell decomposition methods 

The first approach to path planning uses cell decomposition—that is, it decomposes the 
free space into a finite number of contiguous regions, called cells. These regions have the 
important property that the path-planning problem within a single region can be solved by 
simple means (e.g., moving along a straight line). The path-planning problem then becomes 
a discrete graph-search problem, very much like the search problems introduced in Chapter 3. 

The simplest cell decomposition consists of a regularly spaced grid. Figure 25.16(a) 
shows a square grid decomposition of the space and a solution path that is optimal for this 
grid size. Grayscale  shading indicates the value of each free-space grid cell—i.e., the cost of 
the shortest path from that cell to the goal. (These values can be computed by a deterministic 
form of the VALUE-ITERATION algorithm given in Figure 17.4 on page 653.) Figure 25.16(b)  
shows the corresponding workspace trajectory for the arm. Of course, we can also use the A"  
algorithm to find a shortest path. 

Such a decomposition has the advantage that it is extremely simple to implement, but 
it also suffers from three limitations. First, it is workable only for low-dimensional configu-
ration spaces, because the number of grid cells increases exponentially with d,  the number of 
dimensions. Sounds familiar? This is the curse!dimensionality@of  dimensionality. Second, 
there is the problem of what to do with cells that are "mixed"—that  is, neither entirely within 
free space nor entirely within occupied space. A solution path that includes such a cell may 
not be a real solution, because there may be no way to crass the cell in the desired direction 
iu  a straight line. This would make the path planner unsound. On the other hand, if we insist 
that only completely free cells may be used, the planner will be incomplete, because it might 



(a) (6) 

Figure 25.16  (a) Value function and path found for a discrete grid cell approximation of 
the configuration space. (b) The same path visualized in workspace coordinates. Notice how 
the robot bends its elbow to avoid a collision with the vertical obstacle. 
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be the case that the only paths to the goal go through mixed cells—especially if the cell size 
is comparable to that of the passageways and clearances in the space. And third, any path 
through a discretized state space will not be smooth. It is generally difficult to guarantee that 
a smooth solution exists near the discrete path. So a robot may not be able to execute the 
solution found through this decomposition. 

Cell decomposition methods can be improved in a number of ways, to alleviate some 
of these problems. The first approach allows further subdivision of the mixed cells—perhaps 
using cells of half the original size. This can he continued recursively until a path is found 
that lies entirely within free cells. (of course, the method only works if there is a way to 
decide if a given cell is a mixed cell, which is easy only if the configuration space boundaries 
have relatively simple mathematical descriptions.) This method is complete provided there is 
a bound on the smallest passageway through which a solution must pass. Although it focuses 
most of the computational effort on the tricky areas within the configuration space, it still 
fails to scale well to high-dimensional problems because each recursive splitting of a cell 
creates 24  smaller cells. A second way to obtain a complete algorithm is to insist on an exact 
cell decomposition of the free space. This method must allow cells to be irregularly shaped 
where they meet the boundaries of free space, but the shapes must still be "simple" in the 
sense that it should be easy to compute a traversal of any free cell. This technique requires 
some quite advanced geometric ideas, so we shall not pursue it further here. 

Examining the solution path shown in Figure 25.16(a), we can see an additional diffi- 
culty that will have to be resolved. The path contains arbitrarily sharp comets; a robot moving 
at any finite speed could not execute such a path. This problem is solved by storing certain 
continuous values for each grid cell. Consider an algorithm which stores, for each grid cell, 
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the exact, continuous state that was attained with the cell was first expanded in the search. 
Assume further, that when propagating information to nearby grid cells, we use this continu- 
ous state as a basis, and apply the continuous robot motion model for jumping to nearby cells. 
In doing so, we can now guarantee that the resulting trajectory is smooth and can indeed he 

NY3RID executed by the robot. One algorithm that implements this is hybrid A*. 

POTENTIAL FIELD 

EKELETONLZATION  
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25.4.3 Modified cost functions 

Notice that in Figure 25.16, the path goes very close to the obstacle_ Anyone who has driven 
a car knows that a parking space with one millimeter of clearance on either side is not really a 
parking space at all for the same reason, we would prefer solution paths that are robust with 
respect to small motion errors. 

This problem can be solved by introducing a potential field. A potential field is a 
function defined over state space, whose value grows with the distance to the closest obstacle. 
Figure 25.17(a)  shows such a potential field—the darker a configuration state, the closer it is 
to an obstacle. 

The potential field can be used as an additional cost term in the shortest-path calculation. 
This induces an interesting tradeoff. On the one hand. the robot seeks to minimize path length 
to the goal. On the other hand, it tries to stay away from obstacles by virtue of minimizing the 
potential function. With the appropriate weight balancing the two objectives, a resulting path 
may look like the one shown in Figure 25.17(b).  This figure also displays the value function 
derived from the combined cost function, again calculated by value iteration. Clearly, the 
resulting path is longer, but it is also safer. 

There exist many other ways to modify the cost function. For example, it may he 
desirable to smooth the control parameters over time. For example, when driving a car, a 
smooth path is better than a jerky one. In general, such higher-order constraints are not easy 
to accommodate in the planning process, unless we make the most recent steering command 
a part of the state. However, it is often easy to smooth the resulting trajectory after planning, 
using conjugate gradient methods. Such post-planning smoothing is essential in many real-
world applications. 

25.4.4 Skeletonization methods 

The second major family of path-planning algorithms is based on the idea of skeletonization.  
These algorithms reduce the robot's free space to a one-dimensional representation, for which 
the planning problem is easier. This lower-dimensional representation is called a skeleton of 
the configuration space. 

Figure 25.18 shows an example skeletonization: it is a Voronoi graph of the free 
space—the set of all points that are equidistant to two or more obstacles. To do path plan-
ning with a Voronoi graph, the robot first changes its present configuration to a point on the 
Voronoi graph. It is easy to show that this can always be achieved by a straight-line motion 
in configuration space. Second, the robot follows the Voronoi graph until it reaches the point 
nearest to the target configuration. Finally, the robot leaves the Voronoi  graph and moves to  
the target. Again, this final step involves straight-Line  motion in configuration space. 



(a) (b) 

Figure 25.17 (a) A repelling potential field pushes the robot away from obstacles. (b) 
Path found by simultaneously minimizing path length and the potential. 

(a) (b) 

Figure 25.18  (a) The Voronoi graph is the set  of points equidistant to two or more obsta-
cles in configuration space. (b) A probabilistic roadrnap,  composed of 400 randomly chosen 
points in free space. 
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In this way, the original path -planning problem is reduced to finding a path on the 
Voronoi graph, which is generally  one -dimensional (except in certain nongeneric  cases) and 

has finitely many points where three or more one-dimensional curves intersect. Thus, finding 
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the shortest path along the Voronoi graph is a discrete graph-search problem of the kind 
discussed in Chapters 3 and 4. Following the Voronoi graph may not give us the shortest 
path, but the resulting paths tend to maximize clearance. Disadvantages of Voronoi  graph 
techniques are that they are difficult to apply to higher-dimensional configuration spaces, and 
that they tend to induce unnecessarily large detours when the configuration space is wide 
open. Furthermore, computing the Voronoi graph can be difficult, especially in configuration 
space, where the shapes of obstacles can be complex. 

An alternative to the Voronoi graphs is the probabilistic roadmap, a skeletonization 
approach that offers more possible routes, and thus deals better with wide-open spaces. Fig-
ure 25.18(b) shows an example of a probabilistic roadmap. The graph is created by randomly 
generating a large number of configurations, and discarding those that do not fall into free 
space. Two nodes are joined by an arc if it is "easy" to reach one node from the other—for 
example, by a straight line in free space. The result of all this is a randomized graph in the 
robot's free space. If we add the robot's start and goal configurations to this graph, path 
planning amounts to a discrete graph search. Theoretically, this approach is incomplete, be-
cause a bad choice of random points may leave us without any paths from start to goal. It 
is possible to bound the probability of failure in terms of the number of points generated 
and certain geometric properties of the configuration space. It is also possible to direct the 
generation of sample points towards the areas where a partial search suggests that a good 
path may be found, working bidirectionally from both the start and the goal positions. With 
these improvements, probabilistic roadmap planning tends to scale better to high-dimensional 
configuration spaces than most alternative path-planning techniques. 

25.5 PLANNING UNCERTAIN MOVEMENTS 

MCST  LIKELY STATE 

ONLINE  REPLANNING 

None of the robot motion-planning algorithms discussed thus far addresses a key characteris-
tic of robotics problems: uncertainty. In robotics, uncertainty arises from partial observability 
of the environment and from the stochastic (or unmodeled)  effects of the robot's actions. Er-
rors can also arise from the use of approximation algorithms such as particle filtering, which 
does not provide the robot with an exact belief state even if the stochastic nature of the envi-
ronment is modeled perfectly. 

Most of today's robots use deterministic algorithms for decision making, such as the 
path-planning algorithms of the previous section. To do so, it is common practice to extract 
the most likely state from the probability distribution produced by the state estimation al-
gorithm. The advantage of this approach is purely computational. Planning paths through 
configuration space is already a challenging problem; it would be worse if we had to work 
with a full probability distribution over states. Ignoring uncertainty in this way works when 
the uncertainty is small. In fact, when the environment model changes over time as the result 
of incorporating  sensor measurements,  many robots plan paths online during plan execution. 
This is the online replanning technique of Section 11.3.3. 
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Unfortunately, ignoring the uncertainty does not always work. In some problems the 
robot's uncertainty is simply too massive: How can we use a deterministic path planner to 
control a mobile robot that has no clue where it is? In general, if the robot's true state is not 
the one identified by the maximum likelihood rule, the resulting control will be suboptimal. 
Depending on the magnitude of the error this can lead to all sorts of unwanted effects, such 
as collisions with obstacles. 

The field of robotics has adopted a range of techniques for accommodating uncertainty. 
Some are derived from the algorithms given in Chapter 17 for decision making under uncer-
tainty. If the robot faces uncertainty only in its state transition, but its state is fully observable. 
the problem is best modeled as a Markov decision process (MDP). The solution of an MDP is 
an optimal policy, which tells the robot what to do in every possible state. In this way, it can 
handle all sorts of motion errors, whereas a single-path solution from a deterministic planner 
would be much less robust. in robotics, policies are called navigation functions. The value 
function shown in Figure 25.16(a) can be converted into such a navigation function simply 
by following the gradient. 

Just as in Chapter 17, partial observability makes the problem much harder, The result-
ing robot control problem is a partially observable MDP, or POMDP. In such situations, the 
robot maintains an internal belief state, like the ones discussed in Section 25.3. The solution 
to a POMDP is a policy defined over the robot's belief state. Put differently, the input to 
the policy is an entire probability distribution. This enables the robot to base its decision not 
only on what it knows, but also on what it does not know. For example, if it is uncertain 
about a critical state variable, it can rationally invoke an information gathering action. This 
is impossible in the MDP framework, since MDPs assume full observability. Unfortunately, 
techniques that solve POMDPs  exactly are inapplicable to robotics—there are no known tech-
niques for high-dimensional continuous spaces. Discretization produces POMDPs that are far 
too large to handle. One remedy is to make the minimization of uncertainty a control objec-
tive. For example, the coastal navigation heuristic requires the robot to stay near known 
landmarks to decrease its uncertainty. Another approach applies variants of the probabilis-
tic madrnap  planning method to the belief space representation_ Such methods tend to scale 
better to large discrete POMDPs. 

25.5.1 Robust methods 

Uncertainty can also be handled using so-called robust control methods (see page 836) rather 
than probabilistic methods. A robust method is one that assumes a bounded amount of un-
certainty in each aspect of a problem, but does not assign probabilities to values within the 
allowed interval. A robust solution is one that works no matter what actual values occur, 
provided they are within the assumed interval. An extreme fonn  of robust method is the con-
formant planning approach given in Chapter 11—it produces plans that work with no state 
information at all. 

Here, we look at a robust method that is used for fine-motion planning (or FMP) in 
robotic assembly tasks. Fine-motion planning involves moving a robot arm in very close 
proximity to a static environment object. The main difficulty with fine-motion planning is 
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Figure 25.19  A two-dimensional environment, velocity uncertainty cone, and envelope of 
possible robot motions_ The intended velocity is v, but with uncertainty the actual velocity 
could be anywhere in C.„  , resulting in a final configuration somewhere in the motion envelope, 
which means  we wouldn't know if we hit the hole or  not 

Figure 25.20  The first motion connuand  and the resulting envelope of possible robot mo- 
tions. No matter what the error, we know the final configuration will be to the left of the 
hole. 
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that the required motions and the relevant features of the environment are very small. At such 
small scales, the robot is unable to measure nr  control its position accurately and may also  he 
uncertain of the shape of the environment itself; we will assume that these uncertainties are 
all bounded. The solutions to FMT,  problems will typically be conditional plans or policies 
that make use of sensor feedback during execution and are guaranteed to work in all situations 
consistent with the assumed uncertainty bounds. 

A fine-motion plan consists of a series of guarded motions. Each guarded motion 
consists of (1) a motion command and (2) a termination condition, which is a predicate on the 
robot's sensor values, and returns true to indicate the end of the guarded move. The motion 
commands are typically compliant motions that allow the effector to slide if the motion 
command would cause collision with an obstacle. As an example, Figure 25.19 shows a two-
dimensional configuration space with a narrow vertical hole. It could be the configuration 
space for insertion of a rectangular peg into a hole or a car key into the ignition. The motion 
commands are constant velocities. The termination conditions are contact with a surface. To 
model uncertainty in control, we assume that instead of moving in the commanded direction, 

the robot's actual motion lies in the cone Cr  about it. The figure shows what would happen 
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Figure 25.21  The second motion command and the envelope of possible motions. Even 
with error, we will eventually get into the hole. 

if we commanded a velocity straight down from the initial configuration, Because of the 
uncertainty in velocity, the robot could move anywhere in the conical envelope, possibly 
going into the hole, but more likely landing to one side of it. Because the robot would not 
then know which side of the hole it was on, it would not know which way to move. 

A more sensible strategy is shown in Figures 25.20 and 25.21. In Figure 25.20, the 
robot deliberately moves to one side of the hole. The motion command is shown in the figure. 
and the termination test is contact with any surface. In Figure 25.21.  a motion command is 
given that causes the robot to slide along the surface and into the hole. Because all possible 
velocities in the motion envelope are to the right, the robot will slide to the right whenever it 
is in contact with a horizontal surface.  It will slide down the right-hand vertical edge of the 
hole when it touches it, because all possible velocities are down relative to a vertical surface. 
It will keep moving until it reaches the bottom of the hole, because that is its termination 
condition. In spite of the control uncertainty, all possible trajectories of the robot terminate 
in contact with the bottom of the hole—that is, unless surface irregularities cause the robot to 
stick in one place. 

As one might imagine, the problem of constructing fine-motion plans is not trivial; in 
fact, it is a good deal harder than planning with exact motions_ One can either choose a 
fixed number of discrete values for each motion or use the environment geometry to choose 
directions that give qualitatively different behavior. A fine-motion planner takes as input the 
configuration-space description, the angle of the velocity uncertainty  cone, and a specification 
of what sensing is possible for termination (surface contact in this case). It should produce a 
multistep conditional plan or policy that is guaranteed to succeed, if such a plan exists. 

Our example assumes that the planner has an exact model of the environment, but it is 
possible to allow for bounded error in this model as follows. If the error can be described in 
terms of parameters, those parameters can be added as degrees of freedom to the configuration 
space. In the last example, if the depth and width of the hole were uncertain, we could add 
them as two degrees of freedom to the configuration space. It is impossible to move the 
robot in these directions in the configuration space or to sense its position directly. But 
both those restrictions can be incorporated when describing this problem as an FMP problem 
by appropriately specifying control and sensor uncertainties. This gives a complex, four-
dimensional planning problem, but exactly the same planning techniques can be applied. 
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Notice that unlike the decision-theoretic methods in Chapter 17, this kind of robust approach 
results in plans designed for the worst-ease  outcome, rather than maximizing the expected 
quality of the plan. Worst-case plans are optimal in the decision-theoretic sense only if failure 
during execution is much worse than any of the other costs involved in execution. 

25.6 MOVING  
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So far, we have talked about how to plan motions, but not about how to move. Our plans—
particularly those produced by deterministic path planners—assume that the robot can simply 
follow any path that the algorithm produces. In the real world, of course, this is not the case. 
Robots have inertia and cannot execute arbitrary paths except at arbitrarily slow speeds. In 
most cases, the robot gets to exert forces rather than specify positions. This section discusses 
methods for calculating these forces 

25.6.1 Dynamics and control 

Section 252 introduced the notion of dynamic state, which extends the kinematic state of a 
robot by its velocity. For example, in addition to the angle of a robot joint, the dynamic state 
also captures the rate of change of the angle, and possibly even its momentary acceleration. 
The transition model for a dynamic state representation includes the effect of forces on this 
rate of change. Such models are typically expressed via differential equations, which are 
equations that relate a quantity (e.g., a kinematic state) to the change of the quantity over 
time {e.g.,  velocity). In principle, we could have chosen to plan robot motion using dynamic 
models, instead of our kinematic models. Such a methodology would lead to superior robot 
performance, if we could generate the plans. However, the dynamic state has higher dimen-
sion than the kinematic space, and the curse of dimensionality would render many motion 
planning algorithms inapplicable for all but the most simple robots. For this reason, practical 
robot system often rely on simpler kinematic path planners. 

A common technique to compensate for the limitations of kinematic plans is to use a 
separate mechanism, a controller, for keeping the robot on track. Controllers are techniques 
for generating robot controls in real time using feedback from the environment, so as to 
achieve a control objective. If the objective is to keep the robot on a preplanned path, it is 
often referred to as a reference controller and the path is called a reference path. Controllers 
that optimize a global cost function are known as optimal controllers. Optimal policies for 
continuous MDPs are, in effect, optimal controllers. 

On the surface, the problem of keeping a robot on a prespecitied  path appears to be 
relatively straightforward. In practice, however, even this seemingly simple problem has its 
pitfalls. Figure 25.22(a) illustrates what can go wrong; it shows the path of a robot that 
attempts to follow a kinematic path. Whenever a deviation occurs—whether due to noise or 
to constraints on the forces the robot can apply—the robot provides an opposing force whose 
magnitude is proportional to this deviation. Intuitively, this might appear plausible, since 
deviations should be compensated by a counterforce to keep the robot on track. However, 
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Figure 25.22 Robot arm control using (a) proportional control with gain factor 1.0,  (b) 
proportional control with gain  factor 0.1, and (c) PD (proportional derivative) control with 
gain factors 0.3  for the proportional component and 0.it  for the differential component In all 
cases the robot arm tries to follow the path shown in gray. 

as Figure 25.22(a) illustrates, our controller causes the robot to vibrate rather violently. The 
vibration is the result of a natural inertia of the robot arm: once driven back to its reference 
position the rohot  then overshoots, which induces a symmetric error with opposite sign_ Such 
overshooting may continue along an entire trajectory, and the resulting robot motion is far 
from desirable. 

Before we can define a better controller, let us formally describe what went wrong. 
Controllers that provide force in negative proportion Lu  the observed error are known as P 

P CDNITROLLER  controllers. The letter 'F'  stands for proportional, indicating that the actual control is pro-
p-onional  to the error of the robot manipulator. More formally, let y(t) be the reference path. 
parameterized by time index t. The control o f  generated by a P controller has the form: 

a t  = Kp(y(t)  — xi)  .  

GAIN RAMJET-Es Here x t  is the state of the robot at time L and Kp  is a constant known as the gain parameter of 
the controller and its value is called the gain factor); IC,  regulates how strongly the controller 
corrects for deviations between the actual state rt  and the desired one "At),  In our example. 
Kp = 1. At first glance, one might think that choosing a smaller value for Kp would 
remedy the problem. Unfortunately, this is not the case. Figure 25.22(b) shows a trajectory 
for Kp = .1, still exhibiting oscillatory behavior. Lower values of the gain parameter may 
simply slow down the oscillation, but do not solve the problem. In fact, in the absence of 
friction, the P controller is essentially a spring law; so it will oscillate indefinitely around a 
fixed target location. 

Traditionally, problems of this type fall into the realm of control theory, a field of 
increasing importance to researchers in Al. Decades of research in this field have led to a large 
number of controllers that are superior to the simple control law given above. In particular, a 

STABLE reference controller is said to be stable if small perturbations lead to a bounded error between 
STRICTLY STABLE the robot and the reference signal. It is said to be strictly stable if it is able to return to and 
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then stay on its reference path upon such perturbations. Our P controller appears to be stable 
but not strictly stable, since it fails to stay anywhere near its reference trajectory. 

The simplest controller that achieves strict stability in our domain is a PD controller. 
The letter 'P' stands again for proportional, and 'D' stands for derivative. PD controllers are 
described by the following equation: 

at = Kp(y(t) —  xt)  +KD

O(y(t)  
t 

 xt)  
(25.2) a -  

As this equation suggests, PD controllers extend P controllers by a differential component, 
which adds to the value of a t  a term that is proportional to the first derivative of the error 
y(t)  — xt  over time. What is the effect of such a term? In general, a derivative term dampens 
the system that is being controlled. To see this, consider a situation where the error (y(t) — x,)  
is changing rapidly over time, as is the case for our P controller above. The derivative of this 
error will then counteract the proportional term, which will reduce the overall response to 
the perturbation. However, if the same error persists and does not change, the derivative will 
vanish and the proportional term dominates the choice of control. 

Figure 25.22(c) shows the result of applying this PD controller to our robot arm, using 
as gain parameters Kp = .3 and KD  = .8. Clearly, the resulting path is much smoother, and 
does not exhibit any obvious oscillations. 

PD controllers do have failure modes, however In particular, PD controllers may fail 
to regulate an error down to Lem, even in the absence of external perturbations. Often such 
a situation is the result of a systematic external force that is not part of the model. An au-
tonomous car driving on a banked surface, for example, may find itself systematically pulled 
to one side. Wear and tear in robot arms cause similar systematic errors. In such situations, 
an over-proportional feedback is required to drive the error closer to zero. The solution to this 
problem lies in adding a third term to the control law, based on the integrated error over time: 

at (y()  = Kp(y(t)  — x i )  -F  PO -F 
t
Ot  )  — x i )dt  KD (25.3) 

Here Kr is yet another gain parameter. The term f(9(t)—x t )dt  calculates the integral of the 
error over time. The effect of this term is that long-lasting deviations between the reference 
signal and the actual state are corrected. If,  for example, xt  is smaller than y(t) for a long 
period of time, this integral will grow until the resulting control a t  forces this error to shrink. 
Integral terms, then. ensure that a controller does not exhibit systematic error, at the expense 
of increased danger of oscillatory behavior. A controller with all three terms is called a PM  
controller (for proportional integral derivative). PID  controllers are widely used in industry, 
for a variety of control problems. 

25.6.2 Potential-field control 

We introduced potential fields as an additional cost function in robot motion planning, but 
they can also be used for generating robot motion directly, dispensing with the path planning 
phase altogether. To achieve this, we have to define an attractive force that pulls the robot 
towards its goal configuration and a repellent potential field that pushes the robot away from 
obstacles. Such a potential field is shown in Figure 25.23. Its single global minimum is 
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Figure 25.23 Potential field control. The robot ascends a potential field composed of 
repelling forces asserted from the obstacles and an attracting force that corresponds to the 
goat configuration. (a) Successful path. (b) Local optimum. 

the goal configuration, and the value is the sum of the distance to this goal configuration 
and the proximity to obstacles. No planning was involved in generating the potential field 
shown in the figure. Because of this, potential fields are well suited to real-time control. 
Figure 25.23(a) shows a trajectory of a robot that performs hill climbing in the potential 
field. In many applications, the potential field can be calculated efficiently for any given 
configuration. Moreover, optimizing the potential amounts to calculating the gradient of the 
potential for the present robot configuration_  These calculations can be extremely efficient, 
especially when compared to path-planning algorithms, all of which are exponential in the 
dimensionality of the configuration space (the DOFs)  in the worst case. 

The fact that the potential field approach manages to find a path to the goal in such 
an efficient manner, even over long distances in configuration space, raises the question as 
to whether there is a need for planning in robotics at all. Are potential field techniques 
sufficient, or were we just lucky in our example? The answer is that we were indeed lucky. 
Potential fields have many local minima that can trap the robot. In Figure 25.23(b), the robot 
approaches the obstacle by simply rotating its shoulder joint, until it gets stuck on the wrong 
side of the obstacle. The potential field is not rich enough to make the robot bend its elbow 
so that the arm fits under the obstacle. In other words, potential field control is great for  local 
robot motion but sometimes we still need global planning. Another important drawback with 
potential fields is that the forces they generate depend only on the obstacle and robot positions, 
not on the rubut's  velocity. Thus, potential field control is really a kinematic  method  and may 
fail if the robot is moving quickly. 
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Figure 25.24  (a) Genghis, a hexapod robot. (b) An augmented finite state machine 
(AFSM) for the control of a single leg. Notice that this AFSM  reacts to sensor feedback: 
if a leg is stuck during the forward swinging phase, it will be lifted increasingly higher. 

25.6.3 Reactive control 

So far we have considered control decisions that require some model of the environment for 
constructing either a reference path or a potential field. There are some difficulties with this 
approach. First, models that are sufficiently accurate are often difficult to obtain, especially 
in complex or remote environments, such as the surface of Mars, or for robots that have 
few sensors. Second, even in cases where we can devise a model with sufficient accuracy, 
computational difficulties and localization error might render these techniques impractical. 

REACTIVE CONTROL  In some cases, a reflex agent architecture using reactive control is more appropriate. 
For example, picture a legged robot that attempts to lift a leg over an obstacle. We could 

give this robot a rule that says lift the leg a small height b.  and move it forward, and if the leg 
encounters an obstacle, move it back and start again at a higher height. You could say that it  
is modeling an aspect of the world, but we can also think of h.  as an auxiliary variable of the 
robot  controller, devoid of direct physical meaning_ 

One such example is the six-legged (hexapod) robot, shown in Figure 25.24(a), de-
signed for walking through rough terrain. The robot's sensors are inadequate to obtain mod-
els of the terrain for path planning. Moreover, even if we added sufficiently accurate sensors, 
the twelve degrees of freedom (two for each leg) would render the resulting path planning 
problem computationally intractable. 

It is possible, nonetheless, to specify a controller directly without an explicit environ-
mental model. (We have already seen this with the PD controller, which was able to keep a 
complex robot arm on target without an explicit model of the robot dynamics; it did, however, 
require a reference path generated from a kinematic model.) For the hexapod robot we first 

GAT choose a gait, or pattern of movement of the limbs. One statically stable gait is to first move 
the right front, right rear, and left center legs forward (keeping the other three fixed), and 
then move the other three. This gait works well on flat terrain. On rugged terrain, obstacles 
may prevent a leg from swinging forward. This problem can be overcome by a remarkably 
simple control rule: when a leg's forward motion is blocked, simply retract it, lift it higher, 
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Figure 25.25  Multiple exposures of an RC helicopter executing a flip based on a policy 
learned with reinforcement learning.  Images courtesy of Andrew Ng, Stanford University. 

EMERGENT 
BEHAVIOR 

and try again. The resulting controller is shown in Figure 25.24(b) as a finite state machine; 
it constitutes a reflex agent with state, where the internal state is represented by the index of 
the current machine state (si  through 54). 

Variants of this simple feedback-driven controller have been found to generate remark-
ably robust walking patterns, capable of maneuvering the robot over rugged terrain. Clearly, 
such a controller is model-free, and it does not deliberate or use search for generating con-
trols. Environmental feedback plays a crucial role in the controller's execution. The software 
alone does not specify what will actually happen when the robot is placed in an environment 
Behavior that emerges through the interplay of a (simple) controller and a (complex) envi-
ronment is often referred to as emergent behavior. Strictly speaking, all robots discussed 
in this chapter exhibit emergent behavior, due to the fact that no model is perfect. Histori-
cally, however, the term has been reserved for control techniques that do not utilize explicit 
environmental models. Emergent behavior is also characteristic of biological organisms, 

25.6.4 Reinforcement learning control 

One particularly exciting form of control is based on the policy search form of reinforcement 
learning (see Section 21.5). This work has been enormously influential in recent years, at 
is has solved challenging robotics problems for which previously no solution existed. An 
example is acrobatic autonomous helicopter flight. Figure 25_21  shows an autonomous flip 
of a small RC (radio-controlled) helicopter. This maneuver is challenging due to the highly 
nonlinear nature of the aerodynamics involved. Only the most experienced of human pilots 
are able to perform it. Yet a policy search method (as described in Chapter 21), using only a 
few minutes of computation, learned a policy that can safely execute a flip every time. 

Policy search needs an accurate model of the domain before it can find a policy. The 
input to this model is the state of the helicopter at time t, the controls at time t, and the 
resulting state at time t ±  At. The state of a helicopter can be described by the 3D coordinates 
of the vehicle, its yaw, pitch, and roll angles, and the rate of change of these six variables. 
The controls are the manual controls of of the helicopter: throttle, pitch, elevator, aileron. 
and rudder. All that remains is the resulting state—how are we going to define a model that 
accurately says how the helicopter responds to each control? The answer is simple: Let an 
expert human pilot fly the helicopter, and record the controls that the expert transmits over 
the radio and the state variables of the helicopter. About four minutes of human-controlled  
flight suffices to build a predictive model that is sufficiently accurate to simulate the vehicle. 
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What is remarkable about this example is the ease with which this learning approach 
solves a challenging robotics problem. This is one of the many successes of machine learning 
in scientific fields previously dominated by careful mathematical analysis and modeling. 

25_7  ROBOTIC SOFTWARE ARCHITECTURES 

5071NARE  
ARCHITECTURE 

ARCHITECTURE 

SUISUMPTIGN  
ARCHITECTURE 

AUGMENTED FINITE 
STATE MACHINE 

A methodology for structuring algorithms is called a software architecture. An architecture 
includes languages and tools for writing programs, as well as an overall philosophy for how 
programs can be brought together. 

Modern-day software architectures for robotics must decide how to combine reactive 
control and model-based deliberative planning. In many ways, reactive and deliberate tech-
niques have orthogonal strengths and weaknesses. Reactive control is sensor-driven and ap-
propriate for making low-level decisions in real time. However, it rarely yields a plausible 
solution at the global level, because global control decisions depend on information that can-
not be sensed at the time of decision making. For such problems, deliberate planning is a 
more appropriate choice. 

Consequently, most robot architectures use reactive techniques at the lower levels of 
control and deliberative techniques at the higher levels. We encountered such a combination 
in our discussion of PD controllers, where we combined a (reactive) PD controller with a 
(deliberate) path planner. Architectures that combine reactive and deliberate techniques are 
called hybrid architectures. 

25.7.1 Subsumption architecture 
The subsumption architecture (Brooks, 19g6)  is a framework for assembling reactive con-
trollers out of finite state machines. Nodes in these machines may contain tests for certain 
sensor variables, in which case the execution trace of a finite state machine is conditioned on 
the outcome of such a test_ Arcs can he tagged with messages that will he generated when 
traversing them, and that are sent to the robot's  motors or to other finite state machines. Addi-
tionally, finite state machines possess internal timers (clocks) that control the time it takes to 
traverse an arc. The resulting machines are refereed to as augmented finite state machines. 
or AFSMs,  where the augmentation refers to the use of clocks. 

An example of a simple AFSM is the four-state machine shown in Figure 25.24(b), 
which generates cyclic leg motion for a hexapod walker. This AFSM implements a cyclic 
controller, whose execution mostly does not rely on environmental feedback. The forward 
swing phase, however, does rely on sensor feedback. If the leg is stuck, meaning that it has 
failed to execute the forward swing,  the robot retracts the leg, lifts it up a little higher, and 
attempts to execute the forward swing once again. Thus, the controller is able to react to 
contingencies arising from the interplay of the robot and its environment. 

The subsumption architecture offers additional primitives for synchronizing AFSMs,  
and for combining output values of multiple, possibly confiding  AFSMs.  In this way, it 

enables the programmer to compose increasingly complex controllers in a bottom-up fashion. 
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In our example, we might begin with AFSMs for individual legs, followed by an AFSM  for 
coordinating multiple legs-  On top of this, we might implement higher-level  behaviors such 
as collision avoidance, which might involve backing up and turning. 

The idea of composing robot controllers from AFSMs is quite intriguing.  Imagine 
how difficult it would be to generate the same behavior with any of the configuration-space 
path-planning algorithms described in the previous section. First, we would need an accu-
rate model of the terrain. The configuration space of a robot with six legs, each of which 
is driven by two independent motors, totals eighteen dimensions (twelve dimensions for the 
configuration of the legs, and six for the location and orientation of the robot relative to its 
environment). Even if our computers were fast enough to find paths in such high-dimensional 
spaces, we would have to worry about nasty effects such as the robot sliding down a slope. 
Because of such stochastic effects, a single path through configuration space would almost 
certainly be too brittle, and even a PM controller might nut be able to cope with such con-
tingencies. In other words, generating motion behavior deliberately is simply too complex a 
problem for present-day robot motion planning algorithms 

Unfortunately, the subsumption architecture has its own problems. First, the AFSMs  
are driven by raw sensor input, an arrangement that works if the sensor data is reliable and 
contains all necessary information for decision making, but fails if sensor data has to be inte-
grated in nontrivial ways over time. Subsumption-style controllers have therefore mostly been 
applied to simple tasks, such as following a wall or moving towards visible light sources. Sec-
ond, the lack of deliberation makes it difficult to change the task of the robot. A subsumption-
style robot usually does just one task. and it has no notion of how to modify its controls to 
accommodate different goals (just like the dung beetle on page 39). Finally, subsumption-
style controllers tend to be difficult to understand. In practice, the intricate interplay between 
dozens of interacting AFSMs (and the environment) is beyond what most human program-
mers can comprehend. For all these reasons, the subsumption architecture is rarely used in 
robotics, despite its great historical importance. However, it has had an influence on other 
architectures, and on individual components of some architectures. 

114REE  LAYER 
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25.7.2 Three-layer architecture 

Hybrid architectures combine reaction with deliberation. The most popular hybrid architec-
ture  is the three-layer architecture, which consists of a reactive layer, an executive layer, 
and a deliberative layer. 

The reactive layer provides low-level control to the robot. It is characterized by a tight 
sensor—action loop. Its decision cycle is often on the order of milliseconds. 

The executive layer (or sequencing layer) serves as the glue between the reactive layer 
and the deliberative layer. It accepts directives by the deliberative layer, and sequences them 
for the reactive layer. For example, the executive layer might handle a set of via-points 
generated by a deliberative path planner, and make decisions as to which reactive behavior 
to invoke. Decision cycles at the executive layer are usually in the order of a second. The 
executive layer is also responsible for integrating sensor information into an internal slate 
representation. For example, it may host the robot's localization and online mapping routines. 
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Figure 25.26  Software architecture of a robot car. This software implements a data 
pipeline, in which all modules process data simultaneously. 
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The deliberative layer generates global solutions to complex tasks using planning. 
Because of the computational complexity involved in generating such solutions, its decision 
cycle is often in the order of minutes. The deliberative layer (or planning layer) uses models 
for decision making. Those models might be either learned from data or supplied and may 
utilize state information gathered at the executive layer. 

Variants of the three-layer architecture can  be found in most modern-day robot software 
systems. The decomposition into three layers is not very strict. Some robot software systems 
possess additional layers, such as user interface layers that control the interaction with people, 
or a multiagent level for coordinating a robot's actions with that of other robots operating in 
the same environment. 

25.7.3 Pipeline architecture 

Another architecture for robots is known as the pipeline architecture. Just like the subsump- 
tion  architecture, the pipeline architecture executes multiple process in parallel. However, the 
specific modules in this architecture resemble those in the three-layer architecture. 

Figure 25.26 shows an example pipeline architecture, which is used to control  an au- 
tonomous car. Data enters this pipeline at the sensor interface layer. The perception layer 
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Figure 2517  (a) The Helpmate robot transports food and other medical items in dozens 
of hospitals worldwide. (b) Kiva robots are part of a material-handling system for moving 
shelves in fulfillment centers. Image courtesy of Kiva Systems. 

then updates the robot's internal models of the environment based on this data. Next, these 
models are handed to the planning and control layer, which adjusts the robot's internal 
plans turns them into actual controls for the robot. Those are then communicated back to the 
vehicle through the vehicle interface layer. 

The key to the pipeline architecture is that this all happens in parallel. While the per-
ception layer processes the most recent sensor data, the control layer bases its choices on 
slightly older data. In this way, the pipeline architecture is similar to the human brain. We 
don't switch off our motion controllers when we digest new sensor data. Instead, we perceive, 
plan, and act all at the same time. Processes in the pipeline architecture run asynchronously, 
and all computation is data-driven. The resulting system is robust, and it is fast. 

The architecture in Figure 25.26 also contains other, cross-cutting modules, responsible 
for establishing communication between the different elements of the pipeline. 

25.8 APPLICATION DOMAINS 
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Here are some of the prime application domains for robotic technology. 
Industry and Agriculture. Traditionally, robots have been fielded in areas that require 

difficult human labor, yet are structured enough to be amenable to robotic automation. The 
best example is the assembly line, where manipulators routinely perform tasks such as as- 

sembly, part placement, material handling, welding, and painting. In many of these tasks, 
robots have become more cost-effective than human wotkers.  Outdoors, nutty  of the heavy 

machines that we use to harvest, mine, or excavate earth have been turned into robots. For 
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Figure 25.28  (a) Robotic car Boss, which won the DARPA Urban Challenge. Courtesy 
of Carnegie Mellon University. ail Surgical robots in the operating room.  Image courtesy of 
da Vinci Surgical Systems. 

example, a project at Carnegie Mellon University has demonstrated that robots can strip paint 
off large ships about 50 times faster than people can, and with a much reduced environmental 
impact. Prototypes of autonomous mining robots have been found to be faster and more pre-
cise than people in transporting ore in underground mines. Robots have been used to generate 
high-precision maps of abandoned mines and sewer systems. While many of these systems 
are still in their prototype stages, it is only a matter of time until robots will take over much 
of the semimechanical work that is presently performed by people. 

Transportation. Robotic transportation has many facets: from autonomous helicopters 
that deliver payloads to hard -to-reach locations, to automatic wheelchairs that transport  peo-
ple who are unable to control wheelchairs by themselves, to autonomous straddle carriers that 
outperform skilled human drivers when transporting containers from ships to trucks on load-
ing docks. A prime example of indoor transportation robots, or gofers, is the Helpmate robot 
shown in Figure 25.27(a). This robot has been deployed in dozens of hospitals to transport 
food and other items_ In factory settings, autonomous vehicles are now routinely deployed 
to transport goods in warehouses and between production lines, The Kiva system, shown in 
Figure 25.27(h), helps workers at fulfillment centers package goods into shipping containers. 

Many of these robots require environmental modifications for their operation. The most 
common modifications are localization aids such as inductive loops in the floor, active bea-
cons, or barcode tags. An open challenge in robotics is the design of robots that can use 
natural cues, instead of artificial devices, to navigate, particularly in environments such as the 
deep ocean where GPS  is unavailable. 

Robotic cars. Most of use cars every day. Many of us make cell phone calls while 
driving. Some of us even text. The sad result: more than a million people die every year in 
traffic accidents. Robotic cars like Boss and STANLEY offer hope: Not only will they make 
driving much safer, but they will also free us from the need to pay attention to the road during 
our daily commute. 

Progress in robotic cars was stimulated by the DARPA Grand Challenge, a race over 
100 miles of unrehearsed desert terrain, which represented a much more challenging task than 
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Figure 25.29  (a) A robot mapping an abandoned coal mine. (b) A 3D map of the mine 
acquired by the robot. 

had ever been accomplished before. Stanford's  S TAN LEY vehicle completed the course in less 
than seven hours in 2005, winning a $2 million prize and a place in the National Museum of 
American History. Figure 25.28(a) depicts Boss, which in 2007 won the DARPA Urban 
Challenge, a complicated road race on city streets where robots faced other robots and had to 
obey traffic rules. 

Health care. Robots are increasingly used to assist surgeons with instrument placement 
when operating on organs as intricate as brains, eyes, and hearts. Figure 25.28(b)  shows such 
a system. Robots have become indispensable tools in a range of surgical procedures, such as 
hip replacements, thanks to their high precision. In pilot studies, robotic devices have been 
found to reduce the danger of lesions when performing colonoscopy. Outside the operating 
room, researchers have begun to develop robotic aides for elderly and handicapped people, 
such as intelligent robotic walkers and intelligent toys that provide reminders to take medica-
tion and provide comfort. Researchers are also working on robotic devices for rehabilitation 
that aid people in performing certain exercises. 

Hazardous environments. Robots have assisted people in cleaning up nuclear waste, 
most notably in Chernobyl and Three Mile Island. Robots were present after the collapse 
of the World Trade Center, where they entered structures deemed too dangerous for human 
search and rescue crews. 

Some countries have used robots to transport ammunition and to defuse bombs—a no-
toriously dangerous task. A number of research projects are presently developing prototype 
robots for clearing minefields, on land and at sea. Most existing robots for these tasks are 
teleoperated—a  human operates them by remote control. Providing such robots with auton-
omy is an important next step. 

Exploration. Robots have gone where no one has gone before, including the surface 
of Mars (see Figure 25.2(h)  and the cover). Robotic arms assist astronauts in deploying 
and retrieving satellites and in building the International Space Station. Robots also help 
explore under the sea. They are routinely used to acquire maps of sunken ships. Figure 25.29 
shows a robot mapping an abandoned coal mine, along with a 3D model of the mine acquired 
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Figure 25.30  (a) Roomba, the world's best-selling mobile robot, vacuums floors. Image 
courtesy of iRobot, 2009. (b) Robotic hand modeled after human hand. Image courtesy 
of University of Washington and Carnegie Mellon University. 

using range sensors. In 1996, a team of researches released a legged robot into the crater 
of an active volcano to acquire data for climate research. Unmanned air vehicles known as 
drones are used in military operations. Robots are becoming very effective tools for gathering 
information in domains that are difficult (or dangerous) for people to access. 

Personal Services. Service is an up-and-coming application domain of robotics. Ser-
vice robots assist individuals in performing daily tasks. Commercially available domestic 
service robots include autonomous vacuum cleaners, lawn mowers, and golf caddies. The 
world's most popular mobile robot is a personal service robot: the robotic vacuum cleaner 
Roomba, shown in Figure 2530(a). More than three million Roombas have been sold. 
Roomba can navigate autonomously and perform its tasks without human help. 

Other service robots operate in public places, such as robotic information kiosks that 
have been deployed in shopping malls and trade fairs, or in museums as tour guides. Ser-
vice tasks require human interaction, and the ability to cope robustly with unpredictable and 
dynamic environments. 

Entertainment. Robots have begun to conquer the entertainment and b y  industry. 
In Figure 25.6(b) we see robotic soccer, a competitive game very much like human soc-
cer, but played with autonomous mobile robots. Robot soccer provides great opportunities 
for research in AI, since it raises a range of problems relevant to many other, more serious 
robot applications. Annual robotic soccer competitions have attracted large numbers of Al 
researchers and added a lot of excitement to the field of robotics. 

Human augmentation. A final application domain of robotic technology is that of 
human augmentation. Researchers have developed legged walking machines that can carry 
people around, very much like a wheelchair. Several research efforts presently focus on the 
development of devices that  make it easier for people to walk or move their ;inns by providing 
additional forces through extraskeletal attachments. If such devices are attached permanently, 
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they can be thought of as artificial robotic limbs. Figure 25.300)  shows a robotic hand that 
may serve as a prosthetic device in the future. 

Robotic teleoperation, or telepresence, is another form of human augmentation. Tele-
operation involves carrying out tasks over long distances with the aid of robotic devices. 
A popular configuration for robotic teleoperation is the master—slave configuration, where 
a robot manipulator emulates the motion of a remote human operator, measured through a 
haptic interface. Underwater vehicles are often teleoperated;  the vehicles can go to a depth 
that would be dangerous for humans but can still be guided by the human operator. All these 
systems augment people's ability to interact with their environments. Some projects go as far 
as replicating humans, at least at a very superficial level. Humanoid robots are now available 
commercially through several companies in Japan. 

25.9 SUMMARY 

Robotics concerns itself with intelligent agents that manipulate the physical world. In this 
chapter, we have learned the following basics of robot hardware and software. 

■ Robots are equipped with sensors fur perceiving their environment and effectors with  
which they can assert physical forces on their environment. Most robots are either 
manipulators anchored at fixed locations or mobile robots that can move. 

■ Robotic perception concerns itself with estimating decision-relevant quantities from 
sensor data. To do so, we need an internal representation and a method for updating 
this intemal representation over time. Common examples of hard perceptual problems 
include localization, mapping, and object recognition. 

■ Probabilistic filtering algorithms such as Kalman filters and particle filters arc useful 
for robot perception. These techniques maintain the belief state, a posterior distribution 
over state variables. 

■ The planning of robot motion is usually done in configuration space, where each point 
specifies the location and orientation of the robot and its joint angles. 

■ Configuration space search algorithms include cell decomposition techniques, which 
decompose the space of all configurations into finitely many cells, and skeletonization 
techniques, which project configuration spaces into lower-dimensional manifolds. The 
motion planning problem is then solved using search in these simpler structures. 

■ A path found by a search algorithm can be executed by using the path as the reference 
trajectory for a PID controller. Controllers are necessary in robotics to accommodate 
small perturbations; path planning alone is usually insufficient. 

■ Potential field techniques navigate robots by potential functions, defined over the dis-
tance to obstacles and the goal location. Potential field techniques may get stuck in 
local minima but they can generate motion directly without the need for path planning. 

■ Sometimes it is easier to specify a robot controller directly, rather than deriving a path 
from an explicit model of the environment. Such controllers can often be written as 

simple finite state machines. 
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• There exist different architectures for software design. The subsumption  architec- 
ture enables programmers to compose robot controllers from interconnected finite state 
machines. Three layer architectures are common frameworks for developing robot 
software that integrate deliberation, sequencing of subgoals, and control. The related 
pipeline architecture processes data in parallel through a sequence of modules, corre-
sponding to perception, modeling, planning, control, and robot interfaces. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The word robot was popularized by Czech playwright Karel Capek in his 1921 play R.U..R,  
(Russum's  Universal Robots). The robots, which were grown chemically rather than con- 
structed mechanically, end up resenting their masters and decide to take over. It appears 
(Glanc, 1978) it was Capek's brother, Josef, who first combined the Czech words "robota" 
(obligatory work) and "robotnik"  (serf) to yield "robot" in his 1917 short story Opilec. 

The term robotics was first used by Asimov (1950). Robotics (under other names) has 
a much longer history, however. In ancient Greek mythology, a mechanical man named Talus 
was supposedly designed and built by Hephaistos, the Greek god of metallurgy. Wonderful 
automata were built in the 18th century—Jacques Vaucanson's  mechanical duck from 1738 
being one early example—but the complex behaviors they exhibited were entirely fixed in 
advance. Possibly the earliest example of a programmable robot-like device was the Jacquard 
loom (1805), described on page 14. 

IJNIMATE The first commercial robot was a robot arm called Unimate, short for universal automa- 
tion, developed by Joseph Engelberger and George Devol.  In 1961, the first Unimate robot 
was sold to General Motors, where it was used for manufacturing TV picture tubes. 1961 
was also the year when Devol obtained the first U.S. patent on a robot. Eleven years later, in 
1972, Nissan Corp. was among the first to automate an entire assembly line with robots, de-
veloped by Kawasaki with robots supplied by F:ngelherger  and Devol's company IIn  irnation.  
This development initiated a major revolution that took place mostly in Japan and the U.S., 

PUMA 
 and that is still ongoing. Unimation followed up in 1978 with the development of the PUMA 

robot, short for Programmable Universal Machine for Assembly. The PUMA robot, initially 
developed for General Motors, was the de facto standard for robotic manipulation for the two 
decades that followed. At present, the number of operating robots is estimated at one million 
worldwide, more than half of which are installed in Japan. 

The literature on robotics research can be divided roughly into two parts: mobile robots 
and stationary manipulators. Grey Walter's "turtle," built in 1948, could be considered the 
first autonomous mobile robot, although its control system was not programmable. The 'Hop-
kins Beast," built in the early 1960s at Johns Hopkins University, was much more sophisti-
cated; it had pattern-recognition hardware and could recognize the cover plate of a standard 
AC power outlet. It was capable of searching for outlets, plugging itself in, and then recharg-
ing its batteries! Still, the Beast had a limited repertoire of skills. The first general-purpose 
mobile robot was "Shakey," developed at what was then the Stanford Research Institute (now 
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SRI) in the late 1960s (Pikes and Nilsson, 1971;   Nilsson, 1984). Shakey was the first robot 
to integrate perception, planning, and execution, and much subsequent research in AI was 
influenced by this remarkable achievement. Shakey appears on the cover of this book with 
project leader Charlie Rosen (1917-2002). Other influential projects include the Stanford 
Cart and the CMU Rover (Moravec, 1983). Cox and Wilfong (1990) describes classic work 
on autonomous vehicles. 

The field of robotic mapping has evolved from two distinct origins. The first thread 
began with work by Smith and Cheeseman (1986), who applied Kalman filters to the si-
multaneous localization and mapping problem. This algorithm was first implemented by 
Moutarlier and Chatila (1989), and later extended by Leonard and Durrant-Whyte (1992); 
see Dissanayake  et aL  (2001) for an overview of early Kalman filter variations. The second 

OCCUPANCY GRID  thread began with the development of the occupancy grid representation for probabilistic 
mapping, which specifies the probability that each (ct.  ,y)  location is occupied by an obsta-
cle (Moravec and Elfes,  1985). Kuipers and Levitt (1988)  were among the first to propose 
topological rather than metric mapping, motivated by models of human spatial cognition. A 
seminal paper by Lu and Milios (1997) recognized the sparseness of the simultaneous local-
ization and mapping problem, which gave rise to the development of nonlinear optimization 
techniques by Konclige (20041 and Montemerlo and Thrun  (2004), as well as hierarchical 
methods by Bosse et al. (2004). Shatkay and Kaelbling (1997) and Thrun et al. (1998)  intro-
duced the FM algorithm into the field of robotic mapping for data association. An overview 
of probabilistic mapping methods can be found in (Thrun  et al., 2005). 

Early mobile robot localization techniques are surveyed by Borenstein et aL  (1996), 
Although Kalman filtering was well known as a localization method in control theory fox 
decades, the general probabilistic formulation of the localization problem did not appear 
in the Al literature until much later, through the work of Tom Dean and colleagues (Dean 
et al., 1990, 1990) and of Simmons and Koenig (1995). The latter work introduced the term 

N

ATICAI  
Al Markov  localization. The first real-world application of this technique was by Burgard et al. MAI  17  

(1999), through a series of robots that were deployed in museums. Monte Carlo localiza- 
tion based on particle filters was developed by Fox et al (1999) and is now widely used. 

RAO-  
BLACKYVELLIZED The Rao•Slackwellized  particle filter combines particle filtering for robot localization with 
PAFTICLE FILTER 

exact filtering for map building (Murphy and Russell, 2001; Montemerlo et al., 2002). 
HSD-EYE  
MACHINES The study of manipulator robots, originally called hand—eye machines, has evolved 

along quite different lines. The first major effort at creating a hand—eye machine was Hein-
rich Emst's  MH-1,  described in his MIT Ph.D. thesis (Ernst, 1961). The Machine Intelligence 
project at Edinburgh also demonstrated an impressive early system for vision-based assem-
bly called FREDDY (Michie, 1972). After these pioneering efforts, a great deal of work fo-
cused on geometric algorithms for deterministic and fully observable motion planning prob-
lems. The PSPACE-hardness of robot motion planning was shown in a seminal paper by 
Reif (1979). The configuration space representation is due to Lozano-Perez (1983).  A series 

PIANO MOVERS of papers by Schwartz and Sharir on what they called piano movers problems (Schwartz 
et al., 1987) was highly influential. 

Recursive cell decomposiion  fur configuration space planning was originated by Brooks 
and Lozano-Perez (1985) and improved significantly by Thu and Latombe (1991). The ear- 
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liest skeletonization algorithms were based on Voronoi diagrams (Rowat, 1979) and visi.  
VISIBILITY +31APN  bility  graphs (Wesley and Lozano-Perez,  1979). Guibas et al. (1992) developed efficient 

techniques for calculating Voronoi diagrams incrementally, and Choset (1996) generalized 
Voronoi diagrams to broader motion-planning problems. John Canny (1988) established the 
first singly exponential algorithm for motion planning. The seminal text by Latombe (1991) 
covers a variety of approaches to motion-planning, as do the texts by Choset et al. (2004) and 
LaValle (2006). Kavraki et al. (1996) developed probabilistic roadmaps,  which are currently 
one of the most effective methods. Fine-motion planning with limited sensing was investi-
gated by Lozano-Perez et al. (1984) and Canny and Reif (1987). Landmark-based naviga-
tion (Lazanas and Latombe, 1992) uses many of the same ideas in the mobile robot arena.  
Key work applying POMDP methods (Section 17.4) to motion planning under uncertainty in 
robotics is due to Pineau et al. (2003) and Roy et al. (2005). 

The control of robots as dynamical systems—whether  for manipulation or navigation—
has generated a huge literature that is barely touched on by this chapter. Important works 
include a trilogy on impedance control by Hogan (1985) and a general study of robot dy-
namics by Featherstone (1987). Dean and Wellman (1991) were among the first to try to tie 
together control theory and AI planning systems. Three classic textbooks on the mathematics 
of robot manipulation are due to Paul (1981), Craig (1989), and Yoshikawa (1990). The area 

GFABRNG  of grasping is also important in robotics—the problem of determining a stable grasp is quite 
difficult (Mason and Salisbury, 1985). Competent grasping requires touch sensing, or haptie  

HA.TIC  FEEDBACK feedback, to determine contact forces and detect slip (Fearing and Hollerbach, 1985). 
Potential-field control, which attempts to solve the motion planning and control prob-

lems simultaneously, was introduced into the robotics literature by Khatib (1986). In mobile 
robotics, this idea was viewed as a practical solution to the collision avoidance problem, and 

VECTOR  FIELD  
HIETOGRAlki was later extended into an algorithm called vector field histograms by Borenstein (1991). 

Navigation functions, the robotics version of a control policy for deterministic MDPs, were 
introduced by Koditschek (1987). Reinforcement learning in robotics took off with the semi-
nal work by Bagnell and Schneider (2001) and Ng et al. (2004), who developed the paradigm 
in the context of autonomous helicopter control_ 

The topic of software architectures for robots engenders much religious debate. The 
good old-fashioned AI candidate—the three-layer architecture—dates back to the design of 
Shakey and is reviewed by Gat (1998). The subsumption architecture is due to Brooks (1986), 
although similar ideas were developed independently by Braitenberg (1984), whose book, 
Vehicles, describes a series of simple robots based on the behavioral approach. The suc-
cess of Brooks's six-legged walking robot was followed by many other projects. Connell, 
in his Ph.D. thesis (1989), developed a mobile robot capable of retrieving objects that was 
entirely reactive. Extensions of the behavior-based paradigm to multirobot systems can be 
found in (Mataric,  1997) and (Parker, 1996). GRL (Horswill,  2000) and COLBERT (Kono-
lige, 1997) abstract the ideas of concurrent behavior-based robotics into general robot control 
languages. Arkin (1998) surveys some of the most popular approaches in this field. 

Research on mobile robotics has been stimulated over the last decade by several impor-
tant competitions. The earliest competition, AAAl's  annual mobile robot competition, began 
in 1992. The first competition winner was CARMEL (Congdon et al., 1992). Progress has 
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been steady and impressive: in more recent competitions robots entered the conference com- 
plex, found their way to the registration desk, registered for the conference, and even gave a 
short talk. The Robocup  competition, launched in 1995 by Kitano and colleagues (1997a), 
aims to "develop a team of fully autonomous humanoid robots that can win against the hu 
man world champion team in soccer" by 2050. Play occurs in leagues for simulated robots, 
wheeled robots of different sizes, and humanoid robots. In 2009 teams from 43 countries 
participated and the event was broadcast to millions of viewers. Visser and Burkhard (2007) 
track the improvements that have been made in perception, team coordination, and low-level 
skills over the past decade. 

The DARPA Grand Challenge, organized by DARPA in 2004 and 2005, required 
autonomous robots to travel more than 100 miles through unrehearsed desert terrain in less 
than 10 hours (Buehler et aL,  2006). In the original event in 2004, no robot traveled more 
than 8 miles, leading many to believe the prize would never be claimed. In 2005, Stanford's 
robot STANLEY won the competition in just under 7 hours of travel (Thrun, 2006). DARPA 
then organized the Urban Challenge, a competition in which robots had to navigate 60 miles 
in an urban environment with other traffic_ Carnegie Mellon University's robot Boss took 
first place and claimed the $2 million prize (Urmson and Whittaker, 2008). Early pioneers in 
the development of robotic cars included Dickmanns and Zapp (1987) and Pomerleau  (1993). 

Two early textbooks, by Dudek and Jenkin (2000) and Murphy (2003), cover robotics 
generally. A more recent overview is due to Bekey (2008). An excellent book on robot 
manipulation addresses advanced topics such as compliant motion (Mason, 2001). Robot 
motion planning is covered in Choset et aL  (2004) and LaValle  (2006). Thrun et al.  (2005) 
provide an introduction into probabilistic robotics. The premiere conference for robotics is 
Robotics Science and Systems Conference, followed by the IEEE International Conference 
on Robotics and Automation. Leading robotics journals include IEEE Robotics and Alamo- 
tiori,  the International Journal of Robotics Research, and Robotics and Autonomous Systems. 

PCBDCUP  

DARPA GRAND 
CHALLENGE 

URBAN CHALLENGE 

EXERCISES 

25.1 Monte Carlo localization is biased for any finite sample size—Le., the expected value 
of the location computed by the algorithm differs ft-am  the true  expected value—because of 
the way particle filtering works. In this question, you are asked to quantify this bias. 

To simplify, consider a world with four possible robot locations: X = {x  1,  x2,  x3,  x4}•  
Initially, we draw N >  1 samples uniformly from among those locations. As usual, it is 
perfectly acceptable if more than one sample is generated for any of the locations X.  Let Z 
be a Boolean sensor variable characterized by the following conditional probabilities: 

P(z  I xi) = 0.8 P(–z  I xi)  = 0.2 
P(z  I x2) = 0.4 I x2)  = 0.6 

P(2  I x3)  = 0.1  P(–z  I 1.3)  = 0 .9  
P(z I x4) = 0.1 P(.=z  I x4)  = 0.9 



Starting configuration <-0.5, 7> Ending configuration <-0.5,  —7> 

Figure 25,31  A Robot manipulator in two of its possible configurations. 
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MCL uses these probabilities to generate particle weights, which arc subsequently normalized 
and used in the resampling  process. For simplicity, let us assume we generate only one new 
sample in the resampling  process, regardless of N. This sample might correspond to any of 
the four locations in X. Thus, the sampling process defines a probability distribution over X. 

a. What is the resulting probability distribution over X for this new sample? Answer this 
question separately for N = 1, ,  10, and for N = ao.  

b. The difference between two probability distributions P and Q can be measured by the 
la divergence, which is defined as 

KL(P, Q) = E P(xi )  log 
P(x.i)   
(2(xi)  

What are the la divergences between the distributions in (a) and the true posterior? 

e.  What modification of the problem formulation (not the algorithm!) would guarantee 
that the specific estimator above is unbiased even for finite values of N? Provide at 
least two such modifications (each of which should be sufficient). 

25.2 Implement Monte Carlo localization for a simulated robot with range sensors. A grid 
map and range data are available from the code repository at aima .  c s . berkeley.edu.  
You should demonstrate successful global localization of the robot. 

2.5.3  Consider a robot with two simple manipulators, as shown in figure 25.31. Manipulator 
A is a square block of side 2 which can slide back and on a rod that runs along the x-axis 
from x=-10 to x=10. Manipulator B is a squaw block of side 2 which can slide back and 

on a rod that runs along the y-axis from y= — 10 to y=10. The rods lie outside the plane of 
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manipulation, so the rods do not interfere with the movement of the blocks. A configuration 
is thcn a pair Or, y) where x  is the x-coordinate of the center of manipulator A and where y is 
the y-coordinate of the center of manipulator B. Draw the configuration space for this robot, 
indicating the permitted and excluded zones. 

25.4 Suppose that you are working with the robot in Exercise 25_3  and you are given the 
problem of finding a path from the starting configuration of figure 25.31 to the ending con-
figuration. Consider a potential function 

1  
Gotal) 2  +  D(B,  Goal) 2  +  

D B) 2  

where D(A_  B) is the distance between the closest points of A and B.  
a. Show that hill climbing in this potential field will get stuck in a local minimum 
b. Describe a potential field where hill climbing will solve this particular problem. You 

need not work out the exact numerical coefficients needed, just the general form of the 
solution. (Hint: Add a term that "rewards" the hill climber for moving A out of B's 
way, even in a case like this where this does not reduce the distance from A to B  in the 
above sense.) 

25.5  Consider the robot arm shown in Figure 25.14. Assume that the robot's base element 
is 60cm lung and that its upper arm and forearm are each 40cm lung. As argued un  page 987. 
the inverse kinematics of a robot is often not unique. State an explicit closed-form solution of 
the inverse kinematics for this arm_ Under what exact conditions is the solution unique? 

25.6  Implement an algorithm for calculating the Voronoi  diagram of an arbitrary 2D en-
vironment, described by an 12  x n Boolean array. Illustrate your algorithm by plotting the 
Vomnui  diagram for 10 interesting maps. What is the complexity of your algorithm? 

25.7 This exercise explores the relationship between workspace and configuration space 
using the examples shown in Figure 25.32.  

a. Consider the robot configurations shown in Figure 25.32(a) through (c), ignoring the 
obstacle shown in each of the diagrams. Draw the corresponding arm configurations in 
configuration space. (Hint: Each arm configuration maps to a single point in configura-
tion  space, as illustrated in Figure 25.14(b).)  

b. Draw the configuration space far each of the workspace diagrams in Figure 25.32(a)-
(c). (Hint: The configuration spaces share with the one shown in Figure 25.32(a) the 
region that corresponds to self-collision, but differences arise from the lack of enclosing 
obstacles and the different locations of the obstacles in these individual figures.) 

c. For each of the black dots in Figure 25 .32(e)—(f),  draw the corresponding configurations 
of the robot arm in workspace. Please ignore the shaded regions in this exercise. 

d. The configuration spaces shown in Figure 25.32(e)—(f)  have all been generated by a 
single workspace obstacle (dark shading), plus the constraints arising from the self-
collision constraint (light shading). Draw, for each diagram, the workspace obstacle 
that corresponds to the darkly shaded area. 
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Figure 25.32 Diagrams for Exercise 25.7. 

e. Figure 25.32(d) illustrates that a single planar obstacle can decompose the workspace 
into two disconnected regions. What is the maximum number of disconnected re-
gions that can be created by inserting a planar obstacle into an obstacle-free, connected 
workspace, for a 2DOF robot? Give an example, and argue why  no  larger number of 
disconnected regions can be created. How about a non-planar obstacle? 

25.8  Consider a mobile robot moving on a horizontal surface. Suppose that the robot can 
execute two kinds of motions: 

• Rolling forward a specified distance. 
• Rotating in place through a specified angle, 

The state of such a robot can be characterized in terms of three parameters  (x ,  Y, 0, the x-
coordinate and y-coordinate of the robot (more precisely, of its center of rotation) and the 
robot's orientation expressed as the angle from the positive x direction. The action "  Roll (D)" 
has the effect of changing state (x, y ,  to (x + D cos (0),  +  D sin(0),  0), and the action 
Rotate(d)  has the effect of changing state (x, y.. Oy  to (x, y,  + 9). 

a. Suppose that the robot is initially at (0, 0, O and then executes the actions Rotate(00"),  
Roll(1),  Rotate(25°), (2).  What is the final state of the robot? 



 

goal 

 

Figure 2533  Simplified robot in a maze. See Exercise 25.9. 
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b. Now suppose that the robot  has imperfect control of its own rotation,  and that, if it 
attempts to rotate by O.  it may actually rotate by any angle between 0 —10° and 0+ 10'.  
In that case, if the robot attempts to carry out the sequence of actions in (A), there is 
a range of possible ending states. What are the minimal and maximal values of the 
x-coordinate, the y-coordinate and the orientation in the final state? 

c. Let us modify the model in (B) to a probabilistic  model in which, when the robot 
attempts to rotate by 0, its actual angle of rotation follows a Gaussian distribution 
with mean 0 and standard deviation 10°. Suppose that the robot executes the actions 
Rotate(90°),  Roll (1). Give a simple argument that (a) the expected value of the loca-
tion at the end is not equal to the result of rotating exactly 90° and then rolling forward 
I unit, and (b) that the distribution of locations at the end does not follow a Gaussian. 
(Do not attempt to calculate the true mean or the true distribution.) 

The point of this exercise is that rotational uncertainty quickly gives rise to a lot of 
positional uncertainty and that dealing with rotational uncertainty is painful, whether 
uncertainty is treated in terms of hard intervals or probabilistically, due to the fact that 
the relation between orientation and position is both non-linear and non-monotonic. 

25.9 Consider the simplified robot shown in Figure 25.33. Suppose the robot's Cartesian 
coordinates are known at all times, as are those of its goal location. However, the locations 
of the obstacles are unknown. The robot can sense obstacles in its immediate proximity, as 
illustrated in this figure. For simplicity, let us assume the robot's motion is noise-free, and 
the state space is discrete. Figure 25.33 is only one example; in this exercise you are required 
to address all possible grid worlds with a valid path from the start to the goal location. 

a. Design a deliberate controller that guarantees  that the robot always reaches its goal 
location if at all possible. The deliberate controller can memorize measurements in the 
farm of a map that is being acquired  as the robot moves. Between individual moves, it 
may spend arbitrary time deliberating. 
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b. Now design a reactive controller for the same task. This controller may not memorize 
past sensor measurements. (It may not build a map!) Instead, it has to make all decisions 
based on the current measurement, which includes knowledge of its own location and 
that of the goal. The time to make a decision must be independent of the environment 
size or the number of past time steps. What is the maximum number of steps that it may 
take for your robot to arrive at the goal? 

c_  How will your controllers from (a) and (b)  perform if any of the following six conditions 
apply: continuous state space, noise in perception, noise in motion, noise in both per-
ception and motion, unknown location of the goal (the goal can be detected only when 
within sensor range), or moving obstacles. For each condition and each controller, give 
an example of a situation where the robot fails (or explain why it cannot fail). 

25.10 In Figure 25.24(h)  on page 1001, we encountered an augmented finite state machine 
for the control of a single leg of a hexapod robot. In this exercise, the aim is to design an 
AFSM that, when combined with six copies of the individual leg controllers, results in effi-
cient, stable locomotion. For this purpose, you have to augment the individual leg controller 
to pass messages to your new AFSM and to wait until other messages arrive. Argue why your 
controller is efficient, in that it does not unnecessarily waste energy (e.g., by sliding legs), 
and in that it propels the robot at reasonably high speeds. Prove that your controller satisfies 
the dynamic stability condition given on page 977 

25.11 (This exercise was first devised by Michael Genesereth and Nils Nilsson. It works 
for first graders through graduate students.) Humans are so adept at basic household tasks 
that they often forget how complex these tasks are. In this exercise you will discover the 
complexity and recapitulate the last 30 years of developments in robotics. Consider the task 
of building an arch out of three blocks_ Simulate a robot with four humans as follows7  

Brain. The Brain direct the hands in the execution of a plan to achieve the goal. The 
Brain receives input from the Eyes, but cannot see the scene directly. The brain is the only 
one who knows what the goal is, 

Eyes. The Eyes report a brief description of the scene to the Brain: "There is a red box 
standing on top of a green box, which is on its side" Eyes can also answer questions from the 
Brain such as, "Is there a gap between the Left Hand and the red box?" If you have a video 
camera, point it at the scene and allow the eyes to look at the viewfinder of the video camera, 
but not directly at the scene. 

Left hand and right hand. One person plays each Hand. The two Hands stand next to 
each other, each wearing an oven mitt on one hand, Hands execute only simple commands 
from the Brain—for example, "Left Hand, move two inches forward." They cannot execute 
commands other than motions; for example, they cannot be commanded to "Pick up the box." 
The Hands must be blindfolded. The only sensory capability they have is the ability to tell 
when their path is blocked by an immovable obstacle such as a table or the other Hand. In 
such cases, they can beep to inform the Brain of the difficulty. 



26  PHILOSOPHICAL 
FOUNDATIONS 

In which we consider what it means to think and whether artifacts could and 
should ever dc  so. 

Philosophers have been around far longer than computers and have been trying to resolve 
some questions that relate to AI: How do minds work? Is it possible for machines to act 
intelligently in the way that people do, and if they did, would they have real, conscious 
minds? What are the ethical implications of intelligent machines? 

First, some terminology: the assertion that machines could act as if they were intelligent 
WEAK  Al is called the weak AI hypothesis by philosophers, and the assertion that machines that do so 
STRONG Al are actually thinking (not just simulating thinking) is called the strong AI hypothesis. 

Most AI researchers take the weak AI hypothesis for granted, and don't care about the 
strong AI hypothesis—as long as their program works, they don't care whether you call it a 
simulation of intelligence or real intelligence. All Al researchers should be concerned with 
the ethical implications of their work. 

26.1 WEAK AI: CAN MACHINES ACT INTELLIGENTLY?  

The proposal for the 1956 summer workshop that defined the field of Artificial Intelligence 
(McCarthy et al., 1955) made the assertion that "Every aspect of learning or any other feature 
of intelligence can be so precisely described that a machine can be made to simulate it." Thus. 
AI was founded on the assumption that weak AI is possible. Others have asserted that weak 
AI is impossible: "Artificial intelligence pursued within the cult of computationalism stands 
not even a ghost of a chance of producing durable results" (Sayre, 1993). 

Clearly, whether AI is impossible depends on how it is defined. In Section 1.1, we de-
fined AI as the quest for the best agent program on a given architecture. With this formulation, 
Al is by definition possible: for any digital architecture with k bits of program storage there 
are exactly 2 k  agent programs, and all we have to do to find the best one is enumerate and test 
them all. This might not be feasible for large k,  but philosophers deal with the theoretical, 
not the practical. 

1020 
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Our definition of AI works well for the engineering problem of finding a good agent, 
given an architecture. Therefore, we're tempted to end this section right now, answering the 
title question in the affirmative. But philosophers are interested in the problem of compar-
ing two architectures—human and machine. Furthermore, they have traditionally posed the 
question not in terms of maximizing expected utility but rather as, "Can machines think?" 

The computer scientist Ertsger  Dijkstra (1984) said that "The question of whether Ma-
chines Can Think ...  is about as relevant as the question of whether Submarines Can Swim." 
The American Heritage Dictionary's first definition of swim is "To move through water by 
means of the limbs, fins, or tail," and most people agree that submarines, being limbless, 
cannot swim. The dictionary also defines fly as "To move through the air by means of wings 
or winglike parts," and most people agree that airplanes, having winglike parts, can fly. How-
ever, neither the questions nor the answers have any relevance to the design or capabilities of 
airplanes and submarines; rather they are about the usage of words in English. (The fact that 
ships do swim in Russian only amplifies this point.). The practical possibility of "thinking 
machines" has been with us for only 50 years or so, not long enough for speakers of English to 
settle on a meaning for the word "think"—does it require "a brain" or just "brain-like parts." 

Alan Turing, in his famous paper "Computing Machinery and Intelligence" (1950),  sug-
gested that instead of asking whether machines can think, we should ask whether machines 
can pass a behavioral intelligence test, which has come to be called the Turing Test. The test 
is for a program to have a conversation (via online typed messages) with an interrogator for 
five minutes. The interrogator then has to guess if the conversation is with a program or a 
person; the program passes the test if it fools the interrogator 30% of the time. Turing con-
jectured that, by the year 2000, a computer with a storage of 109  units could be programmed 
well enough to pass the test. He was wrong—programs have yet to fool a sophisticated judge. 

On the other hand, many people have been fooled when they didn't know they might 
be chaffing with a computer. The ELIZA program and Internet chatbots such as MGONZ  
(Humphrys, 2008) and NATACHATA have fooled their correspondents repeatedly, and the 
chatbot CYBERLOVER  has attracted the attention of law enforcement because of its penchant 
for tricking fellow chatters into divulging enough personal information  that their identity can 
be stolen. The Loebner Prize competition, held annually since 1991,  is the longest-running 
Turing Test-like contest. The competitions have led to better models of human typing errors. 

Turing himself examined a wide variety of possible objections to the possibility of in-
telligent machines, including virtually all of those that have been raised in the half-century 
since his paper appeared. We will look at some of them. 

26.1.1 The argument from disability 

The "argument from disability -  makes the claim that "a machine can never do X." As exam-
ples of X, Turing lists the following: 

Be kind, resourceful, beautiful, friendly, have initiative, have a sense of humor, tell right 
from wrong, make mistakes, fall in love, enjoy strawberries and cream, make someone 
fall in love with it, learn from experience, use words properly, be the subject of its own 
thought, have as much diversity of behavior as man, do something really new. 

CAN  MAGRI  NES 
THINK? 

CAN SUBMARINES 
F4112,19  

TURING TEST 
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In retrospect, some of these are rather easy—we're all familiar with computers that "make 
mistakes." We arc also familiar with a century-old technology that has had a proven ability 
to "make someone fall in love with it"—the teddy bear. Computer chess expert David Levy 
predicts that by 2050 people will routinely fall in love with humanoid robots (Levy, 2007). 
As for a robot falling in love, that is a common theme in fiction, 1  but there has been only lim-
ited speculation about whether it is in fact likely (Kim et al., 2007). Programs do play chess, 
checkers and other games; inspect parts on assembly lines, steer cars and helicopters; diag-
nose diseases; and do hundreds of other tasks as well as or better than humans. Computers 
have made small but significant discoveries in astronomy, mathematics, chemistry, mineral-
ogy, biology, computer science, and other fields. Each of these required performance at the 
level of a human expert. 

Given what we now know about computers, it is not surprising that they do well al 
combinatorial problems such as playing chess. But algorithms also perform at human levels 
on tasks that seemingly involve human judgment, or as Tiring put it, "learning from experi-
ence" and the ability to "tell right from wrong." As far back as 1955, Paul Meehl (see also 
Grove and Meehl, 1996) studied the decision-making processes of trained experts at subjec-
tive tasks such as predicting the success of a student in a training program or the recidivism 
of a criminal. In 19 out of the 20 studies he looked at, Meehl  found that simple statistical 
learning algorithms (such as linear regression or naive Bayes) predict better than the experts. 
The Educational Testing Service has used an automated program to grade millions of essay 
questions on the GMAT exam since 1999. The program agrees with human graders 97% of 
the time, about the same level that two human graders agree (Burstein et at,  2001). 

It is clear that computers can do many things as well as or better than humans, including 
things that people believe require great human insight and understanding. This does not mean. 
of course, that computers use insight and understanding in performing these tasks—those are 
not part of behavior, and we address such questions elsewhere—but the point is that one's 
first guess about the mental processes required to produce a given behavior is often wrong. It 
is also true, of course, that there are many tasks at which computers do not yet excel (to put 
it mildly), including Turing's task of carrying on an open-ended conversation_  

26.1.2 The mathematical objection 

It is well known, through the work of Turing (1936) and Gddel  (1931), that certain math- 
ematical questions are in principle unanswerable by particular formal systems. Goders  in-
completeness theorem (see Section 9.5) is the most famous example of this. Briefly, for any 
formal axiomatic system F powerful enough to do arithmetic, it is possible to construct a 
so-called GOdel  sentence G(F',  with the following properties: 

• G(F) is a sentence of F, but cannot be proved within F. 

■ If F is consistent, then G(F) is true. 

For example, the opera Coppaa  (1870), the novel Do Androids Dream of Electric Sheep? (1968), the movies 
Al (2001) and Wall-E  (2008), and in song, Noel Coward's 1955 version of Let's Do If: Lei's Fall in Love predicted 
"probably  well live to see machines do it." He didn't. 
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Philosophers such as J. R. Lucas (1961) have claimed that this theorem shows that machines 
are mentally inferior to humans, because machines arc formal systems that arc limited by the 
incompleteness theorem—they cannot establish the truth of their own Gtidel  sentence—while 
humans have no such limitation. This claim has caused decades of controversy, spawning a 
vast literature, including two books by the mathematician Sir Roger Penrose (1989, 1994) 
that repeat the claim with some fresh twists (such as the hypothesis that humans are different 
because their brains operate by quantum gravity). We will examine only three of the problems 
with the claim. 

First, Giidel's  incompleteness theorem applies only to formal systems that are powerful 
enough to do arithmetic. This includes Turing machines, and Lucas's claim is in part based 
on the assertion that computers are Turing machines. This is a good approximation, but is not 
quite true. Turing machines are infinite, whereas computers are finite, and any computer can 
therefore be described as a (very large) system in prepositional logic, which is not subject to 
&Mel's  incompleteness theorem. Second, an agent should not be too ashamed that it cannot 
establish the truth of some sentence while other agents can. Consider the sentence 

R  Lucas cannot consistently assert that this sentence is true. 

If Lucas asserted this sentence, then he would be contradicting himself, so therefore Lucas 
cannot consistently assert it, and hence it must be true. We have thus demonstrated that there 
is a sentence that Lucas cannot consistently assert while other people (and machines) cart.  But 
that does not make us think less of Lucas. To take another example, no human could compute 
the sum of a billion 10 digit numbers in his or her lifetime, but a computer could do it in 
seconds. Still, we do not see this as a fundamental limitation in the human's ability to think. 
Humans were behaving intelligently for thousands of years before they invented mathematics, 
so it is unlikely that formal mathematical reasoning plays more than a peripheral role in what 
it means to be intelligent. 

Third, and most important, even if we grant that computers have limitations on what 
they can prove, there is no evidence that humans are immune from those limitations, It is 
all too easy to show rigorously that a formal system cannot do X, and then claim that hu-
mans can do X using their own informal method, without giving any evidence for this claim. 
Indeed, it is impossible to prove that humans are not subject to Godel's  incompleteness theo-
rem, because any rigorous proof would require a formalization of the claimed unformalizable 
human talent, and hence refute itself. So we are left with an appeal to intuition that humans 
can somehow perform superhuman feats of mathematical insight. This appeal is expressed 
with arguments such as "we must assume our own consistency, if thought is to be possible at 
all" (Lucas, 1976). But if anything, humans are known to be inconsistent. This is certainly 
true for everyday reasoning, but it is also true for careful mathematical thought. A famous 
example is the four-color map problem. Alfred Kempe published a proof in 1879  that was 
widely accepted and contributed to his election as a Fellow of the Royal Society. In 1890, 
however, Percy Heawood pointed out a flaw and the theorem remained unproved until 1977. 
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QUAllrICATION  
PROBLEM 

26.1.3 The argument from informality 

One of the most influential and persistent criticisms of AI as an enterprise was raised by Tur- 
ing as the "argument from informality of behavior." Essentially, this is the claim that human 
behavior is far too complex to be captured by any simple set of rules and that because com- 
puters can do no more than follow a set of rules, they cannot generate behavior as intelligent 
as that of humans. The inability to capture everything in a set of logical rules is called the 
qualification problem in AI. 

The principal proponent of this view has been the philosopher Hubert Dreyfus, who 
has produced a series of influential critiques of artificial intelligence: What Computers Can't 
Do (1972), the sequel What Computers Still Can't Do (1992), and, with his brother Stuart,  
Mind Over Machine (1986). 

The position they criticize came to be called "Good Old-Fashioned AI," or GOFAI,  a 
term coined by philosopher John Haugeland (l985). GOFAI is supposed to claim that all 
intelligent behavior can be captured by a system that reasons logically from a set of facts and 
rules describing the domain. It therefore corresponds to the simplest logical agent described 
in Chapter 7. Dreyfus is correct in saying that logical agents are vulnerable to the qualification 
problem. As we saw in Chapter 13, probabilistic reasoning systems are more appropriate for 
open-ended domains. The Dreyfus critique therefore is not addressed against computers per 
se, but rather against one particular way of programming them. It is reasonable to suppose, 
however, that a book called What First-Order Logical Rule-Based  Systems Without Learning 
Can't Do might have had less impact. 

Under Dreyfus's view, human expertise dues include knowledge of sonic rules, but only 
as a "holistic context" or "background" within which humans operate_ He gives the example 
of appropriate social behavior in giving and receiving gifts: "Normally one simply responds 
in the appropriate circumstances by giving an appropriate gift" One apparently has "a direct 
sense of how things are done and what to expect." The same claim is made in the context of 
chess playing: "A mere chess master might need to figure out what to do, but a grandmaster 
just sees the board as demanding a certain move ... the right response just pops into his or her 
head." It is certainly true that much of the thought processes of a present-giver or grandmaster 
is done at a level that is not open to introspection by the conscious mind. But that does not 
mean that the thought processes do not exist. The important question that Dreyfus does not 
answer is how the right move gets into the grandmaster's head. One is reminded of Daniel 
Dennett 's (1984) comment, 

It is rather as if philosophers were to proclaim themselves expert explainers of the meth-
ods of stage magicians, and then. when we ask how the magician does the sawing-the-
lady-in-half trick, they explain that it is really quite obvious: the magician doesn't really 
saw her in half; he simply makes it appear that he does. "But how does he do chat'?"  we 
ask. "Not our department," say the philosophers. 

Dreyfus and Dreyfus (1986) propose a five-stage process of acquiring expertise, beginning 
with rule-based processing (of the sort proposed in GOFAI)  and ending with the ability to 
select correct responses instantaneously.  In making this proposal, Dreyfus and Dreyfus in 
effect move from being AI critics to AI theorists—they propose a neural network architecture 
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organized into a vast "case library," but point cut several problems. Fortunately, all of their 
problems have been addressed, some with partial success and somc with total success, Their 
problems include the following: 

l.  Good generalization from examples cannot be achieved without background knowl-
edge. They claim no one has any idea how to incorporate background knowledge into 
the neural network learning process. In fact, we saw in Chapters 19 and 20 that there 
are techniques for using prior knowledge in learning algorithms. Those techniques, 

however, rely on the availability of knowledge in explicit form, something that Dreyfus 
and Dreyfus strenuously deny. In our view, this is a good reason for a scrious redesign 
of current models of neural processing so that they can take advantage of previously 
learned knowledge in the way that other learning algorithms do. 

2.  Neural network learning is a form of supervised learning (see Chapter 18),  requiring 
the prior identification of relevant inputs and correct outputs. Therefore, they claim, 
it cannot operate autonomously without the help of a human trainer. In fact, learning 
without a teacher can be accomplished by unsupervised learning (Chapter 20) and 
reinforcement learning (Chapter 20.  

I Learning algorithms do not perform well with many features, and if we pick a subset 
of features, "there is no known way of adding new features should the current set prove 
inadequate to account for the learned facts." In fact, new methods such as support 
vector machines handle large feature sets very well. With the introduction of large 
Web-based data sets, many applications in areas such as language processing (Sha and 
Pereira, 2003) and computer vision (Viola and Jones, 2002a)  routinely handle millions 
of features_ We saw in Chapter 19 that there are also principled ways to generate new 
features, although much more work is needed. 

4_  The brain is able to direct its sensors to seek relevant information and to process it 
to extract aspects relevant to the current situation. But, Dreyfus and Dreyfus claim, 
"Currently, no details of this mechanism are understood or even hypothesized in a way 
that could guide AI research." In fact, the field of active vision, underpinned by the 
theory of information value (Chapter 16), is concerned with exactly the problem of 
directing sensors, and already some robots have incorporated the theoretical results 
obtained_ STANLEY's 132-mile  trip through the desert (page 28) was made possible in 
large part by an active sensing system of this kind. 

In sum, many of the issues Dreyfus has focused on—background commonsense knowledge, 
the qualification problem, uncertainty, learning, compiled forms of decision making—are 
indeed important issues, and have by now been incorporated into standard intelligent agent 
design. In our view, this is evidence of Ars  progress, not of its impossibility. 

One of Dreyfus' strongest arguments is for situated agents rather than disembodied 
logical inference engines. An agent whose understanding of "dog" comes only from a limited 
set of logical sentences such as "Dog(x) Mammal (3-)"  is at a disadvantage compared 

to an agent that has watched dogs run, has played fetch with them, and has been licked by 
one. As philosopher Andy Clink (1998) says, "Biological brains are first and foremost  the 
control systems for biological bodies. Biological bodies move and act in rich real-world 
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EMBODIED 
COGNITION  

surroundings." To understand how human (or other animal) agents work, we have to consider 
the whole agent, not just the agent program. Indeed, the embodied cognition approach claims 
that it makes no sense to consider the brain separately: cognition takes place within a body. 
which is embedded in an envirorunent.  We need to study the system as a whole; the brain 
augments its reasoning by referring to the environment, as the reader does in perceiving (and 
creating) marks on paper to transfer knowledge.  Under the embodied cognition program ;  
robotics, vision, and other sensors become central, not peripheral. 

26.2 STRONG AI: CAN MACHINES REALLY THINK? 

Many philosophers have claimed that a machine that passes the Turing Test would still not 
be actually thinking, but would be only a simulation of thinking. Again, the objection was 
foreseen by Turing. He cites a speech by Professor Geoffrey Jefferson (1949): 

Not until a machine could write a sonnet or compose a concerto because of thoughts and 
emotions felt, and not by the chance fall of symbols, could we agree that machine equals 
brain—that is, not only write it but know that it had written it. 

Turing calls this the argument from consciousness —the machine has to be aware of its own 
mental states and actions. While consciousness is an important subject, Jefferson's key point 
actually relates to phenomenology, or the study of direct experience: the machine has to 
actually feel emotions. Others focus on intentionality—that is, the question of whether the 
machine's purported beliefs, desires, and other representations are actually "about" some-
thing in the real world. 

Turing's response to the objection is interesting. He could have presented reasons that 
machines can in fact be conscious (or have phenomenology, or have intentions). Instead, he 
maintains that the question is just as ill-defined as asking, "Can machines think?" Besides. 
why should we insist on a higher standard for machines than we do for humans? After all ;  
in ordinary life we never have any direct evidence about the internal mental states of other 
humans. Nevertheless, Turing says, "Instead of arguing continually over this point, it is usual 
to have the polite convention that everyone thinks." 

Turing argues that Jefferson would be willing to extend the polite convention to ma-
chines if only he had experience with ones that act intelligently. He cites the following dialog, 
which has become such a part of AI's oral tradition that we simply have to include it.  

HUMAN: In the first line of your sonnet which reads "shall I compare thee to a summer's 
day," would not a "spring day" do as well or better? 

MACHINE: It wouldn't scan. 
HUMAN: How about "a winter's day." That would scan all right. 
MACHINE: Yes, but nobody wants to be compared to a winter's day. 
HUMAN: Would you say Mr. Pickwick reminded you of Christmas? 
MACHINE: Ina way. 
HUMAN: Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind 

the comparison. 
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MACHINE: I don't think you're serious. By a winter's day one means a typical winter's 
day, rather than a special one like Christmas. 

One can easily imagine some future time in which such conversations with machines are 
commonplace, and it becomes customary to make no linguistic distinction between "real" 
and "artificial" thinking. A similar transition occurred in the years after 1848, when artificial 
urea was synthesized for the first time by Frederick WOhler. Prior to this event, organic and 
inorganic chemistry were essentially ,  disjoint enterprises and many thought that no process 
could exist that would convert inorganic chemicals into organic material. Once the synthesis 
was accomplished, chemists agreed that artificial urea was urea,  because it had all the right 
physical properties. Those who had posited an intrinsic property possessed by organic ma-
terial that inorganic material could never have were faced with the impossibility of devising 
any test that could reveal the supposed deficiency of artificial urea. 

For thinking, we have not yet reached our 1848 and there are those who believe that 
artificial thinking, no matter how impressive, will never be real. For example, the philosopher 
John Searle (1980) argues as follows: 

No one supposes that a computer simulation of  a storm will leave us all wet ...  Why on 
earth would anyone in his right mind suppose a computer simulation of mental processes 
actually had mental processes? (pp. 37-38) 

While it is easy to agree that computer simulations of storms do not make us wet, it is not 

clear how to carry this analogy over to computer simulations of mental processes. After 
all, a Hollywood simulation of a storm using sprinklers and wind machines does make the 
actors wet, and a video game simulation of a storm  does make the simulated characters wet. 
Most people are comfortable saying that a computer simulation of addition is addition, and 
of chess is chess. In fact, we typically speak of an implementation of addition or chess, not a 
simulation.  Are mental processes more like storms, or more like addition? 

Turing's answer—the polite convention—suggests that the issue will eventually go 
away by itself once machines reach a certain level of sophistication. This would have the 
effect of dissygving  the difference between weak and strong AI. Against this, one may insist 
that there is a factual issue at stake: humans do have real minds, and machines might or 
might not. To address this factual issue, we need to understand how it is that humans have 
real minds, not just bodies that generate neurophysiological processes. Philosophical efforts 
to solve this mind-body problem are directly relevant to the question of whether machines 
could have real minds. 

The mind-body problem was considered by the ancient Greek philosophers and by var-
ious schools of Hindu thought, but was first analyzed in depth by the 17th-century French 
philosopher and mathematician Rene Descartes. His Meditations on First Philosophy (1641) 
considered the mind's activity of thinking (a process with no spatial extent or material prop-
erties) and the physical processes of the body, concluding that the two must exist in separate 
realms—what we would now call a dualist theory. The mind-body problem faced by du- 

alists is the question of how the mind can control the body if the two are really separate. 
Descartes speculated that the two might interact through the pineal gland, which simply begs 
the question of how the mind controls the pineal gland. 

MAD  BODY 
PROBLEM 

DIAIJSM  
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MONISM The monist theory of mind, often called physicalism, avoids this problem by asserting 
PHYSICALISM the mind is nor separate from the body—that mental states one physical states. Most modem 

philosophers of mind are physicalists  of one form or another, and physicalism allows, at least 
in principle, for the possibility of strong Al. The problem for physicalists is to explain how 
physical states—in particular, the molecular configurations and electrochemical processes of 

MENTAL STATES the brain—can simultaneously be mental states, such as being in pain. enjoying a hamburger, 
knowing that one is riding a horse, or believing that Vienna is the capital of Austria. 

ILIERTIONAL  STATE 

WIDE CONTENT  

NARROW CONTENT 

26.2.1 Mental states and the brain in a vat 

Physicalist philosophers have attempted to explicate what it means to say that a person—and, 
by extension, a computer—is in a particular mental state. They have focused in particular on 
intentional states. These are states, such as believing, knowing, desiring, fearing, and so on, 
that refer to some aspect of the external world. For example, the knowledge that one is eating 
a hamburger is a belief &mut  the hamburger and what is happening to 

If physicalism is correct, it must be the case that the proper description of a person's 
mental state is determined by that person's brain state. Thus, if I am currently focused on 
eating a hamburger in a mindful way, my instantaneous brain state is an instance of the class of 
mental states "knowing that one is eating a hamburger." Of course, the specific configurations 
of all the atoms of my brain are not essential: there are many configurations of my brain, or 
of other people's brain, that would belong to the same class of mental states. The key point is 
that the same brain state could not correspond to a fundamentally distinct mental state, such 
as the knowledge that one is eating a banana. 

The simplicity of this view is challenged by some simple thought experiments. Imag-
ine,  if you will, that your brain was removed from your body at birth and placed in a mar-
velously engineered vat. The vat sustains your brain, allowing it to grow and develop. At the 
same time, electronic signals are fed to your brain from a computer simulation of an entirely 
fictitious world, and motor signals from your brain are intercepted and used to modify the 
simulation as appropriate. 2  In fact, the simulated life you live replicates exactly the life you 
would have lived, had your brain not been placed in the vat, including simulated eating of 
simulated hamburgers. Thus, you could have a brain state identical to that of someone who is 
really eating a real hamburger, but it would be literally false to say that you have the mental 
state "knowing that one is eating a hamburger." You aren't eating a hamburger, you have 
never even experienced a hamburger and you could not, therefore, have such a mental state, 

This example seems to contradict the view that brain states determine mental states_ One 
way to resolve the dilemma is to say that the content of mental states can be interpreted from 
two different points of view. The "wide content" view interprets it from the point of view 
of an omniscient outside observer with access to the whole situation, who can distinguish 
differences in the world. Under this view, the content of mental states involves both the brain 
state and the environment history. Narrow content, on the other hand, considers only the 
brain state. The narrow content of the brain states of a real hamburger-eater and a brain-in-a-
vat "hamburger"-"eater"  is the same in both cases. 

2  This situation may be familiar to those who have seen She 1999 film The Matrix. 
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FINCTIONAIISM  

Wide content is entirely appropriate if one's goals are to ascribe mental states to others 
who share one's world, to predict their likely behavior and its effects, and so on. This is the 
setting in which our ordinary language about mental content has evolved. On the other hand, 
if one is concerned with the question of whether Al systems are really thinking and really 
do have mental states, then narrow content is appropriate; it simply doesn't make sense to 
say that whether or not an AI system is really thinking depends on conditions outside that 
system. Narrow content is also relevant if we are thinking about designing Al systems or 
understanding their operation, because it is the narrow content of a brain state that determines 
what will be the (narrow content of the) next brain state. This leads naturally to the idea that 
what matters about a brain state—what makes it have one kind of mental content and not 
another—is its functional role within the mental operation of the entity involved. 

26.2.2 Functionalism and the brain replacement experiment 

The theory of functionalism says that a mental state is any intermediate causal condition 
between input and output. Under functionalist theory, any two systems with isomorphic 
causal processes would have the same mental states. Therefore, a computer program could 
have the same mental states as a person. Of course, we have not yet said what "isomorphic" 
really means, but the assumption is that there is some level of abstraction below which the 
specific implementation does not matter. 

The claims of functionalism are illustrated most clearly by the brain replacement ex-
periment This thought experiment was introduced by the philosopher Clark Glymour and 
was touched on by John Searle (1980), but is most commonly associated with roboticist  Hans 
Moravec (1988).  It goes like this: Suppose neurophysiology has developed to the point where 
the input–output behavior and connectivity of all the neurons in the human brain are perfectly 
understood_  Suppose further that we can build microscopic electronic devices that mimic this 
behavior and can be smoothly interfaced to neural tissue. Lastly, suppose that some mirac-
ulous surgical technique can replace individual neurons with the corresponding electronic 
devices without interrupting the operation of the brain as a whole. The experiment consists 
of gradually replacing all the neurons in someone's head with electronic devices. 

We are concerned with both the external behavior and the internal experience of the 
subject, during and after the operation. By the definition of the experiment, the subject's 
external behavior must remain unchanged compared with what would be observed if the 
operation were not carried out. 3  Now although the presence or absence of consciousness 
cannot easily be ascertained by a third party, the subject of the experiment ought at least to 
be able to record any changes in his or her own conscious experience. Apparently, there is 
a direct clash of intuitions as to what would happen. Moravec, a robotics researcher and 
functionalist, is convinced his consciousness would remain unaffected. Searle, a philosopher 
and biological naturalist, is equally convinced his consciousness would vanish: 

You find, to your total amazement, that you are indeed losing control of your external 
behavior. You find, for example, that when doctors test your vision, you hear them say 
"We are holding up a red object in front of you; please tell us what you see." You want 

3  One can imagine using an identical "control" subject who is given a placebo operation, for comparison. 
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to cry out "I  can't see anything. I'm going totally blind." But you hear your voice saying 
in a way that is completely out of your control, "1 see a red object in front of me." ...  
your conscious experience slowly shrinks to nothing, while your externally observable 
behavior remains the same_  (Searle. 1992) 

One can do more than argue from intuition. First, note that, for the external behavior to re-
main the same while the subject gradually becomes unconscious, it must be the case that the 
subject's volition is removed instantaneously and totally; otherwise the shrinking of aware-
ness  would be reflected in external behavior—"Help,  I' m shrinking!" or words to that effect. 
This instantaneous removal of volition as a result of gradual neuron-at-a-time replacement 
seems an unlikely claim to have to make. 

Second, consider what happens if we do ask the subject questions concerning his or 
her conscious experience during the period when no real neurons remain. By the conditions 
of the experiment, we will get responses such as "1 feel fine. I must say I'm a bit surprised 
because I believed Searle's  argument." Or we might poke the subject with a pointed stick and 
observe the response, "Ouch, that hurt." Now, in the normal course of affairs, the skeptic can 
dismiss such outputs from AI programs as mere contrivances. Certainly, it is easy enough to 
use a rule such as "If sensor 12 reads 'High' then output 'Ouch.' " But the point here is that. 
because we have replicated the functional properties of a normal human brain, we assume 
that the electronic brain contains no such contrivances. Then we must have an explanation of 
the manifestations of consciousness produced by the electronic brain that appeals only to the 
functional properties of the neurons. And this explanation must also apply to the real brain, 
which has the same functional properties. There arc three possible conclusions: 

1. The causal mechanisms of consciousness that generate these kinds of outputs in normal 
brains are still operating in the electronic version, which is therefore conscious. 

2. The conscious mental events in the normal brain have no causal connection to behavior;  
and are missing from the electronic brain, which is therefore not conscious. 

3. The experiment is impossible, and therefore speculation about it is meaningless. 
Although we cannot rule out the second possibility, it reduces consciousness to what phil oso- 

EPIPHENOMENON  phers call an epiphenomenal role—something that happens, but casts no shadow, as it were. 
on the observable world. Furthermore, if consciousness is indeed epiphenomenal, then it 

cannot be the case that the subject says "Ouch" because it hurts—that is, because of the con-
scious experience of pain. Instead, the brain must contain a second, unconscious mechanism 
that is responsible for the "Ouch." 

Patricia Churchland (1986) points out that the functionalist arguments that operate at 
the level of the neuron can also operate at the level of any larger functional unit—a clump 
of neurons, a mental module, a lobe, a hemisphere, or the whole brain. That means that if 
you accept the notion that the brain replacement experiment shows that the replacement brain 
is conscious, then you should also believe that consciousness is maintained when the entire 
brain is replaced by a circuit that updates its state and maps from inputs to outputs via a huge 
lookup table. This is disconcerting to many people (including Turing himself), who have 
the intuition that lockup tables are not conscious—or  at least, that the conscious experiences 
generated during table lookup are not the same as those generated during the operation of a 
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system that might be described (even in a simple-minded, computational sense) as accessing 
and generating beliefs, introspections,  goals, and so on. 

26.2.3 Biological naturalism and the Chinese Room 

BIOLOGICAL 
NA-URALISAI  

A strong challenge to functionalism has been mounted by John Searle's (1980)  biological 
naturalism, according to which mental states are high-level emergent features that are caused 
by low-level physical processes in the neurons, and it is the (unspecified) properties of the 
neurons that matter. Thus, mental states cannot be duplicated just on the basis of some pro-
gram having the same functional structure with the same input—output behavior; we would 
require that the program be running on an architecture with the same causal power as neurons. 
To support his view, Searle describes a hypothetical system that is clearly running a program 
and passes the Turing Test, but that equally clearly (according to Searle) does not understand 
anything of its inputs and outputs. His conclusion is that running the appropriate program 
(i.c., having the right outputs) is not a sufficient condition for being a mind. 

The system consists of a human, who understands only English, equipped with a rule 
book, written in  English, and various stacks of paper, some blank, some with indecipherable 
inscriptions. (The human therefore plays the role of the CPU, the rule book is the program, 
and the stacks of paper are the storage device.) The system is inside a room with a small 
opening to the outside. Through the opening appear slips of paper with indecipherable sym-
bols. The human finds matching symbols in the rule book, and follows the instructions. The 
instructions may include writing symbols on new slips of paper, finding symbols in the stacks, 
rearranging the stacks, and so on. Eventually, the instructions will cause one or more symbols 
to be transcribed onto a piece of paper that is passed back to the outside world. 

So far, so good. But from the outside, we see a system that is taking input in the form 
of Chinese sentences and generating answers in Chinese that are as "intelligent" as those 
in the conversation imagined by Turing.4  Searle then argues: the person in the room does 
not understand Chinese (given). The rule book and the stacks of paper, being just pieces of 
paper, do not understand Chinese. Therefore, there is no understanding of Chinese. Hence, 
according to Searle, twining the right program does not necessarily generate understanding. 

Like Turing, Searle considered and attempted to rebuff a number of replies to his ar-
gument. Several commentators, including John McCarthy and Robert Wilensky,  proposed 
what Searle calls the systems reply. The objection is that asking if the human in the room 
understands Chinese is analogous to asking if the CPU can take cube roots. In both cases, 
the answer is no, and in both cases, according to the systems reply, the entire system does 
have the capacity in question. Certainly, if one asks the Chinese Room whether it understands 
Chinese, the answer would be affirmative (in fluent Chinese). By Turing's polite convention, 
this should be enough. Searle's response is to reiterate the point that the understanding is not 
in the human and cannot be in the paper, so there cannot be any understanding. He seems to 
be relying on the argument that a property, of the whole must reside in one of the parts. Yet 

4  The fact that the stacks of paper might contain trillions of pages and the generation of answers would take 
millions of years has no bearing on the logical  structure of the argument. One aim of philosophical training is to 
develop a finely honed sense of which objections are germane and which are not. 
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water is wet, even though neither H nor 02 is. The real claim made by Searle rests upon the 
following four axioms (Searle, 1990): 

1. Computer programs are formal (syntactic). 
2. Human minds have mental contents (semantics). 
3. Syntax by itself is neither constitutive of nor sufficient for semantics. 
4. Brains cause minds. 

From the first three axioms Searle concludes that programs are not sufficient for minds. In 
other words, an agent running a program ;night  be a mind, but it is not necessarily a mind just 
by virtue of running the program. From the fourth axiom he concludes Any other system 
capable of causing minds would have to have causal powers (at least) equivalent to those 
of brains!'  From there he infers that any artificial brain would have to duplicate the causal 
powers of brains, not just run a particular prognun,  and that human brains do not produce 
mental phenomena solely by virtue of running a program. 

The axioms are controversial. For example, axioms 1 and 2 rely on an unspecified 
distinction between syntax and semantics that seems to be closely related to the distinction 
between narrow and wide content. On the one hand, we can view computers as manipulating 
syntactic symbols; on the other, we can view them as manipulating electric current, which 
happens to be what brains mostly do (according to cur current understanding). So it seems 
we could equally say that brains are syntactic. 

Assuming we are generous in interpreting the axioms, then the conclusion—that pro-
grams are not sufficient for minds—does follow. But the conclusion is unsatisfactory—all 
Searle has shown is that if you explicitly deny functionalism (that is what his axiom 3 does), 
then you can't necessarily conclude that non-brains are minds. This is reasonable enough—
almost tautological—so the whole argument comes down to whether axiom 3 can be ac-
cepted. According to Searle, the point of the Chinese Room argument is to provide intuitions 
for axiom 3. The public reaction shows that the argument is acting as what Daniel Bennett 

INTJMON  PUMP  (1991) calls an intuition pump: it amplifies one's prior intuitions, so biological naturalists 
are more convinced of their positions ;  and functionalists am convinced only that axiom 3 is 
unsupported, or that in general Searle's argument is unconvincing. The argument stirs up 
combatants, but has done little to change anyone's opinion. Searle remains undeterred, and 
has recently started calling the Chinese Room a "refutation" of strong AI rather than just an 
"argument" (Snell, 2008). 

Even those who accept axiom 3, and thus accept Searle's argument, have only their in-
tuitions to fall back on when deciding what entities are minds. The argument purports to show 
that the Chinese Room is not a mind by virtue of running the pregram,  but the argument says 
nothing about how to decide whether the room (or a computer, some other type of machine, 
or an alien) is a mind by virtue of some  other reason. Searle himself says that some machines 
do have minds: humans are biological machines with minds. According to Searle, human 
brains may or may not be running something like an AI program, but if they are, that is no 
the reason they are minds. It takes more to make a mind—according to Searle, something 
equivalent to the  causal powers of individual neurons. Mal these powers are is left unspec-
ified. It should be noted, however, that neurons evolved to fulfill functional roles—creatures 
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with neurons were learning and deciding long before consciousness appeared on the scene. It 
would be a remarkable coincidence if such neurons just happened to generate consciousness 
because of some causal powers that are irrelevant to their functional capabilities; after all, it 
is the functional capabilities that dictate survival of the organism. 

In the case of the Chinese Room, Searle relies on intuition, not proof: just look at the 
room; what's there to be a mind9  But one could make the same argument about the brain: 
just look at this collection of cells (or of atoms), blindly operating according to the laws of 
biochemistry (or of physics)—what's there to be a mind? Why can a hunk of brain be a mind 
while a hunk of liver cannot? That remains the great mystery. 

CONSCIOUSNESS 

OUALIA  

IN'ERTED  
SPECTRUM 

EXPLANATORY GAP 

26.2.4 Consciousness, qualia, and the explanatory gap 

Running through all the debates about strong AI—the  elephant in the debating room, so 
to speak—is the issue of consciousness. Consciousness is often broken down into aspects 
such as understanding and self-awareness. The aspect we will focus on is that of subjective 
experience: why it is that it feels like something to have certain brain states (e.g., while eating 
a hamburger), whereas it presumably does not feel like anything to have other physical states 
(e.g., while being a rock), The technical term for the intrinsic nature of experiences is qualia  
(from the Latin word meaning, roughly, "such things"). 

Qualia  present a challenge for functionalist accounts of the mind because different 
qualia could be involved in what are otherwise isomorphic causal processes. Consider, for 
example, the inverted spectrum thought experiment. which the subjective experience of per-
son X when seeing red objects is the same experience that the rest of us experience when 
seeing green objects, and vice versa. X still calls red objects "red," stops for red traffic lights, 
and agrees that the redness of red traffic lights is a more intense red than the redness of the 
setting sun. Yet, X 's subjective experience is just different. 

Qualia are challenging not just for functionalism but for all of science. Suppose, for the 
sake of argument, that we have completed the process of scientific research on the brain—we 
have found that neural process P12  in neuron N177  transforms molecule A into molecule B,  
and so on, and on. There is simply no currently accepted form of reasoning that would lead 
from such findings to the conclusion that the entity owning those neurons has any particular 
subjective experience. This explanatory gap has led some philosophers to conclude that 
humans are simply incapable of forming a proper understanding of their own consciousness. 
Others, notably Daniel Dennett (1991), avoid the gap by denying the existence of qualia, 
attributing them to a philosophical confusion. 

Turing himself concedes that the question of consciousness is a difficult one, but denies 
that it has much relevance to the practice of Al: "I do not wish to give the impression that I 
think there is no mystery about consciousness ... But I do not think these mysteries neces- 
sarily need to be solved before we can answer the question with which we are concerned in 
this paper." We agree with Turing—we are interested in creating programs that behave intel-
ligently. The additional project of irraking  them conscious is not one that we are equipped to 
take on, nor one whose success we would be able to determine. 
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26.3 THE ETHICS AND RISKS OF DEVELOPING ARTIFICIAL INTELLIGENCE  

So far, we have concentrated on whether we can develop AI, but we must also consider 
whether we should. If the effects of AI technology are more likely to be negative than positive, 
then it would be the moral responsibility of workers in the field to redirect their research. 
Many new technologies have had unintended negative side effects: nuclear fission brought 
Chernobyl and the threat of global destruction; the internal combustion engine brought air 
pollution, global warming, and the paving-over of paradise. In a sense, automobiles are 
robots that have conquered the world by making themselves indispensable. 

All scientists and engineers face ethical  considerations of how they should act on the 
job, what projects should or should not be done, and how they should be handled. See the 
handbook on the Ethics of Computing (Berleur and Brunnstein,  2001). Al, however, seems 
to pose some fresh problems beyond that of, say, building bridges that don't fall down: 

■ People might lose their jobs to automation. 
■ People might have too much (or too little) leisure time. 
• People might lose their sense of being unique. 
• AI systems might be used toward undesirable ends. 
■ The use of Al systems might result in a loss of accountability. 
■ The success of Al might mean the end of the human race. 

We will look at each issue in turn. 
People might lose their jobs to automation. The modern industrial economy has be-

come dependent on computers in general, and select AI programs in particular. For example, 
much of the economy, especially in the United States, depends on the availability of con-
sumer credit Credit card applications, charge approvals, and fraud detection are now done 
by AI programs. One could say that thousands of workers have been displaced by these Al 
programs, but in fact if you took away the Al programs these jobs would not exist, because 
human labor would add an unacceptable cost to the transactions. So far, automation through 
information technology in general and Al in particular has created more jobs than it has 
eliminated, and has created more interesting, higher-paying jobs. Now that the canonical AI 
program is an "intelligent agent" designed to assist a human, loss of jobs is less of a concern 
than it was when AI focused on "expert systems" designed to replace humans. But some 
researchers think that doing the complete job is the right goal for AI. In reflecting on the 25th 
Anniversary of the AAAI, Nils Nilsson (2005) set as a challenge the creation of human-level 
Al that could pass the employment test rather than the Turing Test—a robot that could learn 
to do any one of a range of jobs. We may end up in a future where unemployment is high, but 
even the unemployed serve as managers of their own cadre of robot workers. 

People might have too much (or too little) leisure time. Alvin Toffler wrote in Future  
Shock (1970), "The work week has been cut by 50 percent since the turn of the century. It  

is not out of the way to predict that it will be slashed in half again by 2000." Arthur C. 
Clarke (1968b)  wrote that people in 2001 might be "faced with a future of utter boredom, 
where the main problem in life is deciding which of several hundred TV channels to select." 
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The only one of these predictions that has come close to panning out is the number of TV 
channels. Instead, people working in knowledge-intensive  industries have found themselves 
part of an integrated computerized system that operates 24 hours a day; to keep up, they have 
been forced to work longer hours. In an industrial economy, rewards are roughly proportional 
to the time invested; working 10% more would tend to mean a 10% increase in income. In 
an information economy marked by high-bandwidth communication and easy replication of 
intellectual property (what Frank and Cook (1996) call the "Winner-Take-All  Society"), there 
is a large reward for being slightly better than the competit ion; working 10% more could mean 
a 100% increase in income. So there is increasing pressure on everyone to work harder. AI 
increases the pace of technological innovation and thus contributes to this overall trend, but 
Al also holds the promise of allowing us to take some time off and let our automated agents 
handle things for a while. Tim Ferriss (2007) recommends using automation and outsourcing 
to achieve a four-hour work week. 

People might lose their sense of being unique. In Computer Power and Human Rea-
son, Weizenbaum  (1976), the author of the ELIZA  program, points out some of the potential 
threats that AI poses to society. One of Weizenbaum's  principal arguments is that AI research 
makes possible the idea that humans are automata—an idea that results in a loss of autonomy 
or even of humanity. We note that the idea has been around much longer than AI, going back 
at least to L'IIomme  Machine (La Mende,  1748). Humanity has survived other setbacks to 
our sense of uniqueness: De Revalutionibus  Orbium Coelestium  (Copernicus, 1543) moved 
the Earth away from the center of the solar system, and Descent of Man (Darwin, 1871) put 
llama sapiens at the same level as other species. AI, if widely successful, may be at least as 
threatening to the moral assumptions of 21st-century society as Darwin's theory of evolution 
was to those of the 19th century. 

AI systems might be used toward undesirable ends. Advanced technologies have 
often been used by the powerful to suppress their rivals. As the number theorist G. H. Hardy 
wrote (Hardy, 1940), "A science is said to be useful if its development tends to accentuate the 
existing inequalities in the distribution of wealth, or more directly promotes the destruction 
of human life!'  This holds for all sciences, AI being no exception_ Autonomous Al systems 
are now commonplace on the battlefield; the U.S. military deployed over 5,000 autonomous 
aircraft and 12,000 autonomous ground vehicles in Iraq (Singer, 2009). One moral theory 
holds that military robots are like medieval armor taken to its logical extreme: no one would 
have moral objections to a soldier wanting to wear a helmet when being attacked by large, 
angry, axe-wielding enemies, and a teleoperated  robot is like a very safe form of armor. On 
the other hand, robotic weapons pose additional risks. To the extent that human decision 
making is taken out of the firing loop, robots may end up making decisions that lead to the 
killing of innocent civilians. At a larger scale, the possession of powerful robots (like the 
possession of sturdy helmets) may give a nation overconfidence, causing it to go to war more 
recklessly than necessary. In most wars, at least one party is overconfident in its military 
abilities—otherwise the conflict would have been resolved peacefully. 

Weizenbaum (1976) also pointed out that speech recognition technology could lead to 
widespread wiretapping, and hence lo  a loss of civil liberties. He didn't foresee a world with 
terrorist threats that would change the balance of how much surveillance people are willing to 
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accept, but he did correctly recognize that AI has the potential to mass-produce surveillance. 
His prediction has in part come true: the U.K. now has an extensive network of surveillance 
cameras, and other countries routinely monitor Web traffic and telephone calls. Some accept 
that computerization leads to a loss of privacy—Sun Microsystems CEO Scott McNealy has 
said "You have zero privacy anyway. Get over it." David Erin  (1998) argues that loss of 
privacy is inevitable,  and the way to combat the asymmetry of power of the state over the 
individual is to make the surveillance accessible to all citizens. Etzioni (2004) argues for a 
balancing of privacy and security; individual rights and community. 

The use of AI systems might result in a loss of accountability. In the litigious atmo-
sphere that prevails in the United States, legal liability becomes an important issue. When a 
physician relies on the judgment of a medical expert system for a diagnosis, who is at fault if 
the diagnosis is wrong? Fortunately, due in part to the growing influence of decision-theoretic 
methods in medicine, it is now accepted ilia'  negligence cannot be shown if the physician 
performs medical procedures that have high expected utility, even if the actual result is catas-
trophic for the patient. The question should therefore be "Who is at fault if the diagnosis is 
unreasonable?" So far, courts have held that medical expert systems play the same role as 
medical textbooks and reference books; physicians are responsible for understanding the rea-
soning behind any decision and for using their own judgment in deciding whether to accept 
the system's recommendations. In designing medical expert systems as agents, therefore, 
the actions should be thought of not as directly affecting the patient but as influencing the 
physician's behavior. If expert systems become reliably more accurate than human diagnosti-
cians, doctors might become legally liable if they don't use the recommendations of an expert 
system. Atul Gawande (2002) explores this premise. 

Similar issues are beginning to arise regarding the use of intelligent agents on the Inter-
net. Some progress has been made in incorporating constraints into intelligent agents so that 
they cannot, for example, damage the files of other users (Weld and Etzioni, 1994). The pmb-
lem  is magnified when money changes hands. If monetary transactions are made "on one's 
behalf" by an intelligent agent, is one liable for the debts incurred? Would it be possible for 
an intelligent agent to have assets itself and to perform electronic trades on its own behalf? 
So far, these questions do not seem to be well understood. To our knowledge, no program 
has been granted legal status as an individual for the purposes of financial transactions; at 
present, it seems unreasonable to do so. Programs are also not considered to be "drivers" 
for the purposes of enforcing traffic regulations on real highways. In California law, at least. 
there do not seem to be any legal sanctions to prevent an automated vehicle from exceeding 
the speed limits, although the designer of the vehicle's control mechanism would be liable in 
the case of an accident. As with human reproductive technology, the law has yet to catch up 
with the new developments. 

The success of AI might mean the end of the human race. Almost any technology 
has the potential to cause harm in the wrong hands, but with Al and robotics, we have the new 
problem that the wrong hands might belong to the technology itself. Countless science fiction 
stories have warned about robots or robot—human cyborgs running amok Early examples 
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include Mary Shelley's Frankenstein, or the Modern Prometheus (1818)5  and Karel Capek's 
play R.U.R.  (1921), in which robots conquer the world. In movies, we have The Terminator 
(1984), which combines the cliches of robots-conquer-the-world with time travel, and The 
Matrix (1999), which combines robots-conquer-the-world with brain-in-a-vat. 

It seems that robots are the protagonists of so many conquer-the-world stories because 
they represent the unknown, just like the witches and ghosts of tales from earlier eras, or the 
Martians from The War of the Worlds (Wells, 1898). The question is whether an AI system 
poses a bigger risk than traditional software. We will look at three sources of risk. 

First, the AI system's state estimation may be incorrect, causing it to do the wrong 
thing. For example, an autonomous car might incorrectly estimate the position of a car in the 
adjacent lane, leading to an accident that might kill the occupants. More seriously, a missile 
defense system might erroneously detect an attack and launch a counterattack, leading to 
the death of billions. These risks are not really risks of AI systems—in both  eases the same  
mistake could just as easily be made by a human as by a computer. The correct way to mitigate 
these risks is to design a system with checks and balances so that a single state-estimation 
error does not propagate through the system unchecked. 

Second, specifying the right utility function for an AI system to maximize is not so 
easy. For example, we might propose a utility function designed to minimize human suffering, 
expressed as an additive reward function over time as in Chapter 17. Given the way humans 
are, however, we'll always find a way to suffer even in paradise; so the optimal decision for 
the AI system is to terminate the human race as soon as possible—no humans, no suffering. 
With AI systems, then, we need to be very careful what we ask for, whereas humans would 
have no trouble realizing that the proposed utility function cannot be taken literally. On the 
other hand, computers need not be tainted by the irrational behaviors described in Chapter 16.  
Humans sometimes use their intelligence in aggressive ways because humans have some 
innately aggressive tendencies, due to natural selection. The machines we build need not he 
innately aggressive, unless we decide to build them that way (or unless they emerge as the 
end product of a mechanism design that encourages aggressive behavior). Fortunately. there 
are techniques, such as apprenticeship learning, that allows us to specify a utility function by 
example. One can hope that a robot that is smart enough to figure out how to terminate the 
human race is also smart enough to figure out that that was not the intended utility function. 

Third, the AI system's learning function may cause it to evolve into a system with 
unintended behavior. This scenario is the most serious, and is unique to AI systems, so we 
will cover it in more depth. I. J. Good wrote (1965), 

LILTRAINTEL_IGENIT  
MAL-HINE  Let an ultraintelligent  machine be defined as a machine that can far surpass all the 

intellectual activities of any man however clever. Since the design of machines is one of 
these intellectual activities, an ultrainteltigent  machine could design even better machines; 
there would then unquestionably be an "intelligence explosion," and the intelligence of 
mart  would be left far behind. Thus the first ultraintelligeat  machine is the last invention 
that man need ever make, provided that the machine is docile enough to tell us how to 
keep it under control. 

 

5  As a young man, Charles Babbage was influenced by reading Frankenstein. 
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TECHNOLOGCAL  
SIN3ULARI1Y  

THANSHUMATSM  

The "intelligence explosion" has also been called the technological singularity by mathe 
matics professor and science fiction author Vernor  Vingc, who writes (1993), "Within thirty 
years, we will have the technological means to create superhuman intelligence. Shortly after, 
the human era will be ended?' Goad and Vinge  (and many others) correctly note that the curve 
of technological progress (on many measures) is growing exponentially at present (consider 
Moore's Law). However, it is a leap to extrapolate that the curve will continue to a singularity 
of near-infinite growth. So far, every other technology has followed an S-shaped curve, where 
the exponential growth eventually tapers off. Sometimes new technologies step in when the 
old ones plateau: sometimes we hit hard limits. With less than a century of high-technology 
history to go on, it is difficult to extrapolate hundreds of years ahead. 

Note that the concept of ultraintelligent machines assumes that intelligence is an es-
pecially important attribute, and if you have enough of it, all problems can be solved. But 
we know there are limits on computability and computational complexity. If the problem 
of defining ultraintelligent  machines (or even approximations to them) happens to fall in the 
class of, say, NEXPTIME-complete problems, and if there are no heuristic shortcuts, then 
even exponential progress in technology won't help—the speed of light puts a strict upper 
bound on how much computing can be done; problems beyond that limit will not be solved. 
We still don't know where those upper bounds are. 

Vinge is concerned about the coming singularity, but some computer scientists and 
futurists relish it. Hans Moravec (2000) encourages us to give every advantage to our "mind 
children," the robots we create, which may surpass us in intelligence. There is even a new 
word—transhumanism—for the active social movement that looks forward to this future in 
which humans are merged with—or replaced by—robotic and biotech inventions. Suffice it 
to say that such issues present a challenge for most moral theorists, who take the preservation 
of human life and the human species to be a good thing. Ray Kurzweil is currently the most 
visible advocate for the singularity view, writing in The Singularity is Near (2005): 

The Singularity will allow us to transcend these limitations of our biological bodies and 
brain. We will gain power over our fates. Our mortality will be in our own hands. We 
will be able to live as long as we want (a subtly different statement from saying we will 
live forever). We will fully understand human thinking and will vastly extend and expand 
its reach. By the end of this century, the nonbiological portion of our intelligence will be 
trillions of trillions of times more powerful than unaided human intelligence. 

Kurzweil also notes the potential dangers, writing "But the Singularity will also amplify the 
ability to act on our destructive inclinations, so its full story has not yet been written." 

If ultraintelligent  machines are a possibility, we humans would do well to make sure 
that we design their predecessors in such a way that they design themselves to treat us well. 
Science fiction writer Isaac Asimov (1942) was the first to address this issue, with his three 
laws of robotics: 

1. A robot may not injure a human being or, through inaction, allow a human being to 
come to harm. 

2. A robot must obey orders given to it by human beings, except where such orders would 
conflict with the First Law. 
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3. A robot must protect its own existence as long as such protection does not conflict with 
the First or Second Law 

These laws seem reasonable, at least to us humans. 6  But the trick is how to implement these 
laws. In the Asimov story Roundabout a robot is sent to fetch some selenium. Later the 
robot is found wandering in a circle around the selenium source. Every time it heads toward 
the source, it senses a danger, and the third law causes it to veer away. But every time it 
veers away, die  danger recedes, and the power of the second law takes over, causing it to  

veer back towards the selenium. The set of points that define the balancing point between 
the two laws defines a circle. This suggests that the laws are not logical absolutes, but rather 
are weighed against each other, with a higher weighting for the earlier laws. Asimov was 
probably thinking of an architecture based on control theory—perhaps a linear combination 
of factors—while today the most likely architecture would be a probabilistic reasoning agent 
that reasons over probability distributions of outcomes, and maximizes utility as defined by 
the three laws. But presumably we don't want our robots to prevent a human from crossing 
the street because of the nonzero chance of harm. That means that the negative utility for 
harm to a human must be much greater than for disobeying, but that each of the utilities is 
finite, not infinite_ 

FRIENDLY Al Yudkowsky (2008) goes into more detail about how to design a Friendly AI. He asserts 
that friendliness (a desire not to harm humans) should be designed in from the start, but that 
the designers should recognize both that their own designs may be flawed, and that the robot 
will learn and evolve over time. Thus the challenge is one of mechanism design—to define a 
mechanism for evolving Al systems under a system of checks and balances, and to give the 
systems utility functions that will remain friendly in the face of such changes_ 

We can't just give a program a static utility function, because circumstances, and our de-
sired responses to circumstances, change over time. For example, if technology had allowed 
us to design a super-powerful Al agent in 1800 and endow it with the prevailing morals of 
the time, it would be fighting today to reestablish slavery and abolish women's  right to vote. 
On the other hand, if we build an Al agent today and tell it to evolve its utility function, how 
can we assure that it won't reason that "Humans think it is moral to kill annoying insects, in 
part because insect brains are so primitive. But human brains are primitive compared to my 
powers, so it must be moral for me to kill humans." 

Omohundro (200g)  hypothesizes that even an innocuous chess program could pose a 
risk to society. Similarly, Marvin  Minsky once suggested that an AI program designed to 
solve the Riemann Hypothesis might end up taking over all the resources of Earth to build 
more powerful supercomputers to help achieve its goal. The moral is that even if you only 
want your program to play chess or prove theorems, if you give it the capability to learn 
and alter itself, you need safeguards. Omohundro  concludes that "Social structures which 
cause individuals to bear the cost of their negative externalities would go a long way toward 
ensuring a stable and positive future," This seems to be an excellent idea for society in general, 
regardless of the possibility of ultraintelligent machines. 

6  A robot might notice the inequity that a human is allowed to kill another in self-defense, but a robot is required 
to sacrifice its own life to save a human. 
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We should note that the idea of safeguards against change in utility function is not a 
new one. In the Odyssey, Homer (ca. 700 p.c.)  described Ulysses' encounter with the sirens, 
whose song was so alluring it compelled sailors to cast themselves into the sea. Knowing it 
would have that effect on him, Ulysses ordered his crew to hind him to the mast so that he 
could not perform the self-destructive act. It is interesting to think how similar safeguards 
could be built into Al systems. 

Finally, let us consider the robot's point of view. If robots become conscious, then to 
treat them as mere "machines" (e.g., to take them apart) might be immoral. Science fiction 
writers have addressed the issue of robot rights. The movie A.I.  (Spielberg, 2001) was based 
on a story by Brian Aldiss  about an intelligent robot who was programmed to believe that 
he was human and fails to understand his eventual abandonment by his owner–mother. The 
story (and the movie) argue for the need for a civil rights movement for robots. 

26.4 SUMMARY 

This chapter has addressed the following issues: 
• Philosophers use the term weak AI for the hypothesis that machines could possibly 

behave intelligently. and strong AI for the hypothesis that such machines would count 
as having actual minds (as opposed to simulated minds) 

■ Alan Turing rejected the question "Can machines think" and replaced it with a be-
havioral test. He anticipated many objections to the possibility of thinking machines. 
Few Al researchers pay attention to the Turing Test, preferring to concentrate on their 
systems' performance on practical tasks, rather than the ability to imitate humans. 

■ There is general agreement in modem times that mental states are brain states. 
• Arguments for and against strong Al are inconclusive. Few mainstream Al researchers 

believe that anything significant hinges on the outcome of the debate. 
• Consciousness remains a mystery. 
• We identified six potential threats to society posed by Al and related technology. We 

concluded that some of the threats are either unlikely or differ little from threats posed 
by "unintelligent" technologies. One threat in particular is worthy of further consider-
ation: that ultraintelligent machines might lead to a future that is very different from 
today—we may not like it, and at that paint we may not have a choice. Such consid-
erations lead inevitably to the conclusion that we must weigh carefully, and soon, the 
possible consequences of Al research. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Sources for the various responses to Turing's 1950 paper and for the main critics of weak 
Al were given in the chapter. Although it became fashionable in the post-neural-network era 



Bibliographical and Historical Notes 1041 

PAIN  EAKINS  

to deride symbolic approaches, not all philosophers are critical of GOFAL.  Some are, in fact, 
ardent advocates and even practitioners. Zenon Pylyshyn (1984) has argued that cognition 
can best be understood through a computational model, not only in principle but also as a 
way of conducting research at present, and has specifically rebutted  Dreyfus's  criticisms of 
the computational model of human cognition (Pylyshyn, 1974). Gilbert Harman (1983), in 
analyzing belief revision, makes connections with AI research on truth maintenance systems. 
Michael Bratman has applied his "belief-desire-intention" model of human psychology (Brat- 
man, 1987) to AI research on planning (Bratman, 1992). At the extreme end of strong AI, 
Aaron Sloman (1978, p. xiii) has even described as "racialist" the claim by Joseph Weizen- 
baum (1976) that intelligent machines can never be regarded as persons. 

Proponents of the importance of embodiment in cognition include the philosophers 
Merleau-Ponty, whose Phenomenology of Perception (1945) stressed the importance of the 
body and the subjective interpretation of reality afforded by our senses, and Heidegger, whose 
Being and Time (1927) asked what it means to actually be an agent, and criticized all of the 
history of philosophy for taking this notion for granted. In the computer age, Alva Noe (2009) 
and Andy Clark (1998, 2008) propose that our brains form a rather minimal representation 
of the world, use the world itself in a just-in-time basis to maintain the illusion of a detailed 
internal model, use props in the world (such as paper and pencil as well as computers) to 
increase the capabilities of the mind. Pfeifer el al. (2006) and Lakoff and Johnson (1999) 
present arguments for how the body helps shape cognition. 

The nature of the mind has been a standard topic of philosophical theorizing from an-
cient times to the present. In the Phaedo,  Plato specifically considered and rejected the idea 
that the mind could be an  "attunement" or pattern of organization of the parts of the body, a 
viewpoint that approximates the functionalist viewpoint in modem philosophy of mind. He 
decided instead that the mind had to be an immortal, immaterial soul, separable from the 
body and different in substance—the viewpoint of dualism. Aristotle distinguished a variety 
of souls (Greek Ai"vxt))  in living things, some of which, at least, he described in a functionalist 
manner. (See Nussbaum (1978) for more on Aristotle's functionalism.) 

Descartes is notorious for his dualistic view of the human mind, but ironically his histor-
ical influence was toward mechanism and physicalism. He explicitly conceived of animals as 
automata, and he anticipated the Turing Test, writing "it is not conceivable [that a machine] 
should produce different arrangements of words so as to give an appropriately meaningful 
answer to whatever is said in its presence, as even the dullest of men can do" (Descartes, 
1637). Descartes's spirited defense of the animals-as-automata viewpoint actually had the 
effect of making it easier to conceive of humans as automata as well, even though he himself 
did not take this step. The book L'Homme  Machine (La Mettrie, 1748) did explicitly argue 
that humans are automata. 

Modem analytic philosophy has typically accepted physicalism, but the variety of views 
on the content of mental states is bewildering. The identification of mental states with brain 
states is usually attributed to Place (1956) and Smart (1959). The debate between narrow-
content and wide-content views of mental states was triggered by Hilary Putnam (1975), who 
introduced so -called twin earths (rather than brain-in-a-vat, as we did in the chapter)  as a 
device to generate identical brain states with different (wide) content. 
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Functionalism is the philosophy of mind most naturally suggested by Al. The idea that 
mental states correspond to classes of brain states defined functionally is duc to Putnam 
(1960, 1967) and Lewis (1966, 1980). Perhaps the most forceful proponent of functional-
ism is Daniel Dennett,  whose ambitiously titled work Consciousness Explained (Dennen. 
1991) has attracted many attempted rebuttals. Metzinger (2009) argues there is no such thing 
as an objective self, that consciousness is the subjective appearance of a world. The inverted 
spectrum argument concerning qualia  was introduced by John Locke (1690). Frank Jack-
son (1982) designed an influential thought experiment involving Mary, a color scientist who 
has been brought up in an entirely black-and-white world. There's Something About Mary  
(Ludlow et al., 2004) collects several papers on this topic. 

Functionalism has come under attack from authors who claim that they do not account 
for the qualia or "what it's like" aspect of mental states (Nagel, 1974).  Searle has focused 
instead on the alleged inability of functionalism to account for intentionality (Searle, 1980, 
1984, 1992). Churchland and Churchland (1982) rebut both these types of criticism. The 
Chinese Room has been debated endlessly (Searle, 1980, 1990; Preston and Bishop, 2002). 
Well just mention here a related work: Terry Bisson's (1990) science fiction story They're 
Made out of Meat, in which alien robotic explorers who visit earth are incredulous to find 
thinking human beings whose minds are made of meat. Presumably. the robotic alien equiv-
alent of Searle believes that he can think due to the special causal powers of robotic circuits; 
causal powers that mere meat-brains do not possess. 

Ethical issues in AI predate the existence of the field itself. I. J. Good's (1965) ul-
traintelligent  machine idea was foreseen a hundred years earlier by Samuel Butler (1863).  
Written four years after the publication of Darwin's On. the Origins of Species and at a time 
when the most sophisticated machines were steam engines, Butler's article on Darwin Among 
the Machines envisioned "the ultimate development of mechanical consciousness" by natural 
selection. The theme was reiterated by George Dyson (1998) in a book of the same title. 

The philosophical literature on minds, brains, and related topics is large and difficult to 
read without training in the terminology and methods of argument employed. The Encyclo-
pedia of Philosophy (F.dwards,  1967) is an impressively authoritative and very useful aid in 
this process. The Cambridge Dictionary of Philosophy (Audi, 1999) is a shorter and more 
accessible work, and the online Stanford Encyclopedia of Philosophy offers many excellent 
articles and up-to-date references. The MIT Encyclopedia of Cognitive Science (Wilson and 
Keil, 1999) covers the philosophy of mind as well as the biology and psychology of mind. 
There are several general introductions to the philosophical "Al question" (Roden,  1990: 
Haugeland, 1985; Copeland, 1993; McCorduck, 2004; Minsky, 2007). The Behavioral and 
Brain Sciences, abbreviated BBS, is a major journal devoted to philosophical and scientific 
debates about AI and neuroscience. Topics of ethics and responsibility in AI are covered in 
the journals Al and Society and Journal of Artificial Intelligence and Law. 
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EXERCISES 

26.1  Go through Turing's list of alleged "disabilities" of machines, identifying which have 
been achieved, which are achievable in principle by a program, and which are still problem-
atic because they require conscious mental states. 

26.2 Find and analyze an account in the popular media of one or more of the arguments to 
the effect that AI is impossible. 

26.3 In the brain replacement argument, it is important to be able to restore the subject's 
brain to normal, such that its external behavior is as it would have been if the operation had 
not taken place. Can the skeptic reasonably abject that this would require updating those 
neurophysiological properties of the neurons relating to conscious experience, as distinct 
from those involved in the functional behavior of the neurons? 

26.4 Suppose that a Prolog program containing many clauses about the rules of British 
citizenship is compiled and run on an ordinary computer. Analyze the "brain states" of the 

computer under wide and narrow content. 

26.5 Alan Perlis (1982) wrote, "A year spent in artificial intelligence is enough to make one 
believe in God". He also wrote, in a letter to Philip Davis, that one of the central dreams of 
computer science is that "through the performance of computers and their programs we will 
remove all doubt that there is only a chemical distinction between the living and nonliving 
world." To what extent does the progress made so far in artificial intelligence shed light on 
these issues? Suppose that at some future date, the Al endeavor has been completely success-

ful; that is, we have build intelligent agents capable of carrying out any human cognitive task 
at human levels of ability. To what extent would that shed light on these issues? 

26.6 Compare the social impact of artificial intelligence in the last fifty years with the social 
impact of the introduction of electric appliances and the internal combustion engine in the 
fifty years between 1890 and 1940.  

26.7 I. J. Good claims that intelligence is the most important quality, and that building 
ultraintelligent machines will change everything. A sentient cheetah counters that "Actually 
speed is more important; if we could build ultrafast  machines, that would change everything" 
and a sentient elephant claims "You're both wrong; what we need is ultrastrong machines," 
What do you think of these arguments? 

26.8  Analyze the potential threats from AI technology to society. What threats are most se-
rious, and how might they be combated? How do they compare to the potential benefits? 

26.9 How do the potential threats from AT technology compare with those from other com-
puter science technologies, and to bio-,  nano-, and nuclear technologies? 

26.10  Some critics object that Al is impossible, while others object that it is we  possible 
and that ultraintelligent machines pose a threat. Which of these objections do you think is 
more likely? Would it be a contradiction for someone to hold both positions? 



27  AI: THE PRESENT AND 
FUTURE 

In which we take stock of where we are and where we are going, this being a good 
thing to do before continuing. 

tfr  

In Chapter 2, we suggested that it would be helpful to view the AI task as that of designing 
rational agents—that is, agents whose actions maximize their expected utility given their 
percept histories. We showed that the design problem depends on the percepts and actions 
available to the agent, the utility function that the agent's behavior should satisfy, and the 
nature of the environment. A variety of different agent designs are possible, ranging from 
reflex agents to fully deliberative, knowledge-based, decision-theoretic agents. Moreover, 
the components of these designs can have a number of different instantiations—for  example. 
logical or probabilistic reasoning, and atomic, factored, or structured representations of states.  
The intervening chapters presented the principles by which these components operate, 

For all the agent designs and components, there has been tremendous progress both in 
our scientific understanding and in our technological capabilities. In this chapter, we stand 
back from the details and ask, Will all this progress lead to a general-purpose intelligent 
agent that can perform well in a wide variety of environments?" Section 27.1 looks at the 
components of an intelligent agent to assess what's known and what's missing. Section 27.2 
does the same for the overall agent architecture. Section 27.3 asks whether designing rational 
agents is the right goal in the first place. iThe  answer is. "Not really, but it's OK for now.") 
Finally, Section 27.4 examines the consequences of success in our endeavors. 

27.1 AGENT COMPONENTS 

Chapter 2 presented several agent designs and their components. To focus our discussion 
here, we will look at the utility-based agent, which we show again in Figure 27.1. When en-
dowed with a learning component (Figure 2.15). this is the most general of our agent designs. 
Let's see where the state of the art stands for each of the components. 

Interaction with the environment through sensors and actuators: For much of the 
history of AI, this has been a glaring weak point. With a few honorable exceptions, AI sys-
tems were built in such a way that humans had to supply the inputs and interpret the outputs, 
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Figure 27.1 A model-based,  utility-based agent, as first  presented in Figure 2.14. 
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while robotic systems focused on low-level tasks in which high-level reasoning and plan- 
ning were largely absent. This was due in part to the great expense and engineering effort 
required to get real robots to work at all. The situation has changed rapidly in recent years 
with the availability of ready-made programmable robots. These, in turn, have benefited 
from small, cheap, high-resolution  CCD cameras and compact, reliable motor drives. MEMS 
(micro-electromechanical systems) technology has supplied miniaturized accelerometers, gy-
roscopes, and actuators for an artificial flying insect (Floreano el aL, 2009). It may also be 
possible to combine millions of MEMS devices to produce powerful macroscopic actuators. 

Thus, we see that AI systems are at the cusp of moving from primarily software-only 
systems to embedded robotic systems. The state of robotics today is roughly comparable to 
the state of personal computers in about 1980:  at that time researchers and hobbyists could 
experiment with PCs, but it would take another decade before they became commonplace_  

Keeping track of the stale of the world: This is one of the care capabilities required 
for an intelligent agent. It requires both perception and updating of internal representations. 
Chapter 4 showed how to keep track of atomic state representations; Chapter 7 described 
how to do it for factored (propositional) state representations; Chapter 12 extended this to 
first-order logic; and Chapter 15 described filtering algorithms for probabilistic reasoning in 
uncertain environments. Current filtering and perception algorithms can be combined to do a 
reasonable job of reporting low-level predicates such as "the cup is on the table." Detecting 
higher-level actions, such as "Dr. Russell is having a cup of tea with Dr. Norvig while dis-
cussing plans for next week," is more difficult. Currently it can be done (see Figure 24.25 on 
page 961) only with the help of annotated examples. 

Another problem is that, although the approximate filtering algorithms from Chapter 15 
can handle quite large environments, they am still dealing with a factored representation— 
they have random variables, but do not represent  objects and relations explicitly. Section 14.6  
explained how probability and first-order logic can be combined to solve this problem, and 
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Section 14.6.3 showed how we can handle uncertainty about the identity of objects. We expect 
that the application of these ideas for tracking complex environments will yield huge benefits. 
However, we are still faced with a daunting task of defining general, reusable representation 
schemes for complex domains. As discussed in Chapter 12, we don't yet know how to do that 
in general; only for isolated, simple domains. It is possible that a new focus on probabilistic 
rather than logical representation coupled with aggressive machine learning (rather than hand-
encoding of knowledge) will allow for progress. 

Projecting, evaluating, and selecting future courses of action: The basic knowledge-
representation requirements here are the same as for keeping track of the world; the primary 
difficulty is coping with courses of action—such as having a conversation or a cup of tea—
that consist eventually of thousands or millions of primitive steps for a real agent. It is only 
by imposing hierarchical structure on behavior that we humans cope at all. We saw in 
Section 11.2 how to use hierarchical representations to handle problems of this scale; fur-
thermore, work in hierarchical reinforcement learning has succeeded in combining some 
of these ideas with the techniques for decision making under uncertainty described in Chap-
ter 17. As yet, algorithms for the partially observable case (POMDPs) are using the same 
atomic state representation we used for the search algorithms of Chapter 3. There is clearly a 
great deal of work to do here, but the technical foundations are largely in place. Section 27.2 
discusses the question of how the search for effective long-range plans might be controlled. 

Utility as an expression of preferences: In principle, basing rational decisions on the 
maximization of expected utility is completely general and avoids many of the problems of 
purely goal-based approaches, such as conflicting goals and uncertain attainment. As yet, 
however, there has been very little work on constructing realistic utility functions—imagine, 
for example, the complex web of interacting preferences that must be understood by an agent 
operating as an office assistant for a human being. It has proven very difficult to decompose 
preferences over complex states in the same way that Bayes nets decompose beliefs over 
complex states. One reason may be that preferences over states are really compiled from 
preferences over state histories, which are described by reward functions (see Chapter 17), 
Even if the reward function is simple, the corresponding uti l ity function maybe very complex. 
This suggests that we take seriously the task of knowledge engineering for reward functions 
as a way of conveying to our agents what it is that we want them to do. 

Learning: Chapters 18 to 21 described how learning in an agent can be formulated as 
inductive learning (supervised, unsupervised, or reinforcement-based) of the functions that 
constitute the various components of the agent. Very powerful logical and statistical tech-
niques have been developed that can cope with quite large problems, reaching or exceeding 
human capabilities in many tasks—as long as we are dealing with a predefined vocabulary 
of features and concepts. On the other hand, machine learning has made very little progress 
on the important problem of constructing new representations at levels of abstraction higher 
than the input vocabulary, In computer vision, for example, learning complex concepts such 
as Classroom and Cafeteria would be made unnecessarily difficult if the agent were forced 
to work from pixels as the input representation; instead, the agent needs to be able to form 
intermediate concepts first, such as Desk and Tray, without explicit human supervision. 
Similar considerations apply to learning behavior: HavingACepOfTea  is a very important 
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high-level step in many plans, but how does it get into an action library that initially contains 
much simpler actions such as RaiseArm and Swallow? Perhaps this will incorporate some 
of the ideas of deep belief networks—Bayesian networks that have multiple layers of hidden 
variables, as in the work of Hinton et aL (2006),  Hawkins and Blakeslee (2004), and Bengio 
and LeCun (2007). 

The vast majority of machine learning research today assumes a factored representa-
tion, learning a function h  :  11  for regression and h  :  —r  {0, 1}  for classification. 
Learning researchers will need to adapt their very successful techniques for factored repre-
sentations to structured representations, particularly hierarchical representations. The work 
on inductive logic programming in Chapter 19 is a first step in this direction; the logical next 
step is to combine these ideas with the probabilistic languages of Section 14.6.  

Unless we understand such issues, we are faced with the daunting task of constructing 
large cotrunonsense  knowledge bases by hand, an approach that has not fared well to date. 
There is great promise in using the Web as a source of natural language text, images, and 
videos to serve as a comprehensive knowledge base, but so far machine learning algorithms 
are limited in the amount of organized knowledge they can extract from these sources, 

27.2 AGENT ARCHITECTURES 

1-119FID  
ARCHITECT RE 

REAL-TIME Al 

It is natural to ask, "Which of the agent architectures in Chapter 2 should an agent use?" 
The answer is, "All of them!" We have seen that reflex responses are needed for situations 
in which time is of the essence, whereas knowledge-based deliberation allows the agent to 
plan ahead. A complete agent must be able to do both, using a hybrid architecture. One 
important property of hybrid architectures is that the boundaries between different decision 
components are not fixed. For example, compilation continually converts declarative in-
formation at the deliberative level into more efficient representations, eventually reaching the 
reflex level —see Figure 27_2_  (This is the purpose of explanation-based learning, as discussed 
in Chapter 19.)  Agent architectures such as SOAR (Laird et al., 1987)  and THEO (Mitchell, 
1990) have exactly this structure. Every time they solve a problem by explicit deliberation, 
they save away a generalized version of the solution for use by the reflex component A 
less studied problem is the reversal of this process: when the environment changes, learned 
reflexes may no longer be appropriate and the agent must return to the deliberative level to 
produce new behaviors. 

Agents also need ways to control their own deliberations. They must be able to cease 
deliberating when action is demanded, and they must be able to use the time available for 
deliberation to execute the most profitable computations. For example, a taxi-driving agent 
that sees an accident ahead must decide in a split second either to brake or to take evasive 
action. It should also spend that split second thinking about the most important questions, 
such as whether the lanes to the left and right are clear and whether there is a large truck 
close behind, rather than worrying about wear and tear on the tiles  or where to pick up the 
next passenger. These issues are usually studied under the heading of real-time AI. As Al 
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Figure 27.2 Compilation serves to convert deliberative decision making into more effi- 
cient, reflexive mechanisms. 
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Ll  CIMUN-  
THECIIEf  fC The second technique forcontrolling deliberation is decision-theoretic metareasoning 
M EAREASONNG  

(Russell and Wefald, 1989, 1991; Horvitz, 1989; Horvitz and Breese, 1996). This method 
applies the theory of information value (Chapter 16) to the selection of individual computa-
tions. The value of a computation depends on both its cost (in terms of delaying action) and 
its benefits (in terms of improved decision quality). Metareasoning techniques can be used to 
design better search algorithms and to guarantee that the algorithms have the anytime prop-
erty_ Metareasnning  is expensive, of course, and compilation methods can he applied so that 
the overhead is small compared to the costs of the computations being controlled. Metalevel 
reinforcement learning may provide another way to acquire effective policies for controlling 
deliberation: in essence, computations that lead to better decisions are reinforced, while those 
that turn out to have no effect are penalized. This approach avoids the myopia problems of 
the simple value-of-information calculation. 

EFLECTIVE  
ARCI-IfTECTLFIE Metareasoning  is one specific example of a reflective architecture—that is, an archi- 

tecture that enables deliberation about the computational entities and actions occurring within 
the architecture itself. A theoretical foundation for reflective architectures can be built by 
defining a joint state space composed from the environment state and the computational state 
of the agent itself. Decision-making and learning algorithms can be designed that operate 
over this joint state space and thereby serve to implement and improve the agent's compu-
tational activities. Eventually, we expect task-specific algorithms such as alpha–beta search 
and backward chaining to disappear  from AI systems, to be replaced by general methods that 
direct the agent's computations toward the efficient generation of high-quality decisions. 

systems move into more complex domains, all problems will become real-time, because the 
agent will never have long enough to solve the decision problem exactly. 

Clearly, there is a pressing need for general methods of controlling deliberation, rather 
than specific recipes for what to think about in each situation. The first useful idea is to em- 

ANYTIME  
ALECOTHM ploy anytime algorithms (Dean and Boddy, 1988; Horvitz, 1987). An anytime algorithm is 

an algorithm whose output quality improves gradually over time, so that it  has a reasonable 
decision ready whenever it is interrupted. Such algorithms are controlled by a metalevel de-
cision procedure that assesses whether further computation is worthwhile. (See Section 3.5.4 
for a brief description of metalevel decision making.) Example of an anytime algorithms 
include iterative deepening in game-tree search and MCMC in Bayesian networks. 
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27.3 ARE WE GOING IN THE RIGHT DIRECTION? 

The preceding section listed many advances and many opportunities for further progress, But 
where is this all leading? Dreyfus (1992) gives the analogy of trying  to get to the moon by 
climbing a tree; one can report steady progress, all the way to the top of the tree. In this 
section, we consider whether AI's current path is more like a tree climb or a rocket trip. 

In Chapter 1, we said that our goal was to build agents that act rationally. However, we 
also said that 

PESFEGT  
RATIONAIJP  

CA_CULATIVE  
RW10144117'  

BOADED  
RAMALIT'  

.  achieving perfect rationality—always doing the right thing—is not feasible in compli- 
cated environments. The computational demands are just too high. For most of the book, 
however, we will adopt the working hypothesis that perfect rationality is a good starting 
point 101  malysis.  

Now it is time to consider again what exactly the goal of AI is. We want to build agents, but 
with what specification in mind? Here are four possibilities; 

Perfect rationality. A perfectly rational agent acts at every instant in such a way as to 
maximize its expected utility, given the information it has acquired from the environment. We 
have seen that the calculations necessary to achieve perfect rationality in most environments 
are too time consuming so perfect rationality  is not a realistic goal. 

Calculative rationality.  This is the notion of rationality that we have used implicitly in de- 
signing logical and decision -theoretic agents, and most of theoretical At research has focused 
on this property. A calculatively rational agent eventually returns what would have been the 
rational choice at the beginning of its deliberation. This is an interesting property for a system 
to exhibit, but in most environments, the right answer at the wrong time is of no value. In 
practice, Al system designers are forced to compromise on decision quality to obtain reason- 
able overall performance; unfortunately, the theoretical basis of calculative rationality does 
not provide a well-founded way to make such compromises. 

Bounded rationality. Herbert Simon (1957) rejected the notion of perfect (or even approx-
imately perfect) rationality and replaced it with bounded rationality, a descriptive theory of 
decision making by real agents. He wrote, 

The capacity of the human mind for formulating and solving complex problems is very 
small compared with the size of the problems whose solution is required for objectively 
rational behavior in the real world—or even for a reasonable approximation to such ob- 
jeclive  rationality. 

He suggested that bounded rationality works primarily by satisficing—that  is, deliberating 
only long enough to come up with an answer that is "good enough." Simon won the Nobel 
Prize in economics for this work and has written about it in depth (Simon, 1982).  It appears 
to be a useful model of human behaviors in many cases. It is not a formal specification 

for intelligent agents, however, because the definition of 'good enough" is not given by the 
theory. Furthermore, salisficing  seems to be just one of a large range of methods used to  cope 
with bounded resources. 
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Bounded optimality (BO). A bounded optimal agent behaves as well as possible, given its 
computational resources. That is, thc  expected utility of thc  agent program for a bounded 
optimal agent is at least as high as the expected utility of any other agent program running on 
the same machine. 

Of these four possibilities, bounded optimality seems to offer the best hope for a strong 
theoretical foundation for AI. It has the advantage of being possible to achieve: there is always 
at least one best program—something that perfect rationality lacks. Bounded optimal agents 
are actually useful in the real world, whereas calculatively rational agents usually are not, and 
satisficing agents might or might not be, depending on how ambitious they are. 

The traditional approach in AI has been to start with calculative rationality and then 
make compromises to meet resource constraints. If the problems imposed by the constraints 
are minor, one would expect the final design to be similar to a BO agent design. But as the 
resource constraints become snore critical—for  example, as the environment becomes more 
complex—one would expect the two designs to diverge. In the theory of bounded optimality, 
these constraints can be handled in a principled fashion. 

As yet, little is known about bounded optimality. It is possible to construct bounded 
optimal programs for very simple machines and for somewhat restricted kinds of environ-
ments (Etzioni, 1989; Russell et al., 1993), but as yet we have no idea what BO programs 
are like for large, general-purpose computers in complex environments. If there is to be a 
constructive theory of bounded optimality, we have to hope that the design of bounded op-
timal programs does not depend too strongly on the details of the computer being used. 11 
would make scientific research very difficult if adding a few kilobytes of memory to a giga-
byte machine made a significant difference to the design of the BO program. One way to 
make sure this cannot happen is to be slightly more relaxed about the criteria for bounded 
optimality. By analogy with the notion of asymptotic complexity (Appendix A), we can de-
fine asymptotic bounded optimality (ABO) as follows (Russell and Subramanian,  1995). 
Suppose a program P is bounded optimal for a machine M in a class of environments E, 
where the complexity of environments in F. is unbounded_ Then program Pr  is 4R0  for M 
in E if it can outperform P by running on a machine kM that is k times faster (or larger) 
than M. Unless k were enormous, we would be happy with a program that was ABO  for 
a nontrivial environment on a nontrivial architecture. There would be little point in putting 
enormous effort into finding BO rather than ABO programs, because the size and speed of 
available machines tends to increase by a constant factor in a fixed amount of time anyway. 

We can hazard a guess that BO or ABO  programs for powerful computers in complex 
environments will not necessarily have a simple, elegant structure. We have already seen that 
general-purpose intelligence requires some reflex capability and some deliberative capability; 
a variety of forms of knowledge and decision making; learning and compilation mechanisms 
for all of those forms; methods for controlling reasoning; and a large store of domain-specific 
knowledge. A bounded optimal agent must adapt to the environment in which it finds itself. 
so  that eventually its internal organization will reflect optimizations that are specific to the 
particular enviromnent.  This is only to be expected, and it is similar to the way in which 
racing cars restricted by engine capacity have evolved into extremely complex designs. We 
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suspect that a science of artificial intelligence based on bounded optimality will involve a 
good deal of study of the processes that allow an agent program to converge to bounded 
optimality and perhaps less concentration on the details of the messy programs that result. 

In sum, the concept of bounded optimality is proposed as a formal task for AI research 
that is both well defined and feasible. Bounded optimality specifies optimal programs rather 
than optimal actions. Actions are, after all, generated by programs, and it is over programs 
that designers have control. 

27.4 WHAT IF Al DOES SUCCEED'!  

In David Lodge's Small World (1984), a novel about ihe  academic world of literary criiici  
the protagonist causes consternation by asking a panel of eminent but contradictory literary 
theorists the following question: "What if you were right?"  None of the theorists seems to 
have considered this question before, perhaps because debating unfalsifiable theories is an end 
in itself. Similar confusion can be evoked by asking AI researchers, "What if you succeed?" 

As Section 26.3 relates, there are ethical issues to consider. Intelligent computers are 
more powerful than dumb ones, but will that power be used for good or ill? Those who strive 
to develop AI have a responsibility to see that the impact of their work is a positive one. The 
scope of the impact will depend on the degree of success of AI. Even modest successes in Al 
have already changed the ways in which computer science is taught (Stein, 2002) and software 
development is practiced. AI has made possible new applications such as speech recognition 
systems, inventory control systems, surveillance systems, robots, and search engines. 

We can expect that medium-level successes in AI would affect all kinds of people in 
their daily lives. So far, computerized communication networks, such as cell phones and the 
Internet, have had this kind of pervasive effect on society, but AI has not. AI has been at work 
behind the scenes—for example, in automatically approving or denying credit card transac-
tions for every purchase made on the Weh—but  has not been visible to the average consumer_ 
We can imagine that truly useful personal assistants for the office or the home would have a 
large positive impact on people's lives, although they might cause some economic disloca-
tion in the short term. Automated assistants for driving could prevent accidents, saving tens 
of thousands of lives per year. A technological capability at this level might also be applied 
to the development of autonomous weapons, which many view as undesirable. Some of the 
biggest societal problems we face today—such as the harnessing of genomic information for 
treating disease, the efficient management of energy resources, and the verification of treaties 
concerning nuclear weapons—are being addressed with the help of AI technologies. 

Finally, it seems likely that a large-scale success in AI—the  creation of human-level in-
telligence and beyond—would change the lives of a majority of humankind. The very nature 
of our work and play would be altered, as would our view of intelligence, consciousness, and 
the future destiny of the human race. Al systems at this level of capability could threaten hu-
man autonomy, freedom, and even survival. For these reasons, we cannot divorce AI research 
from its ethical consequences (see Section 26.3). 
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Which way will the future go? Science fiction authors seem to favor dystopian futures 
over utopian ones, probably because they make for more interesting plots. But so far, Al 
seems to fit in with other revolutionary technologies (printing, plumbing, air travel, telephony) 
whose negative repercussions are outweighed by their positive aspects. 

In conclusion, we see that AI has made great progress in its short history, but the final 
sentence of Alan Turing's (1950) essay on Computing Machinery and Intelligence is still 
valid today: 

We can see only  a short distance ahead, 
but we can see that much remains to be done. 



A MATHEMATICAL 
BACKGROUND 

A.1 COMPLEXITY ANALYSIS AND 00 NOTATION 

Computer scientists are often faced with the task of comparing algorithms to see how fast 
they run or how much memory they require. There are two approaches to this task. The first 

BENCHMARIMG 

	

	is henclunarking—running  the algorithms on a computer and measuring speed in seconds 
and memory consumption in bytes. Ultimately, this is what really matters, but a benchmark 
can be unsatisfactory because it is so specific: it measures the performance of a particular 

program written in a particular language, running on a particular computer, with a particular 
compiler and particular input data. From the single result that the benchmark provides, it 
can be difficult to predict how well the algorithm would do on a different compiler, com- 

ANALYSFS  OF puter, or data set.  The second approach relies on a mathematical analysis of algorithms, ALGORITHMS 
independently of the particular implementation and input, as discussed below. 

A.1.1 Asymptotic analysis 

We will consider algorithm analysis through the following example, a program to compute 
the sum of a sequence of numbers: 

function SummATIGN(svience)  returns a number 
sum —0 
for i  = 1 to LENom(sequence)  do 

.s um q—  sum + sequence[i]  
return sum 

The first step in the analysis is to abstract over the input, in order to find some parameter er  
parameters that characterize the size of the input. In this example, the input can be charac- 
terized by the length of the sequence, which we will call n. The second step is to abstract 
over the implementation, to find some measure that reflects the running time of the algorithm 

but is not tied to a particular compiler or computer. For the S UMMATION  program, this could 
be just the number of lines of code executed, or it could be more detailed, measuring the 
number of additions, assignments, array references, and branches executed by the algorithm. 

1053 
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ASYMPTOTIC 
ANALYSIS 

COMPLEXITY 
ANALYSIS 

Either way gives us a characterization of the total number of steps taken by the algorithm as 
a function of the size of the input. We will call this characterization T(n). If we count lines 
of code, we have T(n)  = 2n +  2 for our example. 

If all programs were as simple as SUMEVIATIM,  the analysis of algorithms would be a 
trivial field. But two problems make it more complicated. First, it is rare to find a parameter 
Like n  that completely characterizes the number of steps taken by an algorithm. Instead, the 
best we can usually do is compute the worst case T.,„, t (rt)  or the average case 71,„(n).  
Computing an average means that the analyst must assume some distribution of inputs. 

The second problem is that algorithms tend to resist exact analysis. In that case, it is 
necessary to fall back on an approximation. We say that the SUMMATION algorithm is 61 (n.  
meaning that its measure is at most a constant times rt,  with the possible exception of a feu  
small values of n. More formally, 

T (n) is 0  ( f (rt))  if T(n) < k f (n)  for some k, for all n  >  no  .  

The 00  notation gives us what is called an asymptotic analysis. We can say without ques-
tion that, as rt  asymptotically approaches infinity, an 0(n)  algorithm is better than an 0(n 2 )  
algorithm. A single benchmark figure could not substantiate such a claim. 

The 0()  notation abstracts over constant factors, which makes it easier to use, but less 
precise, than the TO notation. For example, an 0  ( n2 ) algorithm will always be worse than 
an 0(n) in the long run, but if the two algorithms are T (n2  + 1) and T(100n  + 1000), then 
the 0  (n2 ) algorithm is actually better for n  < 110. 

Despite this drawback, asymptotic analysis is the most widely used tool for analyzing 
algorithms. It is precisely because the analysis abstracts over both the exact number of oper-
ations (by ignoring the constant factor 10  and the exact content of the input (by considering 
only its size n) that the analysis becomes mathematically feasible. The 0()  notation is a good 
compromise between precision and ease of analysis. 

A.1.2 NP and inherently hard problems 

The analysis of algorithms and the 0()  notation allow us to talk about the efficiency of a 
particular algorithm. However, they have nothing to say about whether there could be a better 
algorithm for the problem at hand. The field of complexity analysis analyzes problems rather 
than algorithms. The first gross division is between problems that can be solved in polynomial 
time and problems that cannot be solved in polynomial time, no matter what algorithm is 
used. The class of polynomial problems—those which can be solved in time (knk )  for some 
k—is called P. These are sometimes called "easy" problems, because the class contains those 
problems with running times like 0(log  n) and 0(n). But it also contains those with time 
O(tat"),  so the name "easy" should not be taken too literally. 

Another important class of problems is NP,  the class of nondeterministic  polynomial 
problems. A problem is in this class if there is some algorithm that can guess a solution and 
then verify whether the guess is correct in polynomial time The idea is that if you have an 
arbitrarily large number of processors, so that you can try all the guesses at once, or you are 
very lucky and always guess right the first lime, then the NP problems become P problems. 
One of the biggest open questions in computer science is whether the class NP is equivalent 



Section A.2. Vectors, Matrices, and Linear Algebra 1055 

to the class P when one does not have the luxury of an infinite number of processors or 
omniscient guessing. Most computer scientists arc convinced that P  NP; that NP problems 
are inherently hard and have no polynomial-time algorithms. But this has never been proven. 

Those who are interested in deciding whether P = NP look at a subclass of NP called the 
NP-COMPLETE 
 NP-complete problems. The word "complete" is used here in the sense of "most extreme" 

and thus refers to the hardest problems in the class NP. It has been proven that either all 
the NP-complete problems are in P or none of them is. This makes the class theoretically 
interesting, but the class is also of practical interest because many important problems are 
known to be NP-complete. An example is the satisfiability problem: given a sentence of 
propositional logic, is there an assignment of truth values to the proposition symbols of the 
sentence that makes it true? Unless a miracle occurs and P NP, there can be no algorithm 
that solves all satisfiability  problems in polynomial time. However, AI is more interested in 
whether there are algorithms that perform efficiently on typical  problems drawn from a pre-
determined distribution; as we saw in Chapter 7, there are algorithms such as WALKS AT that 
do quite well on many problems. 

CORR The class co-NP is the complement of NP, in the sense that, for every decision problem 
in NP, there is a corresponding problem in co-NP with the "yes" and "no" answers reversed. 
We know that P is a subset of both NP and co-NP. and it is believed that there are problems 

CO-EP-COMPLETE in co-NP that are not in P The co•NP-complete problems are the hardest problems in co-NP. 
The class  4#1,  (pronounced "sharp P") is the set of counting problems corresponding to 

the decision problems in NP. Decision problems have a yes-or-no answer: is there a solution 
to this 3-SAT formula? Counting problems have an integer answer: how many solutions are 
there to this 3-SAT formula? In some cases, the counting problem is much harder than the 
decision problem. For example, deciding whether a bipartite graph has a perfect matching 
can be done in time O(VE) (where the graph has V vertices and E edges), but the counting 
problem "how many perfect matches does this bipartite graph have" is #P-complete, meaning 
that it is hard as any problem in #P and thus at least as hard as any NP problem. 

Another class is the class of PSPACE problems—those that require a polynomial amount 
of space, even on a nondeterministie  machine_  it is believed that PSPACP-hard  problems are 
worse than NP-complete problems, although it could turn out that NP = PSPACE, just as it 
could turn out that P = NP. 

A.2 VECTORS, MATRICES, AND LINEAR ALGEBRA 

VECTOR Mathematicians define a vector as a member of a vector space, but we will use a more con- 
crete definition: a vector is an ordered sequence of values. For example, in two-dimensional 
space, we have vectors such as x = (3,  and y =  2). We follow the convention of  bold- 
face characters for vector names, although some authors use arrows or bars over the names: 

or y. The elements of a vector can be accessed using subscripts: z = (21, 22,  One 
confusing point: this book is synthesizing work from  many subfields, which variously call 
their sequences vectors, lists, or tuples, and variously use the notations I,  2), [1,2], or (1, 2). 
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MATRIX 

IDEVTIP,  MATRIX 

TRANSPOSE 

INVERSE 

SINSLJLAR  

The two fundamental operations on vectors are vector addition and scalar multiplica- 
tion.  The vector addition x + y is the cicmentwisc  sum: x+  y = (3 +  0,  4 +  2)  =  6 Scalar 
multiplication multiplies each element by a constant: 5x = (5 x 3, 5 x  =  (15, 20).  

The length of a vector is denoted 3t  and is  computed by taking the square root of the 
sum of the squares of the elements: xl  = V(32  + 42 )  = 5. The dot product x • y (also called 
scalar product) of two vectors is the sum of the products of corresponding elements, that is, 
x = xivi,  or in our particular case, x•y=3  x 0+4 x 2= 8. 

Vectors are often interpreted as directed line segments (arrows) in an n-dimensional 
Euclidean space. Vector addition is then equivalent to placing the tail of one vector at the 
head of the other, and the dot product x • y is equal to Ix' 13'1  cos 6, where 0  is the angle 
between x and y.  

A matrix is a rectangular array of values arranged into rows and columns. Here is a 
matrix A of sire 3 x  4: 

( )

A1 . 1  A1 . 2  A1 . 3  A1 ,4  

A2,1 A2,2 A23 A24 

The first index of Aid specifies the row and the second the column. In programming lan-
guages, Aid  is often written A [  i  , j ]  or Ali] [ j  ].  

The sum of two matrices is defined by adding their corresponding elements; for example 
(A + 11)0  = Aid  +Bid. (The sum is undefined if A and B have different sizes.) We can also 
define the multiplication of a matrix by a scalar: (cA)i,i  = cAi,j.  Matrix multiplication (the 
product of two matrices) is more complicated. The product AB is defined only if A is of size 
n.  x h and R  is of size h x c (i _e_,  the second matrix has the same number of rows as the first 
has columns); the result is a matrix of size a x c.  If the matrices are of appropriate size, then 
the result is 

(AB)„k  = 

Matrix multiplication is not commutative, even for square matrices: AB BA in general. 
It is, however, associative: (AB)C = A (BC). Note that the dot product can be expressed in 
terms of a transpose and a matrix multiplication:1i  • y =  xTy.  

The identity matrix I has elements equal to I when i  = j and equal to 0 otherwise. 
It has the property that AI =A for all A. The transpose of A, written A T  is formed by 
turning rows into columns and vice versa, or, more formally, by A T i =A3,i.  The inverse of 
a square matrix A is another square matrix A -1  such that A -1A  =I. For a singular matrix. 
the inverse does not exist. For a nonsingular matrix, it can be computed in 0  (n3 ) time. 

Matrices are used to solve systems of linear equations in 0(n 3 )  time; the time is domi-
nated by inverting a matrix of coefficients. Consider the following set of equations, for which 
we want a solution in x,  y,  and z:  

+2x + y — z = 8 

—3x  —  y  +  2x  =  —11 

—2x + y  + 2z = —3 •  

A3,1 A3,2  A3,8  AR,4  
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We can represent this system as the matrix equation A x = b, where 

A= (  
2 

-3 
-2 

1 
-1 

1 

-1 
2 
2 
)  ,  x= 

x 

z 
b =  (  

8 
-11 
-3 

To solve A x = b we multiply both sides by A -1 , yielding A-1 Ax  = A-lb,  which simplifies 
to x = A-lb.  After inverting A and multiplying by b, we get the answer 

2 
x= y  =  (  3 

-1 

A.3 PROBABILITY DISTRIBUTIONS 

PFOBABILITY  
DENSITY  FUNCTION 

A probability is a measure over a set of events that satisfies three axioms: 

I. The measure of each event is between 0 and 1. We write this as 0 < P(X - x,)  < 1, 
where X is a random variable representing an event and xi are the possible values of 
X. In general, random variables are denoted by uppercase letters and their values by 
lowercase letters. 

2. The measure of the whole set is I; that is, E.,7_  t  P(X  =xi)=1.  

3. The probability of a union of disjoint events is the sum of the probabilities of the indi-
vidual events; that is, P(X =xi  V X =x2 ) =P(X  = x 1 ) +  P(X =x 2 ), where a l  and 
x2 are disjoint. 

A probabilistic model consists of a sample space of mutually exclusive possible outcomes, 
together with a probability measure for each outcome. For example, in a model of the weather 
tomorrow,  the outcomes might be sunny, cloudy, rainy, and snowy. A subset of these out-
comes constitutes an event. For example, the event of precipitation is the subset consisting of 
{rainy, snowy). 

We use P(X) to denote the vector of values (P(X = xi ),  .  , P(X =x,i )).  We also 
use lAx,)  as an abbreviation for P(X = xi) and E,  P(x) for EL P(X =xi). 

The conditional probability P(BIA) is defined as P(BnAVP(A).  A and B are condi-
tionally independent if P(B A) = P(B) (or equivalently, P(A1B)=P(A).  For continuous 
variables, there are an infinite number of values, and unless there are point spikes, the proba-
bility of any one value is if  Therefore, we define a probability density function, which we 
also denote as PH ;  but which has a slightly different meaning from the discrete probability 
function. The density function P(x)  for a random variable X, which might be thought of as 
P(X  =x), is intuitively defined as the ratio of the probability that X falls into an interval 
around x, divided by the width of the interval, as the interval width goes to zero: 

P(x)= lltn P(x  <  X < x dx)/dx  
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The density function must be nonnegative  for all x and must have 
cc  [  

P(x)dx=  1  .  L.  
CUMULATIV  
PROBABILITY

E   We can also define a cumulative probability density function Fx (x),  which is the proba- DERSITY  FUNCTION 
bility  of a random variable being less than x: 

Fx(z)  = P(X 27)  = f  P(u) du . 

Note that the probability density function has units, whereas the discrete probability function 
is armless.  For example, it values of X are measured in seconds, then the density is measured 
in Hz (i.e., 1/sec). If values of X are points in three-dimensional space measured in meters, 
then density is measured in 1/m3 .  

One of the most important probability distributions is the Gaussian distribution, also 
known as the normal distribution. A Gaussian distribution with mean p.  and standard devi- 
ation a (and therefore variance a2 )  is defined as 

P(x)  
1  e_ („to2  /0,2 \  

'  a-  'N/Jr  
where x  is a continuous variable ranging from -co to +cc. With mean pt  = 0 and variance 
a2  = 1, we get the special case of the standard normal distribution. For a distribution over 
a vector x  in n dimensions, there is the multivariute  Gaussian distribution: 

P(x)  =  1 e -  ((x-p)T  E -1 (x-,it))  
027T)'1 )-2.1  

where p,  is the mean vector and E  is the covariance matrix (see below). 
In one dimension, we can define the cumulative distribution function F(x) as the 

probability that a random variable will be less than x_  For the normal distribution, this is 

C ENTRAL  UNIT  
TI  EanEm  

EXPECTATION 

1 —  
F(x) = f  P(z)dz  = -2 (1  +  of( 

2  

of)) 
 

-00  
where erf(x) is the so-called error function, which has no closed-form representation. 

The central limit theorem states that the distribution formed by sampling n indepen-
dent random variables and taking their mean tends to a normal distribution as Ti  tends to 
infinity. This holds for almost any collection of random variables, even if they are not strictly 
independent, unless the variance of any finite subset of variables dominates the others. 

The expectation of a random variable, E(X), is the mean or average value, weighted 
by the probability of each value. For a discrete variable it is: 

E(X)=  ExiP(X=a,)  

For a continuous variable, replace the summation with an integral over the probability density 
function, P(x):  

DC 

E(X) = f sP(x)  dx  

GAUSSIAN  
DISTRIBUTION 

STANDARD NDRMAL 
DISTRIBUTION 
MULTIVARIAIE  
GAUSSIATI  

C UMULATIVE  
DISTRIBUTION 
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ROOT MEAN SQUARE The root mean square, RMS, of a set of values (often samples of a random variable) is 
the square root of the mean of the squares of the values, 

COVARIANCE 

COVARIANCE MATRIX 

2  
RMS(  Xi,  . ,  x,i )  —  \/X1  +... +   4 

 .  

The covariance of two random variables is the expectation of the product of their differences 
from their means: 

cov(X ;  Y) = E((X —  px)(11  — tw))  
The covariance matrix, often denoted E, is a matrix of covariances between elements of a 
vector of random variables. Given X = (X1,  Xn ) T ,  the entries of the covariance matrix 
are as follows: 

= cov(Xi, = — p.)(xj  — gi))  
A few more miscellaneous points: we use log(x)  for the natural logarithm, loge(x).  We use 
arginua„  f (x)  for the value of for which f (s) is maximal. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The 00  notation so widely used in computer science today was first introduced in the context 
of number theory by the German mathematician P. G. H. Bachmann (1894). The concept of 
NP-completeness was invented by Cook (1971), and the modem method for establishing a 
reduction from one problem to another is due to Karp (1972). Cook and Karp have both won 
the Turing award, the highest honor in computer science, for their work. 

Classic works on the analysis and design of algorithms include those by Knuth (1973) 
and Aho, Hoperoft, and Ullman (1974); more recent contributions are by Tarjan (1983) and 
Cormen,  Leiserson, and Rivest (1990). These books place an emphasis on designing and 
analyzing algorithms to solve tractable problems. For the theory of NP-completeness and 
other forms of intractability, see Garey and Johnson (1979) or Papadimitriou (1994). Good 
texts on probability include Chung (1979), Ross (1988), and Bertsekas and Tsitsiklis (2008). 
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 NOTES ON LANGUAGES 

AND ALGORITHMS 

B.1 DEFINING LANGUAGES WITH BACKUS—NAUR  FORM (BNF) 

CONTEST-FREE  
GRAMMAR 
BACKIJS-NAUR  
FORM IENFI  

TERMINAL SYMBOL  

NONTERMI  NAL  
SYMBOL 

START SYMBOL 

In this book, we define several languages, including the languages of propositional logic 
(page 243), first-order logic (page 293), and a subset of English (page 899). A formal lan- 
guage is defined as a set of strings where each string is a sequence of symbols. The languages 
we are interested in consist of an infinite set of strings, so we need a concise way to charac-
terize the set. We do that with a grammar. The particular type of grammar we use is called a 
context-free grammar, because each expression has the same form in any context. We write 
our grammars in a formalism called Backus—Maur  form (BNF). There are four components 
to a BNF grammar: 

■ A set of terminal symbols. These are the symbols or words that make up the strings of 
the language. They could be letters (A, B, C, ...)  or words (a, aardvark, abacus, ..  .),  
or whatever symbols are appropriate for the domain. 

• A set of nonterminal symbols that categorize subphrases of the language. For exam-
ple,  the nonterminal  symbol NounPhrase in English denotes an infinite set of strings 
including "you" and "the big slobbery dog." 

■ A start symbol, which is the nonterminal  symbol that denotes the complete set of 
strings of the language. In English, this is Sentence; for arithmetic, it might be Erpr,  
and for programming languages it is Pro9rarn.  

■ A set of rewrite rules, of the form LHS RHS,  where LHS is a nonterminal 
symbol and RHS  is a sequence of zero or more symbols. These can be either terminal 
or nonterminal  symbols, or the symbol e ,  which is used to denote the empty string. 

A rewrite rule of the form 

Sentence —>  NounPhrase Verbnirase  

means that whenever we have two strings categorized as a NounPhrase and a VerbPhrase, 
we can append them together and categorize the result as a Sentence. As an abbreviation, 
the two rules (S A) and (S — B) can be written (S A B). 

I060  
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Here is a BNF grammar for simple arithmetic expressions: 
&pr —>  Exp .  Operator Expr  ( Espr  )  Number 

Plumber —>  Digit I Number Digit 

Digit 01112  3 4 1 5 1 6 1 7 1 8 1 9 
Operator —›  + I - I =I 

We cover languages and grammars in more detail in Chapter 22. Be aware that other books 
use slightly different notations for BNF;  for example, you might see (Digit) instead of Digit 
for a nonterminal,  'word' instead of word for a terminal, or :  :=  instead of —)  in a rule. 

B.2 DESCRIBING ALGORITHMS WITH PSEUDOCODE 

The algorithms in this book are described in pseudocode. Most of the pseudocode should be 
familiar to users of languages like Java, C++, or Lisp. In some places we use mathematical 
formulas or ordinary English to describe parts that would otherwise be more cumbersome. A 
fev,  idiosyncrasies should be noted. 

• Persistent variables: We use the keyword persistent to say that a variable is given an 
initial value the first time a function is called and retains that value (or the value given to 
it by a subsequent assignment statement) on all subsequent calls to the function. Thus, 
persistent variables are like global variables in that they outlive a single call to their 
function, but they are accessible only within the function. The agent programs in the 
book use persistent variables for memory Programs with persistent variables can be 
implemented as objects in object-oriented languages such as C++, Java, Python, and 
Srnalltalk.  In functional languages. they can be implemented by functional closures 
over an environment containing the requited variables. 

• Functions as values: Functions and procedures have capitalized names, and variables 
have lowercase italic names. So most of the time, a function call looks like FN(x). 
However. we allow the value of a variable to be a function: for example, if the value of 
the variable I is the square root function, then f (9) returns 3. 

• for each: The notation "for each x in c do" means that the loop is executed with the 
variable x bound to successive elements of the collection c. 

• Indentation is significant: Indentation is used to mark the scope of a loop or condi-
tional, as in the language Python, and unlike Java and C++ (which use braces) or Pascal 
and Visual Basic (which use end). 

• Destructuring assignment: The notation"x , pair" means that the right-hand side 
must evaluate to a two-element tuple, and the first element is assigned to x and the 
second to y_ The same idea is used in "for each x, y in pairs do" and can be used to 
swap two variables: "x, y y, 

• Generators and yield: the nuLatiun  "generator  G(x)  yields numbers" defines G as a 
generator function. This is best understood by an example. The code fragment shown in 
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generator POWERS-OF-20  yields iota  

while true do 
yield 

4—  2 

for pin PowErzs-O• -2()  do 
PRINT(p)  

Figure B.1 Example of a generator function and its invocation within a loop. 

Figure B.1 prints the numbers 1. 2, 4, , and never stops. The call to POWERS-OF-2  
returns a generator, which in turn yields one value each time the loop code asks for the 
next element of the collection. Even though the collection is infinite, it is enumerated 
one element at a time. 

■ Lists: V  y,  z .  denotes a list of three elements. [firstlrest]  denotes a list formed by 
adding first to the list rest. In Lisp, this is the cons function. 

• Sets: {x ;  y .  z} denotes a set of three elements. : Ax)  1  denotes the set of all elements 
x for which p(x) is true. 

■ Arrays start at 1: Unless stated otherwise, the first index of an array is 1 as in usual 
mathematical  notation, not 0, as in Java and C._  

B.3 ONLINE HELP 

Most of the algorithms in the book have been implemented in Java, Lisp, and Python at our 
online code repository: 

aima.cs.berkeley.edu  

The same Web site includes instructions for sending comments, corrections, or suggestions 
for improving the book, and for joining discussion lists. 

http://aima.cs.berkeley.edu
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